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Abstract— The optimal operation of an integrated electricity ~ profiles), the issue of storing energy also becomes more
and natural gas system is investigated. The couplings between jmportant. Electric energy storage devices are expenside a
these two systems are modeled by energy hubs, which serveyhe gperation of them causes energy losses. In order to still
as interface between the loads and the transmission infras- . A .
tructures. Previously, we have applied a distributed control enable the_elef:trlc ene_rgy_supp_ly in time, the operatlon of_a
scheme to a static three-hub benchmark system. In this paper, #CHP device in combination with a heat storage device is
we propose an extension of this distributed control scheme considered. By optimally using the heat storage device, the

for application to energy hubs with dynamics. The dynamics ,,CHP device can be operated in order to follow the electrical
that we consider here are due to storage devices present load.

in the multi-carrier system. We propose a distributed model s
predictive control approach for improving the operation of In [5], we have proposed a distributed control scheme

the system by taking into account predicted behavior and for the steady-state optimization of energy hub systems. A
operational constraints. Simulations in which the proposed three-hub benchmark system is used there to illustrate the
fr?hemte lSt_alppl(l?g to the threhe-hub benchmark system illustrate performance of the approach. In that system, the individual
e potential of the approach. C ; : ;
Inpdex T(Ierms— Distrri)t‘))L:ted control, model predictive control energy hubs determine in a cooperative way which actions t9
electric power systems, natural gas systems, multi-carrier sys- @K€ The models that the energy hubs thereby use are static,
tems steady-state models. No dynamics are taken into account.
I. INTRODUCTION In this paper, we propose an extension of the distributed

control scheme presented in [5] for application to energy

o ) h with dynamics. Here, we in particular consider th
and local district heating systems, are mostly planned araéjbs th dynamics. Here, we particular consider the

: . lynamics due to storage devices present in the combined
operated independently of each other. In practice, howeve .
C . electricity and natural gas system. We propose to use a
these individual systems are coupled, as e.g., micro co

bined heat and power plantgCHP) and other distributed Wistributed model predictive control (MPC) scheme, in vishic
. s : .the operation of the hub system over a certain prediction
generation plants (such as so-called co- and trigeneration . . . ; . . .
[1]) are used more and more. It is therefore ex eCte‘féonzon is considered and in which actions that give the best
) P c{edicted behavior are determined by the individual energy

that integrated control of several such systems can yie Libs. Bv usina such a predictive anproach. the enerav usage
improved performance. The various energy carriers availab =Y g P PP ' gy usag

and the conversion possible between them significantlycian‘feCan be adapted to expected fluctuations in the energy prices

both the technical and the economical operation of ener and to expected changes in the load profiles. A variety of

. L Wistributed MPC approaches have been applied to different
systems. In particular, consumers get flexibility in supply

and could therefore decide in favor of, e.g., cost, relighil application areas, summarized in [6].

e S A This paper is organized as follows. In Section Il the
system emissions, availability, or a combination of these. ; . : ; .
: S mathematical model of the considered multi-carrier sysgeem
Currently, research effort is addressing integrated obntr

. . iven. In Section Il we first discuss a centralized MPC ap-
of combined electricity and natural gas systems [2], [3]. | i
. o roach for the overall system and then propose a distributed
[3], the couplings between the electricity and gas syste

are modeled using the concept of energy hubs [4]. ThesePC approach. Simulation results applying the method to

. three-hub benchmark system are presented in Section IV.
energy hubs serve as interface between the loads and fae . . i L
Lo ection V concludes this paper and outlines directions for
transmission infrastructures of both types of systems. The
- . Uture research.
electricity and natural gas system is then modeled as a

number of interconnected energy hubs. I[l. MODELING
Because of the increasing number of distributed generation
facilities with mostly fluctuating energy infeed (geneoati

Nowadays, infrastructures, such as electricity, natuaal g

In this section, the model of the combined electricity and
natural gas network is presented. The equations for power
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B. Energy hub model

