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Preface 

Many years later, as I was about to get my final degree, memories flooded back – my 

mother’s beaming smile as I earned full marks in elementary school, the silhouette of 

my father carrying me on his motorcycle for more than two hours to my high school, the 

miniature Four Wheel Drive Brother Model Car that filled my childhood, and the 

Christmas day flight to the Netherlands... 

With my interdisciplinary education and research background, I am grateful that I delved into 

the domain of automated mobility domain and pursued a Ph.D. degree in this field. 

My Ph.D. journey commenced amidst the backdrop of a global pandemic, necessitating nearly 

two years of remote work and study from home. Despite the initial challenges, I quickly adapted 

and established a productive rhythm for research and study within the familiar confines of my 

home environment. Yet, amidst this solitary pursuit, I remained deeply connected to the vibrant 

group of the Traffic and Transportation Safety (TTS) lab and the Transport and Planning 

Department at Delft University of Technology. As I draw close to the completion of my thesis, 

I find myself already yearning for the camaraderie and shared pursuit of knowledge that defined 

my time within these esteemed groups. 

First and foremost, I would like to express my utmost gratitude to my promotors, Dr.ir. Haneen 

Farah and Prof.dr.ir. Bart van Arem. Their unwavering guidance, insightful suggestions, and 

continuous support have been invaluable throughout every stage of my academic journey. From 

shaping research proposals to conducting research and manuscript preparation, their expertise 

and constructive feedback have been instrumental in shaping this thesis. Moreover, their 

mentorship extended beyond academia, providing invaluable advice that contributed to my 

personal growth, resilience, and well-being. It has been an honour and a privilege to share this 

wonderful Ph.D. journey with such esteemed supervisors. 

As my daily supervisor, Haneen has consistently demonstrated her availability and support, 

offering invaluable guidance and assistance during our regular meetings, typically on a weekly 
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basis. Her ability to break down complex problems and provide practical solutions has been 

instrumental in refining my research approach and enhancing the quality of my work. 

Additionally, Haneen generously shared her expertise in project supervision, collaboration 

strategies, and time management, which greatly benefited my professional development, 

equipping me with valuable skills and insights that extend beyond the scope of my research 

project. 

As my promoter, Bart consistently offered guidance and valuable insights from a higher-level 

perspective, enriching my understanding of the research landscape and providing thoughtful 

suggestions for advancement during our joint monthly meetings. His expertise extended beyond 

the confines of our specific research domain, allowing him to offer valuable advice on various 

aspects of networking, academic writing, modelling techniques, and the selection of journals 

and conferences for paper submissions. Moreover, Bart generously shared a wealth of resources 

from both within and outside our department and university, further enhancing the depth and 

breadth of my research endeavours. 

I am profoundly grateful for the proactive approach adopted by both my daily supervisor and 

promotor in tackling questions and challenges that extend beyond their areas of expertise. Their 

willingness and readiness to seek external assistance and supervision reflect their unwavering 

commitment to the success of my research endeavours. Additionally, their robust support for 

my five-month international research collaboration with the University of California, Berkeley 

(UC Berkeley) highlights their steadfast dedication to nurturing opportunities for my 

professional development and fostering collaborative ventures on a global scale. 

I extend my heartfelt gratitude to my doctoral committee members – Prof.dr.eng. M.A. Sotelo 

Vázquez, Prof.dr. S. Sacone, Prof.dr. M. Wang, Prof.dr. D. Gavrila, and Prof.dr.ir. S.P. 

Hoogendoorn, for their diligent review of the thesis draft manuscript and their invaluable 

comments aimed at enhancing the quality of this thesis. Their expertise and constructive 

feedback have been instrumental in refining the content and ensuring its scholarly rigour. 

My sincere appreciation goes to the Safe and efficient operation of AutoMated and human 

drivEN vehicles in mixed traffic (SAMEN) project group and user committee members for their 

invaluable contributions and collaborative spirit throughout this journey. A special thank you to 

Haneen for her exceptional leadership and dedication in spearheading this project. I am grateful 

for the stimulating interactions with the consortium partners, particularly Maarten Sierhuis 

(Nissan), Rik Nuyttens (3M), Maria Oskina (RHDHV), Harm-Jan Mostert (Province North 

Holland), Gerdien Klunder (TNO), Marco van Burgsteden (CROW), and Jennifer Faber 

(NWO). Your insights and expertise have greatly enriched my understanding and perspective 

on the subject matter. To my fellow SAMEN researchers Nagarjun Reddy, Yiyun Wang, 

Narayana Raju, and Wouter Schakel, as well as the master’s and bachelor’s students under my 

supervision, Shiva Nischal Lingam, Sandeep Patil, Lanxin Zhang, Mathijs den Otter, Eline van 

der Kooij, Yuteng Zhang, Henan Yuan, Tobias Datema, Vincent Wassenaar, Joris Van de Weg, 

Cahit Tolga Kopar, Harim Suleman, and Sanny Toonen, I am thankful for the valuable 

knowledge and experiences you have shared. Special thanks to Prof. Masayoshi Tomizuka, Dr. 

Wei Zhan, and Dr. Chen Tang at the Mechanical Systems Control Lab, UC Berkeley. Our 

collaborative efforts have been instrumental in advancing the collective understanding of 

automated driving systems. I will fondly remember our celebrations after user committee 

meetings and other gatherings – they will be missed dearly. 
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I am immensely grateful to my friendly and outstanding colleagues at the TTS lab, the 

Department of Transport and Planning, and the TRAIL research school. A special mention goes 

to my office mates, Sina, Siri, Samkie (Siqi), Johan, Vincent, Paul, Solmaz, Ivan, Omid, 

Willem-Jan, and Laxman, whose camaraderie and support have been invaluable throughout my 

Ph.D. journey. Johan, thanks for your assistance in proofreading and revising the thesis 

summary in Dutch. I also extend my gratitude to the social facilitators, Eilif, Konstantinos, Bing, 

Saman, and Lucas, whose contributions have enriched our social and entertainment activities. 

Additionally, I would like to thank Prof.dr. Bert van Wee, Prof.dr.ir. Joost de Winter, Prof.dr.ir. 

Hans Hellendoorn, Dr. Jan van Gemert, Saeed, Irene, Conchita, Xiaolin, Guopeng, Yiru, Xue, 

Callum, Weiming, Samir, Yufei, Kexin, Zili, and Edwin for their valuable insights, camaraderie, 

and technical support. The research collaborations, Ph.D. forums, TRAIL congresses, coffee 

breaks, and cultural exchanges have truly made my Ph.D. experience vibrant and fulfilling. 

I am also indebted to all my teachers and mentors who have played pivotal roles in shaping my 

intellectual growth and personal development. Their guidance, wisdom, and encouragement, 

particularly during my formative years, have instilled in me the confidence and resilience 

needed to navigate the challenges of academia and beyond. I am profoundly grateful for their 

dedication to nurturing the minds of future generations and hope to pay their kindness forward 

in my own endeavours. I am also grateful to those who have engaged in thought-provoking 

discussions and debates with me, challenging me to grow and evolve. Their constructive 

criticism and differing perspectives have served as important reminders of my imperfections 

and limitations, pushing me to strive for continuous improvement and self-awareness. 

Special thanks are extended to my Taichi masters, Yongsheng Zhang and Weimin Luo, for 

imparting invaluable lessons on finding inner peace and the practice of meditation. Their 

teachings and guidance have not only enriched my spiritual well-being but have also 

contributed to my overall physical health and resilience. I am deeply grateful for their 

mentorship and the profound impact on my life. 

I express my deepest gratitude to my parents and my family for their unwavering support 

throughout my academic journey. Especially for my father, over the span of more than 15 years, 

I can still vividly recall the silhouette of him carrying me on his motorcycle for more than two 

hours, traversing towns to get me to my high school. My family’s enduring encouragement and 

belief in me have been the driving force behind my pursuit of knowledge and academic success.  

Lastly, I extend my heartfelt appreciation to all individuals who have crossed paths with me, 

supporting me in ways both visible and invisible throughout my academic and life journey. Your 

encouragement, assistance, and belief in my abilities have been instrumental in reaching this 

milestone. I am truly fortunate to have such a supportive network of family, friends, mentors, 

and colleagues. Thank you all for being part of my journey and for your invaluable contributions 

to my personal and academic growth.  

I also thank myself for the countless overnight hard work, for never giving up, and for the 

unwavering commitment and determination to persevere on this challenging academic path. 

 

Yongqi Dong 

Aachen, December, 2024 
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Summary 

Background 

The steady development of automated vehicles (AVs) promises significant benefits in terms of 

traffic safety and efficiency. However, the transition to full automation AVs and their 

deployment on the road will be gradual, leading to a phase of mixed-traffic conditions where 

AVs at various levels coexist with human-driven vehicles (HDVs). This transition poses 

unprecedented hurdles, requiring a deeper understanding of the emerging challenges for AVs in 

sensing and perceiving road environments, as well as in the novel interactions between AVs and 

HDVs. Furthermore, the social compliance of AVs and the optimisation of their deployment 

strategies need to be considered as well. 

 

Contents of this thesis 

This thesis addresses the multifaceted challenges associated with AVs’ development and 

deployment in mixed-traffic environments. The main objective of this thesis is to enhance the 

capabilities of AVs, enabling them with a wider Operational Design Domain (ODD), and thus 

facilitate the implementation of safe, efficient, and socially compliant automated driving in 

mixed traffic. Referring to the modular design of AV systems, three key perspectives, i.e., 

sensing and perception, anomaly detection, as well as planning and control, are tackled in this 

thesis. To be specific: 

Chapters 2-4 focus on enhancing sensing and perception capabilities through the development 

of hybrid spatial-temporal deep learning models and self-supervised pretraining methods. Lane 

detection is chosen as the focus of these chapters since it is vital for current vehicle localisation 

and positioning, and it is also the foundation of various automated driving features. The main 

findings of these chapters are summarised as follows. 
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Chapter 2 presents a pioneering hybrid spatial-temporal sequence-to-one deep learning 

architecture tailored for vision-based lane detection tasks. By integrating the spatial 

convolutional neural network (SCNN) with spatial-temporal Recurrent Neural Network (RNN) 

modules, this architecture effectively captures correlations and dependencies among continuous 

image frames. Through extensive experimentation on various driving scenes, including 

challenging scenarios, the proposed model variants exhibit superior performance over existing 

state-of-the-art models. Notably, even the lighter model variants demonstrate remarkable 

accuracy, outperforming their counterparts while maintaining lower computational complexity. 

Building upon the foundation laid in Chapter 2, Chapter 3 focuses on refining vision-based 

sensing and perception through the development of customised spatial-temporal attention 

mechanisms. These mechanisms, including temporal attention, spatial-temporal attention, and 

spatial-temporal attention with fully connected layers, are meticulously designed to optimise 

the utilisation of spatial-temporal correlations across different regions of interest within the 

consecutive image frames. Leveraging linear Long Short Term Memory (LSTM) neural 

networks in conjunction with the proposed attention blocks, this chapter demonstrates the 

feasibility of lightweight and computationally efficient solutions for sequential deep neural 

networks (DNNs). Through rigorous experiments, ablation studies, and comparative analysis 

across diverse datasets, the effectiveness of the proposed attention mechanisms in enhancing 

lane detection performance is convincingly established. 

In Chapter 4, the exploration of enhancing vision-based sensing and perception capabilities 

continues with the introduction of a self-supervised pretraining method employing masked 

sequential autoencoders (MSAE). This innovative approach leverages both labelled and 

unlabelled data to improve detection accuracy and expedite the training process of DNN models 

dedicated to lane detection tasks. Additionally, a customised Focal Loss based PolyLoss is 

introduced to further enhance the detection accuracy. Through comprehensive experimentation 

and comparative analysis, the efficacy of the proposed pretraining method and loss function is 

demonstrated, showcasing substantial improvements in lane detection performance across 

diverse driving scenarios. Specifically, the utilisation of MSAE-based pretraining and the 

adoption of the customised PolyLoss result in superior performance metrics, underscoring the 

pivotal role of self-supervised learning techniques and tailored loss functions in fortifying the 

robustness and efficiency of vision-based sensing and perception systems in AVs. 

These chapters address the challenges of vision-based lane detection, crucial for AV navigation 

and safety. 

 

Chapters 5-6 delve into anomaly detection, investigating techniques for identifying abnormal 

lane rendering in digital map applications and detecting anomalies in driving behaviour.  

Chapter 5 introduces an innovative approach to anomaly detection in lane rendering images of 

digital map applications, utilising Transformer-based models with self-supervised pretraining 

and customised fine-tuning. By transforming anomaly detection into a classification problem, 

the chapter proposes a four-phase pipeline that includes data pre-processing, self-supervised 

pre-training with masked image modelling (MiM), customised fine-tuning using cross-entropy-

based loss, and post-processing. Experimental results demonstrate the pipeline’s effectiveness, 

with significant improvements in detection accuracy and reduced training time achieved 
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through self-supervised pre-training. Ablation studies regarding tackling the problem with 

different numbers of classes further validate the pipeline’s performance enhancements, 

particularly in addressing data imbalance. This approach not only enhances anomaly detection 

accuracy but also contributes to reducing labour costs associated with manual labelling and 

anomaly detection efforts, offering significant societal benefits. 

Additionally, Chapter 6 explores the critical task of detecting abnormal driving behaviour, 

addressing the need for more feasible and efficient approaches by leveraging semi-supervised 

ML methods. Utilising large-scale real-world driving data, the study develops a semi-

supervised ML model based on the Hierarchical Extreme Learning Machine (HELM). This 

approach utilises partly labelled data and introduces Surrogate Measures of Safety (SMoS) 

(specifically the event-based safety indicators of Two-Dimensional Time-To-Collision (2D-

TTC)) as the pivotal input features to enhance performance. Results demonstrate the 

effectiveness of the proposed semi-supervised ML model, showcasing superior performance 

compared to baseline methods. The integration of SMoS significantly improves detection 

accuracy, highlighting its significant role in enhancing model performance. By leveraging 

unlabelled data for training and only a small sample of labelled data for fine-tuning, the 

proposed semi-supervised approach achieves competitive performance while reducing 

dependency on fully labelled datasets, making it suitable for real-world applications. 

To sum up, the exploration of semi-supervised and self-supervised ML methods presents 

promising avenues in anomaly detection. The pioneering research presented in this thesis 

represents a significant stride towards leveraging data-driven ML-based anomaly detection 

methodologies to enhance the safety of driving. 

 

Chapters 7-9 shift the focus to planning and control strategies for AVs, presenting a 

comprehensive examination of decision-making frameworks and control algorithms. These 

chapters introduce a conceptual framework aimed at fostering socially compliant driving 

behaviour and propose a range of model-based and learning-based approaches. 

Chapter 7 lays the groundwork by introducing a conceptual framework that emphasises socially 

compliant automated driving. This framework encompasses various social components such as 

cultural nuances, norms, and driving styles. A key innovation is the introduction of bidirectional 

behavioural adaptation, highlighting the dynamic interactions between AVs and human drivers. 

Furthermore, the framework advocates for the incorporation of a spatial-temporal memory 

module to enable continuous refinement of driving strategies, thereby promoting adaptability 

and safety in diverse traffic scenarios. Validation through an online expert survey lends 

credence to the framework’s efficacy. This conceptual framework lays a solid foundation for 

learning-based and model-based approaches for implementing planning and control algorithms 

for automated driving. 

In the learning-based approach explored in Chapter 8, Deep Reinforcement Learning (DRL) 

takes centre stage, with a focus on integrating safety, efficiency, comfort level, and energy 

consumption considerations into the learning framework. Multiple DRL algorithms are 

evaluated across diverse driving manoeuvres, particularly roundabout driving, highlighting the 

importance of real-world requirements in reward function design and simulation-based training. 

Among the compared DRL algorithms, Trust Region Policy Optimisation (TRPO) emerges as 
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leading in safety and efficiency, while Proximal Policy Optimisation (PPO) excels in comfort 

during roundabout driving. Moreover, the extension of the training environment to encompass 

various driving scenarios showcases the adaptability of DRL models to train a uniform driving 

model for real traffic environments, signalling promising avenues for future research. 

Regarding the model-based approach, Chapter 9 introduces the DRF-SVO-MPCC algorithm, 

aimed at enhancing AVs’ understandability and predictability to human drivers, particularly 

during interactions with HDVs when driving through the roundabouts, as this challenging 

manoeuvre involves large curvature and tackles both longitudinal and lateral control. This 

algorithm integrates the perceived Driving Risk Field (DRF), Social Value Orientation (SVO), 

and Model Predictive Contouring Control (MPCC), enabling AVs to navigate social scenarios 

with sensitivity to the benefits of surrounding HDVs. Simulation experiments, conducted on 

various roundabout scenarios, underscore the algorithm’s superiority in trajectory tracking and 

adaptability to different driving styles, ensuring safety and social compliance. The findings 

illuminate the potential of the DRF-SVO-MPCC algorithm in fostering harmonious interactions 

between AVs and HDVs, setting a precedent for socially aware automated driving systems. 

Overall, this thesis represents a solid endeavour to advance the planning and control capabilities 

of AVs in mixed-traffic environments. Through the development of novel conceptual 

frameworks and innovative model-based and learning-based algorithmic solutions, it lays the 

groundwork for the realisation of safe, efficient, socially compliant, and adaptable automated 

driving, contributing to safer and more harmonious transportation systems. 

 

Conclusion and perspectives 

In summary, this thesis contributes to advancing the knowledge of how to improve automated 

driving systems in the realms of sensing and perception, anomaly detection, as well as planning 

and control. By integrating theoretical frameworks, methodological innovations, and data-

driven empirical evaluations, notable progress has been achieved in fostering the development 

of safe, efficient, and socially compliant automated driving within mixed-traffic environments. 

Despite the considerable progress made, several directions for future research have been 

identified. These include the imperative for more expansive high-quality datasets, exploration 

of domain adaptation techniques for both sensing and anomaly detection tasks, as well as the 

seamless integration of model-based and learning-based methodologies for planning and 

control. Additionally, transitioning towards a unified driving model and effectively addressing 

the complexities of multi-agent interactions in intricate urban settings remain pivotal areas for 

further exploration. Furthermore, interdisciplinary collaboration will be instrumental in 

harnessing the full potential of automated vehicles to revolutionise transportation systems. 

 



 

xv 

Samenvatting 

Achtergrond 

De gestage ontwikkeling van geautomatiseerde voertuigen (AV’s) belooft significante 

voordelen op het gebied van verkeersveiligheid en efficiëntie. Echter, de overgang naar full 

automation AV’s en hun inzet op de weg zal geleidelijk verlopen, wat zal leiden tot een fase van 

gemengde verkeersomstandigheden waarin AV’s op verschillende niveaus samen rijden met 

door mensen bestuurde voertuigen (HDV’s). Deze overgang brengt ongekende uitdagingen met 

zich mee, waarvoor een dieper begrip nodig is van de opkomende uitdagingen voor AV’s bij het 

waarnemen en begrijpen van wegomgevingen, evenals bij de nieuwe interacties tussen AV’s en 

HDV’s. Bovendien moeten ook de sociale gedragsconfirmatie van AV’s en de optimalisatie van 

hun inzetstrategieën worden overwogen. 

 

Inhoud van dit proefschrift 

Dit proefschrift behandelt de veelzijdige uitdagingen die gepaard gaan met de ontwikkeling en 

implementatie van AV’s in gemengde verkeersomgevingen. Het hoofddoel van dit proefschrift 

is om de mogelijkheden van AV’s te verbeteren door hen te voorzien van een breder 

Operationeel Ontwerp Domein (ODD) en zo de implementatie van veilig, efficiënt en sociaal 

aanvaardbaar geautomatiseerd rijden (AD) in gemengd verkeer mogelijk te maken. Met 

betrekking tot het modulaire ontwerp van AV-systemen worden drie belangrijke perspectieven 

behandeld in deze scriptie, namelijk waarneming en perceptie, anomaliedetectie, evenals 

planning en controle. Om specifiek te zijn: 

 

Hoofdstukken 2-4 richten zich op het verbeteren van de mogelijkheden voor waarneming en 

perceptie door de ontwikkeling van hybride ruimtelijk-temporele deep-learning modellen en 

self-supervised pretraining technieken. Rijstrookdetectie wordt gekozen als de focus vanwege 

haar belang voor de huidige voertuiglokalisatie en -positionering, en het is ook de basis van 
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verschillende geautomatiseerde rijfuncties. De belangrijkste bevindingen van de hoofdstukken 

worden hieronder samengevat. 

Hoofdstuk 2 introduceert een baanbrekend hybride ruimtelijk-temporele sequentie-naar-een 

deep learning algoritme dat is afgestemd op visuele detectietaken van rijstroken. Door de 

ruimtelijke convolutie-neurale netwerk (SCNN) te integreren met ruimtelijk-temporele 

recurrente neurale netwerk (RNN)-modules, vangt deze architectuur effectief correlaties en 

afhankelijkheden tussen continue beeldframes op. Door uitgebreide experimenten op 

verschillende rijscenario’s, inclusief uitdagende scenario’s, vertonen de voorgestelde 

modelvarianten superieure prestaties ten opzichte van bestaande state-of-the-art modellen. Met 

name de lichtere modelvarianten tonen opmerkelijke nauwkeurigheid, waarmee ze hun 

tegenhangers overtreffen terwijl ze een lagere computationele complexiteit behouden. 

Verder bouwend op de basis gelegd in hoofdstuk 2, richt hoofdstuk 3 zich op het verfijnen van 

visuele waarneming en perceptie door de ontwikkeling van aangepaste ruimtelijk-temporele 

aandachtsmechanismen. Deze mechanismen, waaronder tijdelijke aandacht, ruimtelijk-

temporele aandacht en ruimtelijk-temporele aandacht met volledig verbonden lagen, zijn 

zorgvuldig ontworpen om het gebruik van ruimtelijk-temporele correlaties over verschillende 

interessegebieden binnen de opeenvolgende beeldframes te optimaliseren. Door lineaire Long 

Short Term Memory (LSTM) neurale netwerken te gebruiken in combinatie met de 

voorgestelde aandachtsblokken, demonstreert het hoofdstuk de haalbaarheid van eenvoudige 

en rekenkundig efficiënte oplossingen voor sequentiële diepe neurale netwerken (DNN’s). Door 

rigoureuze experimenten, ablatiestudies en vergelijkende analyses over verschillende datasets, 

wordt overtuigend de effectiviteit van de voorgestelde aandachtsmechanismen bij het 

verbeteren van de prestaties van rijstrookdetectie vastgesteld. 

In Hoofdstuk 4 wordt het onderzoek naar het verbeteren van de mogelijkheden voor visuele 

waarneming en perceptie voortgezet met de introductie van een self-supervised pretraining 

techniek met behulp van gemaskeerde sequentiële auto-encoders (MSAE). Deze innovatieve 

aanpak maakt gebruik van zowel gelabelde als ongelabelde gegevens om de 

detectienauwkeurigheid te verbeteren en het trainingsproces van DNN-modellen voor 

rijstrookdetectietaken te versnellen. Daarnaast wordt een aangepaste Focal Loss op basis van 

PolyLoss geïntroduceerd om de detectienauwkeurigheid verder te verbeteren. Door uitgebreide 

experimenten en vergelijkende analyses wordt de doeltreffendheid van de self-supervised 

pretraining methode en verliesfunctie aangetoond, waarbij aanzienlijke verbeteringen in de 

prestaties van rijstrookdetectie over verschillende rijscenario’s worden getoond. Specifiek, het 

gebruik van MSAE-gebaseerde pretraining en de adoptie van de aangepaste PolyLoss resulteren 

in superieure prestatiemetingen, waarbij de cruciale rol van zelf-begeleide leertechnieken en op 

maat gemaakte verliesfuncties in het versterken van de robuustheid en efficiëntie van visuele 

waarneming en perceptiesystemen in AV’s wordt benadrukt.  

Deze hoofdstukken behandelen de uitdagingen van visuele rijstrookdetectie, die cruciaal zijn 

voor AV-navigatie en veiligheid. 

 

Hoofdstukken 5-6 richten zich op anomaliedetectie, waarbij technieken worden onderzocht 

voor het identificeren van abnormale rijstrookweergave in digitale kaarttoepassingen en het 

detecteren van afwijkingen in rijgedrag. 
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Hoofdstuk 5 introduceert een innovatieve benadering voor anomaliedetectie in afbeeldingen 

van rijstrookweergave in digitale kaarttoepassingen, waarbij Transformer-gebaseerde modellen 

worden gebruikt met self-begeleid pretraining en aangepaste fine-tuning. Door 

anomaliedetectie om te zetten in een classificatieprobleem, stelt het hoofdstuk een vierfasen-

pipeline voor die datavoorbewerking, self-supervised pretraining met masked image modelling 

(MiM), aangepaste fine-tuning met behulp van cross-entropy gebaseerd verlies, en 

postprocessing omvat. Experimentele resultaten tonen de effectiviteit van de pipeline aan, met 

aanzienlijke verbeteringen in detectienauwkeurigheid en verminderde trainingsduur door self-

supervised pretraining. Ablatiestudies met betrekking tot de aanpak van het probleem met 

verschillende aantallen klassen, valideren verder de prestatieverbeteringen van de pipeline, met 

name bij het aanpakken van onevenwichtigheden in de data. Deze benadering verbetert niet 

alleen de nauwkeurigheid van anomaliedetectie, maar draagt ook bij aan het verminderen van 

de arbeidskosten die gepaard gaan met handmatige labeling en anomaliedetectie-inspanningen, 

wat aanzienlijke maatschappelijke voordelen biedt. 

Daarnaast onderzoekt hoofdstuk 6 de cruciale taak van het detecteren van abnormaal rijgedrag, 

waarbij wordt ingegaan op de behoefte aan meer haalbare en efficiënte benaderingen door 

gebruik te maken van semi-begeleide machine learning (ML)-methoden. Door gebruik te 

maken van grootschalige, gegevens uit echte rijomstandigheden, ontwikkelt de studie een semi-

begeleid ML-model op basis van Hierarchical Extreme Learning Machine (HELM). Deze 

aanpak maakt gebruik van gedeeltelijk gelabelde gegevens en introduceert Surrogate Measures 

of Safety (SMoS), specifiek de gebeurtenis-gebaseerde veiligheidindicatoren van Two-

Dimensional Time-To-Collision (2D-TTC), als de belangrijkste invoerfuncties om de prestaties 

te verbeteren. Resultaten tonen de effectiviteit van het voorgestelde semi-begeleide ML-model, 

waarbij superieure prestaties worden getoond in vergelijking met basismethoden. De integratie 

van SMoS verbetert de detectienauwkeurigheid aanzienlijk, waarbij zijn belangrijke rol bij het 

verbeteren van de modelprestaties wordt benadrukt. Door gebruik te maken van ongelabelde 

gegevens voor training en slechts een kleine steekproef gelabelde gegevens voor fine-tuning, 

bereikt de voorgestelde semi-begeleide aanpak concurrerende prestaties terwijl de 

afhankelijkheid van volledig gelabelde datasets wordt verminderd, waardoor het geschikt is 

voor real-world toepassingen. 

Samengevat biedt de verkenning van semi-begeleide en zelf-begeleide ML-methoden 

veelbelovende mogelijkheden in anomaliedetectie. Het baanbrekende onderzoek gepresenteerd 

in dit proefschrift vertegenwoordigt een significante stap voorwaarts in het benutten van op data 

gedreven, ML-gebaseerde anomaliedetectiemethoden om de veiligheid van rijgedrag te 

verbeteren. 

 

Hoofdstukken 7-9 verleggen de focus naar planning en besturingsstrategieën voor AV’s, 

waarbij een uitgebreid onderzoek wordt gepresenteerd naar besluitvormingskaders en 

besturingsalgoritmen. Deze hoofdstukken introduceren een conceptueel kader dat is gericht op 

het bevorderen van sociaal conform rijgedrag en stellen een reeks op model en leren gebaseerde 

benaderingen voor. 

Hoofdstuk 7 legt het fundament door een conceptueel kader te introduceren dat het belang van 

sociaal conform geautomatiseerde rijden benadrukt. Dit kader omvat verschillende sociale 

componenten zoals culturele nuances, normen en rijstijlen. Een belangrijke innovatie is de 
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introductie van bidirectionele gedragsaanpassing, waarbij de dynamische interacties tussen 

AV’s en menselijke bestuurders worden benadrukt. Bovendien pleit het kader voor de integratie 

van een ruimtelijk-temporale geheugenmodule om de continue verfijning van rijstrategieën 

mogelijk te maken, waardoor aanpasbaarheid en veiligheid in diverse verkeersscenario’s 

worden bevorderd. Validatie via een online enquête onder experts zorgt voor geloofwaardigheid 

van de effectiviteit van het kader. Dit conceptuele kader legt een solide basis voor op model en 

leren gebaseerde benaderingen. 

In de op leren gebaseerde aanpak die wordt verkend in hoofdstuk 8, staat Deep Reinforcement 

Learning (DRL) centraal, met de nadruk op het integreren van veiligheid, efficiëntie, 

comfortniveau en energieverbruik in het leerkader. Meerdere DRL-algoritmen worden 

geëvalueerd voor diverse rijmanoeuvres, met name rotonde rijden, waarbij de nadruk wordt 

gelegd op de vereisten van de echte wereld in ontwerp van beloningsfunctie en 

simulatiegebaseerde training. Onder de vergeleken DRL-algoritmen komt Trust Region Policy 

Optimisation (TRPO) naar voren als een koploper in veiligheid en efficiëntie, terwijl Proximal 

Policy Optimisation (PPO) uitblinkt in comfort tijdens rotonde rijden. Bovendien laat de 

uitbreiding van de trainingsomgeving om verschillende rijscenario’s te omvatten de 

aanpasbaarheid van DRL-modellen zien om een uniform rijmodel te trainen voor echte 

verkeersomgevingen, waarbij veelbelovende richtingen worden aangegeven voor toekomstig 

onderzoek. 

Met betrekking tot de op model gebaseerde benadering introduceert hoofdstuk 9 het DRF-SVO-

MPCC-algoritme, gericht op het verbeteren van de begrijpelijkheid en voorspelbaarheid van 

AV’s voor menselijke bestuurders, met name tijdens interacties met HDV’s bij het rijden over 

rotondes. Dit algoritme integreert het waargenomen rijrisicoveld (DRF), sociale 

waarderingsoriëntatie (SVO) en modelpredictieve contourbesturingscontrole (MPCC), 

waardoor AV’s sociale scenario’s kunnen navigeren met gevoeligheid voor het welzijn van 

omliggende HDV’s. Simulatie-experimenten, uitgevoerd op verschillende rotonde-scenario’s, 

onderstrepen de superioriteit van het algoritme in trajectvolgen en aanpasbaarheid aan 

verschillende rijstijlen, waarbij veiligheid en sociale conformiteit worden gegarandeerd. De 

bevindingen belichten het potentieel van het DRF-SVO-MPCC-algoritme om harmonieuze 

interacties tussen AV’s en HDV’s te bevorderen, waarbij een precedent wordt geschapen voor 

sociaal bewuste geautomatiseerde rijsystemen. 

Al met al vertegenwoordigt dit proefschrift een uitgebreide inspanning om de planning- en 

controlecapaciteiten van AV’s in gemengde verkeersomgevingen te bevorderen. Door de 

ontwikkeling van nieuwe conceptuele kaders en innovatieve op model en leren gebaseerde 

algoritmische oplossingen legt het de basis voor het realiseren van veilig, efficiënt, sociaal 

aanvaardbaar en aanpasbaar geautomatiseerd rijden, wat bijdraagt aan veiligere en 

harmonieuzere transportsystemen. 

 

Conclusie en perspectieven 

Samengevat heeft deze scriptie aanzienlijke vooruitgang geboekt in geautomatiseerde 

rijsystemen op het gebied van waarneming en perceptie, anomaliedetectie, evenals planning en 

controle. Door theoretische kaders, methodologische innovaties en op gegevens gebaseerde 

empirische evaluaties te integreren, is er belangrijke vooruitgang geboekt bij het bevorderen 
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van de ontwikkeling van veilig, efficiënt en sociaal aanvaardbaar geautomatiseerd rijden binnen 

gemengde verkeersomgevingen. 

Ondanks de aanzienlijke vooruitgang zijn verschillende richtingen voor toekomstig onderzoek 

geïdentificeerd. Deze omvatten de noodzaak van meer uitgebreide datasets van hoge kwaliteit, 

verkenning van technieken voor domeinaanpassing voor zowel waarneming als 

anomaliedetectietaken, evenals de naadloze integratie van op model en leren gebaseerde 

methodologieën voor planning en controle. Bovendien blijft de overgang naar een uniform 

rijmodel en het effectief aanpakken van de complexiteiten van multi-agentinteracties in 

ingewikkelde stedelijke omgevingen cruciale gebieden voor verder onderzoek. Bovendien zal 

interdisciplinaire samenwerking instrumenteel zijn bij het benutten van het volledige potentieel 

van geautomatiseerde voertuigen om transportsystemen te revolutioneren. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



 

 



 

1 

1 Introduction 

Fully automated vehicles (AVs) are expected to be beneficial to traffic safety and efficiency 

(Talebpour & Mahmassani, 2016; Yaqoob et al., 2020). Although steady development of high 

levels of AVs is witnessed, their deployment will not occur instantaneously. A transition period 

will ensue, during which AVs with various automation levels will co-exist and share the road 

with non-connected and non-automated road users, e.g., human-driven vehicles (HDVs), 

leading to mixed-traffic conditions. 

Consequently, this new reality of mixed traffic will lead to unprecedented road and traffic 

conditions, accompanied by novel types of interactions among vehicles at different levels of 

automation, which could have significant implications for both traffic safety and efficiency 

(Fagnant & Kockelman, 2015; Fraedrich et al., 2015). Therefore, it is imperative to enhance 

our understanding of how AVs can be programmed to effectively sense their environment and 

respond appropriately with predictable behaviour across diverse driving contexts, particularly 

in challenging scenarios. In addition, addressing the challenge of making AVs socially 

compliant, i.e., understood and accepted by HDVs, together with optimising their deployment 

while considering economic, environmental, and societal impacts, are critical knowledge gaps 

that necessitate interdisciplinary research and collaboration. Addressing these challenges will 

yield valuable insights into the design and enhancement of both physical and digital road 

infrastructure, the development of AVs’ sensing, perception, and driving control algorithms, as 

well as the deployment of AVs within mixed-traffic contexts. It will also facilitate effective 

simulation and analysis of the impacts on traffic safety and efficiency resulting from the 

deployment of AVs. These insights are then essential for reliable traffic operation and 

management in mixed-traffic settings. Additionally, they play a critical role in formulating 

policies that govern the seamless incorporation of AVs into existing transportation systems. By 

systematically addressing these critical gaps, we can pave the way for the successful integration 

of AVs into mixed-traffic environments, ultimately contributing to safer, more efficient, and 

sustainable transportation systems. 
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Generally, the development of automated vehicles comprises modules of sensing and 

perception, localisation and mapping, decision-making and planning, control and action, as 

well as safety, redundancy, and anomaly monitoring. A typical abstracted architecture of the 

modular design is depicted in Figure 1-1. Sensing and perception typically entail the utilisation 

of multiple sensors, such as cameras, LiDAR, and radar, for object detection, tracking, and 

monitoring the vehicle’s state. Sensor fusion techniques are commonly employed to integrate 

data and sensing outputs from various sensors, thereby enhancing perception accuracy. The 

sensing and perception module is interconnected with and contributes to the localisation and 

mapping module. Localisation determines the vehicle’s precise position and orientation relative 

to its surroundings, while mapping creates and updates detailed maps of the environment for 

navigation and planning purposes. Both the sensing and perception module and the localisation 

and mapping module are linked to the decision-making and planning module, which 

encompasses path planning, behaviour planning, and decision-making. Path planning generates 

optimal trajectories considering vehicle dynamics, traffic rules, and environmental constraints. 

Behaviour planning determines the vehicle’s behaviour and actions based on the surrounding 

context and traffic conditions. Decision-making involves making real-time decisions such as 

lane changes, overtaking, intersection navigation, and obstacle avoidance. The control and 

action module executes vehicle dynamics control using actuators for acceleration, braking, 

steering, and other vehicle operations. This module aims to maintain desired vehicle parameters 

(e.g., speed and heading) and ensure the stability of the vehicle’s motion. Finally, the safety, 

redundancy, and anomaly monitoring module oversees all the aforementioned modules in the 

automated vehicle system. Its functions include implementing fail-safe mechanisms for system 

integrity, continuously monitoring vehicle state to detect and mitigate anomalies and failures, 

and enabling emergency response actions such as braking and steering in critical situations. 

Note that the safety, redundancy, and anomaly monitoring module is a customised component 

not commonly employed in existing module designs for AVs. It is tailored specifically for the 

research tasks outlined in this thesis, which will be elaborated upon in subsequent sections. 

Module Design of Automated Vehicle 

Sensing and Perception Localisation and Mapping

Decision-making and Planning

Control and Action

Safety, Redundancy, and Anomaly Monitoring

 

Figure 1-1. A system architecture abstraction of automated vehicle’s module design 
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Corresponding to the aforementioned challenging knowledge gaps, the primary objective of 

this thesis is to enhance the capabilities of AVs, enabling them with a wider Operational Design 

Domain (ODD), and thus facilitate the implementation of safe, efficient, and socially compliant 

automated driving (AD) in mixed-traffic environments. The ODD delineates the specific 

conditions under which an automated driving system is supposed to function properly (SAE 

International, 2021a). Aligned with the customised module design illustrated in Figure 1-1, this 

thesis endeavours to consider all the modules and tackle the multifaceted challenges by 

adopting a comprehensive approach focusing on three fundamental pillars: sensing and 

perception, anomaly detection, together with planning and control. Sensing and perception 

pertain to how AVs interact with road infrastructure (e.g., lane-marking and obstacle detection 

and tracking), whereas planning and control address the interactions between AVs and other 

vehicles on the road (e.g., navigating through a roundabout with surrounding HDVs). Anomaly 

detection, as a crucial component, typically targets identifying edge cases, system anomalies, 

and abnormal driving behaviours. 

To be specific, for sensing and perception, this thesis focuses on vision-based lane detection 

since it is vital for current vehicle localisation positioning itself within the lanes, and it is also 

the foundation of Advanced Driver Assistance Systems (ADAS), such as., Lane Keeping 

Assistance and Lane Departure Warning systems (Andrade et al., 2019; Bar Hillel et al., 2014; 

W. Chen et al., 2020; Liang et al., 2020; Xing et al., 2018). For planning and control, this thesis 

proposes a conceptual framework emphasising socially compliant decision-making and 

develops both model-based and learning-based approaches. Driving through roundabouts is 

selected as the primary focus due to its inherent challenges, including navigating large curvature, 

interacting with multiple participants, and addressing both longitudinal and lateral control 

aspects. For anomaly detection, driven and influenced by the availability of data, this thesis 

concentrates on two types of anomalies, i.e., (1) detection of abnormal lane rendering images 

within navigation map apps and (2) identification of abnormal driving behaviour in naturalistic 

driving scenarios. For (1), abnormal lane-level rendered map background images in digital map 

applications can lead to ambiguity in human drivers’ understanding and adversely influence 

their decision-making when using navigation services, potentially resulting in critical unsafe 

situations. Therefore, it is crucial to accurately detect abnormal lane rendering map images to 

mitigate such safety risks. For (2), abnormal driving behaviour brings great uncertainty to traffic 

and may lead to accidents, posing danger to both the driver and the public (Jia et al., 2020; Sar 

et al., 2023). Accurate identification and detection of abnormal driving are vital to alert 

surrounding vehicles and ensure traffic safety. Furthermore, detecting and removing abnormal 

driving behaviour from naturalistic driving data would be a prerequisite step for training a 

human-like driving model for AVs with imitation learning. 

This thesis introduction is organised as follows. Firstly, the research background and scope are 

introduced in Section 1.1. Then, in Section 1.2, the research gaps are identified, and 

corresponding research objectives and research questions are raised. Section 1.3 outlines the 

research approach and research methods employed in this thesis. Next, Section 1.4 highlights 

the scientific and practical contributions. Finally, Section 1.5 presents the outline of this thesis. 



4 Safe, Efficient, and Socially Compliant Automated Driving in Mixed Traffic 

 

1.1 Research background and scope 

According to the World Health Organization (2023), each year, road traffic accidents cause 

nearly 1.19 million fatalities, and millions more suffer serious injuries. Furthermore, these 

traffic accidents cost most nations around 3% of their Gross Domestic Product (GDP)1 (Toroyan 

et al., 2013). AVs, which are designed and programmed to be capable of driving themselves or 

performing specific necessary functions (e.g., car following, lane keeping) without being 

controlled or monitored by an individual for at least part of a journey, are promised to increase 

road safety and efficiency (Greenblatt & Shaheen, 2015; Jamson et al., 2011; Talebpour & 

Mahmassani, 2016; Yaqoob et al., 2020). These vehicles are gradually being introduced and 

deployed into everyday life. However, the transition from human-driven to fully automated 

vehicles will not occur overnight. The Society of Automotive Engineers (SAE) delineates six 

levels of driving automation (SAE International, 2021a), ranging from No Driving Automation 

(Level 0) to Full Driving Automation (Level 5), as illustrated in Figure 1-2. Among the six 

levels, Level 0 is without any automation; Level 1 and Level 2 are with partial automation, 

wherein drivers remain responsible for driving, even when assisted by automated features and 

the drivers’ feet are off the pedals. At Level 1 and Level 2, drivers must continually supervise 

the automated support features, such as steering or brake/acceleration assistance. The 

distinction between Level 1 and Level 2 lies in the scope of support provided. At Level 1, only 

one aspect of control, either steering or brake/acceleration, can be supported, whereas at Level 

2, both steering and brake/acceleration, encompassing longitudinal and lateral control, can be 

simultaneously supported. At Level 3, Level 4, and Level 5, the AD features are responsible for 

all the dynamic driving tasks when they are engaged, where the drivers are not driving even if 

they are seated in the driver’s seat. However, differences exist among these three levels. At 

Level 3, known as conditional automation, the drivers are still required to intervene and take 

control when prompted by the AD features. In other words, drivers must be on standby to 

resume control when requested by the system. While at Level 4 and Level 5, the AD features 

will never make such requests. Additionally, for Level 4, the AD features can only drive the 

vehicle under specific conditions defined by the ODD. In contrast, Level 5 allows the AD 

features to operate the vehicle under all conditions. This thesis scope considers AVs across 

Levels 1 to 4 of automation. 

Currently, the gradual deployment of different levels of AVs has resulted in a transitional phase 

characterised by mixed traffic, where vehicles with varying levels of automation co-exist and 

share the road with HDVs. This transition brings about unprecedented challenges for AVs in 

sensing and perceiving the road environment, as well as novel interactions between AVs and 

HDVs affecting the traffic conditions. These challenges and novel interactions may give rise to 

uncertainties and issues that affect both road safety and efficiency (Fagnant & Kockelman, 2015; 

Fraedrich et al., 2015). Moreover, the integration of AVs into existing traffic systems 

necessitates a thorough understanding of their operational parameters and capabilities. 

These challenges and uncertainties underscore the importance of expanding the ODD of AVs. 

The ODD refers to the specific operating conditions in which the AD system is designed to 

function properly. Figure 1-3 illustrates several examples of ODD relative to different driving  

 

1 Road traffic injuries, World Health Organization, https://www.who.int/news-room/fact-sheets/detail/road-traffic-

injuries  

https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
https://www.who.int/news-room/fact-sheets/detail/road-traffic-injuries
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Figure 1-2. Visual chart for “Levels of Driving Automation” (SAE International, 2021b) 

 

 

 
Figure 1-3. ODD relative to driving automation levels (SAE International, 2021a) 
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automation levels provided by the SAE. Typically, the main attributes of ODD include, but are 

not limited to, physical infrastructure (e.g., roadway type, lane markings), operational 

constraints (e.g., speed limit, traffic conditions), connectivity (e.g., vehicle-to-vehicle, vehicle-

to-infrastructure communication), and environmental conditions (e.g., weather, illumination). 

It is worth noting that the ODD for all levels of automation, except for full automation (Level 

5), is limited. Moreover, different Original Equipment Manufacturers (OEMs) may prescribe 

varying ODDs for their AVs, even for the same driving assistant functions (e.g., Adaptive Cruise 

Control, Lane Keeping Assistance System) within the same level of automation. This variability 

could lead to uncertainties and drivers’ misunderstanding of the capabilities of AVs (Carsten & 

Martens, 2019; Farah et al., 2020; Noy et al., 2018; Wood et al., 2019). To enhance traffic safety 

and efficiency, it is essential to minimise instances where AVs exceed their ODD 

(Gyllenhammar et al., 2020). Therefore, enlarging the ODD of AVs is crucial. By expanding 

their ODD, AVs can be equipped to handle a wider range of challenging scenarios and adapt to 

diverse driving conditions, alleviating the occurrences of exceeding ODD. This ultimately 

enhances the overall capability of AVs to navigate safely and efficiently within mixed-traffic 

environments. 

To expand the ODD of AVs, two key aspects must be addressed: sensing and perception, 

together with planning and control. Firstly, in terms of sensing and perception, AVs must 

effectively perceive and interact with the infrastructure and the static environment. This 

includes factors such as road width, curvature, lane marking types, and degradation conditions. 

AVs need to accurately sense and interpret their surroundings to navigate safely, especially in 

challenging driving scenarios that may fall outside their predefined ODD. Thus, enhancing 

sensing and perception capabilities is pivotal to ensuring AVs can handle diverse driving 

conditions and environments. Secondly, robust and optimised planning and control are 

imperative for AVs to interact with other moving road users, particularly HDVs. The complexity 

of interactions between AVs and HDVs is influenced by various factors, including, among 

others, different driving styles (aggressive, defensive, pro-social), driving culture, and norms 

(Negash & Yang, 2023; Orfanou et al., 2022; W. Wang et al., 2022). AVs must be equipped with 

robust planning and control algorithms to anticipate the behaviour of other road users and 

navigate safely in mixed-traffic environments. Overall, the development of methods to enhance 

sensing and perception capabilities and improve planning and control algorithms is essential 

for expanding the ODD of AVs, which is also the main research target of this thesis. Additionally, 

AVs must be equipped to handle critical edge cases that may fall beyond their ODD or in 

instances of system malfunctions within the AD system. In such scenarios, the ability of AVs to 

swiftly execute emergency response actions or seamlessly transition control back to human 

drivers is paramount. Consequently, effective anomaly monitoring and detection mechanisms 

play a crucial role in ensuring the safety and reliability of AVs. This thesis also addresses the 

challenges associated with anomaly detection.  
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1.2 Research gaps, questions, and objectives 

The main objective of this thesis is to broaden the ODD to augment the capabilities of AVs, 

thereby enabling the realisation of safe, efficient, and socially compliant automated driving 

within mixed-traffic environments. As aforementioned, three key perspectives, i.e., sensing and 

perception, anomaly detection, as well as planning and control, are tackled in this thesis. This 

sub-section discusses the research gaps identified within each perspective, along with the 

corresponding research questions and objectives that this thesis aims to tackle. 

For sensing and perception, the vision-based approach is chosen due to its widespread usage 

and practical utility in AD systems (Boukerche & Ma, 2021; Muhammad et al., 2022; Pavel et 

al., 2022; Zablocki et al., 2022). This thesis focuses on vision-based lane detection for its critical 

role in current vehicle localisation, ensuring proper positioning within lanes, and for its 

significance as the foundation of various ADAS systems, such as Lane Keeping Assistance and 

Lane Departure Warning (Andrade et al., 2019; Bar Hillel et al., 2014; W. Chen et al., 2020; 

Liang et al., 2020; Xing et al., 2018). Traditional vision-based lane-detection methods rely on 

hand-crafted low-level features, such as edges, geometric constraints, gradients and texture 

patterns, and involve several steps such as image pre-processing, feature extraction, line 

detection and fitting, and post-processing (Bai et al., 2018; Bar Hillel et al., 2014). These 

methods suffer from many shortcomings. They often require complex and time-consuming 

hand-crafted features, which may not be suitable or effective enough for AD. Additionally, they 

usually rely on a single image for lane detection. Recent advancements in computational 

hardware and deep neural network (DNN) models have enabled the development of deep 

learning-based lane detection methods. Generally, vision-based lane detection using deep 

learning approaches is typically categorised into three main perspectives: segmentation-based 

(Feng et al., 2022; Lee & Liu, 2023; Ren et al., 2022; Hai Wang et al., 2022; Zhang et al., 2021), 

anchor-based (Huang et al., 2023; Jin et al., 2022; Qin et al., 2022; Tabelini et al., 2021), and 

parameter-based (R. Liu et al., 2021; Torres et al., 2020), among which the segmentation-based 

method stands out as the most prevalent and widely utilised approach. These approaches 

automatically extract useful features and enable end-to-end lane detection, outperforming 

traditional methods (Hou et al., 2019; Neven et al., 2018; Pan et al., 2018; Tang et al., 2021). 

However, current deep learning methods used for vision-based lane detection fail to fully 

leverage the essential characteristics of lanes or account for significant spatial-temporal 

correlations and dependencies among critical regions in continuous driving image frames. 

Consequently, the detection results still remain unsatisfactory, particularly under extremely 

challenging driving conditions. Thus, Research Question 1 (RQ1) is formulated as follows: 

 

Sensing and perception module 

RQ1: How can spatial-temporal features and correlations be effectively utilised to enhance 

vision-based sensing and perception capabilities (e.g., lane detection), and to what extent 

can these capabilities be improved? 

Sub research questions: 

RQ 1-1: How to develop effective sequential deep neural network architecture or mechanism 

to effectively capture spatial-temporal correlations? 

RQ 1-2: How to speed up the training of sequential deep neural network models? What 

strategies can be employed? 

RQ 1-3: How to make efficient use of the available data, especially the unlabelled ones? 
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Accordingly, the corresponding research objectives and tasks are delineated as follows: 

• To formulate a hybrid sequential DNN architecture towards enhanced spatial-temporal 

feature extraction and integration with domain knowledge, as well as the identification 

of spatial-temporal correlations and dependencies within continuous image frames; 

[Chapter 2] 

• To develop DNN feature extraction mechanisms (e.g., attention) aimed at capturing 

spatial-temporal correlations within critical regions of continuous image frames; 

[Chapter 3] 

• To devise efficient pipeline and self-supervised pre-training methods for training 

sequential DNN models and leveraging unlabelled image data; [Chapter 4] 

• To validate the DNN models and the training methodology using different large-scale 

datasets; [Chapters 2, 3, and 4] 

Regarding anomaly detection, considering data availability, this thesis focuses on two use case 

studies: (1) detection of abnormal lane rendering images within navigation map apps, and (2) 

identification of abnormal driving behaviour in naturalistic driving scenarios. Data-driven 

machine learning (ML)-based anomaly detection methods have been widely employed across 

various domains, showing great promise (Alqahtani & Kumar, 2024; G. Li & Jung, 2023; 

Samariya & Thakkar, 2023). These methods can be categorised based on the type of data 

required to train the ML model into three main approaches: 1) Supervised ML, 2) Unsupervised 

ML, and 3) Semi-supervised ML. Usually, the data-driven ML methods are applied in a 

supervised manner, where each instance in the dataset is labelled as a normal sample or an 

anomaly. These methods train ML models on labelled datasets to fit ML models for 

automatically detecting anomalies in new input data. Regarding the two selected use cases, most 

of the available studies relied on (fully-) supervised ML models for anomaly detection, with 

limited exploration of unsupervised or semi-supervised methods. However, in real-world 

scenarios, ground truth labels are occasionally absent or inaccurate. Moreover, labelling 

extensive amounts of data can be tedious and even hazardous in certain critical situations. 

Additionally, there tends to be a significant data imbalance with an abundance of normal data 

compared to anomaly data, and some open-source datasets are only partially labelled. 

Considering these challenges, Research Question 2 (RQ2) is formulated as follows: 

 

Accordingly, the corresponding research objectives and tasks are outlined as follows: 

• To customise and implement semi-supervised/self-supervised ML models for anomaly 

detection of the selected use cases; [Chapters 5 and 6] 

Anomaly detection module 

RQ2: How to develop effective semi-supervised/unsupervised machine learning methods for 

anomaly detection leveraging unlabelled data?  

Sub research questions: 

RQ 2-1: What are the key features for anomaly detection, and how can they be identified?  

RQ 2-2: How to develop pipeline and method to make efficient use of unlabelled data for 

enhancing anomaly detection? 
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• To comprehensively compare and evaluate the performance of supervised and semi-

supervised ML algorithms regarding anomaly detection; [Chapters 5 and 6] 

• To carry out feature engineering and identify the key features regarding anomaly 

detection (for abnormal driving behaviour); [Chapter 6] 

• To develop a self-supervised pretraining method and a holistic pipeline for making 

efficient use of unlabelled data to enhance anomaly detection performance (for detection 

of abnormal lane rendering images); [Chapter 5] 

Regarding AVs’ planning and control, previous studies have traditionally focused on integrating 

safety, efficiency, comfort, and energy consumption into the development of automated driving 

algorithms (Du et al., 2022; ElSamadisy et al., 2024; Vasile et al., 2023; M. Zhu et al., 2020). 

However, ensuring that AVs are socially compliant, understood, and accepted by human drivers 

is equally crucial for enhancing safety and efficiency, particularly in mixed-traffic conditions. 

Consequently, the design of socially compliant driving strategies and behaviours is gaining 

prominence. While there have been some preliminary endeavours in this area (Hang et al., 2021; 

Kolekar et al., 2020; Schwarting et al., 2019; W. Wang et al., 2022), research examining this 

emerging topic still remains limited, with an integrated conceptual framework yet to be 

established. Furthermore, deep reinforcement learning (DRL), which combines the feature-

capturing capabilities of deep learning with the decision-making aptitude of reinforcement 

learning, has been extensively utilised and acknowledged in the development of automated 

driving (Kiran et al., 2022; Z. Zhu & Zhao, 2022). It has been applied to various driving tasks 

and diverse driving scenarios, including car following (Yang et al., 2023; M. Zhu et al., 2018, 

2020), lane changing (Y. Chen et al., 2019; T. Shi et al., 2019; G. Wang et al., 2022), and 

highway on-ramp merging (B. Liu et al., 2021; Huanjie Wang et al., 2021; S. Wu et al., 2022). 

However, significant gaps persist in addressing complex driving scenarios such as navigating 

roundabouts, which involve large curvature, interaction with multiple participants, and the 

necessity to manage both lateral and longitudinal control. These gaps are particularly evident 

in the utilisation and comparison of different DRL algorithms considering integrated reward 

mechanisms for achieving safe, efficient, comfortable, and energy-saving automated driving 

through roundabouts within mixed-traffic environments. Additionally, comprehensive 

evaluations of DRL algorithms across various driving manoeuvres and analyses of their 

adaptability, such as applying models trained in one scenario to another, are still insufficiently 

explored. Considering these aforementioned research gaps, Research Question 3 (RQ3) is 

formulated as follows: 

 

Planning and control module 

RQ3: How to develop and optimise automated vehicles’ driving strategies and styles to 

ensure safety, efficiency, and, particularly, social compliance in mixed-traffic environments?  

Sub research questions: 

RQ 3-1: How can social norms and driving-related benefits for human-driven vehicles be 

effectively integrated into the development of automated driving strategies?  

RQ 3-2: How do different deep reinforcement learning algorithms perform across different 

driving manoeuvres?  

RQ 3-3: How can model performance be comprehensively evaluated and compared, 

particularly in terms of their adaptability to handle scenario shifts? 
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In accordance with RQ3, the corresponding research objectives and tasks are specified as 

follows: 

• To design a conceptual framework that considers socially compliant decision-making in 

AD; [Chapter 7] 

• To devise a learning-based approach, with a particular emphasis on DRL, for the 

complex scenario of roundabout driving in mixed-traffic conditions; [Chapter 8] 

• To develop a model-based approach for AD that integrates the driving-related benefits 

of HDVs; [Chapter 9] 

• To conduct a comprehensive comparison and assessment of different DRL algorithms 

across various driving manoeuvres, with special attention to their ability to adapt to 

scenario shifts; [Chapter 8] 

By addressing the three research questions outlined above, this thesis contributes to the 

overarching objective of broadening the ODD to augment the capabilities of AVs, which will 

thereby facilitate the development, implementation, and deployment of safe, efficient, and 

socially compliant automated vehicles in mixed-traffic environments. 

1.3 Research approach 

This thesis employs a diverse range of methodologies and research methods, including literature 

review, conceptual and pipeline design, online survey, machine learning (particularly deep 

learning and deep reinforcement learning), model-based approach, as well as simulation-based 

training and validation. The literature review serves as a foundational component throughout 

each sub-research question and chapter, especially for [Chapter 7], which focuses on 

summarising the state-of-the-art on socially compliant automated driving. Conceptual and 

pipeline designs are utilised for tasks related to sensing and perception, anomaly detection, as 

well as planning and control, typically for the selected studies of lane detection, abnormal lane 

rendering image detection, and socially compliant automated driving. For instance, a three-

phase pipeline is devised for lane detection [Chapter 4], while a four-phase pipeline is designed 

for abnormal lane rendering image detection [Chapter 5]. Additionally, for planning and control, 

a conceptual framework emphasising social compliance is developed [Chapter 7]. An online 

survey is employed particularly to gather insights and feedback from experts regarding the 

proposed conceptual framework for socially compliant automated driving [Chapter 7]. As for 

machine learning techniques, deep learning is adopted for sensing and perception (lane 

detection) as detailed in [Chapters 2, 3, and 4] together with anomaly detection (two use case 

studies) as detailed in [Chapters 5 and 6], while deep reinforcement learning is employed for 

AVs’ planning and control in [Chapter 8] accompanied by simulation-based training and 

validation. Furthermore, a model-based approach is also adopted for AVs’ planning and control 

in [Chapter 9], involving simulation-based training and validation as well. 

To elaborate further, regarding enhancing the capabilities of AVs to enable them with a wider 

ODD, firstly, from the perspective of sensing and perception, vision-based deep learning is 

adopted for the chosen lane detection use case. Typically, two spatial-temporal DNN models 

are developed, complemented by a self-supervised pre-training method. The first DNN model, 

illustrated in [Chapter 2], integrates the spatial convolutional neural network (SCNN) for 
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single-image feature extraction with spatial-temporal Recurrent Neural Network (RNN) 

modules to capture correlations and dependencies among continuous images. The second model, 

detailed in [Chapter 3], focuses on designing customised spatial-temporal attention mechanisms 

to further enhance the utilisation of spatial-temporal correlations among different image regions 

in continuous frames for vision-based lane detection. The designed attention blocks are 

connected with the linear Long Short Term Memory (LSTM) neural networks, ensuring the 

model’s lightweight nature and lower computational complexity. Additionally, as outlined in 

[Chapter 4], a self-supervised pre-training method using masked sequential autoencoders 

(MSAE) is proposed to enhance detection accuracy and expedite model training. A customised 

Focal Loss based PolyLoss is also introduced to further improve detection accuracy [Chapter 

4]. The efficacy of the developed models and proposed self-supervised pre-training method is 

validated using various large-scale datasets (e.g., TuSimple, tvtLANE, and LLAMAS dataset). 

Secondly, in the realm of anomaly detection, two distinct use cases are chosen, and both semi-

supervised and fully-supervised machine learning approaches are explored. Given the 

formidable challenges of obtaining ground truth labels and the labour-intensive nature of data 

labelling, a strategic emphasis is placed on semi-supervised ML models leveraging the 

Hierarchical Extreme Learning Machine (HELM). Specifically, HELM is meticulously 

customised to detect abnormal driving behaviour in naturalistic driving scenarios, utilising 

partially labelled data while endeavouring to incorporate Surrogate Measures of Safety (SMoS) 

as pivotal input features to enhance detection performance [Chapter 6]. Furthermore, a four-

phase pipeline, consisting of data pre-processing, self-supervised pre-training with Masked 

Image Modelling (MiM), customised fine-tuning using cross-entropy based loss with label 

smoothing, and post-processing, is proposed for the detection of abnormal lane rendering 

images within navigation map apps [Chapter 5]. Transforming lane rendering image anomaly 

detection into a classification problem, state-of-the-art fully supervised deep learning models, 

especially Transformer-based ones, are adopted with self-supervised pre-training using two 

MiM methods. The efficacies of the developed semi-supervised ML and fully supervised ML 

models, together with the proposed pipelines for the selected case studies, are all validated using 

large-scale real-world data. 

Thirdly, for AVs’ planning and control in the mixed-traffic context, based on the literature 

review and expert interview, a conceptual framework is devised, with a primary focus on 

socially compliant automated driving [Chapter 7]. Then, expert insights and feedback on the 

proposed framework are collected through an online survey, and the results are visualised and 

analysed. Both model-based and learning-based approaches are employed to develop AVs’ 

planning and control models for the selected manoeuvre of driving through roundabouts in 

mixed-traffic conditions. In the learning-based approach, under the DRL framework, the 

corresponding agent, state, environment, and action space, together with an integrated multi-

factor reward function considering safety, efficiency, comfort, and energy consumption, are 

designed [Chapter 8]. Multiple DRL algorithms, including Deep Deterministic Policy Gradient 

(DDPG), Proximal Policy Optimisation (PPO), and Trust Region Policy Optimisation (TRPO), 

are employed and implemented to instruct AVs’ driving through roundabouts. Regarding the 

model-based approach, three interdisciplinary concepts, i.e., human perceived Driving Risk 

Field (DRF), Social Value Orientation (SVO), and Model Predictive Contouring Control 

(MPCC), are integrated [Chapter 9]. The DRF is utilised to model the perceived risk of 

surrounding human drivers, while SVO, from the social sciences field, is adopted to replicate 
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how AVs balance their own benefits against those of other surrounding HDVs. The model-based 

DRF-SVO is packaged into the MPCC framework to implement the integration of both 

planning and control simultaneously. Both the model-based and learning-based approaches 

undergo extensive simulation-based training and verification to ensure their effectiveness and 

safety [Chapters 8 and 9]. 

1.4 Contributions 

In this sub-section, the main scientific and practical contributions of this thesis are highlighted. 

1.4.1 Scientific contributions 

(1) A self-supervised pretraining method, two hybrid spatial-temporal DNN models, and a 

three-phased pipeline for enhancing vision-based sensing and perception: This thesis 

introduces two novel hybrid spatial-temporal encoder-decoder based sequential DNN models 

designed for powerful feature extraction. These models seamlessly integrate single-image 

feature extraction with the detection of correlations and dependencies among continuous 

images. The developed models exhibit state-of-the-art performance in both normal and 

challenging driving scenarios while maintaining lower computational complexity and smaller 

model sizes. Additionally, a self-supervised pre-training method utilising MSAE is proposed to 

further enhance detection accuracy and speed up the model training process, ensuring robust 

performance in various driving conditions. Moreover, the introduction of customised Focal 

Loss based PolyLoss further improves the accuracy. 

(2) Development and evaluation of supervised and semi-supervised ML methods for 

anomaly detection: This thesis presents the development of one semi-supervised ML method, 

namely the Hierarchical Extreme Learning Machine, for the detection of abnormal driving 

behaviour. The method can effectively detect anomalies using only partially labelled data, 

addressing challenges related to obtaining ground truth labels and labour-intensive data 

labelling. It outperformed its semi-supervised counterparts. Moreover, for abnormal driving 

behaviour detection, the incorporation of SMoS (to be specific, event-based safety indicators) 

as pivotal input features significantly enhances detection accuracy. Additionally, fully 

supervised Transformer-based models are developed for detecting abnormal lane rendering 

images within navigation map applications. These models incorporate self-supervised pre-

training using MiM and customised fine-tuning with a cross-entropy based loss function 

enhanced by label smoothing. The resulting models prove effective in achieving high accuracy, 

recall ratio, and F1 scores. To the best of the author’s knowledge, this thesis represents the first 

exploration regarding semi-supervised and self-supervised ML methods applied for the selected 

anomaly detection use cases. 

(3) A conceptual framework for developing and implementing socially compliant 

automated vehicles: This thesis marks a pioneering effort in developing an integrated 

conceptual framework for socially compliant automated driving. Within the proposed 

conceptual framework, various social components such as culture, norms, and cues, along with 

different driving styles (e.g., aggressive, cautious, pro-social), are systematically incorporated. 

Notably, bidirectional behavioural adaptation is introduced as a novel concept, emphasising the 

dynamic and bidirectional interactions and adaptations between AVs and human drivers. 

Furthermore, the framework emphasises the importance of balancing the benefits of ego AV in 
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terms of safety, comfort, and efficiency with the needs and expectations of other road users, 

highlighting the necessity for a nuanced trade-off strategy on a case-by-case basis. Additionally, 

the proposal of a spatial-temporal memory module facilitates the long-term and short-term 

upgradation of knowledge and rules, enabling the implementation and refinement of driving 

strategies that consider bidirectional behavioural adaptation. The validity and effectiveness of 

the proposed conceptual framework are assessed through an online questionnaire-based survey, 

garnering expert insights and feedback to refine and validate its components. 

(4) Model-based social-aware planning and control for automated driving through 

roundabouts: This thesis introduces an integrated social-aware planning and control algorithm, 

i.e., DRF-SVO-MPCC, for AVs’ driving through roundabouts, leveraging three 

interdisciplinary terms (i.e., Driving Risk Field, Social Value Orientation, and Model Predictive 

Contouring Control). By integrating these elements and referring to the desired velocity, the 

DRF-SVO-MPCC model facilitates two driving styles, prosocial and egoistic. Through 

extensive simulation testing utilising an open-sourced platform, the DRF-SVO-MPCC 

algorithm demonstrates superior performance across various scenarios of roundabout 

navigation, including single-lane, two-lane, and scenarios with and without surrounding HDVs. 

(5) Implementation and comprehensive evaluation of DRL-based planning and control for 

AVs: This thesis implements various DRL algorithms (e.g., DDPG, PPO, and TRPO) to guide 

AVs’ driving through roundabouts in mixed-traffic conditions, considering safety, efficiency, 

comfort, and energy consumption. This thesis also conducts a comprehensive evaluation and 

comparison of DRL algorithms, including Deep Q-Network (DQN) and TRPO, across different 

driving manoeuvres such as highway driving and driving through unsignalised intersections. 

Additionally, the thesis designs a customised training environment that encompasses various 

driving manoeuvres and multiple road scenarios to train a unified driving model capable of 

handling diverse situations. Notably, the thesis also investigates the adaptability of DRL 

algorithms across different scenarios, assessing their capability to handle scenario shifts. To the 

best of the author’s knowledge, this thesis represents a pioneering effort in conducting such a 

comprehensive evaluation, particularly with scenario shifting considered, a facet that has been 

seldom covered by previous studies in this field. 

1.4.2 Practical contributions 

In addition to the aforementioned scientific contributions, the outcomes of this thesis also yield 

implications for society and various stakeholders in terms of policy-making, technological 

design and advancement, as well as the development, implementation, and understanding of 

AVs in mixed-traffic environments.  

For original equipment manufacturers, particularly car manufacturers, the two novel hybrid 

spatial-temporal DNN models developed in this thesis, coupled with the designed three-phased 

pipeline featuring the proposed self-supervised pretraining method, offer valuable insights for 

enhancing vision-based sensing and perception. These insights encompass improvements in 

accuracy as well as reductions in model complexity. As computational hardware continues to 

advance, the developed DNN models and associated training methods are poised for 

deployment within vehicles, underscoring their practical applicability in automotive contexts.  
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Similarly, the developed semi-supervised and fully-supervised ML models for anomaly 

detection can aid in various aspects of automotive safety and efficiency. By enabling the 

detection of abnormal behaviours and edge events, these models support predictive safety 

maintenance strategies and facilitate early conflict detection and avoidance. Moreover, they can 

enable proactive interventions to mitigate potential risks stemming from AV system anomalies 

or abnormal human driving behaviours, thereby enhancing traffic flow safety and efficiency. 

Furthermore, the proposed conceptual framework for socially compliant automated driving can 

serve as a guiding framework for the development and implementation of socially compliant 

AVs. By systematically integrating various social components and driving styles, this 

framework provides valuable insights and assistance in designing AVs that seamlessly interact 

with other road users in a socially acceptable manner. This framework will be particularly 

beneficial for car manufacturers when developing their future vehicles, as it offers a structured 

approach to incorporating social considerations into AV design. The framework also emphasises 

the importance of striking a balance between the benefits of AVs and the needs of other road 

users, thereby it can foster greater acceptance and integration of AV technology into existing 

transportation systems. This will not only enhance safety and efficiency but also promote 

harmonious coexistence between AVs and HDVs on the roads. 

Additionally, the developed model-based and learning-based planning and control algorithms 

represent significant practice in the realm of social-aware automated driving. These algorithms 

enable AVs to navigate complex traffic scenarios while considering safety, efficiency, energy 

consumption, and the benefits of surrounding HDVs. These algorithms provide valuable 

insights for car manufacturers when developing their AVs’ planning and control modules. 

For road operators, the developed lane detection methods outlined in this thesis can offer 

significant potential benefits concerning lane marking inspection and maintenance. These 

methods streamline the process by automating or semi-automating the detection of lane 

markings, thereby reducing the necessity for manual inspection and intervention. As a result, 

road maintenance tasks can be performed more efficiently, leading to cost savings and improved 

productivity.  

Additionally, the use of these lane detection methods contributes to improved road safety. Clear 

and well-maintained lane markings enhance visibility and guidance for drivers and AVs, 

reducing the risk of accidents. By promptly identifying and rectifying any issues with lane 

markings, road maintenance operators can play a vital role in ensuring safe and efficient road 

networks. 

Furthermore, the implementation of the proposed advanced lane detection technologies can 

support data-driven decision-making in road maintenance planning and prioritisation. The 

results collected through automated lane detection can inform maintenance schedules, 

infrastructure investments, and resource allocation strategies, leading to optimised maintenance 

practices and improved overall road quality. 

For authorities and insurance companies, this thesis presents possible methods for monitoring 

and detecting abnormal driving behaviours, which can prove invaluable for driver training 

initiatives and insurance pricing strategies. By leveraging the developed anomaly detection 

models and techniques, authorities can establish effective mechanisms for monitoring driver 

behaviour on the roads, identifying and addressing unsafe driving practices, thereby 
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contributing to enhanced road safety and accident prevention efforts. Furthermore, insurance 

companies can utilise the insights provided by the developed abnormal driving detection 

methods to assess risk profiles more accurately. By incorporating data-driven assessments of 

driver behaviour into their pricing models, insurers can offer more personalised and fair 

insurance premiums. This approach not only promotes safer driving habits among policyholders 

but also incentivises responsible behaviour behind the wheel. 

For policymakers, this thesis offers valuable insights and potential strategies for the 

implementation and deployment of socially compliant AVs. The conceptual framework for 

socially compliant automated driving outlined in this thesis provides a structured approach for 

policymakers to understand and address the complex social dynamics involved in AV 

development and deployment. By considering factors such as culture, norms, driving styles, 

and bidirectional behavioural adaptation, policymakers can formulate comprehensive strategies 

that account for diverse societal contexts and expectations and promote the adoption and 

integration of AV technology into existing transportation systems in a socially responsible 

manner. 

The emphasis on balancing the benefits of AVs with the benefits of other road users underscores 

the importance of stakeholder engagement and collaboration in policymaking processes. By 

actively involving various stakeholders, including government agencies, industry 

representatives, transportation experts, and community groups, policymakers can develop 

inclusive and consensus-driven policies that promote the equitable integration of AVs into 

transportation systems. 

Furthermore, policymakers can leverage the insights provided by this thesis to develop 

regulatory frameworks, standards, and guidelines that govern the design, operation, and 

deployment of AVs. By establishing clear rules, standards, and requirements for AV 

manufacturers, operators, and users, policymakers can ensure that AVs adhere to socially 

acceptable norms and behaviours, thereby enhancing public acceptance and trust in AV 

technology. 

For human drivers and the general public, this thesis provides valuable insights into 

understanding AV technology and its implications for transportation systems, empowering 

individuals to better comprehend the complexities and potential benefits of AV technology. 

Through the exploration of topics such as deep learning-based sensing, perception, and anomaly 

detection, together with model-based and reinforcement learning-based planning and control, 

this thesis demystifies the inner workings of AV systems and elucidates their role in shaping the 

future of transportation. By offering clear explanations and real-world examples, this thesis 

fosters greater awareness and literacy regarding AV technology among human drivers and the 

general public. 

