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Abstract

Person re-identification based on appearance is chal-
lenging due to varying views and lighting conditions in
different cameras, or when multiple persons wear similar
clothing styles and color. Considering these challenges,
gait patterns provide an alternative to appearance, as gait
can be captured from a distance and at a low resolution.
In this paper we investigate and evaluate running gait as
a unique attribute for video person re-identification in a
recreational long-distance running event with 257 partici-
pants. We show that running gait recognition achieves com-
petitive performance compared to video-based approaches
in the cross-camera retrieval task and that gait and appear-
ance features are complementary to each other. In addition,
we compare gait recognition applied to walking and run-
ning sequences. An important difference is that we walk
with straight arms, but run with bent arms. We propose to
use human semantic parsing to create partial gait silhou-
ettes from body parts to find the most discriminative combi-
nation. We demonstrate that the arm and leg swing are the
most discriminative parts of the running gait. Our proposed
method provides better recognition results by removing the
torso from the silhouettes and allowing the arm swing to be
more visible.

1. Introduction

Athletes in long-distance running events are identified
and tracked using the number tag on their race bib. These
bibs often include a RFID tag for measuring split times at
specific locations, or incorporate a GPS tracker for real-time
tracking. In smaller recreational distance running events,
usually only the start and finish time are registered, while
intermediate location and times are not recorded. With the
increasing use of video cameras and smartphones, images
and videos from the race organizers, photographers or spec-
tators provide an additional source for runner identification

Figure 1. Accentuated arm swing with partial gait silhouettes.
Running gait cycle for both full body silhouettes (top), human se-
mantic parsing (middle), and partial silhouettes where the torso is
removed (bottom). We use body-part-specific segmentation masks
generated by a human semantic parsing model to remove the torso
from the full body silhouettes.

and tracking [9]. Vision-based methods for identifying dis-
tance runners include bib number detection [2, 4, 38] and
person re-identification [35]. Potential issues with these
methods arise when the bib number is partially or fully
occluded, or when multiple athletes wear similar clothing
styles and color. In this paper, we investigate if identifying
runners based on their running gait is possible and we ex-
plore the use of gait recognition as an alternative to runner
re-identification with appearance features.

Recently, research in gait recognition has mainly focused
on dealing with covariates such as view angle [41, 48],
clothing and carrying conditions [53]. Although speed-
invariant gait recognition from treadmill sequences has been
proposed before [12, 49], to the best of our knowledge,
no previous research has investigated running gait recogni-
tion with unconstrained running conditions specifically. We
construct a new large-scale video dataset of 257 recreational
runners captured by hand-held cameras during a running
event and evaluate the models in a cross-camera setting in
which the runners are captured by 18 cameras. We compare
walking and running sequences, where an important differ-
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ence is that we walk with straight arms, but run with bent
arms. Representing gait as a sequence of binary gait silhou-
ettes has been widely adopted [6, 8, 42, 48]. The primary
concerns with applying the silhouette-based representation
to the running gait are self-occlusion of body parts, and that
a portion of the arm swing is mostly lost due to the ambi-
guity of the torso region when using gait silhouettes. We
propose to create partial binary gait silhouettes from body-
part-specific segmentation masks generated by a human se-
mantic parsing model [24]. Removing the torso from the
silhouettes solves the ambiguity of the torso region and in-
creases person re-identification results by allowing the arm
swing to be more visible. In addition, the body-part-specific
segmentation masks allow finding the discriminative contri-
bution of each body part for running gait recognition and
to compare it to previous studies which demonstrated that
the upper body contains substantial discriminative power
[5, 28, 31]. Our main contributions can be summarized as
follows:

• We introduce a large-scale long-distance running video
dataset for cross-camera video person re-identification.
We extend the CampusRun video dataset [35] with
2581 annotated tracklets of 257 recreational runners
from 18 cameras in the 5 km and 10 km distance races.

• We investigate if identifying runners based on their
running gait is possible. In addition, we compare be-
tween gait features and appearance features for video
person re-identification using the CampusRun dataset.
We demonstrate the feasibility and usefulness of gait as
a unique attribute for the cross-camera retrieval task.

• We propose a pipeline for creating partial binary gait
silhouettes from bounding boxes, by using body-part-
specific segmentation masks generated by a human se-
mantic parsing model. We compare walking and run-
ning sequences and demonstrate that the arms and the
legs are the most discriminative body parts for running
gait recognition. Removing the torso from the silhou-
ettes allows for the arm swing to be more visible.

2. Related work
Person re-identification. Person re-identification has
been extensively studied in the cross-camera setting [1, 57],
on benchmarks that represent a person’s identity with im-
ages [25, 46, 56] or videos [36, 55]. For a given query, the
task is to retrieve all moments the person (probe) appears
in a set of images or videos (gallery), where the probe and
gallery are captured from disjoint cameras. Prior research
has addressed viewpoint variations [40, 52], illumination
conditions [19] and occlusions [18, 58]. While most bench-
marks consist of walking pedestrians, the research in per-
son re-identification with running sequences remains lim-

ited due to lack of available datasets [39]. We argue that
the long-distance running domain is particular suited for the
cross-camera person re-identification task, because events
often include a large number of participants, unconstrained
outdoor environments, strictly defined courses, prolonged
periods of activity, pace variations and clothing similari-
ties. We apply a cross-camera evaluation protocol to a long-
distance running event by extending the CampusRun video
dataset [35] with annotated tracklets for 257 recreational
runners.

Runner identification. Racing bib number detection is
the primary method for identifying long-distance runners
[20, 35]. As racing bibs are usually attached to the front
of the athlete’s shirt, a common approach is to reduce the
search area by detecting the torso. Finding the torso region
for bib number detection can be accomplished by first doing
face detection [2, 4], upper body detection [38], using hu-
man pose estimation [33] or extracting skin portions [34].
Bib number detection faces challenges such as occlusion
of the numbers and low resolution images. Alternatively,
in our paper we explore appearance features [35] and gait
recognition to match runners.