Since we consider an optimization over multiple periods,
the equations are defined per time stepFor each of the
three energy hubs, the electrical load ;(k) and the heat
load Ly, ;(k) at time stepk are related to the electricity
PY;(k) and gas hub inpuP!; (k) as follows:

£43)-
h,i

1 vg,i (kNS Pi(k)
{O Vg,i(k)ngﬂi +(1 _g Vg,i(k))ngp,h,i} |:Pg,Hz(k):| - @

wheren$H? andn$H? denote the gas-electric and gas-heat ef-

ficiencies of theuCHP device (which are assumed to be con-

Fig. 1. System setup of three interconnected energy hubtiveAgower  stant in this papé), and Where?gF,h,i denotes the efficiency of

s povided by generaors i, G Hubs h andiz have aCcess 0. o fumage. The variable, (k) (i) < vy, (F) < 1) repre-
sents a dispatch factor that determines how the gas is divide
over the uCHP and the furnace. The term, ;(k)P; (k)
defines the gas input power going into th€HP and the

o o part (1 — yg,i(k))Pngi(k) defines the gas input power going

by an electricity and natural gas transmission system, ago the furnace. As the dispatch factar ;(k) is variable,

illustrated in Fig. 1. The electricity system and the gasesys different input vectors can be found to fulfill the outputdsa

are connected via energy hubs. An energy hub is a networkjs offers additional degrees of freedom in supply.

node that includes conversion, conditioning, and stordge 0 The storage device is modeled as an ideal storage in

multiple energy carriers. It represents the interface betw combination with a storage interface. In the consideredpset

the energy sources and transmission lines on the one hagét water storage devices are implemented. The relation

and the power consumers on the other hand. The energy hgéween the heat power exchangg ; (k) and the effectively

is @ modeling concept with no restrictions to the size of thetored energyF, ;(k) at a time stepk is defined by the
modeled system. Single power plants or industrial builslingfollowing equatidn:

as well as bounded geographical areas such as whole towns 1
and cities can be modeled as energy hubs. My (k) = (Bni(k) — Eni(k—1) + Eff?) , @

€h,i

In the system under study, each energy hub represenTcS\;Nﬁere en; IS the storage efficiencyFy ;(k) denotes the
general consumer, e.g., a household, that uses both elgctri storage enerav at the end of erib,dandEStb represents the
and gas. Each of the hubs has its own local electrical ener g gy b ; 'ep

h,i - .
production (;, with electric power productionPC,, for gYandby energy losses of the heat storage device per period

e igEﬁt’j > 0). For hubsH; and H, two hot water storage

1 € {1,2,3}). Hub H; has access to a large gas network, . ; .
Ni, with gas infeedPS,. In addition, hubH, can obtain dgwces qremplemented. Equation _(1) Is therefore complet
& with additional storage power flows:

gas from a smaller local gas tariK,, modeled as gas
infeed Pg(j’z. Each hub consumes electric powgy’; and L. (k) _
gas Pglfi, respectively, and supplies energy to its electrical | Ly ;(k) + My (k)|
load L. ; and its heat load.,, ;. The hubs contain converter 1 Vg.i(k)nSHP P (k)
? . . ’ . . 8,7 g,e,t

and storage devices in order to fulfill their energy load {0 (NS + (1 = vy s (K))nE } {

. . . Ve, i\R)Tlg i Vg,i Mg h,i
requirements. For energy conversion, the hubs contain a o
LCHP device and a furnace. ThecHP device couples the C. Transmission network
two energy systems as it simultaneously produces elegtrici  For the transmission networks of both the electricity
and heat from natural gas. Huli, and H, additionally network and the gas network, power flow models based on
comprise a hot water storage deV_ICG- Compress0rs (QF ~ nodal power balances are implemented. The power flows
(i,5) € {(1,2),(1,3)}) are present in the gas network withinfor the electricity network are formulated as nodal power
the pipelines originating from hubl,, at which the large balances of the complex power, according to [3], [7]. The
gas network is located. The compressors provide a pressyi@wer flow equations for the pipeline network are based on
decay and enable the gas flow to the surrounding gas sinkf@dal volume flow balances. The model of a gas pipeline