Moreover, by highlighting the importance of social acceptance and trust in AV technology, this 

thesis encourages informed dialogue and engagement among stakeholders and empowers 

individuals to participate in discussions about the future of mixed traffic and the development 

of mobility and transportation. 

Furthermore, by showcasing the potential benefits of AV technology, such as improved safety, 

efficiency, and accessibility, this thesis helps to dispel misconceptions and concerns that may 

exist among human drivers and the general public. By demonstrating the transformative impact 
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that AVs can have on transportation systems, this thesis encourages openness to innovation and 

adaptation to emerging technologies. 

Overall, these practical contributions are instrumental in driving forward the development and 

deployment of AVs that are not only technologically advanced but also socially responsible, 

paving the way for the smoother transition and widespread adoption of AV technology in real-

world environments. 

1.5 Thesis outline 

The thesis outline is illustrated in Figure 1-4. This thesis consists of ten chapters in total. The 

lines with arrows depict the relationship between the chapters. Chapter 1 serves as an 

introduction, providing background information, identifying research gaps, stating research 

questions and objectives, describing research methods, and highlighting the main contributions. 

The subsequent eight chapters address sub-research questions and objectives proposed in 

Section 1.2 and are arranged into three main pillars tackling the modules of sensing and 

perception, anomaly detection, and AVs’ planning and control, respectively. Theoretically and 

ideally, sensing and perception should aid in anomaly detection, while reliable sensing, 

perception, and anomaly detection will contribute to planning and control; however, in this 

thesis, the datasets and targeting manoeuvres used for each pillar are different, so there is no 

direct linkage. Thus, the three main pillars are connected with dashed arrows. The remaining 

chapters in this thesis are structured as follows, followed by further elaboration: 

Automated vehicles interact with                          

other road vehicles 

Planning and Control

Automated vehicles interact with 

infrastructure

Sensing and Perception

Chapter 1: Introduction

Chapter 2: A Hybrid Spatial-Temporal 

Deep Learning Architecture for             

Lane Detection

Chapter 8: Evaluation on Deep 

Reinforcement Learning for Automated 

Driving in Various Manoeuvres and 

Implementation of Safe, Efficient, 

Comfortable, and Energy-Saving Driving 

through Roundabouts

Chapter 3: Efficient Sequential Neural 

Network Based on Spatial-Temporal 

Attention and Linear LSTM for       

Robust Lane Detection Using            

Multi-Frame Images

Chapter 7: Towards Developing Socially 

Compliant Automated Vehicles: Advances, 

Expert Insights, and a Conceptual 

Framework

Chapter 10: Discussion, Conclusions, Perspectives, and Recommendations

Chapter 4: Robust Lane Detection through 

Self Pre-training with Masked Sequential 

Autoencoders and Fine-tuning with 

Customized PolyLoss

Chapter 9: Social-Aware Planning and 
Control for Automated Vehicles Based on 
Driving Risk Field and Model Predictive 

Contouring Control 

Anomaly 
feature extraction & detection

 Anomaly Detection

Chapter 5: Intelligent 

Anomaly Detection for Lane 

Rendering Using 

Transformer with Self-

Supervised Pre-Training and 

Customized Fine-Tuning

Chapter 6: Data-driven 
Semi-Supervised Machine 

Learning with Safety 
Indicators for Abnormal 

Driving Behavior Detection

 

Figure 1-4. The outline of the thesis: thesis structure and relations between chapters 

Chapters 2-4 focus on the vision-based sensing and perception task and address RQ1, with 

Chapter 2 and Chapter 3 designing two hybrid spatial-temporal DNN models (RQ 1-1), and 

Chapter 4 proposing a three-phase pipeline featuring self-supervised pre-training with Masked 
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Sequential Autoencoders (RQ 1-2 and RQ 1-3). Specifically, Chapter 2 develops a hybrid 

spatial-temporal deep learning architecture integrating single-image feature extraction using 

SCNN with capturing correlations and dependencies among continuous images by spatial-

temporal RNN modules. Chapter 3 focuses on designing customised spatial-temporal attention 

mechanisms to make efficient use of spatial-temporal correlations among different image 

regions across continuous frames. In this chapter, the linear LSTM neural networks are 

connected with the proposed attention blocks, which ensures lightweight and lower 

computational complexity. Chapter 4 proposes a self-supervised pre-training method using 

MSAE to enhance detection accuracy and expedite training of the aforementioned two DNN 

models (so there is a blue arrow that connects the group of Chapters 2 and 3 with Chapter 4). 

Additionally, to further improve detection accuracy, a customised Focal Loss based PolyLoss 

is introduced in Chapter 4. 

Chapters 5-6 focus on anomaly detection for two selected use cases related to automated 

driving and address RQ2. Chapter 5 focuses on intelligent anomaly detection for lane rendering 

using Transformer models with a pipeline integrating self-supervised pre-training and 

customised fine-tuning (RQ 2-2), and Chapter 6 implements a data-driven semi-supervised 

machine learning model (i.e., HELM) enhanced with SMoS (i.e., event-based safety indicators) 

as the important features (RQ 2-1) for abnormal driving behaviour detection. Both use case 

studies leverage unlabelled data to learn the feature patterns and to enhance the detection 

accuracy (RQ 2-2). 

The dashed blue arrow connecting Chapter 4 and Chapter 5 indicates their use of similar 

pipelines with self-supervised pre-training and their shared focus on vision-based tasks. 

Chapters 7-9 address RQ3 and emphasise developing AVs’ planning and control with a 

conceptual design, together with model-based and learning-based approaches for simulation-

based implementation. To be specific, Chapter 7 devises a conceptual framework with a primary 

focus on socially compliant automated driving, considering various social components, 

different driving styles, bidirectional behavioural adaptation, and balancing the benefits of ego 

AVs with the benefits of other road users (RQ 3-1). This conceptual framework provides 

guidance for the development of AVs’ planning and control in Chapters 8 and 9, where specific 

aspects of the conceptual module design introduced in Chapter 7 are validated to a certain extent. 

Therefore, there are dashed arrows that connect Chapter 7 with Chapters 8 and 9. Chapter 8 

depicts the learning-based approach by designing the DRL agent, state, environment, and action 

space, together with an integrated multi-factor reward function considering safety, efficiency, 

comfort, and energy consumption. Multiple DRL algorithms are employed and implemented to 

instruct AVs’ driving through various scenarios. Chapter 8 also assesses the adaptability of DRL 

algorithms across different scenarios (RQ 3-2), considering their capability to handle scenario 

shifts (RQ 3-3). While Chapter 9 designs a model-based approach, integrating three 

interdisciplinary concepts, i.e., DRF, SVO, and MPCC, to form the DRF-SVO-MPCC model 

for social-aware planning and control of AVs driving through roundabouts. The developed 

DRF-SVO-MPCC model facilitates two driving styles, prosocial and egoistic, with the 

prosocial style enabling AVs to navigate complex traffic scenarios considering both their ego 

safety, efficiency, and the benefits of surrounding HDVs (RQ 3-1). The models developed in 

both Chapter 8 and Chapter 9 are tested and verified through simulation-based experiments. 
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Finally, Chapter 10 discusses the key findings and the limitations of the thesis. Prospective 

recommendations for practice and future research are also provided. 
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2 A hybrid spatial-temporal deep learning 

architecture for lane detection 

 

Abstract 

Accurate and reliable lane detection is vital for the safe performance of Lane Keeping 

Assistance and Lane Departure Warning systems. However, under certain challenging 

circumstances, it is difficult to get satisfactory performance in accurately detecting the lanes 

from one single image as is mostly done in current literature. Since lane markings are 

continuous lines, the lanes that are difficult to be accurately detected in the current single image 

can potentially be better deduced if information from previous frames is incorporated. This 

study proposes a novel hybrid spatial-temporal sequence-to-one deep learning architecture. 

This architecture makes full use of the spatial-temporal information in multiple continuous 

image frames to detect the lane markings in the very last frame. Specifically, the hybrid model 

integrates the following aspects: (a) the single image feature extraction module equipped with 

the spatial convolutional neural network (SCNN); (b) the spatial-temporal feature integration 

module constructed by spatial-temporal recurrent neural network (ST-RNN); (c) the encoder-

decoder structure, which makes this image segmentation problem work in an end-to-end 

supervised learning format. Extensive experiments reveal that the proposed model architecture 

can effectively handle challenging driving scenes and outperforms available state-of-the-art 

methods. 

 

This chapter is based on the journal publication: 

Dong, Y., Patil, S., Van Arem, B., & Farah, H. (2023). A Hybrid Spatial-Temporal Deep 

Learning Architecture for Lane Detection. Computer-Aided Civil and Infrastructure 

Engineering, 38(1), 67–86. https://doi.org/10.1111/mice.12829 
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2.1 Introduction 

The interest in developing automated driving functionalities, and in the end, fully automated 

vehicles, has been increasing vastly over the last decade. The safety of these automated 

functionalities is a crucial element and a priority for academic researchers, manufacturers, 

policymakers, and their potential future users. Automated driving requires a full understanding 

of the environment around the automated vehicle through its sensors. Vision-based methods 

have lately been boosted by advancements in computer vision and machine learning. Regarding 

environmental perception, camera-based lane detection is important as it allows the vehicle to 

position itself within the lane. This is also the foundation of most Lane Keeping Assistance and 

Lane Departure Warning systems (Andrade et al., 2019; Bar Hillel et al., 2014; Chen et al., 

2020; Liang et al., 2020; Xing et al., 2018). 

Traditional vision-based lane-detection methods rely on hand-crafted low-level features (e.g., 

colour, gradient, and ridge features) and usually work in a four-step procedure, that is, image 

pre-processing, feature extraction, line detection and fitting, and post-processing (Bar Hillel et 

al., 2014; Haris & Glowacz, 2021). Traditional computer vision techniques, for example, 

inverse perspective mapping (Aly, 2008; B. F. Wang et al., 2014), Hough transform (Berriel et 

al., 2017; Jiao et al., 2019; Zheng et al., 2018), Gaussian filters (Aly, 2008; Sivaraman & Trivedi, 

2013; Y. Wang et al., 2012), and random sample consensus (Aly, 2008; Choi et al., 2018; Du et 

al., 2018; Guo et al., 2015; Lu et al., 2019), are usually adopted in the four-step procedure. The 

problems of traditional methods are: (a) hand-crafted features are cumbersome to manage and 

not always useful, suitable, or powerful; and (b) the detection results are always based on one 

single image. Thus, the detection accuracies are relatively not high. 

During the last decade, with the advancements in deep learning algorithms and computational 

power, many deep neural network-based methods have been developed for lane detection with 

good performance. There are generally two dominant approaches (Tabeli et al., 2021b), that is, 

(1) segmentation-based pipeline (Kim & Park, 2017; Ko et al., 2020; T. Liu et al., 2020; Pan et 

al., 2018; Zhang et al., 2021; Zou et al., 2020), in which predictions are made on the per-pixel 

basis, classifying each pixel as either lane or not; (2) the pipeline using row-based prediction 

(Hou et al., 2020; Qin et al., 2020; Yoo et al., 2020), in which the image is split into a (horizontal) 

grid, and the model predicts the most probable location to contain a part of a lane marking in 

each row. Recently, Lizhe Liu et al. (2021) summarised two additional categories of deep 

learning-based lane-detection methods, that is, the anchor-based approach (Z. Chen et al., 2019; 

Li et al., 2020; Tabeli et al., 2021b; Xu et al., 2020), which focuses on optimising the line shape 

by regressing the relative coordinates with the help of predefined anchors, and the parametric 

prediction-based method, which directly outputs parametric lines expressed by curve equation 

(R. Liu et al., 2020; Tabeli et al., 2021a). Apart from these dominant approaches, some other 

less common methods were proposed recently. For instance, Lin et al. (2020) fused the adaptive 

anchor scheme (designed by formulating a bilinear interpolation algorithm) aided informative 

feature extraction and object detection into a single deep convolutional neural network (CNN) 

for lane detection from a top-view perspective. Philion (2019) developed a novel learning-based 

approach with a fully convolutional model to decode the lane structures directly rather than 

delegating structure inference to post-processing, plus an effective approach to adapt the model 

to new contexts by unsupervised transfer learning. 
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Similar to traditional vision-based lane-detection methods, most available deep learning models 

utilise only the current image frame to perform the detection. Until very recently, a few studies 

have explored the combination of CNN and recurrent neural network (RNN) to detect lane 

markings or simulate autonomous driving using continuous driving scenes (Chen et al., 2020; 

Zhang et al., 2021; Zou et al., 2020). However, the available methods do not take full advantage 

of the essential properties of the lane being long continuous solid or dashed line structures. Also, 

they do not yet make the utmost of the spatial-temporal (ST) information together with 

correlation and dependencies in the continuous driving frames. Thus, for certain extremely 

challenging driving scenes, their detection results are still unsatisfactory. 

In this study, lane detection is treated as a segmentation task, in which a novel hybrid ST 

sequence-to-one deep learning architecture is developed for lane detection through a continuous 

sequence of images in an end-to-end approach. To cope with challenging driving situations, the 

hybrid model takes multiple continuous frames of an image sequence as inputs, and integrates 

the single image feature extraction module, the ST feature integration module, together with 

the encoder-decoder structure to make full use of the ST information in the image sequence. 

The single image feature extraction module utilises modified common backbone networks with 

embedded spatial CNN (SCNN; Pan et al., 2018) layers to extract the features in every single 

image throughout the continuous driving scene. SCNN is powerful in extracting spatial features 

and relationships in one single image, especially for long continuous shape structures. Next, the 

extracted features are fed into ST-RNN layers to capture the ST dependencies and correlations 

among the continuous frames. An encoder-decoder structure is adopted with the encoder 

consisting of SCNN and several fully convolutional layers to downsample the input image and 

abstract the features, while the decoder, constructed by CNNs, upsample the abstracted outputs 

of previous layers to the same size as the input image. With the labelled ground truth of the very 

last image in the continuous frames, the model training works in an end-to-end way as a 

supervised learning approach. To train and validate the proposed model on two large-scale 

open-sourced datasets, that is, tvtLANE (Zou et al., 2020) and TuSimple, a corresponding 

training strategy has been also developed. To summarise, the main contributions of this study 

lie in: 

1. A hybrid ST sequence-to-one deep neural network architecture integrating the advantages 

of the encoder-decoder structure, SCNN-embedded single image feature extraction 

module, and ST-RNN module, is proposed. 

2. The proposed model architecture is the first attempt that tries to strengthen both spatial 

relation feature extraction in every single image frame and ST correlation together with 

dependencies among continuous image frames for lane detection. 

3. The implementation utilised two widely used neural network backbones, that is, UNet 

(Ronneberger et al., 2015) and SegNet (Badrinarayanan et al., 2017) and included 

extensive evaluation experiments on commonly used datasets, demonstrating the 

effectiveness and strength of the proposed model architecture. 

4. The proposed model can tackle lane detection in challenging scenes such as curves, dirty 

roads, serious vehicle occlusions, and so forth, and outperforms all the available state-of-

the-art baseline models in most cases with a large margin. 

5. Under the proposed architecture, the light version model variant can achieve beyond 

state-of-the-art performance while using fewer parameters. 

https://onlinelibrary.wiley.com/doi/full/10.1111/mice.12829#mice12829-bib-0037
https://onlinelibrary.wiley.com/doi/full/10.1111/mice.12829#mice12829-bib-0003
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2.2 Proposed method 

Although many sophisticated methods have been proposed for lane detection, most of the 

available methods use only one single image, resulting in unsatisfactory performance under 

some extremely challenging scenarios, for example, dazzle lighting and serious occlusion. This 

study proposes a novel hybrid ST sequence-to-one deep neural network architecture for lane 

detection. The architecture was inspired by: (a) the successful precedents of hybrid deep neural 

network architectures that fuse CNN and RNN to make use of information in continuous 

multiple frames (Zhang et al., 2021; Zou et al., 2020); (b) the domain prior knowledge that 

traffic lanes are long continuous shape line structure with strong spatial relationship. The 

architecture integrates two modules of two distinctive neural networks with complementary 

merits, that is, SCNN and convolutional long short-term memory (ConvLSTM) neural network, 

under an end-to-end encoder-decoder structure, to tackle lane detection in challenging driving 

scenes. 

2.2.1 Overview of the proposed model architecture 

The proposed deep neural network architecture adopts a sequence-to-one end-to-end encoder-

decoder structure as shown in Figure 2-1. 

Here “sequence-to-one” means that the model gets a sequence of multi-images as input and 

outputs the detection result of the last image (please note that essentially the model is still 

utilising sequence-to-sequence neural networks); “end-to-end” means that the learning 

algorithm goes directly from the input to the desired output, which refers to the lane-detection 

result in this study, bypassing the intermediate states (Levinson et al., 2011; Neven et al., 2017); 

the encoder-decoder structure is a modular structure that consists of an encoder network and a 

decoder network and is often employed in sequence-to-sequence tasks, such as language 

translation (e.g., Sutskever et al., 2014), and speech recognition (e.g., Wu et al., 2017). Here, 

the proposed model adopts an encoder CNN with SCNN layers and a decoder CNN using fully 

convolutional layers. The encoder takes a sequence of continuous image frames, that is, time-

series images, as input and abstracts the feature map(s) in smaller sizes. To make use of the 

prior knowledge that traffic lanes are solid- or dashed-line structures with a continuous shape, 

one special kind of CNN, that is, SCNN, is adopted after the first CNN hidden layer. With the 

help of SCNN, spatial features and relationships in every single image will be better extracted. 

Following this, the extracted feature maps of the continuous frames, constructed in a time-series 

manner, will be fed to ST-RNN blocks for sequential feature extraction and spatial-temporal 

information integration. Finally, the decoder network upsamples the abstracted feature maps 

obtained from the ST-RNN and decodes the content to the original input image size with the 

detection results. The proposed model architecture is implemented with two backbones, UNet 

(Ronneberger et al., 2015) and SegNet (Badrinarayanan et al., 2017). Note, in the UNet-based 

architecture, similar to (Ronneberger et al., 2015), the proposed model employs the skip 

connection between the encoder and decoder phase by concatenating operation to reuse features 

and retain information from previous encoder layers for more accurate predictions; while in the 

SegNet-based networks, at the decoder stage, similar to (Badrinarayanan et al., 2017), the 

proposed model reuses the pooling indices to capture, store, and make use of the vital boundary 

information in the encoder feature maps. The detailed network implementation is elaborated in 

the remaining parts of Section 2.2. 
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Figure 2-1. The architecture of the proposed model 

2.2.2 Network design 

1) End-to-end encoder-decoder: Regarding lane detection as an image segmentation problem, 

the encoder-decoder structure-based neural network can be implemented and trained in an end-

to-end way. Inspired by the excellent performance of CNN-based encoder-decoder for image 

semantic-segmentation tasks in various domains (Badrinarayanan et al., 2017; S. Wang et al., 

2020; Yasrab et al., 2017), this study also adopts the “symmetrical” encoder-decoder as the main 

backbone structure. Convolution and pooling operations are employed to extract and abstract 

the features in every image in the encoder stage; while in the decoder subset, the inverted 

convolution and upsampling operation are adopted to grasp the extracted high-order features 

and construct the outputs layer by layer with regard to the targets. By setting the output target 

size the same as the input image size, the whole network can work in an end-to-end approach. 

In the implementation, two widely used backbones, UNet and Seg-Net, are adopted. To better 

extract and make use of the spatial relations in every image frame, the SCNN layer is introduced 

in the encoder part of the single image feature extraction module. Furthermore, to excavate and 

make use of the ST correlations and dependencies among the input continuous image frames, 

ST-RNN blocks are embedded in the middle of the encoder-decoder networks. 
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2) SCNN: The SCNN was first proposed by Pan et al. (2018). The “spatial” here means that the 

specially designed CNN can propagate spatial information via slice-by-slice message passing. 

The detailed structure of SCNN is demonstrated in the bottom part of Figure 2-1. 

SCNN can propagate the spatial information in one image through four directions as shown 

with the suffix “DOWN,” “UP,” “RIGHT,” and “LEFT” in Figure 2-1, which denotes 

downward, upward, rightward, and leftward, respectively. Take the “SCNN_DOWN” module 

as an example, considering that SCNN is adopted on a three-dimensional tensor of size C × W 

× H, wherein the lane-detection task, C, W, and H denote the number of channels, image (or its 

feature map) width, and height, respectively. For SCNN_D, the input tensor would be split into 

H slices, and the first slice will then be sent into a convolution operation layer with C kernels 

of size C × w, in which w is the kernel width. Different from the traditional CNN in which the 

output of one convolution layer is introduced into the next layer directly, in SCNN_D, the output 

is added to the next adjacent slice to produce a new slice and iteratively to the next convolution 

layer, continuing until the last slice in the selected direction is updated. The convolution kernel 

weights are shared throughout all slices, and the same mechanism works for other directions of 

SCNNs. 

With the above properties, SCNN has demonstrated its strengths in extracting spatial 

relationships in the image, which makes it suitable for detecting long continuous shape 

structures, for example, traffic lanes, poles, and walls (Pan et al., 2018). However, using only 

one image to do the detection, SCNN still could not produce satisfying performances under 

extremely challenging conditions. And that is why a sequence-to-one architecture with 

continuous image frames as inputs and ST-RNN blocks to capture the ST correlations in the 

continuous frames is proposed in this study. 

3) ST-RNN module: In this proposed framework, the multiple continuous frames of images are 

modelled as “image-time-series” inputs. To capture the ST dependencies and correlations 

among the image-time-series, the ST-RNN module is embedded in the middle of the encoder-

decoder structure, which takes over the output extracted features of the encoder as its input and 

outputs the integrated ST information to the decoder. 

Various versions of RNNs have been proposed, for example, LSTM together with its 

multivariate version, that is, fully connected LSTM (FC-LSTM ), and gated recurrent unit 

(GRU), to tackle time-series data in different application domains. In this study, two state-of-

the-art RNN networks, that is, ConvLSTM (Shi et al., 2015) and convolutional GRU 

(ConvGRU) (Ballas et al., 2016), are employed. These models, considering their abilities in ST 

feature extraction, generally outperform other traditional RNN models. 

A general critical problem for the vanilla RNN model is the gradients vanishing (Hochreiter 

and Schmidhuber, 1997; Pascanu et al., 2013; Ribeiro, 2020). For this, LSTM introduces 

memory cells and gates to control the information flow to trap the gradient preventing it from 

vanishing during the back-propagation. In LSTM, the information of the new time-series inputs 

will be accumulated to the memory cell 𝒞𝑡  if the input gate  𝑖𝑡  is on. In contrast, if the 

information is not “important”, the past cell status 𝒞𝑡−1 could be “forgotten” by activating the 

forget gate 𝑓𝑡 . Also, there is the output gate 𝑜𝑡  which decides whether the latest cell output 

𝒞𝑡 will be propagated to the final state ℋ𝑡 . The traditional FC-LSTM contains too much 

redundancy for spatial information, which makes it time-consuming and computational-

expensive. To address this, the ConvLSTM (Shi et al., 2015) is selected to build the ST-RNN 
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block of the proposed framework. In ConvLSTM, the convolutional structures and operations 

are introduced in both the input-to-state and state-to-state transitions to do spatial information 

encoding, which also alleviates the problem of time- and computation-consuming. 

The key formulation of the ConvLSTM is shown by equations (2-1)-(2-5), where ⊙ denotes 

the Hadamard product, ∗  denotes the convolution operation, 𝜎(∙)  represents the sigmoid 

function, and tanh(∙)  represents the hyperbolic tangent function; 𝑋𝑡, 𝒞𝑡, and ℋ𝑡  are the input 

(i.e., the extracted features from the encoder in the proposed framework), memory cell status, 

and output at time 𝑡; 𝑖𝑡, 𝑓𝑡, and 𝑜𝑡 are the function values of the input gate, forget gate, and 

output gate, respectively; 𝑊 denotes the weight matrices, whose subscripts indicate the two 

corresponding variables are connected by this matrix. For instance, 𝑊𝑥𝑐 is the weight matrix 

between the input extracted features 𝑋𝑡 and the memory cell 𝒞𝑡; "𝑏"s are biases of the gates, 

e.g., 𝑏𝑖 is the input gate’s bias. 

𝑖𝑡 = 𝜎(𝑊𝑥𝑖 ∗ 𝑋𝑡 + 𝑊ℎ𝑖 ∗ ℋ𝑡−1 + 𝑊𝑐𝑖 ⊙ 𝒞𝑡−1 + 𝑏𝑖)      (2-1) 

𝑓𝑡 = 𝜎(𝑊𝑥𝑓 ∗ 𝑋𝑡 + 𝑊ℎ𝑓 ∗ ℋ𝑡−1 + 𝑊𝑐𝑓 ⊙ 𝒞𝑡−1 + 𝑏𝑓)     (2-2) 

𝒞𝑡 = 𝑓𝑡 ⊙ 𝒞𝑡−1 + 𝑖𝑡 ⊙ tanh(𝑊𝑥𝑐 ∗ 𝑋𝑡 + 𝑊ℎ𝑐 ∗ ℋ𝑡−1 + 𝑏𝑐)     (2-3) 

𝑜𝑡 = 𝜎(𝑊𝑥𝑜 ∗ 𝑋𝑡 + 𝑊ℎ𝑜 ∗ ℋ𝑡−1 + 𝑊𝑐𝑜 ⊙ 𝒞𝑡 + 𝑏𝑜)      (2-4) 

ℋ𝑡 = 𝑜𝑡 ⊙ tanh(𝐶𝑡)          (2-5) 

The ConvGRU (Ballas et al., 2016) further lightens the computational complexity by reducing 

a gate structure but could perform similarly or slightly better compared with the traditional 

RNNs or even ConvLSTM. The procedure of computing different gates and hidden 

states/outputs of ConvGRU is demonstrated with equations (2-6)-(2-9), in which the symbols 

have the same meaning as described before, while additional 𝑧𝑡 and 𝑟𝑡 mean the update gate 

and the reset gate, respectively, plus ℋ̃represents the current candidate hidden representation. 

𝑧𝑡 = 𝜎(𝑊𝑧𝑥 ∗ 𝑋𝑡 + 𝑊𝑧ℎ ∗ ℋ𝑡−1 + 𝑏𝑧)       (2-6) 

𝑟𝑡 = 𝜎(𝑊𝑟𝑥 ∗ 𝑋𝑡 + 𝑊𝑟ℎ ∗ ℋ𝑡−1 + 𝑏𝑟)        (2-7) 

ℋ̃𝑡 = tanh(𝑊𝑜𝑥 ∗ 𝑋𝑡 + 𝑊𝑜ℎ ∗ (𝑟𝑡 ⊙ ℋ𝑡−1) + 𝑏𝑜)      (2-8) 

ℋ𝑡 = 𝑧𝑡ℋ̃ + (1-𝑧𝑡)ℋ𝑡−1         (2-9) 

In ConvGRU, there are only two gate structures, i.e., the update gate 𝑧𝑡 and the reset gate 𝑟𝑡. It 

is the update gate 𝑧𝑡 that decides how to update the hidden representation when generating the 

ultimate result of ℋ𝑡  at the current layer, as shown in equation (2-9). While the reset gate 𝑟𝑡 is 

served to control to what extent the feature information captured in the previous hidden state is 

supposed to be forgotten through an element-wise multiplication operation when calculating 

the current candidate hidden representation. From the equations, it is concluded that the 

information of ℋ𝑡  mainly comes from ℋ̃𝑡 , while ℋ𝑡−1 as the previous hidden-state 

representation also contributes to the process of computing the final representation of ℋ𝑡; thus, 

the temporal dependencies are captured. 

In practice, both ConvLSTM and ConvGRU with different numbers of hidden layers were 

employed to serve as the ST-RNN module in the proposed architecture, and the corresponding 

performances were evaluated, respectively. To be specific, in the proposed network, the input 
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and the output sizes of the ST-RNN block are equivalent to the feature map size extracted 

through the encoder, which are 8 × 16 and 4 × 8 for the UNet-based and SegNet-based backbone, 

respectively. The convolutional kernel size in ConvLSTM and ConvGRU is 3 × 3, and the 

dimension of each hidden layer is 512. The detailed implementations are described in the 

following section. 

2.2.3 Detailed implementation 

1) Network design details: The proposed spatial-temporal sequence-to-one neural network was 

developed for the lane detection task with K (in this study K = 5 if not specified) continuous 

image frames as inputs. The image frames were first fed into the encoder for feature extraction 

and abstraction. Different from the normal CNN-based encoder, the SCNN layer was utilised 

to effectively extract the spatial relationships within every image. Different locations of the 

SCNN layer were tested, i.e., embedding the SCNN layer after the first hidden convolutional 

layer or at the very beginning. The outputs of the encoder network were modelled in a time-

series manner and fed into the ST-RNN blocks (i.e., ConvLSTM or ConvGRU layers) to further 

extract more useful and accurate features, especially the spatial-temporal dependencies and 

correlations among different image frames. In short, the encoder network is primarily 

responsible for spatial feature extraction and abstraction transforming input images into 

specified feature maps, while the ST-RNN blocks accept the extracted features from the 

continuous image frames in a time-series manner to capture the spatial-temporal dependencies.  

The outputs of the ST-RNN blocks were then transferred into the decoder network that adopts 

deconvolution and upsampling operations to highlight and make full use of the features and 

rebuild the target to the original size of the input image. Note that there is the skip concatenate 

connection (for UNet-based architecture) or pooling indices reusing (for SegNet-based 

architecture) between the encoder and decoder to reuse the retained features from previous 

encoder layers for more accurate predictions at the decoder phase. After the decoder phase, the 

lane detection result is obtained as an image of the equivalent size to the input image frame. 

With the labelled ground truth and the help of the encoder-decoder structure, the proposed 

model can be trained and implemented in an end-to-end way. The detailed input, output sizes, 

and parameters of the layers in the entire neural network are listed in Appendix Table 2-A1 and 

Table 2-A2. 

For both SegNet-based and UNet-based implementations, two types of RNN layers, i.e., 

ConvLSTM and ConvGRU, were tested to serve as the ST-RNN block. Besides, the ST-RNN 

blocks were tested with 1 hidden layer and 2 hidden layers, respectively. So there are four 

variants in the proposed SegNet-based models, i.e., SCNN_SegNet_ConvGRU1, 

SCNN_SegNet_ConvGRU2, SCNN_SegNet_ConvLSTM1, and SCNN_SegNet_ConvLSTM2. 

SCNN_SegNet_ConvGRU1 means the model is using SegNet as the backbone with SCNN 

layer embedded encoder, and 1 hidden layer of ConvGRU as the ST-RNN block. This naming 

rule applies to the other 3 variants. Also, there are four variants of the proposed UNet-based 

models, with a similar naming rule. 

In the proposed models with UNet as the backbone, the number of kernels used in the last 

convolutional block of the encoder part differs from the original UNet’s settings. Here, the 

number of output kernels (channels) of the last convolutional block in the proposed encoder 

does not double its input kernels, which applies to all the previous convolutional blocks. This 
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is done, similar to (Zou et al., 2020), to better connect the output of the encoder with the ST-

RNN block (ConvLSTM or ConvGRU layers). To do so, the parameters of the full-connection 

layer are designed to be quadrupled while the side lengths of the feature maps are reduced to 

half, at the same time, the number of kernels remains unchanged. This strategy also somewhat 

contributes to reducing the parameter size of the whole network.  

A modified light version of UNet (UNetLight) was also tested to serve as the network backbone 

to reduce the total parameter size, increase the model’s ability to operate in real time, and further 

verify the proposed network architecture’s effectiveness. The UNetLight has a similar network 

design to the demonstration in Table 2-A2. The only difference is that all the numbers of kernels 

in the ConvBlocks are reduced to half, except for the Input in In_ConvBlock (with the input 

channel of 3 unchanged) and the Output in Out_ConvBlock (with the output channel of 2 

unchanged). To save space, the parameter settings of the UNetLight-based implementation will 

not be illustrated. 

2) Loss function: Since lane detection is modelled as a segmentation task and a pixel-wise binary 

classification problem, cross-entropy is a suitable candidate to serve as the loss function. 

However, because the pixels classified to be lanes are always quite less than those classified to 

be the background (meaning that it is an imbalanced binary classification and discriminative 

segmentation task), in the implementation, the loss was built upon the weighted cross-entropy. 

The adopted loss function, as the standard weighted binary cross-entropy function, is given in 

equation (2-10), 

𝐿𝑜𝑠𝑠 = −
1

𝑆
∑ [𝜔 ∗ 𝑦𝑖 ∗ 𝑙𝑜𝑔(ℎ𝜃(𝑥𝑖)) + (1-𝑦𝑖) ∗ 𝑙𝑜𝑔(1 − ℎ𝜃(𝑥𝑖))]

𝑆
𝑖=1             (2-10) 

where 𝑆 is the number of training examples, 𝜔 stands for the weight which is set according to 

the ratio between the total lane pixel quantities and non-lane pixel quantities throughout the 

whole training set, 𝑦𝑖 is the true target label for the training example 𝑖, 𝑥𝑖 is the input for the 

training example 𝑖, and ℎ𝜃 stands for the model with neural network weights 𝜃.  

3) Training details: The proposed neural networks with different variants, together with the 

baseline models were trained on the Dutch high-performance supercomputer clusters, Cartesius 

and Lisa, using 4 Titan RTX GPUs with the data parallel mechanism in PyTorch. The input 

image size was set as 128 × 256 to reduce the computational payload. The batch size was set to 

be as large as possible (e.g., 64 for UNet-based network architecture, 100 for SegNet-based 

ones, and 136 for UNetLight-based ones), and the learning rate was initially set to 0.03. The 

RAdam optimiser (Liyuan Liu et al., 2019) was first used in this work for training the model at 

the beginning. At the later stage, when the training accuracy was beyond 95%, the optimiser 

was switched to the Stochastic Gradient Descent (SGD) (Bottou, 2010) optimiser with decay. 

With the labelled ground truth, the models were trained through iteratively updating the 

parameters in the weight matrices and the losses on the basis of the deviation between outputs 

of the proposed neural network and the ground truth using the backpropagation mechanism. To 

speed up the training process, the pre-trained weights of SegNet and UNet on ImageNet (Deng 

et al., 2009) were adopted. 
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2.3 Experiments and results 

Extensive experiments were carried out to inspect and verify the accuracy, effectiveness, and 

robustness of the proposed lane-detection model using two large-scale open-sourced datasets. 

The proposed models were evaluated on different driving scenes and were compared with 

several state-of-the-art baseline lane-detection methods, which also employ deep learning, for 

example, UNet (Ronneberger et al., 2015), Seg-Net (Badrinarayanan et al., 2017), SCNN (Pan 

et al., 2018), LaneNet (Neven et al., 2018), UNet_ConvLSTM (Zou et al., 2020), and 

SegNet_ConvLSTM (Zou et al., 2020). 

2.3.1 Datasets 

1) tvtLANE training set: To verify the proposed model performance, the tvtLANE dataset (Zou 

et al., 2020) based upon the TuSimple lane marking challenge dataset, was first utilised for 

training, validating, and testing. The original dataset of the TuSimple lane marking challenge 

includes 3,626 clips of training and 2,782 clips of testing, which are collected under various 

weather conditions and during different periods. In each clip, there are 20 continuous frames 

saved in the same folder. In each clip, only the lane marking lines of the very last frame, i.e., 

the 20th frame, are labelled with the ground truth officially. Zou et al. (2020) additionally 

labelled every 13th image in each clip and added their own collected lane dataset, which includes 

1,148 sequences of rural driving scenes collected in China. This immensely expanded the 

variety of the road and driving conditions since the original TuSimple dataset only covers 

highway driving conditions. K continuous frames of each clip are used as the inputs, with the 

ground truth of the labelled 13th or 20th frame to train the models. 

To further augment the training dataset, crop, flip, and rotation operations were employed. Thus, 

a total number of (3,626 + 1,148) × 4 = 19,096 continuous sequences were produced, in which 

38,192 images are labelled with ground truth. To adapt to different driving speeds, the input 

image sequences were sampled at 3 strides with a frame interval of 1, 2, or 3, respectively. Then, 

3 sampling methods were employed to construct the training samples regarding the labelled 13th 

and 20th frames in each sequence, as demonstrated in Table 2-1. 

2) tvtLANE testing set: Two different datasets were used for testing, i.e., testset #1 (normal) and 

testset #2 (challenging), which are also formatted with 5 continuous images as the input to 

detect the lane markings in the very last frame with the labelled ground truth. To be specific, 

testset #1 is built upon the original TuSimple test set for normal driving scene testing; while 

testset #2 is constructed with 12 challenging driving situations, especially used for robustness 

evaluation. The detailed descriptions of the trainset and testset in tvtLANE are illustrated in 

Table 2-1, with examples shown in Figure 2-2. 

2.3.2 Qualitative evaluation 

Qualitative evaluation with the visualisation of the lane detection results is the most intuitive 

approach to compare and evaluate the properties of different models, and it helps to find insights 

regarding their pros and cons. 

1) tvtLANE Testset #1: normal situations 

Samples of the lane detection results on tvtLANE testset #1 of the proposed models and other 
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Table 2-1. Trainset and testset in tvtLANE 

Trainset 

Subset Labelled Images Num 

Original TuSimple Dataset (Highway) 7,252 

Zou et al. (2020) added (Rural Road) 2,296 

Sample Methods 

Labelled Ground Truth 
Sample 

Stride 
Train Sample Frames 

13th 

3 1st, 4th, 7th, 10th, 13th 

2 5th, 7th, 9th, 11th, 13th 

1 9th, 10th, 11th, 12th, 13th 

20th 

3 8th, 11th, 14th, 17th, 20th 

2 12th, 14th, 16th, 18th,20th 

1 16th, 17th, 18th, 19th,20th 

Testset 

Subset 

Labelled 

Images 

Num 

Labelled 

Ground 

Truth 

Sample 

Stride 
Test Sample Frames 

Testset #1  

Normal 
540 

13th  1 9th, 10th, 11th, 12th, 13th 

20th  1 16th, 17th, 18th,19th,20th 

Testset #2 

Challenging 
728 All  1 

1st, 2nd, 3rd, 4th, 5th 

2nd, 3rd, 4th, 5th, 6th 

3rd, 4th, 5th, 6th, 7th 

⋯ 

 

(b)

(c)

(d)

(a)

 

Figure 2-2. Sample data in trainset and testset 

(a) original TuSimple dataset (Highway), (b) Zou et al., (2020) added Rural Road situations, 

(c) Testset #1 Normal situations, and (d) Testset #2 Challenging situations. In each row, the 

first five images are the input image sequence the last image is the labelled ground truth 

 

state-of-the-art models are demonstrated in Figure 2-3 (1). All these results are without post-

processing. 

In general, good lane detection should include the following 5 properties: 

• The number of lines needs to be predicted correctly. A wrong detection or a misprediction 

might cause the automated vehicles to consider unsafe or unreachable areas as drivable 
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areas resulting in potential accidents. As illustrated in the 1st and 2nd columns in Figure 2-

3 (1), the proposed models can identify the correct number of lane lines, while the baseline 

models, especially the ones using a single image, somewhat cannot detect the correct 

number of lines compared with the ground truth.  

• The positions of each lane marking line should be predicted precisely in accordance with 

the ground truth. As illustrated in Figure 2-3 (1), the proposed models in row (j) with the 

model named by SCNN_SegNet_ConvLSTM2 and row (n) with the model named by 

SCNN_UNet_ConvLSTM2, could deliver better lane location predictions with thinner lines, 

compared with the baseline models. Superior to scattering points around, thinner predicted 

lane lines indicate a more precise model prediction of the lane position. 

• The predicted lane lines should not merge or be broken. As illustrated in the 1st, 2nd, 6th, 7th, 

and 8th columns of Figure 2-3 (1), some baseline models’ output lane lines either merge at 

the far end or break the continuity with dashed lines. The proposed models perform slightly 

better, although in a few cases, the lines are also discontinuous. 

• The lanes should be predicted correctly even at the boundary of the image.  As can be found 

in Figure 2-3 (1), some baseline models, e.g., row (c), (d), and (e), run across difficulties at 

the top boundary of the image with merge lanes on the top. This also accords with the 

aforementioned property. 

• The lane detection models should deliver accurate predictions under different driving scenes, 

even under some challenging situations. For example, in the 2nd, 3rd,  5th, and 7th columns 

of Figure 2-3 (1), vehicles are occluding the lanes. A good lane detection model should be 

able to handle these. The proposed models perform well under these slightly challenging 

cases; more challenging situations are further discussed later. 

2) tvtLANE testset #2: 12 challenging driving cases 

Figure 2-3 (2) shows the comparison of the proposed models with the baseline models under 

some extremely challenging driving scenes in the tvtLANE testset #2. All the results are not 

post-processed. These challenging scenes cover wide situations including serious vehicle 

occlusion, bad lighting conditions (e.g., shadow, dim), tunnel situations, and dirt road 

conditions. In some extremely challenging cases, the lanes are totally occluded by vehicles, 

other objects, and/or shadows, which could be very difficult even for humans to do the detection.  

As can be observed in Figure 2-3 (2), although all the baseline models fail in these challenging 

cases, the proposed models, especially the one named SCNN_SegNet_ConvLSTM2 illustrated 

in row (k), could still deliver good predictions in almost every situation listed in Figure 2-3 (2). 

The only flaw is that in the 3rd column, where vehicle occlusion and blurred road conditions 

happen simultaneously, the proposed models also find it hard to predict precisely. With the 

results in the 4th, 7th, and 8th columns, the robustness of  SCNN_SegNet_ConvLSTM2’s 

property in detecting the correct number of lane lines is further verified, especially, one can 

observe in the 4th column, where almost all the other models are defeated, 

SCNN_SegNet_ConvLSTM2 can still predict the correct number of lanes. 

Furthermore, it should be noticed that correct lane location predictions in these challenging 

situations are of vital importance for safe driving. For example, regarding the situation in the 

last column where a heavy vehicle totally shadows the field of vision on the left side, it will be 



Chapter 2 – A hybrid spatial-temporal deep learning architecture for lane detection 35 

 

very dangerous if the automated vehicle is driving according to the lane detection results 

demonstrated in the 3rd to 5th rows. 

 

(b)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

(q)

(r)

(a)

(c)

(d)

Baseline Models: (c) SegNet; (d) UNet; (e) SegNet_ConvLSTM; (f) UNet_ConvLSTM

Proposed Models SegNet-based: (g) SCNN_SegNet_ConvGRU1; (h) SCNN_SegNet_ConvGRU2;  

                      (i) SCNN_SegNet_ConvLSTM1; (j) SCNN_SegNet_ConvLSTM2 

Ground truth: (b)

Input images: (a)

Proposed Models UNet-based: (k)  SCNN_UNet_ConvGRU1;    (l) SCNN_UNet_ConvGRU2;

                                  (m) SCNN_UNet_ConvLSTM1;  (n) SCNN_UNet_ConvLSTM2 

Proposed Models UNetLight-based: (o) SCNN_UNetLight_ConvGRU1; 

(p) SCNN_UNetLight_ConvGRU2; (q) SCNN_UNetLight_ConvLSTM1; (r) SCNN_UNetLight_ConvLSTM2 

 

(1) Visualisation of the lane-detection results on tvtLANE testset #1 (normal situations) 
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(b)

(e)

(f)

(g)

(h)

(i)

(j)

(k)

(l)

(m)

(n)

(o)

(p)

(q)

(r)

(a)

(c)

(d)

Baseline Models: (c) SegNet; (d) UNet; (e) SegNet_ConvLSTM; (f) UNet_ConvLSTM

Proposed Models SegNet-based: (g) SCNN_SegNet_ConvGRU1; (h) SCNN_SegNet_ConvGRU2;  

                      (i) SCNN_SegNet_ConvLSTM1; (j) SCNN_SegNet_ConvLSTM2 

Ground truth: (b)

Input images: (a)

Proposed Models UNet-based:  (k) SCNN_UNet_ConvGRU1;    (l) SCNN_UNet_ConvGRU2;

                                 (m) SCNN_UNet_ConvLSTM1;  (n) SCNN_UNet_ConvLSTM2 

Proposed Models UNetLight-based: (o) SCNN_UNetLight_ConvGRU1; 

(p) SCNN_UNetLight_ConvGRU2; (q) SCNN_UNetLight_ConvLSTM1; (r) SCNN_UNetLight_ConvLSTM2 

bright dim&occlude dirty&occlude occlude curve blur tunnel blur&curve

 

(2) Visualisation of the lane-detection results on tvtLANE testset #2 (challenging situations) 

Figure 2-3. Qualitative evaluation: visualisation of the lane-detection results on (1) 

tvtLANE testset #1 and (2) tvtLANE testset #2 
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2.3.3 Quantitative evaluation 

1) Evaluation metrics: This subsection examines the proposed models’ properties regarding 

quantitative evaluations. When treated as a pixel-wise classification task, accuracy must be the 

simplest criterion for the performance evaluation of lane detection (Zou et al., 2017), which 

represents the overall classification performance in terms of correctly classified pixels, 

indicated in equation (2-11). 

Accuracy =
𝑇𝑟𝑢𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠
                  (2-11) 

However, since it is an imbalanced binary classification problem, where the lane pixels are far 

less than the background pixels, using only accuracy to evaluate the model is not suitable. Thus, 

Precision, Recall, and F-measure, illustrated by equations (2-12)-(2-14), are commonly 

employed. 

Precision =
True Positive 

True Positive+False Positive
                (2-12) 

Recall =
True Positive 

True Positive+False Negative
                 (2-13) 

F-measure = (1 + 𝛽2)
Precision∗Recall 

𝛽2Precision+Recall 
                (2-14) 

In the above equation, true positive indicates the number of image pixels that are lane marking 

and are correctly identified; false positive means the number of image pixels that are 

background but are wrongly classified as lane markings; false negative stands for the number 

of image pixels which are lane marking but are wrongly classified as the background. 

Specifically, this study chooses 𝛽 = 1, which corresponds to the F1-measure (harmonic mean) 

shown in equation (2-15). 

F1-measure = 2 ∗
Precision∗Recall 

Precision+Recall 
                 (2-15) 

The F1-measure, which balances Precision and Recall, is always selected as the main 

benchmark for model evaluation, e.g., (Lizhe Liu et al., 2021; Pan et al., 2018; Xu et al., 2020; 

Zhang et al., 2021; Zou et al., 2020). 

Furthermore, the model parameter size, i.e., Params (M), together with the multiply-accumulate 

(MAC) operations, i.e., MACs (G), are provided as indicators of the model complexity. The 

two indicators are commonly used to estimate models’ computational complexities and real-

time capabilities. 

2) Performance and comparisons on tvtLANE testset #1(normal situations) 

As shown in Table 2-2, the proposed model of SCNN_UNet_ConvLSTM2, performs the best 

when evaluating on tvtLANE testset #1, with the highest Accuracy and F1-measure, while the 

proposed model of SCNN_SegNet_ConvLSTM2 delivers the best Precision. 

Incorporating the quantitative evaluation with the qualitative evaluation, it could be easily 

interpreted that the highest Precision, Accuracy, and F1-measure are mainly derived from (i) 

the correct lane number, (ii) the accurate lane position, (iii) the sound continuity in the detected 

lanes, and (iv) the thinness of the predicted lanes with less blurriness, which accords with (ii). 
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The correct prediction directly reduces the number of False Positives, and a good Precision 

contributes to better Accuracy and F1-measure. Considering the structure of the proposed model 

architecture, a further explanation of the high F1-measure, Accuracy, and Precision can be 

explained as follows: 

Firstly, the SCNN layer embedded in the encoder equips the proposed model with better 

information extracting ability regarding the low-level features and spatial relations in each 

image. 

Secondly, the ST-RNN blocks, i.e., ConvLSTM / ConvGRU layers, can effectively capture the 

temporal dependencies among the continuous image frames, which could be very helpful for 

challenging situations where the lanes are shadowed or covered by other objects in the current 

frame. 

Finally, the proposed architecture could make the best of the spatial-temporal information 

among the processed K continuous frames by regulating the weights of the convolutional 

kernels within the SCNN and ConvLSTM / ConvGRU layers. 

All in all, with the proposed architecture, the proposed model tries to not only strengthen feature 

extraction regarding spatial relation in one image frame but also the spatial-temporal correlation 

and dependencies among image frames for lane detection. 

Table 2-2. Model performance comparison on tvtLANE testset #1 (normal situations) 

Model 

Test 

Acc 

(%) 

Precision Recall 
F1-

measure 

MACs 

(G) 

Params 

(M) 

Using 

single 

image  

as input 

Baseline Models 

UNet 96.54 0.790 0.985 0.877 15.5 13.4 

SegNet 96.93 0.796 0.962 0.871 50.2 29.4 

SCNN* 96.79 0.654 0.808 0.722 77.7 19.2 

LaneNet* 97.94 0.875 0.927 0.901 44.5 19.7 

Using 

continuous 

images 

sequence 

as inputs 

SegNet_ConvLSTM** 97.92 0.874 0.931 0.901 217.0 67.2 

UNet_ConvLSTM** 98.00 0.857 0.958 0.904 69.0 51.1 

Proposed Models (SegNet-Based) 

SCNN_SegNet_ConvGRU1 98.00 0.878 0.935 0.905 219.2 43.7 

SCNN_SegNet_ConvGRU2 98.05 0.888 0.918 0.903 221.5 57.9 

SCNN_SegNet_ConvLSTM1 98.01 0.881 0.935 0.907 220.0 48.5 

SCNN_SegNet_ConvLSTM2 98.07 0.893 0.928 0.910 223.0 67.3 

Proposed Models (UNet-Based) 

SCNN_UNet_ConvGRU1 98.13 0.878 0.957 0.916 77.9 27.7 

SCNN_UNet_ConvGRU2 98.19 0.887 0.950 0.917 87.0 41.9 

SCNN_UNet_ConvLSTM1 98.18 0.886 0.948 0.916 81.0 32.4 

SCNN_UNet_ConvLSTM2 98.19 0.889 0.950 0.918 93.0 51.3 

Proposed Models (Light Version UNet-Based) 

SCNN_UNetLight_ConvGRU1 97.83 0.850 0.960 0.902 19.6 6.9 

SCNN_UNetLight_ConvGRU2 98.01 0.863 0.950 0.905 21.9 10.5 

SCNN_UNetLight_ConvLSTM1 97.71 0.830 0.950 0.886 20.4 8.1 

SCNN_UNetLight_ConvLSTM2 97.76 0.840 0.953 0.893 23.4 12.8 

* Results reported in (Zhang et al., 2021).  

** There are two hidden layers of ConvLSTM in SegNet_ConvLSTM and UNet_ConvLSTM. 
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Looking at the main metric, F1-measure, it is demonstrated that increasing only Precision or 

only Recall will not improve the F1-measure. Although the baseline models of UNet, SegNet, 

and SegNet_ConvLSTM get better Recalls, they do not deliver good F1-measure since their 

Precisions are much lower than the proposed model of SCNN_SegNet_ConvLSTM2 or 

SCNN_UNet_ConvLSTM2. Regarding the good Recall of UNet and SegNet, it could be 

speculated from the qualitative evaluation, where one can find that UNet and SegNet tend to 

produce thicker lane lines. With thicker lines and blurry areas, the two models can somehow 

reduce the False Negatives, which will contribute to better Recall. This also demonstrates that 

Recall and Precision antagonise each other, which further proves that F1-measure should be a 

more reasonable evaluation measure compared with Precision and Recall. 

3) Performance and comparisons on tvtLANE testset #2 (challenging situations) 

To further evaluate the proposed models’ performance and verify the models’ robustness, the 

models were evaluated on a brand-new dataset, i.e., the tvtLANE testset #2. As introduced in 

2.3.1 Datasets, tvtLANE testset #2 includes 728 images in highway, urban, and rural driving 

scenes. These challenging driving scenes’ data were obtained by data recorders at various 

locations, outside and inside the car’s front windshield under different road and weather 

conditions. Testset #2 is a challenging and comprehensive dataset for model evaluation, from 

which some cases would be difficult enough for humans to do the correct detection. 

Table 2-3 demonstrates the model performance comparison on the 12 types of challenging 

scenes in tvtLANE testset #2. Following the results and discussions in 2) Performance and 

comparisons on tvtLANE testset #1 (normal situations), here Table 2-3 provides the Precision 

and F1-measure for the evaluation reference. 

As indicated by the bold numbers, the proposed model, SCNN_SegNet_ConvLSTM2, results 

in the best F1-measure at the overall level and in more situations, while the UNet_ConvLSTM 

results in the best Precision at the overall level and in more situations. Incorporating the 

qualitative evaluation in Figure 2-3 (2), it is shown that UNet_ConvLSTM tends to not classify 

pixels into lane lines for uncertain areas under some challenging situations (e.g., the 2nd and 7th 

columns in Figure 2-3 (2)). This might be the reason for its obtaining better Precision. To 

further confirm this speculation, Figure 2-4 compares the lane detection results of 

SCNN_SegNet_ConvLSTM2 and UNet_ConvLSTM under challenging situations, 8-

blur&curve and 10-shadow-dark, where UNet_ConvLSTM delivers very good Precisions. 

As illustrated in Figure 2-4, truly UNet_ConvLSTM tries not to classify pixels into lane lines 

under uncertain areas as much as possible. This leads to fewer False Negatives which helps for 

raising a better Precision. However, in real application scenarios, this is not wise and not 

acceptable. On the contrary, the proposed model SCNN_SegNet_ConvLSTM2 tries to make 

tough but valuable detections classifying candidate points into lane lines in the challenging 

uncertain areas with dirt, dark road conditions, and/or vehicle occlusions. This may lead to more 

False Negatives and a worse Precision but is praiseworthy. These analyses further demonstrate 

that F1-measure is a better measure compared with Precision. Finally, it can be concluded that 

the proposed model, SCNN_SegNet_ConvLSTM2, delivers the best performance on the 

challenging tvtLANE testset #2, which verified the proposed model architecture’s robustness. 

To sum up, the proposed model architecture demonstrates its effectiveness in both normal and 

challenging driving scenes, with the UNet-based model, SCNN_UNet_ConvLSTM2, beating 
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the baseline models with a large margin on normal situations, while the SegNet-based model, 

SCNN_SegNet_ConvLSTM2, performs the best, handling almost all the challenging driving 

scenes. The finding that, compared with UNet-based models, SegNet-based neural network 

models are more robust in coping with challenging driving environments accords with the 

results in (Zou et al., 2020). 

(a)

(b)

(c)

(d)

(e)

(f)

(a)

(b)

(c)

(d)

(e)

(f)

(1) Challenging situation 8-blur&curve

(2) Challenging situation 10-shadow-dark  

Figure 2-4. Visual comparison of the lane-detection results on challenging driving 

situations for UNet_ConvLSTM and the proposed model SCNN_SegNet_ConvLSTM2 

All the results are not post-processed.  

(a) Input images. (b) Ground truth. (c) Detection results of UNet_ConvLSTM. (d) Detection 

results of UNet_ConvLSTM overlapping on the original images. (e) Detection results of 

SCNN_SegNet_ConvLSTM2. (f) Detection results of SCNN_SegNet_ConvLSTM2 

overlapping on the original images.  

The upper part (1) is for challenging situation 8-blur&curve, while the down part (2) is for 

situation 10-shadow-dark. 
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Table 2-3. Model performance comparison on tvtLANE testset #2 (12 types of challenging 

scenes) 

Precision 
             Challenging 

Scenes 
1- 

curve 

& 
occlude 

2- 

shadow

- bright 

3- 

bright 
4-

occlude 
5- 

curve 

6- 

dirty 

& 
occlude 

7- 

urban 

8- 

blur 

& 

curve 

9- 

blur 

10-

shadow

- dark 

11-

tunnel 

12- 
dim 

& 
occlude 

overall 

UNet 0.7018 0.7441 0.6717 0.6517 0.7443 0.3994 0.4422 0.7612 0.8523 0.7881 0.7009 0.5968 0.6754 

SegNet 0.6810 0.7067 0.5987 0.5132 0.7738 0.2431 0.3195 0.6642 0.7091 0.7499 0.6225 0.6463 0.6080 

UNet_ConvLSTM 0.7591 0.8292 0.7971 0.6509 0.8845 0.4513 0.5148 0.8290 0.9484 0.9358 0.7926 0.8402 0.7784 

SegNet_ConvLSTM 0.8176 0.8020 0.7200 0.6688 0.8645 0.5724 0.4861 0.7988 0.8378 0.8832 0.7733 0.8052 0.7563 

SCNN_SegNet_ConvGRU1 0.8107 0.7951 0.7225 0.6830 0.8503 0.4640 0.5071 0.6699 0.8481 0.8994 0.7804 0.8429 0.7477 

SCNN_SegNet_ConvGRU2 0.7952 0.8087 0.7770 0.6444 0.8689 0.5067 0.5171 0.7147 0.8423 0.8744 0.7979 0.8757 0.7572 

SCNN_SegNet_ConvLSTM1 0.7945 0.8078 0.7600 0.6417 0.8525 0.5252 0.3686 0.7582 0.7715 0.8702 0.7778 0.8517 0.7348 

SCNN_SegNet_ConvLSTM2 0.8326 0.7497 0.7470 0.7369 0.8647 0.6196 0.4333 0.7371 0.8566 0.9125 0.8153 0.8466 0.7673 

SCNN_UNet_ConvGRU1 0.8492 0.8306 0.8163 0.7845 0.8819 0.4025 0.4493 0.7378 0.8291 0.8928 0.8198 0.8040 0.7639 

SCNN_UNet_ConvGRU2 0.8678 0.7873 0.8548 0.7654 0.8805 0.5319 0.4735 0.8064 0.8765 0.8431 0.7112 0.7388 0.7640 

SCNN_UNet_ConvLSTM1 0.8602 0.7844 0.8119 0.7807 0.8871 0.4066 0.4652 0.7445 0.8321 0.8972 0.7507 0.7068 0.7531 

SCNN_UNet_ConvLSTM2 0.8182 0.8362 0.8189 0.7359 0.8365 0.5872 0.5377 0.8046 0.8770 0.8722 0.7952 0.7817 0.7784 

SCNN_UNetLight_ConvGRU1 0.8212 0.7454 0.7189 0.6996 0.8521 0.3499 0.3999 0.7851 0.7282 0.8686 0.6940 0.6289 0.7011 

SCNN_UNetLight_ConvGRU2 0.8147 0.8349 0.7390 0.7004 0.8591 0.4039 0.3360 0.6811 0.8300 0.8533 0.8125 0.7996 0.7238 

SCNN_UNetLight_ConvLSTM1 0.7222 0.7450 0.6533 0.6203 0.8039 0.2635 0.2716 0.7341 0.7546 0.7319 0.6298 0.7406 0.6377 

SCNN_UNetLight_ConvLSTM2 0.7618 0.7416 0.7067 0.6537 0.8096 0.1921 0.2639 0.6857 0.6830 0.6931 0.6391 0.6022 0.6190 

 

F1-measure 
Challenging  

Scenes  
1- 

curve 

& 
occlude 

2- 

shadow

- bright 

3- 

bright 
4-

occlude 
5- 

curve 

6- 

dirty 

& 
occlude 

7- 

urban 

8- 

blur 

& 

curve 

9- 

blur 

10-

shadow

- dark 

11-

tunnel 

12- 
dim 

& 
occlude 

overall 

UNet 0.8200 0.8408 0.7946 0.7337 0.7827 0.3698 0.5658 0.8147 0.7715 0.6619 0.5740 0.4646 0.6985 

SegNet 0.8042 0.7900 0.7023 0.6127 0.8639 0.2110 0.4267 0.7396 0.7286 0.7675 0.6935 0.5822 0.6727 

UNet_ConvLSTM 0.8465 0.8891 0.8411 0.7245 0.8662 0.2417 0.5682 0.8323 0.7852 0.6404 0.4741 0.5718 0.7143 

SegNet_ConvLSTM 0.8852 0.8544 0.7688 0.6878 0.9069 0.4128 0.5317 0.7873 0.7575 0.8503 0.7865 0.7947 0.7609 

SCNN_SegNet_ConvGRU1 0.8821 0.8626 0.7734 0.7185 0.9039 0.3027 0.5288 0.7229 0.7866 0.8658 0.7759 0.7763 0.7547 

SCNN_SegNet_ConvGRU2 0.8710 0.8630 0.8094 0.6989 0.9005 0.3963 0.5497 0.7470 0.7637 0.8525 0.7798 0.7396 0.7591 

SCNN_SegNet_ConvLSTM1 0.8768 0.8801 0.8185 0.7166 0.9083 0.3750 0.4516 0.7806 0.7320 0.8622 0.8029 0.8245 0.7629 

SCNN_SegNet_ConvLSTM2 0.8956 0.8237 0.7909 0.7468 0.9108 0.4398 0.4858 0.7379 0.7546 0.8729 0.7963 0.8074 0.7666 

SCNN_UNet_ConvGRU1 0.8608 0.8745 0.8393 0.7802 0.9005 0.3181 0.5143 0.7833 0.7567 0.5554 0.3503 0.3703 0.6839 

SCNN_UNet_ConvGRU2 0.8706 0.8556 0.8304 0.7647 0.8532 0.3515 0.5253 0.8345 0.7399 0.5405 0.3567 0.2855 0.6722 

SCNN_UNet_ConvLSTM1 0.8971 0.8493 0.8234 0.7633 0.8997 0.3054 0.5307 0.7424 0.7436 0.6243 0.5568 0.5366 0.6992 

SCNN_UNet_ConvLSTM2 0.8670 0.8866 0.8405 0.7565 0.7955 0.4179 0.5933 0.7880 0.7285 0.6296 0.4747 0.4134 0.7024 

SCNN_UNetLight_ConvGRU1 0.8896 0.8212 0.7819 0.7517 0.8913 0.3043 0.4961 0.8133 0.7000 0.5635 0.3086 0.2733 0.6637 

SCNN_UNetLight_ConvGRU2 0.8593 0.8730 0.7878 0.7406 0.8889 0.3335 0.4266 0.7263 0.7782 0.6498 0.5280 0.5257 0.6910 

SCNN_UNetLight_ConvLSTM1 0.8115 0.8056 0.7168 0.6882 0.8179 0.2613 0.3681 0.7834 0.7576 0.5701 0.5281 0.5081 0.6418 

SCNN_UNetLight_ConvLSTM2 0.8377 0.8158 0.7620 0.6971 0.8365 0.2209 0.3577 0.7551 0.6594 0.4597 0.3545 0.3559 0.6079 

 

Model 

Model 
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2.3.4 Parameter analysis and ablation study 

1) The added value of SCNN 

Regarding the neural network architecture, the effects of SCNN were investigated by evaluating 

the performances of the model variants with and without SCNN layers. As demonstrated in 

Figure 2-3 and Figure 2-4, together with the quantitative results in Table 2-2 and Table 2-3, 

the proposed SegNet and UNet-based models with SCNN embedded encoder, i.e., 

SCNN_SegNet_ConvLSTM, SCNN_SegNet_ConvGRU, SCNN_UNet_ConvLSTM, and 

SCNN_UNet_ConvGRU, outperform SegNet_ConvLSTM and UNet_ConvLSTM, which are 

also SegNet or UNet-based sequential models using multiple continuous image frames as inputs 

but without SCNN. Especially, SCNN_UNet_ConvLSTM2 obtains the best result in normal 

testing, while SCNN_SegNet_ConvLSTM2 delivers the best performance in challenging 

situations. 

For testing on normal cases in tvtLANE testset #1, as shown in Table 2-2, by adding SCNN 

layer in the encoder, almost all the proposed models with SCNN embedded encoder outperform 

the baseline models with better F1-measure. To be specific, SCNN_SegNet_ConvLSTM2 

improves the lane detection accuracy by around 0.3% and F1-measure by around 1%, and these 

improvements are from the already very good results obtained by SegNet_ConvLSTM. 

Similarly, SCNN_UNet_ConvLSTM2 overperforms UNet_ConvLSTM with even larger 

margins regarding Accuracy, Precision, and F1-measure. 

For challenging situations, adding the SCNN layer also helps the proposed model, 

SCNN_SegNet_ConvLSTM2, beat other baseline models, and deliver the best F1-measure as 

indicated in Table 2-3. 

Figure 2-5 visualises the extracted features at the Down_ConvBlock_1 layer for UNet-based 

models, with and without SCNN. Clearly, vast differences can be witnessed between the 

baseline model UNet_ConvLSTM and the proposed model SCNN_UNet_ConvLSTM2. In 

Figure 2-5 (b), the CNN-based UNet layers identify the low-level features in the images 

regarding the target lane lines. However, the extracted features are not so clear, i.e., there are 

some interference signals, especially as visualised in the third image of row (b), which is 

supposed to affect the model training (i.e., updating weight parameters of the neural networks) 

and thus affect the model’s performance regarding the marking detection results. It might 

further influence the final detection results. In contrast, with SCNN layers, the extracted 

features of the lanes are more inerratic, clear, and evident as shown in Figure 2-5 (c). There are 

fewer interferences surrounding the detected lane features. This verifies SCNN’s powerful 

strength in detecting the spatial relations in every single image with its message passing 

mechanism. 

All the above results demonstrate that adding the SCNN layer embedded in the encoder does 

contribute to the spatial feature extraction, with which the model could better make the utmost 

use of the spatial-temporal information among the continuous image frames. 

2) Different locations of the SCNN layer 

Results of testing different locations of the SCNN layer in the proposed model architecture are 

shown in Table 2-4. The results reveal that: (a) Compared with baseline models without SCNN 
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layers, the embedding of SCNN layers really helps to improve the models’ performance, which 

further verifies the added value of SCNN and accords with the aforementioned results in 1); (b) 

In terms of the main evaluation metric F1-measure, embedding SCNN layer after the Conv1_1 

(in SegNet-based model) or In_Conv_1 (in UNet-based model) layer delivers better results 

compared with embedding it at the very beginning or early layers of the encoder; (c) For UNet-

based model, embedding SCNN layer at the very beginning delivers quite good Precision and 

Accuracy, but worse Recall, which means there are fewer False Positives but more False 

Negatives. This should be related to the properties of the UNet-style neural network. These 

results further confirm the effectiveness of the proposed model architecture. 

 

(c)

(b)

(a)

Normal Challenging #2 shadow-bright Challenging #8 blur&curve

 

Figure 2-5. Visualisation of the extracted low-level features at Down_ConvBlock_1 for 

UNet-based models 

(a) Original image. (b) Results of UNet_ConvLSTM (without SCNN layers). (c) Results of 

the SCNN_UNet_ConvLSTM2 (with SCNN layers). 

Table 2-4. Model performance comparison with different locations of the SCNN layer on 

tvtLANE testsets #1 and #2 

                              Testing 

Datasets 

 

 

Testset #1 

(Normal Situations) 

Testset #2 

(Challenging Scenes) 

 
Location 

of SCNN 

Test_ 

Acc 

(%) 

Precision Recall 
F1-

measure 

Test_ 

Acc 

(%) 

Precision Recall 
F1-

measure 

SegNet_ConvLSTM Without 97.92 0.874 0.931 0.901 97.83 0.756 0.765 0.761 

SCNN_SegNet_Conv

LSTM2 

Conv1_1 98.00 0.884 0.921 0.902 97.92 0.757 0.757 0.757 

Conv2_1 98.07 0.893 0.928 0.910 97.90 0.767 0.766 0.767 

UNet_Conv LSTM Without 98.00 0.857 0.957 0.904 97.93 0.778 0.660 0.714 

SCNN_UNet_Conv 

LSTM2 

In_Conv_1 98.28 0.896 0.939 0.917 98.08 0.776 0.593 0.672 

Conv1_1 98.19 0.889 0.950 0.918 97.95 0.778 0.640 0.702 

Model 
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3) Type and number of ST-RNN layers 

As described in Section 2.3, in the proposed model architecture, two types of RNNs, that is, 

ConvLSTM and ConvGRU, are employed to serve in the ST-RNN block, to capture and make 

use of the ST dependencies and correlations among the continuous image sequences. The 

number of hidden ConvLSTM and ConvGRU layers was also tested from 1 to 2. The 

quantitative results are demonstrated in Tables 2-2 and 2-3, while some intuitive qualitative 

insights could be drawn from Figures 2-3 and 2-4. 

From Table 2-2, it is illustrated that, in general, models adopting ConvLSTM layers in the ST-

RNN block perform better than those adopting ConvGRU layers with improved F1-measure, 

except for the UNetLight-based models. This could be explained by ConvLSTM’s better 

properties in extracting ST features and capturing time dependencies by more control gates and 

thus more parameters, compared with ConvGRU. Furthermore, from Tables 2-2 and 2-3, it is 

observed that models with two hidden ST-RNN layers, for both ConvLSTM and ConvGRU, 

generally perform better than those with only one hidden ST-RNN layer. This could be 

speculated that with two hidden ST-RNN layers, one layer can serve for sequential feature 

extraction, and the other can achieve ST feature integration. The improvements of two ST-RNN 

layers over one are not that significant, which might be due to (a) models employing one ST-

RNN layer already obtaining good results; (b) since the length of the continuous image frames 

is only five, one ST-RNN layer might be already enough to do the ST feature extraction, so 

when incorporating longer image sequences, the superiorities of two ST-RNN layers could be 

promoted. However, longer image sequences require more computational resources and longer 

training time, which could not be afforded at the present stage in this study. This could be the 

future research direction. 

4) Number of parameters and real-time capability 

As shown in Table 2-2, the two proposed candidate models, that is, 

SCNN_SegNet_ConvLSTM2 and SCNN_UNet_ConvLSTM2, possess a bit more parameters 

compared with the baseline SegNet_ConvLSTM and UNet_ConvLSTM, respectively. 

However, almost all of the proposed model variants with different types and numbers of ST-

RNN layers outperform the baselines, and some of them are even with low parameter sizes, for 

example, SCNN_SegNet_ConvGRU1, SCNN_SegNet_ConvLSTM1, 

SCNN_UNet_ConvGRU1, SCNN_UNet_ConvLSTM1. Generally speaking, lower numbers of 

model parameters mean better real-time capability. 

In addition, four model variants were implemented with a modified light version of UNet, that 

is, UNetLight, serving as the network backbone to reduce the total parameter size and improve 

the model’s ability to operate in real time. The UNetLight backbone has a similar network 

design to UNet, whose parameter settings are demonstrated in Appendix Table 2-A2. The only 

difference is that all the numbers of kernels in the ConvBlocks are reduced to half, except for 

the Input in In_ConvBlock (with the input channel of three unchanged) and the Output in 

Out_ConvBlock (with the output channel of two unchanged). From the testing results in Table 

2-2, it is shown that the model named SCNN_UNetLight_ConvGRU2, with fewer parameters 

than all the baseline models, beats the baselines, exhibiting better performance regarding both 

accuracy and F1-measure. To be specific, compared with the best baseline model, that is, 

UNet_ConvLSTM, SCNN_UNetLight_ConvGRU2 only uses less than one-fifth of the 
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parameter size but delivers better evaluation metrics in testing accuracy, precision, and F1-

measure. 

Regarding UNetLight-based models, models using ConvGRU layers in the ST-RNN block 

perform better than those adopting ConvLSTM. The reason could be that the light version UNet 

cannot implement high-quality feature extraction, which does not feed enough information for 

ConvLSTM, while ConvGRU, with fewer control gates, is more robust when low-level features 

are not that fully extracted. 

All these results further verify the proposed network architecture’s effectiveness and strength. 

2.4 Conclusion 

In this study, a novel ST sequence-to-one model framework with a hybrid neural network 

architecture is proposed for robust lane detection under various normal and challenging driving 

scenes. This architecture integrates a single image feature extraction module with SCNN, an 

ST feature integration module with ST-RNN, together with the encoder-decoder structure. The 

proposed architecture achieved significantly better results in comparison to baseline models 

that use a single frame (e.g., UNet, SegNet, and LaneNet), as well as the state-of-the-art models 

adopting “CNN+RNN” structures (e.g., UNet_ConvLSTM, SegNet_ConvLSTM), with the 

best testing accuracy, precision, and F1-measure on the normal driving dataset (i.e., tvtLANE 

testset #1) and the best F1-measure on the 12 challenging driving scenarios dataset (tvtLANE 

testset #2). The results demonstrate the effectiveness of strengthening spatial relation 

abstraction in every single image with SCNN layer, plus the employment of multiple continuous 

image sequences as inputs. The results also demonstrate the proposed model architecture’s 

ability in making the best of the ST information in continuous image frames. Extensive 

experimental results show the superiorities of the sequence-to-one “SCNN + ConvLSTM” over 

“SCNN + ConvGRU” and ordinary “CNN + ConvLSTM” regarding sequential ST feature 

extracting and learning, together with target-information classification for robust lane detection. 