Gait recognition. There have been numerous studies on
vision-based gait recognition [23, 43], with approaches
primarily divided into model-based and appearance-based
for extracting gait related features. Model-based methods
model the human body to extract static and dynamic body
parameters, such as stride parameters [3] or joint-angle tra-
jectories [44]. Typical appearance-based methods use either
a shape representation in the form of binary gait silhouettes
[45], or a spatio-temporal variant: the gait energy image
(GEI), which is the average over one gait cycle of silhou-
ettes [13]. Binary gait silhouettes or GEI are then used for
feature extraction [22, 27] and recognition. In our paper, we
represent gait using a sequence of binary gait silhouettes.

Running gait recognition. Running gait recognition has
been explored in prior studies with videos of persons walk-
ing and running on a treadmill [12, 32]. The participants
are captured from a lateral view angle and their velocity
range from 2 km/h to 10 km/h. Using a leg motion model
for both gait modes [51], it was found that the recognition
rate for running sequences was higher, suggesting that run-
ning gait has more discriminative power than walking due
to larger variation in running gait. A modified GEI rep-
resentation with silhouettes where the limbs are the most
closed (single-support phase), was used in [49] for speed-
invariant gait recognition, as this phase varies the least with
speed changes. In our paper we also investigate running gait
recognition, but instead use outdoor running sequences and
with velocities up to 17 km/h.

Silhouette-based gait recognition. Recent works have
focused on convolutional neural networks to tackle cross-
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view gait recognition [47, 48]. Representing a gait se-
quence as an unordered set of gait silhouettes was proposed
by GaitSet [6], where the model extracts set-level features
and maps the features to a final gait representation with
Horizontal Pyramid Pooling [10]. In contrast to GaitSet
[6], the GaitPart [8] model takes as input sorted silhou-
ette sequences. Building upon GaitSet, GaitPart uses con-
volution on separate horizontal slices of the feature maps
with different horizontal pyramid scales [10] to extract more
fine-grained features for each horizontal part. Furthermore,
GaitPart focuses on short-range motion by applying slid-
ing windows over the sequence to aggregate frame-level
features into short-range spatio-temporal representations.
However, the limitations of representing gait with silhou-
ettes are the ambiguity of the torso region when the arms
are overlapping, and self-occlusion by other body parts. We
propose to solve the ambiguity of the torso region using hu-
man semantic parsing to segment the arms from the torso.

Part-level gait silhouettes. Liu et al. [29] provided man-
ual labeled part-level silhouettes with 8 body parts for 71
subjects captured from a lateral view angle. The Layered
Deformable Model (LDM) [30] is used to recover body
pose from gait silhouettes after estimating the model param-
eters from the manual labeled part-level silhouettes [29].
The LDM [30] was extended to include the full body model
with 11 more parameters [31]. Besides leg movement, up-
per body dynamics of the arms, head and shoulders were
found to improve recognition rates [31]. Boulgouris and
Chi [5] used the same part-level silhouettes [29] and demon-
strated that the human body parts have different discrimina-
tive power. Body parts between two identities were com-
pared using Jaccard distance. The torso, occluded right arm
and occluded right upper leg are found to be the most dis-
criminative, due to pattern of appearance being more useful
than the shape of the body parts [5]. In our paper we extend
the part-level approach to multiple view angles, besides the
lateral view. We investigate the relative importance of the
human body components by creating partial binary gait sil-
houettes using combinations of one or more body parts.

3. Method
3.1. Gait silhouette

Pipeline. Figure 2 depicts the pipeline for constructing
binary gait silhouettes. Given a tracklet of the runner, we
construct silhouettes for the set of bounding boxes obtained
from consecutive frames. For each bounding box, we use
an off-the-shelf human semantic parsing model [24] to seg-
ment the input images into body-part-specific masks. As the
human parsing model is on a semantic level and the bound-
ing box can contain multiple identities, we use Mask R-
CNN [15] to segment the person of interest and keep only
the largest instance when multiple instances are found by

Figure 2. From bounding box to binary gait silhouette. Pipeline
with human semantic parsing [24] and instance segmentation [15]
to create (partial) gait silhouettes.

Mask R-CNN. The body-part-specific masks are converted
to binary gait silhouettes and are aligned and resized to a
size of 64×44 using the same procedure as in GaitSet [6].

Partial silhouettes. The human semantic parsing model
[24] in the pipeline is pre-trained on the PASCAL-Person-
Part dataset [7]. Unlike other human semantic parsing
datasets [11, 26], the PASCAL-Person-Part dataset does
not have clothing-specific segmentation label categories.
We use 7 labels: Background, Head, Torso, Upper Arms,
Lower Arms, Upper Legs and Lower Legs. These body-
part-specific labels suit the task of gait recognition, because
the resulting segmentation masks are less dependent on the
person’s clothing. We use the body-part-specific segmen-
tation masks to create partial silhouettes from one or more
body parts.

3.2. Models.

We use one baseline gait recognition model and two
video-based person re-identification models to compare gait
and appearance features. To enable a fair comparison, we
train and evaluate all models using similar input sampling,
input resolution and loss function.

Gait features. We use GaitSet [6] as our baseline gait
recognition model. It achieves state-of-the-art performance
on CASIA-B [53] and OU-MVLP [41] for the cross-view
gait recognition task. In GaitSet, the identity of a person
is learned from a set of gait silhouettes. The network first
extracts frame-level features and then aggregates the fea-
ture maps of each silhouette using max pooling on the set-
level. Horizontal Pyramid Pooling [10] slices the last set-
level feature map into different horizontal strips of multiple
pyramid scales, to learn feature representations with differ-
ent receptive fields and spatial locations. For each set of
silhouettes, the network outputs a discriminative represen-
tation, consisting of 62 feature map strips with 256 dimen-
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sions each. During training, the set of silhouettes is a subset
of the sequence, where we randomly sample a fixed number
of silhouettes from the tracklet. As human gait is a peri-
odic movement, a representation can be learned if we sam-
ple sufficient frames. All silhouettes from the tracklet are
used during evaluation.

