

Delft University of Technology

Software defined network-based HTTP flooding attack defender

Mohammadi, Reza; Lal, Chhagan; Conti, Mauro; Sharma, Lokesh

DOI
10.1016/j.compeleceng.2022.108019
Publication date
2022
Document Version
Final published version
Published in
Computers and Electrical Engineering

Citation (APA)
Mohammadi, R., Lal, C., Conti, M., & Sharma, L. (2022). Software defined network-based HTTP flooding
attack defender. Computers and Electrical Engineering, 101, Article 108019.
https://doi.org/10.1016/j.compeleceng.2022.108019

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1016/j.compeleceng.2022.108019
https://doi.org/10.1016/j.compeleceng.2022.108019

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Computers and Electrical Engineering 101 (2022) 108019

A
0

Contents lists available at ScienceDirect

Computers and Electrical Engineering

journal homepage: www.elsevier.com/locate/compeleceng

Software defined network-based HTTP flooding attack defender✩

Reza Mohammadi a,∗, Chhagan Lal b, Mauro Conti c,b, Lokesh Sharma d

a Computer Engineering Department, Bu-Ali Sina University, Ahmadi Rooshan Ave., Hamedan, 38695-65178, Hamedan, Iran
b TU Delft, Mekelweg 5, 2628 CD, 2600 Delft, Netherlands
c University of Padua, Via Trieste, 63-35121, Padova, Italy
d Manipal University Jaipur, Off Jaipur-Ajmer Expressway, Jaipur 30307, India

A R T I C L E I N F O

Keywords:
HTTP flooding attack
SDN
Entropy
Hellinger distance

A B S T R A C T

In recent years, the explosive growth of the Internet has led to an increment in the number
of Distributed Denial of Service (DDoS) attacks. HTTP Flooding is a critical DDoS attack that
targets HTTP servers to prohibit users from receiving HTTP services. Moreover, it saturates
the link bandwidth and consumes network resources. Because the attack is launched at the
application layer, it is difficult to defend against it using current countermeasures such as
firewall or Intrusion Prevention System (IPS).

In this paper, we propose SHFD, which leverages the Software-Defined Networking (SDN)
paradigm to mitigate HTTP flooding attacks. We implement SHFD as a defender module on the
SDN controller to detect and mitigate the attack in the first place. Experimental results gathered
from Mininet confirm that SHFD brings a significant improvement of 13% in detection time and
29% in the number of blocked malicious flows compared to the state-of-the-art approaches.

1. Introduction

In the last few decades, Internet users have increased significantly. At the same time, the network providers are improving the
core infrastructure accordingly to provide fast and uninterruptible services to the end-users. It aims to support enhanced customer
satisfaction and increase the new customers base. HTTP is one of the most used communication protocols to perform daily affairs,
such as checking email, downloading required files, and fulfilling research-related activities [1]. This makes it an attractive target
for attackers to launch Denial of Service (DoS) attacks against HTTP servers to make them unavailable for legitimate users. In most
cases, the attackers perform Distributed DoS (DDoS) attacks and exploit the resource of other hosts to launch an HTTP flooding
attack. It makes the attack stronger and more effective. In DDoS, many compromised hosts (botnet) send a high number of GET or
POST requests toward the HTTP server to overload and exhaust its resources [2]. As a result, the server will crash and not deliver any
services to legitimate users. HTTP flooding is the most common attack implemented at the application layer [3], and its detection
by the network equipment in legacy networks is challenging.

Software Defined Networking (SDN) is a new framework for network management that decouples data plane from the control
plane. SDN-based network architecture facilitates dynamic configuration and enables network providers to program the networks
to provide desirable services and satisfy Service Level Agreement (SLA) for their customers [4,5]. Furthermore, SDN can be seen as
an opportunity to establish security mechanisms to detect and prevent malicious attacks that cause disturbance in receiving service
from servers by legitimate users [6].

✩ This paper is for regular issues of CAEE. Reviews were processed by Associate Editor Dr. A. Pasumpon Pandian and recommended for publication.
∗ Corresponding author.
E-mail address: r.mohammadi@basu.ac.ir (R. Mohammadi).
vailable online 13 May 2022
045-7906/© 2022 Elsevier Ltd. All rights reserved.

https://doi.org/10.1016/j.compeleceng.2022.108019
Received 5 November 2021; Received in revised form 17 April 2022; Accepted 18 April 2022

http://www.elsevier.com/locate/compeleceng
http://www.elsevier.com/locate/compeleceng
mailto:r.mohammadi@basu.ac.ir
https://doi.org/10.1016/j.compeleceng.2022.108019
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compeleceng.2022.108019&domain=pdf
https://doi.org/10.1016/j.compeleceng.2022.108019

Computers and Electrical Engineering 101 (2022) 108019R. Mohammadi et al.

s
b
r
e
s

a
w
a
a
T
a
d

o
p

2

E

2

t
n
i

2

a
+
b
a
c
r
f
b
a
t

2

T
t
t

1.1. Motivation and objectives

Application layer attacks such as HTTP flooding is challenging to detect by the legacy network’s active equipment (i.e., routers or
witches). For this reason, legacy network designers use firewalls or Intrusion Detection Systems (IDSs) to protect HTTP servers from
eing affected by the various attacks [7]. As another solution, they might configure the servers to serve only a limited number of
equests for a specific host. Unfortunately, these solutions can only protect the target servers. They cannot prevent network resource
xhaustion like link bandwidth, CPU wastage, and memory consumption at active devices like switches and routers. Moreover, these
olutions might not detect the origin of DDoS attacks properly.

To overcome the limitations mentioned above, we propose a new SDN-based solution to detect and mitigate HTTP flooding
ttacks early, thus keeping the servers and network resources safe from disturbance and damage caused by the attacks. To this end,
e leverage the programming capabilities of SDN and implement our proposed solution, called SHFD, as a security module running
t the SDN controller. This module periodically collects the network statistics and uses Entropy to check whether the network is in
safe or unsafe state. If the network is unsafe, SHFD uses Hellinger distance to detect which hosts perform the unusual behavior.
hen, it blocks the suspicious hosts at the edge of the network. This policy protects the network entities from resource exhaustion
nd prevents target servers from being overloaded by malicious hosts. One of the advantages of our proposed solution is that it can
etect both slow and high rate HTTP flooding attacks in their early phases, thus reduces the adverse impact. Specifically, our main

contributions can be summarized as follows.

• We propose a new security module named SHFD for detecting slow and high rate HTTP flooding attacks in SDN-based networks.
• We propose the use of Shannon’s Entropy and Hellinger distance techniques in SHFD to provide a more accurate classification

of legitimate and malicious HTTP flows.
• We implement the performance evaluation testbed by installing SHFD on Ryu controller, and we test its performance over

different attack rates. Moreover, we compare the performance of SHFD against the state-of-the-art solutions for HTTP flooding
in different SDN-based networks.