In addition, testing results of the model variants with the modified light version of UNet (i.e., 

UNetLight) as the backbone demonstrate the proposed model architecture’s potential regarding 

real-time capability. 

To the best of the authors’ knowledge, the proposed model is the first attempt that tries to 

strengthen both spatial relations regarding feature extraction in every image frame together with 

the ST correlations and dependencies among image frames for lane detection, and the extensive 

evaluation experiments demonstrate the strength of this proposed architecture. Therefore, it is 

recommended in future research to incorporate both aspects to obtain better performance. 

In this study, the challenging cases do not include night driving, rainy, or wet road conditions, 

nor do they include situations in which the input images are defective (e.g., partly masked or 

blurred). There are demands to build larger test sets with comprehensive challenging situations 

to further validate the model’s robustness. Since a large amount of unlabelled driving scene data 

involving various challenging cases was collected within the research group, a future research 

direction might be to develop semi-supervised learning methods and employ domain adaptation 

to label the collected data, and then open-source them for boosting the research in the field of 

robust lane detection. Furthermore, to further enhance the lane-detection model, customised 

loss functions, pre-trained techniques adopted in image-inpainting tasks, for example, masked 
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autoencoders, plus sequential attention mechanisms, could be introduced and integrated into 

the proposed framework. 
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Appendix 

Table 2-A1. Parameter settings for each layer of the SegNet-based neural network 

Layer 
Input 

(channel×hight×width) 
Output 

(channel×hight×width) 
Kernel Padding Stride Activation 

Down_Conv

Block_1 

Conv_1_1 3×128×256 64×128×256 3×3 (1,1) 1 ReLU 

Conv_1_2 64×128×256 64×128×256 3×3 (1,1) 1 ReLU 

Maxpool1 64×128×256 64×64×128 2×2 (0,0) 2 --- 

SCNN 

SCNN_Down 64×1×128 64×1×128 1×9 (0,4) 1 ReLU 

SCNN_Up 64×1×128 64×1×128 1×9 (0,4) 1 ReLU 

SCNN_Right 64×64×1 64×64×1 9×1 (4,0) 1 ReLU 

SCNN_Left 64×64×1 64×64×1 9×1 (4,0) 1 ReLU 

Down_Conv

Block_2 

Conv_2_1 64×64×128 128×64×128 3×3 (1,1) 1 ReLU 

Conv_2_2 128×64×128 128×64×128 3×3 (1,1) 1 ReLU 

Maxpool2 128×64×128 128×32×64 2×2 (0,0) 2 --- 

Down_Conv

Block_3 

Conv_3_1 128×32×64 256×32×64 3×3 (1,1) 1 ReLU 

Conv_3_2 256×32×64 256×32×64 3×3 (1,1) 1 ReLU 

Conv_3_3 256×32×64 256×32×64 3×3 (1,1) 1 ReLU 

Maxpool3 256×64×128 256×16×32 2×2 (0,0) 2 --- 

Down_Conv

Block_4 

Conv_4_1 256×16×32 512×16×32 3×3 (1,1) 1 ReLU 

Conv_4_2 512×16×32 512×16×32 3×3 (1,1) 1 ReLU 

Conv_4_3 512×16×32 512×16×32 3×3 (1,1) 1 ReLU 

Maxpool4 512×16×32 512×8×16 2×2 (0,0) 2 --- 

Down_Conv

Block_5 

Conv_5_1 512×8×16 512×8×16 3×3 (1,1) 1 ReLU 

Conv_5_2 512×8×16 512×8×16 3×3 (1,1) 1 ReLU 

Conv_5_3 512×8×16 512×8×16 3×3 (1,1) 1 ReLU 

Maxpool5 512×8×16 512×4×8 2×2 (0,0) 2 --- 

ST-RNN 

Layer1* 

5 × ConvLSTMCell(input=(512×4×8), kernel=(3,3), stride=(1,1), padding=(1,1)) Or 

5 × ConvGRUCell(input=(512×4×8), kernel=(3,3), stride=(1,1), padding=(1,1), dropout(0.5)) 

ST-RNN 

Layer2
**

 

5 × ConvLSTMCell(input=(512×4×8), kernel=(3,3), stride=(1,1), padding=(1,1)) Or 

5 × ConvGRUCell(input=(512×4×8), kernel=(3,3), stride=(1,1), padding=(1,1), dropout(0.5)) 

Up_Conv 

Block_5 

MaxUnpool1 512×4×8 512×8×16 2×2 (0,0) 2 --- 

Up_Conv_5_1 512×8×16 512×8×16 3×3 (1,1) 1 ReLU 

Up_Conv_5_2 512×8×16 512×8×16 3×3 (1,1) 1 ReLU 

Up_Conv_5_3 512×8×16 512×8×16 3×3 (1,1) 1 ReLU 

Up_Conv 

Block_4 

MaxUnpool2 512×8×16 512×16×32 2×2 (0,0) 2 --- 

Up_Conv_4_1 512×16×32 512×16×32 3×3 (1,1) 1 ReLU 

Up_Conv_4_2 512×16×32 512×16×32 3×3 (1,1) 1 ReLU 

Up_Conv_4_3 512×16×32 256×16×32 3×3 (1,1) 1 ReLU 

Up_Conv 

Block_3 

MaxUnpool3 256×16×32 256×32×64 2×2 (0,0) 2 --- 

Up_Conv_3_1 256×32×64 256×32×64 3×3 (1,1) 1 ReLU 

Up_Conv_3_2 256×32×64 256×32×64 3×3 (1,1) 1 ReLU 

Up_Conv_3_3 256×32×64 128×32×64 3×3 (1,1) 1 ReLU 

Up_Conv 

Block_2 

MaxUnpool4 128×32×64 128×64×128 2×2 (0,0) 2 --- 

Up_Conv_2_1 128×64×128 128×64×128 3×3 (1,1) 1 ReLU 

Up_Conv_2_2 128×64×128 64×64×128 3×3 (1,1) 1 ReLU 

Up_Conv 

Block_1 

MaxUnpool5 64×64×128 64×128×256 2×2 (0,0) 2 --- 

Up_Conv_1_1 64×128×256 64×128×256 3×3 (1,1) 1 ReLU 

Up_Conv_1_2 64×128×256 2×128×256 3×3 (1,1) 1 LogSoftmax 

 

Abbreviations: ConvGRU, convolutional gated recurrent unit; ConvLSTM, convolutional long 

short-term memory; SCNN, spatial convolutional neural network; ST-RNN, spatial-temporal 

recurrent neural network; ReLU, Rectified Linear Unit. 

* Two types of ST-RNN, i.e., ConvLSTM and ConvGRU are tested; 

** ST-RNN blocks are tested with 1 hidden layer or 2 hidden layers.  
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Table 2-A2. Parameter settings for each layer of the UNet-based neural network 

Layer 
Input 

(channel×hight×width) 

Output 

(channel×hight×width) 
Kernel Padding Stride Activation 

In_Conv 

Block 

In_Conv_1 3×128×256 64×128×256 3×3 (1,1) 1 ReLU 

In_Conv_2 64×128×256 64×128×256 3×3 (1,1) 1 ReLU 

SCNN 

SCNN_Down 64×1×256 64×1×256 1×9 (0,4) 1 ReLU 

SCNN_Up 64×1×256 64×1×256 1×9 (0,4) 1 ReLU 

SCNN_Right 64×128×1 64×128×1 9×1 (4,0) 1 ReLU 

SCNN_Left 64×128×1 64×128×1 9×1 (4,0) 1 ReLU 

Down_Conv 

Block_1 

Maxpool1 64×128×256 64×64×128 2×2 (0,0) 2 --- 

Conv_1_1 64×64×128 128×64×128 3×3 (1,1) 1 ReLU 

Conv_1_2 128×64×128 128×64×128 3×3 (1,1) 1 ReLU 

Down_Conv 

Block_2 

Maxpool2 128×64×128 128×32×64 2×2 (0,0) 2 --- 

Conv_2_1 128×32×64 256×32×64 3×3 (1,1) 1 ReLU 

Conv_2_2 256×32×64 256×32×64 3×3 (1,1) 1 ReLU 

Down_Conv 

Block_3 

Maxpool3 256×32×64 256×16×32 2×2 (0,0) 2 --- 

Conv_3_1 256×16×32 512×16×32 3×3 (1,1) 1 ReLU 

Conv_3_2 512×16×32 512×16×32 3×3 (1,1) 1 ReLU 

Down_Conv 

Block_4 

Maxpool4 512×16×32 512×8×16 2×2 (0,0) 2 --- 

Conv_4_1 512×8×16 512×8×16 3×3 (1,1) 1 ReLU 

Conv_4_2 512×8×16 512×8×16 3×3 (1,1) 1 ReLU 

ST-RNN  

Layer1* 

5 × ConvLSTMCell(input=(512×8×16), kernel=(3,3), stride=(1,1), padding=(1,1)) Or 

5 × ConvGRUCell(input=(512×8×16), kernel=(3,3), stride=(1,1), padding=(1,1), dropout(0.5)) 

ST-RNN  

Layer2** 

5 × ConvLSTMCell(input=(512×8×16), kernel=(3,3), stride=(1,1), padding=(1,1)) Or 

5 × ConvGRUCell(input=(512×8×16), kernel=(3,3), stride=(1,1), padding=(1,1), dropout(0.5)) 

Up_Conv 

Block_4 

Upsampling 

Bilinear2D_1 
512×8×16 512×16×32 2×2 (0,0) 2 --- 

Up_Conv_4_1 1024×16×32 256×16×32 3×3 (1,1) 1 ReLU 

Up_Conv_4_2 256×16×32 256×16×32 3×3 (1,1) 1 ReLU 

Up_Conv 

Block_3 

Upsampling 

Bilinear2D_2 
256×16×32 256×32×64 2×2 (0,0) 2 --- 

Up_Conv_3_1 512×32×64 128×32×64 3×3 (1,1) 1 ReLU 

Up_Conv_3_2 128×32×64 128×32×64 3×3 (1,1) 1 ReLU 

Up_Conv 

Block_2 

Upsampling 

Bilinear2D_3 
128×32×64 128×64×128 2×2 (0,0) 2 --- 

Up_Conv_2_1 156×64×128 64×64×128 3×3 (1,1) 1 ReLU 

Up_Conv_2_2 64×64×128 64×64×128 3×3 (1,1) 1 ReLU 

Up_Conv 

Block_1 

Upsampling 

Bilinear2D_4 
64×64×128 64×128×256 2×2 (0,0) 2 --- 

Up_Conv_1_1 128×128×256 64×128×256 3×3 (1,1) 1 ReLU 

Up_Conv_1_2 64×128×256 64×128×256 3×3 (1,1) 1 ReLU 

Out_Conv 

Block 
Out_Conv 64×128×256 2×128×256 1×1 (0,0) 1 --- 

Abbreviations: ConvGRU, convolutional gated recurrent unit; ConvLSTM, convolutional long 

short-term memory; SCNN, spatial convolutional neural network; ST-RNN, spatial-temporal 

recurrent neural network; ReLU, Rectified Linear Unit. 

* Similar to the SegNet-based network architecture, two types of ST-RNN, i.e., ConvLSTM and 

ConvGRU, are tested;  

** ST-RNN blocks are tested with one hidden layer or two hidden layers. 
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3 Efficient sequential neural network based on 

spatial-temporal attention and linear LSTM for 

robust lane detection using multi-frame images 

Abstract 

Lane detection serves as a fundamental task for automated vehicles and Advanced Driver 

Assistance Systems. However, existing lane detection methods often fail to deliver the 

versatility of accurate, robust, and real-time compatible lane detection, especially under 

challenging driving scenes. Available vision-based methods in the literature frequently overlook 

critical regions of the image and their spatial-temporal salience regarding the detection results, 

leading to poor performance in peculiar difficult circumstances (e.g., serious occlusion, dazzle 

lighting). To address these limitations, this study introduces a novel spatial-temporal attention 

mechanism that can focus on key features of lane lines and exploit salient spatial-temporal 

correlations among continuous image frames to enhance the accuracy and robustness of lane 

detection. Under the standard encoder-decoder structure and with the implementation using 

common neural network backbones, efficient sequential neural network models are developed 

incorporating the proposed spatial-temporal attention mechanism. The developed models are 

trained and evaluated on three large-scale open-source datasets. Extensive experiments 

demonstrate the strength and robustness of the developed model outperforming available state-

of-the-art methods across various testing scenarios. Furthermore, with the spatial-temporal 

attention mechanism, the developed sequential neural network models exhibit fewer parameters 

and reduced Multiply-Accumulate Operations (MACs) compared to baseline sequential models, 

highlighting their computational efficiency and real-world applicability. Relevant data, code, 

and models are released at https://doi.org/10.4121/4619cab6-ae4a-40d5-af77-582a77f3d821. 

This chapter is currently under review for journal publication, and it has been pre-printed 

on TechRxiv. 

Patil, S., Dong, Y.*, Farah, H., & Hellendoorn, H. (2025). Efficient Sequential Neural Network 

based on Spatial-Temporal Attention and Linear LSTM for Robust Lane Detection Using 

Multi-frame Images. https://doi.org/10.36227/techrxiv.174195585.50092304/v1 (Co-first 

authors and corresponding author)  

https://doi.org/10.4121/4619cab6-ae4a-40d5-af77-582a77f3d821
https://doi.org/10.36227/techrxiv.174195585.50092304/v1
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3.1 Introduction 

The objective of lane detection is to assist vehicles in locating and positioning themselves 

within the lane by identifying and predicting the positions of marked lane lines. While various 

sensors, e.g., mono-camera, stereo-camera, radar, and LiDAR, could be applied in the process 

of detecting the lane boundaries for accurate localisation (Bai et al., 2018; Bar Hillel et al., 

2014), the most common, feasible, and successful approach is vision-based lane marking 

detection (Chetan et al., 2020; Yeong et al., 2021). 

Conventional vision-based methods usually handle lane detection by utilising specialized hand-

crafted low-level features with traditional computer vision techniques, e.g., Inverse Perspective 

Mapping applied in the image pre-processing stage (Aly, 2008; B. F. Wang et al., 2014); Hough 

transform applied for feature extraction (Berriel et al., 2017; Jiao et al., 2019; Satzoda et al., 

2010; Zheng et al., 2018); Gaussian filters and Random Sample Consensus (RANSAC) 

employed in the post-processing process to smooth the lane detection results (Sivaraman & 

Trivedi, 2013; Y. Wang et al., 2012). These traditional methods suffer from many shortcomings, 

e.g., they require hand-crafted features which are always complex and time-consuming but not 

necessarily suitable or effective enough, and they usually use one single image to detect the 

lane, thus they cannot handle some extremely challenging driving scenarios. 

Recent advances in computational hardware, along with rapid developments in neural network 

(NN) models, have enabled deep learning based lane detection methods to extract useful 

features automatically. They have been widely used to eliminate intermediate feature crafting, 

as well as enable end-to-end lane detection, outperforming traditional approaches (Hou et al., 

2019; Neven et al., 2018; Pan et al., 2018; Tang et al., 2021).  

Usually, deep Convolutional Neural Networks (CNNs) have been widely adopted for their 

superior abilities in image feature abstraction, demonstrating exceptional performance in lane 

detection tasks, e.g., in (Kim & Park, 2017; Pan et al., 2018). In addition to CNNs, other 

architectures like Recurrent Neural Networks (RNNs), Generative Adversarial Networks 

(GANs), and Vision Transformers (ViTs) have also been explored in the domain of lane 

detection research. RNNs, known for their capability to process sequential data, are adept at 

abstracting and predicting time-series features. Consequently, they are often employed to model 

sequential patterns within a single image (J. Li et al., 2017) or across frames in continuous 

image sequences for lane detection (Dong et al., 2023; Zou et al., 2020). GANs, which leverage 

two neural networks competing in a shared task have been used for data augmentation (e.g., 

generating synthetic lane images) and transfer learning applications in the lane detection task 

(T. Liu et al., 2020). Recently, ViTs, adapted from the original Transformer architecture, 

renowned for its success in natural language processing (NLP) tasks, have been applied to 

computer vision problems, including lane detection. Studies such as (Han et al., 2022; R. Liu 

et al., 2021; Yu et al., 2020; Zhao et al., 2024) utilise the self-attention mechanism inherent in 

Transformers to focus on salient regions in an image, improving lane detection accuracy. 

However, these approaches predominantly rely on single-image, overlooking temporal 

correlations and the varying importance of frames in continuous driving scenarios. 

Furthermore, a few studies have attempted to combine CNNs and RNNs to detect lane markings 

through continuous driving scene image frames (Dong et al., 2023; R. Li & Dong, 2023; J. 

Zhang et al., 2022; Zou et al., 2020). However, these approaches fail to fully exploit the inherent 

properties of lanes and often overlook the salient spatial-temporal correlations and 
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dependencies among critical regions across sequential frames. As a result, their performance 

remains unsatisfactory under highly challenging driving conditions. 

To address the aforementioned research gaps and improve the performance of vision-based lane 

detection, this study introduces a novel efficient sequential neural network architecture with the 

proposed spatial-temporal attention mechanisms. The developed model formulates lane 

detection as a segmentation task and takes multiple continuous image frames as input. By 

effectively extracting key features and leveraging salient correlations across these frames, the 

proposed approach strongly exploits the spatial-temporal information inherent in the driving 

scene. Built on a standard encoder-decoder framework and utilising labelled ground truth from 

the final image in the sequence, the model employs a supervised, end-to-end learning strategy. 

The primary contributions of this study are as follows:  

1. Introduction of spatial-temporal attention mechanisms: Three attention model variants 

are proposed and implemented to improve feature extraction. 

2. Strong exploitation of spatial-temporal correlations: The proposed spatial-temporal 

attention mechanism effectively captures and utilises salient spatial-temporal 

relationships among different regions in continuous image frames. 

3. Superior performance: Extensive experiments demonstrate that the proposed model 

outperforms state-of-the-art baseline models in both normal and challenging driving 

scenarios. 

4. Lightweight architecture: The proposed model is more compact compared to other 

sequential models designed for multi-frame input, making it computationally efficient. 

5. Robustness to unseen data: Qualitative evaluations show that the model maintains high 

robustness on entirely new and unlabelled datasets, unseen during training. 

3.2 Literature review 

Existing studies in the field of lane detection and prediction using vision-based models can be 

broadly classified into two main categories: (1) classical image processing methods with 

traditional computer vision techniques, and (2) deep learning based methods with neural 

network models. This section briefly reviews and summarises some existing works in both 

categories, and to connect with the proposed method, it also introduces the available attention 

mechanism applied in vision tasks. 

3.2.1 Vision-based lane detection through classical image processing 

Before the widespread adoption of machine learning technologies, particularly deep learning, 

lane detection primarily relied on hand-crafted features and was typically conducted in a four-

step process: preprocessing an image, capturing features, detecting lines and fitting them, and 

postprocessing the image (Bar Hillel et al., 2014; Narote et al., 2018). 

The following are some notable studies that exemplify this pipeline. After pre-processing and 

image enhancement by undergoing grayscale transformation and temporal blurring, Borkar et 

al. (2009) implemented Inverse Perspective Mapping (IPM) during preprocessing to transform 

images from a camera perspective to a bird’s-eye view. They then utilised the RANSAC 
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algorithm to eliminate outliers and employed a Kalman filter for lane prediction and smoothing. 

In a follow-up study (Borkar et al., 2012), they improved their pipeline by introducing a novel 

time-slicing method to generate ground truth data, together with techniques of integrating pixel 

remapping, outlier removal, and prediction with tracking. Guo et al. (2015) developed a real-

time and efficient lane detection algorithm method based on an improved RANSAC algorithm. 

Their image preprocessing includes setting a region of interest (ROI) on the video frames, 

grayscaling the images, and denoising the grey-level images. Then, they adopted the Canny 

edge detection algorithm to extract significant feature points. Based on the extracted features, 

they proposed an improved RANSAC algorithm combined with the least-squares technique to 

estimate parameters for lane modelling using a generalised curve lane parameter model. Tan et 

al. (2014) proposed a robust curve lane detection method based on the integration of the 

Improved River Flow (IRF) and RANSAC method. Their approach grouped lane markings into 

two vision fields: a near-vision field for straight lines and a far-vision field for curved lines. 

Based on the hyperbola-pair model, the IRF was employed to search feature points in the far 

vision field, and the RANSAC was adopted to calculate the curvatures to fit curved lane lines 

during postprocessing. Their experimental results demonstrated that the proposed model can 

handle certain challenging scenarios, such as dashed lane markings and vehicle occlusion. 

As stated, these traditional vision-based lane detection methods through classical image 

processing rely on hand-crafted features, line detection and fitting, and extensive post-

processing, making them inherently time-consuming. Furthermore, the limits of hand-crafted 

features and the usage of single-image inputs restrict their ability to adapt to dynamic and 

challenging driving scenarios. Consequently, these methods often fail to deliver the 

performance and robustness necessary for real-world lane detection applications. 

3.2.2 Vision-based lane detection using deep learning methods 

Over the past decade, significant advancements in computational power, the availability of 

large-scale datasets, and the rapid evolution of neural network algorithms have enabled deep 

learning (DL) methods to achieve remarkable success across various domains, including 

computer vision, NLP, and speech recognition. As a typical segmentation task in the field of 

computer vision, lane detection has particularly benefited from these advancements. Numerous 

vision-based deep learning models have been developed, demonstrating excellent performance 

and elevating the research in this domain to a brand new level. 

DL approaches for lane detection can generally be categorised into four dominant approaches: 

(1) segmentation-based pipeline (Dong et al., 2023; Kim & Park, 2017; Ko et al., 2022; T. Liu 

et al., 2020; Pan et al., 2018; J. Zhang et al., 2022; Zou et al., 2020), (2) row-based prediction 

(Qin et al., 2020; Yoo et al., 2020), (3) anchor-based approach (X. Li et al., 2020; Tabelini et 

al., 2021; H. Xu et al., 2020), and (4) parametric prediction methods (R. Liu et al., 2021; 

Tabelini et al., 2020). Despite these approaches varying in methodology, they all share the 

commonality of leveraging deep neural networks (DNNs). Therefore, the following subsection 

categorises and reviews these methods based on the principal or dominant neural network 

structure utilised. 
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(1) CNN only (or CNN dominant) 

CNNs are highly effective at image feature extraction and have become a cornerstone of nearly 

all computer vision tasks. Treating lane detection as a semantic segmentation task, CNNs are 

often employed in an end-to-end encoder-decoder framework. For instance, early work by 

Huval et al. (2015) demonstrated how existing CNN architectures could be applied to lane 

detection and classification in an end-to-end manner during highway driving. Pan et al. (2018) 

developed a special convolutional neural network, Spatial CNN (SCNN), which generalises 

traditional deep layer-by-layer convolutions to slice-by-slice convolutions within feature maps. 

This architecture proved particularly effective at detecting long, continuous shapes such as 

traffic lanes, poles, and walls. SCNN achieved outstanding performance, securing first place in 

the TuSimple Lane Detection Challenge2, a widely recognised benchmark. Kim and Park (2017) 

investigated lane detection through a transfer learning framework, constructing a CNN-based 

encoder-decoder network trained on ImageNet for lane segmentation tasks. Furthermore, 

utilising the widely adopted backbone ResNet (K. He et al., 2016), Tabelini et al. (2021) 

developed an anchor-based feature pooling mechanism combined with a novel anchor-based 

attention approach that aggregates global contextual information, further enhancing lane 

detection performance. 

(2) CNN combined with RNN 

Neural network models combining CNN and RNN have been explored to model time-series 

features in both a single image and sequences of image frames. J. Li et al. (2017) divided road 

images into a number of continuous slices and employed a convolutional neural network to 

extract features from each slice. To infer the lane structure from these feature maps, they 

incorporated an RNN. This combined approach outperformed the use of a CNN alone. However, 

in this framework, the RNN is employed to model sequence features within a single image, 

limiting its ability to fully capture temporal dependencies across multiple frames. Zou et al. 

(2020) examined multiple frames of a continuous driving scene instead of focusing solely on 

one image. They proposed a hybrid model combining an encoder-decoder CNN with a 

Convolutional Long Short-Term Memory (ConvLSTM) network, a specific type of RNN. In 

this architecture, the CNN extracts features from each image frame, while the ConvLSTM 

processes these CNN-extracted features across multiple consecutive frames, enabling the model 

to capture both spatial and temporal information for lane prediction. This hybrid CNN-

ConvLSTM architecture demonstrated a significant improvement in performance compared to 

models using only a single image. J. Zhang et al. (2022) developed a similar pipeline but with 

Convolutional Gated Recurrent Units (ConvGRUs) instead of ConvLSTM. In this model, one 

ConvGRU block extracts low-level lane features, while another ConvGRU block processes the 

spatial-temporal information across multiple frames. This approach also showed enhanced 

results compared to single-image methods.  

(3) Generative adversarial network (GAN) 

Generative adversarial networks (GANs) (Goodfellow et al., 2014) are primarily used for tasks 

such as image-to-image translation (Isola et al., 2017; J. Y. Zhu et al., 2017), where unpaired 

 

2  TuSimple Lane Detection Challenge: https://github.com/TuSimple/tusimple-

benchmark/tree/master/doc/lane_detection  

https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
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samples from one image domain are translated to another, and for image data enhancement 

(Alqahtani et al., 2021; K. Li et al., 2024; Meng et al., 2019), such as improving image quality 

or augmenting datasets. These networks consist of two neural networks, a generator and a 

discriminator, that work in opposition: the generator creates images, and the discriminator 

evaluates them, leading to progressively better image generation through adversarial training. 

This setup has made GANs highly effective for generating realistic images under various 

conditions and for tasks like data augmentation in computer vision.  

For lane detection, GANs have been utilised to improve environmental adaptability, e.g., in 

challenging low-light driving conditions. T. Liu et al. (2020) proposed a style-transfer-based 

data enhancement method, using GANs to generate realistic images that simulate low-light 

driving scenarios. This model includes three components: Better-CycleGAN, a light condition 

style transfer network, and a lane detection network. Importantly, this method does not require 

manual annotations or additional inference computations, offering a more scalable solution for 

training lane detection systems in diverse conditions. In a different approach, Ghafoorian et al. 

(2019) employed a GAN for semantic segmentation tasks in lane detection. They introduced an 

embedding-loss GAN, which consists of a generator that predicts lane structures from input 

images and a discriminator that evaluates the detection results. The generator and discriminator 

share weights, which significantly enhances the efficiency of the network while maintaining 

high performance in lane detection. 

3.2.3 Attention mechanism applied in vision tasks 

Inspired by the human visual attention mechanism, where humans quickly scan an image to 

focus on areas of interest while suppressing irrelevant details, recent deep learning models have 

incorporated artificial attention mechanisms. These models aim to mimic human attention, 

enabling the neural network to focus on the most task-relevant parts of the input for more 

effective processing. This approach has led to significant advancements in various machine 

translation and visual tasks (M. H. Guo et al., 2022; W. He et al., 2021; Luong et al., 2015). 

Guo et al. (2022) grouped attention methods into six categories, i.e., 1) channel attention which 

generates attention masks to select important channels (Q. Wang et al., 2020; Yang et al., 2020); 

2) spatial attention which considers where to pay attention to by generating attention mask to 

pick out important spatial regions (Jaderberg et al., 2015; X. Zhu et al., 2019); 3) temporal 

attention which counts when to pay attention to using attention mask in time to screen out key 

frames (e.g., Xu et al., 2017; R. Zhang et al., 2019); 4) branch attention that considers which 

important branches to pay attention to (Y. Chen et al., 2020; X. Li et al., 2019); 5) hybrid 

combined channel and spatial attention (L. Chen et al., 2017; F. Wang et al., 2017); and 6) 

hybrid combined spatial and temporal attention (Fu et al., 2019; Gao et al., 2020). For more 

details, please refer to the survey paper (M. H. Guo et al., 2022). 

As for the lane detection task, several studies (Han et al., 2022; R. Liu et al., 2021; Yu et al., 

2020; Zhao et al., 2024) have employed Transformer models, which integrate the self-attention 

mechanism. These models allow the network to focus on important regions of the image, which 

is particularly useful for lane detection. However, these methods typically still rely on a single 

image for detection, ignoring the temporal correlations and varying importance of frames in 

continuous driving scenes. 
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To sum up, while numerous sophisticated methods have been developed for vision-based lane 

detection,  most of them still rely on one single image for detection, which limits their 

performance. Even if a few of them had sought to make use of multiple images, key and salient 

spatial-temporal relevances among continuous image frames are not fully exploited. 

Consequently, there is still room for improvement, particularly when handling extremely 

challenging driving scenarios, such as serious occlusion, shape curve, and marking degradation. 

3.3 Proposed method 

In this section, the overall architecture of the proposed pipeline is first presented in subsection 

3.3.1, then the elaborated spatial-temporal attention mechanism is described in subsection 3.3.2, 

and lastly, the implementation details are introduced in subsection 3.3.3. 

3.3.1 Overall architecture description 

Inspired by the human visual attention mechanism and considering that traffic lanes are of long 

thin line structures with strong spatial correlation, for vision-based lane detection, certain 

regions of the images and certain frames in the continuous driving scenes deserve more 

attention than other areas and frames. Moreover, it is witnessed that fusing CNN and RNN with 

hybrid DNN architectures can make use of multiple continuous image frames to further improve 

lane detection performance (Dong et al., 2023; R. Li & Dong, 2023; J. Zhang et al., 2022; Zou 

et al., 2020). With all these clues, this study develops a novel dedicated spatial-temporal 

attention mechanism for the lane detection task to fill the aforementioned research gaps 

reviewed in Section 2. With the proposed spatial-temporal attention mechanism, three model 

variants are implemented under hybrid sequential deep end-to-end neural network structures 

fusing CNN-based encoder-decoder and temporal RNN (e.g., Long Short-term Memory (LSTM) 

neural network). On the whole, regarding vision-based lane detection as a segmentation task, 

the proposed model adopts a sequence-to-one architecture, i.e., it takes a sequence of multiple 

continuous image frames as inputs and outputs the detection result of the final image frame. 

UNet (Ronneberger et al., 2015), as the standard CNN-based encoder-decoder neural network, 

serves as the network backbone. In UNet, the encoder module and the decoder module both 

contain four convolutional blocks (details can be found in Table 3-1). The proposed attention 

module is embedded between the encoder and decoder. The encoder module extracts useful 

features from the input continuous frames and feeds them to the attention module for further 

spatial-temporal feature integration. The attention module can detect salient spatial-temporal 

relevances and dependencies among the extracted feature maps of the consecutive frames and 

pass these integrated features to the decoder. Lastly, the decoder module upsamples and decodes 

the integrated feature maps to the same size of the input image and outputs the detected lane 

lines. Note that, in the adopted UNet backbone, similar to (Ronneberger et al., 2015), a skip 

connection is applied between the encoder and decoder with a concatenating operation so that 

the decoder can reuse the extracted features and retained information from the encoder. 

An architecture overview of the proposed method pipeline is illustrated in Figure 3-1, and 

detailed implementation is further elaborated in the following sections. 
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Figure 3-1. The architecture of the proposed pipeline 

3.3.2 Spatial-temporal attention mechanism 

The proposed attention module is developed to mimic human visual cognitive attention, which 

demonstrates the ability to focus on important parts and ignore minor parts. The attention 

module helps the neural network learn to focus on important frames and salient regions of each 

frame by assigning different weights to each image frame and particular regions of each frame. 

With the help of the embedded temporal feature extractor, e.g., LSTM or Gated Recurrent Unit 

(GRU), the attention module can also extract important temporal dependencies over the input 

consecutive image frames. 

As illustrated in Figure 3-1, the attention module is applied when the input image sequences 

are downsized and the features are extracted by a series of convolution layers in the encoder. 

The attention module integrates the extracted features from the encoder and the hidden outputs 

produced by the embedded temporal feature extractor, e.g., LSTM/GRU. The LSTM/GRUs’ 

hidden outputs of the very last previous time step and the input feature maps at the current time 

step are combined using a set of attention weights. Activation of these weights can then be 

obtained to learn which image frames and which specific regions are important for the lane 

detection task. The weighted sum of input feature maps highlights the salient features, which 

are then processed by the temporal feature extractor to produce the output at the current time 

step and the updated hidden state. All the attention weights can be trained simultaneously 

together with other neural network layer weights using the backpropagation mechanism. 

Equations (3-1)-(3-12) provide a formal mathematical description of the attention mechanism 

as described above. 

The output of the final downsized convolutional block at time 𝑡 for the 𝑛-th frame (i.e., timestep 

𝑛  within the image sequence) is denoted as 𝑥𝑑𝑜𝑤𝑛4
(𝑡−𝑁+𝑛)

 , where 𝑛 = {1, 2, , . . , 𝑁} , and 𝑁  is the 

number of frames in the sequence, (in this implementation 𝑁 = 5). The input sequence for the 
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attention module is therefore defined as {𝑥𝑑𝑜𝑤𝑛4
(𝑡−𝑁+1)

, 𝑥𝑑𝑜𝑤𝑛4
(𝑡−𝑁+2)

, . . , 𝑥𝑑𝑜𝑤𝑛4
(𝑡)

}. Please note there are 

two distinct temporal increments. The increment in 𝑛 corresponds to processing the subsequent 

image in the input sequence; where an increment in time 𝑡  reflects the real-world temporal 

progression, i.e., moving to the next input sequence. Then, within a certain selected sequence, 

the following computations are performed: 

𝑥(𝑡−𝑁+𝑛) = 𝐶𝑜𝑛𝑣(𝑥𝑑𝑜𝑤𝑛4
(𝑡−𝑁+𝑛)

, 𝑘𝑖𝑛)        (3-1) 

𝑧(𝑡−𝑁+𝑛) = (𝑈 ⊙ 𝑥(𝑡−𝑁+𝑛)) + (𝐻 ⊙ ℎ(𝑡−𝑁+𝑛−1))      (3-2) 

𝑤(𝑡−𝑁+𝑛) = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(𝑊 ⊙ 𝑧(𝑡−𝑁+𝑛))        (3-3) 

𝑥(𝑡−𝑁+𝑛) = 𝑤(𝑡−𝑁+𝑛) ⊙ 𝑥(𝑡−𝑁+𝑛)        (3-4) 

Here, “Conv” denotes the convolution operation, ⊙  is the Hadamard (element-wise) 

multiplication, while “+” represents the element-wise addition operation. 𝑘𝑖𝑛 is a convolution 

layer with a kernel of size 1 × 1 and 1 channel (as indicated by In_Attention_Conv_5_1 in Table 

3-1). The matrices 𝑈,𝐻,𝑊 are the learnable weights that can be configured as trainable vectors 

of size 1 × 1 or 1 × 128, or as a trainable fully connected layer of size 1 × 128. 𝑥(𝑡−𝑁+𝑛) and 

𝑧(𝑡−𝑁+𝑛)  represent the intermediate outputs. ℎ(𝑡−𝑁+𝑛−1)  is the hidden state vector of the 

previous step in the temporal feature extractor. 𝑤(𝑡−𝑁+𝑛) denotes attention weights obtained 

from the softmax operation, and 𝑥(𝑡−𝑁+𝑛) is the attention-based weighted output. 

After processing the N images and getting the weighted outputs {𝑥(𝑡−𝑁+1), 𝑥(𝑡−𝑁+2), . . , 𝑥(𝑡)} 
across the sequence, the following computations are carried out: 

ℎ(𝑡) =  𝐹({𝑥(𝑡−𝑁+1), 𝑥(𝑡−𝑁+2), . . , 𝑥(𝑡)}, ℎ(𝑡−𝑁+𝑛−1))     (3-5) 

𝑥𝑜𝑢𝑡 =  𝐶𝑜𝑛𝑣(ℎ(𝑡), 𝑘𝑜𝑢𝑡 )          (3-6) 

where F stands for an embedded temporal feature extractor; ℎ(𝑡)  is the hidden state vector 

initialised as ℎ(0) = 𝟎 (zero vector) when 𝑡 = 0 and ℎ(𝑡) will be updated with its new inheritor 

after the selected sequence is fully processed as in equation (3-5); ℎ(𝑡) is also the output from 

F after processing N frames, i.e., ℎ(𝑡−𝑁+𝑁) = ℎ(𝑡), which is then expanded to 512 channels by 

the outconv layer 𝑘𝑜𝑢𝑡 ; 𝑘𝑜𝑢𝑡  has a kernel size of 1 × 1 and 512 channels (indicated by 

Out_Attention_Conv_5_2 in Table 3-1); 𝑥𝑜𝑢𝑡 is the final output of the attention module which 

is then transferred to the decoder module. 

The temporal feature extractor F can be LSTM or GRU. Take LSTM for example, an LSTM 

unit is visualised in Figure 3-2. Here, C is the memory cell, while i, f, and o stand for input gate, 

forget gate, and output gate, respectively, which regulate the flow of information. The key 

formulations of the LSTM are shown by equations (3-7)-(3-12): 

𝑓(𝑡−𝑁+𝑛) = 𝜎 (𝑏𝑓 + 𝑃𝑓𝑥(𝑡−𝑁+𝑛) + 𝑄𝑓ℎ(𝑡−𝑁+𝑛−1))      (3-7) 

𝑖(𝑡−𝑁+𝑛) = 𝜎 (𝑏𝑖 + 𝑃𝑖𝑥(𝑡−𝑁+𝑛) + 𝑄𝑖ℎ(𝑡−𝑁+𝑛−1))      (3-8) 

�̃�(𝑡−𝑁+𝑛) = 𝑔 (𝑏𝑐 + 𝑃𝑐𝑥(𝑡−𝑁+𝑛) + 𝑄𝑐ℎ(𝑡−𝑁+𝑛−1))                 (3-9) 
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𝑐(𝑡−𝑁+𝑛) = 𝑓(𝑡−𝑁+𝑛) ⊙ 𝑐(𝑡−𝑁+𝑛−1) + 𝑖(𝑡−𝑁+𝑛) ⊙ �̃�(𝑡−𝑁+𝑛)             (3-10) 

𝑜(𝑡−𝑁+𝑛) = 𝜎 (𝑏𝑜 + 𝑃𝑜𝑥(𝑡−𝑁+𝑛) + 𝑄𝑜ℎ(𝑡−𝑁+𝑛−1))               (3-11) 

ℎ(𝑡−𝑁+𝑛) = 𝑜(𝑡−𝑁+𝑛) ⊙ 𝑔(𝑐(𝑡−𝑁+𝑛))                 (3-12) 

where 𝑔(∙) is typically the hyperbolic tangent function, and 𝜎 is the activation function. 𝑏𝑓 , 

𝑃𝑓 , 𝑄𝑓 are biases, input weights and recurrent weights for the forget gates; 𝑏𝑖, 𝑃𝑖, 𝑄𝑖 are biases, 

input weights and recurrent weights for the input gate; 𝑏𝑐 , 𝑃𝑐 , 𝑄𝑐 are biases, input weights 

and recurrent weights for the current state of the memory cell; 𝑏𝑜 , 𝑃𝑜 , 𝑄𝑜  are biases, input 

weights and recurrent weights for the output gate.  

At each time step, the current input vector 𝑥(𝑡−𝑁+𝑛) and the previous hidden state ℎ(𝑡−𝑁+𝑛−1) 

are combined and processed to produce the states of the forget gate 𝑓(𝑡−𝑁+𝑛) (3-7), input gate 

𝑖(𝑡−𝑁+𝑛) (3-8), output gate 𝑜(𝑡−𝑁+𝑛) (3-11), and the candidate memory update �̃�(𝑡−𝑁+𝑛) (3-9). 

The forget gate then determines which components of the previous cell state 𝑐(𝑡−𝑁+𝑛−1)  to 

retain, while the input gate modulates the contribution of the candidate cell state �̃�(𝑡−𝑁+𝑛), to 

yield the new cell state 𝑐(𝑡−𝑁+𝑛) (3-10). Finally, the output gate filters the activated cell state 

through a nonlinear function 𝑔(∙)  to produce the hidden state ℎ(𝑡−𝑁+𝑛)  (3-12), which is 

propagated as the recurrent input to the subsequent time step. 

 

Figure 3-2. An illustration of the Long Short Term Memory unit (Chung et al., 2014) 

 

In the implementation, depending on different settings of the learnable weights  𝑈, 𝐻,𝑊  in 

Equations (3-2)-(3-3), three variants of the proposed attention module are developed and tested. 

They are temporal attention (Tem_Att, for short), spatial-temporal attention (ST_Att, for short), 

and spatial-temporal attention model with fully connected layers (STFC_Att, for short).  

The attention model is implemented after the encoder module (to be specific, the fourth down-

sampling convolutional block, i.e., Down_ConvBlock_4 in Table 3-1) and before the decoder 

module (to be specific, the first upsampling convolutional block, i.e., Up_ConvBlock_4 in 

Table 3-1). Moreover, one should notice that the proposed attention model is modular in nature 

and can be adopted with any network backbone, not only UNet but also backbones such as 

SegNet (Badrinarayanan et al., 2017) and fully convolutional networks (Shelhamer et al., 2017). 

(1) Temporal attention 

The design of the spatial-temporal attention mechanism began with assessing the significance 

of each frame in a sequence for detecting lane markings in the current frame, which is 
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implemented through the temporal attention (Tem_Att) module. In this module, the learnable 

weights of U, H, and W in equations (3-2)-(3-3) are trainable vectors and are illustrated by V_i, 

V_h and V_a in Figure 3-3, respectively. The three trainable vectors, each of size 1×1, 

dynamically adjust the contributions of input features, hidden state output, and the attention 

output based on the learned weights. Specifically, the input features 𝑥(𝑡−𝑁+𝑛) are modulated by 

the weight vector V_i and combined with the hidden output multiplied by V_h through element-

wise addition to construct a summed intermediate attention signal 𝑧(𝑡−𝑁+𝑛), as described in 

equation (3-2). This attention signal is subsequently passed through a softmax activation 

function shown as “Pr” in Figure 3-3 to compute the attention weights 𝑤(𝑡−𝑁+𝑛), as defined in 

equation (3-3). These weights effectively prioritise the significance of each frame in the 

sequence. 

Leveraging the LSTM unit (detailed in equations (3-7)-(3-12)), the hidden state ℎ(𝑡) 

contextualises the input features by incorporating information from the entire sequence within 

the selected time window. The attention output 𝑥(𝑡−𝑁+𝑛) computed as a weighted combination 

of the input features 𝑥(𝑡−𝑁+𝑛) and their respective attention weights 𝑤(𝑡−𝑁+𝑛) (see equation (3-

4)), captures these temporal dependencies. This output is processed through the LSTM and a 

convolutional layer (as outlined in equation (3-6)) to generate the module’s final output 𝑥𝑜𝑢𝑡, 

which is subsequently passed to the decoder. When the three trainable vectors V_i, V_h and 

V_a are of size 1×1, this approach ensures that the model dynamically adapts its focus to 

relevant temporal features in the image sequence.  

 

Figure 3-3. An illustration of the temporal attention module (Tem_Att) 

(2) Spatial-temporal attention 

Observations show that lane lines typically appear in specific regions within image frames, and 

certain features hold greater significance for accurate detection. To account for this, a spatial 

attention operation is applied to each frame, upgrading the Tem_Att module into the spatial-

temporal attention (ST_Att) module. The ST_Att module introduces three learnable weight 

vectors, each of size 1×128, which are applied to the input feature matrix, the hidden state 

output, and the attention output at the current step. These weights, with the size of 1×128, enable 

the module to prioritise important features within each frame. However, the ST_Att module 

does not account for the spatial relationships and dependencies between neighbouring feature 

maps, which are addressed in the subsequent STFC_Att module. 

The structure of the ST_Att module is depicted in Figure 3-4. While the workflow of ST_Att 

is similar to Tem_Att, the connections between the input features, hidden state outputs, and 
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attention outputs, along with their respective weight matrices, follow a one-to-one mapping. 

These connections are illustrated with colour-coded lines in Figure 3-4. Similar to Tem_Att, 

the attention weights are normalised to a range of 0 to 1 using a softmax activation function 

(denoted as “Pr” in Figure 3-4). The final attention output is processed through a convolutional 

layer before being passed to the decoder module. This mechanism ensures that the model 

emphasises the most critical spatial features in each frame. When combined with the temporal 

modelling capabilities of the LSTM, it effectively leverages spatial-temporal information across 

image frames in the sequence. 

 

Figure 3-4. An illustration of the spatial-temporal attention module (ST_Att) 

 

(3) Spatial-temporal attention with fully connected layers 

The Spatial-Temporal Attention with Fully Connected Layers (STFC_Att) module builds upon 

the ST_Att module by incorporating a fully connected mechanism to enhance feature learning. 

Unlike the one-to-one connections in ST_Att, the STFC_Att module employs many-to-many 

connections, where each learnable weight matrix is multiplied with all values of the input 

feature map, as illustrated in Figure 3-5. This many-to-many connection allows the model to 

extract spatial dependencies between feature maps within the same image frame while 

concurrently capturing temporal features and correlations across consecutive frames with the 

assistance of the LSTM’s hidden outputs. 

The structure of the STFC_Att module is depicted in Figure 3-5, where different coloured lines 

represent the many-to-many connections between the input feature matrix, the hidden state 

output, and the attention output, along with their corresponding learnable weight matrices U, H, 

and W, denoted in Figure 3-5 as Linear_i, Linear_h, and Linear_a, respectively. Each of these 

matrices is implemented as a trainable fully connected layer of size 1×128. These weight 

matrices dynamically adjust the importance of both spatial and temporal features, ensuring a 

robust and comprehensive feature extraction. 

Similar to Tem_Att and ST_Att, in the STFC_Att module, the attention output, denoted as 

𝑥(𝑡−𝑁+𝑛) is calculated using equation (3-4) as a weighted combination of the input features 

𝑥(𝑡−𝑁+𝑛)  and their corresponding attention weights 𝑤(𝑡−𝑁+𝑛) . Subsequently, the attention 

output is processed through a linear layer of size 1×128 with many-to-many connections. This 

output is then scaled to a range of 0 to 1 using the softmax function (denoted as “Pr” in Figure 

3-5). Finally, the processed attention outputs are passed through a convolutional layer, as 

outlined in equation (3-6), before being transferred to the decoder. 
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Figure 3-5. An illustration of the spatial-temporal attention module with fully connected 

layers (STFC_Att) 

 

The key distinction between ST_Att and STFC_Att lies in their ability to capture spatial 

dependencies. While the ST_Att module focuses on weighting local spatial features within each 

frame, the fully connected mechanism in STFC_Att extends the network’s capability by 

establishing interrelations between spatial features across the entire frame and throughout the 

input image sequence. This enhancement allows the model to distinguish among spatial-

temporal features more effectively and to focus its attention on the most relevant patterns. 

Integrating the fully connected spatial-temporal attention mechanism, the STFC_Att module 

significantly enhances the model’s ability to detect lane markings in diverse driving scenarios 

by leveraging both spatial and temporal interdependencies. 

3.3.3 Implementation details 

(1) Deep Neural Network Details 

On the whole, as illustrated in Figure 3-1, the proposed method adopts an “encoder-attention 

module-decoder”-based sequence-to-one architecture. UNet (Ronneberger et al., 2015) is used 

as the neural network backbone, in which there are one In_ConvBlock and four consecutive 

down-sampling convolutional blocks (i.e., Down_ConvBlock_1, Down_ConvBlock_2, 

Down_ConvBlock_3, and Down_ConvBlock_4) in the encoder part, and four symmetrical 

upsampling convolutional blocks (i.e., Up_ConvBlock_4, Up_ConvBlock_3, Up_ConvBlock_2, 

and Up_ConvBlock_1) in the decoder part. Between the encoder and the decoder, there is the 

attention module with a temporal feature extractor (e.g., LSTM) embedded. Table 3-1 

illustrates in detail the input and output sizes, as well as the parameters of each layer in the 

entire DNN. 

(2) Loss function 

Vision-based lane detection can be considered as the pixel-wise binary classification problem, 

for which cross-entropy is a suitable loss function (Ho & Wookey, 2020). It is important to note 

that, in most cases, the pixels classified as “lanes” are far fewer than those classified as “not 

lanes” (i.e., the background), which makes it an unbalanced discriminative binary classification 

problem. Therefore, this study adopts the weighted cross-entropy as the loss function with two 

rescaling weights given to each class. The two weights for lane class and background class are 

set to the inverse proportion of the number of pixels in the two classes, i.e., there are fewer lane 
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Table 3-1. Architecture and layer-specific parameter settings of the neural network 

Layer Input 
(channel×hight×width) 

Output 
(channel×hight×width) 

Kernel Padding Stride Activation 

In_ConvBlock 
In_Conv_1 3×128×256 64×128×256 3×3 (1,1) 1 ReLU 

In_Conv_2 64×128×256 64×128×256 3×3 (1,1) 1 ReLU 

Down_Conv 

Block_1 

Maxpool_1 64×128×256 64×64×128 2×2 (0,0) 2 --- 

Down_Conv_1_1 64×64×128 128×64×128 3×3 (1,1) 1 ReLU 

Down_Conv_1_2 128×64×128 128×64×128 3×3 (1,1) 1 ReLU 

Down_Conv 

Block_2 

Maxpool_2 128×64×128 128×32×64 2×2 (0,0) 2 --- 

Down_Conv_2_1 128×32×64 256×32×64 3×3 (1,1) 1 ReLU 

Down_Conv_2_2 256×32×64 256×32×64 3×3 (1,1) 1 ReLU 

Down_Conv 

Block_3 

Maxpool_3 256×32×64 256×16×32 2×2 (0,0) 2 --- 

Down_Conv_3_1 256×16×32 512×16×32 3×3 (1,1) 1 ReLU 

Down_Conv_3_2 512×16×32 512×16×32 3×3 (1,1) 1 ReLU 

Down_Conv 

Block_4 

Maxpool_4 512×16×32 512×8×16 2×2 (0,0) 2 --- 

Down_Conv_4_1 512×8×16 512×8×16 3×3 (1,1) 1 ReLU 

Down_Conv_4_2 512×8×16 512×8×16 3×3 (1,1) 1 ReLU 

Attention 

Module 

In_Attention_ 

Conv_5_1 
512×8×16 1×8×16 1×1 --- 1 --- 

AttentionLayer_1 1×128* 1×128* --- --- --- --- 

AttentionLayer_2 1×128* 1×128* --- --- --- --- 

AttentionLayer_3 1×128* 1×128* --- --- --- --- 

LSTM 128 128 --- --- --- --- 

Out_Attention_ 

Conv_5_2 
1×8×16 512×8×16 1×1 --- 1 --- 

Up_Conv 

Block_4 

Upsampling 

Bilinear2D_1 
512×8×16 512×16×32 2×2 (0,0) 2 --- 

Up_Conv_4_1 1024×16×32 256×16×32 3×3 (1,1) 1 ReLU 

Up_Conv_4_2 256×16×32 256×16×32 3×3 (1,1) 1 ReLU 

Up_Conv 

Block_3 

Upsampling 

Bilinear2D_2 
256×16×32 256×32×64 2×2 (0,0) 2 --- 

Up_Conv_3_1 512×32×64 128×32×64 3×3 (1,1) 1 ReLU 

Up_Conv_3_2 128×32×64 128×32×64 3×3 (1,1) 1 ReLU 

Up_Conv 

Block_2 

Upsampling 

Bilinear2D_3 
128×32×64 128×64×128 2×2 (0,0) 2 --- 

Up_Conv_2_1 256×64×128 64×64×128 3×3 (1,1) 1 ReLU 

Up_Conv_2_2 64×64×128 64×64×128 3×3 (1,1) 1 ReLU 

Up_Conv 

Block_1 

Upsampling 

Bilinear2D_4 
64×64×128 64×128×256 2×2 (0,0) 2 --- 

Up_Conv_1_1 128×128×256 64×128×256 3×3 (1,1) 1 ReLU 

Up_Conv_1_2 64×128×256 64×128×256 3×3 (1,1) 1 ReLU 

Out_Conv 

Block 
Out_Conv 64×128×256 2×128×256 1×1 (0,0) 1 --- 

*This is an example of the spatial-temporal attention (ST_Att) module. Corresponding to three 

attention variants, parameters in AttentionLayer_1, AttentionLayer_2, and AttentionLayer_3 will be 

learnable vectors of size 1 × 1 for Tem_Att, learnable vectors of size 1 × 128 for ST_Att, or learnable 

vectors with many to many connections of size 1 × 128 for STFC_Att, respectively. 
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pixels than the background, so the weight of the lane class is larger. The adopted weighted 

binary cross-entropy loss function is illustrated by equation (3-13). 

𝐿𝑜𝑠𝑠 = −
1

𝑀
∑ [𝑤𝑙 ∗ 𝑦𝑚 ∗ 𝑙𝑜𝑔(ℎ𝜃(𝑥𝑚)) + 𝑤𝑛𝑙 ∗ (1-𝑦𝑚) ∗ 𝑙𝑜𝑔(1 − ℎ𝜃(𝑥𝑚))]𝑀

𝑚=1            (3-13) 

where 𝑀 is the number of training examples; 𝑤𝑙 stands for the weight of the lane class, while 

𝑤𝑛𝑙 for the background (not lane) class; 𝑦𝑚 is the true target label for the training example 𝑚; 

𝑥𝑚 is the input for the training example 𝑚; and ℎ𝜃 is the neural network model with weights 𝜃. 

(3) Training details 

Various variants of the developed neural network model, as well as selected baseline models, 

had been trained and tested on the Dutch national high-performance supercomputer cluster Lisa 

using four Titan RTX GPUs with the data trained parallelly using torch.nn.DataParallel() in 

the PyTorch library. The input image size is set as 128 × 256, and the training batch size is set 

as 64. The learning rate is initially set to 0.01 with decay applied after each epoch. The Adam 

(Kingma & Ba, 2015), RAdam optimiser (Liyuan Liu et al., 2020), and Stochastic Gradient 

Descent (SGD) (Bottou, 2010) optimisers were tested. Experiments demonstrated that SGD 

delivered the smallest loss in this study. Thus, the SGD optimiser was chosen, and the 

momentum term was applied. 

3.4 Experiments and results 

To verify the effectiveness and robustness of the proposed model with the designed attention 

module, extensive experiments were carried out on three commonly used large-scale open-

source datasets, i.e., TuSimple, tvtLANE (Zou et al., 2020), and LLAMAS (Behrendt & 

Soussan, 2019) datasets. Several DNN-based lane detection models, e.g., LaneNet (Neven et 

al., 2018), SCNN (Pan et al., 2018), Seg-Net (Badrinarayanan et al., 2017), UNet (Ronneberger 

et al., 2015), SegNet_ConvLSTM (Zou et al., 2020), and UNet_ConvLSTM (Zou et al., 2020), 

were selected as the baselines. 

3.4.1 Test on tvtLANE and TuSimple datasets 

(1) Dataset description 

The original dataset of the TuSimple Lane Detection Challenge consists of 3,626 training and 

2,782 testing one-second clips that are collected under different driving conditions. Each clip is 

extracted into 20 continuous frames, and only the last frame, i.e., the 20th frame, is labelled with 

the ground truth. Additionally, Zou et al. (2020) added the label of the 13th frame and augmented 

the TuSimple dataset with 1,148 additional clips (with also the 13th and 20th frames labelled) 

regarding rural road driving scenes collected in China. Moreover, rotation, flip, and crop 

operations are employed for data augmentation, and finally, a total number of 

(3,626+1,148)×4=19,096 sequences were produced, among which 38,192 frames are labelled 

with ground truth. 

For testing, there are 2,782 testing clips in the original TuSimple dataset. While in tvtLANE, 

there are two different testing sets, namely, testset #1 which is based on the original TuSimple 

test set for normal driving scene testing, as well as testset #2 which contains 12 challenging 

driving scenarios for testing challenging scenes and assessing the model robustness. 

https://github.com/TuSimple/tusimple-benchmark/tree/master/doc/lane_detection
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In the training phase, three different sampling strides, with an interval of 1, 2, and 3 frames 

respectively, were adopted to adapt to different driving speeds which also augment the training 

samples by three times, whereas in the test phase, the sampling stride was set as a fixed interval 

of 1 frame. 

Detailed descriptions of the two datasets and sampling settings can be found in (Dong et al., 

2023; Zou et al., 2020). 

(2) Qualitative evaluation 

As the intuitive evaluation approach with visualisation, in this subsection, qualitative lane 

detection results of different models are demonstrated in the figure visualisations. The figure 

demonstrations help identify the strengths and weaknesses of the evaluated models and provide 

insights. 

 1) Results on tvtLANE testset #1: normal driving scene testing 

Samples of the results from lane detection segmentation on tvtLANE testset #1 are shown in 

Figure 3-6. The lane lines are segmented into white pixels, while the background is displayed 

in black pixels. Three proposed attention-based model variants and the baseline deep learning 

models were tested. Here in Figure 3-6, all of the results are without post-processing, which 

also applies to all the visualisations and quantitative evaluations discussed later in this study. 

 

Figure 3-6. Qualitative evaluation 1: Comparison of the results of lane detection on 

tvtLANE testset #1 (normal situations) 

Qualitatively, the models should be able to a) correctly predict the number of lanes; b) 

accurately locate the lane lines in the segmentation image; c) segment the lanes in thin lines 

without blurs; and d) keep proper continuity without unexpected breaks in continuous lanes. 

Regarding these aspects, the proposed models with attention mechanisms all deliver good 
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results, especially the STFC_Att-based model, indicated in the last row (i), which outputs the 

thinner lane lines with good continuity and fewer blurs. One may argue that it does not detect 

the correct number of lanes in the first two columns from the left. However, when zooming in 

for details, one can identify that the model correctly detects the left road boundary lanes which 

are too difficult and even not labelled in the ground truth. This defect with the labelled ground 

truth in the dataset is also discussed in (J. Zhang et al., 2022). 

Furthermore, in accordance with previous studies (Dong et al., 2023; J. Zhang et al., 2022; Zou 

et al., 2020), models using multi-continuous image frames generally outperform models using 

a single frame, as the latter output thick lines with heavy blurs. 

2) Results on tvtLANE testset #2: challenging scenes 

According to Figure 3-7, the proposed model is compared qualitatively with the baseline 

models when faced with some extremely challenging driving scenarios ( tested on the tvtLANE 

testset #2). Involving a broad range of challenging situations, the testset #2 is a separate new 

dataset which is unseen during the training phase. It is observed that all the models do not 

perform well, especially regarding the 3rd column where there are vehicle occlusions and dirt 

road surfaces simultaneously. However, similar to norm scenes, the proposed attention-based 

models overall surpass baselines with thinner continuous lines and more correct locations and 

lane numbers. Typically, shown in the 4th column of Figure 3-7, the STFC_Att-UNet_LSTM 

model demonstrates superior results in detecting smooth clear lines with the correct number of 

lanes in the serious vehicle occlusion case, in which almost all the other models are defeated. 

This can be inferred by its capability of exploring spatial-temporal correlations among 

neighbouring pixels. 

 

Figure 3-7. Qualitative evaluation 2: Comparison of the lane detection results on tvtLANE 

testset #2 (challenging situations) 
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3) Results on TuSimple testing set 

As mentioned before, the TuSimple testing set is similar to the tvtLANE testset#1, thus, similar 

patterns are observed in Figure 3-8. Compared with the baseline model UNet_ConvLSTM, the 

proposed models can detect more correct lane lines with fewer blurs. 

 

Figure 3-8. Qualitative evaluation 3: Comparison of the lane detection results on the 

TuSimple testing set 

 

(3) Quantitative evaluation 

1) Evaluation metrics 

Treating the vision-based lane detection as a pixel-wise unbalanced two-class classification and 

discriminative segmentation task, and following the convention in previous studies (Dong et al., 

2023; Lizhe Liu et al., 2021; Pan et al., 2018; H. Xu et al., 2020; J. Zhang et al., 2022; Zou et 

al., 2020), this study utilises four commonly adopted evaluation criteria, i.e., accuracy, precision, 

recall, and F1-measure, to quantitatively verify the proposed models. The four criteria are 

illustrated in equations (3-14)-(3-17): 

Accuracy =
𝑇𝑟𝑢𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠
                  (3-14) 

Precision =
True Positive 

True Positive+False Positive
                (3-15) 

Recall =
True Positive 

True Positive+False Negative
                    (3-16) 
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F1-measure =
2∗Precision∗Recall 

Precision+Recall 
                 (3-17) 

where true positive correlates to the pixels that are accurately identified as lanes, false-positive 

indicates the number of background pixels that are incorrectly categorised as lanes, and false 

negative is for the number of lane pixels that were incorrectly categorised as background. 

This study also provides the size of the model parameter, referred to as Params (M), as well as 

multiply-accumulate (MAC) operations, referred to as MACs (G), as indicators for estimating 

the computational complexity and capabilities of the models for real-time performance. 

2) Quantitative performance comparison on tvtLANE testset #1 (normal situations) 

As shown in Table 3-2, when testing on tvtLANE testset#1, all the developed attention-based 

models perform better than the baselines regarding F1-measure, accuracy, and precision. This 

verifies the effectiveness of the proposed attention mechanism. The developed model 

STFC_Att-SCNN_UNet_LSTM (which will be discussed in detail in the ablation study) 

performs the best with the highest F1-measure, accuracy, and precision. Furthermore, compared 

to the other two baseline models, i.e., UNet_ConvLSTM and SegNet_ConvLSTM, which also 

adopt multiple frames as inputs, the developed models are all smaller in parameter size and with 

fewer MACs. This means that the developed models can deliver better results while using lower 

computational resources and with higher processing speed. 

Table 3-2. Model quantitative performance comparison on tvtLANE testset #1 (normal 

situations) 

Model 
Test_Acc 

(%) 
Precision Recall 

F1-

measure 

MACs 

(G) 

Params 

(M) 

Using 

single image 

Baseline Models 

UNet 96.54 0.790 0.985 0.877 15.5 13.4 

SegNet 96.93 0.796 0.962 0.871 50.2 29.4 

SCNN* 96.79 0.654 0.808 0.722 77.7 19.2 

LaneNet* 97.94 0.875 0.927 0.901 44.5 19.7 

Using 

continuous 

image frames 

SegNet_ConvLSTM 97.92 0.874 0.931 0.901 217.0 67.2 

UNet_ConvLSTM 98.00 0.857 0.958 0.904 69.0 51.1 

Proposed Models 

Tem_Att-UNet_LSTM 98.08 0.877 0.936 0.906 44.7 13.5 

ST_Att-UNet_LSTM 98.09 0.879 0.941 0.909 44.8 13.5 

STFC_Att-UNet_LSTM 98.14 0.887 0.941 0.911 44.9 13.5 

STFC_Att-SCNN_UNet_LSTM** 98.20 0.906 0.936 0.921 68.9 13.7 

* Results reported in (J. Zhang et al., 2022). 

** Model variant used for ablation study. 

Tem_Att-UNet_LSTM means the temporal attention based model using the UNet_LSTM network 

backbone. This naming rule also applies to other models. 

3) Quantitative performance comparison on tvtLANE testset #2 (challenging scenes) 

For testing model robustness, the developed models were also evaluated and verified on the 

brand-new dataset, namely the tvtLANE testset #2, which contains 12 challenging scenes. 



72 Safe, Efficient, and Socially Compliant Automated Driving in Mixed Traffic 

 

As shown in Table 3-3, in terms of precision, ST_Att-UNet_LSTM performs the best in bright, 

curve, and urban scenes, while STFC_Att-UNet_LSTM performs the best in occluded, shadow 

and tunnel scenes. Therefore, they dominate half of the 12 challenging scenes. 

Table 3-3. Model quantitative performance comparison on tvtLANE testset #2 (12 

challenging scenes) 

Precision 

        Challenging 

Scenes 

1- 

curve 

& 

occlude 

2- 

shadow

- bright 

3- 

bright 
4- 

occlude 

5- 

curve 

6- 

dirty 

& 
occlude 

7- 

urban 

8- 

blur 

& 

curve 

9- 

blur 

10- 
shadow

- dark 

11- 

tunnel 

12- 

dim 

& 

occlude 

UNet 0.7018 0.7441 0.6717 0.6517 0.7443 0.3994 0.4422 0.7612 0.8523 0.7881 0.7009 0.5968 

SegNet 0.6810 0.7067 0.5987 0.5132 0.7738 0.2431 0.3195 0.6642 0.7091 0.7499 0.6225 0.6463 

UNet_ConvLSTM 0.7591 0.8292 0.7971 0.6509 0.8845 0.4513 0.5148 0.8290 0.9484 0.9358 0.7926 0.8402 

SegNet_ConvLSTM 0.8176 0.8020 0.7200 0.6688 0.8645 0.5724 0.4861 0.7988 0.8378 0.8832 0.7733 0.8052 

Tem_Att-UNet_LSTM 0.8430 0.8909 0.7732 0.5740 0.8322 0.4692 0.4567 0.8358 0.8090 0.9244 0.7893 0.8046 

ST_Att-UNet_LSTM 0.7938 0.8743 0.8013 0.7014 0.8894 0.5215 0.4935 0.8290 0.8517 0.9286 0.7516 0.8218 

STFC_Att-UNet_LSTM 0.8239 0.8782 0.7646 0.7031 0.8871 0.5295 0.4848 0.7354 0.9023 0.9395 0.8794 0.7542 

 

F1-measure 

UNet 0.8200 0.8408 0.7946 0.7337 0.7827 0.3698 0.5658 0.8147 0.7715 0.6619 0.5740 0.4646 

SegNet 0.8042 0.7900 0.7023 0.6127 0.8639 0.2110 0.4267 0.7396 0.7286 0.7675 0.6935 0.5822 

UNet_ConvLSTM 0.8465 0.8891 0.8411 0.7245 0.8662 0.2417 0.5682 0.8323 0.7852 0.6404 0.4741 0.5718 

SegNet_ConvLSTM 0.8852 0.8544 0.7688 0.6878 0.9069 0.4128 0.5317 0.7873 0.7575 0.8503 0.7865 0.7947 

Tem_Att-UNet_LSTM 0.8933 0.8657 0.8123 0.6513 0.8306 0.3530 0.5263 0.8290 0.7039 0.5338 0.5225 0.5226 

ST_Att-UNet_LSTM 0.8548 0.8977 0.8253 0.7293 0.8254 0.3627 0.5543 0.8369 0.7480 0.6197 0.5522 0.5363 

STFC_Att-UNet_LSTM 0.8690 0.9059 0.8314 0.7456 0.8086 0.3660 0.5277 0.7715 0.7329 0.6543 0.6471 0.5852 

 

High precision means the model is more strict for the pixels to be classified as lane lines, i.e., 

fewer False Positives. This is crucial for the vehicles’ localising lanes. However, being too strict 

might result in more False Negatives, then a lower recall ratio, and then a worse F1-measure. 

This is why the developed models are not good in terms of F1-measure. Furthermore, it is 

witnessed that during the training process, all the models obtained higher recalls and lower 

precisions at the beginning. Then, as the training went on, the recalls decreased while the 

precisions rose. This general pattern applies to all models. With this, one can infer that a higher 

precision is more important. All these demonstrate the developed models’ robustness over 

challenging scenes. 

4) Performance and comparisons on the TuSimple testing set 

The aforementioned TuSimple testing set has similar but more testing samples compared to the 

tvtLANE testset#1. Regarding the quantitative results on the TuSimple testing set, as 

demonstrated in Table 3-4, the proposed STFC_Att-UNet_LSTM obtains the best F1-measure, 

the best precision, and the second-best accuracy (i.e., 98.20%, only a bit lower than the best of 

98.22%). Although UNet_ConvLSTM shows the best accuracy, it is worth noting that its MACs 

and parameter size are much larger than the proposed models. In this case, one can conclude 

that the developed models with lower computational complexities are robust with competitive 

results on the TuSimple testing set. 

Model 
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Table 3-4. Model quantitative performance comparison on TuSimple testing set 

Model 
Test_Acc 

(%) 
Precision Recall 

F1-

measure 

MACs 

(G) 

Params 

(M) 

Using 

continuous 

image frames 

Baseline Models 

SegNet_ConvLSTM* 97.96 0.852 0.964 0.901 217.0 67.2 

UNet_ConvLSTM* 98.22 0.857 0.958 0.904 69.0 51.1 

UNet_DoubleConvGRU* 98.04 0.875 0.953 0.912 --- 13.4 

Proposed Models 

Tem_Att-UNet_LSTM 98.05 0.876 0.923 0.899 44.7 13.5 

ST_Att-UNet_LSTM 98.14 0.881 0.925 0.902 44.8 13.5 

STFC_Att-UNet_LSTM 98.20 0.886 0.950 0.917 44.9 13.5 

* Results reported in (J. Zhang et al., 2022). 

3.4.2 Test on LLAMAS dataset 

(1) Dataset description 

To further verify the robustness of the proposed method, the LLAMAS dataset (Behrendt & 

Soussan, 2019) is adopted to train, validate, and test different models. Consisting of a total of 

100,042 images, LLAMAS is one of the largest open-source lane marker datasets. Among the 

100,042 images, 79,113 of them are used for training with labelled ground truth, while 20,929 

of them were originally used for testing with no corresponding labels. To still follow the 

proposed end-to-end supervised learning pipeline and make it comparable with the previous 

work (J. Zhang et al., 2022), this study follows the processes described in (J. Zhang et al., 2022), 

utilising only the labelled 79,113 images and dividing them into two groups. To be specific, 

58,269 images were used for training, and 20,844 images were used for testing. More details 

about the LLAMAS dataset can be found in (Behrendt & Soussan, 2019; J. Zhang et al., 2022). 

(2) Qualitative evaluation 

Limited by computational resources and time, this study only trained ST_Att-UNet_LSTM and 

STFC_Att-UNet_LSTM models on the LLAMAS dataset. Figure 3-9 provides the qualitative 

visualisation results of ST_Att-UNet_LSTM for testing on the LLAMAS dataset. In the top row, 

the predicted lane lines are shown in red colour, and in the bottom row, the predicted lane lines 

are segmented with white pixels under black background. As shown, the lane lines in LLAMAS 

are labelled in a different way using dashed lines, which makes it much more challenging. 

Qualitatively, from the visualisation, one can observe that there are very few false positives and 

the lane lines are generally predicted accurately. 

 
Figure 3-9. Qualitative evaluation 4: Lane detection results on the LLAMAS dataset 
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(3) Quantitative evaluation 

To quantitatively evaluate the model performances on the LLAMAS dataset, except for the 

aforementioned precision and recall, similar to (Behrendt & Soussan, 2019; J. Zhang et al., 

2022), average precision (AP) was also adopted. AP is the mean of the weighted precision 

scores at different thresholds. The weights are the differences in recalls from the prior tested 

thresholds. To be clear, AP is illustrated in equation (3-18) 

AP = ∑ ∑ (𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛𝑝 ∗ ∆𝑅𝑒𝑐𝑎𝑙𝑙𝑞)
𝑉+1
𝑞=1

𝑇
𝑝=1                 (3-18) 

where T means the total number of the tested image frames; V means the number of pixel 

samples for a single image; ∆𝑅𝑒𝑐𝑎𝑙𝑙 represents the difference between the Recall values of two 

consecutive samples. The variables p and q are subscripts to number the samples. In the 

implementation, similar to (J. Zhang et al., 2022), this study sets Recall0 to 0, Precision0 to 1, 

and the variable V to 100. 

The quantitative results are demonstrated in Table 3-5. 

Table 3-5. Model quantitative performance comparison on the LLAMAS dataset 

Model Average Precision (AP) Precision Recall 

UNet_Double_ConvGRU* 0.8519 0.6162 0.6163 

SegNet ConvLSTM* 0.8500 0.5487 0.6839 

UNet_ConvLSTM* 0.8510 0.5857 0.6558 

ST_Att-UNet_LSTM 0.7106 0.6253 0.6584 

STFC_Att-UNet_LSTM 0.7141 0.6317 0.6413 

* Results reported in (J. Zhang et al., 2022). 