Appearance features. For video-based person re-
identification models, we explore 2D and 3D CNN models
with a ResNet-50 backbone [16]. As with our baseline
gait recognition model, both video-based models use
a randomly sampled subset of bounding boxes during
training. For evaluation, both models output a feature
vector with 2048 dimensions for each input tracklet. We
use a 2D ResNet-50 [16] model which is pre-trained on
ImageNet [37]. The model aggregates frame-level features
using average pooling to get one feature representation
for the set of input bounding boxes. To leverage features
from both the temporal and spatial dimensions, we use a
3D ResNet-50 [14] model which is pre-trained on Kinetics
[21] for the action recognition task. In contrast to GaitSet
and 2D ResNet-50, we use randomly sampled sequences
with consecutive frames for 3D ResNet-50 during training.
We use the layer before the final classification layer as
the person identity feature. During testing, a tracklet gets
split into non-overlapping chunks with a fixed number of
consecutive frames, followed by taking the mean of the
person identity features from each chunk.

Triplet loss. All three models are trained with Batch All
triplet loss [17], where all possible combinations of triplets
in a batch are used for calculating the loss. The triplet loss
in GaitSet is calculated for each of the 62 feature strips in-
dividually, followed by taking the mean of the losses. The
batch size is p× k × c, where p denotes the number of per-
sons, k the number of tracklets for each person and c the
number of frames for each tracklet.

4. Experiments
The experimental section is divided into three parts.

The first part compares our gait recognition baseline model
with two video-based person re-identification models on the
CampusRun dataset. In the second part, we evaluate the use
of partial gait silhouettes for running sequences in the Cam-
pusRun dataset [35] and walking sequences from CASIA-B
[53]. In the third part, we conduct ablation experiments for
the GaitSet model [6] on the CampusRun dataset.

4.1. Comparison with video-based person re-
identification

CampusRun dataset. The CampusRun [35] was a run-
ning event where 262 recreational runners simultaneously
ran a 5 km course, while competing in various race dis-
tances. 128 runners participated in the 5 km distance race,

while 134 runners ran two laps around the course as part
of the 10 km distance. The runners were captured on
video using 9 non-stationary hand-held smartphone cam-
eras, where each camera operator was allowed to move
along the course. The 5 km runners appear in at most 9
cameras, while the 10 km runners with two laps appear in
at most 18 cameras. We use an off-the-shelf multi-object
tracker [54] to extract tracklets and bounding boxes for each
runner from the videos. After manual annotating the bib
number of each tracklet, we obtain bounding boxes for 257
runners and 2581 tracklets with an average sequence length
of 77 frames. The 10 km runners have 13 tracklets on aver-
age. Five registered participants were not found during the
tracking and annotation process.

Evaluation protocol. We use the 5 km runners for model
training and validation, while the 10 km runners are only
used for testing. The training set and validation set are con-
structed using a 60/40 split (5 km, n=125, 9 cameras, 860
tracklets). The test set (10 km, n=132, 18 cameras, 1721
tracklets) and validation set are evaluated using a cross-
camera setting, where the probe identity is captured from
a different camera than the positive matches in the gallery.
During evaluation, each tracklet is evaluated once as the
probe subset, with every other tracklet in the gallery sub-
set. We have 1721 test queries with a maximum of 17 pos-
itive matches for each query, as the runners do not appear
more than once per camera. We report both mean average
precision (mAP) and rank-1 accuracy, but mainly evaluate
the models on mAP. With a maximum of 17 ground truths
for each query, the quality of the ranked retrieval results is
better reflected by mAP than rank-1 accuracy.

Training details. We follow the same training protocol
of GaitSet [6] for all models, but use a smaller batch size
(p = 8 persons, k = 4 tracklets) due to the CampusRun
dataset having less sequences per identity than in CASIA-B.
Additionally, the GaitSet model is pre-trained on CASIA-
B. The learning rate is set to 1e-4, and we train the models
for 80K iterations. We choose the best model checkpoint
based on the mAP of the validation set. During training, we
randomly sample c = 30, c = 10 and c = 30 frames for
GaitSet, 2D ResNet-50 and 3D ResNet-50 respectively. For
data augmentation, we horizontal flip the entire tracklet. We
compare the output vectors of two tracklets using Euclidean
distance. For this experiment, the binary gait silhouettes
are composed of all body parts. We resize and align the
silhouettes to 64×44, while the bounding boxes for the 2D
ResNet-50 and 3D ResNet-50 are resized to 64×32.

Results on CampusRun. Table 1 shows the comparison
between video-based and gait-based models on the Cam-
pusRun dataset. We observe comparable mean average pre-
cision and rank-1 accuracy between all three models when
using similar input resolutions. Retrieval results improve
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(a) Sample (b) GaitSet feature (c) 2D ResNet-50 feature (d) Combined feature

Figure 3. Example retrieval results. (a) Four query samples and their corresponding rank-5 retrieval results for (b) GaitSet, (c) 2D
ResNet-50 and (d) their combined feature. Green and red borders denote correct and incorrect matches respectively. The queries highlight
some advantages and disadvantages of the respective methods. The first query demonstrates that a multi-modal approach retrieves more
correct matches than both gait or appearance models individually. In the second query, the gait model is not affected by difficult lighting
conditions, whereas the appearance model retrieves five incorrect matches with the same overexposed lighting. In the third query, the gait
model retrieves incorrect matches who are also walking, indicating the inability to distinguish between walking and running modes. In the
fourth query, the combined feature performs worse than both individual models.

Method Resolution mAP Rank-1

2D ResNet-50 [16] 64×32 56.3 74.6
+ re-ranking [59] 64×32 64.4 73.3
3D ResNet-50 [14] 64×32 56.2 74.0
+ re-ranking [59] 64×32 63.6 72.6

GaitSet [6] 64×44 52.2 78.7
+ re-ranking [59] 64×44 66.1 78.6

Table 1. Comparison of video-based and gait-based methods on
CampusRun dataset. Gait-based person re-identification (Gait-
Set) achieves comparable mean average precision and rank-1 ac-
curacy to video-based methods (2D ResNet-50, 3D ResNet-50).
Retrieval results improve for all three methods when applying re-
ranking using k-reciprocal neighbours [59]. The results show that
the CampusRun dataset is challenging for single-modality models,
where the ability to handle unconstrained conditions is tested.

for all three methods when applying re-ranking using k-
reciprocal neighbors [59], but the gait-based approach ben-
efits more from the re-ranking procedure than the video-
based methods.