1.2. Organization

The rest of this paper is organized as follows. Section 2 presents some preliminaries about HTTP flooding attacks and
mathematical materials used in SHFD. In Section 4, we review SDN and non-SDN related work for HTTP flooding. Section 7 presents
ur proposed solution (i.e., SHFD) and explains it in detail. In Section 5, experimental settings and the performance evaluation are
resented. Finally, we conclude the paper in Section 6.

. Preliminaries

In this section, first, we will describe the HTTP flooding attack in detail. Next, we discuss some mathematical concepts regarding
ntropy and Hellinger distance.

.1. HTTP flooding attack

HTTP flooding attack is a type of volumetric attack in which a group of compromised hosts (botnet) sends GET or POST requests
o overwhelm a web server [8]. The goal is to make the target web server out of service. Moreover, bandwidth saturation and
etwork equipment resource exhaustion are other drawbacks of this attack. Usually, one can implement an HTTP flooding attack
n various ways, but two critical and popular methods are as follows [9,10].

.1.1. Slow rate HTTP flooding
Also known as Slowloris [11], it establishes many connections to the victim web server and attempts to hold the connections open

s long as possible. In a normal HTTP request, as depicted in Fig. 1, each line in the request message ends with CRLF (Carriage Return
Line Feed) character. Also, the message finishes with two CRLF characters, which denotes a blank line [9]. Upon receiving this

lank line, the web server sends an HTTP response. Until it receives the blank line, it waits for the client to complete the headers
nd puts the blank line at the end of the message. This waiting leads to server resource consumption (overflows the maximum
oncurrent connection pool of web server). If the number of incomplete HTTP connections is too high, then the web server stops
esponding and finally crashes [10]. As shown in Fig. 1, Slowloris misuses this behavior and sends many incomplete HTTP requests
ollowed by incomplete header fields with random values for each connection with delay. It does not finish the requests with a
lank line. In nutshell, it sends incomplete HTTP GET request and forces the target web server to maintain the connection open for
long time. In a DDoS attack, a malicious attacker compromise many hosts, install Slowloris on them, and finally command them

o create a huge number of incomplete HTTP connection to a victim web server.

.1.2. High rate HTTP flood
Like any DDoS attack, it aims to bring down the victim web server and prohibit legitimate users from receiving HTTP services.

he compromised hosts persistently send a massive number of complete HTTP POST or GET requests toward the web server, leading
o a denial of the server’s acceptance of benign users’ requests. In most cases, the attackers request the large size web pages to make
2

he attack more effective and also saturate the network bandwidth [10].

Computers and Electrical Engineering 101 (2022) 108019R. Mohammadi et al.

F

w
n

2

a
t

3

3

l
n

Fig. 1. Complete vs. incomplete (Slowloris) HTTP GET request.

2.2. Shannon’s entropy

In information theory, Claude Shannon proposed entropy as a metric to measure the randomness or uncertainty of data [12].
The entropy of a discrete random variable is defined as follows.

𝐸(𝑋) =
𝑛
∑

𝑖=1
−𝑃 (𝑟𝑖) log2 𝑃 (𝑟𝑖), (1)

where, 𝑛 is the number of outcome, 𝑃 (𝑟𝑖) is the probability of the 𝑖th occurrence of random variable in the data set. Eq. (1) denotes
that maximum entropy can be achieved if the random variables follow the uniform probability. Contrariwise, uncertainty decreases
when the random variables do not follow uniform probability. This concept can be used in various fields such as detection of
abnormal behavior of users in a network [13,14]. Accordingly, in this paper, we use this concept in SHFD to detect the presence
of a possible attack in SDN-based networks. To normalize Eq. (1) and calculate the entropy in range [0, 1], we use Eq. (2) as
follows [15].

𝑁𝐸(𝑋) =
𝐸(𝑋)
log2 𝑛

. (2)

urthermore, in SHFD, we use the number of HTTP flows in a specific time window as a random variable for Eq. (1) as follows.

𝑊 =
{

(𝑟1, 𝑠1), (𝑟2, 𝑠2),… ., (𝑟𝑛, 𝑠𝑛)
}

, (3)

here 𝑟𝑖 is source IP address of the 𝑖th host, 𝑠𝑖 is the number incomplete HTTP connections, and n is the number of clients in the
etwork.

.3. Hellinger distance

In a network, many users behave differently while using the network. Therefore, the probability distribution of traffic flows
ssociated with a user is not the same as others. Hellinger distance is one of the most valuable metrics to measure the similarity of
wo different probability distributions [16]. Using it, the similarity of behavior of network users can be calculated as follows [17].

𝐻𝐷(𝑃 ,𝑄) = 1
√

2
(

√

√

√

√

𝑘
∑

𝑖=1
(
√

𝑝𝑖 −
√

𝑞𝑖)2), (4)

where 𝑃 =
{

𝑝1, 𝑝2,… ., 𝑝𝑘
}

and 𝑄 =
{

𝑞1, 𝑞2,… ., 𝑞𝑘
}

are two discrete probability distributions, each of which consists 𝑘 different
samples. In SHFD, we use Hellinger distance to measure the difference between normal and abnormal behavior of users. In our
schema, 𝑃 and 𝑄 consists of the number of HTTP flows for each host time windows.

. Related work

This section reviews the relevant state-of-the-art HTTP flooding defense mechanisms in legacy networks and SDN.

.1. HTTP flooding defense in legacy networks

In legacy networks, the flow traffic of application-layer attacks such as HTTP flooding should be investigated on the application
ayer. With the absence of a centralized entity and lack of programmability, attack detection is more complex than SDN-based
etworks. Hence, the other layers in the devices, such as a hub, switch, router, and transport layer gateways, cannot detect
3

Computers and Electrical Engineering 101 (2022) 108019R. Mohammadi et al.

a
p
i
a
m
H
b

T
t
t
o

3

I
S

application-layer attacks. For this reason, most of the solutions proposed by the researchers rely on detecting these types of attacks
at the target server or in an Intrusion Detection and Prevention System(IDPS).

Authors in [18] propose a detection mechanism, namely HAP, for HTTP flooding attacks in a cloud environment. To detect the
ttack, HAP uses web server logs and extracts valuable features from them. Next, the anomalies are detected by applying the affinity
ropagation clustering technique. Although HAP has a high detection rate in detecting the attacks in the dataset or regenerated data
n a real network, it only relies on the server log data. It cannot prevent the adverse effects of HTTP flooding on network bandwidth
nd resources. Another solution for the detection of HTTP flooding in the cloud environment is proposed in [19]. The solution uses a
onitoring and classifier module at the edge of the cloud, which monitors the incoming traffic from the tenants and detects the slow
TTP requests. Then, it puts the source of the attack on a blocklist. Legitimate requests are sent toward the servers and processed
y them. This solution is also implemented on the cloud side and, thus, cannot prohibit resource and bandwidth exhaustion.

In [20] the authors proposed a Fuzzy-based system on the server-side to recognize whether a network user behavior is legitimate.
he Fuzzy system takes two inputs: Request Index and Repetition Index. Then, the output is given to a scheduler to decide whether
o permit or deny a user’s request. In addition to these solutions, some other techniques use the machine learning approach to detect
he HTTP flooding attack [21]. In general, all machine learning and non-machine learning solutions focus on detecting the attack
n the server-side in which the network resource exhaustion has not been considered.