As shown in Table 3-5, the STFC_Att-UNet_LSTM model provides the best corner precision 

when testing on the LLAMAS dataset. This is an indication that the model delivers a lower 

number of false positives, which, as discussed before, is more crucial for lane localisation. It 

also obtains a comparable corner recall. Furthermore, it is worth noting that both the proposed 

models maintain a better balance among the three evaluation metrics, although they do not 

perform well in average precision. To sum up, the developed models’ robustness on the 

LLAMAS dataset is demonstrated with competitive quantitative and qualitative detection 

results. 

3.4.3 Qualitative test on unlabelled Netherlands lane dataset 

To further verify the developed models’ robustness in handling new and challenging driving 

scenes, the unlabelled Netherlands lane dataset was adopted for qualitative testing. This dataset 

covers a wide range of driving situations in the Netherlands, some of which are very challenging. 

Figure 3-10 shows the lane detection results of ST_Att-UNet_LSTM, which is only trained on 

the LLAMAS dataset. Even without any supervised training on the unlabelled Netherlands lane 

dataset, the proposed model demonstrates excellent transfer capabilities by clearly detecting 

lane line numbers and locations. Furthermore, the model can correctly identify whether the 

lanes are continuous or dashed lanes. The good performance can be attributed to that the 
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developed ST_Att-UNet_LSTM with spatial-temporal attention module can aggregate rich 

valuable context information to focus on generalised information and salient regions in both 

one image and the continuous image frames. This qualitative testing further verifies the 

robustness of the developed model. 

 
Figure 3-10. Qualitative evaluation 5: Lane detection results on the unlabelled 

Netherlands lane dataset 

3.5 Ablation study and discussion 

3.5.1 Post-explanation of the attention mechanism by visualisation 

To elucidate the functionality of the proposed spatial-temporal attention mechanism, this 

subsection presents a case study using feature map visualisations. Consider a scenario where a 

vehicle is travelling under a bridge, as depicted in Figure 3-11, shadows cast by the bridge 

obscure portions of the road, rendering lane markings indiscernible (even to human observers). 

Furthermore, on the right side, lane markings are partially occluded by a preceding vehicle. 

The top row (a) displays the original sequence of continuous image frames, illustrating the 

vehicle’s gradual movement beneath the bridge from frame 1 to frame 5 (left to right). Rows 

(b), (c), and (d) compare the feature map activations at Up_ConvBlock_4 (the first upsampling 

block as shown in Table 3-1) for UNet, UNet-ConvLSTM, and STFC_Att_UNet_LSTM, 

respectively. Since all three models share the Up_ConvBlock_4 structure, which immediately 

follows the attention module in STFC_Att_UNet_LSTM and the ConvLSTM module in UNet-

ConvLSTM, this comparison provides a meaningful evaluation of their performance. 

The baseline UNet model exhibits strong activation primarily along the leftmost lane, with 

detection on the right appearing fragmented. Critically, in distant regions, the detected left and 

right lanes converge erroneously, accompanied by blurred and spurious activations. This 

limitation reflects the model’s insufficient contextual reasoning for maintaining coherent lane 

structures in occluded and distant areas. By integrating ConvLSTM, UNet_ConvLSTM 

demonstrates an improved ability to detect lane markings in occluded regions through temporal 

dependency modelling. However, its overall activation intensity remains subdued relative to the 

baseline UNet, suggesting constraints in its spatial feature extraction and a suboptimal spatial-

temporal correlation. In contrast, STFC_Att_UNet_LSTM outperforms both models by 

maintaining consistent, non-converging activation patterns, particularly excelling in scenarios 

with partial or complete occlusions. Its spatial-temporal attention mechanism can dynamically 

weigh the importance of each frame based on lane visibility, enabling robust inference of lane 

positions even in challenging scenarios. This enhanced performance is attributed to the model’s 

capacity to establish strong interrelations among spatial features across sequential frames, 

effectively “memorising” lane positions from previous observations. 
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Figure 3-11. Post-explanation visualisation of the case study - under a bridge with shadows 

and occlusion: (a) input images; and feature map visualisations of (b) UNet, (c) 

UNet_ConvLSTM, (d) STFC_Att_UNet_LSTM 

 

Ultimately, the spatial-temporal attention-based neural network leverages information from 

prior frames to predict lane locations, even when they are entirely obscured in the current frame 

(e.g., the 5th frame in row (a)). As shown in frames 1-4, lane markings are partially visible, 

allowing the model to detect salient regions of interest (highlighted by pronounced bright 

activations in Figure 3-11). By leveraging this accumulated spatial-temporal information, the 

model accurately predicts lane positions in frame 5. This ability to retain and utilise learned 

spatial-temporal correlations across frames enhances robustness in adverse driving conditions. 

3.5.2 The comparisons between the three model variants 

Comparing the three proposed model variants’ results in Tables 3-2, 3-3, 3-4, and 3-5, it is 

demonstrated that STFC_Att-UNet_LSTM outperforms Tem_Att-UNet_LSTM and ST_Att-

UNet_LSTM in various situations and regarding different metrics; while ST_Att-UNet_LSTM 

is also generally better than Tem_Att-UNet_LSTM. This can be explained by the fact that 

Tem_Att-UNet_LSTM only gets the temporal attention mechanism which does not consider 

the interrelationship among the pixels and different regions; while, in the ST_Att-UNet_LSTM, 

with the one-to-one connection, it can learn the importance of the individual pixel with the 

weights and hidden layer but without the knowledge of neighbouring pixels; and finally, in the 

STFC_Att-UNet_LSTM, using the many-to-many connection, the spatial dependencies 

between the pixels are incorporated, along with the temporal correlations among the continuous 

frames. Thus, the STFC_Att-UNet_LSTM is the real “spatial-temporal” attention, and in this 

way, the verification of the strengths of the proposed spatial-temporal attention mechanism is 

further enhanced. 

3.5.3 Cooperation with other model structures and methods 

This study also investigated the compatibility of the proposed model working with other 

mechanisms, such as incorporating the SCNN layer to further enhance feature extraction and 

spatial correlation within individual images (Dong et al., 2023; Pan et al., 2018). The last row 
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of Table 3-2 shows the results for STFC_Att-SCNN_UNet_LSTM**, which incorporates the 

SCNN layer into the proposed spatial-temporal attention mechanism. Compared to all other 

models, including those with the attention mechanism but without SCNN layers, STFC_Att-

SCNN_UNet_LSTM** achieves the highest accuracy, precision, and F1-measure, with only 

minor increases in parameter size and slight increases in MACs. These findings demonstrate 

that embedding SCNN layers further strengthens the model’s performance, confirming the 

compatibility of the proposed spatial-temporal attention mechanism. As the developed spatial-

temporal is modular in nature, it should be able to cooperate with any other mechanisms. 

Additionally, the proposed encoder-decoder-based pipeline allows all the developed models to 

integrate seamlessly with other methodologies, such as self-supervised pre-training approaches. 

In particular, the employment of pre-training using the masked sequential autoencoders (R. Li 

& Dong, 2023) was shown to significantly improve the performance of the STFC_Att-

SCNN_UNet_LSTM model. Incorporating self-supervised pre-training not only enhances the 

model’s accuracy but also substantially reduces total training time (R. Li & Dong, 2023), further 

demonstrating the flexibility and adaptability of the proposed approach. 

3.5.4 Model size and real-time capability 

As illustrated in Table 3-2, all the developed models with the proposed attention mechanism 

possess fewer parameters and lower MACs compared with the baseline SegNet_ConvLSTM 

and UNet_ConvLSTM, which also use continuous frames as input. Fewer parameters and lower 

MACs mean the models get better performance regarding processing time and real-time 

capability, which would be advantageous when deployed in real-world applications. 

Within the developed model variants, Tem_Att-UNet_LSTM, ST_Att-UNet_LSTM, and 

STFC_Att-UNet_LSTM have nearly identical parameter sizes (the little difference can not be 

visible in one decimal), while ST_Att-UNet_LSTM and STFC_Att-UNet_LSTM get slightly 

larger MACs, with STFC_Att-UNet_LSTM getting the largest among the three variants. These 

variations arise from differences in model architecture. Within the group of the developed 

models, as the MACs increase, the model’s performance generally gets better (demonstrated in 

Tables 3-2, 3-3, 3-4, and 3-5), making the slight computational cost increase acceptable. 

 

The results from all these ablation experiments provide robust evidence of the effectiveness and 

reliability of the proposed spatial-temporal attention mechanism for lane detection. The 

mechanism strikes a balance between model complexity and real-time capability, ensuring 

practical viability in real-world diverse driving scenarios. 

3.6 Conclusion 

Previous vision-based methods for lane detection often fail to account for critical image regions 

and their spatial-temporal salience across continuous frames, leading to poor performance under 

challenging driving scenarios. In this study, a novel spatial-temporal attention mechanism 

embedded within a hybrid sequence-to-one encoder-decoder neural network architecture is 

proposed and implemented for accurate and robust lane detection in a variety of normal and 

challenging driving scenarios. The proposed spatial-temporal attention mechanism can focus 

on key features of lane lines and exploit salient spatial-temporal correlations among continuous 

frames to enhance the accuracy and robustness of lane detection. Extensive experiments 
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conducted on three large-scale open-source datasets demonstrate the robustness and superiority 

of the proposed model, outperforming available state-of-the-art methods in various testing 

scenarios. In addition, ablation studies confirm the developed spatial-temporal attention 

mechanism’s capabilities of cooperating with other architectures and model mechanisms. Last 

but not least, the sequential neural network models implemented by the proposed spatial-

temporal attention mechanism possess fewer parameters and smaller multiply-accumulate 

operations compared with other sequential baseline models, highlighting their computational 

efficiency. 

However, it is observed that the proposed models struggle in certain challenging cases. These 

cases are underrepresented in the training datasets and, in some instances, include mislabelled 

ground truth data (as noted in (J. Zhang et al., 2022)), hindering the models’ ability to learn 

their patterns. Furthermore, initial tests of the models’ transferability between datasets revealed 

that the models trained on tvtLANE underperformed on the LLAMAS dataset due to differences 

in lane structures and labelling formats, and vice versa. In contrast, models trained on the 

LLAMAS dataset performed well on the unlabelled Netherlands lane dataset due to similar lane 

structures. 

For real-world deployment of lane detection algorithms, adaptability to diverse lane structures 

and types across different countries and regions is crucial. With these findings in mind, it is 

recommended that future research should focus on building integrated, comprehensive lane 

datasets and exploring domain adaptation and transfer learning methods to improve lane 

detection performance across diverse datasets and driving conditions. 
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4 Robust lane detection through self pre-training 

with masked sequential autoencoders and fine-tuning 

with customised PolyLoss 

Abstract 

Lane detection is crucial for vehicle localisation which makes it the foundation for automated 

driving and many intelligent and advanced driving assistant systems. Available vision-based 

lane detection methods do not make full use of the valuable features and aggregate contextual 

information, especially the interrelationships between lane lines and other regions of the images 

in continuous frames. To fill this research gap and upgrade lane detection performance, this 

study proposes a pipeline consisting of self-supervised pre-training with masked sequential 

autoencoders (MSAEs) and fine-tuning with customised PolyLoss for the end-to-end neural 

network models using multi-continuous image frames. The MSAEs are adopted to pre-train the 

neural network models with reconstructing the missing pixels from a random masked image as 

the objective. Then, in the fine-tuning segmentation phase where lane detection segmentation 

is performed, the continuous image frames serve as the inputs, and the pre-trained model 

weights are transferred and further updated using the backpropagation mechanism with 

customised PolyLoss calculating the weighted errors between the output lane detection results 

and the labelled ground truth. Extensive experiment results demonstrate that, with the proposed 

pipeline, the lane detection model performance on both normal and challenging scenes can be 

advanced beyond the state-of-the-art, delivering the best testing accuracy (98.38%), precision 

(0.937), and F1-measure (0.924) on the normal scene testing set, together with the best overall 

accuracy (98.36%) and precision (0.844) in the challenging scene test set, while the training 

time can be substantially shortened. 

This chapter is based on the journal publication: 

Li, R., & Dong, Y*. (2023). Robust Lane Detection Through Self Pre-Training with Masked 

Sequential Autoencoders and Fine-Tuning with Customized PolyLoss. IEEE Transactions 

on Intelligent Transportation Systems, 24(12), 14121-14132. 

https://doi.org/10.1109/TITS.2023.3305015  (Co-first authors and corresponding author) 

https://doi.org/10.1109/TITS.2023.3305015
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4.1 Introduction 

Lane detection is one of the crucial parts of automated driving and is the foundation of many 

intelligent and advanced driving assistant systems. However, lane detection has always been a 

challenging task, for complex and variable realistic road conditions (these scenes are easily 

disturbed by factors including shadows, degraded road signs, blocking, poor lighting, and bad 

weather), and the curved and elongated features of lane lines (Zou et al., 2020). 

In recent years, many deep learning models have been proposed for vision-based lane detection 

(Y. Zhang et al., 2022). Before the emergence of deep learning, traditional methods mainly 

utilise traditional computer vision techniques, which rely on manually manipulated operators 

to extract handcrafted features, including geometry (Borkar et al., 2011; Y. Wang et al., 2004), 

colour (Somawirata & Utaminingrum, 2017), etc., to do the detection, and then refine the results 

using a series of fitting methods, such as Hough transform (Zheng et al., 2018) and B-spline 

fitting (Cao et al., 2019). Although some progress had been made, traditional methods are not 

robust to complex and challenging traffic scenes. In contrast, deep learning based methods can 

extract more favourable features automatically and achieve superior performance in a variety 

of complex environments (Y. Zhang et al., 2022). Generally, deep learning approaches are 

currently developed from three main perspectives: segmentation-based (Dong et al., 2022; Feng 

et al., 2022; Lee & Liu, 2023; Li et al., 2021; Pan et al., 2018; Patil et al., 2022; Ren et al., 2022; 

H. Wang et al., 2022; Zang et al., 2018; J. Zhang et al., 2021; Zou et al., 2020), anchor-based 

(Huang et al., 2023; Jin et al., 2022; Qin et al., 2022; Tabelini et al., 2021), and parameter-based 

(Liu et al., 2021; Torres et al., 2020), among which the most commonly used approach is the 

segmentation-based method. The performance of segmentation-based methods for lane 

detection has been continuously improving with various neural network structures developed. 

Getting rid of dense layers, Fully Convolutional Networks (FCNs) (Long et al., 2015; Zang et 

al., 2018) employ solely locally connected layers, e.g., convolution, pooling, and upsampling, 

to enable efficient learning of input images with arbitrary sizes, which makes it well-suited for 

the varying input images of lane detection. Spatial convolutional neural network (SCNN) (Pan 

et al., 2018) adopts customised spatial convolutional layers using slice-by-slice convolutions 

for message passing to capture essential spatial information and correlation for lane detection. 

UNet-based (Dong et al., 2022; Lee & Liu, 2023; Patil et al., 2022; Ronneberger et al., 2015; J. 

Zhang et al., 2021; Zou et al., 2020) neural networks with symmetrical encoder-decoder 

structures can extract features at multiple scales, leading to accurate identification of lane 

markings of different sizes and shapes. Using similar symmetrical encoder-decoder structures, 

SegNet-based (Al Mamun et al., 2021; Badrinarayanan et al., 2017; Gad et al., 2020) models 

employ pooling indices for upsampling, reducing trainable parameters and memory 

requirements. Generative Adversarial Neural Network (GAN) (Ghafoorian et al., 2018) with 

embedding loss can preserve label-resembling qualities and improve the outputs’ realism and 

structure preservation, reducing the need for complex post-processing in lane detection. 

On the other hand, self-supervised learning has shown in recent studies (Bao et al., 2022; El-

Nouby et al., 2021; He et al., 2022; Xie et al., 2022) that learning a generic feature 

representation by self-supervision can enable the downstream tasks to achieve highly desirable 

performance. The basic idea, masking and then reconstructing, is to input a masked set of image 

patches to the neural network model and then reconstruct the masked patches at the output, 

allowing the model to learn more valuable features and aggregate contextual information. When 

it comes to vision-based lane detection, self-supervised learning can provide stronger feature 
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characterisation by exploring interrelationships between lane lines and other regions of the 

images in the continuous frames for the downstream lane detection task. With self-supervised 

pre-training, it is also possible to accelerate the model convergence in the training phase 

reducing training time. Meanwhile, with the aggregated contextual information and valuable 

features by pre-training, the lane detection results can be further advanced. 

In this study, a self-supervised pre-training paradigm is investigated for boosting the lane 

detection performance of the end-to-end encoder-decoder neural network using multi-

continuous image frames. The masked sequential autoencoders (MSAEs) are adopted to pre-

train the neural network model by reconstructing the missing pixels from a randomly masked 

image with mean squared error (MSE) as the loss function. The pre-trained model weights are 

then transferred to the fine-tuning segmentation phase of the per-pixel image segmentation task, 

in which the transferred model weights are further updated using backpropagation with a 

customised PolyLoss calculating the weighted errors between the output lane detection results 

and the labelled ground truth. With this proposed pipeline, the model performance for lane 

detection on both normal and challenging scenes is advanced beyond the state-of-the-art results 

by considerable margins. 

The main contributions of this study are as follows: 

1. This study proposes a robust lane detection pipeline through self-supervised pre-training 

with masked sequential autoencoders (MSAEs) and fine-tuning with customised 

PolyLoss, and verifies its effectiveness by extensive comparison experiments. 

2. A customised PolyLoss is developed and adopted to further improve the capability of the 

neural network model. Without any extra parameter tuning, the customised PolyLoss can 

bring a significant improvement in the lane detection segmentation task while 

substantially accelerating model convergence speed and reducing the training time. 

3. The whole pipeline is tested and verified using three deep neural network structures, i.e., 

UNet_ConvLSTM (Zou et al., 2020), SCNN_UNet_ConvLSTM (Dong et al., 2022), and 

SCNN_UNet_Attention (Patil et al., 2022), with the SCNN_UNet_Attention based model 

delivering the best detection results for normal testing scenes, while 

SCNN_UNet_ConvLSTM model delivering the best detection results for challenging 

scenes surpassing baseline models. 

4.2 Proposed method 

This study proposes a pipeline for lane detection through self-supervised with MSAEs and fine-

tuning segmentation with customised PolyLoss. In the first stage, the images are randomly 

masked as the inputs, and the neural network model is pre-trained with reconstructing the 

complete images as the objective. In the second stage, the pre-trained neural network model 

weights are transferred to the segmentation neural network model with the same backbone, and 

only the structure of the output layer is adjusted. In this phase, continuous image frames without 

any masking are served as inputs. The neural network weights are further updated and fine-

tuned by minimising PolyLoss with the backpropagation mechanism. In this study, three neural 

network models, i.e., UNet_ConvLSTM (Zou et al., 2020), SCNN_UNet_ConvLSTM (Dong 

et al., 2022), and SCNN_UNet_Attention (Patil et al., 2022), are tested. In the last stage, post-

processing methods, e.g., Density-based spatial clustering of applications with noise (DBSCAN) 
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(Ester et al., 1996) for clustering the lane types and curve fitting to smooth the detected lines, 

are proposed to further improve the overall performance of the detection. However, due to time 

constraints and computational restrictions and following the convention in literature, e.g., 

(Dong et al., 2022; J. Zhang et al., 2021; Zou et al., 2020), post-processing is not specifically 

explored in this study. The framework of the proposed pipeline is illustrated in Figure 4-1. In 

the remaining parts of this section, each phase will be introduced in detail. 
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Figure 4-1. The framework of the proposed pipeline 

4.2.1 Preliminary and network backbone 

This study tests the proposed pipeline with three hybrid neural network models based on the 

UNet (Ronneberger et al., 2015) backbone, i.e, UNet_ConvLSTM (Zou et al., 2020), 

SCNN_UNet_ConvLSTM (Dong et al., 2022), and SCNN_UNet_Attention (Patil et al., 2022). 

The three models are in similar structures, composing three parts, i.e., encoder Convolutional 

Neural Network (CNN), Convolutional Long Short-Term Memory (ConvLSTM) block or 

Attention block, and decoder CNN, and they both work in an end-to-end approach. 

Encoder-decoder is a widely used framework in the field of deep learning with various network 

structures. It is capable of mapping directly from the original input to the desired output in an 

end-to-end manner and keeping the input and output of the same size. Such a framework has 

demonstrated good performances in natural language processing tasks, e.g., machine translation, 

summary extraction, and computer vision tasks, e.g., target detection, scene perception, and 

image segmentation (Dong et al., 2022; Ronneberger et al., 2015; J. Zhang et al., 2021; Zou et 

al., 2020). Lane detection as a typical image semantic segmentation or instance segmentation 

task can surely be tackled with super results under the encoder-encoder structure, e.g., (Dong 

et al., 2022; Patil et al., 2022; J. Zhang et al., 2021; Zou et al., 2020). 

A commonly used base neural network backbone for lane detection (and also other image 

segmentation tasks) is the UNet (Ronneberger et al., 2015), which is an improved FCN. UNet 

with a symmetric encoder-decoder structure was originally developed to solve the problem of 

medical image segmentation. In UNet, a block of its encoder contains two convolutional layers, 

and the feature map is downsampled using pooling layers to reduce the feature map size and 

increase the number of channels. The decoder, which is symmetric with the encoder, performs 
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deconvolution and upsampling operations for feature recovery and data reconstruction. The 

decoder CNNs have the same size and number of feature maps as in the encoder but are arranged 

in the opposite direction, and the feature maps are appended in a direct manner. With a 

symmetrical CNN-based encoder-decoder structure, UNet is widely used in various aspects of 

segmentation tasks, including lane detection, with outstanding performance. 

However, the original pure UNet does not consider the slender spatial structure and the 

correlations and continuity of lane lines in continuous image frames. To tap the temporal 

continuity of the lane line detection, the ConvLSTM module is embedded between the encoder-

decoder in the UNet_ConvLSTM model (Zou et al., 2020), which can integrate the time series 

features extracted from the input multi-continuous frames. To further improve lane detection 

results, SCNN_UNet_ConvLSTM (Dong et al., 2022) incorporates SCNN in its single image 

feature extraction module to make use of the spatial correlations of lane structure and achieves 

state-of-the-art performance. SCNN_UNet_Attention (Patil et al., 2022) which applies a 

spatial-temporal attention module with linear LSTM in the middle of the encoder and decoder 

rather than ConvLSTM, can further exploit spatial-temporal correlations and dependencies of 

different image regions among different frames in the continuous image sequence, and further 

advance the detection performance. This study implemented and tested UNet_ConvLSTM, 

SCNN_UNet_ConvLSTM, and SCNN_UNet_Attention models to verify the proposed pipeline. 

4.2.2 Self pre-training with Masked Sequential Autoencoders (MSAEs) 

For vision-based lane detection, in most of the driving scene image frames, lane lines only 

account for a small fraction of the whole image, which means there is more spatial redundancy 

compared to other segmentation tasks. It is vital but challenging to make full use of the valuable 

features and aggregate contextual information, especially the interrelationships between lane 

lines and other regions of the images in continuous frames. 

He et al. (2022) show that taking advantage of a pre-training strategy by randomly masking a 

high proportion of input image and reconstructing the original image from the masked patches 

using the latent representations can improve accuracy and accelerate training speed for 

downstream tasks. That is, the images with a high masking rate are input into the designed 

model for reconstruction as a self-supervised learning task, and then the pre-trained model can 

be migrated to the downstream tasks for fine-tuning. With this pre-training method, the model 

can gain a better overall “understanding” of the images, since reconstructing the masked pixels 

in the pre-training phase facilitates the trained model with a good generalisation capability, 

which can serve for downstream tasks. 

Inspired by and upgraded upon the idea of self-training by “random masking-reconstructing” 

with autoencoders (He et al., 2022), this study proposed to incorporate a pre-training phase with 

MSAEs to pre-train the lane detection models and facilitate their capabilities in aggregating 

contextual information for feature extraction through continuous frames. In the pre-training 

phase, S (for the experiments carried out in this study, S = 5) consecutive images are used as 

the inputs, with every image getting certain parts randomly masked. To implement the masking, 

each of the input images with the size of (128×256) is first divided into non-overlapping patches 

with the size of (16×16), and then random masking is applied to mask a certain ratio of the 

(8×16=128) patches in each image. The original last image within the input consecutive five 

image frames is set as the target of the reconstruction task. Using the mean squared error (MSE) 
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as the loss function, the image reconstruction task can be expressed as a minimisation problem 

by (4-1): 

min    
1

𝑆
∑ 𝑑2(𝑀𝑘, 𝑃𝑘)

𝑆
𝑘=1                    (4-1) 

where 𝑆 is the number of image samples; 𝑀𝑘 is the pixel value matrix with a size of (128×256), 

containing all pixel values in the reconstructed image k reconstructed from the one with masked 

patches; 𝑃𝑘 is the pixel value matrix with a size of (128×256), containing all pixel values in the 

original image k; 𝑑2(∙)  means Euclidean norm, which calculates the Euclidean distance 

between the matrix 𝑀𝑘 and 𝑃𝑘, and can be illustrated by (4-2): 

𝑑2(𝑀𝑘, 𝑃𝑘) =
1

ℎ∗𝑤
∑ ∑ (𝑚𝑖,𝑗

𝑤
𝑗=1

ℎ
𝑖=1 − 𝑝𝑖,𝑗)

2                 (4-2) 

where 𝑚𝑖,𝑗 and 𝑝𝑖,𝑗 are the pixel values on ith row jth column in the constructed image matrix 

𝑀𝑘 and the original image matrix 𝑃𝑘 respectively; h is the height of the image with h = 128 in 

this study; w is the width of the image with w = 256 in this study.  

Using UNet_ConvLSTM, SCNN_UNet_ConvLSTM, and SCNN_UNet_Attention models, the 

input continuous images with maskings are downsampled four times consecutively by the 

encoder, and the extracted time-series features of size (8×16×512) are then transferred to the 

ConvLSTM module (or Attention module) for spatial-temporal features integration. Finally, the 

decoder upsamples the integrated features four times into the same size as the input image and 

calculates the MSE loss between the reconstructed 5th image and the original 5th image of the 

input frames. Note that in the pre-training phase, the output layers of both UNet_ConvLSTM, 

SCNN_UNet_ConvLSTM, and SCNN_UNet_Attention, are adjusted from the original models 

reported in (Zou et al., 2020), (Dong et al., 2022), and (Patil et al., 2022), with the number of 

channels changed to 3 (check Figure 4-2). 

Regarding the masking ratio, the results of ablation tests with ratios set at 25%, 50%, or 75% 

found that a 50% ratio delivers a balanced performance. Thus, in the pre-training phase, the 

random masking ratio is set at 50% for all models. 

Different from the original masked autoencoders (He et al., 2022) implemented by the vision 

Transformer, the proposed upgrade version of masked sequential autoencoders for pre-training 

is implemented under the “CNN-ConvLSTM-CNN” or “CNN-Attention_LSTM-CNN” 

architecture, which can further aggregate valuable image contextual information and spatial-

temporal features. By masking the whole continuous 5 image frames and only recovering the 

last frame, which is also the current frame for lane detection, the proposed upgraded MSAEs 

facilitate the model to learn not only correlations of different regions within one image but also 

the spatial-temporal interrelationships and dependencies between different regions of the 

images among continuous frames. 

4.2.3 Fine-tuning with PolyLoss 

Vision-based lane detection, as a typical segmentation task, aims to classify the image at the 

pixel level, labelling each pixel with its corresponding class, i.e., lane or background. Generally, 

for a segmentation task, the input is one image, but in the proposed pipeline, a continuous image 

sequence is used as input, and only the last image of the continuous sequence is segmented, 

check Figure 4-1 for details.  
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By pre-training with reconstructing the masked patches, the pre-trained model should already 

get the aggregate contextual information and valuable spatial-temporal features, however, fine-

tuning is required to further train the model to adapt it to the per-pixel segmentation task, 

making full use of those extracted features.  

With the elongated structure, lane lines often occupy only a very small fraction of the overall 

pixels in an image, making lane detection a typical imbalanced two-class segmentation task. 

Usually, weighted cross-entropy (CE) loss is adopted for addressing this imbalanced two-class 

segmentation, which reshapes the standard CE loss by introducing weighting factors to reduce 

the weights of the background samples and focus more on the weights of lane pixels. However, 

literature (Jadon, 2020; Leng et al., 2022) revealed that weighted CE loss does not perform well 

under certain situations with severely imbalanced data. To further improve the performance of 

the lane detection models and improve the capabilities of handling the severe imbalance 

between lane line and background pixels, this study customises a PolyLoss (PL for short in the 

model names), and tests and verifies its effectiveness. 

PloyLoss is based on the Taylor expansions of CE loss and focal loss (FL), which treats the loss 

functions as a linear combination of polynomial functions (Leng et al., 2022). The CE loss and 

FL loss can be expressed in (4-3) and (4-4): 

𝐿CE = − 𝑙𝑜𝑔(𝑄𝑡)                    (4-3) 

𝐿FL = −𝛼(1 − 𝑄𝑡)
𝜀 𝑙𝑜𝑔(𝑄𝑡)                   (4-4) 

where 𝐿CE  and 𝐿FL  stand for the CE loss and FL loss, respectively; 𝑄𝑡  is the prediction 

probability of the target ground-truth class; 𝛼 and 𝜀 are the tunable hyperparameters for 𝐿FL. 

The loss functions of both CE and FL can be decomposed into a series of weighted polynomial 

bases in the form of ∑ 𝛼𝑗(1 − 𝑄𝑡)
𝑗∞

𝑗=1   where𝑗 ∈ ℤ+ , 𝛼𝑗 ∈ 𝑅+  is the polynomial coefficient. 

Each polynomial basis (1 − 𝑄𝑡)
𝑗  is weighted by the corresponding polynomial coefficients 

𝛼𝑗 ∈ 𝑅+, so that it is easy to adjust the different polynomial bases of PolyLoss. The Taylor 

expansion of FL, indicated by 𝐿FL-T, is given in (4-5)： 

𝐿FL-T = −(1 − 𝑄𝑡)
𝜀 𝑙𝑜𝑔(𝑄𝑡) = ∑
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𝑗+𝜀

𝑗

∞

𝑗=1
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+
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where 𝑁 ∈ ℤ+; 𝜀 is a modulating factor, with which the FL can simply shift the power 𝑗 by 𝜀, 

i.e., shift all polynomial coefficients horizontally by 𝜀 (Leng et al., 2022). 

To improve the model performance and robustness, dropping the higher-order polynomials and 

tuning the leading polynomials are applied in previous studies (Gonzalez & Miikkulainen, 

2021; Leng et al., 2022). Similarly here, after truncating all higher order (𝑁 + 1 → ∞) 

polynomial terms and tuning the leading 𝑁  polynomials using the perturbation term 𝛾𝑗 ,  𝑗 =

1, 2, 3,⋯ , 𝑁, the truncated 𝐿PL-N is obtained and shown in (4-6): 

𝐿PL-N = (𝛾1 + 1)(1 − 𝑄𝑡)
1+𝜀 + (𝛾2 +

1

2
)(1 − 𝑄𝑡)

2+𝜀 + ⋯+ (𝛾𝑁 +
1

𝑁
)(1 − 𝑄𝑡)

𝑁+𝜀 

          = −(1 − 𝑄𝑡)
𝜀 𝑙𝑜𝑔(𝑄𝑡) + ∑ 𝛾𝑗(1 − 𝑄𝑡)

𝑗+𝜀𝑁
𝑗=1       (4-6) 
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To further simplify the 𝐿PL-N and render it applicable to be easily tuned for different tasks and 

data sets, Leng et.al (2022) carried out extensive experiments and observed that adjusting a 

single coefficient for the leading polynomial can achieve better performance than the original 

FL loss. With this, the general form of the finally simplified formula of PolyLoss 𝐿PL (of FL) is 

illustrated by (4-7): 

𝐿PL = −𝛼(1 − 𝑄𝑡)
𝜀 𝑙𝑜𝑔(𝑄𝑡) + 𝛾(1 − 𝑄𝑡)

𝜀+1
                (4-7) 

where 𝛼, 𝛾, 𝜀  are the tunable hyperparameters. Adapting it to the imbalanced two-class 

segmentation task of lane detection, this study further customised (4-7) into (4-9), which will 

be discussed in the following subsection 4.2.5. 

More details about PolyLoss can be referred to in (Leng et al., 2022). 

4.2.4 Post-processing phase 

Since in real driving scenarios, it is necessary to identify the types and colours of the lane lines 

(e.g., dashed lines, continuous double yellow lines), the detected lane lines need to be grouped 

into different colours to indicate their different types, i.e., lane detection considered as an 

instance segmentation task. With the fine-tuning lane line segmentation outputs, the DBSCAN 

(Ester et al., 1996) algorithm is proposed to cluster the detected lane lines into different colours, 

indicating different types. Then, curve fitting is proposed at the end to smooth the detected lines, 

repairing the discontinuous broken ones (see the post-processing section in Figure 4-1). One 

needs to note that this study only presents here the idea of post-processing which can serve to 

upgrade the lane detection results, however, all the results in this study do not use post-

processing which follows the general convention in literature, e.g., (Dong et al., 2022; Patil et 

al., 2022; J. Zhang et al., 2021; Zou et al., 2020). 

4.2.5 Implementation details 

Configuration details: In this study, to reduce the computational payload and save training 

time, the size of the images for both the training set and test set is set to a resolution of 128×256. 

In pre-training, the proportion of masked patches is set to 50%. Experiments were carried out 

on two NVIDIA Tesla V100 (32 GB memory) GPUs, using PyTorch version 1.9.0 with CUDA 

Deep Neural Network library (cuDNN) version 11.1. The batch size is set to be as large as 

possible, which is 60. The learning rate was initially set to 0.001 with decay applied after each 

epoch. 

Network details: In network models of UNet_ConvLSTM, SCNN_UNet_ConvLSTM, and 

SCNN_UNet_Attention, most of the convolutional kernel size is 3×3, except for the SCNN 

block in SCNN_UNet_ConvLSTM and SCNN_UNet_Attention. The encoder part (see the left 

Encoder section in Figure 4-2) uses two convolutional layers as a downsampling block, in 

which the size of the feature map is reduced by half and the number of channels is doubled by 

the pooling layer. Four successive downsampling blocks are performed, and the last 

downsampling block does not change the number of output channels compared with its input. 

The final feature map of the encoder with a size of 8×16×512 is fed into the spatial-temporal 

ConvLSTM (or Attention) module. 
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The sequential features of the feature map are learned in the ConvLSTM/Attention module, 

which is equipped with 2 hidden layers of size 512 and outputs an  8×16  feature map of the 

same size as its input. The decoder network (check the Decoder part in Figure 4-2), is with the 

same size and number of feature maps as in the encoder but of a reverse-arranged symmetric 

structure that upsamples the extracted features to the original size of the input image. One needs 

to note that, in the pre-training task, to recover the image into original RGB pixels, the number 

of channels in the output layer of the decoder is set as 3; while in the fine-tuning segmentation 

phase, it is set as 2 for the two-class segmentation task. Therefore, for model weights transfer 

from the pre-training to the fine-tuning phase, the pre-trained model weights are transferred to 

the fine-tuning model except for the weights of the output layer. Both the pre-training and fine-

tuning segmentation phases output images of the same size as the input one. Details can be 

checked in Figure 4-2. 
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Figure 4-2. Pre-training network and lane line detection neural network structure. 

*SCNN block is for SCNN_UNet_ConvLSTM and SCNN_UNet_Attention, 

UNet_ConvLSTM does not have it. 

**Attention block is only for SCNN_UNet_Attention model. 

Loss function details: As mentioned before, to make the proposed pipeline work, different loss 

functions are adopted accordingly in different phases. In the pre-training phase, the objective is 
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to reconstruct the masked images, and for that, the mean square error (MSE) is selected as the 

loss function.  

While in the fine-tuning segmentation phase, the objective is to segment the pixels into lanes 

or backgrounds, which is a typical discriminative binary segmentation task. This study tested 

the weighted CE loss and the customised PolyLoss and compared their performances in tackling 

the imbalanced lane segmentation task. The two tailored losses applied in the fine-tuning 

segmentation phase are illustrated by (4-8) and (4-9). 

CE = −
1

𝑇
∑ [𝜔1𝑦𝑖 𝑙𝑜𝑔( ℎ𝜃(𝑥𝑖)) + 𝜔0(1 − 𝑦𝑖) 𝑙𝑜𝑔( 1 − ℎ𝜃(𝑥𝑖))]

𝑇
𝑖=1                (4-8) 

PL = −
1

𝑇
∑ (

𝛼[𝑦𝑖(1 − ℎ𝜃(𝑥𝑖))
𝜀 𝑙𝑜𝑔( ℎ𝜃(𝑥𝑖)) + (1 − 𝑦𝑖)ℎ𝜃(𝑥𝑖)

𝜀 𝑙𝑜𝑔( 1 − ℎ𝜃(𝑥𝑖))] −

𝛾[𝑦𝑖(1 − ℎ𝜃(𝑥𝑖))
𝜀+1) + (1 − 𝑦𝑖)ℎ𝜃(𝑥𝑖)

𝜀+1]
)𝑇

𝑖=1           (4-9) 

where CE  and PL  stand for the weighted cross-entropy loss and the customised PolyLoss, 

respectively; 𝑇  is the number of training examples; 𝑦𝑖  is the true segmentation label for the 

training example 𝑖; 𝜔1 and 𝜔0 stands for the weights for the lane class and the background class, 

respectively; 𝑥𝑖 is the input training example 𝑖; ℎ𝜃(∙) represents the neural network model with 

trainable weights 𝜃; and 𝛼, 𝛾, 𝜀 are the tunable hyperparameters for the customised PolyLoss, 

which are determined by grid search method. 

Optimiser details: To efficiently train and validate the proposed model pipeline, different 

optimisers were tested in different stages. Three optimisers, Stochastic Gradient Descent (SGD), 

Adaptive Moment Estimation (Adam), and Rectified Adaptive Moment Estimation (RAdam), 

were tested in the pre-training and fine-tuning segmentation phases. Compared to Adam, SGD 

requires more parameters, decreases more slowly, and may oscillate continuously on both sides 

of the gully. Through the tests, Adam performed better than SGD in both the pre-training task 

and the fine-tuning lane segmentation task. Furthermore, RAdam solves the problem of falling 

into local optimisation that is easily encountered by Adam, and is more robust to the changes 

of learning rate. Experiments verified that there was even a slight improvement in the model 

performance of RAdam over Adam. Therefore, the RAdam optimiser was finally chosen for 

both the pre-training and the fine-tuning segmentation phases. 

4.3 Experiments and results 

4.3.1 Datasets descriptions 

To verify the proposed pipeline, a lane image dataset with continuous image frames is required. 

Although there are various open-sourced lane detection image datasets, e.g., CULane (Pan et 

al., 2018), CurveLane (Xu et al., 2020), seldom do they contain continuous frames. Therefore, 

this study adopted the tvtLANE (Zou et al., 2020) dataset, which is upgraded on the TuSimple 

lane detection challenge dataset, to train and verify the proposed method. There are one 

integrated training dataset and two testing sets in tvtLANE. 

The tvtLANE dataset is mainly built based on the TuSimple lane detection challenge dataset. 

In the original TuSimple dataset, there are 3,626 training segments and 2,782 test segments with 

20 continuous frames in each segment. The images are collected in different scenes at different 

times, and only the last frame of each segment, e.g., the 20th frame, is labelled with ground truth. 
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Zou et al. (2020) additionally labelled the 13th image in each segment and enlarged the dataset 

by adding 1,148 segments of rural driving scenes collected in China. Furthermore, data 

augmentation methods with cropping, flipping, and rotating operations are employed, and 

finally, a total number of 19,096 continuous segments are produced. 

The tvtLANE consists of two test sets, i.e., testset #1 (normal) which is built on the original 

TuSimple test set for normal driving scenario testing, and testset #2 (challenging) which 

consists of 12 challenging driving scenarios for robustness evaluation. More details of tvtLANE 

can be found in (Dong et al., 2022; Zou et al., 2020). 

In this study, 5 images are sampled from the continuous frames with a fixed stride. The sampling 

strides and frames used in the training and testing sets are elaborated in Table 4-1, and image 

samples are demonstrated in Figure 4-3. 

 

Figure 4-3. Image samples in the tvtLANE training set and the test set 

The first five images in each column are the inputs of consecutive frames, and the sixth one 

is the labelled ground truth of the last image in the consecutive frames. The first column is 

one sample in the training set, the second column is for the testset #1 (normal), and the third 

column is for testset #2 (challenging). 
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Table 4-1. Sample methods for the trainset and testset 

Subset Labeled Ground Truth Sample Stride Sample Frames 

Trainset 

13th 

3 1st,4th,7th,10th,13th 

2 5th,7th,9th,11th,13th 

1 9th,10th,11th,12th,13th 

20th 

3 8th,11th,14th,17th,20th 

2 12th,14th,16th,18th,20th 

1 16th,17th,18th,19th,20th 

Testset #1  

Normal 

13th  

20th  

1 9th,10th,11th,12th,13th 

1 16th,17th,18th,19th,20th  

Testset #2  

Challenging 
All 1 

1st,2nd,3rd,4th,5th 

2nd,3rd,4th,5th,6th 

3rd,4th,5th,6th,7th 

··· 

4.3.2 Evaluation metrics 

Overall, the model performance is evaluated in terms of both visual qualitative examination 

with results demonstration and quantitative analysis with metrics. Considering the vision-based 

lane detection task as a pixel-level classification task, commonly used metrics, i.e., accuracy, 

precision, recall, and F1-measure (Dong et al., 2022; Patil et al., 2022; J. Zhang et al., 2021; 

Zou et al., 2020), are adopted. The calculations of these metrics are illustrated by (4-10)-(4-13). 

Accuracy =
𝑇𝑟𝑢𝑙𝑦 𝐶𝑙𝑎𝑠𝑠𝑖𝑓𝑖𝑒𝑑 𝑃𝑖𝑥𝑒𝑙𝑠

𝑇𝑜𝑡𝑎𝑙 𝑁𝑢𝑚𝑏𝑒𝑟 𝑜𝑓 𝑃𝑖𝑥𝑒𝑙𝑠
                (4-10) 

Precision =
True Positive

Tru𝑒 Positive + False Positive
               (4-11) 

Recall =
True Positive

True Positive + False Negative
                (4-12) 

F1-measure = 2 ∗
Precision ∗ Recall

Precision + Recall
                (4-13) 

In the above equations, true positive indicates the number of image pixels that are lane lines 

and are correctly identified; False positive indicates the number of image pixels that are 

background but incorrectly classified as lane lines; False negative indicates the number of 

image pixels that are lane lines but incorrectly classified as background. 

Furthermore, for estimating the models’ computational complexities, the model parameter size, 

i.e., Params (M), and the multiply-accumulate (MAC) operations, i.e., MACs (G), are provided. 

4.3.3 Results 

In this sub-section, reconstruction performance in the self pre-training phase will be visually 

demonstrated, while the lane detection testing results of various models on both tvtLANE 

testset#1 (normal) and tvtLANE testset#2 (challenging) will be evaluated qualitatively and 

quantitatively. 

Self pre-training results: Figure 4-4 shows the reconstructing results of the masked images in 

the pre-training phase. It can be seen that the masked patches in the images can be restored very 
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well. Although there are some minor blurs in certain images, the reconstructed images generally 

recover the main and critical patterns. 

 

Figure 4-4. Visualisation of the reconstructing results in the pre-training phase 

The first row shows images with 50% of the patches masked. The second row shows the 

reconstructed images after pre-training. The third row shows the original images. 

Testing results on tvtLANE testset #1 (normal): Figure 4-5, Figure 4-7 (A), and Table 4-2 

(a) demonstrate the qualitative and quantitative testing results on tvtLANE testset #1 (normal).  

Qualitatively, for the lane detection segmentation task, the model should be able to accurately 

predict the total number of lane lines, correctly detecting the location of the lane lines while 

avoiding unexpected broken lines and blurs. Visualisations of the lane detection results show 

that models using the proposed self-supervised pre-training method generally perform better 

than those without. Furthermore, models using the customised PolyLoss generally outperform 

those using weighted CE loss with thinner detected lane lines and fewer blurs. Aligning with 

previous studies (Dong et al., 2022; Patil et al., 2022; J. Zhang et al., 2021; Zou et al., 2020), 

models using multi-continuous image frames defeat those using one single image as indicated 

in rows (c) and (d) there are fatter lane lines, merged lanes, and blurred areas at the top boundary 

of the image, and even wrongly detected lane numbers (check the first column in Figure 4-7 

(A)). One can also notice that even when vehicles or shadings of the vehicles are blocking the 

lane lines, the models with the proposed pretraining method and using the proposed PolyLoss 

can identify the lane lines completely and continuously with correct locations (check the first, 

fourth, and sixth columns in Figure 4-7 (A)), which is crucial for vehicle localisation. 

Quantitatively, Table 4-2 (a) demonstrates that the proposed self-supervised pre-training 

method improves the lane detection results for both UNet_ConvLSTM and 

SCNN_UNet_ConvLSTM models, and the models using the customised PolyLoss all 

outperform those using the weighted CE loss regarding accuracy, precision, and F1-measure. 

To be specific, with the self-supervised pre-training pipeline and using the customised PolyLoss, 

UNet_ConvLSTM_PL** advances a lot from the baseline UNet_ConvLSTM with testing 

accuracy improved from 98.00% to 98.34%, precision improved from 0.857 to 0.921, and F1-

measure improved from 0.904 to 0.915; while SCNN_UNet_ConvLSTM_PL** also improves 
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a lot from the baseline SCNN_UNet_ConvLSTM with testing accuracy improved from 98.19% 

to 98.38%, precision improved from 0.889 to 0.929, and F1-measure improved from 0.918 to 

0.922. All the models’ parameter sizes and MACs do not increase. 

 

Figure 4-5. Lane detection results obtained by SCNN_UNet_Attention_PL** on tvtLANE 

testset #1 (normal) without post-processing 

 

Figure 4-6. Lane detection results obtained by SCNN_UNet_ConvLSTM_PL** on 

tvtLANE testset #2 (challenging) without post-processing 
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Figure 4-7. Qualitative visual comparison of the lane detection results testing on (A) 

tvtLANE testset #1 (normal) and (B) tvtLANE testset #2 (challenging) 

All results in the figure are without post-processing. (a) Original input images; (b) Ground truth; 

(c)~(l) are the lane detection results corresponding to the models: (c) SegNet, (d) UNet, (e) 

SegNet_ConvLSTM (Zou et al., 2020), (f) UNet_ConvLSTM, (g) UNet_ConvLSTM_CE**, (h) 

UNet_ConvLSTM_PL**, (i) SCNN_SegNet_ConvLSTM (Dong et al., 2022), (j) 

SCNN_UNet_ConvLSTM, (k) SCNN_UNet_ConvLSTM_ CE**, (l) SCNN_UNet_ConvLSTM_PL**, 

(m) SCNN_UNet_Attention_PL**. (Note: CE and PL are short for weighted cross-entropy loss and 

PolyLoss, respectively, while ** means the model is pre-trained with the proposed self-supervised 

pre-training method.) 
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Table 4-2. Model performance comparison 

(a) tvtLANE testset #1 (normal) 

Model 
Test_Acc 

(%) 
Precision Recall 

F1-

measure 

MACs 

 (G) 

Params  

(M) 

Using single 

image 

SegNet 96.93 0.796 0.962 0.871 50.2 29.4 

UNet 96.54 0.790 0.985 0.877 15.5 13.4 

SCNN* 96.79 0.654 0.808 0.722 77.7 19.2 

LaneNet* 97.94 0.875 0.927 0.901 44.5 19.7 

Using multi-

continuous 

images 

SegNet_ConvLSTM 97.92 0.874 0.931 0.901 217.0 67.2 

UNet_ConvLSTM 98.00 0.857 0.958 0.904 69.0 51.1 

UNet_ConvLSTM_CE** 98.19 0.882 0.940 0.910 69.0 51.1 

UNet_ConvLSTM_PL** 98.34 0.921 0.909 0.915 69.0 51.1 

SCNN_SegNet_ConvLSTM 98.07 0.893 0.928 0.910 223.0 67.3 

SCNN_UNet_ConvLSTM 98.19 0.889 0.950 0.918 93.0 51.3 

SCNN_UNet_ConvLSTM_CE** 98.20 0.891 0.952 0.921 93.0 51.3 

SCNN_UNet_ConvLSTM_PL** 98.38 0.929 0.915 0.922 93.0 51.3 

SCNN_UNet_ Attention _PL** 98.36 0.937 0.911 0.924 68.9 13.7 

(b) tvtLANE testset #2 (challenging) 

       Challenging  

 Scenes  

Model 
overall 

1-curve 

& 

occlude 

2-

shadow

-bright 

3-

bright 

4-

occlude 

5- 

curve 

6-  

dirty & 

occlude 

7- 

urban 

8- 

blur & 

curve 

9- 

blur 

10-

shadow

& dark 

11-

tunnel 

12- 

dim & 

occlude 

Precision 

SegNet 0.6080 0.6810 0.7067 0.5987 0.5132 0.7738 0.2431 0.3195 0.6642 0.7091 0.7499 0.6225 0.6463 

UNet 0.6754 0.7018 0.7441 0.6717 0.6517 0.7443 0.3994 0.4422 0.7612 0.8523 0.7881 0.7009 0.5968 

SegNet_ConvLSTM 0.7563 0.8176 0.8020 0.7200 0.6688 0.8645 0.5724 0.4861 0.7988 0.8378 0.8832 0.7733 0.8052 

UNet_ConvLSTM 0.7784 0.7591 0.8292 0.7971 0.6509 0.8845 0.4513 0.5148 0.8290 0.9484 0.9358 0.7926 0.8402 

UNet_ConvLSTM_CE** 0.7932 0.8004 0.8312 0.8285 0.7661 0.8557 0.5242 0.5567 0.7545 0.9200 0.9312 0.8496 0.8026 

UNet_ConvLSTM_PL** 0.8331 0.8429 0.8824 0.8691 0.8125 0.9578 0.5970 0.5591 0.8289 0.9247 0.9634 0.7688 0.9160 

SCNN_SegNet_ConvLSTM 0.7673 0.8326 0.7497 0.7470 0.7369 0.8647 0.6196 0.4333 0.7371 0.8566 0.9125 0.8153 0.8466 

SCNN_UNet_ConvLSTM 0.7784 0.8182 0.8362 0.8189 0.7359 0.8365 0.5872 0.5377 0.8046 0.8770 0.8722 0.7952 0.7817 

SCNN_UNet_ConvLSTM_CE** 0.8001 0.8754 0.8672 0.8519 0.7763 0.8664 0.5523 0.5261 0.7396 0.8865 0.8974 0.8115 0.9101 

SCNN_UNet_ConvLSTM_PL** 0.8444 0.9074 0.8757 0.8644 0.8464 0.9049 0.7177 0.4827 0.8157 0.9440 0.9606 0.8736 0.9220 

SCNN_UNet_ Attention _PL** 0.8413 0.9189 0.8763 0.8838 0.8598 0.9238 0.6210 0.5229 0.8847 0.9039 0.9229 0.8408 0.9369 

F1-measure 

SegNet 0.6727 0.8042 0.7900 0.7023 0.6127 0.8639 0.2110 0.4267 0.7396 0.7286 0.7675 0.6935 0.5822 

UNet 0.6985 0.8200 0.8408 0.7946 0.7337 0.7827 0.3698 0.5658 0.8147 0.7715 0.6619 0.5740 0.4646 

SegNet_ConvLSTM 0.7609 0.8852 0.8544 0.7688 0.6878 0.9069 0.4128 0.5317 0.7873 0.7575 0.8503 0.7865 0.7947 

UNet_ConvLSTM 0.7143 0.8465 0.8891 0.8411 0.7245 0.8662 0.2417 0.5682 0.8323 0.7852 0.6404 0.4741 0.5718 

UNet_ConvLSTM_CE** 0.6537 0.8365 0.8697 0.8263 0.7614 0.8165 0.2440 0.5359 0.7618 0.7206 0.4832 0.3274 0.2595 

UNet_ConvLSTM_PL** 0.6284 0.8220 0.8731 0.8300 0.7705 0.8295 0.1845 0.4426 0.7278 0.5712 0.4157 0.3545 0.4821 

SCNN_SegNet_ConvLSTM 0.7666 0.8956 0.8237 0.7909 0.7468 0.9108 0.4398 0.4858 0.7379 0.7546 0.8729 0.7963 0.8074 

SCNN_UNet_ConvLSTM 0.7024 0.8670 0.8866 0.8405 0.7565 0.7955 0.4179 0.5933 0.7880 0.7285 0.6296 0.4747 0.4134 

SCNN_UNet_ConvLSTM_CE** 0.7327 0.8937 0.8690 0.8426 0.7656 0.8352 0.2493 0.5751 0.7756 0.7122 0.7661 0.6989 0.5420 

SCNN_UNet_ConvLSTM_PL** 0.6711 0.8685 0.8796 0.8161 0.7988 0.7897 0.2853 0.4921 0.8258 0.7255 0.5244 0.3963 0.3255 

SCNN_UNet_ Attention _PL** 0.6772 0.8530 0.8771 0.8111 0.7579 0.7881 0.2926 0.5057 0.8595 0.7569 0.5857 0.3737 0.4565 

Accuracy (%) 
SegNet 96.57 96.72 96.16 96.01 96.83 96.50 95.93 96.16 96.39 96.12 97.26 96.79 97.37 

UNet 96.68 96.68 96.00 95.78 97.06 96.35 95.45 96.35 96.58 96.62 97.50 97.53 97.58 

SegNet_ConvLSTM 97.83 98.10 97.38  97.52 98.17 97.72 96.98 97.92 97.61 97.08 98.39 98.07 98.26 

UNet_ConvLSTM 97.93 97.83 97.48 97.70 97.94 97.73 97.27 97.86 97.75 97.65 98.49 98.37 98.38 

UNet_ConvLSTM_CE** 98.13 98.19 97.72 98.04 98.47 97.77 97.41 98.30 97.67 97.69 98.58 98.54 98.57 

UNet_ConvLSTM_PL** 98.38 98.60 98.06 98.33 98.75 98.35 97.66 98.61 98.09 97.77 98.63 98.63 98.63 

SCNN_SegNet_ConvLSTM 97.90 98.24 97.21 97.68 98.39 97.73 97.11 97.80 97.48 97.29 98.50 98.28 98.34 

SCNN_UNet_ConvLSTM 97.95 98.08 97.45 97.86 98.31 97.63 97.17 97.95 97.63 97.43 98.41 98.39 98.39 

SCNN_UNet_ConvLSTM_CE** 98.03 98.33 97.64 98.05 98.45 97.69 97.42 97.95 97.54 97.57 98.38 98.23 98.56 

SCNN_UNet_ConvLSTM_PL** 98.36 98.75 97.98 98.31 98.78 98.06 97.69 98.36 98.12 97.92 98.65 98.55 98.63 

SCNN_UNet_ Attention _PL** 98.35 98.77 97.98 98.30 98.70 98.17 97.57 98.56 98.19 97.74 98.61 98.51 98.64 

* Results reported in (J. Zhang et al., 2021).    

** Results of the models with the proposed self-supervised pre-training.  

“CE” is short for weighted cross-entropy loss, and “PL” is short for PolyLoss. 

Therefore, “UNet_ConvLSTM_CE**” means UNet_ConvLSTM model with self-supervised pre-

training and using weighted cross-entropy loss in the fine-tuning phase. This naming rule applies to 

all other models. 
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One can find that for both models, the most significant improvement was identified in precision 

(i.e., 0.857 to 0.921 and 0.889 to 0.929). The higher the precision the lower the false positive is 

(check (4-11)) which means the models become more strict on pixel samples to be classified as 

the lane line contributing to fewer wrong detected lane pixels, which is also illustrated by the 

thinner detected lane lines in Figure 4-7 (A). However, this might increase the number of lane 

pixels that are incorrectly identified as background, i.e., higher false negatives, thus the recall 

ratio decreases. Therefore, the F1-measure, which balances precision and recall ratio, is a more 

reasonable evaluation measure to serve as the main benchmark (Dong et al., 2022; Pan et al., 

2018; Patil et al., 2022; J. Zhang et al., 2021; Zou et al., 2020). Furthermore, 

SCNN_UNet_Attention, which was tested only under the best setting of using pre-training and 

customised PolyLoss, obtained the best precision (0.937) and F1-measure (0.924), beating all 

other state-of-the-art baseline models on this tvtLANE testset #1 (normal scene testing). 

Testing results on tvtLANE testset #2 (challenging): Figure 4-6, Figure 4-7 (B), and Table 

4-2 (b) demonstrate the qualitative and quantitative testing results on tvtLANE testset #2 

(challenging). 

Qualitatively, as illustrated in Figure 4-6 and Figure 4-7 (B), when testing on the challenging 

driving scenes, all the models do not perform well. However, the results obtained by the models 

using the proposed self-supervised pre-training method are still better than those without pre-

training. Especially models adopting the customised PolyLoss still output thinner lanes with 

less blur and more correct lane numbers. 

Quantitatively, as shown in Table 4-2 (b), models with pre-training generally outperform those 

without, regarding overall accuracy and precision. Typically, using the self-supervised pre-

training method plus the customised PolyLoss, the developed UNet_ConvLSTM_PL** model 

obtains the best overall accuracy (98.38%), and together with other proposed models (with ** 

in their names), they take all the best accuracies in all 12 challenging scenes; 

SCNN_UNet_ConvLSTM_PL** obtains the best overall precision (0.8444) followed by 

SCNN_UNet_Attention_PL** (0.8413), and also together with other proposed models, they fill 

11 best precisions out of all the 12 challenging scenes except for only scene 9 blur. 

It is worth noting that the models using the proposed self-supervised pre-training deliver 

slightly worse F1-measures compared to those without pre-training. This is because the models 

are more strict with the pixels classified as the lane lines which might increase the number of 

lane pixels that are incorrectly identified as background, i.e., resulting in higher false negatives, 

thus the recall ratio decreases and the F1-measures get slightly worse (even if there are increases 

in precisions). From Figure 4-7 (B), it is more intuitive to see that the developed models with 

the proposed pre-training and PolyLoss still show acceptable results, better than the baselines. 

4.3.4 Ablation study and discussion 

Masking ratio: Experimental results in the previous study (Xie et al., 2022) showed that the 

masking ratio needs to correspond to the mask patch, i.e., “for a small mask patch size of 8, the 

masking ratio needs to be as high as 80% to perform well”, while “for a large masking patch 

size of 32, the approach can achieve competitive performance in a wide range of masking ratios 

(10%-70%)”. In this study, the patch size is set as (16×16), and the experimental comparisons 

were carried out with ratios set as 25%, 50%, and 75%. 
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Testing on SCNN_UNet_ConvLSTM model, Figure 4-8 (a) shows the average normalised 

reconstruction loss indicated by the MSE of the image reconstruction task during the pre-

training phase. It is observed that using a smaller masking ratio leads to lower reconstruction 

loss, which is easy to understand, as a smaller masking ratio means fewer pixels need to be 

reconstructed. 

Figure 4-8 (b) shows the lane detection performance on the normal driving scene dataset 

regarding F1-measure with different masking ratios, and Table 4-3 shows the detailed 

quantitative results. 

   

        (a)        (b) 

Figure 4-8. Model performance comparison with different masking ratio settings: (a) 

reconstruction loss in the pre-training phase, and (b) the F1-measure testing on tvtLANE 

testset #1 

It is found that although the result of masking at a 75% ratio achieves the best F1-measure of 

0.926 on the normal dataset, it does not perform particularly well on the challenge dataset, 

where it only achieves an F1-measure of 0.7162 worse than that of masking at a 50% ratio (F1-

measure at 0.7327).  

Furthermore, referring to the results of the pre-training phase, it is clear that masking at a 50% 

ratio delivers balanced results during both the pre-training phase and fine-tuning testing phases. 

It is more reasonable to adopt the balanced setting to verify the proposed lane detection pipeline 

and method, and thus, 50% was chosen as the masking ratio for all testing models. 

Loss function: Earlier mentioned in this study, two loss functions (i.e., weighted CE loss and 

PolyLoss) were tested in the experiments under the proposed pipeline in the fine-tuning 

segmentation phase. The quantitative comparison results are shown in Table 4-2, and the 

qualitative results are intuitively demonstrated with visualisations in Figure 4-7. 

As shown in Table 4-2 (a), testing on tvtLANE testset #1 (normal scene), for both 

SCNN_UNet_ConvLSTM and UNet_ConvLSTM-based models, the overall performance of 

using PolyLoss outperforms that of weighted CE loss. To be specific, compared with 

UNet_ConvLSTM_CE**, the UNet_ConvLSTM_PL** model obtains an increase of 0.15% in 

accuracy; a significant increase of 0.039, i.e., around 4.4% improvement, in precision; while a 

bit decrease in recall ratio; and, overall, a better F1-measure of 0.915 over 0.910. 
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SCNN_UNet_ConvLSTM_PL** gets the same superiority patterns over 

SCNN_UNet_ConvLSTM_CE**, and SCNN_UNet_ConvLSTM_PL** obtains the second-best 

F1-measure (0.922), the second-best precision (0.929), and the best accuracy (98.38%), among 

all tested models. SCNN_UNet_Attention_PL** slightly beats SCNN_UNet_ConvLSTM_PL** 

in F1-measure (0.924) and precision (0.937). The superiority of the customised PolyLoss over 

weighted CE loss can be explained by that the PolyLoss function is designed as a linear 

combination of polynomial functions, so that the importance of polynomial bases can be 

adjusted according to the imbalanced dataset and regarding the segmentation task. With the 

fine-tuned hyperparameters 𝛼, 𝛾, 𝜀 in (4-9), the customised PolyLoss is perfectly adjusted to 

the dedicated lane detection task. 

The model using PolyLoss also performs better than the ones using weighted CE loss in almost 

all challenging scenes regarding accuracy and precision. In particular, testing on the challenging 

driving scenes dataset, UNet_ConvLSTM_PL** gets the highest overall accuracy at 98.38%, 

while SCNN_UNet_ConvLSTM_PL** obtains the best overall precision at 0.8444. 

Table 4-3. Model performance with different masking ratios 

(a) tvtLANE testset #1 (normal) 

Mask Ratio Test_Acc (%) Precision Recall F1-measure 

25% 98.36 0.927 0.915 0.921 

50% 98.20 0.891 0.952 0.921 

75% 98.40 0.933 0.918 0.926 

(b) tvtLANE testset #2 (challenging) 

Challenging 

Scenes 
Precision F1-measure Accuracy (%) 

Mask ratio 25% 50% 75% 25% 50% 75% 25% 50% 75% 

overall 0.8248 0.8001 0.8348 0.7196 0.7327 0.7162 98.31 98.03 98.36 

1-crve&occlude 0.8083 0.8754 0.9433 0.8238 0.8937 0.9260 98.58 98.33 98.83 

2-shadow-bright 0.8881 0.8672 0.9028 0.7953 0.869 0.8777 98.01 97.64 98.09 

3-bright 0.8611 0.8519 0.8786 0.7944 0.8426 0.8111 98.30 98.05 98.34 

4-occlude 0.8480 0.7763 0.8615 0.7703 0.7656 0.7438 98.80 98.45 98.83 

5-curve 0.9327 0.8664 0.9187 0.7660 0.8352 0.8840 98.14 97.69 98.14 

6-dirty&occlude 0.7052 0.5523 0.4813 0.3595 0.2493 0.2655 97.55 97.42 97.44 

7-urban 0.5090 0.5261 0.5565 0.4939 0.5751 0.5150 98.46 97.95 98.52 

8-blur&curve 0.7915 0.7396 0.7823 0.7933 0.7756 0.7426 98.01 97.54 98.08 

9-blur 0.9473 0.8865 0.9462 0.7396 0.7122 0.7437 97.74 97.57 97.76 

10-shadow&dark 

shadow&dark 
0.9553 0.8974 0.9331 0.7942 0.7661 0.7180 98.71 98.38 98.65 

11-tunnel 0.8427 0.8115 0.8956 0.7217 0.6989 0.6667 98.44 98.23 98.53 

12-dim&occlude 0.7588 0.9101 0.8750 0.6173 0.542 0.5973 98.33 98.56 98.54 

All of the test results in Table 4-3 were tested on the SCNN_UNet_ConvLSTM model. 

Training time and model complexity: In addition to the improvement regarding the evaluation 

metrics, the proposed self-supervised pre-training pipeline plus the customised PolyLoss can 

also reduce the training time, with the model convergence speed greatly improved. To be 

specific, tests revealed that for UNet_ConvLSTM-based models, UNet_ConvLSTM_PL** 

converged at the 10th epoch, while UNet_ConvLSTM_CE** converged at the 91st epoch, and 
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UNet_ConvLSTM without the proposed pertaining needed around 100 epochs to converge 

(Zou et al., 2020). Similarly, for SCNN_UNet_ConvLSTM-based models, 

SCNN_UNet_ConvLSTM_PL** converged at the 12th epoch, while 

SCNN_UNet_ConvLSTM_CE** converged at the 29th epoch, and SCNN_UNet_ConvLSTM 

without the proposed pre-training needed around 100 epochs to converge. 

These results demonstrate that pre-training with MSAEs plus fine-tuning with PolyLoss can not 

only boost the models’ overall performance regarding accuracy, precision, and F1-measure, but 

also speed up model convergence, greatly reducing the training time.  

Furthermore, from the parameters and MACs illustrated in Table 4-2 (a), it is demonstrated 

that, with the proposed pre-training and customised PolyLoss, the model size and complexity 

merely change.  

In short, the proposed pipeline contributes to the improvement of model efficiency and 

detection accuracy simultaneously. 

4.4 Conclusion 

In this study, a novel deep learning pipeline integrating self-supervised pre-training with 

masked sequential autoencoders, fine-tuning segmentation with customised PolyLoss, and post-

processing with clustering and curve-fitting, is proposed for the vision-based robust lane 

detection task. With the proposed self-supervised pre-training method by reconstructing the 

randomly masked image frames and the customised PolyLoss for the fine-tuning segmentation 

phase, the tested three neural network models (i.e., UNet_ConvLSTM, 

SCNN_UNet_ConvLSTM, and SCNN_UNet_Attention) all delivered significantly better 

performances in comparison to baselines. Through extensive experiments, the models under the 

proposed pipeline surpass other state-of-the-art models with the best testing accuracy, precision, 

and F1-measure on the normal driving dataset (i.e., tvtLANE testset #1) and the best overall 

accuracy and precision on the 12 challenging driving scenarios (i.e., tvtLANE testset #2). 

Furthermore, without changes in the model size and complexity, under the proposed pipeline, 

the test models converged faster, especially when adopting the customised PolyLoss in the fine-

tuning segmentation phase, while performing better detection results. These findings 

demonstrate the effectiveness of the proposed lane detection pipeline which upgrades the model 

training efficiency and detection accuracy simultaneously.  

It is witnessed that when testing with some brand new challenging samples, i.e., no similar 

samples are covered in the training phase, the model might be defeated with a low F1-measure. 

In practice, lane detection models trained on datasets from one certain country might not work 

well when testing on datasets with different lane structures from another country. To tackle this 

problem and further enhance the model’s robustness, for future studies, it is suggested to 

investigate domain generalisation and adaptation methods to transfer the knowledge and 

patterns learned from available datasets to unseen domains and fields with brand new data. 
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5 Intelligent anomaly detection for lane rendering 

using Transformer with self-supervised pre-training 

and customised fine-tuning 

Abstract 

The burgeoning navigation services using digital maps provide great convenience to drivers. 

Nevertheless, the presence of anomalies in lane rendering map images occasionally introduces 

potential hazards, as such anomalies can mislead human drivers and consequently contribute to 

unsafe driving. In response to this concern, to accurately and effectively detect the anomalies, 

this study transforms lane rendering image anomaly detection into a classification problem and 

proposes a four-phase pipeline: data pre-processing, self-supervised pre-training with the 

masked image modelling (MiM) method, customised fine-tuning using cross-entropy based loss 

with label smoothing, and post-processing. Leveraging state-of-the-art deep learning techniques, 

especially those involving Transformer models, the pipeline demonstrates superior performance 

verified through various experiments. Notably, the self-supervised pre-training with MiM can 

greatly enhance the detection accuracy while significantly reducing the total training time. For 

instance, employing the Swin Transformer with Uniform Masking as self-supervised 

pretraining (Swin-Trans-UM) yielded a higher accuracy of 94.77% and an improved Area 

Under The Curve (AUC) score of 0.9743 compared with the pure Swin Transformer without 

pre-training (Swin-Trans) with an accuracy of 94.01% and an AUC of 0.9498. Furthermore, 

fine-tuning epochs were dramatically reduced to 41 from the original 280. Ablation study 

regarding techniques to alleviate the data imbalance between normal and abnormal instances 

further reinforces the model’s overall performance. In conclusion, the proposed pipeline, with 

its incorporation of self-supervised pre-training using MiM and other advanced deep learning 

techniques, emerges as a robust solution for enhancing the accuracy and efficiency of lane 

rendering image anomaly detection in digital navigation systems. 

This chapter is based on the journal publication: 

Dong, Y., Lu, X., Li, R., Song, W., Van Arem, B., & Farah, H. (2025). Intelligent Anomaly 

Detection for Lane Rendering Using Transformer with Self-Supervised Pre-Training and 

Customized Fine-Tuning. Transportation Research Record: Journal of the Transportation 

Research Board. https://doi.org/10.1177/03611981251333341 

https://doi.org/10.1177/03611981251333341
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5.1 Introduction 

With the increase of private car ownership and the emergence of information and 

communication technology (ICT), navigation services have become popular, gaining increasing 

importance, forming a crucial component in driving, and providing convenience for drivers. 

Navigation services are always backed up by digital map applications (Vörös et al., 2022; L. 

Yang et al., 2021). A critical aspect of digital maps is the background, which is generated 

through data rendering. However, lane-level rendered map images may contain anomalies 

(errors and/or defects), such as irregular shapes and missing edges or corners. Examples of 

anomalies are illustrated in Figure 5-1. These anomalies can be confusing for human drivers, 

impairing their understanding and decision-making during navigation, which might result in 

critical unsafe situations. 

 

(a) (b) (c) (d)

(e) (f) (g)  

Figure 5-1. Illustration for examples of anomalous lane rendering images 

Anomaly types notes: (a) Anomaly_1: The road centre line extends out of the junction; (b) 

Anomaly_2: The stop line is in the middle of a road; (c) Anomaly_3: The navigation route 

does not match actual roads; (d) Anomaly_4: The road shoulder is bumpy; (e) Anomaly_5: 

A part of the road is missing; (f) Anomaly_6: The road marking arrows overlap; (g) 

Anomaly_7: The lane lines overlap. The red boxes mark the specific regions where the 

anomalies are. 

 

Similar anomalies can occur in high-definition (HD) maps used by automated vehicles (AVs) 

(Barsi & Barsi, 2022; Elghazaly et al., 2023). Accurate lane rendering in such maps is essential 

for various systems, including automated driving systems, Advanced Driver-Assistance 

Systems (ADAS), and smart traffic management systems, all of which rely heavily on precise 

and reliable mapping data to function effectively and safely. Anomalies in such maps can lead 

AVs into unsafe regions or induce dangerous driving behaviours. 
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Furthermore, this targeted problem is closely related to and can be easily transformed into 

relevant critical and practical real-world applications, such as road anomaly detection (Dib et 

al., 2020; Luo et al., 2020), road defect detection (Cao et al., 2020; Tong et al., 2020), as well 

as anomaly detection for lane and pavement marking on roads (Nguyen et al., 2009; Ruiz & 

Alzraiee, 2020; Sun et al., 2024). These issues are even more crucial for road safety. It is found 

that lane-related errors contribute to more than 10% of lane-change crashes (Isaksson-Hellman 

& Lindman, 2018), and misperception of lanes or lane boundaries is a leading factor in 

automated vehicle disengagements (Fu et al., 2024; Gershon et al., 2023). Thus, for example, 

the Federal Highway Administration (FHWA) in the USA has detailed guidelines on pavement 

markings essential for safe navigation and traffic management (NCUTCD, 2012). Similarly, 

China’s Ministry of Transport emphasises the importance of accurate lane marking for reducing 

accidents and enhancing road safety (Ministry of Transport of the People’s Republic of China, 

2018).  