We use pairwise combinations of the three models to an-
alyze if the models learn different features. Before perform-

Feature 1 Feature 2 mAP Rank-1

GaitSet [6] 2D ResNet-50 [16] 91.2 94.0
GaitSet [6] 3D ResNet-50 [14] 85.3 90.6
2D ResNet-50 [16] 3D ResNet-50 [14] 68.8 77.3

Table 2. Feature concatenation + re-ranking [59]. Feature con-
catenation of gait-based and video-based models before distance
calculation and re-ranking [59]. We concatenate the two feature
vectors after `2 normalization of each vector. The results show
that gait features are complementary to appearance features for
person re-identification. Whereas adding a spatio-temporal fea-
tures from the same modality is less beneficial, compared to using
a multi-modal approach.

ing distance calculations and re-ranking, we concatenate the
two feature vectors from each pair of models, after first `2
normalizing the individual vectors. The results for the pair-
wise combinations in table 2 show that a multi-modal ap-
proach using gait and appearance features leads to a more
diverse and complementary ensemble than adding a spatio-
temporal model from the same modality.

Figure 3 shows four example queries and their corre-
sponding rank-5 retrieval results for models with gait fea-
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ture, 2D ResNet-50 feature and their combined features.
All retrieval results are after re-ranking [59]. We observe
scenarios where a gait-based approach is preferable to a
video-based approach: visual similar clothing styles and
color (first, second and fourth row) or difficult lighting con-
ditions (second row). In the third query, the query sam-
ple is from a walking sequence. Although the models were
mostly trained using running sequences, GaitSet retrieves
five walking samples from the gallery. This demonstrates
that GaitSet is not able to perform cross-mode gait recog-
nition when trained on the CampusRun dataset. To con-
clude, the quantitative and qualitative results indicate that
gait-based methods are competitive and complementary to
appearance-based approaches for person re-identification.

4.2. Partial binary gait silhouettes

Datasets. For this experiment, we train the GaitSet model
from scratch using partial gait silhouettes composed of dif-
ferent body part combinations. We use the CampusRun
dataset as described in section 4.1. Additionally, we ex-
plore partial gait silhouettes for walking sequences using
the CASIA-B [53] dataset. CASIA-B is a popular dataset
for cross-view gait recognition. It contains gait sequences
of 124 persons with 3 walking conditions: normal (6 se-
quences NM#1-6), carrying a bag (2 sequences BG#1-2)
and wearing a coat (2 sequences CL#1-2). The participants
are captured from 11 views from 0° to 180° in 18° incre-
ments, resulting in 11 × (6 + 2 + 2) = 110 sequences for
each person.

Evaluation protocol. We follow the same setup and eval-
uation protocol as in GaitSet [6]. The first 74 persons are
used for training and the remaining 50 persons for testing.
During testing, the gallery consists of the first 4 walking se-
quences (NM#1-4), while the remaining sequences (NM#5-
6, BG#1-2, CL#1-2) are used as the probe subsets. The
models are evaluated with rank-1 accuracy, but we exclude
identical-view cases, namely, when the probe and gallery
samples are captured from the same view.

Results on CampusRun. Table 3 shows the cross-camera
re-identification performance when using partial gait sil-
houettes compared to using the full body silhouette. The
results for partial silhouettes with only one body part reveal
that the upper legs are the most discriminative body com-
ponent, followed by the lower and upper arms. We do not
include the torso as it is most of the time affected by self-
occlusion due to the arm swing.

We also present the results for combinations of multiple
body parts, which show that the dynamic components of
the running gait are the most discriminative. While the legs
have greater recognition ability than the arms, we need to
combine both the legs and arms to match the full body sil-
houette. The relative static components, such as the head or

(a) 0°, 54°, 90°, 144°, 180° (b) 90°

Figure 4. Example CASIA-B silhouettes. (a) Full body and par-
tial binary gait silhouettes for different view angles. (b) Incorrect
segmentation masks for 90° view.

torso, do not contribute much to recognition performance.
Furthermore, removing the torso increases the portion of
arm swing that is visible, resulting in improvement in mAP
and rank-1 accuracy over using the full body silhouette.

These findings are consistent with prior studies [5, 31],
where it was found that the upper legs were the most dis-
criminative part [5] when considering individual body parts.
Besides the legs, the dynamics of the arm swing are impor-
tant for the re-identification of individuals, in line with the
results from [31]. When comparing our results to those of
older studies, it must be pointed out that previous studies
only considered the lateral view, which is almost not found
in the CampusRun dataset. Most sequences in the Campus-
Run dataset were captured from oblique angles between 10°
and 45°.

Results on CASIA-B. We adopt the best performing par-
tial silhouette combination from the CampusRun dataset.
The torso segmentation mask is subtracted from the orig-
inal binary gait silhouettes provided by CASIA-B, as seen
in figure 4a. Table 4 shows the average rank-1 accuracies
for full body silhouettes and partial silhouettes without the
torso. We also include results for GaitPart [8], as it consid-
ers short-range micro-motion from subsequent frames.

For all models and covariates, oblique view angles (e.g.
18°, 36°, 54°, 72°) achieve higher accuracy than frontal
(0°), rear (180°) or lateral views (90°), because silhouettes
observed from oblique view angles contain more motion
information than the other two planes individually. Sub-
tracting the torso from the original silhouettes results in
increased accuracy for the frontal and rear views, because
contours of the arm swing are more perceptible. With bi-
nary gait silhouettes, it is generally hard to discern the hu-
man gait in the frontal plane, as the arm and leg swing hap-
pen in the sagittal plane. Without the torso, there is an over-
all increase of motion in the frontal plane, which leads to a
substantial boost in accuracy for all frontal and rear results,
achieving better accuracy than GaitPart [8] for the normal
walking conditions. A similar pattern of results was ob-
tained for the bag and clothing covariates.