.2. HTTP flooding defense in SDN-based networks

Due to the novelty of SDN, there are some works in the detection or prevention of HTTP Flooding attacks in SDN-based networks.
n [22] the authors introduced SHDA as an SDN-based defense mechanism to detect and mitigate slow HTTP DDoS attacks. In
HDA, after a certain number of incomplete HTTP requests originated from a specific host (i.e., 𝐶𝑡ℎ), the web server wants the SDN

controller to act as a proxy for future HTTP requests. In this step, the controller sets a timer (i.e., 𝑇𝑐) and counter (i.e., 𝑁𝑡ℎ) for the
host and monitors the future HTTP traffic. If the number of incomplete requests violates a threshold before the timer expiration,
SHDA considers the host malicious and blocks it. Although SHDA is a simple mechanism, it is sensitive to the value of the timer
and threshold. Unsuitable adjusting of these values leads to false positives. Moreover, it is needed to change the web server to
communicate with the controller, which is impractical in most situations. Similar to SHDA, [23] proposes a mitigation method
for HTTP flooding in SDN-based networks. This solution detects the attack on the server-side. To do this, the servers count the
number of incoming requests. If this number for a host in a certain time is greater than a predefined threshold, the server notifies
the controller to block that host. However, this technique has most of the same disadvantages as SHDA. In [24] the authors have
proposed a countermeasure for HTTP flooding, which needs collaboration between the targeted web server and SDN controller.
In their method, the web server monitors the incoming HTTP requests to identify the suspected attack request. If the number of
requests exceeds a threshold, the web server stops processing and forwards the request to the controller. Finally, the controller
blocks the origin of that request. One of the main disadvantages of this method is that it needs to change the web server to monitor
the requests and inform the controller. Thus, it imposes a considerable overhead on the web server.

In [25] the authors introduced a system for mitigating Slow DDoS attacks in SDN. The system is implemented as a separate host in
the network, and it receives a copy of all traffic flows in the network. To check the presence of an attack, their system, first, measures
the Round Trip Time (RTT) value of the traffic flows. If this value is exceeded a specific value, the second phase will be started. The
second phase classifies the attacks based on their behavior. Upon detection of an attack, the system will notify the SDN controller
to block the attacker. Their system cannot prevent bandwidth exhaustion, leading to false positives due to the improper threshold
value. In [26], the authors have proposed a new hardware-based countermeasure using FPGA technology. In their method, if the
number of HTTP GET requests violates the predefined threshold in a specific time interval, the source IP address of the requester is
added to a blacklist. For efficient memory utilization, Source IP, Destination IP, URL is first hashed and then stored in the blacklist.
The hosts whose address is on the blacklist will be blocked in the mitigation phase. Although their proposed mechanism detects
and mitigates HTTP Flood attacks, it needs to use special FPGA-based hardware, which is impossible in most situations.

A machine learning-based detection method for various DDoS attacks in SDN has been proposed in [27]. To do this, the authors
simulate different types of attacks in a simulation environment. Then, the controller gathers some critical features of traffic flows
from the switches. Finally, it uses various classifying algorithms for the features to detect which traffic is normal or abnormal. Their
simulation results showed that the decision tree algorithm outperforms other techniques in detecting anomalies. However, the focus
of their method is not on HTTP flooding and only can detect the presence of an attack in the network. Moreover, it cannot recognize
and block the source of the attack. Furthermore, machine learning techniques are data-hungry and need many data for accurate
detection [28]. It is worth noting that because in SDN, the controller plays a vital role, implementing machine learning techniques
on the controller needs a high level of computational resources. For this reason, these techniques are not appropriate solutions in a
resource-limited SDN environment. At the end of this section, we summarize the related works in Table Table 1.

We found that very few works have been proposed to effectively mitigate HTTP flooding in SDN from the above literature review.
Moreover, most existing solutions rely on considering threshold values that can cause false-positive or false-negative results. For this
reason, our method is one of the pioneers’ research in this scope and is helpful for network providers to apply in SDN networks.

4. Proposed method: SHFD

This section presents our proposed solution called SHFD to detect/prevent HTTP flooding attacks. SHFD leverages the capabilities
of SDN to detect the attack situation and block the malicious hosts. Unlike most HTTP flooding countermeasures that use static
4

thresholds, SHFD uses dynamic threshold values based on the behavior of network users.

Computers and Electrical Engineering 101 (2022) 108019R. Mohammadi et al.

a

4

T
S

𝑇
v

Table 1
Comparison of existing approaches for HTTP flooding in SDN.

References Year Short Analysis Disadvantages

[22], [23] 2017, 2020 ∙ Implemented on web server and controller
∙ Can detect the attack and its source
∙ Server detects malicious behavior using thresholds
and inform controller to block the source of the attack

∙ Uses two threshold values and one timer
∙ Might produce inaccurate results
∙ Sensitive to the behavior of users
∙ Needs to change server source code

[26] 2017 ∙ Implemented on FPGA-based openflow switches
∙ Can detect the attack and its source
∙ Switch reacts to malicious behavior if the thresholds
exceed
∙ Switch blocks the source of the attack

∙ Uses a threshold value for each host and URL
∙ Sensitive to the behavior of users
∙ Might produce inaccurate results
∙ it is Only applicable for FPGA-based OF switches

[24] 2021 ∙ Implemented on the target web server
∙ Can detect the attack and its source
∙ Detector reacts to malicious behavior if the
thresholds exceed
∙ Detector informs the controller to block the source
of the attack

∙ Uses a threshold value for detection
∙ Imposes considerable overhead on the target web
server for attack detection
∙ Needs to change the web server to enable it for
attack detection

[25] 2018 ∙ Implemented on a separate machine in the network
∙ Can detect the attack and its source
∙ Detector reacts to malicious behavior if the
thresholds exceed
∙ Detector informs the controller to block the source
of the attack

∙ Uses a threshold value for detection
∙ needs to measure RTT for each flow
∙ Might produce inaccurate results
∙ needs an extra machine as a detector

[27] 2020 ∙ Implemented on the SDN controller
∙ Can only detect the presence of attack

∙ Uses machine learning for detection
∙ needs dataset or generating data for learning the
algorithms
∙ Only can detect the attack
∙ For accurate results, needs a lot of data

SHFD (our solution) 2022 ∙ Implemented on the SDN controller
∙ Can detect the presence of attack
∙ Can recognize and block malicious hosts
∙ Can be used to address low as well as high rate
HTTP flooding

∙ It consumes some memory at controller to store data
structures that keeps track of the host activities

4.1. Architecture

SHFD is implemented as a security module on the SDN controller and can be enabled by a network administrator to defend
gainst HTTP flooding attacks. SHFD consists of two separate phases, which are as follows.