. . . i? composed of a compressor, with pressure amplification
There are several ways in which electrical and thermal and a pipeline element. More information about the
load demands can be fulfilled. This redundancy increas&&'’ Pip ’

the reliability of supply and at the same time providegaS network model used can be found in [3].

the possibility for optimizing the input energies, €.9.M85  1jopever, the efficiencies can also be dependent on, e.ggatheerted
criteria such as cost, availability, emissions, etc. power level.



D. Combined energy hub transmission network model control system measurements
—
The combined electricity and gas network is obtained byinputs

combining the above stated power flow models. For eagh
time stepk an algebraic state vecter(k) and a dynamic

state vectorx(k) are defined. The algebraic state vectof MPC controller
includes the variables for which no dynamics are explicitly
defined. The dynamic state vector includes variables for control | optimization
. . . actions
which dynamics are included. Hence, (\ - o
x(k) = [BE (k)" @ model _fredicion [+~ consiraints
2(k) = [VT(k) 6" (k) p" (k) piyc (k)
(PE)T(k) (PS)T(k)]T (5) Fig. 2. lllustration of model predictive control.
where
- V(k) = [Vi(k),Va(k),V3(k)]T and (k) = to their sensors and actuators to a centralized authority an
[01(k), 02(k), 05(k)]T denote the voltage magnitudeseven if they would allow a centralized authority to take
and angles of the electric buses, respectively, over control of their hubs, this centralized authority abul
- p(k) = [p1(k), p2(k),ps(k)]" denotes the nodal pres- have computational problems with respect to required time
sures of all gas buses, when solving the resulting centralized control problem. We
- Pinc(k) = [Pinc.1(k), Pinc,2(k)]T denotes the pressure therefore also discuss a distributed MPC scheme, in which
amplification of the compressors, the control is spread over the individual hubs.
- PY(k) = [P (k), PY(k), Pl (k)" denotes the elec-  The goal of either control scheme is to determine values
tric inputs of the hubs, and for the control variables (k) in such a way that the costs for
- Pi(k) = [P, (k), PYy(k), PY3(k)]" denotes the gas electricity generation and natural gas usage are minimized
inputs of the hubs. Hence, the control problem can be stated as determining the
- The two storage devices in huly, and Hy are incor- inputs u(k) in such a way that the control objectives are
porated in vectoEy (k) = [En1(k), En (k)T achieved, while satisfying the system constraints.

At each time step, the control variablegk) are defined  As control strategy we propose to use MPC. MPC [8],
to include the active power generation of all generators, tH9] is a control strategy that uses an internal model for
natural gas imports of all gas networks and the dispatdiaking predictions of the system behavior over a predefined

factors of each hub, i.e., prediction horizon with lengthV, thereby also taking into
ot v T account operational constraints. MPC is suited for control
u(k) = [(Pe) (k) (Pg) (k) vy (k)} J (6)  of multi-carrier systems, since it can adequately take into

account the dynamics of energy storage devices and the
characteristics of the electricity and gas networks. MPC
operates in a receding horizon fashion, meaning that at
each time step new measurements of the system and new
predictions into the future are made. By using MPC, actions
- wg(k) = [vg1(k), vga(k), vgs(k)]T describes the dis- can be_ deter;nined that anticipatg future events, such as
patch factors of the gas input junctions. Increasing or decreasing energy prices.
In Fig. 2 MPC is illustrated schematically. At each control