It remains unclear to which degree recognition perfor-
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Silhouette Head Torso Upper
Arms

Lower
Arms

Upper
Legs

Lower
Legs

mAP Rank-1

Full body X X X X X X 51.3 78.2

Head X 7.1 12.3
Upper arms X 16.9 31.3
Lower arms X 18.5 37.6
Upper legs X 26.1 46.0
Lower legs X 13.7 25.1

Arms X X 27.5 51.5
Upper body X X X X 30.1 52.5
Legs X X 38.9 65.1
Arms and legs X X X X 52.0 77.6
Head, arms and legs X X X X X 54.5 81.1

Table 3. Partial binary gait silhouettes. Performance comparison when using partial gait silhouettes on CampusRun dataset. The second
block shows that the upper legs are the most discriminative when considering only one body part. The third block indicates that making
the silhouette of the arms more visible by removing the torso, leads to increased re-identification performance.

Gallery NM#1-4 0°-180°

Probe Method Silhouette Frontal Oblique Lateral Oblique Rear Mean

NM#5-6
GaitPart [8] Full body 94.1 97.6 92.3 97.8 90.4 96.2
GaitSet [6] Full body 90.8 97.0 91.7 97.1 85.8 95.0
GaitSet [6] No torso 95.0 97.0 91.1 97.1 91.1 95.8

BG#1-2
GaitPart [8] Full body 89.1 93.7 84.9 93.1 85.8 91.5
GaitSet [6] Full body 83.8 88.8 81.0 90.2 79.0 87.2
GaitSet [6] No torso 85.3 89.7 79.1 89.4 79.3 87.3

CL#1-2
GaitPart [8] Full body 70.7 83.2 72.5 80.8 66.5 78.7
GaitSet [6] Full body 61.4 76.4 70.1 71.7 50.0 70.4
GaitSet [6] No torso 65.9 78.2 67.0 72.5 58.5 72.2

Table 4. Comparison between full body silhouettes and without torso. Averaged rank-1 accuracies on CASIA-B for normal sequences
(NM#5-6), carrying a bag (BG#1-2), wearing a coat (CL#1-2), excluding identifical-view cases. We compare GaitPart [8], GaitSet [6] and
GaitSet with torso subtracted from the silhouettes. Silhouettes from oblique views contain more motion cues than frontal (0°), lateral (90°)
and rear (180°) views. Subtracting the torso leads to increased accuracy in the frontal and rear views, but decreased accuracy in the lateral
view. Overall, the silhouettes without torso achieve better results than the full body silhouettes, approaching the results of GaitPart [8] for
the normal walking condition. The oblique probe views are grouped together in the table: (18°, 36°, 54°, 72°) and (108°, 126°, 144°, 162°),
but the mean accuracy is calculated over all 11 views.

mance is attributed to the pixel-level accuracy of the seg-
mentation masks generated by the human semantic pars-
ing model. In figure 4b, we observe incorrect parsing re-
sults for the lateral view angle when the arms align with the
torso. This may explain why the accuracy for the lateral
view angle decreases for all three probe subsets (NM, BG,
CL), when subtracting the torso from the silhouettes. We
also did not find an increase in rank-1 accuracy for oblique
angles for the normal walking conditions as in the Cam-
pusRun, which suggests that subtracting the torso is more
useful for recognizing the running gait.

4.3. Ablation experiments

We perform ablation experiments to evaluate the con-
tributions of individual factors to gait recognition perfor-
mance. All ablation experiments are evaluated using the
GaitSet model on the CampusRun dataset.

Impact of data augmentation. Popular large scale gait
datasets such as CASIA-B [53] and OU-MVLP [41] only
contain participants that are walking in one direction. Both
datasets do not capture a full 360° view of the person, but
only show one side of a person’s body. Whereas the Cam-
pusRun dataset contains tracklets that were captured from
both the left and right side of a person. Human gait is a
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Method mAP Rank-1

Mask R-CNN [15] 30.6 58.5
+ horizontal flip 39.3 68.1

Table 5. Impact of data augmentation. Comparison when adding
data augmentation during training. Horizontally flipping of the
whole tracklet with a 50% probability during training improves
the mAP by 8.7. Horizontally flipping the silhouettes resembles
capturing the gait using a virtual camera view from the other side
with a half period phase shift, due to the bilateral symmetry of the
human gait [50].

Method mAP Rank-1

Mask R-CNN [15] 39.3 68.1
Human semantic parsing [24] 52.2 78.7

Table 6. Impact of segmentation method. Comparison between
Mask R-CNN and human semantic parsing for extracting the gait
silhouettes. The silhouettes from the human semantic parsing
model are more detailed, which leads to better recognition results.

bilateral symmetric movement where the arm and leg of op-
posite sides are swinging towards the same direction, with a
phase shift of half a period alternating the left and right arm
or left and right leg [50]. We explore horizontal flipping
of the entire tracklet with 50% probability during training
as a data augmentation technique. Horizontally flipping the
silhouettes resembles capturing the gait using a virtual cam-
era view from the other side with a half period phase shift,
due to the bilateral symmetry of the human gait. Table
5 shows that gait recognition performance is substantially
higher with data augmentation.

Impact of segmentation method. Table 6 shows the
comparison between binary gait silhouettes from Mask R-
CNN [15] and binary gait silhouettes from the pipeline as
described in section 3.1. Our pipeline delivers significantly
better results, because the segmentation masks generated by
the human semantic parsing model [24] are more detailed
than the segmentation masks from Mask R-CNN.

Impact of pre-training. Table 7 shows that pre-training
on CASIA-B [53] gives a minimal improvement in recog-
nition performance compared to training from scratch. Al-
though the silhouettes are size normalized using the same
procedure, we speculate that there is no significant bene-
fit due to the difference in gait velocity and clothing styles
between the two datasets.

Impact of input resolution. We compare different input
sizes of the binary gait silhouettes in table 8. The results
show minimal improvement when using a input resolution
of 128×88, which suggest that an input resolution of 64×44
is sufficient large to capture the important features. A sim-

Method mAP Rank-1

Training from scratch 51.3 78.2
Pre-training on CASIA-B [53] 52.2 78.7

Table 7. Impact of pre-training. Pre-training on CASIA-B
dataset gives a minimal improvement compared to training the
model from scratch. There is a large difference in clothing styles
between the two datasets, with the participants of the CampusRun
mostly wearing shorts and short sleeves, which could explain the
minimal improvement when pre-training on CASIA-B.