Overall, it is vital to correctly detect these anomalies to prevent such unsafe situations. 

Fortunately, with the advancement of artificial intelligence algorithms, particularly in the 

domain of computer vision, it is now possible to carry out intelligent and automatic anomaly 

detection. 

Conventional studies regarding anomaly detection in the relevant transportation domains 

principally focus on road surface anomalies (Bello-Salau et al., 2019; Dib et al., 2020), road 

traffic anomalies (Kumaran et al., 2020; Hengyuan Zhang et al., 2022), in-vehicle and vehicle-

to-vehicle communication anomalies (Dong et al., 2022; Rajbahadur et al., 2018), abnormal 

driving behaviours (Hou et al., 2022; Hu et al., 2020; Dong et al., 2025), etc. Multi-modal and 

multi-source data have been utilised with various machine learning methods to do the detection. 

However, few studies have employed self-supervised methods to leverage unlabelled data. On 

the other hand, masked autoencoders and, to be general, masked image modelling (MiM) have 

become popular pre-training paradigms for self-supervised visual representation learning tasks. 

In MiM, a portion (usually a high ratio of 50% or above) of the input image is randomly masked 

using patches, and the model tries to reconstruct the masked pixels according to the target 

representations. The pre-trained model weights through MiM can be transferred to the 

downstream task for fine-tuning. Evidence in recent studies, e.g., (Bao et al., 2022; El-Nouby 

et al., 2021; He et al., 2022; R. Li & Dong, 2023; Xie et al., 2022), has demonstrated that self-

supervised pre-training with MiM can boost the downstream tasks (e.g., classification, 

segmentation, and object detection) to achieve better desirable performance. Thus, it is worth 

exploring MiM-based pre-training for anomaly detection. 

Furthermore, although various image datasets (e.g., animals, digital numbers, industrial 

inspection image MVTec AD datasets (Bergmann et al., 2019)) and vision-based anomaly 

detection methods have been developed (Bogdoll et al., 2022; Deecke et al., 2019; Kwon et al., 

2020; Yan et al., 2021; J. Yang et al., 2021), to the best of the authors and after extensive review, 

there are no studies that tackle the abnormal lane rendering images in digital navigation maps.  

To fill the aforementioned research gaps, this study develops a four-phase pipeline with self-

supervised pre-training and customised fine-tuning and using state-of-the-art Transformer 

models (Bao et al., 2022; Dosovitskiy et al., 2021; Guo et al., 2022; X. Li et al., 2022; Liu et 

al., 2021; Parmar et al., 2018) to accurately and effectively detect lane rendering image 

anomalies. A large-scale lane rendering image dataset adjusted from the 2022 Global AI 

https://developer.huawei.com/consumer/en/activity/digixActivity/digixdetail/201655283879815928


112 Safe, Efficient, and Socially Compliant Automated Driving in Mixed Traffic 

 

Challenge3 with both labelled and unlabelled data was adopted, and extensive experiments were 

carried out tackling the lane rendering image anomaly detection problem as a 2-class, 8-class, 

or 9-class classification task. Two MiM-based self-supervised pre-training methods, i.e., 

Uniform Masking (X. Li et al., 2022) and Bidirectional Encoder representation from Image 

Transformers (BEiT) (Bao et al., 2022), were customised and implemented. Extensive 

experiments, including ablation studies and comparative benchmarking, validate the pipeline’s 

efficacy. To summarise, the main contributions of this study lie in:  

1. Problem Reformulation: Transforming the lane rendering anomaly detection problem into 

a 2-class, 8-class, or 9-class classification problem. 

2. Optimised Pipeline: Proposing a four-phase pipeline with especially self-supervised pre-

training and customised fine-tuning to tackle the lane rendering image anomaly detection 

problem. 

3. Utilisation and implementation of MiM Methods: Customising and implementing two 

MiM self-supervised pre-training methods within the proposed four-phase pipeline; 

extensive training, fine-tuning, and validating experiments demonstrated that with MiM 

the detection performance was greatly enhanced with improved AUC and reduced fine-

tuning epochs. 

4. State-of-the-art performance: Under the proposed pipeline, the best model delivered a 

performance at the accuracy of 94.82%, the Area Under the Curve (AUC) at 0.9756, and 

the F1-score at 0.7879, outperforming baseline models, e.g., Vision Transformer (ViT) 

(Dosovitskiy et al., 2021) and Swin Transformer (Liu et al., 2021). 

Please note that the methods and models developed in this study can not only effectively detect 

lane rendering image anomalies but also can be readily adapted for related applications, such 

as detecting road surface anomalies and identifying abnormal lane markings. 

The rest of this Chapter is arranged as follows: The next section, Section 5.2 Methodology 

describes the research methodology consisting of the proposed pipeline in detail, including the 

overall framework, data pre-processing, self-supervised pre-training, customised fine-tuning, 

and post-processing. Following this, Section 5.3 Experiment and results shows the experimental 

set-up and results comparing different models within the proposed pipeline. Then, Section 5.4 

Ablation study introduces methods to alleviate data imbalance. Finally, Section 5.5 Conclusion 

draws the findings and proposes insights for further studies. 

5.2 Methodology 

In this section, the proposed method is introduced in detail. Firstly, the overall architecture of 

the proposed four-phase pipeline is illustrated and briefly explained. Then, each of the four 

phases, i.e., image pre-processing, self-supervised pre-training, fine-tuning classification, and 

post-processing, is depicted with comprehensive delineations sequentially. 

 

3 Global AI Challenge 2022: 

https://developer.huawei.com/consumer/en/activity/digixActivity/digixdetail/201655283879815928  

https://developer.huawei.com/consumer/en/activity/digixActivity/digixdetail/201655283879815928
https://developer.huawei.com/consumer/en/activity/digixActivity/digixdetail/201655283879815928


Chapter 5 – Intelligent anomaly detection for lane rendering by Transformer with self-supervised pre-training 113 

 

5.2.1 Overall pipeline description 

This study proposes a pipeline of four phases to tackle the anomaly detection task for lane 

rendering images in digital navigation APPs. The overall pipeline of the four-phase method is 

illustrated in Figure 5-2. 
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Figure 5-2. The architecture of the proposed four-phase pipeline 

Note: class 0 is the normal class. 
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The designed 4 phases are 1) Image pre-processing, which normalises the inconsistent images 

into uniform size and format; 2) self-supervised pre-training, which is tackled by the masked 

image modelling (MiM) method using mean square error (MSE) loss and outputs the pre-

trained model; 3) customised fine-tuning, which adopts the pre-trained model weights and 

further fine-tune the neural network model as a classification task using cross-entropy based 

loss (or its variants) with label smoothing; and 4) post-processing, which transforms the results 

of the last neural network layer (i.e., the output layer) into classification probabilities and 

outputs the final detection results with tuned probability threshold. The following subsections 

explain these four phases in more detail. 

5.2.2 Image pre-processing 

This study adopts the large-scale lane rendering image dataset adjusted and rearranged from the 

2022 Global AI Challenge. The provided original images get different resolutions and sizes. 

The majority of them have a resolution of 1080 * 2400, while there are a few images with 

different resolutions, i.e., 1080 * 2340 and 720 * 1560. Furthermore, to focus on the relevant 

content of the images, the study identifies that the top and bottom portions contain non-map-

related regions. Therefore, this study first carried out a centre-cropping operation by removing 

the 1080 * 300 pixels at the top and 1080 * 240 pixels at the bottom of the images, and then 

scaled the images to the same resolution of 256 * 256. Furthermore, since the images are only 

partly labelled with ground truth (i.e., class label of normal or anomaly type), while a large 

proportion of the images are unlabelled, this study constructs a pre-training dataset with both 

labelled images and unlabelled images, a fine-tuning dataset with partly random selected 

labelled image, and a testing dataset with a small proportion of the labelled images which is 

unseen in the fine-tuning dataset. 

Similar image datasets can be created for other navigation maps by taking screenshots of the 

application software interface and applying the aforementioned pre-processing steps. The same 

process can be applied to real-world image datasets collected by cameras for anomaly detection 

of e.g., road lane line markings or pavement markings. It is important that after the image pre-

processing phase, the images are in the uniform format, size, and resolution. 

5.2.3 Self-supervised pre-training 

For the lane rendering images in the navigation map APPs, lane lines account for only a small 

fraction of the whole image, as shown in Figure 5-1. There are 7 types of anomalies in the 

studied dataset, while the majority of the lane rendering images are normal ones. With these 

circumstances, it is assumed there is more spatial redundancy regarding image features for the 

abnormal lane rendering image detection task, and thus stronger feature extraction ability is 

required. Therefore, it is necessary to design a method to fully extract aggregated context 

information, as well as the critical features and correlations among pixels. Furthermore, as the 

examined dataset consists of massive unlabelled images (more than 80%), it is also vital to 

establish a pipeline to make full use of these unlabelled images. 

Motivated by the aforementioned, this study proposes and customises the MiM method for self-

supervised pre-training. In this phase, the total set of images serves as inputs for model pre-

training regardless of whether labelled or unlabelled. The input image is randomly masked 

https://developer.huawei.com/consumer/en/activity/digixActivity/digixdetail/201655283879815928
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using patches, and the pre-training model tries to reconstruct the masked pixels to match the 

target original images. Generally, the standard objective of self-supervised pre-training with 

MiM can be mathematically represented by equation (5-1): 

min   
1

𝛺(𝑖𝑀)
||𝐫𝑀 − 𝐢𝑀||2         (5-1) 

where 𝐢, 𝐫 ∈ ℝ3×𝐻×𝑊  are the input original RGB values and the reconstructed RGB values, 

respectively (𝐻  is the height of the image, 𝑊 is the width of the image, with 𝐻 × 𝑊 =

256 × 256 in this study); 𝑀 represents the set of masked image pixels; 𝛺(⋅) is the cardinality 

operator function to get the number of elements; || ⋅ ||2 stands for ℓ2-norm. Accordingly, the 

objective involves minimising the Root Mean Squared Error (RMSE), ℓ2  loss, between the 

original and reconstructed pixel values for the masked regions. By focusing on accurately 

reconstructing the masked regions, the MiM approach encourages the model to learn rich and 

context-aware representations of the input image, which are crucial for downstream tasks. 

Generally, there are two styles of implementing MiM: (1) raw pixel value regression, where the 

model directly reconstructs pixel values, and (2) converting the masked pixel signals into 

clusters or classes through methods such as vision tokenisation (Bao et al., 2022; Ramesh et al., 

2021) or colour clustering (Chen et al., 2020), followed by performing a classification task for 

masked image prediction. Accordingly, this study customises and implements two distinct MiM 

methods, i.e., Uniform Masking (X. Li et al., 2022) and the method introduced in Bidirectional 

Encoder representation from Image Transformers (BEiT) (Bao et al., 2022). The Uniform 

Masking method was selected because it successfully enables efficient asymmetric structure, 

likewise in (He et al., 2022), of pixel-based Masked Autoencoder (MAE) style self-supervised 

pre-training, particularly for Pyramid-based Vision Transformers (ViTs). On the other hand, 

BEiT was selected because it serves as a typical and well-established representation of token-

based methods. BEiT is the first to successfully adapt Masked Language Modelling (MLM) 

techniques from the Natural Language Processing (NLP) domain to the computer vision domain 

using ViT models. By introducing a discrete tokenisation mechanism for MiM, BEiT enables 

ViTs to process images in a manner analogous to how Transformers handle textual data, 

marking a significant milestone in bridging the gap between NLP and computer vision tasks. 

Regarding the Uniform Masking method, two key operations play a central role in the self-

supervised learning process: 

1)  Uniform Sampling: This step ensures that one random patch is sampled from each 

2 * 2 grid of patches within the image. As a result, 75% of the targeted region is dropped, which 

enforces a uniform yet sparse sampling pattern across the image. 

2)  Secondary Masking: Since using only the uniform sampling can potentially make 

the self-supervisory task less challenging and largely hinders the representation quality (X. Li 

et al., 2022), after uniform sampling, an additional random masking operation (termed 

Secondary Masking) is applied to the sampled regions, further masking 25% of them (as used 

in this study) as shared learnable tokens. 

Integrating uniform sampling and secondary masking together enables the pre-training method 

to support Pyramid-based ViTs, e.g., (Liu et al., 2021; Wang et al., 2021), while preserving 

better transferable visual representations. The Uniform Masking method pipeline for self-

supervised learning is illustrated in Figure 5-3. The image is first divided into 16 * 16 patches 
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for Uniform Sampling, which drops up 75% of the original image, and the Secondary Masking 

is operated on the remaining patches. A compact 2D input, reduced to a quarter of the original 

image size, is constructed using the uniform-sampled patches combined with the secondary-

masked tokens and is subsequently fed to the encoder. For the Pyramid-based ViT encoder, this 

study employs the Swin Transformer (Liu et al., 2021), which leverages a hierarchical 

architecture to effectively capture both local and global features, ensuring robust feature 

representation. For the decoder, the lightweight MAE Decoder, based on Vanilla ViT, is utilised, 

as adopted by (He et al., 2022). The MAE Decoder reconstructs the image using the encoder 

output features into the original size. These combinations ensure an efficient and effective 

architecture for self-supervised learning. 

Original Image Image Patching

256 * 256 16 * 16 patches

Uniform Sampling

75% mask drop

Second Masking

 Compact input

Original size input

Encoder

Swin Transformer

DecoderReconstructed Image

256 * 256

···

···

MAE 

Decoder

 

Figure 5-3. The illustration of the Uniform Masking method pipeline for MiM 

 

The selection of the masked ratio at 75% in the uniform sampling process is based on the 

experiment results reported in (He et al., 2022; X. Li et al., 2022), while the selection of the 

secondary masking ratio of 25% is based on the ablation experiment results reported in (X. Li 

et al., 2022).  

Regarding the BEiT self-supervised MiM method (Bao et al., 2022), each image is pre-trained 

with two complementary views, i.e., image patches (e.g., 16 * 16 pixels) and visual tokens (i.e., 

discrete tokens). Figure 5-4 illustrates the method pipeline of BEiT for self-supervised MiM 

learning. The images are first “tokenised” into discrete visual tokens, which correspond to 

indices within a learned visual vocabulary. In this study, the visual vocabulary is generated 

using a discrete variational autoencoder (dVAE) tokeniser as in (Bao et al., 2022; Ramesh et al., 

2021). Following tokenisation, some image patches are randomly masked and replaced with a 

special mask embedding before being fed into the ViT backboned encoder. Then, the objective 
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of the self-supervised MiM pretraining task involves predicting the visual tokens of the original 

image from the encoded representations of the corrupted image, which effectively enables the 

model to learn robust visual features. The prediction of the visual tokens is handled by the MiM 

head which consists of a single linear layer that converts the encoded features from the ViT 

encoder into a format compatible with the visual token space. Since the task involves finding 

the correct classes (i.e., the visual token indices), the Cross-Entropy loss function is employed 

for optimisation. To reconstruct the full image, the dVAE decoder takes the predicted discrete 

tokens as input and reconstructs their corresponding image patches. It is important to note that 

the MiM head is only used during the pre-training phase; during fine-tuning, task-specific 

decoders replace the MiM head. In this study, the original fine-tuned hyperparameters and 

network architecture from (Bao et al., 2022) are adopted. 
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Figure 5-4. The illustration of the BEiT method pipeline for MiM 

 

The described MiM task, implemented through either the Uniform Masking method or the BEiT 

method, forces the model to learn meaningful representations of images by understanding the 

context of the unmasked patches. For the Uniform Masking method, the Swin Transformer 

encoder is pre-trained using masked image regions, encouraging the model to effectively 

capture spatial relationships and hierarchical features. During the downstream classification 

task, the weights of the pre-trained Swin Transformer encoder are retained, and the MAE 

Decoder is replaced by a classification decoder. In contrast, for the BEiT method, the ViT 

encoder is pre-trained to predict discrete visual tokens corresponding to masked image regions. 

This approach emphasises token-based representations that align with concepts in the visual 

vocabulary. For the classification task, the pre-trained weights of the ViT encoder are preserved, 

and the MiM head is substituted with a task-specific classification decoder. Both methods 

leverage the robust features learned during the MiM task to enhance performance in the 

downstream tasks (i.e., the classification task of image types in this study), effectively 

transferring knowledge from the self-supervised pre-training phase to supervised fine-tuning. 

This study also implemented and trained a Vision Transformer (ViT) model without the 

proposed self-supervised pretraining as a baseline. 
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5.2.4 Customised fine-tuning 

In this study, the lane rendering images anomaly detection task is transferred into a 2-class, 8-

class, or 9-class (multi-label) classification problem, with separating the 7 types of anomalies 

from the normal ones as the objective. The pre-training model weights in the self-supervised 

pre-training phase are transferred and further updated using the back-propagation mechanism 

with label smoothing Cross-Entropy as the loss function. To further boost the model 

performance, the MixUp technique (Hongyi Zhang et al., 2018) is adopted. 

5.2.5 Post-processing 

After customised fine-tuning, during the testing stage, the fine-tuned model will be applied to 

assign “new” testing images that are unseen in the training process into the normal class or the 

abnormal class. A post-processing phase is designed to aggregate the probability results and 

output the detection classification results. 

In the post-processing, the neural network model outputs are first transformed into probabilities 

using 𝑠𝑜𝑓𝑡𝑚𝑎𝑥(∙)  function; and then the probability of each image being abnormal is 

calculated and truncated/clipped with up and down thresholds. After getting the truncated 

probability, the final detection result can be determined by fine-tuning a probability threshold 

to distinguish the anomalies and the normal image samples.  

5.3 Experiments and results 

To verify the effectiveness of the proposed pipeline, extensive experiments were carried out in 

various settings. 

5.3.1 Dataset description 

The lane-rendering digital map image data used in this study are adjusted and rearranged from 

the 2022 Global AI Challenge. As aforementioned, there are 7 types of anomalies, i.e., 

Anomaly_1: The road centre line extends out of the junction; Anomaly_2: The stop line is in the 

middle of a road; Anomaly_3: The navigation route does not match actual roads; Anomaly_4: 

The road shoulder is bumpy; Anomaly_5: A part of the road is missing; Anomaly_6: The road 

marking arrows overlap; and Anomaly_7: The lane lines overlap. Examples are shown in Figure 

5-1.  

In total, there are 161,772 images, with only 29,164 images labelled with the ground truth. 

Within the labelled ones, there are a total of 25,767 normal images and 3,397 images containing 

different kinds of anomalies (please note some images exhibit multiple different types of 

anomalies). Figure 5-5 (a) shows the histogram plot for the distribution of all labelled images, 

while Figure 5-5 (b) illustrates the pie chart for the distribution of each anomaly type within 

the labelled abnormal images. It is visible and clearly observed that within the 29,164 labelled 

images, the majority are normal ones. Furthermore, as illustrated in Figure 5-5, certain types 

of anomalies (e.g., Anomaly_6 and Anomaly_2) account for more samples than the other types 

of anomalies. Typically, Anomaly_6 takes up nearly half (48.1%) of the total quantity of 

abnormal images. 

https://developer.huawei.com/consumer/en/activity/digixActivity/digixdetail/201655283879815928
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(a) 

 

(b) 

Figure 5-5. The distribution of labelled images: (a) histogram plot for the distribution of 

all labelled images and (b) pie chart for the distribution of each anomaly type within the 

labelled abnormal images 
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The labelled dataset is then randomly split into the training set, validation set, and test set, 

according to the ratio of 70%, 15%, and 15%, respectively. The images were classified 

according to error types, and images with multiple error types were put into multiple categories. 

Thus, it is a multi-class multi-label classification problem, and there are a few more training 

examples than the image quantity. To be specific, in practice, the number of instances in the 

training set is 20,764, the number of instances in the validation set is 4,310, and the number of 

instances in the test set is 4,346. However, all the available 161,772 images, regardless of 

whether labelled or not, are adopted in the self-supervised pre-training process. 

5.3.2 Tested Transformer models 

Two Transformer models, i.e., Vision Transformer (ViT) (Dosovitskiy et al., 2021) and Swin 

Transformer (Liu et al., 2021), are implemented and tested in this study. The two Transformer 

models are tested in modes of both with and without the self-supervised pre-training. Therefore, 

there are in total four model variants, i.e., 1) pure ViT without pretraining, 2) ViT variant, BEiT, 

with the pretraining method described in (Bao et al., 2022), 3) pure Swin Transformer (Swin-

Trans for short), and 4) Swin Transformer with the Uniform Masking as self-supervised pre-

training method (Swin-Trans-UM for short). The detailed model architectures, i.e., parameter 

settings for each layer of the tested models, are illustrated in Appendix Table 5-A1, Table 5-

A2, Table 5-A3, and Table 5-A4. 

5.3.3 Evaluation metrics 

Various metrics are used to evaluate the overall performance of the selected models. Four basic 

terms, i.e., True-positive (TP) which represents the number of correctly detected lane rendering 

image anomalies, True-negative (TN) which represents the number of correctly detected normal 

lane rendering images, False-positive (FP) which represents the number of incorrectly detected 

anomalies, and False-negative (FN) which represents the number of incorrectly detected normal 

lane rendering images, are first obtained. Then, based on the four basic metrics, accuracy, 

precision, and recall were calculated. 

Accuracy is the percentage of correctly predicted lane rendering image samples in regard to the 

total sample size, which can be defined as the following equation (5-2): 

Accuracy =
TP+TN

TP+TN+FP+FN
                          (5-2) 

Precision is the number of correctly predicted positive lane rendering image anomalies as a 

percentage of the total number of predicted positive anomaly observations, and it shows how 

close the measurements are to each other. The mathematical expression of precision is defined 

by equation (5-3): 

Precision =
TP

TP+FP
                                     (5-3) 

Recall ratio, illustrated in equation (5-4), is the percentage of positive anomaly observations 

correctly predicted in the actual category. 

Recall =
TP

TP+FN
                                        (5-4) 
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Finally, the F1-score (F1 for short) provides an overall view of recall and precision (weighted 

average). F1 ranges from 0.0 to 1.0, with 1.0 indicating perfect precision and recall. And F1 can 

be obtained using the following equation (5-5): 

F1 = 2 ×
Precision×Recall

Precision+Recall
                           (5-5) 

Another appropriate indicator for evaluating the two-class classification problem is the 

Receiver Operating Characteristic-Area Under the Curve (ROC AUC), commonly abbreviated 

as AUC. AUC assesses the model’s ability to distinguish between normal and anomalous 

instances. It provides a single scalar value summarising the trade-off between the True Positive 

Rate (TPR) and the False Positive Rate (FPR) across different thresholds, offering insights into 

the model’s classification performance regardless of the specific threshold applied. Given its 

threshold-independent nature and its ability to encapsulate the model’s discriminative power, 

AUC is particularly suitable for imbalanced classification problems, such as the lane rendering 

image anomaly detection studied in this study. Accordingly, this study selects AUC as the 

primary evaluation metric for comparing and assessing the performance of the tested models. 

To measure AUC, one needs the TPR, i.e., recall ratio, and the FPR. TPR and TNR can be 

obtained by the following two equations (5-6) and (5-7): 

TPR =
TP

TP+FN
                                  (5-6) 

FPR =
FP

TN+FP
                                  (5-7) 

5.3.4 Experiment set-up 

Configuration details: In this study, to reduce the computational payload and save training time, 

the size of the images for both the training set and test set is set to a resolution of 256×256. In 

pre-training, the proportion of masked patches is set to 75%. Experiments were carried out on 

four NVIDIA Tesla V100 (32 GB memory) GPUs, using PyTorch version 1.9.0 with CUDA 

Deep Neural Network library (cuDNN) version 11.1. The batch size is set to be as large as 

possible, which is 60. The learning rate was initially set to 0.001 with decay applied after each 

epoch. 

Data augmentation: A data augmentation technique, MixUp (Hongyi Zhang et al., 2018), 

where two samples (inputs and their labels) are linearly combined, is adopted to upgrade the 

model performance. The idea of MixUp is to create new synthetic samples to encourage the 

model to make predictions based on more diverse data. 

The new synthetic training sample (�̃�, �̃�) is given by equation (5-8): 

�̃� = 𝜆𝑥𝑎 + (1 − 𝜆)𝑥𝑏 , �̃� = 𝜆𝑦𝑎 + (1 − 𝜆)𝑦𝑏      (5-8) 

where 𝑥𝑎 , 𝑥𝑏 are two raw input sample vectors, 𝑦𝑎, 𝑦𝑏 are the corresponding one-hot encoded 

labels, λ is the MixUp parameter. 

The MixUp technique helps the model generalise better by exposing it to more interpolated data 

points, leading to smoother decision boundaries. 
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Loss function details: As mentioned before, to make the proposed 4-phase pipeline work, 

different loss functions are adopted accordingly in the pre-training and fine-tuning phases. In 

the pre-training phase, the mean square error (MSE) is selected as the loss function for the 

Uniform Masking method since its objective is to reconstruct the masked patches directly at the 

pixel level. While the Cross-Entropy loss function is employed for the BEiT method since its 

MiM task involves identifying the correct visual token indices, framing the problem as a 

classification task over a visual vocabulary. 

In the fine-tuning phase, the objective is to classify the lane rendering images into normal ones 

and anomalies, which can be regarded as a typical classification task. The Cross-Entropy loss 

with label smoothing is adopted for this imbalanced classification task, which is illustrated in 

equation (5-9): 

ℓCE = ℓ(𝑦, �̂�) = −(1 − 𝜀) 𝑙𝑜𝑔(�̂�𝑦) −
𝜀

𝐶−1
∑ 𝑙𝑜𝑔(�̂�𝑐)𝑐≠𝑦      (5-9) 

where 𝐶  is the number of classes; 𝑦  is the one-hot encoded true label; �̂�  is the predicted 

probabilities output by the model, for example, �̂�𝑦 is the predicted probability for the true class, 

and �̂�𝑐 is the predicted probability for the true class 𝑐; 𝜀 is the smoothing factor controlling the 

amount of uncertainty applied, usually set between 0 and 1.  

With label smoothing, the true labels are adjusted to distribute some of the target probability 

mass to other classes. The overall effect of this modification is to provide a softer target. The 

model is less confident solely on one class, promoting better learning from non-ideal scenarios, 

such as label noise or ambiguity, and potentially improving generalisation. 

Optimiser details: To efficiently train and validate the proposed model pipeline, different 

optimisers were tested in different stages. Four optimisers, Stochastic Gradient Descent (SGD), 

Adaptive Moment Estimation (Adam), Rectified Adaptive Moment Estimation (RAdam), and 

Adam with decoupled weight decay (AdamW) (Loshchilov & Hutter, 2019), were tested in the 

pre-training and fine-tuning segmentation phases. Through the tests, AdamW performed the 

best in both the pre-training and the fine-tuning phases, therefore, it was finally chosen for both 

the two phases.  

For other hyperparameters and experiment implementations, this study generally follows the 

fine-tuned settings reported in (Bao et al., 2022; He et al., 2022; X. Li et al., 2022). 

5.3.5 Results 

Various experiments were carried out to compare the model performance of the four tested 

Transformer models, i.e., pure ViT, pure Swin Transformer (Swin-Trans), ViT variant with self-

supervised pretraining (BEiT), and Swin Transformer with Uniform Masking (Swin-Trans-

UM). The obtained results of treating the problem as an 8-class classification task are illustrated 

in Figure 5-6 and Table 5-1.  

From Table 5-1, it is evident that the significant differences in the number of fine-tuning epochs 

stem from the influence of the adopted MiM pre-training. The stopping criterion utilised in this 

study is AUC convergence. Specifically, fine-tuning is terminated when the improvement in 

AUC between consecutive evaluation epochs falls below a predefined threshold, signalling that 

the model’s performance has stabilised. 
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(a) ViT      (b) BEiT  

 

 
   (c) Swin Transformer             (d) Swin-Trans-UM 

Figure 5-6. The testing results of the models visualised in confusion matrices 

 

Table 5-1. The model performance regarding different metrics 

Model Accuracy  AUC Precision Recall 
F1- 

score 

Param 

(M) 

Epoch 

Time 

(s) 

Number 

of Fine-

tuning 

Epochs 

ViT 0.9489 0.9080 0.9393 0.6178 0.7454 632.20 4210 40 

BEiT 0.9413 0.9481 0.7913 0.6996 0.7427 311.53 159 15 

Swin-Trans  0.9401 0.9498 0.8518 0.6121 0.7123 86.90 120 280 

Swin-

Trans-UM  
0.9477 0.9743 0.7743 0.8022 0.7805 194.95 223 41 

 

With MiM pre-training, the Swin-Trans-UM and BEiT models converge in 15 epochs and 41 

epochs, respectively. In contrast, without MiM pre-training, the original Vanilla ViT requires 

40 epochs, and the original Vanilla Swin Transformer demands 280 epochs to converge. 

The adoption of MiM pre-training considerably reduces the total number of fine-tuning epochs 

needed for convergence. This is achieved by equipping the model with rich, context-aware 

semantic features during pre-training, which provide a robust initialisation for the downstream 

classification task. As a result, models with MiM pre-training not only converge faster but also 
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maintain or improve their classification accuracy. This observed disparity underscores the 

efficiency and effectiveness of MiM pre-training in lowering computational requirements while 

delivering high performance. 

Furthermore, regarding the primary and the most suitable overall model performance evaluation 

metric, AUC, both BEiT and Swin-Trans-UM outperform their variants without self-supervised 

pre-training, i.e., ViT and Swin-Trans. Especially, among the four models, Swin-Trans-UM 

obtains the best performance regarding Accuracy (94.77%), AUC (0.9743), Recall (0.8022), 

and F1-score (0.7805). 

5.4 Ablation study 

It is easy to identify that the quantity of abnormal and normal image samples is highly 

imbalanced. To alleviate this imbalance, two ablation studies are carried out using the Swin-

Trans-UM model, regarding the abnormal lane rendering detection not as the original 8-class 

multi-label classification problem but as a 2-class classification problem (Swin-Trans-UM_2 as 

the corresponding model) or 9-class multi-label classification problem (Swin-Trans-UM_9 as 

the corresponding model) in the fine-tuning process. 

5.4.1 Treated as a 2-class classification 

When treated as a 2-class image classification problem, all abnormal images are grouped as one 

class, and together with the normal class, there are 2 classes in the fine-tuning process. In this 

way, the imbalance between the classes is alleviated since grouping abnormal classes together 

reduces the disparity between the number of normal instances and anomalies. By consolidating 

the abnormal classes into a single group, the number of anomaly-related instances is less sparse, 

making the distribution more balanced compared to treating each anomaly type separately. 

The results of the tested Swin-Trans-UM_2 model performance under this setting are 

demonstrated in Figure 5-7 (a) and Table 5-2. It is evident that, except for Recall, all the other 

reported evaluation metrics (i.e., Accuracy, AUC, Precision, F1-score) for Swin-Trans-UM_2 

are improved compared to the original approach which treats the problem as an 8-class 

classification (Swin-Trans-UM_8). 

   
(a) Swin-Trans-UM_2    (b) Swin-Trans-UM_9  

Figure 5-7. The confusion matrix of Swin-Trans-UM when treated as (a) a 2-class 

classification and (b) a 9-class multi-label classification  
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Table 5-2. The performance of the Swin-Trans-UM_2 and Swin-Trans-UM_9 

Model Accuracy  AUC Precision Recall F1-score 

Swin-Trans-UM_2 0.9482 0.9756 0.7813 0.7947 0.7879 

Swin-Trans-UM_9 0.9392 0.9731 0.6990 0.8745 0.7770 

Swin-Trans-UM_8 0.9477 0.9743 0.7743 0.8022 0.7805 

 

5.4.2 Treated as a 9-class multi-label classification 

When treated as a 9-class multi-label image classification problem, all abnormal images are 

grouped as one extra integrated class while still keeping each sub-abnormal class as in the 

dataset. Thus, 9 classes are obtained, and each abnormal instance will get at least two class 

labels. In this way, the imbalance between the classes is further alleviated. The results of the 

tested Swin-Trans-UM_9 model performance under this setting are demonstrated in Figure 5-

7 (b) and Table 5-2. Except for Recall, all the other evaluation metrics of Swin-Trans-UM_9 

are degraded compared with the original approach treated as an 8-class classification problem 

(Swin-Trans-UM_8). This might be due to the extra label for each abnormal instance confusing 

the model during the fine-tuning process when updating the model weights by backpropagation. 

Detailed reasons need further study. 

5.5 Conclusions, limitations, and future research 

Lane rendering is an important element in digital maps used for navigation services and other 

traffic-related applications. However, there might be anomalies in the lane rendering images. 

To accurately and effectively detect the anomalies, this study converts the problem of lane 

rendering image anomaly detection to a classification problem, which allows various state-of-

the-art computer vision techniques to be applicable. Furthermore, this study proposes a four-

phase pipeline consisting of data pre-processing, self-supervised pre-training with the masked 

image modelling (MiM) method, customised fine-tuning using cross-entropy loss with label 

smoothing, and post-processing. Various metrics are adopted to evaluate the model performance. 

Extensive experiments have demonstrated that the proposed pipeline effectively addresses the 

lane rendering image anomaly detection task, achieving outstanding performance in terms of 

high accuracy. And especially, the self-supervised pre-training with MiM can greatly improve 

the model accuracy, e.g., Swin Transformer with Uniform Masking as self-supervised 

pretraining (Swin-Trans-UM) obtained better accuracy at 94.77% and better AUC at 0.9743 

compared with the pure Swin Transformer without pre-training (Swin-Trans) whose accuracy 

is 94.01%, AUC is 0.9498, while significantly reducing the model fine-tuning time, e.g., Swin-

Trans-UM reduced the number of epochs of Swin-Trans at 280 to only 41. Ablation study 

regarding techniques to alleviate the data imbalance between normal and abnormal instances 

further enhances the model performance, with the 2-class classification variant of the Swin-

Trans-UM model, i.e., Swin-Trans-UM_2 obtained the best performance on almost all the 

evaluation metrics, i.e., Accuracy (94.82%), AUC (0.9756), Precision (0.7813), and F1-score 

(0.7879). Lastly, regarding the societal benefits, the proposed method can improve the 

efficiency of lane rendering image data anomaly detection, reducing labour costs while keeping 

high accuracy. 
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As for limitations, due to the unavailability of other relevant datasets, this study only examined 

and evaluated the proposed method and results on a single dataset, which might potentially 

constrain the generalisability of the proposed method and corresponding results. Furthermore, 

limited by the properties of the data, the focus of this study is confined to discerning whether 

the lane rendering image is abnormal or normal. Further investigation into checking and 

diagnosing the specific anomaly types, as well as locating the anomalies within the images, 

could be intriguing directions for future studies. This would involve more detailed anomaly 

segmentation, which could provide valuable deeper insights into the nature and causes of 

detected anomalies. However, achieving such advancements would necessitate access to 

structured datasets equipped with labelled segmentation maps to facilitate robust anomaly 

localisation and classification tasks. 

Moreover, certain anomaly images in the dataset have multiple labels, a complexity that this 

study did not address. Future studies should explore methods for handling multi-label 

classification to account for overlapping or co-occurring anomalies. Techniques such as multi-

label learning algorithms (M. L. Zhang & Zhou, 2014), label correlation modelling (Yu et al., 

2014; Zhu et al., 2018), or hierarchical classification approaches (Wehrmann et al., 2018) could 

be explored to tackle this issue. Addressing multi-label scenarios would enhance the robustness 

and applicability of anomaly detection systems in real-world contexts. 

Lastly, the current study employs a supervised approach during the fine-tuning phase, 

necessitating high-quality ground truth labels. Future studies could explore the potential of 

semi-supervised or unsupervised machine learning approaches to distinguish anomalies from 

normal instances without relying on extensive labelled data. For example, Contrastive 

Language-Image Pre-training (CLIP) (Radford et al., 2021) can perform zero-shot classification 

by learning from large-scale, unannotated data, aligning images with textual descriptions. 

Similarly, Bootstrapping Language-Image Pre-training (BLIP) (J. Li et al., 2022) can effectively 

perform image-text matching tasks in a self-supervised manner, which could help classify 

anomalies with minimal reliance on labelled data. 

Acknowledgements 

This work was supported by the Applied and Technical Sciences (TTW), a subdomain of the 

Dutch Institute for Scientific Research (NWO) through the Project Safe and Efficient Operation 

of Automated and Human-Driven Vehicles in Mixed Traffic (SAMEN) under Contract 17187. 

The authors thank the 2022 Global AI Challenge for providing the original data. 

References 

Bao, H., Dong, L., Piao, S., & Wei, F. (2022). BEIT: Bert pre-training of image transformers. 

ICLR 2022 - 10th International Conference on Learning Representations. 

Barsi, M., & Barsi, A. (2022). Topological anomaly detection in automotive simulator maps. 

International Archives of the Photogrammetry, Remote Sensing and Spatial Information 

Sciences - ISPRS Archives. https://doi.org/10.5194/isprs-archives-XLIII-B4-2022-343-

2022 

Bello-Salau, H., Onumanyi, A. J., Salawudeen, A. T., Mu’Azu, M. B., & Oyinbo, A. M. (2019). 

An examination of different vision based approaches for road anomaly detection. 2019 

https://developer.huawei.com/consumer/en/activity/digixActivity/digixdetail/201655283879815928


Chapter 5 – Intelligent anomaly detection for lane rendering by Transformer with self-supervised pre-training 127 

 

2nd International Conference of the IEEE Nigeria Computer Chapter, NigeriaComputConf 

2019. https://doi.org/10.1109/NigeriaComputConf45974.2019.8949646 

Bergmann, P., Fauser, M., Sattlegger, D., & Steger, C. (2019). MVTec AD-A comprehensive 

real-world dataset for unsupervised anomaly detection. Proceedings of the IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition. 

https://doi.org/10.1109/CVPR.2019.00982 

Bogdoll, D., Nitsche, M., & Zollner, J. M. (2022). Anomaly detection in autonomous driving: 

A survey. IEEE Computer Society Conference on Computer Vision and Pattern 

Recognition Workshops, 2022-June, 4487–4498. 

https://doi.org/10.1109/CVPRW56347.2022.00495 

Cao, W., Liu, Q., & He, Z. (2020). Review of pavement defect detection methods. IEEE Access. 

https://doi.org/10.1109/aCCESS.2020.2966881 

Chen, M., Radford, A., Child, R., Wu, J., Jun, H., Luan, D., & Sutskever, I. (2020). Generative 

pretraining from pixels. 37th International Conference on Machine Learning, ICML 2020. 

Deecke, L., Vandermeulen, R., Ruff, L., Mandt, S., & Kloft, M. (2019). Image anomaly 

detection with generative adversarial networks. Lecture Notes in Computer Science 

(Including Subseries Lecture Notes in Artificial Intelligence and Lecture Notes in 

Bioinformatics). https://doi.org/10.1007/978-3-030-10925-7_1 

Dib, J., Sirlantzis, K., & Howells, G. (2020). A Review on negative road anomaly detection 

methods. IEEE Access. https://doi.org/10.1109/ACCESS.2020.2982220 

Dong, Y., Chen, K., Peng, Y., & Ma, Z. (2022). Comparative study on supervised versus semi-

supervised machine learning for anomaly detection of in-vehicle CAN network. In 2022 

IEEE 25th International Conference on Intelligent Transportation Systems (ITSC) (pp. 

2914-2919). IEEE. https://doi.org/10.1109/ITSC55140.2022.9922235 

Dong, Y., Zhang, L., Farah, H., Zgonnikov, A., & Van Arem, B. (2025). Data-driven semi-

supervised machine learning with safety indicators for abnormal driving behavior 

detection. Transportation Research Record: Journal of the Transportation Research Board, 

1-16. https://doi.org/10.1177/03611981241306752  

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn, D., Zhai, X., Unterthiner, T., Dehghani, 

M., Minderer, M., Heigold, G., Gelly, S., Uszkoreit, J., & Houlsby, N. (2021). An image 

is worth 16x16 words: Transformers for image recognition at scale. ICLR 2021 - 9th 

International Conference on Learning Representations. 

El-Nouby, A., Izacard, G., Touvron, H., Laptev, I., Jegou, H., & Grave, E. (2021). Are large-

scale datasets necessary for self-supervised pre-training? ArXiv Preprint 

ArXiv:2112.10740. 

Elghazaly, G., Frank, R., Harvey, S., & Safko, S. (2023). High-definition maps: Comprehensive 

survey, challenges, and future perspectives. IEEE Open Journal of Intelligent 

Transportation Systems. https://doi.org/10.1109/OJITS.2023.3295502 

Fu, Y., Seemann, J., Hanselaar, C., Beurskens, T., Terechko, A., Silvas, E., & Heemels, M. 

(2024). Characterization and mitigation of insufficiencies in automated driving systems. 

arXiv preprint arXiv:2404.09557. 

Gershon, P., Mehler, B., & Reimer, B. (2023). Driver response and recovery following 

automation initiated disengagement in real-world hands-free driving. Traffic Injury 

Prevention. https://doi.org/10.1080/15389588.2023.2189990 

https://doi.org/10.1109/ITSC55140.2022.9922235
https://doi.org/10.1177/03611981241306752
https://doi.org/10.1109/OJITS.2023.3295502


128 Safe, Efficient, and Socially Compliant Automated Driving in Mixed Traffic 

 

Guo, M. H., Xu, T. X., Liu, J. J., Liu, Z. N., Jiang, P. T., Mu, T. J., Zhang, S. H., Martin, R. R., 

Cheng, M. M., & Hu, S. M. (2022). Attention mechanisms in computer vision: A survey. 

Computational Visual Media, 8(3), 331–368. https://doi.org/10.1007/s41095-022-0271-y 

He, K., Chen, X., Xie, S., Li, Y., Dollar, P., & Girshick, R. (2022). Masked autoencoders are 

scalable vision learners. Proceedings of the IEEE Computer Society Conference on 

Computer Vision and Pattern Recognition. 

https://doi.org/10.1109/CVPR52688.2022.01553 

Hou, M., Wang, M., Zhao, W., Ni, Q., Cai, Z., & Kong, X. (2022). A lightweight framework 

for abnormal driving behavior detection. Computer Communications, 184(May 2021), 

128–136. https://doi.org/10.1016/j.comcom.2021.12.007 

Hu, J., Zhang, X., & Maybank, S. (2020). Abnormal driving detection with ed driving behavior 

data: A deep learning approach. IEEE Transactions on Vehicular Technology, 69(7), 6943–

6951. https://doi.org/10.1109/TVT.2020.2993247 

Isaksson-Hellman, I., & Lindman, M. (2018). An evaluation of the real-world safety effect of a 

lane change driver support system and characteristics of lane change crashes based on 

insurance claims data. In Traffic Injury Prevention. 

https://doi.org/10.1080/15389588.2017.1396320 

Kumaran, S. K., Dogra, D. P., & Roy, P. P. (2020). Anomaly detection in road traffic using visual 

surveillance: A survey. ACM Computing Surveys (CSUR), 53(6), 1-26. 

Kwon, G., Prabhushankar, M., Temel, D., & AlRegib, G. (2020). Backpropagated gradient 

representations for anomaly detection. In Computer Vision–ECCV 2020: 16th European 

Conference, Glasgow, UK, August 23–28, 2020, Proceedings, Part XXI 16 (pp. 206-226). 

Springer International Publishing. https://doi.org/10.1007/978-3-030-58589-1_13 

Li, J., Li, D., Xiong, C., & Hoi, S. (2022). BLIP: Bootstrapping language-image pre-training 

for unified vision-language understanding and generation. In International Conference on 

Machine Learning (pp. 12888-12900). PMLR. 

Li, R., & Dong, Y. (2023). Robust lane detection through self pre-training with masked 

sequential autoencoders and fine-tuning with customized PolyLoss. IEEE Transactions on 

Intelligent Transportation Systems, 24(12), 14121–14132. 

https://doi.org/10.1109/TITS.2023.3305015 

Li, X., Wang, W., Yang, L., & Yang, J. (2022). Uniform masking: Enabling MAE pre-training 

for pyramid-based vision Transformers with locality. 1–14. 

http://arxiv.org/abs/2205.10063 

Liu, Z., Lin, Y., Cao, Y., Hu, H., Wei, Y., Zhang, Z., Lin, S., & Guo, B. (2021). Swin Transformer: 

Hierarchical vision Transformer using shifted windows. 2021 IEEE/CVF International 

Conference on Computer Vision (ICCV), 9992–10002. 

https://ieeexplore.ieee.org/document/9710580/ 

Loshchilov, I., & Hutter, F. (2019). Decoupled weight decay regularization. 7th International 

Conference on Learning Representations, ICLR 2019. 

Luo, D., Lu, J., & Guo, G. (2020). Road anomaly detection through deep learning approaches. 

IEEE Access. https://doi.org/10.1109/ACCESS.2020.3004590 

Ministry of Transport of the People’s Republic of China. (2018). Specifications for highway 

geometric design (JTG D20—2017). Industry Standards of the People’s Republic of China, 

1–271. 

https://doi.org/10.1109/TVT.2020.2993247


Chapter 5 – Intelligent anomaly detection for lane rendering by Transformer with self-supervised pre-training 129 

 

NCUTCD. (2012). Manual on uniform traffic control devices for streets and highways - 

MUTCD - edition 2009. In FHWA. 

Nguyen, T. S., Avila, M., & Begot, S. (2009). Automatic detection and classification of defect 

on road pavement using anisotropy measure. In 2009 17th European Signal Processing 

Conference (pp. 617-621). IEEE. 

Parmar, N., Vaswani, A., Uszkoreit, J., Kaiser, L., Shazeer, N., Ku, A., & Tran, D. (2018). Image 

Transformer. 35th International Conference on Machine Learning, ICML 2018. 

Radford, A., Kim, J. W., Hallacy, C., Ramesh, A., Goh, G., Agarwal, S., Sastry, G., Askell, A., 

Mishkin, P., Clark, J., Krueger, G., & Sutskever, I. (2021). Learning transferable visual 

models from natural language supervision. Proceedings of Machine Learning Research. 

Rajbahadur, G. K., Malton, A. J., Walenstein, A., & Hassan, A. E. (2018). A survey of anomaly 

detection for connected vehicle cybersecurity and safety. IEEE Intelligent Vehicles 

Symposium, Proceedings. https://doi.org/10.1109/IVS.2018.8500383 

Ramesh, A., Pavlov, M., Goh, G., Gray, S., Voss, C., Radford, A., Chen, M., & Sutskever, I. 

(2021). Zero-shot text-to-image generation. In International Conference on Machine 

Learning, pp. 8821-8831. PMLR. 

Ruiz, A. L., & Alzraiee, H. (2020). Automated pavement marking defects detection. 

Proceedings of the 37th International Symposium on Automation and Robotics in 

Construction, ISARC 2020: From Demonstration to Practical Use - To New Stage of 

Construction Robot. https://doi.org/10.22260/isarc2020/0011 

Sun, Y., Tang, H., & Zhang, H. (2024). Automatic detection of pavement marking defects in 

road inspection images using deep learning. Journal of Performance of Constructed 

Facilities. https://doi.org/10.1061/jpcfev.cfeng-4619 

Tong, Z., Yuan, D., Gao, J., & Wang, Z. (2020). Pavement defect detection with fully 

convolutional network and an uncertainty framework. Computer-Aided Civil and 

Infrastructure Engineering. https://doi.org/10.1111/mice.12533 

Vörös, F., Gartner, G., Peterson, M. P., & Kovács, B. (2022). What does the ideal built-in car 

navigation system look like?—An investigation in the central European region. Applied 

Sciences (Switzerland), 12(8). https://doi.org/10.3390/app12083716 

Wang, W., Xie, E., Li, X., Fan, D. P., Song, K., Liang, D., Lu, T., Luo, P., & Shao, L. (2021). 

Pyramid vision Transformer: A versatile backbone for dense prediction without 

convolutions. Proceedings of the IEEE International Conference on Computer Vision. 

https://doi.org/10.1109/ICCV48922.2021.00061 

Wehrmann, J., Cerri, R., & Barros, R. C. (2018). Hierarchical multi-label classification 

networks. 35th International Conference on Machine Learning, ICML 2018. 

Xie, Z., Zhang, Z., Cao, Y., Lin, Y., Bao, J., Yao, Z., Dai, Q., & Hu, H. (2022). SimMIM: A 

simple framework for masked image modeling. Proceedings of the IEEE Computer 

Society Conference on Computer Vision and Pattern Recognition. 

https://doi.org/10.1109/CVPR52688.2022.00943 

Yan, X., Zhang, H., Xu, X., Hu, X., & Heng, P. A. (2021). Learning semantic context from 

normal samples for unsupervised anomaly detection. 35th AAAI Conference on Artificial 

Intelligence, AAAI 2021, 4A, 3110–3118. https://doi.org/10.1609/aaai.v35i4.16420 



130 Safe, Efficient, and Socially Compliant Automated Driving in Mixed Traffic 

 

Yang, J., Xu, R., Qi, Z., & Shi, Y. (2021). Visual anomaly detection for images: A systematic 

survey. Procedia Computer Science, 199(2021), 471–478. 

https://doi.org/10.1016/j.procs.2022.01.057 

Yang, L., Bian, Y., Zhao, X., Liu, X., & Yao, X. (2021). Drivers’ acceptance of mobile 

navigation applications: An extended technology acceptance model considering drivers’ 

sense of direction, navigation application affinity and distraction perception. International 

Journal of Human Computer Studies. https://doi.org/10.1016/j.ijhcs.2020.102507 

Yu, Y., Pedrycz, W., & Miao, D. (2014). Multi-label classification by exploiting label 

correlations. Expert Systems with Applications. 

https://doi.org/10.1016/j.eswa.2013.10.030 

Zhang, Hengyuan, Zhao, S., Liu, R., Wang, W., Hong, Y., & Hu, R. (2022). Automatic traffic 

anomaly detection on the road network with spatial-temporal graph neural network 

representation learning. Wireless Communications and Mobile Computing. 

https://doi.org/10.1155/2022/4222827 

Zhang, Hongyi, Cisse, M., Dauphin, Y. N., & Lopez-Paz, D. (2018). MixUp: Beyond empirical 

risk minimization. 6th International Conference on Learning Representations, ICLR 2018 

- Conference Track Proceedings, 1–13. 

Zhang, M. L., & Zhou, Z. H. (2014). A review on multi-label learning algorithms. In IEEE 

Transactions on Knowledge and Data Engineering. 

https://doi.org/10.1109/TKDE.2013.39 

Zhu, Y., Kwok, J. T., & Zhou, Z. H. (2018). Multi-label learning with global and local label 

correlation. IEEE Transactions on Knowledge and Data Engineering. 

https://doi.org/10.1109/TKDE.2017.2785795 

  

https://doi.org/10.1109/TKDE.2017.2785795


Chapter 5 – Intelligent anomaly detection for lane rendering by Transformer with self-supervised pre-training 131 

 

Appendix 

Note: The following neural network structures are based upon 8-class classification in the fine-

tuning phase. There are a few minor differences regarding the output layers for the models used 

in the self-supervised pretraining phase or for the 2-class and 9-class classifications.  

Multiply-Add, short for multiply-accumulate operation, which means computing the product of 

two numbers and adding that product to an accumulator. It is used as shorthand for the total 

number of operations in the model as popular layers such as convolution and linear layers 

multiply weights with inputs and then add the results of the multiplication (possibly with a bias). 

Table 5-A1. Parameter settings for each layer of Vision Transformer 

Layer Kernel Shape Input Shape Output Shape Param Mult-Adds 

VisionTransformer --       [1, 3, 224, 224] [1, 8]            253,440       -- 

   PatchEmbed                     --       [1, 3, 224, 224] [1, 196, 1280]    --            -- 

        Conv2d                    [16, 16] [1, 3, 224, 224] [1, 1280, 14, 14] 984,320       192,926,720 

   Dropout                        --       [1, 197, 1280]   [1, 197, 1280]    --            -- 

   ModuleList (Consisting of 32 Blocks with the same structure as below) 

        Block 1-32                     --       [1, 197, 1280]   [1, 197, 1280]    --            -- 

           LayerNorm --       [1, 197, 1280]   [1, 197, 1280]    2,560         2,560 

           Attention            --       [1, 197, 1280]   [1, 197, 1280]    6,554,880     6,554,880 

           Identity             --       [1, 197, 1280]   [1, 197, 1280]    --            -- 

           LayerNorm --       [1, 197, 1280]   [1, 197, 1280]    2,560         2,560 

           Mlp                  --       [1, 197, 1280]   [1, 197, 1280]    13,113,600    13,113,600 

           Identity             --       [1, 197, 1280]   [1, 197, 1280]    --            -- 

   LayerNorm                      --       [1, 197, 1280]   [1, 197, 1280]    2,560         2,560 

   Linear                         --       [1, 1280]        [1, 8]            10,248        10,248 

Table 5-A2. Parameter settings for each layer of BEiT 

Layer Kernel Shape Input Shape Output Shape Param Mult-Adds 

BEiT --       [1, 3, 224, 224] [1, 8]           768           -- 

   PatchEmbed                              --       [1, 3, 224, 224] [1, 196, 768]    --            -- 

        Conv2d                             [16, 16] [1, 3, 224, 224] [1, 768, 14, 14] 590,592       115,756,032 

   Dropout                                 --       [1, 197, 768]    [1, 197, 768]    --            -- 

   ModuleList (Consisting of 12 Blocks with the same structure as below) 

       Block 1-12                              --       [1, 197, 768]    [1, 197, 768]    1,536         -- 

            LayerNorm --       [1, 197, 768]    [1, 197, 768]    1,536         1,536 

            Attention                     --       [1, 197, 768]    [1, 197, 768]    2,370,384     590,592 

            Identity                      --       [1, 197, 768]    [1, 197, 768]    --            -- 

            LayerNorm                     --       [1, 197, 768]    [1, 197, 768]    1,536         1,536 

            Mlp                           --       [1, 197, 768]    [1, 197, 768]    4,722,432     4,722,432 

            Identity                      --       [1, 197, 768]    [1, 197, 768]    --            -- 

   LayerNorm                               --       [1, 768]         [1, 768]         1,536         1,536 

   Linear                                  --       [1, 768]         [1, 8]           6,152         6,152 
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Table 5-A3. Parameter settings for each layer of Swin Transformer 

 

 

 

 

Layer (type:depth-idx) 
Kernel 

Shape 
Input Shape 

Output 

Shape 
Param 

Mult-

Adds 

SwinTransformerV2                     --     [1, 3, 256, 256] [1, 8]          --         -- 

  PatchEmbed                         --     [1, 3, 256, 256] [1, 4096, 96]   --         -- 

       Conv2d                         [4, 4] [1, 3, 256, 256] [1, 96, 64, 64] 4,704      19,267,584 

       LayerNorm                      --     [1, 4096, 96]    [1, 4096, 96]   192        192 

  Dropout                             --     [1, 4096, 96]    [1, 4096, 96]   --         -- 

  ModuleList 

       BasicLayer                     --     [1, 4096, 96]    [1, 1024, 192]  --         -- 

            ModuleList                --     --               --              --         -- 

                 SwinTransformerBlock --     [1, 4096, 96]    [1, 4096, 96]   114,819    673,632 

                 SwinTransformerBlock --     [1, 4096, 96]    [1, 4096, 96]   114,819    673,632 

            PatchMerging              --     [1, 4096, 96]    [1, 1024, 192]  --         -- 

                 Linear               --     [1, 1024, 384]   [1, 1024, 192]  73,728     73,728 

                 LayerNorm            --     [1, 1024, 192]   [1, 1024, 192]  384        384 

       BasicLayer                     --     [1, 1024, 192]   [1, 256, 384]   --         -- 

            ModuleList                --     --               --              --         -- 

                 SwinTransformerBlock --     [1, 1024, 192]   [1, 1024, 192]  449,286    894,144 

                 SwinTransformerBlock --     [1, 1024, 192]   [1, 1024, 192]  449,286    894,144 

            PatchMerging              --     [1, 1024, 192]   [1, 256, 384]   --         -- 

                 Linear               --     [1, 256, 768]    [1, 256, 384]   294,912    294,912 

                 LayerNorm            --     [1, 256, 384]    [1, 256, 384]   768        768 

       BasicLayer                     --     [1, 256, 384]    [1, 64, 768]    --         -- 

            ModuleList                --     --               --              --         -- 

                 SwinTransformerBlock --     [1, 256, 384]    [1, 256, 384]   1,781,772  1,782,144 

                 SwinTransformerBlock --     [1, 256, 384]    [1, 256, 384]   1,781,772  1,782,144 

                 SwinTransformerBlock --     [1, 256, 384]    [1, 256, 384]   1,781,772  1,782,144 

                 SwinTransformerBlock --     [1, 256, 384]    [1, 256, 384]   1,781,772  1,782,144 

                 SwinTransformerBlock --     [1, 256, 384]    [1, 256, 384]   1,781,772  1,782,144 

                 SwinTransformerBlock --     [1, 256, 384]    [1, 256, 384]   1,781,772  1,782,144 

            PatchMerging              --     [1, 256, 384]    [1, 64, 768]    --         -- 

                 Linear               --     [1, 64, 1536]    [1, 64, 768]    1,179,648  1,179,648 

                 LayerNorm            --     [1, 64, 768]     [1, 64, 768]    1,536      1,536 

       BasicLayer                     --     [1, 64, 768]     [1, 64, 768]    --         -- 

            ModuleList                --     --               --              --         -- 

                 SwinTransformerBlock --     [1, 64, 768]     [1, 64, 768]    7,100,952  5,329,920 

                 SwinTransformerBlock --     [1, 64, 768]     [1, 64, 768]    7,100,952  5,329,920 

  LayerNorm                           --     [1, 64, 768]     [1, 64, 768]    1,536      1,536 

  AdaptiveAvgPool1d                   --     [1, 768, 64]     [1, 768, 1]     --         -- 

  Linear                              --     [1, 768]         [1, 8]          6,152      6,152 
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Table 5-A4. Parameter settings for each layer of Swin Transformer with Uniform Masking 

Layer (type: depth-idx) 
Kernel 

Shape 
Input Shape Output Shape Param Mult-Adds 

Swin (Swin)                                -- [1, 3, 256, 256] [1, 8] -- -- 

  PatchEmbed (patch embed): 1-1            -- [1, 3, 256, 256] [1, 4096, 192] -- -- 

       Conv2d (proj): 2-1                          [4, 4] [1, 3, 256, 256] [1, 192, 64, 64] 9,408 38,535,168 

       LayerNorm (norm): 2-2                -- [1, 4096, 192] [1, 4096, 192] 384 384 

  ModuleList (blocks): 1-2                 -- -- -- -- -- 

       SwinBlock (0): 2-3                  -- [1, 4096, 192] [1, 4096, 192] -- -- 

            LayerNorm (norm1): 3-1          -- [1, 4096, 192] [1, 4096, 192] 384 384 

            WindowAttention (attn): 3-2             -- [16, 256, 192] [16, 256, 192] 148,806 612,642,816 

            Identity (drop path): 3-3      -- [1, 4096, 192] [1, 4096, 192] -- -- 

            LayerNorm (norm2): 3-4          -- [1, 4096, 192] [1, 4096, 192] 384 384 

            Mlp (mlp): 3-5                      -- [1, 4096, 192] [1, 4096, 192] 295,872 295,872 

            Identity (drop path): 3-6      -- [1, 4096, 192] [1, 4096, 192] -- -- 

       SwinBlock (1): 2-4                  -- [1, 4096, 192] [1, 4096, 192] -- -- 

            LayerNorm (norm1): 3-7          -- [1, 4096, 192] [1, 4096, 192] 384 384 

            WindowAttention (attn): 3-8             -- [16, 256, 192] [16, 256, 192] 148,806 612,642,816 

            DropPath (drop path): 3-9      -- [1, 4096, 192] [1, 4096, 192] -- -- 

            LayerNorm (norm2): 3-10         -- [1, 4096, 192] [1, 4096, 192] 384 384 

            Mlp (mlp): 3-11                     -- [1, 4096, 192] [1, 4096, 192] 295,872 295,872 

            DropPath (drop path): 3-12     -- [1, 4096, 192] [1, 4096, 192] -- -- 

       SwinBlock (2): 2-5                  -- [1, 4096, 192] [1, 1024, 384] -- -- 

            PatchMerge (downsample): 3-13 -- [1, 4096, 192] [1, 1024, 384] 295,680 302,383,488 

            LayerNorm (norm1): 3-14         -- [1, 1024, 384] [1, 1024, 384] 768 768 

            WindowAttention (attn): 3-15            -- [4, 256, 384] [4, 256, 384] 592,332 257,169,408 

            DropPath (drop path): 3-16     -- [1, 1024, 384] [1, 1024, 384] -- -- 

            LayerNorm (norm2): 3-17         -- [1, 1024, 384] [1, 1024, 384] 768 768 

            Mlp (mlp): 3-18                       -- [1, 1024, 384] [1, 1024, 384] 1,181,568 1,181,568 

            DropPath (drop path): 3-19     -- [1, 1024, 384] [1, 1024, 384] -- -- 

       SwinBlock (3): 2-6                  -- [1, 1024, 384] [1, 1024, 384] -- -- 

            LayerNorm (norm1): 3-20         -- [1, 1024, 384] [1, 1024, 384] 768 768 

            WindowAttention (attn): 3-21            -- [4, 256, 384] [4, 256, 384] 592,332 257,169,408 

            DropPath (drop path): 3-22     -- [1, 1024, 384] [1, 1024, 384] -- -- 

            LayerNorm (norm2): 3-23         -- [1, 1024, 384] [1, 1024, 384] 768 768 

            Mlp (mlp): 3-24                       -- [1, 1024, 384] [1, 1024, 384] 1,181,568 1,181,568 

            DropPath (drop path): 3-25     -- [1, 1024, 384] [1, 1024, 384] -- -- 

       SwinBlock (4): 2-7                  -- [1, 1024, 384] [1, 256, 768] -- -- 

            PatchMerge (downsample): 3-26           -- [1, 1024, 384] [1, 256, 768] 1,181,184 302,187,264 

            LayerNorm (norm1): 3-27           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-28            -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-29     -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-30           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-31                       -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-32     -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (5): 2-8                  -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-33           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-34            -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-35     -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-36           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-37                       -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 
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            DropPath (drop path): 3-38     -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (6): 2-9                  -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-39           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-40            -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-41     -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-42           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-43                       -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-44     -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (7): 2-10                 -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-45           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-46            -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-47     -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-48           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-49                       -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-50     -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (8): 2-11                 -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-51           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-52            -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-53     -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-54           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-55                       -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-56     -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (9): 2-12                 -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-57           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-58            -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-59     -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-60           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-61                       -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-62     -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (10): 2-13                -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-63           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-64            -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-65     -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-66           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-67                       -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-68     -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (11): 2-14                -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-69           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-70            -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-71     -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-72           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-73                       -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-74     -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (12): 2-15                -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-75           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-76            -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-77     -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-78           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-79                       -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-80     -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (13): 2-16                -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-81           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 
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            WindowAttention (attn): 3-82            -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-83     -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-84           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-85                       -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-86     -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (14): 2-17                -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-87           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-88            -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-89     -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-90           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-91                       -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-92     -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (15): 2-18                -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-93           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-94            -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-95     -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-96           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-97                       -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-98     -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (16): 2-19                -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-99           -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-100           -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-101    -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-102          -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-103                      -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-104    -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (17): 2-20                -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-105          -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-106           -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-107    -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-108          -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-109                      -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-110    -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (18): 2-21                -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-111          -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-112           -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-113    -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-114          -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-115                      -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-116    -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (19): 2-22                -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-117          -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-118           -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-119    -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-120          -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-121                      -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-122    -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (20): 2-23                -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-123          -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-124           -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-125    -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-126          -- [1, 256, 768] [1, 256, 768] 1,536 1,536 
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            Mlp (mlp): 3-127                      -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-128    -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (21): 2-24                -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm1): 3-129          -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            WindowAttention (attn): 3-130           -- [1, 256, 768] [1, 256, 768] 2,364,120 117,181,440 

            DropPath (drop path): 3-131    -- [1, 256, 768] [1, 256, 768] -- -- 

            LayerNorm (norm2): 3-132          -- [1, 256, 768] [1, 256, 768] 1,536 1,536 

            Mlp (mlp): 3-133                      -- [1, 256, 768] [1, 256, 768] 4,722,432 4,722,432 

            DropPath (drop path): 3-134    -- [1, 256, 768] [1, 256, 768] -- -- 

       SwinBlock (22): 2-25                -- [1, 256, 768] [1, 64, 1536] -- -- 

            PatchMerge (downsample): 3-135 -- [1, 256, 768] [1, 64, 1536] 4,721,664 302,089,728 

            LayerNorm (norm1): 3-136          -- [1, 64, 1536] [1, 64, 1536] 3,072 3,072 

            WindowAttention (attn): 3-137          -- [1, 64, 1536] [1, 64, 1536] 9,446,640 23,009,280 

            DropPath (drop path): 3-138    -- [1, 64, 1536] [1, 64, 1536] -- -- 

            LayerNorm (norm2): 3-139          -- [1, 64, 1536] [1, 64, 1536] 3,072 3,072 

            Mlp (mlp): 3-140                       -- [1, 64, 1536] [1, 64, 1536] 18,882,048 18,882,048 

            DropPath (drop path): 3-141    -- [1, 64, 1536] [1, 64, 1536] -- -- 

       SwinBlock (23): 2-26                -- [1, 64, 1536] [1, 64, 1536] -- -- 

            LayerNorm (norm1): 3-142          -- [1, 64, 1536] [1, 64, 1536] 3,072 3,072 

            WindowAttention (attn): 3-143          -- [1, 64, 1536] [1, 64, 1536] 9,446,640 23,009,280 

            DropPath (drop path): 3-144    -- [1, 64, 1536] [1, 64, 1536] -- -- 

            LayerNorm (norm2): 3-145          -- [1, 64, 1536] [1, 64, 1536] 3,072 3,072 

            Mlp (mlp): 3-146                       -- [1, 64, 1536] [1, 64, 1536] 18,882,048 18,882,048 

            DropPath (drop path): 3-147    -- [1, 64, 1536] [1, 64, 1536] -- -- 

  LayerNorm (fc norm): 1-3                    -- [1, 1536] [1, 1536] 3,072 3,072 

  Linear (head): 1-4                           -- [1, 1536] [1, 8] 2,296 12,296 
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6 Data-driven semi-supervised machine learning 

with safety indicators for abnormal driving behaviour 

detection 

Abstract 

Detecting abnormal driving behaviour is critical for road traffic safety and the evaluation of 

drivers’ behaviour. With the advancement of machine learning (ML) algorithms and the 

accumulation of naturalistic driving data, many ML models have been adopted for abnormal 

driving behaviour detection (also referred to as anomalies). Most existing ML-based detectors 

rely on supervised methods, which require substantial labelled data. However, ground truth 

labels are not always available in the real world, and labelling large amounts of data is tedious. 

Thus, there is a need to explore unsupervised or semi-supervised methods to make the anomaly 

detection process more feasible and efficient. To fill this research gap, this study analyses large-

scale real-world data revealing several abnormal driving behaviours (e.g., sudden acceleration, 

rapid lane-changing) and develops a Hierarchical Extreme Learning Machine (HELM)-based 

semi-supervised ML method using partly labelled data to accurately detect the identified 

abnormal driving behaviours. Moreover, previous ML-based approaches predominantly utilised 

basic vehicle motion features (e.g., velocity and acceleration) to label and detect abnormal 

driving behaviours, while this study seeks to introduce event-level safety indicators as input 

features for ML models to improve detection performance. Results from extensive experiments 

demonstrate the effectiveness of the proposed semi-supervised ML model with the introduced 

safety indicators serving as important features. The proposed semi-supervised ML method 

outperforms other baseline semi-supervised or unsupervised methods regarding various metrics, 

e.g., delivering the best accuracy (99.58%) and the best F1-score (0.9913). The ablation study 

further highlights the significance of safety indicators for advancing the detection performance. 

This chapter is based on the journal publication: 

Dong, Y., Zhang, L., Farah, H., Zgonnikov, A., & Van Arem, B. (2025). Data-driven Semi-

supervised Machine Learning with Safety Indicators for Abnormal Driving Behavior 

Detection. Transportation Research Record: Journal of the Transportation Research Board, 

1-16. https://doi.org/10.1177/03611981241306752 

https://doi.org/10.1177/03611981241306752
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6.1 Introduction 

Road traffic safety has become a growing concern worldwide. The World Health Organization 

(2023) reported that approximately 1.19 million people die each year in road traffic crashes, 

with over 30 million suffering non-fatal injuries. These crashes not only resulted in disabilities 

but also caused significant economic loss, reaching as high as 3% of the gross domestic product 

in some countries. It is alarming that in most crashes, human factors were identified as 

contributing factors (Bucsuházy et al., 2020; Elvik et al., 2009; Saiprasert & Pattara-Atikom, 

2013). This highlights the urgent need to identify abnormal driving behaviours and find ways 

to prevent or mitigate crashes caused by such abnormal human driving behaviours.  

Driving behaviour encompasses various variables and factors, including driving performance, 

environmental awareness, risk-taking propensity, and reasoning abilities (Mohammadnazar et 

al., 2021). Abnormal driving behaviour refers to reckless actions that deviate from safe and 

normal driving, posing risks to oneself, passengers, and other road users, and typically occurs 

within a short period of time (Ma et al., 2023). Examples of such behaviour include excessive 

speeding, tailgating, and erratic lane changes (Matousek et al., 2019). These abnormal driving 

behaviours frequently engender severe traffic altercations, including collisions, crashes, and 

other minor incidents, thereby underscoring the necessity of addressing and precluding these 

actions (Ma et al., 2023; Matousek et al., 2019). Effective monitoring of abnormal driving 

behaviours is integral to augmenting driving safety, enhancing driver awareness of driving 

patterns, and reducing the chances of prospective road crashes. 

Machine learning (ML)-based approaches have shown great promise in detecting abnormal 

driving behaviours. They can learn complex patterns, adapt to changing scenarios, handle large 

and diverse datasets, and detect unusual behaviours with optimised processes (Sarker, 2021). 

However, most of the available studies adopted fully-supervised ML models to do the detection, 

and few of them explored unsupervised or semi-supervised ML methods. While in the real 

world, ground truth labels are sometimes missing or inaccurate, plus labelling large amounts of 

data is tedious and even dangerous under certain critical situations. Therefore, examining and 

developing unsupervised or semi-supervised methods is imperative to achieve more feasible 

and efficient abnormal driving behaviour detection. 

On the other hand, safety indicators and particularly Surrogate Measures of Safety (SMoS) offer 

a proactive approach to safety evaluation by using proximity measures. Since SMoS do not rely 

directly on crash data, employing them allows road safety assessment without the need to 

collect crash data (Nikolaou et al., 2023). As Tarko (2018) notes, SMoS facilitates detecting 

excessive crash risk, better understanding crash-precipitating conditions, and estimating 

countermeasure efficacy. By providing insights into potential safety issues, the safety indicators 

help prioritise improvement efforts. C. Wang et al. (2021) categorise safety indicators into three 

classes: time-based (e.g., time-to-collision (TTC) and post-encroachment time (PET)), 

deceleration-based (e.g., deceleration rate to avoid a crash (DRAC)), and energy-based (e.g., 

DeltaV). Commonly, these safety indicators are applied in road safety research in combination 

with thresholds to identify traffic conflicts (Bonela & Kadali, 2022; C. Lu et al., 2021; Nikolaou 

et al., 2023). There is no doubt that safety indicators can serve as important features in various 

tasks, e.g., in traffic safety assessment and in detecting traffic conflicts, however, for data-

driven-based abnormal driving behaviour detection, previous studies predominantly employed 
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basic vehicle motion (e.g., speed, acceleration) as features to label and detect abnormal 

behaviours, and seldom explored the benefits of safety indicators. 