.1.1. Attack detection phase
In this phase, SHFD listens to incoming new HTTP requests to the controller. These requests are TCP SYN packets to establish a

CP connection between the client and target web server, and after that, the client will send HTTP GET or POST messages. First,
HFD extracts the source IP address from the SYN packet and stores it in a list named HostReqList. This list specifies the number of

incomplete HTTP headers during a time window for each host. Then, SHFD installs an end-to-end bidirectional path between the
pair of client-web server. To track the future incoming packets for these flows, the first switch along the path is configured to forward
the upcoming packets of the same flows to the next hop and deliver a copy to the controller. This configuration enables SHFD to
check whether a host sends complete or incomplete HTTP requests after establishing the TCP connection. By applying this policy,
SHFD can track each HTTP flow for any host in the network. Upon receiving an incomplete connection request, SHFD increments
the counter of that host in HostReqList for the pair of source–destination IP addresses by 1. SHFD uses a time window that the
network administrator defines to periodically monitor the network users’ behavior. At the end of each time window, SHFD creates
TW set using Eq. (3). Next, SHFD computes entropy (i.e., 𝐸𝑇𝑤) for the set and calculate normalized entropy value using Eqs. (1)
and (2), respectively. Moreover, it stores HostReqList of each host into a vector named HostReqVector, and reset the counter of each
host in HostReqList to zero for the next time window. If the entropy’s value in the current time window violates the threshold value,
SHFD suspects that the network is in an attack (unsafe) state. Therefore, it goes to the next phase to recognize the attack’s origin.
Furthermore, to decrease the detection time in case of attack, it decrements the current time window length for the next round by
using Eq. (5) as follows.

𝑇𝑊𝑖 = 𝑇𝑊𝑖−1 × 0.8 ×
𝑇𝑊𝐼𝑛𝑖𝑡𝑉 𝑎𝑙𝑢𝑒

2
, (5)

where 𝑇𝑊𝐼𝑛𝑖𝑡𝑉 𝑎𝑙𝑢𝑒 is the initial value for 𝑇𝑊 , which is determined by the administrator at the initial step. Moreover, 𝑇𝑊𝑖−1 and
𝑊𝑖 are the previous and current time windows, respectively. Regarding Eq. (5), it is obvious that in case of entropy violation, the
alue of 𝑇𝑊 is in range [𝑇𝑊𝐼𝑛𝑖𝑡𝑉 𝑎𝑙𝑢𝑒 , 𝑇𝑊]. By applying this policy, SHFD must check the entropy violation condition sooner
5

2 𝐼𝑛𝑖𝑡𝑉 𝑎𝑙𝑢𝑒

Computers and Electrical Engineering 101 (2022) 108019R. Mohammadi et al.

i
t

v

t
i
i
S

c
t
t
t
c
h
2

4

A
H
i
H
a
i
a
s

t
s
n
t

Fig. 2. Detection and prevention phases in SHFD.

n the next time window. Hence, if the network behavior is an attack, it can detect it sooner. If the entropy value does not violate
he threshold, SHFD set 𝑇𝑊 to 𝑇𝑊𝐼𝑛𝑖𝑡𝑉 𝑎𝑙𝑢𝑒 to reduce the overhead of unnecessary monitoring.

As aforementioned, one of the benefits of SHFD is that it uses an adaptive threshold for entropy. To do this, it stores entropy
alues in a list named 𝐸_𝐿𝑖𝑠𝑡. Once SHFD compares the current entropy with a threshold (i.e., 𝐸𝑇ℎ), it calculates the threshold as

follows.

𝐸𝑇ℎ = 𝜇 − 3 × 𝜎, (6)

where 𝜇 and 𝜎 are the mean and standard deviation of the entropy values in 𝐸_𝐿𝑖𝑠𝑡, respectively. Eq. (6) helps SHFD to adapt itself
o the network conditions. There is no need to reset the threshold by the network administrator. The admin only needs to provide an
nitial threshold value. It is worth mentioning that, since SHFD uses the IP address of the hosts for detecting the origin of the attack,
f an attacker spoofs the IP address, it can mislead SHFD. Fortunately, there is much literature to detect the IP spoofing attacks in
DN [29,30]. Therefore, an administrator can use one of these defense mechanisms together with SHFD. Algorithm 1 shows the

pseudo-code of SHFD. In the while loop in line 5, the controller checks the incoming incomplete HTTP request and increases the
ounter for each source IP (lines 8,9). In if statement of line 10, it checks the timer, and upon timer expiration, it calculates the
hreshold value. Then, in if statement in line 14, it checks whether the Entropy of the current time window is less than the Entropy
hreshold. If this condition is true, then the network behavior is abnormal, and the suspected hosts should be recognized. To do
his, from lines 15 to 21, it first calculates the average number of requests that all requester hosts send in the network and then
omputes Hellinger distance for each of them. Finally, in the foreach loop in line 22, it calculates the number of violations of each
ost from the Hellinger distance threshold. If the number of violations is greater than K for each host, then the host is blocked (line
5).

.1.2. Attack prevention phase
In this phase, SHFD begins to check which hosts are suspicious of being malicious. To do this, first, it creates a vector named

vgReq_List to calculate average incomplete HTTP headers for all hosts during different time windows so far. Then, SHFD computes
ellinger distance between the HostReqVector of each host and AvgReq_List using Eq. (7) to recognize abnormal behavior. This value

s also stored in a list, and then the average of Hellinger distances of all hosts (i.e., 𝐻𝐷𝑇ℎ) is calculated. Now, SHFD checks the
ellinger distance against the 𝐻𝐷𝑇ℎ. If this value for each host is larger than 𝐻𝐷𝑇ℎ, SHFD can recognize that the host is a potential
ttacker. To reduce the probability of false-positive recognition, SHFD considers a counter named VC (Violation Count) for each host
n this step. If the number of Hellinger distance violations of a host is greater than K, then SHFD can be sure that the host is an
ttacker. Next, it installs a forwarding rule to block the attacker host on the edge switch to which the host is connected. Then, it
ends a command to all switches in the network to remove any forwarding rule related to the IP address of the attacker.

It is worth mentioning that, considering K is optional, we have considered it as a parameter for administrators to enable them
o change the strictness of SHFD in attacker recognition. The policy used in SHFD has three benefits: (i) it preserves the target web
erver from the subsequent attacks from the same attacker, (ii) it mitigates the bandwidth saturation and resource exhaustion in
etwork devices, and (iii) it reduces the number of wasted forwarding rules in the flow table on the network switches. Fig. 2 shows
he flow diagram of the attack detection and prevention phase of SHFD.
6

Computers and Electrical Engineering 101 (2022) 108019R. Mohammadi et al.

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

c
w

For the sake of simplicity, we illustrate functionalities of SHFD for a malicious host in a scenario with one switch in Fig. 3.

4.2. Complexity of SHFD

The time complexity of SHFD depends on the number of malicious hosts. According to Algorithm 1, if we consider n is the number
of hosts in the network and assume that all of them are attackers, and k is the number of network switches, then the computational
complexity of SHFD in the worst case is 𝑂(6𝑛 + 2𝑛2 + 𝑘) ∼ 𝑂(𝑛2 + 𝑘). It implies that SHFD has polynomial complexity, and applying
it to defense against HTTP flooding does not lead to significant overheads on the SDN controller.