Input resolution mAP Rank-1

64×44 52.2 78.7
128×88 53.1 79.5

Table 8. Impact of input resolution. An input resolution of
128×88 provides a minimal increase in mAP over using 64×44
gait silhouettes.

ilar pattern of results was obtained in [48], where a slight
drop in performance was observed when downsampling the
GEIs from 128×88 to 64×44 and 32×22.

5. Conclusion

In this paper, we introduced the CampusRun dataset,
a large-scale long-distance running event for cross-camera
video person re-identification. Experimental results using
the CampusRun dataset shows that runners can be identi-
fied based on their running gait. We demonstrate that gait
features are both competitive and complementary to appear-
ance features. Additionally, we introduced a pipeline for
extracting partial binary gait silhouettes using human se-
mantic parsing and instance segmentation. We analyzed
the discriminative power of different human body parts and
compared walking and running sequences with the CASIA-
B and CampusRun datasets. We demonstrate that the arms
and legs are the most discriminative parts of the running gait
and we show that subtracting the torso from the gait silhou-
ettes leads to increased recognition performance by making
the arm swing more visible.

One limitation of our method is that it did not manage to
retrieve the correct matches of running sequences when we
used a walking sequence as the query, which demonstrates
that our method cannot achieve cross-mode gait recogni-
tion. Our findings indicate that gait recognition perfor-
mance is affected by segmentation method and mask ac-
curacy. It is therefore recommended to fine-tune the human
semantic parsing model for each domain, to make the par-
tial gait silhouette pipeline more robust to view variations
and occlusion.
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2
Introduction

We introduce a largescale longdistance running video dataset of the CampusRun [23], a running event
with 257 recreational runners participating in the 5 km or 10 km distance race. These runners were
captured using handheld smartphone cameras, where each camera operator was allowed to move
along the course. This work investigates the use of gait recognition for video person reidentification.

2.1. Motivation
The longdistance running domain is particular suited for the crosscamera person reidentification
task, because events often include a large number of participants, unconstrained outdoor environ
ments, strictly defined courses, prolonged periods of activity, pace variations and clothing similari
ties. Currently, bib number detection is the primary method for (re)identifying longdistance runners
[2, 4, 17, 23, 27], but video person reidentification and visionbased gait recognition approaches could
be viable alternatives.

Recent gait recognition models [5, 11] use binary gait silhouettes to learn the identity of a person.
One specific difference between walking and running is that we walk with straight arms and run with
bent arms close to the body. Distinctiveness of the arm swing is mostly lost when extracting a silhouette
representation of the runner, due to the ambiguity of the torso region. This happens especially when
the runner is captured from a frontal or oblique view.

2.2. Research questions
The two main research questions are:

1. Are gait features consistent enough for crosscamera person reidentification in a running
event? Given a sequence of a runner, can we find all the other sequences of this person?

2. Can gait recognition performance be improved through the use of bodypartspecific seg
mentation masks? Can we use bodypartspecific segmentation masks generated by a human
semantic parsing model, to accentuate discriminative body parts in the silhouettes?

Subquestions:

1. How to extract individual gait features when there are multiple persons in a frame?

2. What do gait features add to person reidentification?

3. Do partial gait silhouettes contain sufficient discriminative information for gait recognition?

2.3. Supplementary materials
The outline for the supplementary materials is as follows: chapter 3 gives a brief overview on gait
recognition and our baseline model. Chapter 4 covers the CampusRun dataset and describes the data
annotation process. Extra experiments are included in chapter 5.
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3
Gait Recognition

Figure 3.1: Comparison of a gait cycle for walking and running [36].

This chapter gives a brief overview of markerfree visionbased gait recognition and the baseline
model.

3.1. Introduction
Human gait refers to the periodic movement and mechanics of walking and running. A gait cycle is
defined as the distinctive phases before repetition occurs (figure 3.1). Gait is a bilateral symmetric
movement where the arm and leg of opposite sides are swinging towards the same direction, with
a phase shift of half a period between the left and right arm or left and right leg. A major difference
between walking and running gait, is that a moment occurs during walking where both feet are touching
the ground (double support), while in running both feet are of the ground momentarily (double float).

There have been numerous studies on visionbased gait recognition [18], as gait can be captured
from a distance and at a low resolution. It is well acknowledged that human gait can be used as a
biometric, as gait is found to be sufficiently unique for recognizing individuals [8]. Visionbased gait
recognition is primarily divided into modelbased and appearancebased approaches for extracting
gait related features. Modelbased methods model the human body to extract static and dynamic body
parameters, such as stride parameters [3] or jointangle trajectories [34]. Typical appearancebased
methods use either a shape representation in the form of binary gait silhouettes [33], or a spatio
temporal variant: the gait energy image (GEI), which is the average over one gait cycle of silhouettes
[13]. The gait representations are then used for further feature extraction or feature selection, followed
by classification of the gait signature or metric learning to distinguish between identities.
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16 3. Gait Recognition

(a) Structural model [7, 37] (b) Tracking of the limbs [34] (c) Model proportions [28]

Figure 3.2: Modelbased methods.

3.2. Modelbased
Modelbased approaches approximate gait using structural and motion models to extract gait related
features. The model utilize static (e.g. height, stride length) and dynamic features (e.g. frequency, joint
angle trajectories) and describes the relationships between them. An advantage of modelbased ap
proaches is the robustness against (self)occlusion, noise and scale. Figure 3.2 shows some examples
of modelbased approaches.

Cunado et al. [7] uses Fourier series to describe the motion of the hip and thigh, while using the
Velocity Hough Transform (VHT) [24, 25] to extract motion parameters from a sequence of images.
Wang et al. [34] uses a human body model of 14 rigid body parts with walking specific constraints,
to track the walker and extract the motion parameters. Jointangle trajectories are compared with
Euclidean distance between identities. Tafazzoli and Safabakhsh [28] extracts the movements of joint
positions of the legs and arms, using a contour model [19] and Hough transform [10] to find body
contours and line segments.

More recent deeplearning approaches extract gait features from human body joints with 2D [20]
and 3D human pose estimation [22]. Li et al. [20] constructs gait graphs and graph convolutional neural
networks [9] to extract spatiotemporal gait features. Liao et al. [22] estimates 3D pose from 2D pose
to increase robustness against view variations.