Now, the model that we use to represent the combinege, 1. “an MPC controller first measures the current state
electricity and gas network can be conveniently written as ¢ he systemx(k). Then, it determines using (numerical)

x(k + 1) = f(x(k), z(k), u(k)) @) optimiz_ation which control inpup(k) to _provide _by finding
0— ). 2k 1 8 the actions that over a prediction horizon &f time steps

g(x(k), 2(k), u(k)), (8) give the best predicted performance according to a given
summarizing the power flow equations of the electricity an@bjective function. The control variables determined tue t

where
- PS(k) = [P (k), PS(k), P%(k)]T denotes the active
power generation of all generators,
- Pg(k) = [P (k), P2, (k)]T defines the natural gas
imports and

gas system, and the hub equations. first prediction step are applied to the system. The system
then transitions to a new state(k + 1), after which the
[1l. CONTROL PROBLEM FORMULATION cycle starts all over.

In this section we discuss the control of the systend Centralized model predictive control
introduced above. We first discuss how MPC can be used . . . .
In the centralized MPC formulation there is a single

in the form of a centralized, supervisory controller tham Ca ontroller that determines the inputs(k) for the whole

measure all variables in the network and that determm%setwork. The control objectieis to minimize the energy
actions for all actuators. Due to practical and computation

issues implementing such a centralized controller may notz, aqgition to the stated objectives, it would be straightfard to also
be feasible. Individual hubs may not want to give accessclude voltage regulation and power flow limitations as colnbbjectives.



costs, represented by the following system-wide objectivEach control agent is responsible for the hub variables and

function: all system variables of the nodes connected to it. For the firs

Nl controller, the state and control vectors for each time &tep

T=Y "> 4l (k+ (P (k+1))? are defined as
=0 e x1 (k) = [E1(k)]" (15)
N el 2
Far R DEGEFDT OV 5 (k) = VA(k), 8106, p1 (8), Pine. (), Pine.a (),
whereG includes all generation units, i.e., the tree generators P (k), Pl (k)" (16)
and the two natural gas imports. The prices for electricityu (k) = [PG (k), P, (k), v (k)T ' (17)
- e,l » gl » Y8,

generatiory® (k) and for natural gas consumptigfi (k) can
vary throughout the day. The centralized control problenihe state and control vectors for the second and third

formulation is now stated as controller are defined similarly according to Fig. 1 (grey
min J(x(k + 1),2(k), a(k)) (10) areas). , .

a(k) Each controller solves its own local MPC problem using

subject to the local model of its hub. However, this local MPC problem

%(k+1) :f(fc(k),i(k),ﬁ(k)) (11) d_epends on th_e_ MPC problems of t_he other controllers,
since the electricity and gas networks interconnect theshub

12) Therefore, the MPC optimization problems of the contraller

) (13) have to be solved in a cooperative way. This is not only

. . . 1o ensure that the controllers choose feasible actions, but

where the t||_dg over a variable represents Ehat Va”abgso to allow the controllers to choose actions that are

over ? prediction horlonn TOfN s'Feps, g.g.,u(k) . optimal from a system-wide point of view. The distributed

[ u(k) ""3u(k, "’,N — 1" ] The mequqhty constrgmts MPC approach that we propose in this paper is based on

(13) comprise limits on the voltage magnitudes, active angsing the Lagrangian relaxation procedure derived in [dd] f

reactive power flows, pressures, changes in compressor Sseéfting up the MPC optimization problems of the individual

tings, anq dispatch factors. Furthermqrg, power "”.““H'O” controllers and for determining which information has to be
the hub inputs and on gas and electricity generation are alﬁQchanged among the controllers

incorporated in (13). Regarding the storage devices, dimit We next illustrate the mathematical procedure to de-

on the storage c_ontents and the storaqe flows are Imposefiiompose a general centralized MPC optimization problem
The optimization problem (10)~(13) is @ nonlinear prog¢ 5 centralized controller into optimization problems for
gramming problem [10], which can be solved using optiyjyiqyal distributed controllers. The procedure isstiated

mization problem solvers for nonlinear programming, SUCR, 5 system consisting of two interconnected areas, extensi
as sequential quadratic programming [10]. In general, tl}% three or more areas is straightforward.