To fill the aforementioned research gaps, this study aims to develop a data-driven approach for 

abnormal driving behaviour detection using real-world naturalistic driving data and leveraging 

semi-supervised ML with self-supervised training to enhance the performance and effectiveness 

of the detection method. Specifically, this study first analyses a large-scale dataset, i.e., the 

CitySim dataset (Zheng et al., 2022), with vivid visualisations, and extracts various abnormal 

driving behaviours. Then, the study develops a Hierarchical Extreme Learning Machine 

(HELM)-based semi-supervised ML model using unlabelled data to carry out self-supervised 

pre-training and leveraging only partly labelled data to fine-tune the model for accurately 

detecting the identified abnormal driving behaviours. Furthermore, this study conducts a 

significative ablation study introducing event-level safety indicators as input features for the 

developed semi-supervised ML model to further improve the detection performance. Extensive 

experiments verified the proposed method. The proposed semi-supervised HELM model using 

safety indicators as input features outperforms other baseline models, delivering the best 

accuracy at 99.58% and the best F1-score at 0.9913. 

In short, by filling the research gap and addressing the limitations of existing methods in the 

literature, this research endeavours to improve road safety and reduce accidents caused by 

abnormal driving behaviours. It addresses the limitations of traditional supervised approaches 

and overcomes the scarcity of labelled abnormal driving data. The study analyses publicly 

available vehicle trajectory datasets and provides meaningful insights into the identification of 

abnormal human driving behaviour. The conclusions and limitations of this study, as well as 

future research directions, are discussed at the end of this study. 

6.2 Related work 

Several studies have investigated abnormal driving behaviours, with typical examples of Chen 

et al. (2015) and Kim et al. (2016) putting forth definitions reflecting different 

conceptualisations of driving, as shown in Table 6-1.  

Table 6-1. Different classifications of abnormal driving behaviour 

Chen et al. (2015) Kim et al. (2016) 

Weaving Sudden start 

Swerving Speeding 

Sideslipping Long-standing speeding 

Fast U-turn Sudden braking 

Turning with a wide radius Sudden overtaking 

Sudden braking. Sudden changing lanes 

--- Sudden turning 

 

Chen et al. (2015) emphasised whether the vehicle’s location complies with regulations, while 

Kim et al. (2016) prioritised speed modulation. In combination, despite these different 

emphases, both studies suggest that sudden changes in speed or location are key indicators of 

abnormal driving, regardless of the country where the driving occurs. Building on this, the 

current study delineates abnormal driving based on changes in position and velocity, 
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concentrating on behaviours of abrupt starts, emergency braking, as well as rapid and close lane 

changes. This definition is supported by a comprehensive review of the existing literature, 

indicating a focus on both the spatial and temporal aspects of driving behaviour. 

ML-based approaches for detecting abnormal driving behaviours have gained substantial 

research attention and exhibited robust performance. Both supervised and unsupervised 

methodologies have been commonly utilised in prior investigations of abnormal driving 

behaviour. Supervised ML techniques necessitate labelled data during model training, whereby 

the system ascertains the mapping between inputs and outputs to categorise and predict new 

data points. For example, Jia et al. (2020) devised a model integrating long short-term memory 

(LSTM) neural network and convolutional neural network (CNN) architectures to pinpoint 

instances of extreme acceleration and deceleration. Shahverdy et al. (2021) proposed a 

lightweight 1-dimensional CNN (1D-CNN) exhibiting high efficiency and low computational 

overhead for classifying drivers’ behaviour into safe, distracted, aggressive, drunk, and drowsy 

driving. Ryan et al. (2021) simulated an end-to-end model leveraging CNN to compare human 

and autonomous vehicle driving patterns and adopted a Gaussian Processes-based method to 

detect driving anomalies. 

Conversely, unsupervised ML techniques entail training models using raw, unlabelled data. This 

approach is frequently utilised during exploratory phases to derive insights from the dataset. As 

an illustration, Mohammadnazar et al. (2021) developed an architecture leveraging 

unsupervised ML to quantify driving performance and categorise driving styles across diverse 

spatial contexts. Feng et al. (2019)  proposed a Support Vector Clustering methodology to 

classify driving styles (e.g., aggressive, normal, defensive) robustly. Existing literature denotes 

substantial challenges in accurately identifying anomalies through solely unsupervised ML. As 

Chandola et al. (2009) concluded from their review, unsupervised anomaly detection 

approaches often demonstrate inferior detection rates and heightened false positive rates on 

real-world problems. Correspondingly, Pimentel et al. (2014) found via benchmark assessments 

that complete dependency on unsupervised anomaly detection is not recommended, as these 

techniques fail to detect all anomalies. Erfani et al. (2016) further emphasised that purely 

unsupervised methodologies lack the learning guidance to precisely differentiate normal from 

abnormal patterns. Synthesising these conclusions, utilising only unsupervised ML without any 

labelled data to achieve accurate anomaly detection is hardly possible. Even if viable, the 

detection performance based on pure unsupervised ML is highly possible to be further enhanced 

by labelled data. Therefore, there is a research consensus regarding the necessity for making 

use of at least partially labelled data to supervise and augment anomaly detection capabilities 

with semi-supervised ML approaches. 

Concerning the features utilised as input for ML models, traditional indicators such as velocity, 

acceleration, and steering angle have been extensively employed (Dai et al., 2010; Dhar et al., 

2014; Jia et al., 2020; Li et al., 2015; Lim & Yang, 2016). For example, Lim & Yang (2016) 

considered vehicular data comprising velocity, acceleration, steering angle, and gas pedal 

position and leveraged a CNN model to estimate driver drowsiness, workload, and distraction 

levels. Li et al. (2015) collected lateral vehicle position, steering angle, and speed-related 

information and implemented a Support Vector Machine (SVM) model to differentiate between 

normal and intoxicated driving states. Incorporating safety indicators (e.g., TTC) into ML-

based methods is supposed to be promising for abnormal driving detection but has seldom been 

investigated yet. To the best of the authors’ knowledge and after extensive review, only one 
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study was found to be relevant, i.e., J. Lu et al. (2022) integrated the representation of TTC 

together with the driver manoeuvre profiles into a deep unsupervised learning and clustering 

method with their proposed Transformer encoder based model to identify traffic conflicts and 

non-conflicts. However, they only investigated situations of one intersection and one 

roundabout in the United States, neglecting other various types of driving anomalies, especially 

those related to highway driving. 

Investigating the potential of semi-supervised approaches, which utilise both labelled and 

unlabelled data, is imperative to enhance abnormal driving behaviour detection, yet limited 

research has explored this direction. By harnessing the additional information from unlabelled 

data, semi-supervised learning might be able to uncover subtle patterns and behaviours that 

conventional supervised or unsupervised techniques may overlook. This study endeavours to 

address this research gap. Moreover, input features are fundamental for ML-based approaches. 

To enhance detection performance, it is advisable to explore more effective features. In this line, 

this study seeks to investigate the benefits of event-level safety indicators as input variables and 

conducts ablation analyses to verify their efficacy in upgrading the detection accuracy. 

6.3 Dataset and data analysis 

6.3.1 Description of the data 

To conduct data-driven research, a high-quality dataset is imperative. After extensive 

exploration, the study utilises the CitySim dataset (Zheng et al., 2022), comprising video-based 

trajectory data concentrating on traffic safety in the United States. The CitySim dataset 

encompasses vehicle trajectory information extracted from videos at 30 frames per second (FPS) 

captured by 12 drones, spanning six road geometry typologies, including freeway segments, 

signalised intersections, and stop-controlled junctions. The dataset provides precise positional 

details with measurements accurate to approximately 10 centimetres in various formats, 

including pixels, feet, and GPS coordinates, alongside data on velocity, heading angle, and 

vehicle lane numbers. Table 6-2 provides the fields of the raw data record and provides one 

example accessible within the dataset.  

Table 6-2. Data sample of the CitySim dataset 

Features Value 

frameNum 0 

carId 582 

carCenterX (ft) 462.4 

carCenterY (ft) 184.8 

headX (ft) 469.6 

headY (ft) 184.8 

tailX (ft) 455.3 

tailY (ft) 184.8 

Speed (mph) 39.5 

Heading (°) 180.7 

laneId 10 

Table notation: ft---feet; mph---miles per hour; ° --- degree 
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Following the research objectives, supplementary features were derived from the CitySim 

dataset, encompassing, for example, longitudinal acceleration, lateral acceleration, and inter-

vehicle distances, which facilitate the calculation of event-level safety indicators. By integrating 

these computed variables with the original dataset, this study endeavours to strengthen the data 

foundations necessary for the model. However, the dataset initially still contains noisy and 

inconsistent data. Rigorous pre-processing techniques were employed to enhance the quality 

and reliability, ensuring robustness in subsequent analysis and model training. Firstly, entries 

with missing values and NULL were identified and treated using the dropna function in the 

Python pandas library, eliminating instances with incomplete information. Then, entries with 

extreme values such as distance or speed beyond the normal range were cleared. For example, 

negative values in either distance or speed and speed values beyond 100 m/s (360km/h) are 

considered extreme values. 

Furthermore, a data smoothing technique with exponential smoothing was applied to attenuate 

high-frequency noise while preserving the underlying trends and patterns of the data. 

Table 6-3 exhibits examples of the data used after the pre-processing. As illustrated, the data 

after pre-processing includes features of coordinates, i.e., carCenterX and carCenterY, speed, 

heading angle, and distance. Since carCenterX, carCenterY, speed, and heading angle are 

provided in the original data, they were the fields used when smoothing the data. Whereas, the 

data fields of distance together with the later introduced longitudinal and lateral acceleration 

were calculated after the pre-processing using the relevant fields. For example, distance was 

calculated using carCenterX and carCenterY of the adjacent two vehicles. 

The upcoming Section 6.4 Methodology delineates the precise calculations done to derive the 

additional features from the raw CitySim dataset, including, as well, the selected event-level 

safety indicators. 

Table 6-3. Data examples after data pre-processing 

frameNum 
carCenterX 

(m) 

carCenterY 

(m) 

Speed 

(m/s) 

Heading  

(°) 

2DTTC 

(s) 

Distance 

(m) 

Abnormal=1/ 

Normal=0 

10 53.258 32.155 14.985 359.632 1.110 0.482 1 

1737 251.998 27.466 11.095 359.742 104.794 131.453 0 

1739 248.537 31.095 12.300 359.707 6001.553 128.168 0 

1760 251.607 27.355 11.064 359.656 110.943 131.392 0 

11940 128.567 31.653 16.368 359.220 0.415 0.593 1 

11966 127.897 31.653 16.217 359.082 0.376 0.482 1 

11981 127.115 31.653 16.218 358.865 0.295 0.457 1 

12000 126.836 31.542 16.277 358.864 0.311 0.387 1 

Table notation: the original distance measure “feet” is converted to “meters”.  

6.3.2 Abnormal driving behaviours identified in the dataset 

Based on the classification and definition of abnormal driving behaviour in the reviewed 

literature (check Section 6.2 Related work), this section illustrates the specific abnormal driving 

behaviours observed in the examined CitySim dataset. Each abnormal behaviour is associated 

with one or two indicators, measured or calculated at various locations. 
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Rapid acceleration and emergency brake behaviour 

The acceleration data corresponding to each velocity datum in the vehicle trajectory dataset is 

exhibited in Figure 6-1. Extreme acceleration and deceleration observations can be derived, 

denoting abnormal manoeuvres such as sudden braking or accelerating. Identifying these 

extreme observations enables the segmentation of abnormal driving behaviours versus normal 

ones. A specific proportion of extreme acceleration can be pinpointed by statistically 

scrutinising all acceleration observations at identical speeds across all journeys. Determining 

an appropriate ratio to differentiate extreme/abnormal points from normal ones is imperative. 

A 15% threshold appears sensible based on reiterative experimentation and associated existing 

research (Jia et al., 2020; X. Wang et al., 2015). 

 
Figure 6-1. Longitudinal acceleration and deceleration scatterplot at different speeds: 

normal observations (dark orange dots in the middle), and abnormal observations (light 

orange dots) 

Rapid lane-changing behaviour 

Rapid lane-changing behaviour is characterised by sudden and instantaneous abnormal lateral 

accelerations that occur for a short duration. In normal driving patterns, vehicles exhibit 

relatively stable lateral acceleration around zero (as shown in Figure 6-2). However, abnormal 

lane-changing behaviour manifests an abrupt variation in the vehicle’s lateral acceleration. 

The majority of vehicles exhibiting lane divergence comportment demonstrate a lateral 

acceleration bounded by ±1 m/s2, whereby they execute lane diversions seamlessly at a fixed 

velocity. However, the accelerations of some vehicles appear as outliers in Figure 6-3. A normal 

distribution with a mean of 0 and a standard deviation of 1.3 was examined. According to the 

characteristics of a normal distribution, approximately 68% of the data falls within ±1 standard 

deviation from the mean. These outliers beyond ±1 standard deviation from the mean accounted 

for approximately 32% of the total data points. A ratio of approximately 15% is considered 

reasonable based on repeated experiments and related research (Jia et al., 2020; X. Wang et al., 
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2015). This satisfies the heuristic definition of outliers as observations that differ significantly 

from most data. Examining outliers based on standard deviation thresholds aligns with 

statistically grounded techniques for anomaly detection using the sigma principle for normal 

distributions (Jia et al., 2020; X. Wang et al., 2015). According to the normal distribution, values 

greater than 1.3 m/s² and less than -1.3m/s² were used as the filter condition for abnormal 

instances. 

 

Figure 6-2. Illustration of the distribution of lateral acceleration 

 

Figure 6-3. Lateral acceleration scatterplot at different speeds: normal observations (dark 

orange dots in the middle), and abnormal observations (light orange dots) 
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Close lane-changing behaviour 

Close lane-changing behaviour is characterised by sudden and instantaneous abnormal lane-

changing actions with very short distances from adjacent vehicles that occur for a short duration. 

Vehicles in normal driving patterns maintain a certain distance between themselves and adjacent 

lanes. However, during abnormal close lane-changing behaviour, there is a significant decrease 

in the distance between the vehicle and vehicles in the adjacent lanes, indicating a close lane 

change. In this study, when the distance between the car performing the lane-changing 

manoeuvre and its surrounding vehicles is less than 0.5 meters, it is considered severe abnormal 

driving behaviour. In contrast, when the distance is less than 1.0 meters but greater than 0.5 

meters, it is considered weak abnormal driving behaviour, as seen in Figure 6-4. 

Based on the aforementioned criteria, the labels of the driving data samples were further 

examined by human experts to remove inaccurate labelling, improving the quality of the 

finalised labels. Referring to the method adopted by Jia et al. (2020), firstly, the data samples 

during the periods with large longitudinal accelerations and decelerations, large lateral 

accelerations, and extreme close distances were selected to be checked and verified, i.e., grey 

area data. By observing the changes in the distribution of the extreme longitudinal acceleration 

and deceleration data points, lateral accelerations, as well as distance-changing dynamics, the 

human expert combined these observations with their knowledge and experience to verify the 

labels. If the human expert was not certain with high confidence about the labelling for the data 

sample, that specific data sample would be removed. It should be noted that this human expert 

examination-based verification method may only correct the labels of false alarms, to the degree 

it is possible through examining kinematic variables, and will not correct missed abnormal 

instances. 

 
Figure 6-4. Scatterplot of distance during lane-changing for different carId 
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6.4 Methodology 

This section first introduces event-level safety indicators, especially the adopted Two-

Dimensional Time-To-Collision (2D-TTC) (Jiao, 2024; Ward et al., 2015). Two ML models, 

i.e., Isolation Forest and Robust Covariance, are then presented as baseline methods for 

comparison. Finally, a customised semi-supervised model named Hierarchical Extreme 

Learning Machine (HELM) is proposed and explained in detail. 

6.4.1 Safety indicators 

In the literature, several safety indicators were developed and introduced, and a comprehensive 

overview can be found in (Arun et al., 2021; Nikolaou et al., 2023). One of the most popular 

and commonly used safety indicators is the time-to-collision (TTC) which is a time-based 

proximity measure. TTC is defined as the time required for two road users, on a collision course, 

to collide if no evasive action is taken, which can be and is generally computed continuously 

(Svensson, 1998). Its simplistic form is when road users’ speed and path are assumed to remain 

unchanged (Hayward, 1971). For example, the TTC value, for a car-following situation, 

assuming motion prediction with constant speed, is calculated as: 

TTC =
𝐷

𝑣1−𝑣2
                                                                                                                            (6-1) 

where D is the distance between the following vehicle and the leading vehicle, while 𝑣1 and 𝑣2 

are the speeds for the two vehicles, respectively. 

Over the years, several studies have further extended the TTC safety indicator. For example, 

Time Exposed Time-to-collision (TET) and Time Integrated Time-to-collision (TIT) were 

introduced by (Minderhoud & Bovy, 2001) to measure the risk associated with the duration of 

dangerous driving conditions. The Modified Time-to-Collision (MTTC), proposed by Ozbay et 

al. (2008), provides an alternative way to calculate TTC at each instant, e.g., in a car-following 

traffic scenario, by considering the accelerations of both the lead and following vehicles. Other 

approaches involve incorporating site-specific motion patterns of road users and calculating 

TTC with respect to the distribution of possible trajectories (Saunier et al., 2007; St-Aubin et 

al., 2015). In this study, a TTC-based safety indicator, entitled the two-dimensional TTC (2D-

TTC) (Jiao, 2024; Ward et al., 2015), was implemented as an input feature, which can capture 

proximities of vehicles’ movements and interactions in a plane in various traffic scenarios 

besides a car following scenario. The illustration of 2D-TTC is demonstrated in Figure 6-5. 

2D-TTC is calculated as follows: 

2D-TTC = {

|𝑫𝑻𝑪⃗⃗ ⃗⃗ ⃗⃗  ⃗|

|𝒗𝑖−𝒗𝑗|
,                              𝑖𝑓 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑫𝑻𝑪⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑖𝑠 𝑡ℎ𝑒 𝑠𝑎𝑚𝑒 𝑎𝑠 𝒗𝑖𝑗 = (𝒗𝑖 − 𝒗𝑗)

𝑖𝑛𝑓, 𝑖𝑓 |𝑫𝑻𝑪⃗⃗ ⃗⃗ ⃗⃗  ⃗| = 𝑖𝑛𝑓 O𝑅 𝑖𝑓 𝑡ℎ𝑒 𝑑𝑖𝑟𝑒𝑐𝑡𝑖𝑜𝑛 𝑜𝑓 𝑫𝑻𝑪⃗⃗ ⃗⃗ ⃗⃗  ⃗ 𝑖𝑠 𝑜𝑝𝑝𝑜𝑠𝑖𝑡𝑒 𝑡𝑜 𝒗𝑖𝑗 = (𝒗𝑖 − 𝒗𝑗)
  (6-2) 

where |𝑫𝑻𝑪⃗⃗⃗⃗ ⃗⃗ ⃗⃗  ⃗| is the distance-to-collision, which refers to the minimum distance between the 

bounding boxes of target vehicle i and another interacting vehicle j along their relative speed 

𝒗𝑖𝑗 = (𝒗𝑖 − 𝒗𝑗) direction, while 𝒗𝑖 and 𝒗𝑗 are the speeds for the two vehicles respectively. If 

their relative movement decreases the distance-to-collision, they are approaching each other, 

and a potential collision exists. Otherwise, the vehicles are moving away from each other and 
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no potential collision exists. For more detailed information about the demonstration and 

calculation of the adopted 2D-TTC, the reader is advised to refer to (Jiao, 2024). 

 

Figure 6-5. Illustration of 2D-TTC (adjusted from (Jiao, 2024)) 

In general, according to the literature, only encounters with a minimum TTC below 1.5 seconds 

are deemed critical, with trained observers consistently applying this threshold in practice (van 

der Horst & Hogema, 1994). This study explores the effects of the input feature 2D-TTC on the 

detection performance of abnormal driving behaviour. Specifically, the vehicle angle in the 

dataset decomposes each vehicle’s velocity into x-y coordinate components, yielding velocity 

vectors based on the dataset parameters. 2D-TTC is then calculated per these velocity vectors 

and the corresponding distance along the same direction. This approach highlights how 2D-

TTC can be computed from the raw dataset by leveraging the vehicle angle data to obtain 

velocity vectors in coordinate space. The derived 2D-TTC is analysed and integrated with input 

features such as position, speed, and acceleration to evaluate abnormal driving behaviour 

detection performance using the given dataset. 

6.4.2 Baseline models 

Isolation Forest and Robust Covariance are selected as two baseline methods considering their 

interpretability, effectiveness, and broad utilisation in various domains. 

The Isolation Forest, initially developed by (Liu et al., 2008), constitutes an effective algorithm 

typically utilised for data anomaly detection. The Isolation Forest algorithm is based on the 

principle that anomalous data points are more readily separable from the majority of normal 

samples. To isolate an abnormal data point, the algorithm iteratively generates partitions of the 

sample by randomly selecting a feature attribute and subsequently randomly choosing a split 

value within the permissible minimum and maximum values for the selected feature attribute. 

Through recursive binary partitioning, data points that require fewer splits to become isolated 

are deemed more anomalous.  

The Isolation Forest algorithm capitalises on the premise that anomalies are few and different 

from the rest of the data, and thereby manifest topological shorter path lengths from the root to 

the external node (leaf), (which is elucidated by averaging this value across the trees) when 

random partitioning is employed. Therefore, it leverages an ensemble of isolation trees 



148 Safe, Efficient, and Socially Compliant Automated Driving in Mixed Traffic 

 

generated through such recursive random partitioning to identify anomalies, with shorter 

average path lengths corresponding to greater anomaly scores. 

In practice, the Isolation Forest anomaly detection algorithm involves two primary phases. 

Firstly, a collection of isolation trees (iTrees) is constructed utilising recursive partitioning on a 

training dataset. During recursive partitioning, splits are performed by randomly selecting an 

attribute and random split value to isolate a data point. Secondly, each instance in the test set is 

propagated through the ensemble of iTrees and assigned an anomaly score based on the average 

path length for that instance across the iTrees. Shorter average path lengths correspond to fewer 

partitions required to isolate the instance, indicating more anomalous behaviour and higher 

anomaly scores. After computing anomaly scores for all test instances, those data points with a 

score exceeding a predefined threshold specific to the domain can be classified as anomalies. 

The Robust Covariance estimation algorithm presupposes that normal data points exhibit a 

Gaussian distribution, and accordingly approximates the morphology of the joint distribution 

(namely, estimates the mean and covariance of the multivariate Gaussian distribution) (Nikita 

Butakov, 2020).  

In statistical analysis, the deviation can be measured by the Z-score. The generalisation of the 

Z-score for a point 𝑥𝑖 in the case of a p-dimensional multi-variate probability distribution with 

some mean μ and covariance matrix Σ is known as Mahalanobis distance 𝑑𝑖, which is given by: 

𝑑𝑖 = √(𝑥𝑖 − 𝜇)𝑇Σ−1(𝑥𝑖 − 𝜇)                                                                                                 (6-3) 

It is based on the premise that outliers increase the values (entries) in Σ, thereby making the 

data dispersion appear more extensive. Consequently, |Σ| (the determinant) will also be larger, 

which could theoretically decrease if extreme samples are removed. Rousseeuw and Van 

Driessen (1999) devised a computationally efficient algorithm capable of furnishing robust 

covariance approximations. The approach assumes that at minimum h of the n samples are 

“normal” (h denoting a hyperparameter). The algorithm begins with k arbitrary samples 

containing (p+1) points. For each k sample, μ, Σ, and |Σ| are estimated, the distances are 

computed and sorted in ascending order, and the smallest h distances are employed to update 

the estimates. In their original publication, the process of computing distances and revising the 

estimations of μ, Σ, and |Σ| is entitled a “C-step” whereby two such increments are typically 

sufficient to identify effective candidates (for μ and Σ) among the k arbitrary samples. In the 

succeeding step, a subset of magnitude m with the lowest |Σ| (the optimal candidates) is 

contemplated for computation until convergence, and the sole estimate whose |Σ| is minimal is 

furnished as output. 

Please note that, although Isolation Forest and Robust Covariance are usually considered 

unsupervised ML approaches, in this study, only normal data samples are input to train them; 

thus, in this study, they can be regarded as semi-supervised approaches and are comparable to 

the proposed semi-supervised machine learning method. 

6.4.3 Hierarchical extreme learning machine-based semi-supervised machine learning 

The Hierarchical Extreme Learning Machine algorithm, originally proposed by Tang et al. 

(2016), constitutes an advanced extension of the Extreme Learning Machines (ELM) algorithm 

that can enhance performance in both training speed and generalisation capability. This 
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approach integrates a feed-forward neural network structure with multiple latent layers, and it 

operates through two primary steps: unsupervised feature representation and supervised feature 

classification. In the initial step, the HELM is intended to ascertain a sparse encoder in an 

unsupervised manner, which transforms the raw input into superior-level representation. The 

encoder is structured with multiple latent layers which are processed sequentially, with each 

layer building upon the previous one to capture increasingly abstract features of the data. The 

second step involves using these learned features for supervised classification or approximation 

tasks. By leveraging the rich, hierarchical features extracted in the first step, HELM aims to 

achieve effective and accurate predictions. This two-step process enables HELM to combine 

the advantages of both unsupervised and supervised learning, resulting in improved overall 

performance. 

Given a training set with 𝑁 samples, indicated by (𝑋𝑖, 𝑌𝑖) (𝑋𝑖 ∈ 𝑅𝑛, 𝑌𝑖 ∈ 𝑅𝑡, 𝑖 = 1,2,3, … ,𝑁), 

where 𝑋𝑖  and 𝑌𝑖  denote the feature representation and the targeted output of the 𝑖 th sample, 

respectively. Suppose the encoder consists of 𝐾  hidden layers, each with 𝐿𝑖(1 ≤ 𝑖 ≤ 𝐾) 

neurons. The output 𝑂 = [𝑜1, 𝑜2, … , 𝑜𝑁]𝑇 can be expressed as: 

∑ 𝛽𝑖𝑔(𝑊𝑖 ∙ 𝑥𝑗 + 𝑏𝑗)
𝐾
𝑖=1 = 𝑜𝑗 , 𝑗 = 1,2, … ,𝑁                                                                           (6-4) 

where 𝑔(·) is the activation function, 𝛽𝑖 is the output weight, 𝑊𝑖 is the input weight, and 𝑏𝑗 is 

the bias. Ideally, there should be: 

∑ ‖𝑜𝑗 − 𝑌𝑗‖ = 0𝑁
𝑗=1                                                                                                                  (6-5) 

This implies that there exist weights 𝛽𝑖, 𝑊𝑖, and biases 𝑏𝑖 such that 

∑ 𝛽𝑖𝑔(𝑊𝑖 ∙ 𝑥𝑗 + 𝑏𝑗)
𝐾
𝑖=1 = 𝑌𝑗 , for 𝑗 = 1,2, … ,𝑁                                                                       (6-6) 

In matrix form, this can be represented by 

𝐻𝛽 = 𝑌                                                                                                                                  (6-7) 

where 𝐻 is the output of the hidden layer node, 𝛽 is the output weight, and 𝑌 is the desired 

output. 

𝐻(𝑊1,𝑊2, … ,𝑊𝐾, 𝑏1, 𝑏2, … , 𝑏𝐾, 𝑥1, 𝑥2, … , 𝑥𝑁) = [

𝑔1(𝑋1) ⋯ 𝑔𝐾1
(𝑋1)

⋮ ⋱ ⋮
𝑔1(𝑋𝑁) ⋯ 𝑔𝐾1

(𝑋𝑁)
]                         (6-8) 

To train a single hidden layer ELM neural network is equivalent to obtaining �̂� such that 

‖𝐻�̂� − 𝑌‖ = min
𝛽

‖𝐻𝛽 − 𝑌‖                                                                                                  (6-9) 

When choosing the mean square error (MSE) as the measure, this formula is equivalent to 

minimising the following loss function: 

𝐿𝑜𝑠𝑠 = ∑ (∑ 𝛽𝑖𝑔(𝑊𝑖 ∙ 𝑥𝑗 + 𝑏𝑖) − 𝑌𝑗
𝐾
𝑖=1 )2𝑁

𝑗=1                                                                         (6-10) 

Traditional ELMs allow the weights β and the deviations between the latent layers and the 

inputs to be set arbitrarily, drawn from any distribution. This flexibility means that the learning 

process primarily adjusts these weights to find the optimal connections between the latent layers 
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and the output. However, standard ELMs can be limited in their ability to effectively process 

complex data, even with a large number of hidden nodes. 

In this study, the customised HELM was introduced to address this limitation, which stacks 

multiple layers of ELM to create a deeper and more profound structure. This hierarchical 

approach enhances the model’s ability to capture intricate data patterns. The proposed HELM-

based semi-supervised learning consists of two phases, i.e., 1) self-supervised training for 

feature learning, where the model extracts and learns useful features from the data in an 

unsupervised manner, and 2) supervised fine-tuning, where the model is further optimised using 

samples of labelled data to improve its performance on the abnormal driving behaviour 

detection task, as visualised in Figure 6-6. 
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Figure 6-6. The framework of HELM-based semi-supervised machine learning method 

 

The HELM model is initially trained purely self-supervised on normal data samples exclusively, 

with all anomalous examples excluded from this training set. During this phase, by minimising 

a reconstruction error loss function, the stacked ELM autoencoder layers learn to capture the 

most salient features of the input data that represent its intrinsic normal characteristics. These 

extracted feature representations can encapsulate the essential properties of standard normal 

behaviour. Subsequently, the learned feature embeddings are transferred to a one-class classifier, 

which undergoes further supervised training to obtain a decision threshold τ. This threshold 

calibration phase notably utilises an unseen validation dataset containing only normal data 

samples. Withholding this validation set during ELM feature learning prevents overfitting the 

threshold to any potential anomalies in the original training data. Overall, this staged approach 

enables robust unsupervised feature extraction from normal data, followed by supervised 
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threshold tuning to facilitate effective anomaly detection. Usually, a good threshold τ can be 

expressed by 

τ = γ⋅𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒𝑝(|1 − 𝒀valid|)                                                                        (6-11) 

where 𝒀valid  is the output of the one-class classifier, 𝑝𝑒𝑟𝑐𝑒𝑛𝑡𝑖𝑙𝑒𝑝  is a function of the 𝑝 − th 

percentile with hyperparameters 𝑝 and 𝛾 ≥ 0. 

Finally, in the deployment phase, newly observed data samples are propagated through the 

trained HELM model to obtain the corresponding outputs from the one-class classifier. These 

outputs, denoted by 𝒀test, are compared against the decision threshold τ established during the 

training process. Recall that this threshold was calibrated on the separate validation dataset to 

avoid overfitting. The label assignment for each new test sample is then determined by 

thresholding its one-class output as follows:  

Label𝒀test = sgn (τ - |1 − 𝒀test|)                                                                                   (6-12) 

In summary, the trained HELM model generates layered feature representations of newly 

observed test data in a purely data-driven manner. Anomalies can be effectively detected by 

propagating these examples through the model and comparing the resulting one-class classifier 

decisions to the calibrated threshold τ. This approach benefits from the model’s unsupervised 

learning of salient features from normal training data, and the deep HELM architecture captures 

robust intrinsic representations of standard normal behaviour. By thresholding the one-class 

outputs relative to 𝜏, deviations from the learned normality are identified during deployment. 

Overall, this framework provides a self-supervised feature learning mechanism to represent 

normal data and a thresholding technique for effective anomaly detection in practice. The model 

framework of the HELM-based semi-supervised machine learning method is delineated in 

Figure 6-6. 

6.5 Experiment and results 

6.5.1 Dataset arrangement 

This study carries out comprehensive experiments to assess the performance of various models 

and the impact of different input feature conditions on the detection of abnormal driving 

behaviour. Initially, the built training dataset contained 290,690 instances, which included noisy 

and inconsistent data. In this study, several techniques were employed to address these issues, 

such as utilising the dropna function in the pandas library to eliminate instances with NULL, 

missing, and blank values, as well as refining the original data by employing smoothing 

techniques to attenuate noise. 

The dataset itself includes the following features: frameNum, carId, carCenterX (ft), 

carCenterX (m), carCenterY (ft), carCenterY (m), headX (ft), headY (ft), tailX (ft), tailY (ft), 

speed (mph), speed (m/s), heading (°), and laneId, as shown in Table 6-2. Next, the time interval 

was determined by calculating the difference in timestamp values using frameNum between 

adjacent later samples and their corresponding former ones. Based on this, the speed and 

acceleration (both longitudinal and lateral) for each vehicle were computed. Subsequently, 

using the frameNum as the index, the distances and 2D-TTCs between all relevant vehicles at 
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the same timestamp were calculated. As the quantity of normal driving data samples is far 

beyond the abnormal ones, to balance the quantity of abnormal and normal data samples, this 

study sampled the normal driving samples. In the end, the examined dataset comprised a total 

of 23,605 samples, consisting of 12,125 normal instances and 11,480 anomaly instances. All 

anomaly instances are utilised for testing, and 3,638 normal instances are adopted for testing. 

As anomaly instances are more critical, this study examined more anomaly instances in the 

estimation of model performance. 

6.5.2 Evaluation metrics 

Various metrics are adopted to evaluate the overall performance of the selected model, and the 

discrimination evaluation of the optimal model can be defined based on the confusion matrix 

(Hossin & Sulaiman, 2015), as shown in Table 6-4.  

Table 6-4. Confusion matrix and the corresponding array representation 

 Actual Positive Class Actual Negative Class 

Predicted Positive Class True-positive (TP) False-negative (FN) 

Predicted Negative Class False positive (FP) True-negative (TN) 

 

In binary classification, one class constitutes the positive class, whereas the other delineates the 

negative class. The positive class epitomises the events the model endeavours to detect, i.e., 

abnormal driving in this study, while the negative class constitutes other contingencies, i.e., 

normal driving in this study. True Positive (TP) and True Negative (TN) denote the quantity of 

accurately classified positive and negative exemplars. In this study, TP represents the correctly 

detected abnormal driving behaviour data sample, and TN constitutes the accurately detected 

normal driving samples. On the other hand, False Positive (FP) and False Negative (FN) 

represent the number of misclassified positive and negative instances, meaning incorrect 

detection of abnormal driving behaviour/normal driving behaviour instances. Accuracy, 

Precision, and Recall were computed based on these four terms. 

Accuracy refers to the proportion of true results among the total number of cases examined. 

Accuracy =
TP+TN

TP+TN+FP+FN
                  (6-13) 

Precision is utilised to gauge the accurate prediction of positive patterns among the total 

predicted patterns in a positive class. 

Precision =
TP

TP+FP
                      (6-14) 

Another widely utilised measure is Recall, which accounts for the proportion of actual Positives 

that are correctly classified: 

Recall =
TP

TP+FN
                     (6-15) 

The F1-score is a measure combining and balancing Precision and Recall, and it is defined as 

the harmonic mean of Precision and Recall: 

F1-score = 2 ×
precision×recall

precision+recall
                   (6-16) 
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Finally, the True Positive Rate (TPR) and False Positive Rate (FPR) are also examined as 

evaluation metrics. As indicated in their names, TPR and FPR are calculated as 

TPR =
TP

TP+FN
                      (6-17) 

FPR =
FP

FP+TN
                      (6-18) 

6.5.3 Ablation study regarding features 

Three experimental settings with distinct feature representations are designed to evaluate the 

impact of input information on model performance. As illustrated in Table 6-5, Setting 1 utilises 

only the raw coordinates, velocity, and vehicle angle features inherently present in the dataset. 

Setting 2 augments Setting 1 by incorporating two additional engineered features of lateral 

acceleration and inter-vehicle distance. Finally, Setting 3 further supplements Setting 2 by 

including the 2D-TTC feature capturing temporal proximity. By comparing results between 

these controlled settings, the incremental value of providing basic motion features (Setting 2) 

and safety indicators, i.e., 2D-TTC (Setting 3), over the raw dataset (Setting 1) can be quantified. 

The proposed three experimental settings serve to illustrate the effect of step-wise enriching the 

feature space on the learning capabilities of the model under controlled conditions. 

Table 6-5. Input features in different settings 

Experimental Setting Input Features 

1 coordinates/velocity/angle 

2 coordinates/velocity/angle/acceleration/distance 

3 coordinates/velocity/angle/2D time-to-collision 

6.5.4 Results and comparison 

The testing results of the proposed HELM model, together with the two baselines, are illustrated 

in Table 6-6, as well as Figures 6-7, 6-8, and 6-9. In general, the HELM model outperforms 

Robust Covariance and Isolation Forest, with the best variant delivering the best accuracy at 

99.58% and the best F1-score at 0.9913. 

Table 6-6. Results comparison under different settings 

Model Setting Accuracy Precision Recall F1-score FPR TPR 

Robust Covariance 

1 0.3337 0.7628 0.1779 0.3735 0.1745 0.1779 

2 0.3348 0.7702 0.1767 0.3762 0.1663 0.1767 

3 0.9570 0.9487 0.9973 0.9028 0.1701 0.9973 

Isolation Forest 

1 0.5789 0.8766 0.5185 0.4680 0.2303 0.5185 

2 0.4387 0.8673 0.3080 0.4219 0.1487 0.3080 

3 0.9615 0.9517 1.0000 0.9131 0.1600 1.0000 

HELM 

1 0.9471 0.9349 1.0000 0.8766 0.2196 1.0000 

2 0.9614 0.9561 0.9949 0.9144 0.1440 0.9949 

3 0.9958 0.9963 0.9983 0.9913 0.0118 0.9983 



154 Safe, Efficient, and Socially Compliant Automated Driving in Mixed Traffic 

 

 

(a) Setting 1                              (b) Setting 2                              (c) Setting 3 

Figure 6-7. Robust Covariance performance under Setting 1, Setting 2, and Setting 3 

   

(a) Setting 1                              (b) Setting 2                              (c) Setting 3 

Figure 6-8. Isolation Forest performance under Setting 1, Setting 2, and Setting 3 

   

(a) Setting 1                              (b) Setting 2                              (c) Setting 3 

Figure 6-9. HELM performance under Setting 1, Setting 2, and Setting 3 

Experiments across three experimental settings demonstrate enhanced abnormal driving 

behaviour identification capabilities by incorporating the safety indicator of 2D-TTC. 

Furthermore, the proposed semi-supervised HELM model achieves consistently superior 

performance compared to the alternative baseline models in all three experimental settings. 

In the baseline Setting 1, with only raw coordinates, velocity, and angle serving as the input 

features, the HELM model attains an accuracy of 0.9471. Then, augmenting with acceleration 

and inter-vehicle distance features, in Setting 2, the accuracy of HELM is improved to 0.9614. 

Notably, further inclusion of the adopted 2D-TTC safety indicator in Setting 3, the accuracy of 

HELM is dramatically enhanced to 0.9958, alongside near-perfect scores for Precision (0.9963), 
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Recall (0.9983), F1-score (0.9913), and FPR (0.0118). This underscores the outstanding value 

of 2D-TTC as an important spatial-temporal feature for this task. 

Similarly, unsupervised models (which work in a semi-supervised way in this study) exhibit 

substantial gains when endowed with 2D-TTC. For instance, the Precision and Recall of Robust 

Covariance are improved by over 20%, while the Accuracy and F1-score of Isolation Forest are 

increased by 5% and 10%, respectively. Nevertheless, the semi-supervised HELM approach 

outperforms these two baseline models across all metrics except for TPR and Recall. 

Finally, scatter visualisation of the result obtained by the proposed semi-supervised method 

using HELM is provided in Figure 6-10. From the visualisation, it is further demonstrated that 

the HELM can distinguish between normal and abnormal driving behaviours. However, it can 

not tell the severe abnormal apart from the weak abnormal instances, as the values of their 

|1 − 𝒀test|/τ are similar. How to distinguish the severity of abnormal driving behaviour using 

semi-supervised machine learning can be an interesting future research direction. 

 

Figure 6-10. Scatter visualisation of the result obtained by semi-supervised HELM 

In summary, augmenting the feature space with the adopted safety indicator, i.e., 2D-TTC, 

consistently improves the anomaly detection capabilities across models. The HELM framework 

integrating 2D-TTC markedly surpasses other baseline models, demonstrating the advantages 

and superiority of the proposed semi-supervised learning method together with the spatial-

temporal feature engineering for anomalous driving behaviour identification. 
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6.6 Conclusion and future work 

This study presented a semi-supervised machine learning framework leveraging event-level 

safety indicators to enhance abnormal driving behaviour detection. A large-scale real-world 

naturalistic driving dataset was analysed, and various abnormal driving behaviours were 

revealed and categorised in this study. A Hierarchical Extreme Learning Machine (HELM) 

model was proposed, which harnesses unlabelled data for self-supervised pre-training and 

partially labelled data for fine-tuning. The 2D-TTC safety indicator was introduced as an 

important feature, with experiments demonstrating that integrating 2D-TTC significantly 

improves the detection accuracy by over 5% for all the tested models compared to baseline 

experimental feature settings. 

By training on unlabelled data and employing only a small sample of labelled data for fine-

tuning, the proposed semi-supervised approach achieved competitive performance while 

reducing dependency on fully labelled datasets, making it well-suited for real-world 

applications with limited labelled data. Notably, the incorporation of event-level safety 

indicators, in this case, 2D-TTC, greatly enhanced the model performance. These compelling 

results underscore the critical value of safety indicators in effectively detecting abnormal 

driving behaviours across diverse ML algorithms. This fusion of semi-supervised ML and 

utilisation of safety indicators as input features showcase the potential for advancing abnormal 

driving behaviour detection capabilities, with significant implications for safety-oriented 

research and evaluations. To further upgrade the detection performance, future studies could 

explore other and more advanced safety indicators. 

Furthermore, the current study focused on detection; future research should explore predictive 

capabilities to enable earlier identification of impending abnormal behaviours before 

manifestation. This involves inputting multi-step time-series driving data and computing the 

features (e.g., TTC, 2D-TTC, MTTC) over a continuous duration period based on observed 

historical driving behaviour data to predict the status of the next time step or the next few time 

steps. Additionally, incorporating motion prediction (e.g., for more accurate TTC calculation) 

and adoption of driving risk field related metrics such as the human perceived Driver’s Risk 

Field (DRF) (Kolekar et al., 2020) and the Probabilistic Driving Risk Field (PDRF) (Mullakkal-

Babu et al., 2020), together with developing techniques to extract robust spatial-temporal 

patterns as model inputs, could further enhance the detection and prediction performance. 

Lastly, regarding other limitations, the adopted dataset encompassed only three abnormal 

driving behaviour types in this study. Future research should incorporate an expanded diversity 

of abnormal driving behaviours and more advanced safety indicators to enrich the 

understanding and identification of anomalies. Additionally, ground truth labels are the 

prerequisite for evaluating the model performance. The current human expert examination-

based verification method adopted in this study can not detect missed abnormal driving 

behaviour instances, but it may correct possible false alarms to upgrade the label quality. It is 

suggested to adopt more advanced approaches to obtain and verify high-quality ground truth 

labels, e.g., employing online crowd-sourcing with multiple experts, and using more 

comprehensive datasets with corresponding video recordings, as well as incorporating fine-

labelled accident data from road authorities. 
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7 Towards developing socially compliant 

automated vehicles: Advances, expert insights, and a 

conceptual framework 

Abstract 

Automated Vehicles (AVs) hold promise for revolutionising transportation by improving road 

safety, traffic efficiency, and overall mobility. Despite the steady advancement in high-level 

AVs in recent years, the transition to full automation entails a period of mixed traffic, where 

AVs of varying automation levels coexist with human-driven vehicles (HDVs). Making AVs 

socially compliant and understood by human drivers is expected to improve the safety and 

efficiency of mixed traffic. Thus, ensuring AVs compatibility with HDVs and social acceptance 

is crucial for their successful and seamless integration into mixed traffic. However, research in 

this critical area of developing socially compliant AVs (SCAVs) remains sparse. This study 

carries out the first comprehensive scoping review to assess the current state of the art in 

developing SCAVs, identifying key concepts, methodological approaches, and research gaps. 

An expert interview was also conducted to identify critical research gaps and expectations 

towards SCAVs. Based on the scoping review and expert interview input, a conceptual 

framework is proposed for the development of SCAVs. The conceptual framework is evaluated 

using an online survey targeting researchers, technicians, policymakers, and other relevant 

professionals worldwide. The survey results provide valuable validation and insights, affirming 

the significance of the proposed conceptual framework in tackling the challenges of integrating 

AVs into mixed-traffic environments. Additionally, future research perspectives and 

suggestions are discussed, contributing to the research and development agenda of SCAVs. 

This chapter is accepted for journal publication by Communications in Transportation 

Research (currently under publication process), and it has been pre-printed on arXiv. 

Dong, Y., Van Arem, B., & Farah, H. (2025). Towards Developing Socially Compliant 

Automated Vehicles: Advances, Expert Insights, and A Conceptual Framework. arXiv 

preprint arXiv:2501.06089. https://doi.org/10.48550/arXiv.2501.06089  

https://doi.org/10.48550/arXiv.2501.06089


162 Safe, Efficient, and Socially Compliant Automated Driving in Mixed Traffic 

 

7.1 Introduction 

Automated vehicles (AVs) are expected to benefit traffic safety and efficiency (Greenblatt & 

Shaheen, 2015; Jamson et al., 2011; Talebpour & Mahmassani, 2016; Yaqoob et al., 2020). 

Although steady development of higher levels of AVs is gradually witnessed, their deployment 

will not happen overnight. Instead, a transition period is inevitable, during which AVs with 

various automation levels will share the same road environment with human drivers, leading to 

mixed-traffic conditions. 

The Society of Automotive Engineers (SAE) defines six levels of driving automation (SAE 

International, 2021), ranging from No Driving Automation (Level 0) to Full Driving 

Automation (Level 5). Level 0 has no automation, and the driver is fully responsible for all 

aspects of driving. Levels 1 and 2 introduce partial automation, where the driver remains 

responsible for driving, even with the assistance of automated features, and must supervise 

these features continuously. The difference between Levels 1 and 2 lies in the scope of control 

supported: Level 1 supports either steering or brake/acceleration, while Level 2 supports both 

simultaneously, encompassing longitudinal and lateral control. At levels 3, 4, and 5, the 

automated system monitors the environment with full automation capabilities when the 

automated driving (AD) features are engaged. However, distinctions exist among these levels. 

At Level 3, known as conditional automation, drivers must be prepared to intervene and resume 

control when prompted by the AD features. While at Levels 4 and Level 5, the AD features will 

never make such requests. For Level 4, the AD features can operate the vehicle only under 

specific conditions defined by the Operational Design Domain (ODD). In contrast, Level 5 

allows the AD features to operate the vehicle under all conditions. 

The deployment of AVs with varying levels of automation in mixed traffic introduces new 

challenges and novel interactions which may potentially create uncertainties and issues that 

affect both road safety and efficiency (Fagnant & Kockelman, 2015; Farah et al., 2022; 

Fraedrich et al., 2015; Raju et al., 2022). Moreover, there is a pressing need to ensure the 

acceptance of AVs by human drivers to seamlessly integrate them into existing traffic systems 

(Łach & Svyetlichnyy, 2024; Orieno et al., 2024). 

Regarding the development of AVs’ driving behaviours, previous studies have traditionally 

prioritised aspects such as safety, efficiency, comfort, and energy consumption (Du et al., 2022; 

ElSamadisy et al., 2024; Vasile et al., 2023; M. Zhu et al., 2020). While these elements are 

essential, the growing complexity of mixed-traffic environments, where AVs must coexist with 

human-driven vehicles (HDVs), highlights the importance of ensuring that AVs’ driving 

behaviours are socially compliant. Referring and upgrading upon the definition provided in 

(Schwarting et al., 2019), socially compliant driving of AVs can be defined as behaving 

predictably and complying with the social expectations of human drivers and other surrounding 

road users (including other AVs) when encountering social dilemmas during driving with 

intensive interactions (e.g., driving through unsignalised intersections, roundabouts, on-

ramp/off-ramp merging, or unprotected left turning). This encompasses compliance with 

different local driving cultures, norms, cues, formal and informal traffic rules, and behaviours 

expected in specific contexts. The capability of AVs to drive in a predictable and socially 

compliant way is critical not only for enhancing safety and efficiency but also for fostering 

understanding and acceptance of AVs by human drivers. Consequently, there is a growing 

interest in designing and developing socially compliant automated driving systems. AVs with 
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socially compliant driving capabilities, i.e., socially compliant AVs (SCAVs), generally 

correspond to Level 3 to Level 5 automation. While infrequent, certain aspects of socially 

compliant driving might also be observed at Level 2 or Level 1 automation, where partial driver 

assistance needs to be provided when requested. Nevertheless, the full potential of socially 

compliant AVs is most relevant and impactful at higher levels of automation, where AVs are 

expected to make independent decisions in complex traffic scenarios. 

Some preliminary efforts have been made in the domain of socially compliant driving, e.g., 

(Hang et al., 2021; Kolekar et al., 2020; Schwarting et al., 2019; W. Wang et al., 2022). These 

studies have laid the important groundwork by exploring various aspects of social compliance 

of AVs, including modelling social interactions, understanding the dynamics between HDVs 

and AVs, and developing models for socially aware perception, decision-making, or trajectory 

planning. However, despite these advancements, research on this emerging topic remains 

relatively limited, particularly in areas such as the modelling of different driving norms and 

implicit communication in different cultural backgrounds. The current studies lack a 

comprehensive, integrated approach that fully addresses the complexities, multidisciplinary, 

and multifaceted nature of socially compliant driving. Therefore, there is a clear and pressing 

need for the development of an integrated conceptual framework that can guide future research, 

providing a holistic understanding of socially compliant driving and helping to design a 

research agenda to bridge the gaps in the current literature. 

To advance research in the domain of SCAVs, this study embarks on a comprehensive approach 

employing an integrated research method. It begins with a scoping review of the current state 

of the art, aimed at identifying key concepts, methodological approaches, and research gaps. 

Additionally, an informal expert interview was conducted to gather insights into critical issues 

and research expectations towards SCAVs. Subsequently, leveraging the findings from the 

scoping review and expert interview, a conceptual framework is proposed. This framework 

incorporates all aspects deemed necessary, based on the scoping review and expert interviews, 

for the development of SCAVs. To validate and refine the proposed conceptual framework as 

well as gain further insights, an online survey was developed, and responses from experts 

worldwide were collected. The survey results provide valuable validation and insights, 

affirming the significance of the framework for developing SCAVs to safely and efficiently 

integrate them into mixed-traffic environments. Additionally, suggestions for future 

enhancements are elicited, contributing to the continuous development of AV technology and 

guiding potential directions for further research and development. 

7.2 Scoping literature review 

In this study, a scoping review is adopted to synthesise the current research evidence and state 

of the practice in scientific peer-reviewed publications, as well as identify the key concepts, 

predominant research approaches, and research gaps related to SCAVs. 

A scoping review was selected over a systematic review due to the exploratory nature of the 

research objective. Compared to systematic reviews, which aim to provide a synthesis and 

critical appraisal of the published evidence (Munn et al., 2018), scoping reviews are more 

suitable to summarise and report the research evidence on emerging and burgeoning topics, 

where evidence is limited and not yet systematically consolidated. As outlined in (Arksey & 

O’Malley, 2005; Tafidis et al., 2022), scoping reviews aim to provide a broad overview of 
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available research, identifying relevant key concepts, methodologies, and gaps that require 

further investigation. Considering that AVs, especially SCAVs, are still in the early stages of 

development, with a relatively small body of research, a scoping review approach is more 

appropriate for mapping the current state of the field. 

The scope of the review specifically targets methodologies and technical developments (i.e., 

the methods, algorithms, platforms, tools, and datasets that have been employed), as well as the 

substantive content of reviewed studies (e.g., what has been done, what scenarios/manoeuvres 

have been covered), that are relevant to SCAVs. This focus aligns with the study’s goal of 

proposing a conceptual framework to guide future research and development. The descriptive 

nature of the scoping review allows for an expansive exploration of the research landscape, 

offering a foundation for conceptualising SCAVS in the context of mixed-traffic environments. 

It is important to note that detailed analyses and discussions of the findings and conclusions 

from the reviewed studies are beyond the scope of this study, as the primary focus is on 

synthesising key methodological insights to inform the proposed framework. 

7.2.1 Five-step approach 

In this study, a five-step scoping review was utilised to identify and report related existing 

literature and map the results. The five steps of the methodological approach are: 

• Step 1: Setting up eligibility criteria and information sources 

• Step 2: Developing search strategy and process 

• Step 3: Screening and selecting studies 

• Step 4: Charting and visualising the studies 

• Step 5: Summarising, synthesising, and reporting the results 

This five-step approach is a condensed version of the well-designed PRISMA Extension for 

Scoping Reviews (PRISMA-ScR) (Tricco et al., 2018), developed in consultation with an 

international panel of experts to enhance research and scientific publications. 

Step 1: Setting up eligibility criteria and information sources 

In this step, eligibility criteria and information sources are established to guide the selection of 

studies for the scoping review. In principle, only peer-reviewed research papers published in 

journals and conference proceedings in English up till May 21, 2024, were considered eligible 

for the scoping review. It is essential that the pertinent studies involve the social interactions 

between AVs and HDVs, or between AVs and other road users (e.g., cyclists and pedestrians). 

Publications solely discussing and modelling the social interactions and behaviours among 

humans (e.g., drivers, cyclists, and pedestrians) without insights into SCAVs are deemed 

ineligible and thus excluded from the review process. There have been a few review papers 

including such publications, e.g., (Benrachou et al., 2022; Crosato, Tian, et al., 2023; W. Wang 

et al., 2022; T. Zhang et al., 2023). Therefore, the main difference and key contribution of the 

literature review part in this study lie in its dedicated focus on socially compliant driving, 

specifically emphasising interactions involving AVs or insights toward this goal as a core 

criterion. 
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Various academic databases and repositories were used, including Scopus, Web of Science 

(Web of Science All Databases not the Web of Science Core Collection), IEEE Xplore, and 

Transport Research International Documentation (TRID)  The four databases provide access to 

a wide range of peer-reviewed research papers published in journals and conference 

proceedings, offering comprehensive coverage of scholarly literature in the field of 

transportation and automated driving research. 

Step 2: Developing search strategy and process 

In this step, a systematic search strategy is developed to identify relevant studies for inclusion 

in the scoping review. The search strategy encompasses a combination of keywords and 

controlled vocabulary terms related to socially compliant automated driving, social-aware 

automated driving, social interaction, automated driving, and other associated concepts. 

Recognising the varied terminologies used in the domain of automated driving, the search 

includes different spellings, synonyms, and variants of related concepts to ensure inclusivity. 

The keywords for each associated term are illustrated in Table 7-1, facilitating a nuanced and 

exhaustive search process. 

Table 7-1. Keywords used for each associated term. 

Term Relevant Keywords 

Automated 

vehicle 

(Autonomous OR automated OR driverless OR driver-less OR self-

driving OR selfdriving) AND (car OR vehicle); (Autonomous OR 

automated) driving 

Socially 

compliant 

driving 

(Social OR social-aware OR socially compliant OR human-like) AND 

(driving OR interaction OR behaviour OR behavior OR navigation OR 

decision-making OR trajectory planning OR planning and control); 

driving AND (social compliance OR social acceptance) 

 

Boolean operators and truncation were utilised to enhance the precision and comprehensiveness 

of the search. Furthermore, the employed search strings were tailored to meet the specific 

requirements (e.g., in length) and functionalities of each selected database. The time range was 

set to 2000-2024. The language of publications was limited to English. Furthermore, only the 

publications within the subject areas of Mathematics, Psychology, Physics, Neurosciences, 

Computer Science, Behavioural Sciences, Social Sciences, Operations Research and 

Management Science, Engineering (including Transportation, Robotics, Telecommunications, 

Automation Control Systems, etc.), as well as Science Technology, were considered valid. 

Publications falling into the other domains, e.g., Art, Architecture, Demography, International 

Relations, Public Administration, Social Issues, etc., were excluded. 

It is also important to mention that the literature search was carried out in two phases. One 

phase before the conceptual design and online questionnaire survey, and the second phase 

afterwards to capture new publications that had emerged during that time period. 

Step 3: Screening and selecting studies 

In this phase, the screening process commences with an initial evaluation of the titles, abstracts, 

and keywords of the search results to determine their alignment with the research objectives 

and relevance to the study topic. This preliminary assessment serves to identify potentially 



166 Safe, Efficient, and Socially Compliant Automated Driving in Mixed Traffic 

 

eligible studies for further consideration. Subsequently, the full-text articles of the identified 

studies undergo a thorough review to assess their eligibility. Only studies that are deemed truly 

pertinent to the research objectives are selected for inclusion in the scoping review. 

Furthermore, to ensure the comprehensiveness of the literature coverage, a backward and 

forward snowballing technique was employed. This technique involves examining the reference 

lists of the selected papers and the papers that cite the selected papers to identify additional 

relevant studies that may have been missed in the initial search. 

Step 4: Charting and visualising the studies 

In this step, the selected studies undergo abstraction and charting to capture their general 

characteristics, including authorship details, year of publication, source of publication, the 

disciplinary focus of the journal or conference, keywords, abstract content, number of citations, 

etc. This process enables a comprehensive overview of the literature landscape and facilitates 

the identification of trends, patterns, and relationships among the selected studies. 

Furthermore, keyword network analysis using VOSviewer (van Eck & Waltman, 2010) and 

Sankey diagram visualisation techniques were employed to visually represent the relationships 

among key terms of methodologies adopted and targeted use cases in the identified studies. 

Keyword network analysis provides insights into the interconnectedness of key terms and 

concepts within the literature, highlighting prominent themes and areas of focus. By analysing 

the co-occurrence and relationships between keywords, researchers can identify clusters of 

related concepts and uncover overarching themes. The Sankey diagram visualisation offers a 

graphical representation of the flow of information between different categories or variables, 

illustrating the distribution and relationships between various elements in the selected studies 

and providing a holistic view of the research landscape. By visualising the flow of information, 

researchers can identify patterns, trends, and relationships that may not be immediately apparent 

from textual analysis alone. 

By leveraging these visualisation techniques, the findings of the scoping review are presented 

in a clear and concise manner, enabling stakeholders to easily interpret and understand the key 

findings and insights derived from the selected studies. Additionally, visualising the data 

enhances the accessibility and communicability of the research findings and facilitates 

knowledge dissemination. So that researchers can gain deeper insights into the structure and 

content of the literature, ultimately contributing to a more comprehensive understanding of the 

research field. 

Step 5: Summarising, synthesising, and reporting the results 

In this final step, the results of the scoping review are synthesised and mapped based on the 

extracted and charted data, as well as the findings from keyword network analysis and Sankey 

diagram visualisation. The synthesised results are organised into clusters, highlighting key 

themes, methodological approaches, application cases, study designs, models, metrics used, and 

broad findings identified in the selected studies. This allows for the identification of 

commonalities and differences among studies and provides a comprehensive overview of the 

literature landscape. 

Furthermore, relevant research gaps were identified based on the synthesised results, 

highlighting areas where further investigation is needed and providing valuable insights for the 
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development of an integrated conceptual framework that addresses key challenges and 

opportunities in the development of SCAVs. 

7.2.2 Scoping literature review results 

(1) Selection of pertinent studies 

The literature search through the four selected academic databases and under the 

aforementioned search process originally returned 1,542 records, i.e., there were 432 records 

(361 published documents and 71 preprints) by Scopus, 258 records by Web of Science 

(publications and preprints together), 634 records by IEEE Xplore (including early access 

articles), and 218 records by TRID. Additionally, 11 studies that were identified during the 

screening process through snowballing were also added, so that in total, 1,553 studies were 

qualified for the screening process. 

These records were exported as comma-separated values (CSV) files and processed using the 

Pandas Python Data Analysis Library to merge and group the records and remove the duplicates. 

Together with the manual examination of the titles, a total of 1,327 valid unique records 

proceeded to the preliminary checking process. Then based on the title and abstract, 209 studies 

were identified to be either directly relevant to, or capable of, providing valuable insights into 

automated driving interactions with HDVs in mixed traffic, among which four are review or 

survey papers (Benrachou et al., 2022; Crosato, Tian, et al., 2023; W. Wang et al., 2022; T. 

Zhang et al., 2023), and one is about cognitive architecture design and perspectives (Xie et al., 

2020). Following a detailed examination regarding their full text, 68 were finally screened out 

due to their potential to contribute significantly to the understanding and development of 

socially compliant automated driving in mixed traffic. Thus, the 68 studies were ultimately 

selected for in-depth review. Figure 7-1 illustrates the selection process of pertinent studies 

under the PRISMA pipeline. A full list of the 209 studies is provided in Supplementary 

Attachment 1 at: https://lnkd.in/gpceU6gQ.  

(2) Charting, visualising, summarising, synthesising, and reporting the results 

Firstly, to visualise the key terms, methods, and concepts related to socially compliant driving 

and the development of SCAVs, the relevant publications identified by the Web of Science 

search engine were visualised using the keyword network plot by VOSviewer, shown in Figure 

7-2. Please note this study selected Web of Science as the sole database for visualisation due to 

VOSviewer’s limitations and the practical challenges associated with integrating multiple 

databases. Using the Web of Science database effectively captured the primary information and 

relationships between key terms and concepts, making it a suitable choice for constructing the 

keyword network visualisation. The size of the nodes and thickness of the links depict the scale 

of the publications in the corresponding areas of the keyword, and the different colour depicts 

the clusters. 

The analysis shows that decision making appears to be the most frequent keyword, followed by 

terms like agent, policy, dataset, robotics, human driver, robots, safety, and efficiency, among 

others. From the visualisations, one can also identify the commonly adopted methods and terms, 

such as deep learning, neural networks, game theory, model predictive control, and 

optimization. These results provide valuable global insights for understanding the target domain 

of socially compliant driving. 

https://lnkd.in/gpceU6gQ
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Figure 7-1. Pertinent studies selection process flow diagram 

To design SCAVs, methodologies identified in the reviewed literature can be broadly grouped 

into learning-based and model/utility-based approaches. In practice, learning-based and model-

based approaches often complement each other to achieve more robust and adaptable 

performance. Specifically, the detailed methodologies can be roughly classified into five key 

sub-categories: 

1) Imitation Learning of Social Driving Behaviours from Human Drivers 

This approach focuses on replicating the social driving behaviours of human drivers through 

imitation learning techniques, such as behaviour cloning (Lingguang Wang et al., 2023a, 2023b; 

Z. Zhu & Zhao, 2023), inverse reinforcement learning (IRL) (Geng et al., 2023; Sun et al., 

2019), and generative adversarial imitation learning, e.g., in (Da & Hua, 2023). The AV learns 

to mimic human-like decision-making and driving patterns by observing and imitating from 

either expert demonstrations or processed empirical real-world driving data. This method can 

work in an end-to-end pipeline, but it is not necessary to do so. Representative works in this 

direction include (Da & Hua, 2023; Sun et al., 2019; Z. Wang et al., 2021; C. Xu et al., 2023). 
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Figure 7-2. Keyword network visualisation by VOSviewer 

2) Reinforcement Learning Combined with Utility-based Models 

In this approach, reinforcement learning (RL) is employed to infer the underlying utility (also 

referred to as reward in many studies) functions that govern social driving behaviours from 

observed human (expert) demonstrations or empirical driving data. The utility functions 

quantify social factors, such as deterministic courtesy (Sun et al., 2018), and the magnitude of 

the concern people have for others relative to themselves, e.g., through Social Value Orientation 

(Liebrand & McClintock, 1988; Murphy & Ackermann, 2014; Schwarting et al., 2019). This 

method enables AVs to learn and adapt the relevant social factors influencing human decision-

making to achieve socially compliant behaviour (Buckman et al., 2019; Larsson et al., 2021; 

Nan et al., 2024; Schwarting et al., 2019; Letian Wang et al., 2021; Xue et al., 2023; Yoon & 

Ayalew, 2019). 

3) Model-Based Generation of Human-Like Behaviours 

This category encompasses approaches that leverage mathematical models to replicate human 

driving behaviours and/or inform socially aware decision-making. Techniques within this 

category, such as game theory, social force models, driving risk field models, and potential field 

models, simulate the complex interaction dynamics between AVs and other road users, 

including HDVs, pedestrians, and cyclists. Game theory, in particular, provides a framework 

for strategic decision-making by modelling interactions as a series of cooperative or competitive 

scenarios where AVs make decisions based on anticipated responses from surrounding agents 

(Hang et al., 2021; Hang, Lv, et al., 2022; Shu et al., 2023). Other models, like the social force 

model, e.g., in (Chen et al., 2024; Reddy et al., 2021; Yoon & Ayalew, 2019), driving risk field 
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model, e.g., in (Geng et al., 2023; Kolekar et al., 2020; J. Wang et al., 2023), and potential field 

model,e.g., in (Bhatt et al., 2022; Yan et al., 2022; Zhao et al., 2024), capture the forces, risks, 

and potential outcomes of interactions in mixed-traffic environments, allowing for a more 

nuanced emulation of human-like behaviours. These model-based approaches are valuable for 

predicting and generating socially compliant driving behaviours by considering both explicit 

rules and inferred human tendencies. Notable contributions in this area include, e.g., (Bhatt et 

al., 2022; Ferrer & Sanfeliu, 2014; Hang et al., 2021; Hang, Lv, Huang, Xing, et al., 2020; 

Kolekar et al., 2020; L. Zhang et al., 2023; J. Liu, Qi, et al., 2024; Shu et al., 2023; J. Wang et 

al., 2023).  

It can be noted that, usually, these models can be integrated with learning-based approaches 

(especially RL) to enhance their adaptability and responsiveness in real-time applications, as 

seen in works like (J. Liu, Qi, et al., 2024; Xiao Wang et al., 2024). 

4) Trajectory Prediction through Integration of Social Factors with Machine Learning for 

Encouraging Socially Compliant Behaviours 

This sub-category focuses on the use of machine learning (ML) models, integrated with social 

factors, to predict trajectories that reflect socially compliant behaviour. Unlike categories (1) 

and (2), which generally deliver driving control actions, the approaches here rely on deep 

learning (DL) using deep neural networks (DNNs) or IRL aided by social factor models to 

analyse and learn from large datasets and forecast the socially compliant trajectories of 

surrounding HDVs, pedestrians, and/or other road users. By accurately predicting these 

trajectories, the ego AV can then adjust its actions to achieve corresponding socially compliant 

driving behaviour, thus ensuring smoother and safer interactions in mixed-traffic scenarios 

(Geng et al., 2023; Vemula et al., 2018; Yoon & Ayalew, 2019). The prediction can then be used 

for RL control (Valiente et al., 2024) to leverage prediction and social awareness in RL decision-

making, to improve safety and efficiency. 

5) Optimisation-Based Tuning of Social Driving Parameters 

This approach leverages optimisation techniques to fine-tune the parameters of driving models 

to achieve desired social objectives, such as individualistic, altruistic, or pro-social driving 

behaviour. By adjusting and optimising these parameters, the models aim to balance trade-offs 

between safety, efficiency, and comfort while considering the benefits of the ego AV versus 

surrounding vehicles or other road participants in mixed-traffic environments. Representative 

studies in this category include, e.g., (Larsson et al., 2021). 

To provide a holistic view of the five identified methodological categories, Table 7-2 presents 

a comparative overview of their key characteristics, including advantages, disadvantages, and 

typical applications. This comparison elucidates the trade-offs and appropriate contexts for each 

approach, facilitating a deeper understanding of their roles in SCAV development. 

As depicted in Table 7-2, each category offers distinct strengths and faces specific challenges. 

Imitation learning excels at replicating human behaviour but is constrained by the diversity and 

quality of available training data.  Reinforcement learning offers adaptability to complex, 

dynamic settings, yet its effectiveness hinges on well-designed reward functions. Model-based 

approaches provide interpretable and theoretically sound frameworks for understanding 

interactions, such as through game theory, though they often demand significant computational 
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resources and may struggle with adaptability and real-time application. Trajectory prediction, 

enriched by social factors, improves the anticipation of other road users’ movements but 

depends on robust social data. Lastly, optimisation-based tuning allows precise adjustments to 

driving parameters, though it may miss nuanced, dynamic social cues. Notably, these 

methodologies are complementary; combining them can harness their respective strengths to 

develop more robust and effective SCAV systems. 

Table 7-2. Comparison of the five identified methodological categories 

Methodological Category Advantages Disadvantages Typical Application 

Imitation learning of social 

driving behaviours from 

human drivers 

Effectively replicates 

human behaviour 

Limited by diversity 

and quality of 

training data 

Learning social 

driving norms from 

expert 

demonstrations 

Reinforcement learning 

combined with utility-based 

models 

Highly adaptable to 

dynamic environments 

Sensitive to reward 

function design 

Optimising long-

term socially 

compliant behaviour 

Model-based generation of 

human-like behaviours 

Structured, 

interpretable, and 

theoretically grounded 

Computationally 

intensive; may lack 

adaptability and real-

time feasibility 

Modelling strategic 

multi-agent 

interactions (e.g., 

using game theory) 

Trajectory prediction 

through integration of 

social factors with machine 

learning 

Enhances prediction 

accuracy with social 

context 

Reliant on the quality 

and availability of 

social data 

Anticipating 

movements of HDVs 

or pedestrians 

Optimisation-based tuning 

of social driving parameters 

Offers precise control 

over driving 

parameters 

May overlook 

dynamic or implicit 

social cues 

Fine-tuning AV 

responses for specific 

social scenarios 

These aforementioned methodologies collectively represent the current state of research in 

socially compliant driving behaviour for AVs. They highlight the multidisciplinary nature of the 

field, which combines elements of artificial intelligence (AI) (e.g., ML, DL, RL), physics, 

human factors, control theory, social psychology, and transportation engineering. The 

integration of multidisciplinary knowledge is crucial for developing AVs capable of safely and 

efficiently interacting with HDVs and other road users in complex traffic environments. It is 

important to note that the different approaches categorised are not mutually exclusive: in 

practice, they can be utilised in combination to enhance the robustness and reliability of AV 

behaviour. A detailed illustration of the models, terms, and methods adopted by the studies is 

provided in Table 7-3 and Figure 7-3. 

From Table 7-3, it is noticed that the majority of studies adopt machine learning approaches, 

and more specifically, deep learning (e.g., Convolutional Neural Network (CNN), Generative 

Adversarial Networks (GAN), Long Short-Term Memory (LSTM) neural networks, Multi-

Layer Perceptron (MLP), Gated Recurrent Unit (GRU), Transformer), and deep reinforcement 

learning (e.g., IRL, Deep Q-learning, and Actor-Critic methods). Typically, driving decision-

making is modeled as the Markov Decision Process (MDP), e.g., in (Crosato et al., 2021; Da & 

Hua, 2023; Ding et al., 2022; Hang et al., 2021; Z. Huang, Wu, et al., 2023; J. Liu, Zhou, et al., 

2024; Zong et al., 2023), or as the partially observable Markov decision process (POMDP), e.g., 

in (Ding et al., 2022; J. Liu, Zhou, et al., 2024; Peng et al., 2021) to account for uncertainties. 

Additionally,  a  substantial  number  of  studies  employ  game  theory  (e.g., Stackelberg  game, 
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Table 7-3. Clustering of methods identified in the papers reviewed 

(A) Machine Learning based methods 

Methods and Terms Adopted Related Publications 

Machine 

Learning 

(DL, RL) 

Deep Learning 

CNN 
(Ding et al., 2022; Hirose et al., 2024; Pérez-Dattari et 

al., 2022; Qin et al., 2021; Valiente et al., 2024) 

GAN 
(Da & Hua, 2023; Gupta et al., 2018; Kothari & Alahi, 

2023; Sadeghian et al., 2019; Z. Wang et al., 2021) 

LSTM 

(Alahi et al., 2016; W. J. Chang et al., 2023; Da & Hua, 

2023; Ding et al., 2022; Gupta et al., 2018; Z. Huang, 

Liu, et al., 2023; Kothari et al., 2021; Kothari & Alahi, 

2023; Pérez-Dattari et al., 2022; Sadeghian et al., 

2019; Vemula et al., 2018; Xueyang Wang et al., 2024; 

Z. Wang et al., 2021) 

MLP 

(W. J. Chang et al., 2023; Da & Hua, 2023; Z. Huang, 

Liu, et al., 2023; Kothari & Alahi, 2023; Xue et al., 

2023; Z. Zhu & Zhao, 2023) 

Transformer 
(Geng et al., 2023; B. Huang & Sun, 2023; Z. Huang, 

Liu, et al., 2023; Xiao Wang et al., 2024) 

Attention 

Module 

(Kothari & Alahi, 2023; J. Liu, Zhou, et al., 2024; Qin 

et al., 2021; Sadeghian et al., 2019; Vemula et al., 

2018; Z. Wang et al., 2021; Xue et al., 2023) 

Graph 

Attention 

Network 

(Xueyang Wang et al., 2024) 

Autoencoder 
(J. Liu, Zhou, et al., 2024; Valiente et al., 2024; Zong 

et al., 2023) 

GRU (J. Liu, Zhou, et al., 2024; Zong et al., 2023) 

Social 

Pooling 

Layer 

(Alahi et al., 2016; Gupta et al., 2018) 

Reinforcement 

Learning 

Actor-Critic 

(Crosato et al., 2021; Crosato, Shum, et al., 2023; Z. 