(a) Gait graphs [20] (b) 3D pose estimation [22]

Figure 3.3: Deep learning modelbased methods.

3.3. Appearancebased
Appearancebased approaches rely on shape or motion characteristics of human body silhouettes
[33]. Early approaches used statistical features to compare two sequences of silhouettes [32]. Wang
et al. [31] applied Procrustes shape analysis to silhouettes for obtaining the gait signature. Spatio
temporal variants such as Gait Energy Image (GEI) [13] calculated the average over one cycle of gait
silhouettes. Aggregating the silhouettes into a GEI representation reduces the amount of computation
while preserving the static and dynamic characteristics of the gait. The aggregated representation
is also robust against small segmentation errors. Disadvantages of GEI is that recognition accuracy
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Figure 3.4: Background subtraction to obtain gait silhouette [33].

Figure 3.5: Averaging over one cycle of gait silhouettes to get the Gait Energy Image (GEI) [13].

drops considerable under covariate conditions [16], due to being sensitive to the shape of the static
gait component.

Variations on the GEI were proposed to increase recognition performance when facing conditions
such as occlusions [6] or covariates [1]. The Gait Entropy Image (GEnI) [1] was introduced to focus
more on the dynamic components of the GEI, by measuring Shannon entropy at each pixel location
in the GEI. This way, the dynamic components of the GEI are highlighted in the GEnI. With Chrono
Gait Image (CGI) [30], a temporal gait template is created using color mapped contours of the gait
silhouettes, to preserve temporal information in the gait sequence.

Recent silhouettebased methods use convolutional neural networks with binary gait silhouettes [5]
or GEI as input [35], to learn the discriminative gait features.

3.4. GaitSet
Representing a gait sequence as a set of gait silhouettes was proposed in GaitSet [5]. The authors
argue that learning the identity of a person from a set of gait silhouettes has two advantages. Firstly,
the gait sequence can have arbitrary length and secondly, the order of silhouettes does not matter as
it can be assumed that the shape of a silhouette indicates its position in the gait cycle.

Figure 3.6: GaitSet model overview [5].

The network (figure 3.6) first extracts framelevel features and then aggregates the feature maps of
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Figure 3.7: Horizontal Pyramid Pooling [5].

each silhouette using max pooling on the setlevel (SP). The Multilayer Global Pipeline (MGP) takes
feature maps from different layers in the network to learn features with different receptive fields. Hor
izontal Pyramid Pooling (HPP) [12] slices the last setlevel feature map into different horizontal strips
of multiple pyramid scales, to learn feature representations with different receptive fields and spatial
locations (figure 3.7). For each set of silhouettes, the network outputs a discriminative representation,
consisting of 62 feature map strips with 256 dimensions each.

GaitSet is trained with Batch All triplet loss [15], where all possible combinations of triplets in a batch
are used for calculating the loss. The triplet loss in GaitSet is calculated for each of the 62 feature strips
individually, followed by taking the mean of the losses. The batch size is 𝑝 × 𝑘 × 𝑐, where 𝑝 denotes
the number of persons, 𝑘 the number of tracklets for each person and 𝑐 the number of frames for
each tracklet. The trained model is robust against covariates such as varying view angle or carrying
conditions when sampling batches during training with multiple covariate conditions.

3.5. Datasets

Figure 3.8: Different walking conditions: normal (NM), wearing a coat (CL) and carrying a bag (BG) [38].

Figure 3.9: 11 views (0°  180°) [38].

Two of the most popular gait datasets are CASIAB [38] and OUMVLP [29] for the crossview gait
recognition task. CASIAB contains 124 participants who are captured from 11 view angles (figure 3.9)
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while walking with different walking conditions (figure 3.8). OUMVLP [29] is a large population dataset
with 14 view angles and 10307 participants.





4
CampusRun Dataset

This chapter describes the CampusRun dataset and annotation process.

4.1. Introduction
The CampusRun video dataset was introduced in [23]. It is a longdistance running event where 262
recreational runners simultaneously ran a 5 km course, while competing in various race distances. 128
persons participated in the 5 km distance race, while 134 runners ran two laps around the course as
part of the 10 km distance. The runners were captured on video using 9 nonstationary handheld
smartphone cameras, where each camera operator was allowed to move along the course. There is
around 3 hours of video footage. We number each camera viewpoint as 19 and additionally give it the
letter A for the first lap and the letter B for second lap. This gives us 18 camera points (A1A9, B1B9)
for designating where a runner was observed. The course layout and camera trajectories are shown
in figure 4.1.

(a) Course layout (b) Camera trajectories [23]

Figure 4.1: CampusRun course layout and moving camera locations.

4.2. Multiobject tracking
Labels are provided by [23] in the form of startframe and endframe annotations that a runner appears
in a specific video and some bounding boxes for the 5 km runners. To extend the dataset with the 10
km runners, we use an offtheshelf multiobject tracker [39] on the raw videos to extract tracklets and
bounding boxes for all the runners. The multiobject tracker finds 5204 local identities from 455 videos.

21
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Figure 4.2: Example output from the multiobject tracker [39]

Many tracklets are relay runners, who are not part of the 5 km and 10 km race, and nonparticipants
such as pedestrians.

4.3. Manual annotation of bib numbers
The 5204 local identities are from 18 cameras, and we need to match the local identities back to the
bib numbers of the 262 participants. We first extract the longest consecutive sequence for each of the
5204 local identities. Then, we take the bounding box that has the highest confidence according to the
multiobject tracker. The resulting 5204 bounding boxes are evaluated in a crosscamera setting using
an offtheshelf person reidentification model [40] to get the ranked retrieval results. We first finetune
the model with the bounding boxes of the 5 km runners provided by [23].

(a) Grid with top17 ranked list with one correct match. (b) Grid with nonparticipants

Figure 4.3: Grid view for manual annotation. Manual annotation of the matches are shown in green.