solution space is non-convex and therefore finding the ¢jloba Consider two areas and B which comprise the system

optimum cannot be guaranteed with numerical methods. variablesya (k) and ys(k), respectively. For demonstration
purposes, we collect all variables introduced above in a
vector y(k), .., ya(k) = [Xa(k),za(k), @a(k)]". The

In the distributed MPC formulation, there is no singlecentralized MPC optimization problem is then specified as
controller, but there are multiple controllers which act in . TGa(k), 55(k)) (18)
a cooperative way. Each controller is responsible for its ﬁA(,S?EB(k) (va(k), ye(
own part of the overall system. Ir! our case there are three subject to  g(ya(k),ys(k)) = 0. (19)
individual controllers each of which controls a particular
area. In addition, the compressors in the gas networks dr&re, only equality constraints are explained for demanstr
controlled by the controller of energy hub. tion purposes. Inequality constraints are handled analsigo

In the distributed MPC formulation each individual con- FOr decomposing the centralized MPC optimization prob-

troller has its own control objective. In particular, thesy €M, both the objective and the equality constraints are
tive functions of the three controllers are: separated and assigned to a responsible control agen8jFig.

Both areas comprise constraints involving only the own
system variablesga (ya(k)), gs(¥s(k)). Besides them, so-
called coupling constraints are introduced, containing vari-
(14a) ables from both areas (marked by a hat). Regarding the
objectives, both objective functions consist of two pafise

B. Distributed model predictive control

N-1
Ji=Y ai (b + (P (k4 0)? +a (k + D (P (k +1))°
=0

N-1
_ G G 2, N e] 2 first term expresses the main objective originating from the
T2 = 0z (k+ D(Fer(k+0)" + > (k+ D(Fy(k +1)) overall objective function (18). The second term is respon-
(14b) sible for the coordination between the agents and consists
N_1 of the coupling constraints introduced above. As indicated
Jy = q;?(k—kl)(PSs(k#—l))Q. (14c) in Fig. 3, the coupling constraints are kept explicitly as

hard constraints in the constraint set of one control agent

N
I
=



Area A: y,(k) Area B: y,(k)

w

min T30, $2(0)) min SV a(R)s ¥u(k)) 3,
+(A)" 2V (h), ¥alk) ) +H)" 23R, Yu(R) ry

subject to subject to gt
£,k =0 &,(Va(k) =0 -
.30, ¥alk) = 0 (5. (h), ¥ulk) = 0

Voo, M) ——s

—  Fulb. Mk

Fig. 3. Decomposition procedure applied to a two-area sygteaaA:
ya(k), areaB: yg(k)) and variables to be exchanged after each iter
counters. T

9 10 11 12

6 7 8
Time step k

and added as soft constraints to the main objective of the, 4 profile for electricityL. ; (k) and heat loadd.i, ; (k) (upper plot)
other control agent (modified Lagrangian relaxation procesnd prices for electricityC (k) and natural gas consumptiglY (k) (lower
dure [11]). The weighting factors of the soft constraints arplob.

the Lagrangian multipliers obtained from the optimization

problem of the other area. Both the objectives and the ) ) ) ] o
coupling constraints depend on variables of the other are%grfect forecast_ is assumed, in which no dlsturl_)ances nwithi
indicated by the superscript To handle this dependency, th_e _kn_own proﬂle_s are occurring. The generation costs are
the optimization problems of the control agents are solvedinimized for a simulation horizoisim = 10. The length

in an iterative procedure. At each iteration stethe MPC  Of the prediction horizonV is chosen asV = 3. Hence, an
optimization problems of both control agents are solve@Plimization overN time steps is runVsim times, at each
independently of each other, while keeping the variabldiMe Stepk implementing only the control variable for the
of the neighboring area constant. After each iteration, thgHfrent time step: and then starting a new optimization at

control agents exchange the updated values of their vagabfiMe Stepk + 1 with updated system measurements.
as indicated in Fig. 3, i.e., the variablgs™ (k) and the Given are the price and load profiles of all hubs (Fig. 4).
’ The electricity load. ; and the gas import priceg’ remain

constant over time. Variations are assumed only in the grice
an ; . : .
of the electric energy generation unifS (k) and in the heat