Huang, Wu, et al., 2023; J. Liu, Zhou, et al., 2024; L. 

Liu et al., 2020; Toghi et al., 2021a; Tong et al., 2024; 

Xue et al., 2023; Zong et al., 2023) 

Deep  

Q-learning 

(Z. Huang, Wu, et al., 2023; Lu et al., 2022; Nan et al., 

2024; Taghavifar & Mohammadzadeh, 2024; Toghi et 

al., 2021b, 2022; Valiente et al., 2024) 

IRL 

(Geng et al., 2023; Z. Huang, Liu, et al., 2023; Nan et 

al., 2024; Schwarting et al., 2019; Sun et al., 2018, 

2019; C. Xu et al., 2023; Zhao et al., 2024) 

PPO (Crosato, Shum, et al., 2023; J. Liu, Zhou, et al., 2024) 

Coordinated 

Policy 

Optimisation 

(Peng et al., 2021) 
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(B) Game theory, field-based models, and social psychological factor related methods 
 

Methods and Terms Adopted Related Publications 

Game Theory 

Stackelberg 

Game 

(Hang et al., 2021; Hang, Huang, et al., 2022b; Hang, 

Lv, Huang, Cai, et al., 2020; C. Li et al., 2022; 

Schwarting et al., 2019; Letian Wang et al., 2021; 

Zhao et al., 2024)  

Nash-

Equilibrium 

based Game 

(Galati et al., 2022; Hang et al., 2021; Hang, Huang, 

et al., 2022b; J. Liu, Qi, et al., 2024; M. Liu et al., 

2024; Shu et al., 2023; J. Wang et al., 2023) 

POSG 
(Toghi et al., 2021b, 2022; Valiente et al., 2024; Xue 

et al., 2023) 

Coalitional 

Game 
(Hang, Huang, et al., 2022a; Hang, Lv, et al., 2022) 

Potential 

Game 
(M. Liu et al., 2024) 

Social Psychological Factor  

SVO 

(Buckman et al., 2019; Crosato et al., 2021; Crosato, 

Shum, et al., 2023; Peng et al., 2021; Schwarting et al., 

2019; Taghavifar & Mohammadzadeh, 2024; Toghi et 

al., 2021a, 2021b, 2022; Tong et al., 2024; Valiente et 

al., 2024; Xue et al., 2023; L. Zhang et al., 2023; Zhao 

et al., 2024) 

Courtesy 
(W. J. Chang et al., 2023; C. Li et al., 2022; Sun et al., 

2018; Letian Wang et al., 2021) 

Coordination 

Tendency 
(J. Liu, Zhou, et al., 2024) 

Social 

Preference 
(Lu et al., 2022) 

Social 

Cohesion 
(Landolfi & Dragan, 2018) 

Social 

Anchor 
(Kothari et al., 2021) 

Field-based Models 

Potential 

Field 

(Bhatt et al., 2022; Hang et al., 2021; Hang, Huang, et 

al., 2022a, 2022b; Hang, Lv, Huang, Cai, et al., 2020; 

Reddy et al., 2021; Yan et al., 2022; Zhao et al., 2024) 

Risk Field 
(Geng et al., 2023; Kolekar et al., 2020; J. Wang et al., 

2023; Xiao Wang et al., 2024; L. Zhang et al., 2023) 
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(C) Other models and methods 
 

Methods and Terms Adopted Related Publications 

Model Predictive Control 

(Bhatt et al., 2022; Hang et al., 2021; Hang, Huang, et al., 2022a; 

Hang, Lv, Huang, Cai, et al., 2020; Landolfi & Dragan, 2018; 

Larsson et al., 2021; Pérez-Dattari et al., 2022; Sun et al., 2018, 

2019; J. Wang et al., 2023; Letian Wang et al., 2021; Yan et al., 

2022; Yoon & Ayalew, 2019; L. Zhang et al., 2023) 

Markov Decision Process 

(Crosato et al., 2021; Crosato, Shum, et al., 2023; Da & Hua, 

2023; Ding et al., 2022; Z. Huang, Wu, et al., 2023; J. Liu, Zhou, 

et al., 2024; Peng et al., 2021; Song et al., 2016; Zong et al., 2023) 

Expert Demonstration 

(Da & Hua, 2023; Z. Huang, Liu, et al., 2023; Z. Huang, Wu, et 

al., 2023; J. Liu, Qi, et al., 2024; Nan et al., 2024; Qin et al., 2021; 

Z. Zhu & Zhao, 2023) 

Social Force Model 
(Chen et al., 2024; Crosato, Shum, et al., 2023; Ferrer & Sanfeliu, 

2014; Reddy et al., 2021; Yoon & Ayalew, 2019) 

Addressing Uncertainties 
(Z. Huang, Wu, et al., 2023; Kolekar et al., 2020; Sun et al., 2019; 

Letian Wang et al., 2021) 

Bayesian Inference (C. Li et al., 2022; J. Wang et al., 2023; Letian Wang et al., 2021) 

Behaviour Cloning (Lingguang Wang et al., 2023a, 2023b) 

Monte-Carlo Sampling (Lingguang Wang et al., 2023a, 2023b) 

Monte Carlo Tree Search (C. Li et al., 2022) 

Finite State Machine (B. Wang et al., 2024) 

Reasoning Graph (D. Zhou et al., 2022) 

Non-Convex Mixed-Integer 

Nonlinear Program 
(Larsson et al., 2021) 

Discrete Choice Model (Kothari et al., 2021) 

Minimising Counterfactual 

Perturbation 
(Hirose et al., 2024) 

Particle Filtering (C. Xu et al., 2023) 

Gaussian Process (Valiente et al., 2024) 

Genetic Algorithm (J. Liu, Qi, et al., 2024) 

coalitional game, potential game, and Partially Observable Stochastic Game (POSG)) to 

effectively model complex interactions between agents (e.g., AVs and HDVs), while a 

significant portion also utilises model predictive control (MPC) to refine and smooth control 

outputs following decision-making. In the realm of social preferences, a variety of social 

psychological terms, such as courtesy, coordination tendency, and Social Value Orientation 

(SVO), are used to encapsulate concepts related to social preferences. The targeting research 

objectives and tasks typically fall into three primary categories: behaviour generation, trajectory 

prediction, as well as interactive decision-making and control. Further, multiple-agent 

modelling is incorporated in some studies to simulate complex, interactive driving 

environments involving multiple road participants, e.g., in (Da & Hua, 2023; Peng et al., 2021; 

Toghi et al., 2021a, 2021b, 2022; Xue et al., 2023). These observations align with insights from 

the keyword network visualisation in Figure 7-2 and are illustrated further in Figure 7-3. 
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Figure 7-3. The identified methods adopted in each study 

Note: A single paper may involve multiple methods (e.g., both Deep Learning and Reinforcement 

Learning), and may utilise multiple models within the same method category (e.g., both LSTM and CNN 

within the Deep Learning category). 
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Furthermore, while some interdisciplinary initiatives have been introduced, the majority of 

research continues to focus on combining approaches from computer science, physics, 

mathematics, transportation, and vehicular engineering. Although initial efforts to incorporate 

social psychology are emerging, they primarily centre around concepts like Social Value 

Orientation (SVO), coordination tendencies, and courtesy, which share common themes. The 

development of more advanced models grounded in social psychology and other relevant 

interdisciplinary fields is essential to deepen the understanding of human-AV interactions 

(Brown Et Al., 2023; Vinkhuyzen & Cefkin, 2016). Specifically, incorporating culturally 

sensitive social behaviours into AV decision-making to develop customised AVs for diverse 

cultural backgrounds remains a crucial area for further investigation (Dong et al., 2024). 

Table 7-4 groups the reviewed papers based on simulation, data-driven, and empirical field 

testing approaches. From Table 7-4 and Figure 7-3, it is revealed that more than half of the 

studies employed simulations to train, test, and verify their solutions. The commonly adopted 

simulation platforms and software tools include Highway-env (Leurent, 2018), SMARTS (M. 

Zhou et al., 2020), CARLA (Dosovitskiy et al., 2017), MetaDrive (Q. Li et al., 2023), PTV 

VISSIM, SUMO (Lopez et al., 2018), Universe simulator (D. Zhang, 2023), and Robot 

Operation System (ROS). Additionally, more than half of the studies incorporated empirical 

datasets collected from real-world environments to enhance model validation. Typical 

frequently used datasets include the Next Generation Simulation (NGSIM) dataset (U.S. 

Department of Transportation Federal Highway Administration, 2016), Waymo Open Motion 

dataset (Ettinger et al., 2021), INTERACTION dataset (Zhan et al., 2019), highD dataset 

(Krajewski et al., 2018), exiD dataset (Moers et al., 2022), inD dataset (Bock et al., 2020), 

rounD dataset (Krajewski et al., 2020), SinD dataset (Y. Xu et al., 2022), Argoverse Motion 

dataset (M. F. Chang et al., 2019), and Argoverse 2 Motion dataset (Wilson et al., 2023). 

Additional datasets, including the ETH (Pellegrini et al., 2009), UCY (Lerner et al., 2007), 

TrajNet++ (Kothari et al., 2022), PANDA (Xueyang Wang et al., 2020), Stanford Drone 

(Robicquet et al., 2016), and HuRoN (Hirose et al., 2024) datasets, are employed for scenarios 

and applications related to social robot navigation and human trajectory prediction. 

Furthermore, as clearly illustrated in Table 7-5 and Figure 7-4, regarding driving manoeuvres, 

the majority of studies focus on ones that require both longitudinal and lateral control. Various 

manoeuvres, e.g., driving through unsignalised intersections, performing unprotected left turns, 

lane changing, on-ramp merging, and overtaking, have been studied. The inherent complexity 

and dynamic nature of these scenarios, where both directional and speed-related aspects of 

control must be simultaneously managed, make them particularly well-suited for studying and 

examining social interactions between AVs and HDVs. Such scenarios provide robust 

“environments” for developing and validating socially compliant driving behaviours, as they 

compel AVs to navigate nuanced interactions, accommodate unpredictable human behaviours, 

convey their intentions, and adapt their decisions to align with various human social driving 

patterns. Interestingly, within the reviewed publications, only two studies specifically delve into 

manoeuvres involving only longitudinal control, i.e., car-following. This may stem from the 

fact that longitudinal manoeuvres are often already embedded within the broader, more complex 

scenarios mentioned above, thus, there is no need to specifically only target longitudinal 

manoeuvres. 

 

https://github.com/Farama-Foundation/HighwayEnv
https://github.com/huawei-noah/SMARTS
https://carla.org/
https://github.com/metadriverse/metadrive
https://www.ptvgroup.com/en/products/ptv-vissim
https://www.ptvgroup.com/en/products/ptv-vissim
https://sumo.dlr.de/docs/index.html
https://github.com/alibaba-damo-academy/universe
https://www.ros.org/
https://www.ros.org/
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Table 7-4. Grouping of reviewed papers based on simulation, data-driven, and empirical 

field testing approaches 

Methods 

Adopted 

Tools, Platforms, or 

Datasets 
Related Publications 

Simulation and 

simulator-related 

Highway-env 

(J. Liu, Zhou, et al., 2024; Toghi et al., 2021a, 2021b, 

2022; Tong et al., 2024; Valiente et al., 2024; L. Zhang 

et al., 2023) 

SMARTS  (Z. Huang, Wu, et al., 2023; Xiao Wang et al., 2024) 

CARLA 
(Bhatt et al., 2022; Lu et al., 2022; Pérez-Dattari et al., 

2022; Z. Zhu & Zhao, 2023) 

MetaDrive (Peng et al., 2021) 

Python-based 
(Crosato et al., 2021; Crosato, Shum, et al., 2023; Da 

& Hua, 2023; L. Liu et al., 2020; Z. Wang et al., 2021) 

Python-Matlab (Zhao et al., 2024) 

Matlab-Simulink 
(Hang et al., 2021; Hang, Huang, et al., 2022a; Hang, 

Lv, et al., 2022; Hang, Lv, Huang, Cai, et al., 2020) 

Prescan (Song et al., 2016) 

CarSim (Chen et al., 2024) 

Matlab/Simulink-

CarSim 
(Yan et al., 2022) 

Prescan-

MATLAB/Simulink-

CarSim 

(J. Wang et al., 2023) 

Robot Operation 

System (ROS) 
(Pérez-Dattari et al., 2022; Letian Wang et al., 2021) 

SUMO-ROS (Zong et al., 2023) 

PTV VISSIM (Larsson et al., 2021) 

Julia (Sun et al., 2018) 

MobileSim (Reddy et al., 2021) 

Universe Simulator (Xue et al., 2023) 

Fixed based Driving 

Simulator 
(Kolekar et al., 2020) 

Human-in-the-loop 

driver simulator 
(J. Liu, Qi, et al., 2024; C. Xu et al., 2023) 

Hardware-in-the-loop 

simulator 
(Hang, Huang, et al., 2022b) 

Self-built upon 

datasets 
(Lingguang Wang et al., 2023a) 

Not specified 

(Buckman et al., 2019; Ferrer & Sanfeliu, 2014; 

Landolfi & Dragan, 2018; Schwarting et al., 2019; Shu 

et al., 2023; Sun et al., 2019; Taghavifar & 

Mohammadzadeh, 2024; B. Wang et al., 2024; D. 

Zhou et al., 2022) 

 



178 Safe, Efficient, and Socially Compliant Automated Driving in Mixed Traffic 

 

Table 7-4. Continued 

Methods 

Adopted 

Tools, Platforms, or 

Datasets 
Related Publications 

Involving 

empirical data 

Next Generation 

Simulation (NGSIM) 

Dataset 

(Chen et al., 2024; Hang et al., 2021; M. Liu et al., 

2024; Nan et al., 2024; Schwarting et al., 2019; Sun et 

al., 2018; J. Wang et al., 2023; Zhao et al., 2024) 

Waymo Open Motion 

Dataset 
(W. J. Chang et al., 2023; Z. Huang, Liu, et al., 2023) 

INTERACTION 

Dataset 

(B. Huang & Sun, 2023; C. Li et al., 2022; Shu et al., 

2023; Tong et al., 2024; Letian Wang et al., 2021; 

Lingguang Wang et al., 2023b) 

highD Dataset (Lingguang Wang et al., 2023a; C. Xu et al., 2023) 

exiD Dataset (Lingguang Wang et al., 2023a) 

inD Dataset (Geng et al., 2023; Lingguang Wang et al., 2023b) 

rounD Dataset (Lingguang Wang et al., 2023b) 

SinD Dataset (J. Liu, Qi, et al., 2024) 

Argoverse Motion 

Dataset 
(Ding et al., 2022) 

Argoverse2 Motion 

Dataset 
(J. Liu, Qi, et al., 2024) 

Beijing Jianguomen 

Flyover Area Dataset 
(Z. Wang et al., 2021) 

Data collected by 

wheelchair testbed 
(Qin et al., 2021) 

Data collected over 60 

hours of driving from 

10 drivers at 6 

intersections 

(Z. Zhu & Zhao, 2023) 

Datasets 

related to 

social robot 

navigation/

human 

trajectory 

prediction 

PANDA  (Xueyang Wang et al., 2024) 

ETH 

(Alahi et al., 2016; Gupta et al., 2018; Kothari & 

Alahi, 2023; Sadeghian et al., 2019; Vemula et al., 

2018; Xueyang Wang et al., 2024) 

UCY 

(Alahi et al., 2016; Gupta et al., 2018; Kothari & 

Alahi, 2023; Sadeghian et al., 2019; Vemula et al., 

2018; Xueyang Wang et al., 2024) 

TrajNet

++ 
(Kothari et al., 2021; Kothari & Alahi, 2023) 

Stanford 

Drone 

Dataset 

(Sadeghian et al., 2019) 

HuRoN (Hirose et al., 2024) 

 

Involving controlled field test 

(Ding et al., 2022; Ferrer & Sanfeliu, 2014; Hirose et 

al., 2024; L. Liu et al., 2020; Oliveira et al., 2019; 

Reddy et al., 2021) 

Involving survey questionnaire (Galati et al., 2022) 

Involving user study (Landolfi & Dragan, 2018) 
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Table 7-5. Clustering of manoeuvres and applications identified in the reviewed papers 

Use Cases Related Publications 

Intersection 

Unsignalised 

intersection a 

(Buckman et al., 2019; Geng et al., 2023; Hang, Huang, et al., 2022a; 

J. Liu, Qi, et al., 2024; M. Liu et al., 2024; Peng et al., 2021; Song et 

al., 2016; Valiente et al., 2024; Xia et al., 2022; Z. Zhu & Zhao, 2023; 

Zong et al., 2023) 

Unprotected 

left turn a 

(Hang, Huang, et al., 2022b; Z. Huang, Wu, et al., 2023; J. Liu, Qi, 

et al., 2024; J. Liu, Zhou, et al., 2024; Schwarting et al., 2019; Shu et 

al., 2023; Xiao Wang et al., 2024; D. Zhou et al., 2022; Zong et al., 

2023) 

Roundabout 
(Z. Huang, Wu, et al., 2023; C. Li et al., 2022; Peng et al., 2021; 

Valiente et al., 2024; Letian Wang et al., 2021; L. Zhang et al., 2023) 

T-junction (Oliveira et al., 2019; Pérez-Dattari et al., 2022; Tong et al., 2024) 

Lane 

change 

Highway 

driving 

(Hang, Lv, Huang, Cai, et al., 2020; Larsson et al., 2021; Lingguang 

Wang et al., 2023a; C. Xu et al., 2023; Zhao et al., 2024) 

Urban driving (W. J. Chang et al., 2023; Z. Wang et al., 2021) 

Two-lane road 

with large 

curvature 

(Yan et al., 2022) 

Not specific (Chen et al., 2024) 

Merge 

On-ramp 

merging 

On-ramp merging: (Hang et al., 2021; Hang, Lv, et al., 2022; M. Liu 

et al., 2024; Nan et al., 2024; Schwarting et al., 2019; Toghi et al., 

2021b, 2021a, 2022; Valiente et al., 2024; Lingguang Wang et al., 

2023a; Xue et al., 2023) 

Intersection 

merging 
(Xiao Wang et al., 2024) 

Overtaking 

Urban driving (Lu et al., 2022; Zong et al., 2023) 

Highway 

driving 

(Hang et al., 2021; Hang, Lv, Huang, Cai, et al., 2020; Zhao et al., 

2024) 

Not specific (Xiao Wang et al., 2024) 

Highway exit 
(Landolfi & Dragan, 2018; Toghi et al., 2022; Valiente et al., 2024; 

Lingguang Wang et al., 2023a) 

Interact with pedestrian/ 

Pedestrian collision 

avoidance 

(Bhatt et al., 2022; Crosato et al., 2021; Crosato, Shum, et al., 2023; 

Pérez-Dattari et al., 2022; Sun et al., 2019; Taghavifar & 

Mohammadzadeh, 2024) 

Road cruising (Xiao Wang et al., 2024) 

Platoon (B. Wang et al., 2024) 

Bottleneck (Peng et al., 2021; Xue et al., 2023) 

Tollgate (Peng et al., 2021) 

Parking lot (Peng et al., 2021) 

Nudging parked cars on 

urban streets 
(Bhatt et al., 2022) 

Social occlusion inference (B. Huang & Sun, 2023) 

Oncoming traffic (Kolekar et al., 2020; M. Liu et al., 2024) 

Reacts to stalled car (Landolfi & Dragan, 2018) 

Reacts to speeding (Landolfi & Dragan, 2018) 

Reacts to ambulance (Landolfi & Dragan, 2018) 

Car-following (Kolekar et al., 2020; Larsson et al., 2021) 

a Unsignalised intersection: Here “unsignalised intersection” may include “unprotected left turn” or can 

be other scenarios (e.g., right-turning and going straight at unsignalised intersections), while the row of 

“unprotected left turn” is specifically about unprotected left turning through unsignalised intersections. 
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Table 7-5. Continued 

Use Cases Related Publications 

Social robot navigating 
(Da & Hua, 2023; Ferrer & Sanfeliu, 2014; Galati et al., 2022; Hirose 

et al., 2024; L. Liu et al., 2020; Reddy et al., 2021) 

Human trajectory forecasting 

(Alahi et al., 2016; Gupta et al., 2018; Kothari et al., 2021; Kothari 

& Alahi, 2023; Sadeghian et al., 2019; Vemula et al., 2018; Xueyang 

Wang et al., 2024) 

Social reactions, feedbacks, 

and trust in AVs 

(Joo & Kim, 2023; Oliveira et al., 2019; Othman, 2021; Schneble & 

Shaw, 2021) 

 

From Table 7-5 and Figure 7-4, it is also important to note that some studies focus primarily 

on social robot navigation and human trajectory forecasting for related applications, with 12 

studies included in the review. While AVs can be considered a type of robot, and the insights 

from social robot navigation research could be beneficial for developing socially compliant 

driving, there are notable differences between human/pedestrian-robot interactions and the 

interactions between HDVs and AVs. These differences stem from the distinct speeds, 

operational environments, and interaction dynamics between the two scenarios. Social robot 

navigation often occurs at lower speeds and in more controlled environments, which facilitates 

the use of field test experiments to observe and refine socially aware behaviours. Insights gained 

from such experiments could serve as a foundation for adaptation to the more complex and 

high-speed interactions involved in AV driving. This study highlights some typical works 

related to pedestrian trajectory prediction and social robots navigating around humans, but does 

not aim to provide a comprehensive review of these domains. For further information, readers 

are encouraged to refer to (Singamaneni et al., 2024). 

Lastly, some papers delve into the public’s social perception, acceptance, and trust of AV 

technology, e.g., (Joo & Kim, 2023; Oliveira et al., 2019; Othman, 2021; Schneble & Shaw, 

2021), recognising these aspects as critical for the broader adoption and integration of AVs into 

society. In particular, Joo and Kim (2023) conducted an online study to explore the influence 

of perceived collision algorithm types, i.e., selfish (prioritising passenger safety) versus 

utilitarian (minimising total damage by saving more lives, regardless of passenger status), and 

role of social approval of these algorithms on individuals’ attitudes toward AVs. The study 

revealed a striking mismatch between societal and individual preferences. Participants rated 

utilitarian algorithms as more ethical and beneficial to society, aligning with broader social 

values. However, they expressed greater trust in, and a stronger personal preference for, selfish 

algorithms. Respondents were more willing to use and even pay a premium for AVs equipped 

with selfish algorithms, highlighting a significant divergence between ethical ideals and 

personal safety priorities. This discrepancy underscores the complexity of fostering public trust 

and acceptance of AV technology and suggests that designing and deploying SCAVs to balance 

societal ethics with individual user preferences is a crucial challenge for manufacturers and 

policymakers. 
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Figure 7-4. The identified involved manoeuvres in each study 

Note: A single paper may involve multiple manoeuvres, thus the total number of manoeuvres can exceed 

the total number of reviewed papers (68). 
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7.3 Conceptual framework design 

7.3.1 Expert interview 

Building on the findings from the summarised literature review, an informal interview was 

conducted with ten experts representing diverse scientific and consultancy positions across 

research institutes, consulting firms, original equipment manufacturer (OEM) companies, and 

government sectors. The purpose of the interview was to gather expert perspectives through 

open-ended discussions on the current limitations of AVs, to further identify existing research 

gaps, and to understand their expectations for the development of SCAVs.  

To facilitate insightful and meaningful discussions, the preliminary findings from the literature 

review were shared with the experts prior to the discussion. This ensured that the conversations 

were well-informed. The discussions were open-ended, allowing participants to elaborate on 

their views on the current limitations of AVs and provide in-depth observations on the 

challenges and opportunities in this field. The questions discussed include: 

• Do you have confidence in automated vehicles, particularly in mixed-traffic conditions? 

• What are the current limitations and critical pain points of automated vehicles? 

• Which scenarios do you perceive as particularly challenging for automated vehicles, 

and what scenarios, manoeuvres, or use cases would you like automated vehicles to 

address soon? 

• What are your expectations for the short-term and long-term development of 

automated vehicles? 

• What key efforts are necessary to drive the development and public acceptance of 

automated vehicles? 

Key insights derived from these expert interviews are summarised as follows: 

Regarding the current practice and limitations of SCAVs, several critical shortcomings in the 

current generation of AVs were identified: 

• Excessive Conservatism: Most current AVs often adopt overly defensive driving 

strategies, which may significantly compromise traffic efficiency. 

• Inability to Interpret Implicit Communications: Most current AVs struggle to decode 

subtle signals to understand the implicit “communications” from human drivers, such as 

waving hands or a deceleration that implies yielding right of way. 

• Challenges in Adapting to Various Driving Styles: Most current AVs are unable to 

effectively adapt to the various driving styles, especially aggressive or assertive driving 

behaviours exhibited by surrounding HDVs. 

• Limited Scenario Anticipation: Unlike human drivers, current AVs lack robust 

capabilities to foresee, anticipate, and prepare for dynamic future scenarios. 

• Cultural and Normative Inflexibility: Current AVs are not yet designed to adapt their 

driving behaviours and styles to account for varying norms and driving cultures across 

different countries.  

Regarding the research gaps and expectations, together with the literature review findings, the 

highlighted critical gaps and outlined priorities for advancing SCAVs are as follows: 

• Integration of Sensing, Planning and Control: Few studies connect AVs’ sensing 
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capabilities, particularly considering sensor inaccuracies, to trajectory planning and 

control. Given the importance of this in real-world deployment, it warrants more in-depth 

exploration.  

• Cultural and Normative Adaptation: As limited research and development have 

incorporated cultural differences, driving norms, and implicit cues into automated driving 

models, this area deserves more attention. 

• Development of AV Communication Pipelines: There is a pressing need for AVs to 

express their intentions to other road users using, e.g., external human-machine interfaces 

(eHMI) such as colour-changing surfaces, signal lights, or LED panels on AVs. 

• AV-Human Mutual Behavioural Adaptation: The long-term and short-term adaptation 

of human drivers’ behaviour when interacting with AVs and the corresponding 

adjustments AVs should make in response to those adaptations are seldom accounted for 

in the current development of AV driving models. 

• Network-wide and Societal Benefits: Few studies have considered the broader 

implications for overall network efficiency and societal benefits (e.g., total emissions 

across road networks) when deploying different AV driving strategies, styles, and 

behaviours. 

• Interdisciplinary efforts: Most research combines approaches from computer science, 

physics, mathematics, and engineering. Emerging efforts involving social psychology 

focus on adding concepts like SVO, coordination tendencies, and courtesy. More 

advanced frameworks incorporating social psychology and other interdisciplinary fields 

are needed to deepen the understanding of human-AV interactions.  

These insights were the basis for the conceptual framework in the following Section 7.3.2 to 

guide future research and development efforts in this area. 

7.3.2 Proposed conceptual framework 

Incorporating insights from the scoping review and addressing the identified gaps and research 

expectations from both the literature review and the expert interview, a conceptual framework, 

as illustrated in Figure 7-5, is proposed to guide future research and development on SCAVs. 

Overall, this framework follows and adheres to the standard modular design for developing AVs, 

which includes sensing and perception modules, decision-making modules, planning modules, 

and control action modules. The differences and added values of the proposed conceptual 

framework are as follows: 

a) Socially Compliant Decision-Making Module: The traditional decision-making module 

is enhanced and transformed into the proposed socially compliant decision-making module. 

This modification integrates social components (including culture, norms, and cues), which 

may influence implicit interactions, and consideration for various driving styles (e.g., 

aggressive, cautious, pro-social). The integration and embedding of these elements will 

help to address the aforementioned limitations of Cultural and Normative Inflexibility and 

Challenges in Adapting to Various Driving Styles. Furthermore, the module incorporates 

mechanisms for bidirectional behavioural adaptation, enabling AVs to respond to human 

drivers' behavioural cues and adjust their responses accordingly, which will be illustrated 

later.  
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Figure 7-5. The proposed conceptual framework for developing SCAV 

 

b) Safety Constraint Module: This module continuously monitors and enforces safety 

constraints to ensure that AVs operate within predefined safety boundaries. Although the 

socially compliant decision-making module should already incorporate safety metrics, the 

dedicated safety constraint module serves as a critical safeguard, ensuring that all actions 

taken by the AV are within the safety limits, thereby preventing undesirable outcomes. The 

planning module in this framework encompasses both high-level path planning and 

behaviour planning (e.g., lane changes, merging) as well as low-level motion planning (e.g., 

longitudinal and angular velocity, acceleration), all of which must adhere to the safety 

constraints outlined by this module. 
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c) Trade-off between Ego and Network-Level Benefits: A fundamental challenge (which 

is currently missing) in AV development is balancing the individual benefits of the ego 

vehicle (such as safety, comfort, and efficiency) with the broader benefits to the road 

network and other road users. The proposed framework emphasises the necessity of 

managing this trade-off (as shown in the Utility components within Figure 7-5), 

acknowledging that optimal performance for individual vehicles should not come at the 

expense of the overall network efficiency or societal benefits. It is suggested that this trade-

off should be managed dynamically, on a case-by-case basis, to ensure a balanced approach 

that maximises both individual and collective outcomes (i.e., a more holistic, systems-level 

perspective). This requires close collaboration between AV developers, road operators, and 

regulatory authorities to align objectives and responsibilities. By managing the trade-off 

adaptively, this module will help meet the aforementioned expectation regarding Network-

wide and Societal Benefits. 

d) Bidirectional Behavioural Adaptation Module: A key novel contribution of the proposed 

framework is the introduction of a bidirectional behavioural adaptation module. This 

module addresses the phenomenon where human drivers adapt their behaviour in response 

to the presence and actions of AVs in mixed traffic. For instance, drivers may exploit the 

defensive behaviour of AVs by engaging in more aggressive driving when interacting with 

them. To mitigate this, the AVs must adapt their behaviours in return, effectively 

responding to changes in human driving patterns and fostering a more balanced and 

cooperative interaction. The module is designed to facilitate a dynamic, iterative process 

of mutual adaptation, wherein both AVs and human drivers adjust their actions to optimise 

safety, traffic flow, and overall road network efficiency in mixed-traffic conditions. For 

successful real-world deployment, it is essential that the bidirectional behavioural 

adaptation module undergoes continuous updates, both in the short term and long term, to 

account for evolving traffic conditions and varied human driving behaviours. This ensures 

that the module remains responsive to a wide array of scenarios, thereby supporting the 

integration of AVs into diverse traffic contexts. This module will help to alleviate the 

aforementioned limitations of Excessive Conservatism and Challenges in Adapting to 

Various Driving Styles and help to meet the expectations of AV-Human Mutual 

Behavioural Adaptation. 

e) Spatial-Temporal Memory Module: The spatial-temporal memory module is designed to 

facilitate the long- and short-term updating of knowledge and driving rules, as well as to 

enhance the awareness of ongoing behavioural adaptations. This module enables AVs to 

incorporate historical interaction data and adapt their decision-making strategies over time. 

By maintaining a dynamic memory of past interactions, AVs can continuously refine their 

understanding of human-AV dynamics, ensuring that driving strategies incorporate lessons 

learned from prior experiences. This module is essential for the effective integration and 

implementation of bidirectional behavioural adaptation within the broader AV decision-

making framework. 

 

Explanations regarding the other remaining limitations, gaps, and expectations that are 

presented in Section 7.3.1: 

The Limited Scenario Anticipation will be tackled by the Sensing and Perception Module as 

well as the Communication and Connectivity Module, which forms the backbone of the 

framework’s ability to predict and respond to dynamic traffic scenarios. As illustrated by the 
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dashed arrows in Figure 7-5, the Socially Compliant Decision-Making Module depends on 

seamless integration with advanced sensing and communication systems. Sensing technologies, 

including cameras, LiDAR, and radar, deliver real-time data on the positions, velocities, and 

behavioural cues (e.g., accelerating, decelerating, and braking patterns) of surrounding road 

users. This data enables the Socially Compliant Decision-Making Module to interpret social 

norms, anticipate interactions, as well as estimate and adapt to diverse driving styles. 

Complementing this, communication and connectivity systems such as vehicle-to-vehicle 

(V2V), vehicle-to-infrastructure (V2I), vehicle-to-everything (V2X), and eHMI provide critical 

supplementary inputs, such as the signalled intentions or planned trajectories of other vehicles. 

Together, these systems enhance the AV’s situational awareness, ensuring that social decisions 

are informed by a comprehensive understanding of the traffic environment, thereby mitigating 

Limited Scenario Anticipation and grounding the framework in operational reality. 

The Inability to Interpret Implicit Communications can be alleviated through the proposed 

eHMI which connects the Sensing and Perception Module to the element of Implicit 

Interactions within the Socially Compliant Decision-Making Module (shown in blue text and 

dashed arrows in Figure 7-5). The eHMI allows AVs to convey their intentions (such as yielding 

or lane-changing) more effectively to other road users, facilitating mutual understanding and 

smoother interactions in mixed-traffic settings. This will also help meet expectations regarding 

the Development of AV Communication Pipelines, fostering improved communication 

between AVs and surrounding HDVs, pedestrians, and cyclists. 

Additionally, the Integration of Sensing, Planning, and Control relies on an advanced, robust 

sensing and perception module capable of managing uncertainties and sensing failures. While 

such a module is integral to the framework’s success, developing cutting-edge sensing and 

perception techniques exceeds the scope of this study and remains a broader research challenge 

itself, warranting further exploration. 

Lastly, while vehicle connectivity, including V2V, V2I, and V2X communication with 

pedestrians, cyclists, and other road vehicles, plays a vital role in addressing several limitations 

and gaps, it is important to clarify that these aspects lie beyond the scope of this study. 

Connectivity is recognised as a crucial element in the broader ecosystem of autonomous driving, 

meriting its own dedicated line of research. Limited by space, this study could not delve deeply 

into that area. 

7.4 Online questionnaire survey 

To evaluate and verify the proposed framework for developing SCAVs, an online questionnaire-

based survey was conducted. The survey was disseminated via targeted email distribution lists, 

including those of relevant expert groups such as the Universities’ Transport Study Group 

(UTSG) and the TRAIL Research School. Additionally, the survey was actively promoted 

during key academic conferences, including the IEEE Intelligent Transportation Systems 

Conference (ITSC) and the IEEE Intelligent Vehicles Symposium (IV). The participants were 

asked to answer a sequence of questions, including multiple-choice questions, rank-order scale 

questions, rating scale questions, and open-ended questions. The questions are presented in 

seven subsections. The online survey takes approximately 15 minutes to fill out. The survey 

can be accessed at https://lnkd.in/evg6Dn9W. To promote experts’ and professionals’ 

participation in the survey, it was mentioned that every successful and qualified response would 

https://utsg.net/
https://utsg.net/
https://www.tudelft.nl/en/rstrail
https://ieee-itss.org/conf/itsc/
https://ieee-itss.org/conf/itsc/
https://ieee-itss.org/conf/iv/
https://lnkd.in/evg6Dn9W
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result in a 5-euro donation to the United Nations Road Safety Fund 

(https://roadsafetyfund.un.org/). The survey questionnaire is provided in full for reference in 

Supplementary Attachment 2 at: https://lnkd.in/gpceU6gQ. 

7.4.1 Respondents profile 

A total of 99 responses were collected from experts across various nations and continents. 9 

responses were excluded from the analysis due to contradictions in the answers or because the 

respondents self-identified as lacking confidence in their responses. Thus, 90 responses from 

experts were included in the final analysis. These experts represent a diverse range of roles in 

professional services, including researchers from universities, research institutes, and industry 

companies; developers from original equipment manufacturers (OEMs); policymakers; 

consultants; technicians; and professional drivers. 

Figure 7-6 illustrates the distribution of respondents’ profiles. The remaining 90 respondents 

were from 29 countries and across 6 continents. The majority of the respondents were from 

Europe and China, reflecting substantial representation in this study. Notably, only one 

respondent originates from the United States, a leading hub for AV technology development 

and deployment, resulting in its inclusion within the category of “Other” in Figure 7-6 (a). 

Despite this limited presence of the United States, China’s significant participation aligns with 

its own prominence in AV innovation and deployment, enriching the study with valuable 

insights from a key market. 

All 90 respondents claimed to be familiar with the concept and technology of automated 

vehicles, and more than half (54 out of the 90) of them are working in a field directly related to 

automated vehicles. Among them, 35 respondents are involved in developing AVs, 8 are 

engaged in testing automated driving functions, with 3 of them being qualified safety/test 

drivers, and 1 is researching human factors related to AVs. 

In terms of professional roles, 49 respondents are researchers, 18 are consultants, 7 are 

policymakers, and 2 are developers or technicians at OEMs. Notably, one respondent claimed 

to be an associate editor for a relevant journal, one claimed to be responsible for the 

implementation of vehicle regulations by public authorities, and another one worked on the 

national strategy for the deployment of AVs. Furthermore, 86 out of the 90 respondents hold a 

driving license, with 6 claiming to have a professional driving qualification. These findings 

underscore the diverse expertise and perspectives that the respondents bring to the survey, 

enhancing the credibility of the survey results. 

7.4.2 Benefits of SCAVs and willingness to purchase or use 

Regarding the benefits of SCAVs, participants were asked to rate to what extent they think 

SCAVs will influence overall traffic safety and efficiency. The rating is based on a 7-point 

Likert scale with “-3” meaning strongly worsen; “0” standing for neutral/no influence; and “3” 

indicating strongly improve. As demonstrated in Figure 7-7, the majority of respondents 

believe that SCAVs contribute positively to both overall traffic safety and efficiency. The 

average rating for the potential improvement in safety is 1.04, while the average rating for 

efficiency is 0.54. These figures indicate that, on average, respondents perceive SCAVs as 

https://roadsafetyfund.un.org/
https://lnkd.in/gpceU6gQ
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having a greater potential to enhance safety than to improve efficiency, but both are seen as 

contributing positively. 

 

(a) 

 

(b) 

Figure 7-6. The distribution of respondents’ profiles: (a) residence countries, (b) 

familiarity with AV 

Note: The “Other” category in (a) encompasses respondents from 17 countries (out of 29 total) not 

individually listed, including the United States, Canada, Australia, Italy, and India, among others 

beyond the 12 explicitly named nations (Netherlands, China, Norway, United Kingdom, Israel, France, 

Iran, Sweden, Greece, Germany, Belgium, Spain). Notably, the United States, a key AV technology hub, 

is grouped under “Other” due to its minimal representation (only one respondent post-preprocessing), 

insufficient for a distinct category. 
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Figure 7-7. The rating distribution on to what extent the participants think SCAVs will 

influence overall traffic safety (light blue) and efficiency (orange) 

 

Correspondingly, participants were asked about their willingness to purchase SCAVs when 

considering a vehicle purchase or their willingness to use them for on-demand mobility services 

during their travels. The majority responded positively, as shown in Figure 7-8 and Figure 7-

9. Specifically, 72 respondents indicated that they would like to buy an SCAV, while only 8 

stated that they would never consider purchasing one, even if such AVs were cheaper. 

 

Figure 7-8. The distribution of willingness to buy one SCAV 

Note: The “Other” category includes special responses beyond predefined options, e.g., preferences for 

cycling, walking, or public transit, explicitly rejecting car ownership. 
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Figure 7-9. The distribution of willingness to use SCAVs for trips 

Note: The “Other” category covers special responses outside listed options, e.g., bus travel, cycling, or 

car-sharing instead of car use. 

 

Furthermore, acknowledging the suitability of SCAVs for shared on-demand travel services, 77 

respondents expressed a willingness to use them for trips, while only 4 indicated that they would 

not use SCAVs, even if they were more affordable.  

Notably, some participants emphasised that they prioritise functionality and performance over 

price, expressing a preference for public transport options that meet their specific needs; thus, 

they were categorised in the group of “Other”. 

7.4.3 Development of SCAVs 

(1) Rating and ranking of the identified key technical capabilities 

In the context of developing SCAVs, experts’ opinions on the importance of various technical 

aspects required for AVs to exhibit socially compliant behaviours were assessed. Corresponding 

to the developed conceptual framework (Figure 7-5), respondents were asked to rate 9 key 

technical capabilities on a scale from 1 to 7, where 1 represented “Least Needed” and 7 

represented “Strongly Needed.” The evaluated technical aspects were: 

• Anticipation Capability: The ability to anticipate the intended actions of other road users; 

• eHMI Communication Capability: The ability to convey intended actions effectively 

through eHMI; 

• Social and Cultural Alignment: The ability to adapt to different local cultures, social 

norms, and cues; 

• User Acceptance: The ability to take consideration of acceptance levels among drivers, 

passengers, and nearby road users; 

• Driving Style Adaptation: The ability to adjust to varying driving styles of surrounding 

human drivers, such as aggressive or defensive, and pro-social or egoistic; 

• Bi-directional Behavioural Adaptation: The ability to enable mutual adaptation between 

AVs and human drivers over time; 

• Multi-objective Optimisation: The ability to balance multiple goals such as safety, 

efficiency, energy consumption, and environmental impact; 
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• Trade-off Management: The ability to maintain trade-offs between the AV’s benefits and 

those of surrounding traffic participants, between the ego AV’s benefits and benefits at 

the network (regional) level; 

• Spatial-temporal Memory Buffer Integration: Incorporating spatial-temporal memory 

buffers (short, medium, and long-term) to continually refine driving strategies. 

As shown in Figure 7-10, respondents rated the extent to which they believe these properties 

should be integrated into SCAVs. All 9 key technical capabilities were rated as significant, with 

average ratings exceeding 4.8, which supports and verifies the elements proposed in the 

conceptual framework (Figure 7-5). Their ratings did not vary too much, with Anticipation 

Capability receiving the highest average rating (6.29), followed by the capabilities of Multi-

objective Optimisation (5.76) and Trade-off Management (5.61).  

As demonstrated in Figure 7-11, respondents were also asked to rank the top 3 most important 

aspects among 6 selected capabilities in the medium-term development (coming 1-3 years), 

supposing there are limited resources for developing SCAVs. The ranking results indicated that 

Anticipation Capability ranked first, followed by Multi-objective Optimisation, which is 

consistent with the results shown in Figure 7-10. 

Furthermore, as illustrated in Figure 7-12, respondents were asked to rank the top 2 most 

important aspects among 4 selected capabilities for long-term development (in the coming 5-

10 years or longer), again assuming limited resources for developing SCAVs. The results 

revealed that Bi-directional Behavioural Adaptation ranked first, followed by Spatial-

temporal Memory Buffer Integration, which is reasonable and aligns well with the proposed 

conceptual framework in Figure 7-5. 

These ratings and rankings yield critical insights into which technical features are deemed 

essential and urgent for enabling AVs to navigate complex social interactions effectively. Such 

data-driven insights will be invaluable in guiding the prioritisation and future technical 

development of SCAVs. 

(2) Rating the possibility of mathematically modelling the identified key technical capabilities 

Regarding the implementation of the identified key technical capabilities, the respondents were 

asked to rate the possibility and feasibility of mathematically modelling the six identified key 

technical capabilities of Social and Cultural Alignment, Driving Style Adaptation, Bi-

directional Behavioural Adaptation, Multi-objective Optimisation, Trade-off Management, and 

Spatial-temporal Memory Buffer Integration. Ratings were provided on a scale from 1 to 7, 

where 1 represented “Not Possible” and 7 represented “Highly Possible”. The results are 

depicted in Figure 7-13.  

All the examined 6 key technical capabilities were found to be feasible for mathematical 

modelling. Multi-objective Optimisation was rated and deemed as the most feasible, followed 

by Trade-off Management, which is expected, given that both of them could be modelled as 

typical optimisation problems. In contrast, Social and Cultural Alignment was identified as the 

most challenging and least feasible for mathematical modelling, followed by Bi-directional 

Behavioural Adaptation and Spatial-temporal Memory Buffer Integration, which is also 

reasonable. This aligns with earlier recommendations for interdisciplinary cooperation, 

particularly drawing on knowledge and insights from social psychological domains alongside 

advancements in computer science. 
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(a) 

 

(b) 

Figure 7-10. Ratings on 9 key technical capabilities regarding their importance for 

developing SCAVs: (a) detailed rating distributions for each capability, (b) boxplot of the 

rating scales for each capability 

 

Figure 7-11. Ranking results for 6 selected technical capabilities regarding their priorities 

for developing SCAVs in the medium term 
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Figure 7-12. Ranking results for 4 selected technical capabilities regarding their priorities 

for developing SCAVs in the long term 

 
(a) 

 
(b) 

Figure 7-13. Ratings on the feasibility of mathematically modelling the 6 identified key 

technical capabilities for developing SCAVs: (a) detailed rating distributions for each 

selected capability, (b) boxplot of the rating scales for each capability 
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(3) Suggestions from the respondents 

Respondents were invited to share suggestions and insights through open-ended questions such 

as “What else would you expect for the Socially Compliant Automated Vehicles?” and “Do you 

have any further comments for better development of Socially Compliant Automated Vehicles?” 

A range of thoughtful responses was collected, which, after in-depth analysis, have been 

summarised, further upgraded, and polished as follows: 

The development of SCAVs must prioritise safety and trust as core principles. Safety should 

remain paramount across all stages of development, and building trust between humans and 

SCAVs requires transparency, effective trust modelling, and clear communication of the 

vehicle's decision-making processes and intentions to its users and other road participants. 

Respondents emphasised the need for ML models to be trained using curated, unbiased datasets 

that reflect socially responsible driving behaviours rather than exceptional cases like those of 

professional drivers (e.g., F1 pilots). Additionally, initial deployment should focus on less 

complex environments, such as highways and provincial roads, before progressing to urban 

settings, where social compliance becomes more intricate and essential. 

Infrastructure upgrades are also vital to support the successful deployment of SCAVs. This 

includes the development of dedicated AV lanes, vehicle-to-everything (V2X) communication 

networks, and robust systems with reliable backup mechanisms to prevent failures in smart 

traffic management systems. Respondents also highlighted the importance of balanced policy 

frameworks that encourage shared mobility solutions, such as controlled fleets of robotaxis, 

over private ownership of AVs. Collaboration among OEMs, regulators, and other stakeholders 

is deemed critical for fostering open communication, pooling knowledge, and advancing 

technical priorities strategically. 

An interdisciplinary and culturally sensitive approach is required to reflect the diversity of 

societal needs in SCAV behaviours. Human factors must be central to design, ensuring that AVs 

can adapt to the social norms and behaviours of both drivers and other road users, such as 

cyclists and pedestrians, who are often overlooked. SCAVs should strike a balance between 

idealised performance and relatable, realistic behaviours that align with the imperfect nature of 

human driving. 

Ultimately, the success of SCAVs hinges on the careful prioritisation of technical and social 

efforts, given the significant time and resources required for development. Transparent AI 

systems, robust infrastructure, and a focus on public acceptance and trustworthiness will be 

pivotal in ensuring SCAVs’ seamless integration into society. These vehicles must not only 

navigate the immediate social and cultural contexts of their operation but also anticipate the 

long-term challenges of mixed-traffic environments and future scenarios dominated by 

automation. With thoughtful design and strategic planning, SCAVs can deliver safe, reliable, 

and socially aligned mobility solutions that meet the evolving needs of diverse communities. 

Furthermore, as the deployment of AVs becomes increasingly widespread, a growing body of 

empirical evidence on real-world AV behaviour is emerging. This provides a valuable 

opportunity to investigate not only how AVs interact with human-driven vehicles but also how 

they respond to each other. Understanding interactions both within the same brand and between 

different brands of AVs is an area that remains underexplored but is critical for fostering 

interoperability, social compliance, and collaborative traffic systems. Such studies could reveal 
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how variations in algorithms, decision-making priorities, and communication protocols 

influence the dynamics of AV interactions. By fostering cross-brand standardisation and 

promoting cooperative driving behaviours among AVs, the industry can take a significant step 

toward realising the vision of a harmonised, intelligent transportation system that benefits all 

road users. Expanding research in this direction would further support the development of 

SCAVs that are not only socially compliant but also capable of thriving in increasingly complex 

and automated traffic environments. 

7.5 Conclusion, limitation, and future research 

This study represents the first comprehensive scoping review of the current state of the art in 

the development of socially compliant automated vehicles (SCAVs), systematically identifying 

key concepts, methodological approaches, and research gaps in the field. Through a rigorous 

review of existing literature and expert interviews, this study has elucidated critical pain points 

and research gaps while outlining vital research expectations essential for advancing SCAV 

development. Building on these insights, this study proposed a novel conceptual framework 

designed to address the multifaceted and interdisciplinary challenges of SCAVs in mixed-traffic 

environments. The framework outlines the key capability elements necessary for SCAVs and 

incorporates crucial considerations across technical, social, and cultural dimensions, effectively 

bridging theoretical insights with practical applications to achieve socially compliant 

automation. 

To validate the conceptual framework, an online questionnaire-based survey was conducted, 

confirming the relevance of the framework’s key elements and technical capabilities. Among 

these, Anticipation Capability emerged as the most significant and urgent requirement for 

medium-term implementation (1-3 years), reflecting its importance in enabling SCAVs to 

predict and adapt to dynamic road scenarios, especially regarding the interaction with HDVs. 

For long-term development (5-10 years or more), Bi-directional Behavioural Adaptation—the 

ability to dynamically and mutually interact with and learn from other road users—and Spatial-

Temporal Memory Buffer Integration were identified as the most critical priorities. These 

findings offer actionable insights for research and development (R&D) in both academia and 

industry, serving as a strategic roadmap for integrating social compliance into automated 

driving systems. They highlight research priorities and guide the creation of SCAVs that align 

with societal expectations. For researchers, the proposed conceptual framework identifies focus 

areas and key elements to be studied. For the industry, it provides actionable insights into 

developing and embedding social compliance in AV systems, enabling scalable and context-

sensitive deployment. The developed framework can also foster collaboration among academia, 

industry, and policymakers, ensuring technical innovation aligns with societal needs and 

regulatory standards, accelerating the path toward SCAV and further towards safe and socially 

inclusive automated mobility solutions. 

By providing a structured and interdisciplinary approach, this study contributes to the 

foundation of socially aware and ethically aligned AV technologies, laying the groundwork for 

safe, reliable, and socially compliant automated mobility solutions. 

Despite its meaningful contributions, this study has several limitations that provide 

opportunities for further research. First, in the scoping review, as aforementioned, the scoping 

review did not analyse or summarise in detail the experiments, model performance, and results 
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from the reviewed studies. Furthermore, the study did not thoroughly investigate scenarios 

involving multi-vehicle interactions, particularly among multiple AVs. As AV penetration rates 

increase, understanding these interactions will become critical. Future reviews could address 

these gaps to provide a more comprehensive assessment of current research in this field. 

Second, while the study emphasised the importance of anticipation capability, it did not 

extensively address its relationship with perception, particularly perception under uncertainty. 

This critical aspect, which includes managing ambiguous or incomplete information in real-

world scenarios, represents a highly complex research domain that warrants dedicated research 

attention. Developing robust perception systems that can handle uncertainties will significantly 

enhance SCAVs’ ability to navigate and interact socially in diverse and unpredictable 

environments. Similarly, connectivity, though recognised as an essential enabler, was not 

explored in depth. Future work could delve into the integration and benefits of vehicle-to-

everything (V2X) technologies to support seamless communication between AVs, 

infrastructure, and road users for SCAV development. 

Third, the study did not extensively examine interactions between AVs and vulnerable road 

users, such as cyclists and pedestrians. These interactions are crucial for ensuring SCAVs can 

operate safely and effectively in complex urban environments, where unpredictable behaviour 

from such road users often creates additional challenges. Addressing this limitation will not 

only enhance SCAVs’ ability to anticipate and respond to the movements of vulnerable road 

users but also foster greater public trust and acceptance of AV technologies. Such efforts will 

help make SCAVs more inclusive and adaptable to diverse road user types, ultimately 

contributing to safer and more equitable urban mobility systems. 

Additionally, while our framework is designed to be adaptable to mixed-traffic environments 

broadly, it does not explicitly investigate how social behaviours vary across specific settings 

such as urban, rural, and campus environments. Urban areas may require SCAVs to prioritise 

frequent, short-range interactions with diverse road users, whereas rural settings might involve 

adapting to less structured roads and unpredictable behaviours. Campus environments, with 

their mix of pedestrians, bicycles, and vehicles in confined spaces, could demand unique 

navigation strategies. Future research should explore these environmental differences to refine 

and validate our framework, tailoring social compliance strategies to context-specific 

challenges and enhancing the generalisability of SCAVs. 

Moreover, the geographic distribution of respondents in the online survey of this study is 

predominantly concentrated in Europe and China, with only one participant from the United 

States. This imbalanced representation may introduce potential cultural and contextual biases 

into the study’s findings. Social compliance in driving behaviours is influenced by regional 

norms, regulations, and infrastructure designs, meaning the current sample may not fully reflect 

global perspectives. Although China’s substantial participation aligns with its prominence in 

AV development and deployment, the near absence of respondents from the United States, 

another global leader in this domain, may underrepresent critical insights from a major AV 

market, thereby limiting the findings’ generalisability. This imbalance could particularly affect 

perceptions of social compliance expectations across diverse regional contexts. Future research 

should prioritise a more balanced sample, increasing representation from key AV markets like 

the United States to encompass diverse technological and cultural viewpoints. 
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Finally, this study does not address the broader systemic challenges of integrating SCAVs into 

existing infrastructure and ecosystems. Factors such as regulatory alignment, public acceptance, 

and economic feasibility remain critical to the successful deployment of SCAVs and must be 

explored further. In particular, balancing the needs of private and shared ownership models, 

addressing the environmental impact of SCAVs, and mitigating potential socioeconomic 

disparities should form part of future interdisciplinary research efforts. 

As for future research, a significant barrier to SCAV research is the scarcity of real-world field 

data, which restricts much of the current literature to simulation-based methodologies. Although 

simulations provide a controlled setting for modelling social compliance, they struggle to 

capture the full spectrum of human unpredictability. This shortfall limits the validation of SCAV 

frameworks in authentic mixed-traffic contexts, potentially leading to overestimated 

performance and overlooked vulnerabilities. Overcoming this requires prioritising empirical 

field data collection, potentially through partnerships with AV testing initiatives (e.g., industry-

led trials or regulatory pilot programs) or by harnessing data from controlled urban deployments. 

While such endeavours are resource-intensive, they are crucial for transitioning SCAV solutions 

from theoretical constructs to reliable, real-world applications, thereby significantly enhancing 

their practical robustness and relevance. 

In conclusion, while this study provides a valuable foundation for SCAV development, it 

highlights the complexity and interdisciplinary nature of the challenges ahead. By addressing 

the identified limitations and advancing research in these critical areas, future efforts can build 

on the insights and framework presented here to create SCAV systems that are not only 

technically advanced but also socially responsible and globally inclusive. 
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8 Evaluation on deep reinforcement learning for 

automated driving in various manoeuvres and 

implementation of safe, efficient, comfortable, and 

energy-saving driving through roundabouts 

Abstract 

Developing and testing automated driving models in the real world might be challenging and 

even dangerous, while simulation can help with this, especially for challenging manoeuvres. 

Deep reinforcement learning (DRL) has the potential to tackle complex decision-making and 

controlling tasks through learning and interacting with the environment, thus it is suitable for 

developing automated driving while not being explored in detail yet. This study first conducted 

a comprehensive evaluation and implementation of DRL algorithms across diverse driving 

scenarios. Using the highway-env simulation platform, Deep Q-Network (DQN) and Trust 

Region Policy Optimisation (TRPO) were implemented and compared. Customised reward 

functions were developed, and models were evaluated based on lane accuracy, speed efficiency, 

safety from collisions, and driving comfort. Results indicated that TRPO-based models with 

tailored reward functions achieved superior performance across most metrics. To extend the 

scope beyond specific driving manoeuvres, this study expanded highway-env by developing a 

customised training environment, ComplexRoads, which integrates diverse road scenarios and 

manoeuvres, enabling models to generalise effectively across tasks. 

Further exploration focused on the intricate challenges of driving through roundabouts, where 

state-space complexity and dynamic interactions complicate the driving modelling, planning 

and control. Here, three DRL algorithms, i.e., Deep Deterministic Policy Gradient (DDPG), 

Proximal Policy Optimisation (PPO), and TRPO, were implemented with reward functions 

prioritising safety, efficiency, comfort, and energy savings. Evaluation methods were refined 

using an Analytic Hierarchy Process (AHP) to weigh performance indicators. Experimental 
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results showed TRPO excelling in safety and efficiency while PPO optimised comfort for 

roundabout driving.  

This integrated study demonstrates the versatility of DRL in addressing diverse automated 

driving challenges, providing a robust foundation for deploying DRL-based models in real-

world traffic environments. 

 

This chapter is based on the edited version of the two published research papers: 

Dong, Y., Datema, T., Wassenaar, V., Van de Weg, J., Kopar, C. T., & Suleman, H. (2023). 

Comprehensive Training and Evaluation on Deep Reinforcement Learning for Automated 

Driving in Various Simulated Driving Maneuvers. In 2023 IEEE 26th International 

Conference on Intelligent Transportation Systems (ITSC) (pp. 6165-6170). IEEE. 

https://doi.org/10.1109/ITSC57777.2023.10422159  

Yuan, H., Li, P., Van Arem, B., Kang, L., Farah, H., & Dong, Y.* (2023). Safe, Efficient, Comfort, 

and Energy-saving Automated Driving through Roundabout Based on Deep Reinforcement 

Learning. In 2023 IEEE 26th International Conference on Intelligent Transportation Systems 

(ITSC) (pp. 6074-6079). IEEE. https://doi.org/10.1109/ITSC57777.2023.10422488  
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8.1 Introduction 

Artificial intelligence (AI) is making huge improvements in various fields, one of which is 

automated driving (Badue et al., 2021). One typical type of AI that is well-suitable for 

developing automated driving models is Deep Reinforcement Learning (DRL) (Rao & Frtunikj, 

2018). DRL makes use of the advantage of deep neural networks regarding feature extraction 

and the advantage of reinforcement learning regarding learning from interacting with the 

environment. DRL exhibits excellent performance in various decision-making tasks, e.g., GO 

(Silver et al., 2016) and playing video games (Shao et al., 2019), and it has been employed in 

various automated driving tasks (Khalil & Mouftah, 2023; Kiran et al., 2022; Zhu & Zhao, 

2022), e.g., lane-keeping, lane-changing, overtaking, ramp merging, and driving through 

intersections. 

For the lane-keeping task, El Sallab et al. (2017) and Sallab et al. (2016) developed DRL-based 

methods for delivering both discrete policies using Deep Q-Network (DQN) and continuous 

policies using Deep Deterministic Actor-Critic Algorithm (DDAC) to follow the lane and to 

maximise the average velocity when driving on the curved race track on Open Racing Car 

Simulator (TORCS). Similarly, for the lane-changing task, Wang et al. (2018) trained a DQN-

based model to perform decision-making of lane-keeping, lane changing to the left/right, and 

acceleration/deceleration, so that the trained agent can intelligently make a lane change under 

diverse and even unforeseen scenarios. Furthermore, Zhang et al. (2023) proposed a bi-level 

lane-change behaviour planning strategy using a DRL-based lane-change decision-making 

model and a negotiation-based right-of-way assignment model to deliver multi-agent lane-

change manoeuvres. For the overtaking task, Kaushik et al. (2018) adopted Deep Deterministic 

Policy Gradients (DDPG) to learn overtaking manoeuvres for an automated vehicle (AV) in the 

presence of multiple surrounding cars in a simulated highway scenario. They verified that their 

curriculum learning resembled approach can learn to perform smooth overtaking manoeuvres, 

largely collision-free, and independent of the track and number of cars in the scene. For the 

ramp merging task, Wang and Chan (2018) employed a Long-Short Term Memory (LSTM) 

neural network to model the interactive environment conveying internal states containing 

historical driving information to a DQN which then generated Q-values for action selection 

regarding on-ramp merging. Additionally, for negotiating and driving through intersections, 

Isele et al. (2018) explored the effectiveness of the DQN-based DRL method in handling the 

task of navigating through unsignaled intersections. Finally, Guo and Ma (2021) developed a 

real-time learning and control framework for signalised intersection management, which 

integrated both vehicle trajectory control and signal optimisation using DDPG-based DRL 

learning directly from the dynamic interactions between vehicles, traffic signal control and 

traffic environment in the mixed connected and automated vehicle (CAV) environment. 

It is observed that although many studies have utilised DRL for various driving tasks, most of 

them focus only on one specific driving manoeuvre. Seldom do they evaluate the DRL model 

performance across different manoeuvres and nor do they explore the adaptability of DRL 

models trained on one specific environment but tested in other various manoeuvres. This study 

first tries to fill this research gap by implementing, evaluating, and comprehensively comparing 

the performance of two DRLs, i.e., DQN and TRPO, in various driving scenarios. Customised 

effective reward functions were developed, and the implemented DRLs were evaluated in terms 

of various aspects, considering driving safety, efficiency, and comfort level. Then, this study 

typically customised and compared DDPG, PPO, and TRPO for the complex roundabout 
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driving scenarios and took energy savings into consideration. Results indicated that TRPO-

based models with tailored reward functions achieved superior performance across most 

metrics. 

To train a uniform driving model that can tackle various driving tasks, this study further 

constructed a new simulation environment, named “ComplexRoads” (shown in Figure 8-1), 

integrating various driving manoeuvres and multiple road scenarios. The ComplexRoads served 

to train a uniform driving model that can tackle various driving tasks. For verification, the 

models trained only on ComplexRoads were tested and evaluated in the specific driving 

manoeuvres. Intensive experimental results demonstrated the effectiveness of this customised 

training environment. 

To advance the learning capability for the developed DRL-based AI models, i.e. encouraging 

relational insight, besides designing ComplexRoads, several built-in functions of the highway-

env package were also upgraded. Notable modifications are summarised as follows: the 

tracking of the “current” lane with respect to the car (training agent) was upgraded to take into 

account the lane heading to eliminate confusing transitions when driving off-road. Furthermore, 

the distance between the car and its current lane was upgraded to a signed value to allow for 

orientation distinction. Similarly, the lane heading difference, LHD for short, was adjusted to 

also be a signed value. These improvements yield increased learning abilities for both on-road 

driving, returning to on-road driving when off-road, and a general sense of “awareness” given 

an arbitrary environment. 

 

Figure 8-1. Illustration for the layout of the ComplexRoads environment 

8.2 Methodology 

8.2.1 System architecture 

The general DRL learning cycle is an iterative learning process based on the agent’s 

performance in the environment influenced by the agent’s actions. In mathematical terms, 
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automated driving can be modelled as a Markov Decision Process (MDP) (Qiying Hu, 2007). 

MDP captures the features of sequential decision-making. The components of an MDP include 

environments, agents, actions, rewards, and states. In this study, the system framework, which 

illustrates the corresponding MDP, is depicted in Figure 8-2. The system generally consists of 

five main elements, i.e., environment, agent, action, state, and reward, which will be elaborated 

in detail in this section. 

 

Figure 8-2. Illustration for the system framework of the DRL MDP 

8.2.2 DRL MDP elements 

Environment: To simulate the MDP, this study adopted the highway-env platform (Leurent, 

2018), which is a Python-based package that offers a variety of driving environments. As a 

widely used platform, ample research has been conducted using the highway-env, such as 

(Alizadeh et al., 2019; Liu et al., 2022). In the highway-env, six dedicated driving scenarios are 

available, i.e., Highway, Merge, Roundabout, Intersection, Racetrack, and Parking. Users can 

also customise environments by specifying the number of lanes, the size of a given roundabout, 

and other parameters. In this study, all the driving scenarios, except for the Highway and 

Parking, are covered. For training and evaluating a uniform driving model, this study designed 

a new simulation environment, named “ComplexRoads” (shown in Figure 8-1). ComplexRoads 

integrates two highway merging scenarios, two four-way intersections, two roundabouts, and 

several segments of multi-straight lanes. The DRL models trained only on ComplexRoads were 

tested and evaluated in the specific driving manoeuvres originally available on highway-env. 

Agent: A kinematic bicycle model is used to represent the vehicle as the agent of MDP. Despite 

its simplicity, a kinematic bicycle model is able to represent actual vehicle dynamics (Polack et 

al., 2017). 

Action: An action taken by the agent in the proposed MDP is an element from the contracted 

Action Space. The highway-env environment offers three types of action spaces: Discrete Action, 

Discrete Meta Action, and Continuous Action. This study employs a hybrid approach using both 

discrete and continuous actions to train distinct driving tasks. In this study, the two dimensions 
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of the Action Space 𝑨  are: acceleration (throttle) and steering angle of the front wheels. 

Depending on the DRL algorithm 𝑨  is either of the form [−
𝝅

𝟐
,
𝝅

𝟐
] × [−5, 5]  for algorithms 

requiring a continuous action space, or {𝛿1,⋯ , 𝛿𝑛} × [𝛼1, ⋯ , 𝛼𝑚] in the 𝑛 × 𝑚 discrete case. 

Hence, (𝛿, 𝛼) ∈ 𝑨, where steering is denoted by 𝛿 and acceleration is denoted by 𝛼. 

State: As illustrated in Figure 8-2, the state in the proposed MDP includes the ego AV’s state, 

e.g., location (x, y), velocity (vx, vy), and heading direction, together with the surrounding 

vehicles state and road conditions and is directly accessible at each time frame to the ego car, 

either in absolute terms or relative to itself. 

Reward: The customised Reward function is elaborated in detail in the following subsections 

of 8.2.3 and 8.2.4. 

8.2.3 General reward function 

For training the models, this study used the reward function already present in the highway-env 

package (referred to as the baseline reward and illustrated in the middle of Figure 8-2) and the 

modified and upgraded reward function. The model performances were compared to 

demonstrate that the upgraded reward is better than the baseline reward. During the training, it 

was observed that in the early stages, the trained agent car would sometimes drive off the road. 

To make the training more efficient in handling off-road driving and stimulating the agent to 

return to driving on-road, one specific contribution in this study is to adjust the distance measure 

between the agent and the lane, in addition to constructing the lane heading difference measure 

illustrated in the following paragraphs. Let c denote the ego car agent and 𝓛 the corresponding 

lane. A lane is a collection of lane points 𝑙 ∈ 𝓛. Now define 𝑙′ as the lane point with the shortest 

Euclidean distance to the car, meaning 

𝑙′ ≔ arg min𝑙 ∈ 𝓛 (𝑐, 𝑙)         (8-1) 

and define the orientation 𝜔 of the car c with respect to a lane point 𝑙 as follows 

𝜔(𝑐, 𝑙) = { 1     𝑖𝑓 𝑡ℎ𝑒 𝑐𝑎𝑟 𝑖𝑠 𝑙𝑜𝑐𝑎𝑡𝑒𝑑 𝑙𝑒𝑓𝑡 𝑜𝑓 𝑙4 
−1                   𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒                         

      (8-2) 

Then, this study defines the distance between the ego car and the lane as the shortest distance 

from the ego car c to any point 𝑙 on lane 𝓛, meaning 

𝑑(𝑐, 𝓛) = 𝜔(𝑐, 𝑙′)𝑑(𝑐, 𝑙′)         (8-3) 

The car heading and lane point heading are denoted by 𝑐𝜑 and 𝑙𝜑 respectively, both values are 

within the angle range (−𝜋, 𝜋]. Then, the lane heading difference (LHD) is defined as 

LHD = {

𝑙𝜑  −  𝑐𝜑  +  2𝜋       𝑖𝑓 𝑙𝜑  −  𝑐𝜑  <  −𝜋

𝑙𝜑  −  𝑐𝜑  −  2𝜋          𝑖𝑓 𝑙𝜑  −  𝑐𝜑  >  𝜋

𝑙𝜑  −  𝑐𝜑               𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒

      (8-4) 

 

4 More precisely, if the car is located left of the tangent line for the lane segment containing 𝑙. 
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An important remark to this setup is the fact that if 𝑠𝑔𝑛(LHD) ∙ 𝑑(𝑐, 𝓛) < 0 then the car is 

heading for the lane. Similarly, if 𝑠𝑔𝑛(LHD) ∙ 𝑑(𝑐, 𝓛) > 0 the car is deviating (further) from 

the lane. Four different off-road scenarios are shown in Figure 8-3. 

    

(a)                                                                        (b) 

    

(c)                                                                        (d) 

Figure 8-3. Four different off-road scenarios showcasing available environment 

observations of the ego car: (a) Off-road scenario with 𝑑(𝑐, 𝑙′) > 0 and 𝐿𝐻𝐷 < 0; (b) Off-

road scenario with 𝑑(𝑐, 𝑙′) < 0  and 𝐿𝐻𝐷 < 0 ; (c) Off-road scenario with 𝑑(𝑐, 𝑙′) > 0  and 

𝐿𝐻𝐷 > 0; (d) Off-road scenario with 𝑑(𝑐, 𝑙′) < 0 and 𝐿𝐻𝐷 > 0 

In Figure 8-3, both lane heading and car heading are portrayed by vectors. The lane distance 

and LHD, for the ego car c with respect to the lane point 𝑙′. The sign is orientation-based: if the 

car is located left of the road, the Euclidean distance is perceived as positive, and negative if 

located right of the road. 

Finally, denote the velocity of the ego car c by 𝑣𝑐, the reward function 𝑅 with regard to the state 

𝑆 is defined as 

𝑅𝑆(𝑐, 𝓛) = {
cos(|LHD|)∙𝑣𝑐

20∙𝑚𝑎𝑥(1,|𝑑(𝑐,𝓛)|)
     𝑖𝑓 𝑣𝑐  ≥  0 

                  0                         𝑜𝑡ℎ𝑒𝑟𝑤𝑖𝑠𝑒
      (8-5) 

where LHD is the lane heading difference between the ego car and the closest lane point. 

However, if the car crashes during the simulation, the reward is automatically set as -10, 

regardless of the state. 

The reward function, as defined in equation (8-5), rewards the car for its “effective” speed on 

the road, defined by the cosine of the angular difference between the direction the car is driving 
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in and the direction in which the road goes, multiplied by the speed of the car. With this design, 

both an increase in the driving speed and driving in line with the road heading will result in 

high rewards. Moreover, the value is divided by the lane offset to punish the car for driving off-

road and also divided by 20 to scale the reward function to remain close to 1 under optimal 

circumstances. 

8.2.4 Rewards customised for navigating through roundabouts 

Specifically for AVs’ navigating through roundabouts, the reward function is designed 

regarding driving safety, efficiency, comfort level, and energy consumption. 

1) Safety reward 

In the roundabout driving context, safety is primarily influenced by two factors, i.e., lane-centre 

positioning and time-to-collision (TTC). The lane-centring reward, indicated by 𝑅𝐿𝐶., can be 

computed as  

𝑅𝐿𝐶 = 1 − (
𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙

𝑙𝑤𝑖𝑑𝑡ℎ/2
)
2

          (8-6) 

where 𝑙𝑙𝑎𝑡𝑒𝑟𝑎𝑙 is the vehicle’s offset to the centre of the lane, and 𝑙𝑤𝑖𝑑𝑡ℎ is the lane width. 

The TTC reward is computed as 

𝑅𝑇𝑇𝐶 = 1 −
3

𝑇𝑇𝐶
          (8-7) 

If the Time-to-Collision (TTC) exceeds 3 seconds, the TTC reward will fall within the range of 

0 to 1. A larger TTC results in a reward closer to 1. Conversely, when TTC is less than 3, the 

reward becomes negative. And in the event of an imminent collision, the TTC reward will 

approach −∞. 

The total safety reward is a weighted sum of the lane centre reward and the TTC reward. The 

TTC reward constitutes 70% of the 𝑅𝑠𝑎𝑓𝑒, while the lane centre reward makes up the remaining 

30%. The total safety reward can be expressed as: 

𝑅𝑠𝑎𝑓𝑒 = 0.7 × 𝑅𝑇𝑇𝑐 + 0.3 × 𝑅𝐿𝐶        (8-8) 

 

2) Efficiency reward 

The efficiency reward motivates the AV to move forward, avoiding stationary actions. It mainly 

rewards high speeds within set limits. When the vehicle’s speed is less than or equal to the speed 

limit, the efficiency reward is set to the ratio of the vehicle’s current speed to the speed limit as 

𝑅𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 =
𝑣𝑒𝑔𝑜

𝑣𝑙𝑖𝑚𝑖𝑡
          (8-9) 

When the vehicle’s speed is greater than the speed limit, the reward value decreases as the speed 

increases. 