Algorithm 1 SHFD: Detection and Prevention Phase
Input: 𝑃𝐴𝐶𝐾𝐸𝑇 _𝐼𝑁(𝑃) // New packet arrived to the controller
foreach 𝑆𝑟𝑐𝐼𝑃 ∈  𝑒𝑡𝑤𝑜𝑟𝑘_𝐻𝑜𝑠𝑡𝑠 do

𝐻𝑅𝐿[𝑆𝑟𝑐𝐼𝑃] ← 0; // HostReqList
𝑉 𝐶[𝑆𝑟𝑐𝐼𝑃] ← 0; // Violation Counter
𝐻𝑅𝑉𝑆𝑟𝑐𝐼𝑃 ← []; // HostReqVetcor

while true do
𝑃 ← 𝑁𝑒𝑤_𝑃𝑎𝑐𝑘𝑒𝑡()
if 𝑃==TCP_SYN then

𝐼𝑛𝑠𝑡𝑎𝑙𝑙_𝐵𝑖𝐷𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛𝑎𝑙𝑃 𝑎𝑡ℎ(𝑃 .𝑆𝑟𝑐𝐼𝑃 ,𝑊 𝑒𝑏𝑠𝑒𝑟𝑣𝑒𝑟)

if 𝑃==Incomplete HTTP Header then
𝐻𝑅𝐿[𝑃 .𝑆𝑟𝑐𝐼𝑃] ← 𝐻𝑅𝐿[𝑃 .𝑆𝑟𝑐𝐼𝑃] + 1;

// Time WindowTimer Expiration
if 𝑇𝑊 𝑒𝑥𝑐𝑒𝑒𝑑𝑒𝑑 then

𝐸𝑇𝑤 = 𝐶𝑜𝑚𝑝𝑢𝑡𝑒𝐸𝑛𝑡𝑟𝑜𝑝𝑦(𝐻𝑅𝐿)
𝐸𝑛𝑡_𝐿𝑖𝑠𝑡 ← 𝐸𝑛𝑡_𝐿𝑖𝑠𝑡 ∪ 𝐸𝑇𝑤
𝜇 = 𝑀𝑒𝑎𝑛(𝐸𝑛𝑡_𝐿𝑖𝑠𝑡)
𝜎 = 𝑆𝑡𝑎𝑛𝑑𝑎𝑟𝑑𝐷𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛(𝐸𝑛𝑡_𝐿𝑖𝑠𝑡)
𝐸𝑇𝐻 = 𝜇 − 3 × 𝜎 // Entropy Threshold

foreach 𝑆𝑟𝑐𝐼𝑃 ∈ 𝑅𝐿 do
𝐻𝑅𝑉𝑆𝑟𝑐𝐼𝑃 ← 𝐻𝑅𝑉𝑆𝑟𝑐𝐼𝑃 ∪𝐻𝑅𝐿[𝑆𝑟𝑐𝐼𝑃]
𝐻𝑅𝐿[𝑆𝑟𝑐𝐼𝑃] ← 0;

if 𝐸𝑇𝑤 ≤ 𝐸𝑇𝐻 then
𝑇𝑊 = 𝑇𝑊 × 0.8 × 𝑇𝑊𝐼𝑛𝑖𝑡𝑖𝑎𝑙

2
𝐴𝑣𝑔𝑅𝑒𝑞_𝐿𝑖𝑠𝑡 ← []
foreach 𝑚 = 1 to 𝑆𝑖𝑧𝑒(𝐻𝑅𝑉) do

𝑠𝑢𝑚 ← 0
for 𝑆𝑟𝑐𝐼𝑃 ∈  𝑒𝑡𝑤𝑜𝑟𝑘_𝐻𝑜𝑠𝑡𝑠 do

𝑠𝑢𝑚 ← 𝑠𝑢𝑚 +𝐻𝑅𝑉𝑆𝑟𝑐𝐼𝑃 [𝑚]

𝑎𝑣𝑔 ← 𝑠𝑢𝑚
𝑆𝑖𝑧𝑒(𝑁𝑒𝑡𝑤𝑜𝑟𝑘_𝐻𝑜𝑠𝑡𝑠)

𝐴𝑣𝑔𝑅𝑒𝑞_𝐿𝑖𝑠𝑡 ← 𝐴𝑣𝑔𝑅𝑒𝑞_𝐿𝑖𝑠𝑡 ∪ 𝑎𝑣𝑔
𝐻𝐷_𝐿𝑖𝑠𝑡 ← []
foreach 𝑆𝑟𝑐𝐼𝑃 ∈  𝑒𝑡𝑤𝑜𝑟𝑘_𝐻𝑜𝑠𝑡𝑠 do

𝐻𝑆𝑟𝑐𝐼𝑃 = 𝐻𝑒𝑙𝑙𝑖𝑛𝑔𝑒𝑟𝐷𝑖𝑠𝑡𝑎𝑛𝑐𝑒(𝐻𝑅𝑉𝑆𝑟𝑐𝐼𝑃 , 𝐴𝑣𝑔𝑅𝑒𝑞_𝐿𝑖𝑠𝑡);
𝐻𝐷_𝐿𝑖𝑠𝑡 ← 𝐻𝐷_𝐿𝑖𝑠𝑡 ∪𝐻𝑆𝑟𝑐𝐼𝑃

𝐻𝑇ℎ = 𝑀𝑒𝑎𝑛(𝐻𝐷_𝐿𝑖𝑠𝑡) // Hellinger Distance Threshold
foreach 𝑆𝑟𝑐𝐼𝑃 ∈  𝑒𝑡𝑤𝑜𝑟𝑘_𝐻𝑜𝑠𝑡𝑠 do

if 𝐻𝑠𝑟𝑐𝐼𝑃 > 𝐻𝑇ℎ then
𝑉 𝐶[𝑆𝑟𝑐𝐼𝑃] = 𝑉 𝐶[𝑆𝑟𝑐𝐼𝑃] + 1

if 𝑉 𝐶[𝑆𝑟𝑐𝐼𝑃] > 𝐾 then
𝑅𝑒𝑚𝑜𝑣𝑒𝑅𝑢𝑙𝑒𝐹 𝑟𝑜𝑚𝑆𝑤𝑖𝑡𝑐ℎ𝑒𝑠(𝑆𝑟𝑐𝐼𝑃)
𝐼𝑛𝑠𝑡𝑎𝑙𝑙𝐵𝑙𝑜𝑐𝑘𝑅𝑢𝑙𝑒(𝑆𝑟𝑐𝐼𝑃)

5. Performance evaluation

In this section, we conduct a comprehensive simulation study and analyze the results to evaluate the performance of SHFD and
ompare it with SHDA [22] and normal SDN. There is no defense mechanism against HTTP flooding attacks in normal SDN, and
e will show how SHFD can improve the security of normal SDN.
7

Computers and Electrical Engineering 101 (2022) 108019R. Mohammadi et al.
Fig. 3. SHFD functionalities for malicious host.