Lagrangian multipliersif“(k). Convergence is achieved
when the exchanged variables do not change more th

a small toleranc in two consecutive iterations. In .
contrary to conveexi;lnal Lagrangian relaxation rocesl;ureload of hubHy, Ly 2, in order to exactly retrace the storage
ry grang P behavior. Further details about the coefficients and sitiaula

a faster convergence is achieved as the weighting facters ar .
represented by the Lagrangian multipliers of the neigtmgpri parameters used can be found in [3].
optimization problems [11]. B. Sngle simulation step
Applying this procedure to combined electricity and 9as |n order to evaluate whether the solution determined by
systems, the electric power flow and gas flow equationge distributed algorithm is feasible for the real systeine, t
at the peripheral buses serve as coupling constraints. Hgfjowing simulation is run. In Fig. 5 the quality of the
the studied three-hub system, the active power balancesigfermediate solutions in case that these would be applied
all nodes of the electricity system enforce a coordinatiog, the system is shown. The distributed MPC optimization
as they depend on the neighboring voltage magnitudes agghplem is is solved at time step = 1, for N = 3.
angles. Regarding the gas system, the nodal flow balancesgf each iteration countes, the overall system costs are
all buses depend on the pressures of the neighboring bugggwn when applying the control variables determined by
and therefore enforce a coordination as well. Summarizingse distributed algorithm to the system. The dotted values
for each area, there exists one coupling constraint for thafer to the infeasible solutions. As the number of iteragio
electricity and one for the natural gas system, specified]in [ increases, the distributed MPC converges, and, in fact, the
IV. CASE STUDY solution obtained at the end of the iterations approaches th
In this section a case study is presented in which the préolution obtained by the centralized MPC approach (200.98
posed distributed MPC scheme is applied to the illustrativie-U.). After iteration 16, the values of all control variesl
three-hub system. However, the scheme is general and @€ feasible. After 39 iterations, the algorithm converges
only valid or applicable for the system depicted in Fig. 1 gmulation of multiple time steps
The performance of the distributed approach is compared

with the performance of the centralized MPC approach. The, 'When minimizing the energy costs over the full simulation
solverf mi ncon provided by the Optimization Toolbox of of Ngim time steps, a total cost of 850.62 p.u. is obtained for

Matlab is used [12] the above given load and price profiles. Applying centralize
) ' MPC, the overall costs are lower, 849.78 p.u., since, due to
A. Smulation setup the imposed convergence tolerangg; of the distributed

Each hub has a daily profile of its load demand andlgorithm, the centralized approach finds a slightly défer
also of the energy prices. In this preliminary case study, solution at some iteration steps. In Fig. 6, the active power
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Fig. 5. Intermediate solutions of the distributed algoritapplied to the
system. Dotted lines represent infeasible solutions, doles are feasible
solutions.
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Fig. 6. Active power generatioﬁ’ec’;2 and natural gas impom?gf2 of hub
H-> over time.

generation and the natural gas import of Hiib are shown.
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Fig. 7. Evolution of storage content&'{, E2) over time.

be taken into account adequately. We have applied this ap-
proach for minimizing generation costs of a particular ¢are
hub integrated electricity and natural gas system. In a case
study, we have analyzed the quality of intermediate sahstio
obtained throughout the iterations of the proposed approac
to ensure that applying the control to the real system yields
feasible solutions. In future research the performancesiund
different control horizons will be compared. Furthermore,
conditions and measures for guaranteeing convergence have
to be investigated more precisely. In addition, we will asidr

the incorporation of disturbances in the scheme instead of
assuming perfect forecasts.
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