The manual annotation setup is as follows: first we take the last camera (A9, B9) as the probe
subset (n=654) and the other 8 cameras (A1A8, B1B8) in the gallery (n=4550). A participant can only
appear in 17 cameras, therefore we show the top17 most similar bounding boxes to our query in a grid
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view (figure 4.3) and manual annotate the matches. The person reidentification model and grid view
makes the annotation process efficient. Despite the fact that the retrieval results are similar looking
in clothing style and colour, it is easy to spot the correct matches to the query image when viewing
multiple at the same time in a grid view. Furthermore, we assign labels to multiple instances at the
same time and label nonparticipants to remove them later from the set of tracklets.

After manual annotation of the bib numbers, the labels of the bounding boxes are then assigned to
their respective tracklet to end up with fully annotated sequences. We obtain bounding boxes for 257
runners and 2581 tracklets with an average sequence length of 77 frames. The 10 km runners have
13 tracklets on average. Five registered participants were not found during the tracking and annotation
process.

4.4. Evaluation protocol
We use the 5 km runners for model training and validation, while the 10 km runners are only used for
testing. The training set and validation set are constructed using a 60/40 split (5 km, n=125, 9 cameras
A1A9, 860 tracklets). The test set (10 km, n=132, 18 cameras A1A9, B1B9, 1721 tracklets) and
validation set are evaluated using a crosscamera setting, where the probe identity is captured from a
different camera than the positive matches in the gallery. During evaluation, each tracklet is evaluated
once as the probe subset, with every other tracklet in the gallery subset. We have 1721 test queries
with a maximum of 17 positive matches for each query, as the runners do not appear more than once
per camera. Because of the high number of ground truths, we evaluate the models using mean average
precision (mAP) and rank1 accuracy.

Figure 4.4: Crosscamera evalutation protocol using the 10 km runners.





5
Experiments

This chapter describes experimental results and illustrations that did not make it into the scientific paper.

5.1. Segmentation method
5.1.1. CampusRun
Figure 5.1 shows a comparison between segmentation methods to create gait silhouettes. We use
instance segmentation [14], human semantic parsing [21] and salient object detection [26]. In the
scientific paper, it was demonstrated that mean average precision increased from 39.3 to 52.2 when
using the silhouettes from human semantic parsing instead of instance segmentation. The resulting
silhouettes from human semantic parsing contain more details than the instance segmentation method.
Another option is to finetune the segmentation model for the intended domain before creating the gait
silhouettes. Future research could examine the use of salient object detection, as it was able to extract
fine details of the human body.

(a) Bounding box (b) Mask RCNN [14] (c) SCHP [21] (d) U2Net [26]

Figure 5.1: Comparison between segmentation methods.
(a) bounding box, (b) instance segmentation, (c) human semantic parsing, (d) salient object detection.

25
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5.1.2. CASIAB
Figure 5.2 shows a comparison between segmentation methods on the CASIAB dataset [38]. The
original CASIAB silhouettes, which are included in the dataset, are created using background sub
traction. It was observed for certain views that the calibration strip in the background, shown in figure
5.2(b), causes a hole in the head when using background subtraction. This observation was found in
most silhouettes in the dataset, which can be corrected with morphological operators.

(a) (b) (c) (d) Mask RCNN [14] (e) SCHP [21]

Figure 5.2: Comparison between segmentation methods.
(a) bounding box, (b) background, (c) original silhouette, (d) instance segmentation, (e) human semantic parsing.

Wewere interested in seeing if the GaitSet [5] model would pick up on this cue during training, which
would mean that it exploits additional background information to identify certain views or identities. We
compare the original silhouettes without preprocessing, with silhouettes consisting of the summation of
the original silhouettes and human semantic parsing. Adding both silhouettes together results in clean
silhouettes without artifacts. If the model exploits the background information, then we would expect
the rank1 accuracy to drop with the new silhouettes. The results are shown in table 5.1, which indicate
that there is no large drop in accuracy, suggesting that the model does not exploit the background noise
or the effect is minor.

Silhouettes NM BG CL

Original 95.2 87.5 70.0
Original + human semantic parsing 94.1 84.7 72.1

Table 5.1: Comparison between the original silhouettes and adding human semantic parsing.
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5.2. Activation maps
5.2.1. CASIAB
We investigate activation maps [40] of the last convolutional layer of GaitSet to see the influence of
certain regions in the silhouettes. The activation maps are computed by taking the sum of the absolute
valued feature maps along the channel dimension, followed by a spatial L2 normalization, upsampling
and minmax scaling. The activation maps are shown in figure 5.3 for the silhouettes from the previous
experiment. The model seems to utilize the shape and movement of the full body with some focus on
the leg region. It is interesting that for the original silhouettes, there is a small spot around the shoulder
and head region where there are higher activations, while this behavior is not present in the cleaner
silhouettes. This is perhaps related to the artifacts in the head region due to the background (figure
5.2).

Figure 5.3: Comparison between the original silhouettes (top) and adding human semantic parsing (bottom).
Activations of the last convolutional feature maps. Gait samples are depicted here as averaged silhouettes, but the input is a

set of silhouettes.

5.2.2. Walking and running
Figure 5.4 shows the activation maps for both CASIAB and CampusRun sequences with full body and
partial silhouettes. The activation maps indicate that there are more activations in the leg region when
running compared to walking. Removing the torso from the silhouettes results in higher activations in
the torso and arm region.

(a) Walking (b) Running

Figure 5.4: Comparison between walking and running.
Activations of the last convolutional feature maps for both walking and running sequences. All silhouettes are constructed
using human semantic parsing. Gait samples are depicted here as averaged silhouettes, but the input is a set of silhouettes.



28 5. Experiments

5.3. Retrieval results
Extra retrieval results for the GaitSet model on the CampusRun are shown in figure 5.5. For the first
query, the person of interest is captured often with his hands waving in the air, which is why four
samples are correctly retrieved. In the second query, the person of interest is captured with their back
towards the camera, but the rank5 results are all correct. This demonstrates that the model is robust
against view changes. The third and fourth query demonstrates that crowded scenes and occlusions
are challenges in unconstrained gait recognition. The gait silhouettes are incomplete for both queries
due to being occluded by other runners. The retrieved ranked results are all occluded sequences and
incorrect matches.

Figure 5.5: Example retrieval results.
Four queries and their corresponding rank5 retrieval results for the GaitSet model.
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