5.1. Simulation setup

We implement SHFD as a security module in Ryu controller. To simulate the data plane of the testbed network, we use Mininet,
a popular SDN simulation tool. We run our experiments on a PC with four processing cores and 3 GB RAM. As mentioned in
Section 4, SHDA is one of the state-of-the-art solutions to tackle HTTP flooding attacks implemented in the controller. As mentioned
in Section 4, SHDA uses three threshold values (i.e., 𝐶𝑡ℎ, 𝑇𝑐 , 𝑎𝑛𝑑𝑁𝑡ℎ) to detect an HTTP flooding attack. In our simulation, we set
these thresholds to 𝐶𝑡ℎ = 512, 𝑇𝑐 = 20, 𝑎𝑛𝑑𝑁𝑡ℎ = 20.

To better evaluate the results, we also consider SDN_Normal_With_Attack and SDN_Normal_Without_Attack which denote normal
SDN scenarios without any security module for HTTP flooding attack in case of attack and non-attack, respectively. Simulations
are performed on the testbed network, which is shown in Fig. 4. The testbed network consists of six OpenFlow switches which are
controlled by the SDN controller. SHFD is implemented in this controller and performs the detection and mitigation processes. As
it can be seen in this figure, there are three legitimate hosts (H1-H3), six attackers (H4-H9), and two flash crowds (H10, H11). We
have considered ten different HTML files, each of which has a size of 51 Byte. Benign hosts send complete HTTP GET requests to
access one of these HTML files to a web server randomly between 10 and 15 s. To investigate the reaction of SHFD against flash
crowd hosts, we set these hosts to send an incomplete HTTP request for a short time (10 s). We have used SlowHTTPtest to perform
HTTP flooding attack. The attacker hosts use this tool to send incomplete HTTP requests at different rates. In order to evaluate
the performance of SHFD in the different traffic loads of attacks, we have configured five different scenarios in which the attacker
hosts send from 10 to 50 incomplete HTTP requests per second. In fact, the attack rate indicates the number of incomplete HTTP
connections established and maintained open for a long time. Simulation time for all scenarios is set to 600 s, and the attack start
time in all scenarios is set to 220 s. It is because SHFD detects the presence of an attack and recognizes malicious hosts using Entropy
and Hellinger distance, respectively. Therefore, the simulation must include normal behavior to identify the subsequent abnormal
behaviors. In the testbed network, there is no attack from the beginning of the simulation until the second of 220th second. Hence
the standard deviation is low. As the attack starts, the standard deviation increases, allowing SHFD to detect the presence of the
attack by computing the Entropy.

We evaluate the experimental results using the following performance metrics.
8

Computers and Electrical Engineering 101 (2022) 108019R. Mohammadi et al.
Fig. 4. The test-bed network.

Fig. 5. Number of forwarding and blocked rules vs. attack rate.

• Number of installed forwarding rules: denotes the total number of remaining forwarding entries in OF-switches at the end of
a simulation.

• Attack detection time: the time between sending the first incomplete HTTP request by an attacker and detecting the attack by
the defense mechanism.

• Bandwidth Consumption: denotes the amount of traffic traversed via OF-switches during a simulation run.
• Number of Blocked Malicious flows: the number of incomplete HTTP requests detected and blocked by the defense mechanism.
• F1-Score: is a measure to test the accuracy of a defense mechanism in detecting an attack. The higher value for F1-Score means

higher accuracy. F1-Score is defined as follows.

𝐹1_𝑆𝑐𝑜𝑟𝑒 = 𝑇𝑃
𝑇𝑃 + 𝐹𝑃+𝐹𝑁

2

(7)

where 𝑇𝑃 is true positive, 𝐹𝑁 is false negative and 𝐹𝑃 is false positive rate, respectively.

6. Results

The number of forwarding rules in the OF-switches flow table is a crucial parameter that should be considered for a defense
mechanism. Most of the attacks in SDN attempt to exhaust the flow tables. If the flow table of an OF switch is full, installing a new
rule by the controller has to remove one of the previously installed rules. This situation might sacrifice a benign traffic flow.

As depicted in Fig. 5(a), one of the side effects of HTTP flooding attack is the flow table exhaustion at OF-switches. This figure
shows that the difference between SDN_Normal_Without_Attack and SDN_Normal_With_Attack at the attack rate of 50 incomplete HTTP
requests per second is approximately 13 000 entries. It denotes that the HTTP flooding attack has effectively populated the TCAM
memory of switches. Fig. 5(a) also shows that SHFD outperforms SHDA. This is because of two reasons. First, upon detection of
a malicious host, SHFD blocks that host at the edge switch and prevents it’s future HTTP connections. This policy decreases the
9

Computers and Electrical Engineering 101 (2022) 108019R. Mohammadi et al.
Fig. 6. Attack detection time and average bandwidth consumption vs. different attack rates.

number of installed forwarding rules on the switches. Second, after blocking the malicious host, SHFD removes all worthless rules
related to the malicious host from all switches in the network. Unlike SHFD, SHDA only blocks the malicious host, but it does not
remove the already installed flows of that host from the forwarding tables.

Accordingly to Figs. 5(a), 5(b) shows that the difference between SHFD and SHDA in terms of the number of blocked forwarding
rules significantly increases with attack rate. It depicts that SHFD is an effective defense mechanism that decreases the TCAM
memory of relevant switches along the path between the malicious hosts and web server by removing worthless rules related to the
malicious hosts.

One of the primary essential factor for a defense mechanism, especially in HTTP flooding, is early detection of the attack so
that the impact of the attack can be minimized or, in some cases, even the attack could be prevented in the first place. As depicted
in Fig. 6(a), SHFD for different rates of attack has superiority to SHDA, and in all scenarios, it detects the attack sooner than
SHDA. Early detection in SHFD leads to prohibiting future incomplete HTTP requests and, as a result, decreases the number of
installed forwarding rules (as shown in Fig. 5(a)). Moreover, it causes lower web server resource consumption. As discussed in
Section 4, SHDA uses multiple threshold values for attack detection, and for this reason, a network administrator needs to set these
values correctly. Unfortunately, optimized value selection for these thresholds is difficult for any administrator due to network
users’ dynamic behavior. Unlike SHDA, SHFD employs Entropy for detection of the presence of attack in the network. This policy
leads to take a prompt reaction against the attack. Furthermore, after detection, SHFD immediately begins the mitigation phase and
computes Hellinger distance to recognize and block the malicious hosts. Moreover, adaptive threshold values in SHFD allow it to
adapt itself to the network traffic behavior quickly.

The adverse effect of DDoS attacks in SDN includes saturation of the network bandwidth, increase in the switches’ energy
consumption, and packet drop (due to congestion) for other benign traffic flows. Fig. 7 shows the bandwidth consumption during
over the time. It indicates that SHFD has lower bandwidth consumption from the start as it detects the attack sooner than SHDA.
Moreover, to demonstrate the effectiveness of SHFD and SHDA in bandwidth reduction against high attack rate, we compute the
average bandwidth consumption for the attack rate of 50 requests per second, as shown in Fig. 6(b). It illustrates how both SHFD
and SHDA effectively protect the network against the adverse effect, providing sufficient bandwidth for benign network traffics.

As mentioned in Section 5.1, we have considered two benign hosts as the flash crowds, which send an incomplete HTTP request
for 10 s, while other hosts in the testbed network normally request web pages from the web server. It is to check how SHFD treats
the flash crowd traffic. A defense mechanism should correctly distinguish normal behavior from abnormal. As shown in Fig. 8, SHFD
significantly outperforms SHDA in terms of F1-Score. The figure indicates that because SHFD does not rely on constant threshold
values and uses Hellinger distance to find misbehavior hosts, it has a higher F1-Score than SHDA. In fact, using Hellinger distance
helps to distinguish abnormal from a normal host. As depicted in Algorithm 1, if the Hellinger distance for a specific host violates
from K, the host will be blocked. Because flash crowds only send many requests for a short period compared to the attackers,
employing Hellinger distance in the detection process reduces the likelihood of considering a flash crowd as malicious behavior.
Hence, Hellinger distance leads to achieving a higher value for F1-score in SHFD. Contrary, because SHDA uses constant values
for threshold, it cannot detect flash crowd traffics, and for this reason, in our simulation testbed, it considers flash crowds as the
attackers and blocks them.

7. Results for the high rate flooding

Unlike slow rate HTTP flooding, where the attackers leave the TCP connections open, the attackers complete their HTTP requests
in the high rate flooding. However, the duration between consecutive requests is kept short, and hence they can quickly saturate
network bandwidth and the resource of the target web server. Due to SHFD being implemented as a module on the SDN controller, it
can also detect high rate HTTP flooding attacks. To do this, we only need to change SHFD to count complete HTTP requests instead
of incomplete ones. This section adds this minor change to SHFD and evaluates its performance in detecting and mitigating a high
rate of HTTP flooding attacks. For this reason, we keep all testbed and configuration of the previous section and only change the
10

Computers and Electrical Engineering 101 (2022) 108019R. Mohammadi et al.

a
a
H

i

b

a
i
n
n

Fig. 7. Bandwidth consumption during simulation time.

Fig. 8. F1-Score of defense mechanisms vs. different attack rates.

ttackers to send complete HTTP requests from 10 to 30 requests/s. We do not consider SHDA for high rate HTTP flooding because,
s we discussed in Section 2, it is a method for defense against slow rate attacks in which an attacker sends incomplete requests.
ence, it cannot be applied for complete HTTP requests.

Figs. 9 and 10(a) show that whether SHFD can preserve network bandwidth and also reduce the TCAM memory of OF-switches
n case of high rate HTTP flooding attack.

As depicted in Fig. 10(b), SHFD also achieves good performance in terms of F1-Score, which means it can accurately detect and
lock high rate attacks.

In a nutshell, from Figs. 9 to 10(b), it can be concluded that SHFD can be used to defend against high rate HTTP flooding as well
s low rate HTTP flooding attacks. It is worth mentioning that SHFD is an adaptive defense mechanism for HTTP flooding attacks,
.e., unlike other countermeasures, it does not need to set static values for many thresholds and parameters. An administrator only
eeds to set the initial values for 𝑇𝑊 (i.e., time window) and 𝐾 (i.e., number of host violations from normal behavior). If the target
etwork scenario’s vulnerability toward DDoS attacks is high, the admin should set a lower value for 𝑇𝑊 . Otherwise, a higher

value for 𝑇𝑊 should be set to reduce overheads. The results for a high rate HTTP flooding attack show that employing Entropy
and Hellinger distance mechanisms is useful and lead to fast detection of these type of attacks.

8. Conclusions and future directions

We propose SHFD, a security module for SDN controllers to mitigate high/slow rate HTTP flooding attacks. SHFD monitors HTTP
flows and recognizes abnormal HTTP requests, and blocks the source of malicious requests. SHFD uses statistical tools such as entropy
and Hellinger distance to recognize the attack and its sources. The critical advantage of SHFD is that it blocks the attackers at the
edge of a network and does not let them exhaust the network resources. Furthermore, unlike other statistical defense mechanisms,
it uses dynamic and adaptable thresholds, which do not require administrator efforts to adjust threshold values. To investigate the
11

performance of SHFD, we carried out a comprehensive evaluation in different attack scenarios. Experimental results show that SHFD

Computers and Electrical Engineering 101 (2022) 108019R. Mohammadi et al.
Fig. 9. Bandwidth consumption in high rate HTTP flooding during simulation time.

Fig. 10. Number of forwarding and blocked rules of SHFD in high rate HTTP flooding vs. attack rate.

significantly reduces the effects of HTTP flooding attacks compared to state-of-the-art methods. Results also confirm that applying
SHFD in SDN can preserve the target web servers against an attacker.

Declaration of competing interest

The authors declare that they have no known competing financial interests or personal relationships that could have appeared
to influence the work reported in this paper.

References

[1] Yuchen Z, Weiwei F, Xiaobin T. A solution for HTTP in-network caching based on P4. Front Data Comput 2020;2(3):75–86.
[2] Kesavamoorthy R, Alaguvathana P, Suganya R, Vigneshwaran P. Classification of DDoS attacks–A survey. Test Eng Manag 2020;83:12926–32.
[3] Singh P, Rehman SU, Manickam S. Performance analysis of emm an edos mitigation technique in cloud computing environment. In: International conference

on advances in cyber security. Springer; 2019, p. 123–37.
[4] Prajapati A, Sakadasariya A, Patel J. Software defined network: Future of networking. In: 2018 2nd international conference on inventive systems and

control (ICISC). IEEE; 2018, p. 1351–4.
[5] Rana DS, Dhondiyal SA, Chamoli SK. Software defined networking (SDN) challenges, issues and solution. Int J Comput Sci Eng 2019;7(1):884–9.
[6] Shaghaghi A, Kaafar MA, Buyya R, Jha S. Software-defined network (SDN) data plane security: issues, solutions, and future directions. In: Handbook of

computer networks and cyber security. Springer; 2020, p. 341–87.
[7] Dhanapal A, Nithyanandam P. An OpenStack based cloud testbed framework for evaluating HTTP flooding attacks. Wirel Netw 2019;1–11.
[8] Verma A, Xaxa DK. A survey on HTTP flooding attack detection and mitigating methodologies. Int J Innov Adv Comput Sci 2016;5(5).
[9] Suroto S. A review of defense against slow HTTP attack. JOIV: Int J Inform Vis 2017;1(4):127–34.

[10] https://www.imperva.com/learn/ddos/ddos-attacks/ (last visited 3/27/2021).
[11] Sabri S, Ismail N, Hazzim A. Slowloris DoS attack based simulation. In: IOP conference series: Materials science and engineering, Vol. 1062. IOP Publishing;

2021, 012029.
[12] Shannon CE. A mathematical theory of communication. Bell Syst Tech J 1948;27(3):379–423.
12

http://refhub.elsevier.com/S0045-7906(22)00284-1/sb1
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb2
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb3
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb3
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb3
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb4
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb4
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb4
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb5
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb6
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb6
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb6
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb7
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb8
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb9
https://www.imperva.com/learn/ddos/ddos-attacks/
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb11
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb11
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb11
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb12

Computers and Electrical Engineering 101 (2022) 108019R. Mohammadi et al.
[13] Sharshembiev K, Yoo S-M, Elmahdi E, Kim Y-K, Jeong G-H. Fail-safe mechanism using entropy based misbehavior classification and detection in vehicular
ad hoc networks. In: 2019 international conference on internet of things (IThings) and IEEE green computing and communications (GreenCom) and IEEE
cyber, physical and social computing (CPSCom) and IEEE smart data (SmartData). IEEE; 2019, p. 123–8.

[14] Zhang N, Jaafar F, Malik Y. Low-rate dos attack detection using psd based entropy and machine learning. In: 2019 6th IEEE international conference on
cyber security and cloud computing (CSCloud)/2019 5th IEEE international conference on edge computing and scalable cloud (EdgeCom). IEEE; 2019, p.
59–62.

[15] Kumar P, Tripathi M, Nehra A, Conti M, Lal C. SAFETY: Early detection and mitigation of TCP SYN flood utilizing entropy in SDN. IEEE Trans Netw Serv
Manag 2018;15(4):1545–59.

[16] Bhattacharyya DK, Kalita JK. DDoS attacks: Evolution, detection, prevention, reaction, and tolerance. CRC Press; 2016.
[17] https://en.wikipedia.org/wiki/Hellinger_distance (last visited 3/27/2021).
[18] Sree TR, Bhanu SMS. HAP: detection of HTTP flooding attacks in cloud using diffusion map and affinity propagation clustering. IET Inf Secur

2018;13(3):188–200.
[19] Dhanapal A, Nithyanandam P. The slow HTTP distributed denial of service attack detection in cloud. Scalable Comput: Pract Exp 2019;20(2):285–98.
[20] Singh K, Singh P, Kumar K. Fuzzy-based user behavior characterization to detect HTTP-GET flood attacks. Int J Intell Syst Appl 2018;10(4):29.
[21] Sreeram I, Vuppala VPK. HTTP flood attack detection in application layer using machine learning metrics and bio inspired bat algorithm. Appl Comput

Inform 2019;15(1):59–66.
[22] Hong K, Kim Y, Choi H, Park J. SDN-assisted slow HTTP DDoS attack defense method. IEEE Commun Lett 2017;22(4):688–91.
[23] Sanjeetha R, Shastry KA, Chetan H, Kanavalli A. Mitigating HTTP GET FLOOD DDoS attack using an SDN controller. In: 2020 international conference

on recent trends on electronics, information, communication & technology (RTEICT). IEEE; 2020, p. 6–10.
[24] Park S, Kim Y, Choi H, Kyung Y, Park J. HTTP DDoS flooding attack mitigation in software-defined networking. IEICE Trans Inf Syst 2021;104(9):1496–9.
[25] Lukaseder T, Ghosh S, Kargl F. Mitigation of flooding and slow ddos attacks in a software-defined network. 2018, arXiv preprint arXiv:1808.05357.
[26] Viet AN, Van LP, Minh H-AN, Xuan HD, Ngoc NP, Huu TN. Mitigating HTTP GET flooding attacks in SDN using NetFPGA-based OpenFlow switch. In:

2017 14th international conference on electrical engineering/electronics, computer, telecommunications and information technology (ECTI-CON). IEEE;
2017, p. 660–3.

[27] Santos R, Souza D, Santo W, Ribeiro A, Moreno E. Machine learning algorithms to detect DDoS attacks in SDN. Concurr Comput: Pract Exper
2020;32(16):e5402.

[28] Restuccia F, D’Oro S, Melodia T. Securing the internet of things in the age of machine learning and software-defined networking. IEEE Internet Things J
2018;5(6):4829–42.

[29] Zhang C, Hu G, Chen G, Sangaiah AK, Zhang P, Yan X, Jiang W. Towards a SDN-based integrated architecture for mitigating IP spoofing attack. IEEE
Access 2017;6:22764–77.

[30] Afek Y, Bremler-Barr A, Shafir L. Network anti-spoofing with SDN data plane. In: IEEE INFOCOM 2017-IEEE conference on computer communications.
IEEE; 2017, p. 1–9.

Reza Mohammadi is an Assistant Professor in Computer Engineering at Bu-Ali Sina University since 2018. He received his M.Sc. and Ph.D. degrees in Computer
Networking from Shiraz University of Technology in 2013 and 2017, respectively. His major fields of interest are SDN, heuristic algorithms, SDN security,
Underwater Wireless Sensor Networks, Ad hoc Networks, Underground Wireless Sensor Networks, Internet of Things (IoT) and IoUT.

Chhagan Lal is currently working as a researcher at the Department of Intelligent Systems, TU Delft, Netherlands. He received his Ph.D. in Computer Science
and Engineering from the Malaviya National Institute of Technology, Jaipur, India, in 2014. His current research areas include applications of network security,
wireless networks, and blockchain technologies.

Mauro Conti is Full Professor at the University of Padua, Italy. He is also affiliated with TU Delft and University of Washington, Seattle. His main research
interest is in the area of Security and Privacy. He is Senior Member of the IEEE and ACM. He is a member of the Blockchain Expert Panel of the Italian
Government. He is Fellow of the Young Academy of Europe.

Lokesh Sharma is a Deputy Director-Admissions and Associate Professor in the Department of IT at Manipal University Jaipur. His area of research is QoS and
QoE implementation in Mobile Ad Hoc Networks. Presently, he is exploring the areas of Software Defined Networks and IoT.
13

http://refhub.elsevier.com/S0045-7906(22)00284-1/sb13
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb13
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb13
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb13
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb13
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb14
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb14
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb14
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb14
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb14
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb15
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb15
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb15
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb16
https://en.wikipedia.org/wiki/Hellinger_distance
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb18
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb18
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb18
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb19
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb20
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb21
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb21
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb21
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb22
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb23
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb23
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb23
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb24
http://arxiv.org/abs/1808.05357
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb26
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb26
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb26
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb26
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb26
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb27
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb27
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb27
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb28
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb28
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb28
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb29
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb29
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb29
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb30
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb30
http://refhub.elsevier.com/S0045-7906(22)00284-1/sb30

	Software defined network-based HTTP flooding attack defender
	Introduction
	Motivation and objectives
	Organization

	Preliminaries
	HTTP flooding attack
	Slow rate HTTP flooding
	High rate HTTP flood

	Shannon's entropy
	Hellinger distance

	Related work
	HTTP flooding defense in legacy networks
	HTTP flooding defense in SDN-based networks

	Proposed method: SHFD
	Architecture
	Attack detection phase
	Attack prevention phase

	Complexity of SHFD

	Performance evaluation
	Simulation setup

	Results
	Results for the high rate flooding
	Conclusions and future directions
	Declaration of competing interest
	References