𝑅𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 = 1 −
𝑣𝑒𝑔𝑜−𝑣𝑙𝑖𝑚𝑖𝑡

𝑣𝑚𝑎𝑥−𝑣𝑙𝑖𝑚𝑖𝑡
                  (8-10) 

where 𝑣𝑒𝑔𝑜 is the current speed, 𝑣𝑙𝑖𝑚𝑖𝑡 is the speed limit on the road, and 𝑣𝑚𝑎𝑥 is the maximum 

achievable speed value of the vehicle. 
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3) Comfort level reward 

Vehicle comfort, a key performance indicator for automated driving, significantly impacts user 

experience. This study focuses on smooth acceleration, deceleration, and steering. The reward 

function considers the rate of change in acceleration/braking and steering. Lower rates of 

change, indicating smoother movements, yield higher rewards, while higher rates of change 

result in lower rewards. The calculation of the comfort level reward value is as follows 

𝑑𝑖𝑓𝑓𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 =
𝑑 𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒𝑡

𝑑𝑡
                  (8-11) 

𝑑𝑖𝑓𝑓𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 =
𝑑 𝑎𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔

𝑑𝑡
                  (8-12) 

𝑅𝑐𝑜𝑚𝑓𝑜𝑟𝑡 = 1 − 
𝑑𝑖𝑓𝑓𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒+𝑑𝑖𝑓𝑓𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔

4
                (8-13) 

where 𝑑𝑖𝑓𝑓𝑡ℎ𝑟𝑜𝑡𝑡𝑙𝑒 is the rate of change of the throttle or brake, 𝑎𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 is the input value of 

the throttle or brake, 𝑑𝑖𝑓𝑓𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 is the rate of change of the steering wheel, and 𝑎𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 is 

the input value of the steering wheel. 

 

4) Energy consumption reward 

Jiménez Palacios (1999) indicates that Vehicle Specific Power (VSP) can indirectly reflect 

vehicle energy consumption, demonstrating a roughly linear positive correlation with specific 

power. Hence, specific power values can be used to approximate energy consumption. 

Parameters for this model were calibrated by (Jiménez Palacios, 1999). In this study, the slope 

resistance term is omitted since road slope is not considered. 

𝑉𝑆𝑃 =  𝑣 × (1.1𝑎 + 0.132) + 0.000302𝑣3                  (8-14) 

For the setting of the reward function, this study considers the maximum specific power value 

of the vehicle and uses it as a standard to normalise the value of the specific power at the current 

moment to the range from 0 to 1, and thus 

𝑅𝑒𝑛𝑒𝑟𝑔𝑦 = 1 −
𝑉𝑆𝑃

𝑉𝑆𝑃𝑚𝑎𝑥
                   (8-15) 

 

5) Total integrated rewards 

In the roundabout setting, AVs will enter from any of the four entrances with a predefined exit 

destination. A destination reward is implemented for the agent to learn to navigate towards its 

objective when performing continuous actions. This reward is Boolean, i.e., it is set to 1 if the 

vehicle reaches the target exit and 0 otherwise: 

𝑅𝑎𝑟𝑟𝑖𝑣𝑒 = {
1
0
   𝑖𝑓 𝑡ℎ𝑒 vehicle ℎ𝑎𝑠 𝑟𝑒𝑎𝑐ℎ𝑒𝑑 𝑡ℎ𝑒 𝑡𝑎𝑟𝑔𝑒𝑡 𝑒𝑥𝑖𝑡

 𝑒𝑙𝑠𝑒
             (8-16) 

 

The total integrated reward function combines the aforementioned sub-reward functions 

through a weighted sum. Having closely similar weights for all four sub-reward functions would 

overcomplicate the reward function and hinder satisfactory model training. Emphasis is placed 

on safety and efficiency by assigning larger weights, as they are critical elements. The total 

reward function is calculated as 
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𝑅𝑡𝑜𝑡𝑎𝑙 = 0.6 𝑅𝑠𝑎𝑓𝑒 + 0. 25 𝑅𝑒𝑓𝑓𝑖𝑐𝑖𝑒𝑛𝑡 + 0.1 𝑅𝑐𝑜𝑚𝑓𝑜𝑟𝑡 + 0.05 𝑅𝑒𝑛𝑒𝑟𝑔𝑦 + 𝑅𝑎𝑟𝑟𝑖𝑣𝑒           (8-17) 

8.2.5 DRL algorithms 

DRL is a specialised machine learning algorithm designed to aid agents in decision-making. 

Through interactive training between the agent and its environment, DRL can enhance the 

agent’s decision-making capacities. In this study, the agent, i.e., an automated vehicle, is trained 

in various simulated driving environments. Through DRL training, the agent iteratively updates 

its policy (controlling the throttle and steering) to maximise the obtained reward (encompassing 

safety, efficiency, comfort, and energy consumption). The DRL-based approach enables the 

model to optimise the decision-making strategy and determine subsequent actions.  

Regarding selected DRL algorithms, TRPO (Schulman et al., 2015), DDPG (Lillicrap et al., 

2016), PPO (Schulman et al., 2017), and DQN (Fan et al., 2020) were customised and 

implemented. The DRL was implemented through the PyTorch deep learning framework. The 

DRL algorithms are instantiated via the stable-baselines3 (Raffin et al., 2021) reinforcement 

learning library. Details of the DRLs, including hyperparameter settings, are elaborated in the 

supplementary at https://lnkd.in/gSb92UcR and https://lnkd.in/gft8fscf. 

8.2.6 Evaluation of the models 

To evaluate and compare the model performance, one needs a set of indicators and metrics, for 

which this study implemented a performance logger that measures and stores various indicators 

when testing a model in a given environment. These indicators are measured for a set number 

of runs, and the logger then prints the average values over all the runs. The measured indicators 

are: 1) Speed, 2) Peak jerk, 3) Total jerk, 4) Total distance, 5) Total steering, 6) Running time, 

7) Onlane rate (rate of time the cars are running within the road), and 8) Rate of collision. 

The jerk is defined as the difference between the current and the previous action of a vehicle, 

consisting of both the steering angle and the acceleration. The magnitude of the total jerk 

reflects the degree to which the vehicle’s motion changes abruptly and frequently, where a 

higher value of the total jerk implies less comfortable driving. The jerk is defined by equations 

in (8-18)-(8-20): 

𝐽𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛 =
𝛼𝑡 − 𝛼𝑡−1

𝛼𝑚𝑎𝑥 − 𝛼𝑚𝑖𝑛
                   (8-18) 

𝐽𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔 =
𝛿𝑡 − 𝛿𝑡−1

𝛿𝑚𝑎𝑥 − 𝛿𝑚𝑖𝑛
                    (8-19) 

𝐽𝑡𝑜𝑡𝑎𝑙 =
𝐽𝑎𝑐𝑐𝑒𝑙𝑒𝑟𝑎𝑡𝑖𝑜𝑛+𝐽𝑠𝑡𝑒𝑒𝑟𝑖𝑛𝑔

2
                   (8-20) 

The total steering is defined as the total sum of steering the car performs in the course of an 

evaluation, measured in angles. A higher amount of steering could, to a certain extent, imply 

less efficient driving with unnecessary steering. The onlane rate is defined as the amount of 

time the evaluated car spends driving on the lane, divided by the total amount of time the car 

spends driving. The collision rate is defined as the total amount of collisions the car makes, 

divided by the total amount of evaluation trials. 

https://lnkd.in/gSb92UcR
https://lnkd.in/gft8fscf
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While evaluating the specifically selected challenging scenario of AVs’ navigating through 

roundabouts, the average collision rate, lane-centring loss value, efficiency, comfort, and energy 

consumption level were selected as the metrics. The impact of the above five evaluation 

indicators on automated driving is different, and thus the weight of each indicator needs to be 

further analysed. For that, this study utilised the Analytic Hierarchy Process (AHP) method to 

determine the weights of the five testing indicators. Details of the AHP process are provided in 

the supplementary materials available at https://lnkd.in/gSb92UcR. The final estimated weight 

values are shown in Table 8-1. 

Table 8-1. Estimated weight values 

8.3 Experiments 

Firstly, for the general comparison, this study conducted intensive experiments to train and 

evaluate DRL models using TRPO and DQN algorithms on four environments provided by 

highway-env, and also the newly self-designed ComplexRoads. The models were trained using 

both the original standard reward function provided by highway-env (which served as the 

baseline) and the customised reward function. The hyperparameters used for training can be 

found in the supplementary materials at https://lnkd.in/gSb92UcR and https://lnkd.in/gft8fscf. 

The models were trained on the supercomputer Delft Blue (DelftBlue Supercomputer (Phase 

1), 2022). For every environment, ten models were trained and saved for 10,000 and 100,000 

iterations. When finishing training, the model performance was tested for 10 runs. During the 

performance testing, constraints such as a maximum running time, minimum speed, and 

whether a crash had occurred were adopted. To obtain an overall assessment, the average of all 

these 10 testing results was calculated. To get an idea of how well the models perform regarding 

a uniform driving model, they were not only tested in their trained environments but also cross-

evaluated in other different environments. With the cross-evaluation, the effectiveness of the 

newly designed environment ComplexRoads can be verified.  

Then, regarding the specific focus of the roundabout driving case, this study implemented 

DDPG, TRPO, and PPO, and evaluated and compared their performances. In the 

implementation, model fine-tuning and hyperparameter optimisation play a vital role in 

enhancing the performance of reinforcement learning algorithms. Model fine-tuning adjusts the 

algorithm model’s specifics and structure, while hyperparameter optimisation involves 

selecting and adjusting the hyperparameters within the algorithm to improve performance. 

Typical techniques for model fine-tuning include neural network structure adjustment, e.g., 

tweaking the number of layers, neurons, and activation function, to boost the algorithm’s 

efficacy. In this research, all these three DRL algorithms adopt similar network structures. 

Indicator Weight Value 

Average collision rate score test value 0.4764 

Average lane-centring loss 0.2853 

Average efficiency 0.1428 

Average comfort level 0.0634 

Average energy consumption level 0.0320 

https://drive.google.com/file/d/1kOvfom82xNbJIqx807St_C8xWpBGZCkM/view?usp=drive_link
https://lnkd.in/gSb92UcR
https://lnkd.in/gSb92UcR
https://lnkd.in/gft8fscf
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Specifically, both the actor and critic networks of DDPG are designed with two hidden layers, 

each containing 64 neurons. TRPO and PPO utilise the Multi-Layer Perceptron (MLP) neural 

network with two hidden layers, each containing 64 neurons. 

In reinforcement learning, hyperparameters are parameters that cannot be optimised iteratively 

during training and need to be set manually beforehand. Hyperparameter tuning involves 

adjusting these parameters to enhance algorithm performance. This study employs grid search 

to optimise hyperparameter values, preserving or excluding hyperparameter combinations 

based on the decrease or increase of the reward function during training. 

8.4 Results and discussion 

8.4.1 Comprehensive comparison in various scenarios 

Tables 8-2, 8-3, 8-4, 8-5, and 8-6 present the average performances of the DRL models trained 

on five environments and evaluated on the same respective environment. For every model 

variant in one specific environment, this study trained it for 10 times and also evaluated it for 

10 times to get the average performance indicators. This study writes “1*” when the number is 

rounded to 1, but not quite equal to 1. With the letters “B” and “M”, this study refers to whether 

the baseline reward function or the modified reward function was used in training the model.  

Meanwhile, Tables 8-7, 8-8, 8-9, 8-10, 8-11, and 8-12 present the average performances of the 

implemented DRL models trained in their own environment but evaluated in other different 

environments. This is for evaluating how adaptive these models are.  

One needs to note that for the environment of Merge and the self-designed ComplexRoads, no 

baseline reward functions are available, so only the models trained by the modified and 

upgraded reward (indicated with “-M”) were evaluated. Also, for cross-environment evaluation, 

only models with the modified reward were evaluated. 

 

Table 8-2. DRL model performances in ComplexRoads 

Indicator DQN-M TRPO-M 

Speed 16.1 16.2 

Peak jerk 0.990 0.799 

Total jerk 221.0 13.2 

Total distance 661 547 

Total steering 263 46 

Runtime 607 492 

Onlane rate 0.999 0.999 

Collision rate 0.07 0.09 
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Table 8-3. DRL model performances in Roundabout scenario 

Indicator DQN-B DQN-M TRPO-B TRPO-M 

Speed 8.30 8.60 7.88 8.25 

Peak jerk 1.070 1.090 0.704 0.775 

Total jerk 71.0 159.0 15.4 20.7 

Total distance 185 278 214 229 

Total steering 128 210 92.8 114 

Runtime 318 479 382 394 

Onlane rate 0.384 0.783 0.341 0.693 

Collision rate 0.71 0.68 0.51 0.62 

Table 8-4. DRL model performances in Intersection scenario 

Indicator DQN-B DQN-M TRPO-B TRPO-M 

Speed 9.89 10.10 9.74 10.30 

Peak jerk 0.892 1.040 0.545 0.637 

Total jerk 24.3 32.6 6.2 6.5 

Total distance 38.6 62.8 65.0 68.3 

Total steering 29.9 41.4 18.7 18.5 

Runtime 59 93 101 100 

Onlane rate 0.988 0.999 0.999 1* 

Collision rate 0.38 0.49 0.33 0.19 

Table 8-5. DRL model performances in Merge scenario 

 Indicator DQN-M TRPO-M 

 Speed 30.9 29.1 

 Peak jerk 0.863 0.607 

 Total jerk 47.8 11.2 

 Total distance 491 487 

 Total steering 86.7 82.1 

 Runtime 226 253 

 Onlane rate 0.875 0.836 

 Collision rate 0.5 0.4 
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Table 8-6. DRL model performances in Racetrack scenario 

Indicator DQN-B DQN-M TRPO-B TRPO-M 

Speed 7.12 9.44 10.30 7.59 

Peak jerk 0.956 0.756 0.518 0.962 

Total jerk 70.6 43.1 8.4 127.0 

Total distance 229 207 254 222 

Total steering 183 68 85 181 

Runtime 449 346 362 471 

Onlane rate 0.225 0.991 0.943 0.992 

Collision rate 0.13 0.84 0.74 0.29 

Table 8-7. DQN-M trained on ComplexRoads evaluated in other environments  

Indicator Racetrack Roundabout Merge Intersection 

Speed 10.2 8.3 30.6 10.0 

Total distance 180 200 377 59 

Runtime 275 349 185 89 

Onlane rate 0.998 0.602 0.935 0.998 

Collision rate 0.92 0.79 0.30 0.52 

 

Table 8-8. TRPO-M trained on ComplexRoads evaluated in other environments  

Indicator Racetrack Roundabout Merge Intersection 

Speed 10.0 9.0 29.8 10.3 

Total distance 130 195 339 59.7 

Runtime 222 289 172 87 

Onlane rate 1* 0.647 0.996 0.999 

Collision rate 0.82 0.76 0.10 0.51 

 

Table 8-9. DQN-M trained on Roundabout evaluated in other environments  

Indicator Racetrack Merge Intersection 

Speed 10.7 30.6 10.1 

Total distance 156 335 22 

Runtime 224 164 33 

Onlane rate 0.954 0.955 0.968 

Collision rate 0.97 0.20 0.05 



Chapter 8 – Evaluation on deep reinforcement learning for automated driving in various manoeuvres 223 

 

Table 8-10. TRPO-M trained on Intersection evaluated in other environments  

Indicator Racetrack Merge Roundabout 

Speed 9.00 30.90 8.91 

Total distance 137 477 236 

Runtime 253 228 345 

Onlane rate 0.999 0.970 0.527 

Collision rate 0.57 0.10 0.68 

Table 8-11. TRPO-M trained on Merge evaluated in other environments  

Indicator Intersection Racetrack Roundabout 

Speed 9.87 9.85 9.38 

Total distance 14 437 349 

Runtime 22 632 486 

Onlane rate 0.886 0.399 0.159 

Collision rate 0.06 0.16 0.38 

 

Table 8-12. TRPO-M trained on Racetrack evaluated in other environments  

Indicator Intersection Merge Roundabout 

Speed 9.69 29.7 7.38 

Total distance 51 304 113 

Runtime 79 154 239 

Onlane rate 0.996 0.970 0.849 

Collision rate 0.67 0.60 0.76 

 

While there might be various ways to express that one model outperforms another, it is 

important to prioritise safety as the main concern. Therefore, the measured values considered 

the most important in the comparison here are the onlane rate and the collision rate, which 

reflect driving safety. Other values, such as speed or jerk, are less important but can be 

compared in cases where the onlane and collision rates are similar. 

From Tables 8-2, 8-3, 8-4, 8-5, and 8-6, one can see that in most cases the DQN with modified 

reward function (DQN-M) and the TRPO with modified reward function (TRPO-M) 

outperform the DQN and TRPO models with the baseline reward functions, especially with 

regards to the onlane rate. Between the DQN and TRPO models, the models trained by TRPO 

tend to perform better in most cases.  

Furthermore, looking at Tables 8-7, 8-8, 8-9, 8-10, 8-11, and 8-12, it is observed that the models 

trained on ComplexRoads indeed tend to perform better than the other models in the cross-
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Indicator 

Algorithm 

evaluation, especially in keeping a high onlane rate. This is due to various traffic situations 

represented in the ComplexRoads environment, as well as the fact that the starting location of 

the car during training on ComplexRoads was randomised, meaning that the car can experience 

various driving situations. This will also prevent the model from merely “memorising” the 

environment, but instead learning better to master the manoeuvres to interact with the randomly 

generated environments. 

Due to the size of ComplexRoads, training on it was very computationally intensive, especially 

with a large amount of simulated surrounding cars. Non-ego cars get destinations assigned 

randomly and drive around scripted, meaning they follow deterministic driving rules to drive 

“perfectly” and receive a new destination upon reaching the previous one. Thus, this study opted 

to train the model with relatively few surrounding cars, meaning that the model does not get to 

interact with other cars as often as in the other environments. Due to this, it resulted in a higher 

collision rate when evaluated in other environments with more surrounding cars. When the 

computational resource is abundant, by adding more surrounding cars into the ComplexRoads 

environment, this reduced awareness of the ego car can be reduced. 

All in all, it is verified that the designed ComplexRoads training environment indeed contributes 

to the training of a more flexible and adaptive driving model. All the testing scenarios and 

results are better demonstrated in the supplementary materials with the demo videos also 

provided at https://lnkd.in/gft8fscf. 

8.4.2 Comparison for navigating through roundabout scenarios 

Specifically, for the evaluation of AVs’ navigating through roundabouts regarding driving safety, 

efficiency, comfort level, and energy consumption, the comparison results of the selected three 

DRL models (i.e., DDPG, TRPO, and PPO) are shown in Table 8-13. 

Table 8-13. Model performance comparison in Roundabout scenarios 

 Collision 

Rate Score 

Lane-

centring 
Efficiency Comfort 

Energy 

Consumption 

Total Test 

Score 

DDPG 0.43 0.8653 0.8872 0.8846 0.8058 0.6606 

PPO 0.68 0.8385 0.8784 0.9836 0.8103 0.7769 

TRPO 0.73 0.9322 0.9295 0.8627 0.7995 0.8267 

 

In Table 8-13, the average collision rate score is calculated as (8-21): 

𝐶𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 𝑅𝑎𝑡𝑒 = 1 −
𝑛𝑢𝑚𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛

𝑇
× 103                 (8-21) 

where 𝑛𝑢𝑚𝑐𝑜𝑙𝑙𝑖𝑠𝑖𝑜𝑛 is the number of vehicle collisions during the entire simulating test, 𝑇 is the 

total simulation time step of the 50 rounds of testing (larger than 5000). This calculation 

converts the collision performance into a score of 0 to 1. 

The results show that TRPO outperforms the other two compared DRLs in collision rate score, 

lane-centring loss, and efficiency metrics, though it lags slightly in comfort level and energy 

consumption compared to the other two algorithms. Overall, TRPO achieved the highest 

integrated test score, surpassing both DDPG and PPO. 

https://lnkd.in/gft8fscf
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DDPG, while defective in terms of collision rate score, demonstrates better lane-centring and 

efficiency performance than PPO, yet falls behind TRPO. While PPO excels in comfort and 

energy consumption, it lags behind TRPO in terms of the other three metrics. Despite individual 

algorithm strengths in certain aspects, overall, TRPO performs the best. 

For model characteristics and their verification, DDPG uses a deep Q-network to estimate the 

optimal action-value function, differing from TRPO and PPO, which utilise natural policy 

gradient algorithms with distinct optimisation constraints. For exploration, DDPG applies 

noise-induced action perturbations suitable for continuous action spaces, although possibly 

resulting in slower convergence. In contrast, TRPO and PPO use stochastic policies, usually 

providing more effective global optimal solutions. Unlike DDPG’s instability due to 

hyperparameter sensitivity, TRPO and PPO exhibit robustness and stability thanks to their 

conservative optimisation strategies. 

To sum up, for the specifically evaluated scenarios of navigating roundabouts, TRPO excels in 

collision rate score, lane-centring, and efficiency, and delivers the best overall testing score; 

PPO is distinct in comfort and energy consumption, and follows TRPO regarding the overall 

testing score; while DDPG may be hampered by its sensitivity to hyperparameters and less 

effective exploration strategies leading to the worst overall testing performance. 

8.5 Conclusion 

This study first summarised the utilisation of DRL in every specific automated driving task, 

e.g., lane-keeping, lane-changing, overtaking, and ramp merging, then customised and 

implemented two widely used DRLs, i.e., DQN and TRPO, to tackle various driving 

manoeuvres, and finally specifically compared three DRLs, i.e., TRPO, DDPG, and PPO, 

regarding safe, efficient, comfortable and energy-saving navigating through roundabouts, and 

carried out a comprehensive evaluation and comparison on the model performance. Based on 

the highway-env simulation platform, a modified and upgraded reward function was designed 

for training the DRL models in general. Furthermore, a new integrated training environment, 

ComplexRoads, was constructed, together with several built-in functions were upgraded. 

Through various experiments, it is verified that the models trained using the modified reward 

generally outperformed those with the original baseline reward, and the newly constructed 

ComplexRoads demonstrated effective performance in training a uniform model that can tackle 

various driving tasks rather than one specific manoeuvre. As a preliminary study, the findings 

will provide meaningful and instructive insights for future studies towards developing 

automated driving in complex and real traffic environments with DRL and simulation.  

This study approached the challenge of training a uniform driving model from the perspective 

of designing an integrated training environment. However, future research should prioritise the 

development of a uniform driving model from an algorithmic standpoint. Additionally, 

exploring alternative direct navigation reward designs that seamlessly integrate strategic 

planning with low-level control presents a promising avenue for further investigation. 
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9 Social-aware planning and control for automated 

vehicles based on driving risk field and model 

predictive contouring control: Driving through 

roundabouts as a case study 

Abstract 

The gradual deployment of automated vehicles (AVs) results in mixed traffic where AVs will 

interact with human-driven vehicles (HDVs). Thus, social-aware motion planning and control 

while considering interactions with HDVs on the road is critical for AVs’ deployment and safe 

driving under various manoeuvres. Previous research mostly focuses on the trajectory planning 

of AVs using Model Predictive Control or other relevant methods, while seldom considering 

the integrated planning and control of AVs altogether to simplify the whole pipeline architecture. 

Furthermore, there are very limited studies on social-aware driving that make AVs 

understandable and expected by human drivers, and none when it comes to the challenging 

manoeuvre of driving through roundabouts. To fill these research gaps, this study develops an 

integrated social-aware planning and control algorithm for AVs’ driving through roundabouts 

based on Driving Risk Field (DRF), Social Value Orientation (SVO), and Model Predictive 

Contouring Control (MPCC), i.e., DRF-SVO-MPCC. The proposed method is tested and 

verified with simulations on the open-sourced highway-env platform. Compared with the 

baseline method using purely Nonlinear Model Predictive Control, the DRF-SVO-MPCC can 

achieve better performance under various manoeuvres of driving through roundabouts with and 

without surrounding HDVs. 

This chapter is based on the published research paper: 

Zhang, L., Dong, Y.*, Farah, H., & Van Arem, B. (2023). Social-Aware Planning and Control 

for Automated Vehicles Based on Driving Risk Field and Model Predictive Contouring 

Control: Driving Through Roundabouts as a Case Study. In 2023 IEEE International 

Conference on Systems, Man, and Cybernetics (SMC) (pp. 3297-3304). IEEE. 

https://doi.org/10.1109/SMC53992.2023.10394462 (Co-first authors and corresponding 

author).  

http://dx.doi.org/10.1109/SMC53992.2023.10394462
http://dx.doi.org/10.1109/SMC53992.2023.10394462
http://dx.doi.org/10.1109/SMC53992.2023.10394462
https://doi.org/10.1109/SMC53992.2023.10394462
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9.1 Introduction 

Purely fully autonomous vehicles on roads are demonstrated to be beneficial to road safety and 

efficiency (Yaqoob et al., 2020). However, the gradual development and deployment of 

automated vehicles (AVs) and advanced driver assistance systems (ADAS) at various levels 

results in mixed-traffic conditions where AVs need to interact with human-driven vehicles 

(HDVs). Thus, making AVs’ behaviour understandable, expected, and accepted by human 

drivers through so-called social-aware driving models is critical for road safety and efficiency 

under various manoeuvres, especially challenging ones, e.g., driving on weaving sections, 

highly curved roads, and driving through roundabouts. 

There are some preliminary studies regarding social-aware driving (Wang et al., 2022). These 

studies usually focus on social cooperation for AVs’ path planning, whose methods can be 

mainly divided into two categories, i.e., learning-based and model-based methods. 

Reinforcement learning methods, such as Deep Q-Network (DQN), Actor-Critic (A2C), and 

Proximal Policy Optimisation (PPO), integrating Partially Observable Stochastic Games 

(POSG) can factor surrounding HDVs’ influence into the AVs’ path planning and then connect 

to proportional–integral–derivative (PID) as a low-level controller for path tracking (Toghi et 

al., 2021a, 2021b). Since the reward for social compliance is difficult to quantify, many 

researchers employed inverse reinforcement learning (IRL) to learn and mimic how human 

drivers act in the real world using empirical driving data (Li et al., 2020; Schwarting et al., 2019; 

Sun et al., 2018; L. Wang et al., 2021). In addition to reinforcement learning-based approaches, 

some studies adopted deep learning, e.g., Social Long Short Term Memory (LSTM) (Alahi et 

al., 2016)  and Social Generative Adversarial Network (GAN) (Gupta et al., 2018), 

incorporating social factors for trajectory prediction of the surrounding HDVs, and then 

designed socially aware path-planning for AVs correspondingly. These are all learning-based 

methods. Regarding model-based methods, in (Hang et al., 2020) and (Hang et al., 2021), a 

game-theoretic-based decision-making approach is combined with Model Predictive Control 

(MPC) under the dynamic bicycle model (Kong et al., 2015) to build a complete architecture 

tackling scenarios such as lane changing, overtaking, etc. This approach requires the estimation 

of the model parameters for different environments and is not robust to different scenarios. 

Another model-based approach is to build a field model to estimate the dangers around AVs (Ji 

et al., 2017; Kolekar et al., 2020; Mullakkal-Babu et al., 2020). Ji et al. (2017) created 3D risk 

fields and combined them with MPC for path planning and tracking to ensure a collision-free 

path for AV. Kolekar et al. (2020) developed a driving risk field (DRF) model to quantify the 

risks perceived by drivers. And by coupling DRF to a controller that can maintain the perceived 

risk below a threshold, they generated human-like driving behaviour. The required model 

parameters of the human driver were obtained through simulation. In addition, the model does 

not require real-time parameter estimation, improving the robustness regarding different 

environments. Although field-based planning and control can reduce the occurrence of hazards 

and is highly robust across different scenarios, little consideration is given to social cooperation 

and the impact of different driving styles on social compliance with surrounding HDVs. 

On the other hand, MPC’s capability to handle multiple-input multiple-output (MIMO) systems 

with various constraints makes it particularly suitable for real-world autonomous vehicle 

planning and control. Thus, it is also necessary to review relevant research in this domain. MPC 

can be traced back to the 1980s when engineers in the process industry first started deploying 

it in real practice (Garriga & Soroush, 2010). MPC methods assume a finite look-ahead horizon 
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for which control signals are calculated to optimise an objective function. MPC allows direct 

planning and control of the vehicle, whether driving on the highway or parking in low-speed 

scenarios with different predicted models (Yoon et al., 2009; Zhang et al., 2018, 2021). In 

(Buyval et al., 2017; Obayashi et al., 2016), the HDV was simply seen as an obstacle, and the 

optimisation goal of the MPC is to move away from the obstacle on the highway. This can lead 

to unexpected scenarios where vehicles are seen as dangerous objects even if they are driving 

in the same direction with no conflicts, and it is hard to tackle uncertain environments such as 

an intersection. For this, Ulfsjoo & Axehill (2022) additionally employed the partially 

observable Markov decision process (POMDP) for decision-making before MPC, allowing it 

to handle more uncertain scenarios. At the same time, to encourage vehicles to collaborate, 

MPCs that can control multiple AVs within a scenario were developed (Faris et al., 2022; Pauls 

et al., 2022). The problem is that it only enables cooperation between AVs, and it is difficult to 

consider other users on the road, needless to say, delivering social-aware driving. 

From the previous reviews, it is identified that the disadvantage of MPC is that it is difficult to 

take into account the risks faced by other vehicles on the road, while purely using the 

aforementioned social cooperation-based path planning method alone can result in a less 

flexible and less reliable path. Furthermore, few studies implemented integrated planning and 

control together, and seldom did they cover the challenging manoeuvre of driving through 

roundabouts. To fill these research gaps, this research studies the suitability of utilising MPC 

incorporating the DRF method to generate a social-aware driving algorithm that can safely 

control the motion of a vehicle driving through a roundabout while being able to handle 

potential conflicts with surrounding HDVs and considering different levels of interests of other 

road users. There are several challenges. The first one is to ensure the safety and comfort of all 

users on the road. It is important to understand the intention of human drivers correctly and try 

to work with the HDVs correspondingly. Machines and humans do not understand the 

danger/risk in the same way. Thus, what AVs need is to “think” more like humans and anticipate 

possible dangers to interact with other HDVs safely. Furthermore, for social-aware driving, it 

is necessary to modify the AV’s original objective by balancing its own benefits versus the 

benefits of other surrounding HDVs, considering the different driving styles and characteristics 

of human drivers, thus making the AV accepted by HDVs. Different human drivers possess 

different priorities concerning safety, efficiency, and attitudes toward other vehicles, reflecting 

their different driving styles, e.g., aggressive, and defensive(W. Wang et al., 2022). Also, the 

driving style of AVs determined by the needs of the passengers may vary from time to time, and 

case by case. For example, for daily commuters and those in a hurry, the efficiency of their 

journey should be assigned with a higher priority. While, if there is an elderly or sick person in 

the vehicle, he/she probably will place more weight on comfort level and be more willing to 

give precedence to others to ensure safety. Finally, it is challenging for the model to maintain 

robustness in tackling different scenarios and handling different driving styles.  

To tackle these challenges, this study develops an integrated social-aware planning and control 

algorithm incorporating DRF, Social Value Orientation (SVO) (Liebrand & McClintock, 1988), 

and Model Predictive Contouring Control (MPCC). DRF is adopted to model the surrounding 

drivers’ perceived risk when interacting with the AV. The SVO, a social psychology-derived 

approach, is utilised to measure how individuals make the trade-off between personal benefits 

and the benefits to others (Liebrand & McClintock, 1988). Then, the model-based DRF-SVO 

is packaged into the MPC framework connecting to the specific MPCC algorithm to implement 
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the integration of both planning and control. The integration avoids approaching the motion 

planning and feedback control hierarchically, and therefore brings more stability to the system. 

With the proposed DRF-SVO-MPCC algorithm, this study implements two types of driving 

styles, i.e., egoistic and prosocial, where an egoistic vehicle will not tolerate any increase in its 

own cost, a prosocial vehicle will prefer a minor increase in its own cost or the surrender of part 

of its benefits to reduce the danger of other vehicles. Lastly, the proposed model is verified on 

complex manoeuvres, i.e., driving through roundabouts with large curvature, which is one of 

the most accident-prone scenarios. Both single-lane and two-lane roundabouts, which are 

common in most countries, are tested to verify the robustness and generalisation ability of the 

proposed method. 

In short, the main contributions of this study are: 

1. A social-aware MPC is developed by combining MPC and DRF using SVO as the bridge 

to consider both the accuracy of controls and the perceived danger of other vehicles. 

Integration with SVO also makes it possible to balance the benefits of ego AV versus 

those of surrounding HDVs. 

2. Different driving styles are generated under the proposed DRF-SVO-MPCC method, 

especially with the help of SVO. SVO can also determine the desired driving style of the 

AV under different situations. 

3. The proposed DRF-SVO-MPCC integrates motion planning and feedback control 

simultaneously, improving the stability of the vehicle control system. 

4. The performance of the proposed DRF-SVO-MPCC is validated on challenging 

manoeuvres, i.e., driving through both single-lane and two-lane roundabouts with two 

different driving styles implemented. 

9.2 Basic theory 

9.2.1  Model predictive control 

In this study, the MPC aims to minimise the cost function for the system based on the non-linear 

prediction model on the vehicle and system constraints. The general formulation of the non-

linear MPC can be written as follows: 

𝑚𝑖𝑛  ∑ 𝐽𝑘(𝑋𝑘, 𝑈𝑘 , 𝑋𝑘
𝑟𝑒𝑓

)
𝑁𝑃−1
𝑘=0                    (9-1a) 

s.t.: 𝑋𝑘+1 = 𝑓(𝑋𝑘, 𝑈𝑘), 𝑘 = 0,… ,𝑁𝑃 − 1                               (9-1b) 

 𝐺(𝑋𝑘, 𝑈𝑘) ≤ 𝑔𝑏 , 𝑘 = 0,… ,𝑁𝑃 − 1                       (9-1c) 

 𝑋0 = 𝑋𝑖𝑛𝑖𝑡                       (9-1d) 

In (9-1), 𝑈𝑘 and 𝑋𝑘 are the input and state of the system, respectively. The function 𝐽𝑘 is the 

cost function that determines the cost of the whole system, and the function 𝐺 comprises all 

constraints, with 𝑔𝑏 being the bound value. These constraints ensure the system state and inputs 

are within a set boundary. Currently, the constraints are only defined as box constraints; 

however, they are flexible to be expanded.  𝑁𝑃  is the prediction horizon for the MPC. The 
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predicted mode 𝑋𝑘+1 = 𝑓(𝑋𝑘, 𝑈𝑘) is based on the kinematic bicycle model (Kong et al., 2015), 

which is written as: 

�̇� = 𝑣𝑐𝑜𝑠(𝜓 + 𝛽)                             (9-2a) 

�̇� = 𝑣𝑠𝑖𝑛(𝜓 + 𝛽)                             (9-2b) 

�̇� =
𝑣

𝑙𝑟 
sin(𝛽)                              (9-2c) 

�̇� = 𝑎                             (9-2d) 

𝛽 = tan−1(
𝑙𝑟

𝑙𝑟+𝑙𝑓
tan(𝛿))                          (9-2e) 

As in Figure 9-1, the 𝑥  and 𝑦  are the longitudinal and lateral positions of the vehicle, 

respectively. 𝜓  is the heading angle of the vehicle, and  𝑣  is the velocity of the vehicle. 

[𝑥, 𝑦, 𝜓, 𝑣] are the state variables of the kinematic bicycle model. The distance from the centre 

of gravity to the front and rear wheels are 𝑙𝑓 and 𝑙𝑟, respectively. 𝛽 is the angle of the current 

velocity of the centre of mass with respect to the longitudinal axis of the vehicle. The control 

input parameters are the front steering angle and the acceleration, which are [𝛿, 𝑎]. This model 

is a non-linear model, which means that this study concentrated on Nonlinear Model Predictive 

Control (NMPC). 

 
(a)       (b) 

Figure 9-1. Illustration of (a) the kinematic bicycle model and (b) the predicted path in 

the DRF model 

The continuous space model is discretised to 𝑋𝑘+1 = 𝑓(𝑋𝑘, 𝑈𝑘) =  𝑋𝑘 + ∆𝑡𝑓
𝑐(𝑋𝑘, 𝑈𝑘) with a 

discretisation time ∆𝑡. 

Several steps should be followed when using the MPC formulation described above. Firstly, the 

measured or estimated current state should be obtained as the initial state. The second step is to 

solve the optimal control formula. Then the optimal control input sequence (𝑁𝑃 elements) will 

be obtained. Finally, only the first element in the sequence will be applied to the system and 

then move to the next MPC round. 
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9.2.2 Driving risk field 

The Driving Risk Field (DRF) (Kolekar et al., 2020) represents the driver’s belief about the 

probability of the risk occurring. The value of a DRF can change with the vehicle’s different 

velocities and steering angles. Since the kinematic bicycle model is used as the prediction model 

in MPC, to maintain consistency, it is also adopted to calculate the vehicle’s path in DRF: 

𝑅 =
𝑙𝑟+𝑙𝑓

tan(𝛿)
                                                   (9-3) 

As shown in Figure 9-1 (b), in (9-3), the radius of the arc (𝑅 ) of the vehicle’s preceding 

trajectory and the centre of the turning circle (𝑥𝑐, 𝑦𝑐) can be determined by the HDV’s position 

(𝑥𝐻𝐷𝑉, 𝑦𝐻𝐷𝑉), HDV’s heading 𝜓𝐻𝐷𝑉, and HDV’s steering angle 𝛿𝐻𝐷𝑉. The DRF of a vehicle is 

modelled as a torus with a Gaussian cross-section, which can be written as: 

𝐷𝑅𝐹(𝑥𝑜 , 𝑦𝑜) = 𝑎 exp (
−(√(𝑥𝑜−𝑥𝑐)2+(𝑦𝑜−𝑦𝑐)2−𝑅)

2

2𝜎2 )            (9-4) 

The coordinate of a risk obstacle to the HDV is (𝑥𝑜 , 𝑦𝑜). The height (𝑎) of the Gaussian is 

modelled as a parabola, and the width (𝜎) of the Gaussian is modelled as a linear function 

which is a simplification of the parabolic function: 

𝑎(𝑠) = 𝑝(𝑠 − 𝑣𝑡𝑙𝑎)
2                   (9-5) 

𝜎 = (𝑚 + 𝑘𝑖|𝛿|)𝑠 + 𝑐                           (9-6) 

𝑖 = 1 (𝑖𝑛𝑛𝑒𝑟 𝜎), 𝑜𝑟 2 (𝑜𝑢𝑡𝑡𝑒𝑟 𝜎) 

The 𝑡𝑙𝑎 is a fixed look-ahead time. Based on it, the look-ahead distance increases linearly with 

the velocity of the vehicle. And p is a parameter that defines the parabola’s steepness. The width 

of DRF at the location of the vehicle (𝑐) is related to the car width and 𝑚 defines the slope of 

widening of the DRF when driving straight. Then, 𝑘1 and 𝑘2 which represent the parameters of 

the inner and outer edges of the DRF, respectively, can affect the width of the DRF, and they 

can help to generate asymmetric DRFs. With this modelling method, the risk grows linearly 

with the increasing steering angle. It is similar to a human when the driver controls the steering 

of the vehicle, which simulates the driver paying more attention to the environment in the 

direction turned, resulting in a higher risk presented in the other direction. The increase in DRF 

is proportional to δ, leading to higher risk when driving through sharp curves with cumulatively 

smaller radii. 

So, all the hyperparameters in DRF are related to the driver’s status instead of the environment. 

In this work, the DRF is utilised to obtain the possible risk of the HDVs interacting with AVs. 

Therefore, the coordinates in (9-4) are from the HDV’s perspective, while all other parameters 

represent those of the driver in the HDV. The human driver parameters are identified through a 

simulation, and referring to (Kolekar et al., 2020), in this study, the parameters are from a 25-

year-old male volunteer driver, shown in Table 9-1. This will allow AVs to put themselves in 

the shoes of other drivers to be informed of what they perceive as the probability of danger, 

which will also better reflect the consideration for social-aware driving. 
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9.2.3 Social value orientation 

Social Value Orientation (SVO), a metric from social psychology (Liebrand & McClintock, 

1988), is a parameter that describes how much a person is willing to consider the benefits of 

other people versus his/her own. In psychology, each individual wants to maximise the reward 

and minimise the cost when considering only himself or herself. However, as social road users, 

some of our planning needs to take into account the welfare of others. The SVO term conducts 

us to model each individual’s social preferences by expressing their cost function as a 

combination of two terms, the cost to self 𝐽𝑠𝑒𝑙𝑓 and the cost to others 𝐽𝑜𝑡ℎ𝑒𝑟: 

𝐽𝑡𝑜𝑡𝑎𝑙 = cos  𝛼 𝐽𝑠𝑒𝑙𝑓 + sin𝛼 𝐽𝑜𝑡ℎ𝑒𝑟                            (9-7) 

where 𝛼, as an angle, indicates the value of SVO. It reflects the selfishness or altruism of each 

individual. Just like in Figure 9-2, when this angle is 00, it means that the system is completely 

individualistic; while when the angle is 900, it means that the system is completely altruistic to 

other systems. In Fig. 2, it is noticed that most people’s SVOs are between 00  and 600 

illustrated by the blue points. In this work, to motivate AVs to behave with different personality 

traits like human drivers, two different styles, i.e., prosocial and egoistic, are implemented. 

Furthermore, it should be ensured that the lower limit of SVO is set so as not to completely 

ignore the risk of colliding with other vehicles. As a result, regarding the two driving styles, 𝛼 

is set as 600 for prosocial driving and 150 for egoistic driving. 

 

Figure 9-2. Illustration of SVO and its distribution in the population (Buckman et al., 2019) 

9.3 Social-aware DRF-SVO-MPCC implementation 

9.3.1 Quantifying perceived risk 

In this section, the proposed method is introduced in detail. Firstly, the overall architecture of 

the proposed four-phase pipeline is illustrated and briefly explained. Then, each of the four 

phases, i.e., image pre-processing, self-supervised pre-training, fine-tuning classification, and 

post-processing, is depicted with comprehensive delineations sequentially. 
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Referring to the previous study by Kolekar et al. (2020), the perceived risk is the product of the 

subjective probability of an event occurring and the consequences of that event. In this study, 

the DRF captures the probability of collision with the AV at the next timestep t as perceived by 

other drivers at the current position. According to (Abu-Zidan & Eid, 2015), the consequence 

of the collision should be represented by the impulse as: 

𝐼 = 𝑚𝑡𝑜𝑡𝑎𝑙  (|𝑣1 − 𝑣2|)                                        (9-8) 

where 𝑚𝑡𝑜𝑡𝑎𝑙 is the total weight of the two colliding vehicles, and 𝑣1 and 𝑣2 are the relative 

velocities of the two vehicles before and after the collision. This study simplifies the collision 

of the two vehicles as a rigid body collision so that the relative velocity after the collision is 

0 𝑚/𝑠 (𝑣2 = 0 𝑚/𝑠). 

The risk perceived by other vehicles can be seen as a cost to them. Therefore, the cost to others 

in (9-7) is obtained as follows: 

𝐽𝑜𝑡ℎ𝑒𝑟 = 𝐼 ∗  𝐷𝑅𝐹𝑜𝑡ℎ𝑒𝑟                                                                              (9-9) 

With (9-3)-(9-6) and (9-8)-(9-9), this study calculates the DRF risk perceived by HDVs. 

Connecting with the SVO, the calculated DRF will be embedded into the MPC cost function, 

enabling AV to consider the benefits/costs of HDV in its planning and control. 

9.3.2 Cost function and social-aware MPCC formulation 

The basis of the cost function is provided by the model predictive contouring control (MPCC) 

formulation (Lam et al., 2010), which has been utilised in the AVs field for motion planning 

(Faris et al., 2022; Ferranti et al., 2019), or path generation and tracking (Liniger et al., 2015). 

The main idea of this approach is to track the position of the vehicle regarding a reference point 

on the path and to introduce a new state quantity, i.e., progress, so that it is intuitively possible 

to balance the maximisation of progress along the path with the minimisation of lateral, 

longitudinal and angular offset from the path. Furthermore, this study introduces a “far point”, 

which is used mainly as a second reference point to only minimise contouring error which is 

similar to lateral error from the reference path. 

The progress variable 𝜃 can be seen as the distance that the vehicle had moved. Compared with 

MPC, the state vector in MPCC is updated to 𝑥𝑚𝑝𝑐𝑐 = [𝑥, 𝑦, 𝜓, 𝑣, 𝜃]𝑇 and the input of the model 

is updated by the progress rate as: 𝑢𝑚𝑝𝑐𝑐 = [𝑎, 𝛿, �̇�]
𝑇
. The goal of MPCC is to maximise the 

progress 𝜃 and track the reference trajectory. 

The contouring error 𝐸𝑐 and the longitudinal error 𝐸𝑙 are also linked to progress. To improve 

the efficiency, an approximation is adopted to calculate the two errors: 

𝐸�̂� = −(𝑥 − 𝑥𝑟𝑒𝑓) sin(𝜓𝑟𝑒𝑓) + (𝑦 − 𝑦𝑟𝑒𝑓) cos(𝜓𝑟𝑒𝑓)                  (9-10a) 

𝐸�̂� =     (𝑥 − 𝑥𝑟𝑒𝑓) cos(𝜓𝑟𝑒𝑓) + (𝑦 − 𝑦𝑟𝑒𝑓) sin(𝜓𝑟𝑒𝑓)                   (9-10b) 

[𝑥𝑟𝑒𝑓 , 𝑦𝑟𝑒𝑓, 𝜓𝑟𝑒𝑓]  means the reference point on the centre line of the roundabout, which is 

obtained by the perception module. In addition to these two types of error, an orientation error 

as a penalty term is added to ensure that not only is the car positioned in the middle of the road, 
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but also the prediction of the vehicle movement is close to the centre line. The orientation error 

can be written as follows: 

𝐸�̂� =  1 − |cos(𝜓𝑟𝑒𝑓) cos(𝜓) + sin(𝜓𝑟𝑒𝑓) sin(𝜓)|                            (9-11) 

In parallel to the current reference point, the “near point” information is considered. The 

information from the “far point” (𝑥𝑙𝑎, 𝑦𝑙𝑎), illustrated in green colour in Figure 9-3, also needs 

to be used as a reference to correct the contouring error of the vehicle and expand the vehicle’s 

forward visibility. The upgraded formula can be established by referring to the previous formula 

for contouring error: 

𝐸𝑙𝑎,�̂� = −(𝑥 − 𝑥𝑙𝑎) sin(𝜓𝑙𝑎) + (𝑦 − 𝑦𝑙𝑎) cos(𝜓𝑙𝑎)                       (9-12) 

In (9-12), the [𝑥𝑙𝑎 , 𝑦𝑙𝑎, 𝜓𝑙𝑎] provides the far-point’s information. This study finally combines 

all the errors with a linear progress maximisation reward on �̇� (which is the derivation of 𝜃) in 

the MPCC cost function: 

𝐽𝑚𝑝𝑐𝑐 = ∑ (𝑞𝑐�̂�𝑐𝑘
2 + 𝑞𝑙�̂�𝑙𝑘

2 + 𝑞𝑜�̂�𝑜𝑘
2 + 𝑞𝑙𝑎,𝑐𝑘�̂�𝑙𝑎,𝑐𝑘

2 )
𝑁𝑃+1
𝑘=2 − ∑ 𝑞𝑣�̇�𝑘

𝑁𝑃
𝑘=1               (9-13) 

This part of the cost function ensures that the vehicle can follow the reference path and 

maximise the progress as much as possible, and (𝑞𝑐, 𝑞𝑙 , 𝑞𝑜 , 𝑞𝑙𝑎,𝑐𝑘, 𝑞𝑣) are weighting factors for 

every part. Minimising this 𝐽𝑚𝑝𝑐𝑐 loss enables the ego vehicle to track the reference trajectory 

accurately. 

 

Figure 9-3. Illustration of MPCC 

In addition, AVs also need to ensure the comfort of the passengers in the vehicle. The main 

cause of discomfort in the car is the steering wheel swinging back and forth from side to side, 

followed by sudden acceleration and deceleration of the AV. So, the variation in the system 

inputs is set to be as small as possible and the weight of 𝛿 should be bigger than the other parts. 

Thus, the comfort cost 𝐽𝑐𝑜𝑚𝑓 is demonstrated as 

𝐽𝑐𝑜𝑚𝑓 = ∑ ‖𝑢𝑘 − 𝑢𝑘−1‖𝑆
2𝑁𝑃

𝑘=1                          (9-14) 
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Combining the two cost functions, i.e., 𝐽𝑚𝑝𝑐𝑐 in (9-13) and 𝐽𝑐𝑜𝑚𝑓 in (9-14), the total cost to the 

self-AV is obtained, which considers safety, efficiency, and comfort, as a function of (9-15): 

𝐽𝑠𝑒𝑙𝑓 = 𝐽𝑚𝑝𝑐𝑐 + 𝐽𝑐𝑜𝑚𝑓                           (9-15) 

Thus, according to SVO, this study combines 𝐽𝑠𝑒𝑙𝑓 and 𝐽𝑜𝑡ℎ𝑒𝑟 using (9-7) to obtain the total cost 

function 𝐽𝑡𝑜𝑡𝑎𝑙 and adopts it as the objective function for social-aware MPC as in (9-1a). The 

inequality constraints in MPC are mainly based on the mechanical limits of the vehicle and 

traffic regulations, for example, the speed limit on the road, the maximum acceleration that the 

engine can provide, and the maximum steering angle that the steering gear can provide. This 

study adapts the driving style and social characteristics of AVs by adjusting the desired velocity, 

the weighting of the individual costs, and the SVO. 

9.4 Simulation experiments and results 

In this study, the architecture of the social-aware DRF-SVO-MPCC is the same as NMPC but 

with the redefined cost function. Moreover, this study takes the benefits/costs of surrounding 

vehicles into consideration tackling the risks faced by HDVs. At the same time, the MPCC was 

used in defining the proposed own cost, and the “far point” was introduced to make the vehicle 

more stable over curves with large curvature. Since the proposed DRF-SVO-MPCC integrates 

and outputs both planning and control simultaneously, in the simulation experiments, two test 

cases are carried out. Firstly, this study compares the control accuracy of the developed social-

aware DRF-SVO-MPC with regard to two baselines, i.e., the pure NMPC and the well-

established tracking trajectory methods pure pursuit controller (Coulter, 1992) combined with 

PID controller, which is simply referred to as the PP controller in this study (since the pure 

pursuit controller is the main part of this method). This is done by testing on the single-lane 

roundabout scenario with no HDVs. Secondly, this study also verifies whether the proposed 

method can consider other vehicles’ benefits/costs and whether it can generate different driving 

styles under different SVOs and other parameter settings. This is done by testing on single-lane 

and two-lane roundabout scenarios with AVs interacting with HDVs in two different situations. 

9.4.1 Controller and simulation setups 

This study adopts highway-env (Leurent, 2018) simulation (a platform widely used in relevant 

publications) with Python to test the proposed approach. The examined scenarios are presented 

in Figure 9-4. In the simulation, the radius of the roundabout is 22 m, while the connection 

between the straight road and the roundabout is made with a curve fitted by a sine function, 

which is shown in Figure 9-4. In the simulation, the AV, indicated in the yellow colour, travels 

from west to east (left to right), while the HDV, indicated in the blue colour, travels from south 

to north (bottom to up) randomly at 3~7 m/s. The parameters of the vehicles that appear in all 

the scenarios are shown in Table 9-2. Because of the road peculiarities of roundabouts, vehicles 

are generally not allowed to pass through them at very high speeds, so the maximum velocity 

limit in the simulation is 15 m/s. The initial speed of the vehicle 𝑣0 is set randomly within 0~3 

m/s.  

In the simulations, two baseline controllers, i.e., PP and NMPC controllers, together with the 

proposed society-aware DRF-SVO-MPCC were tested. In the PP controller, there is only a look-

ahead distance that needs to be sited, and it is sited to 5 m. The parameters of NMPC and DRF-
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SVO-MPCC are set as shown in Table 9-3. These two MPCs are solved by the optimisation 

solver framework CasADi (Andersson et al., 2019). 

To test and verify the performance of the social-aware planning and control of the developed 

DRF-SVO-MPCC, three main scenarios are implemented. The first scenario focuses on only 

comparing the control performance of the three controllers with no other HDVs present in the 

roundabout, and thus, the developed DRF-SVO-MPCC will not consider social factors. In the 

second scenario, there will be HDV merging from other lanes of the roundabout. In the last 

scenario, the HDV travels from north to south (up to down) and enters the roundabout first. 

This study considers two different driving styles of ego AVs and compares their differences in 

motion planning. The common parameters of DRF are shown in Table 9-1, and the different 

parameters corresponding to the different driving styles are shown in Table 9-4. The bottom 

line in both driving styles is that no collisions can occur, so the AV driving model needs to at 

least consider HDV’s safety cost, which means that the SVO cannot be set to 0°. Furthermore, 

manoeuvres of driving through both single-lane and two-lane roundabouts are simulated 

(Figure 9-4). 

 

(a)                                                                           (b) 

Figure 9-4. Illustration of (a) single-lane roundabout and (b) two-lane roundabout 

Table 9-1. Parameters of DRF 

Parameter 𝒑  𝒎  𝒌𝟏  𝒌𝟐  𝒕𝒍𝒂 𝒄 

Value 0.0064 0.001 0 1.3 3𝑠 0.5𝑚 

Table 9-2. Parameters of the vehicle 

Parameter 𝒍𝒓 𝒍𝒇 𝒎𝒂𝒔𝒔 𝒘𝒊𝒅𝒕𝒉 

Value 2.46 𝑚 2.49 𝑚 2020 𝐾𝑔 2.0 𝑚 

Table 9-3. Parameters of MPC controller 

Parameter 𝒗𝒓𝒐𝒂𝒅,𝒎𝒂𝒙 𝒂𝒍𝒊𝒎 𝜹𝒍𝒊𝒎 ∆𝜹𝒍𝒊𝒎 𝑵𝒑 

Value 15.0 𝑚/𝑠 3.0 𝑚/𝑠2 30° 30°/𝑠 15 
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Table 9-4. Parameters of MPCC in different styles 

Driving Style SVO Desire Velocity 

Prosocial 𝛼 = 60° 𝑣𝑟𝑒𝑓 = 5.0 𝑚/s 

Egoistic 𝛼 = 15° 𝑣𝑟𝑒𝑓 = 6.8 𝑚/s 

9.4.2 Analysis and results 

In the first testing scenario, this study focuses on comparing the control accuracy and 

performance of the three controllers: PP controller, NMPC, and the social-aware DRF-SVO-

MPCC. Figure 9-5 shows all the trajectories controlled by the three controllers. It is easy to 

identify that all three AVs can follow the reference path, the centerline, to pass the roundabout. 

However, the PP controller gets the worst tracking performance, with a large error from the 

reference path (shown in Table 9-5). The maximum positional error is about 3 𝑚, which means 

that the bodywork of the AV is partly outside of the lane. As can be seen in Figure 9-6, due to 

the large curvature of the roundabout, the PP controller gets difficulties in trajectory tracking, 

resulting in large fluctuations in 𝛿, especially when 𝑥 = ±20 𝑚. Compared to the PP controller, 

the optimisation-based method, NMPC, delivers a much better tracking of the reference 

trajectory, except for two instances of inappropriate steering around 𝑥 = ±20 𝑚 due to the lack 

of proper judgments of the future path, as shown by Figure 9-5 (b). Unlike the PP controller, 

the NMPC is a lateral and longitudinal coupled control, and therefore 𝑎 will experience waves 

during steering at 𝑥 = 20 𝑚 and 𝑥 = −18 𝑚 as shown in Figure 9-6 (a). The proposed social-

aware DRF-SVO-MPCC demonstrates a good solution to the above problems. As the roads are 

stitched together using aggregate shapes, they are not completely smooth at the road joints, 

however, as shown in Figure 9-5 (c), the proposed DRF-SVO-MPCC not only tracks the 

reference trajectory well but also comes out with a smoother curve than the reference trajectory. 

At the same time, Figure 9-6 (a) shows that the social-aware DRF-SVO-MPCC can still 

maintain a smooth acceleration during steering with high curvature at around 𝑥 = ±20 𝑚. 

 

Figure 9-5. The paths obtained by using (a) PP controller, (b) NMPC, and (c) social-aware 

DRF-SVO-MPCC in comparison to the reference trajectory 

(a) 

(b) 

(c) 
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Figure 9-6. Comparison of the control inputs, i.e., (a) acceleration and (b) steering angle, 

in different controllers when passing the roundabout 

Having demonstrated the control performance of the developed social-aware DRF-SVO-MPC 

outperforms the two baselines, this study further compares the effects of different driving styles 

on the planning of the AV. In the second scenario, an aggressive HDV is added, which attempts 

to enter the roundabout even if the AV is already inside and running from its left. Two driving 

styles, i.e., prosocial and egoistic, are tested with Figure 9-7 showing the acceleration of the 

AV under the two driving styles. As shown in Figure 9-7 (a), under the prosocial driving style, 

AV will first actively slow down with 𝑎 = −1.02m/s2 to avoid the HDV, minimising the risk 

to which the HDV is exposed, and then it will accelerate to 𝑣𝑟𝑒𝑓. Conversely, an egoistic AV 

with a small SVO (e.g., 150), will be more biased to consider minimising its own costs. Thus, 

as in Figure 9-7 (b), the AV decides to accelerate with 𝑎 = 0.43m/s2  driving through the 

junction before the HDV to avoid collision and improve its efficiency through the roundabout. 

These statistics show that the proposed DRF-SVO-MPC can generate different driving styles 

while all maintaining safety. As shown in Figure 9-4 (b), this study further sets up a two-lane 

roundabout to test the performance of the proposed DRF-SVO-MPC when the two vehicles are 

in different lanes. An extra lane is added with AV driving in the inner lane and HDV driving in 

the outer lane. Figure 9-8 (a) shows that the prosocial AV will still give precedence to the HDV 

by braking with 𝑎 = −0.52 m/s2, waiting to maintain a safe distance from the HDV before 

accelerating back to the 𝑣𝑟𝑒𝑓 to pass the roundabout safely. The choice of braking behind the 

HDV was made because it was calculated that there would be a greater risk to the HDV if the 

𝑣𝑟𝑒𝑓  was maintained. Comparing Figure 9-8 (a) and Figure 9-7 (a), it can be seen that, 

compared to HDV running in the near lane, the AV will brake more sharply when the HDV 

(a) 

(b) 
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wants to merge into the same lane. This is caused by the HDV blocking the AV’s trajectory 

when in the same lane, which potentially poses a greater risk to both HDV and AV. The 

simulation demonstrates the proposed DRF-SVO-MPCC’s capability to handle interacting with 

HDVs in different lanes separately. Similar to the single-lane roundabout case, when the driving 

style is egoistic, the AV will accelerate aggressively, try to change to the right lane just before 

the HDV, and then exit the two-lane roundabout without any deceleration throughout the whole 

process. This helps the AV maintain a low cost and high benefits while sacrificing the benefits 

of the HDV. Furthermore, it will be dangerous if the HDV is more egoistic and more aggressive, 

which will cause a collision.  

 

Figure 9-7. Illustration of the acceleration in different driving styles when passing the 

single-lane roundabout: (a) prosocial driving and (b) egoistic driving 

 

Figure 9-8. Illustration of the acceleration in different driving styles when passing the two-

lane roundabout (a) prosocial driving and (b) egoistic driving 

In the last scenario, HDVs enter the roundabout first, and the AV plans to merge into the 

roundabout afterwards. Because of safety and traffic rules, AVs in both driving styles will brake 

to avoid collision with HDVs, and this study compares the planning of the different driving 

styles. As shown in Table 9-6, the egoistic AV will slow down as late as possible, keeping only 

a minimum of 3.65 m from the HDV for safety and maintaining a higher velocity compared to 

the prosocial driving style. While the prosocial AV starts slowing down earlier at 18.22 m from 

the HDV and keeps a longer distance to the HDV of 8.49 m. The results show that the prosocial 

AV focuses more on minimising the risk, and it places more weight on the benefit of HDVs. On 

the contrary, the egoistic AV aims to minimise its own costs while ensuring the safety of both 

vehicles.  

(a) (b) 

(a) (b) 
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All the quantitative results are wrapped up and shown in Table 9-5 and Table 9-6. And all the 

testing scenarios are better demonstrated in the supplementary video with a description 

document, which can be viewed at https://lnkd.in/g_MDNs5F. 

Table 9-5. Quantitative results of the experiments (AV enters the roundabout first) 

Scenarios Method Driving Styles 

Max 

Positional 

Error 

Average 

Positional 

Error 

Collision 

Single-lane 

roundabout 

with no HDV 

PP 

Controller 
--- 3.08 𝑚 1.37 𝑚 --- 

NMPC --- 1.27 𝑚 0.65 𝑚 --- 

DRF-

SVO-

MPCC 

--- 𝟎. 𝟐𝟑 𝒎 𝟎. 𝟏𝟐 𝒎 --- 

Single-lane 

roundabout 

interacting 

with an HDV 

NMPC --- --- --- Yes 

DRF-

SVO-

MPCC 

Prosocial 𝟎. 𝟏𝟗 𝒎 𝟎. 𝟎𝟗 𝒎 No  

Egoistic 0.28 𝑚 0.16 𝑚 No  

Two-lane 

roundabout 

interacting 

with an HDV 

NMPC --- --- --- Yes  

DRF-

SVO-

MPCC 

Prosocial 𝟎. 𝟐𝟔 𝒎 𝟎. 𝟏𝟕 𝒎 No  

Egoistic 0.34 𝑚 0.22 𝑚 No  

Table 9-6. Quantitative results of the experiments (HDV enters the roundabout first) 

Scenarios Method 
Driving 

Styles 

Start  

Braking  

Distance 

Min. 

 Distance to 

HDV 

Min. 

Velocity 

Two-lane 

roundabout 

interacting 

with an HDV 

DRF-SVO-MPCC 
Prosocial 18.22 𝑚 8.49 𝑚 1.47 𝑚/𝑠 

Egoistic 13.87 𝑚 3.65 𝑚 3.17 𝑚/𝑠  

9.5 Conclusion 

This study develops an integrated social-aware planning and control algorithm, i.e., DRF-SVO-

MPCC, which incorporates Driving Risk Field (DRF), Social Value Orientation (SVO), and 

Model Predictive Contouring Control (MPCC) to enable AVs to consider HDVs’ risk and 

balance their own benefits with regards to the benefits of HDVs. The DRF is used to model the 

perceived risk, and SVO is adopted to measure how AVs make the trade-off between their own 

benefits and the benefits of other HDVs. Using the SVO-based DRF and MPCC costs, together 

with the desired velocity, this study implements two types of driving styles, i.e., prosocial and 

egoistic. The model-based DRF-SVO is packaged into the cost function established by MPCC 

to deliver integrated planning and control. The proposed DRF-SVO-MPCC model is tested and 

verified on various simulation experiments, comparing with two baselines, which demonstrates 

its good planning and control performance driving through both single-lane and two-lane 

roundabouts with or without interacting with HDVs. Future research directions could focus on 

the estimation of model parameters using learning-based methods. For example, the driving 

https://lnkd.in/g_MDNs5F
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style of HDVs can be estimated using a reinforcement learning approach, leading to different 

DRF-SVO-MPCC models to better perceive risks under the proposed framework. Furthermore, 

it is suggested to validate the model on other challenging driving manoeuvres (e.g., on-ramp 

merging, highway lane changing, or overtaking) and scenarios involving interactions with more 

surrounding vehicles to verify the model’s robustness. 
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10 Discussion, conclusions, perspectives, and 

recommendations 

Abstract 

This thesis aims to broaden the Operational Design Domain (ODD) to augment the capabilities 

of automated vehicles (AVs), thereby enabling the realisation of safe, efficient, and socially 

compliant automated driving within mixed-traffic environments. This thesis addresses the 

overall objective through three main pillars (i.e., sensing and perception, anomaly detection, as 

well as planning and control) and by answering the three main research questions corresponding 

to these three pillars. This chapter recaps the research questions, summarises the key research 

findings, discusses the limitations and future research recommendations with regard to each 

pillar, and finally highlights the overall implications and recommendations for various relevant 

stakeholders.  
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10.1 Sensing and perception 

 

10.1.1 Key findings and summary 

To address the above research questions, vision-based lane detection was selected as the main 

focus. Available lane detection methods presented in the literature either focus on feature 

extraction in single image extraction, e.g., in (Pan et al., 2018) or employing multiple image 

frames to make use of the correlations among image sequences, e.g., in (Zou et al., 2020). 

Chapter 2 proposes a novel hybrid spatial-temporal sequence-to-one deep learning architecture 

to integrate the spatial convolutional neural network (SCNN) (Pan et al., 2018) for single-image 

feature extraction with spatial-temporal Recurrent Neural Network (RNN) modules to capture 

correlations and dependencies among continuous images. Under this architecture, various 

sequential encoder-decoder based deep neural network (DNN) model variants are developed. 

They utilise multiple continuous image frames as input and detect the lane lines in the last image 

frame. Extensive experiments that were conducted on both normal and challenging driving 

scenes verify the effectiveness of the designed architecture. Under the proposed architecture, 

even the light version of the model variants with fewer model parameters and less 

computational complexity outperformed existing state-of-the-art models. Post-explanations 

based on visualisation of the extracted low-level features further validate the proposed model 

architecture. It is concluded that strengthening spatial relation abstraction in every single image, 

combined with the employment of spatial-temporal correlations among multiple continuous 

image frames simultaneously, boosts vision-based lane detection performance. 

In accordance with Chapter 2, Chapter 3 addresses the need for further optimisation in vision-

based sensing and perception by focusing on the development of customised spatial-temporal 

attention mechanisms. Three attention mechanisms were designed, namely temporal attention, 

spatial-temporal attention, and spatial-temporal attention with fully connected layers. The 

designed attention mechanisms aim to enhance the utilisation of spatial-temporal correlations 

among different image regions in continuous frames, thus improving the accuracy and 

robustness of lane detection. Leveraging linear Long Short Term Memory (LSTM) neural 

networks (Hochreiter & Schmidhuber, 1997) connected with the proposed attention blocks, the 

thesis demonstrates the feasibility of lightweight and computationally efficient solutions for 

possible real-time detection applications. Through rigorous experimentation on four large-scale 

datasets and comparative analysis, the effectiveness of the proposed attention mechanisms is 

validated, showcasing significant improvements in lane detection performance compared to 

Sensing and perception module 

RQ1: How can spatial-temporal features and correlations be effectively utilised to enhance 

vision-based sensing and perception capabilities (e.g., lane detection), and to what extent 

can these capabilities be improved? 

Sub research questions: 

RQ 1-1: How to develop effective sequential deep neural network architecture or mechanism 

to effectively capture spatial-temporal correlations? 

RQ 1-2: How to speed up the training of sequential deep neural network models? What 

strategies can be employed? 

RQ 1-3: How to make efficient use of the available data, especially the unlabelled ones? 
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conventional methods. The findings underscore the importance of incorporating spatial-

temporal attention mechanisms to effectively capture relevant information and correlation 

across consecutive image frames, ultimately enhancing the reliability of vision-based sensing 

and perception systems in AVs. 

Chapter 4 further extends the exploration of enhancing vision-based sensing and perception by 

introducing a self-supervised pretraining method using masked sequential autoencoders 

(MSAE). This method aims to make efficient use of the available data, including the unlabelled 

ones, to improve detection accuracy and expedite the training process of deep neural network 

(DNN) models developed for lane detection tasks. Additionally, a customised Focal Loss based 

PolyLoss is proposed to further enhance detection accuracy by tackling the defects of the 

commonly adopted cross-entropy based loss in handling the extreme imbalance between lane 

points and the background points. Through comprehensive experimentation and comparative 

analysis, the efficacy of the proposed pretraining method and loss function is demonstrated, 

showcasing significant improvements in lane detection performance under various driving 

scenarios and dramatically reducing the total training time. Typically, employing the MSAE-

based pre-training and utilising the customised PolyLoss, the proposed model featuring the 

spatial-temporal attention mechanism developed in Chapter 3 demonstrates superior 

performance in terms of accuracy, precision, and F1-measure. It outperforms other DNN-based 

counterparts by a significant margin. The findings highlight the importance of leveraging self-

supervised learning techniques and tailored loss functions to enhance the robustness and 

efficiency of vision-based sensing and perception systems in AVs. 

To summarise, in essence, the hybrid spatial-temporal DNN architecture, which combines 

robust single-image feature extraction with spatial-temporal modules to capture correlations 

and dependencies among continuous images, along with customised spatial-temporal attention 

mechanisms aimed at enhancing the extraction and utilisation of spatial-temporal correlations 

among different image regions in continuous frames, together with MSAE-based self-

supervised pre-training and tailored PolyLoss, collectively contribute to the advancement of 

vision-based sensing and perception capabilities.  

10.1.2 Discussion of limitations and recommendations 

Regarding the limitations in the sensing and perception task, it is important to acknowledge that 

while the proposed models exhibit promising performance, they may still encounter challenges 

when faced with scenarios significantly different from those present in the training dataset. 

These challenges can stem from scenarios that pose difficulties even for human annotators to 

correctly identify lanes, leading to potentially inaccurate or inadequate labels for such complex 

scenes (Zhang et al., 2022), thus misleading the model. To address this limitation, there is a 

pressing need to develop an integrated high-quality dataset specifically tailored to encompass 

such challenging driving scenes. Such an integrated dataset would serve as a valuable resource 

for enhancing the robustness and generalisability of lane detection models across diverse and 

complex environments. Moreover, the adoption of advanced methodologies like few-shot 
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learning5  (Majee et al., 2021; Su et al., 2022) and contrastive learning6  (J. Li et al., 2022; 

Radford et al., 2021; Z. Zhou et al., 2023) holds significant potential in advancing the field of 

vision-based sensing and perception to address the aforementioned problem. Few-shot learning 

enables models to adapt and generalise effectively to novel scenarios using limited annotated 

data samples, reducing the reliance on extensive labelled datasets. Contrastive learning, 

exemplified by ZegCLIP (Z. Zhou et al., 2023), pushes the boundaries further. ZegCLIP excels 

in zero-shot segmentation by leveraging large-scale, unannotated data and aligning images with 

textual descriptions to achieve accurate scene understanding without the need for extensive 

manual labelling. These methods mitigate the reliance on large-scale labelled datasets and 

facilitate more efficient model training and deployment. 

Furthermore, an intriguing direction for future research lies in investigating the domain 

adaptation (Hu et al., 2022; C. Li et al., 2022) capabilities of lane detection models. This 

involves training the models on one dataset and subsequently evaluating their performance on 

a disparate dataset, particularly one sourced from a different geographical region or driving 

context. By assessing the transferability and adaptability of the models across diverse datasets, 

insights can be gathered into their robustness and suitability for real-world deployment in varied 

driving environments. 

For practical recommendations, it is noteworthy to highlight the geographical disparity in lane 

detection dataset availability, with a predominant concentration of datasets originating from 

North America and Asia. This discrepancy underscores the need for concerted efforts to address 

the dataset gap, particularly in European countries. Establishing comprehensive and regionally 

diverse datasets is essential for fostering inclusive and globally applicable research in 

autonomous driving technologies. 

Finally, although the models and methods presented in the sensing and perception pillar were 

developed specifically for the lane detection task, they can be customised and adapted to other 

vision-based sensing and perception tasks (e.g., object detection and tracking) as well.  

 

5 Few-shot learning is an example of meta-learning, where a learner undergoes training across various related tasks 

during the meta-training phase, which enables it to generalise proficiently to unseen, yet related tasks with minimal 

examples during the testing phase. An effective strategy for tackling the “few-shot learning” challenge involves 

acquiring a common representation for diverse tasks and subsequently training task-specific classifiers based on 

this representation. Adapted from https://paperswithcode.com/task/few-shot-learning. 

6  Contrastive learning is a deep learning technique for unsupervised representation learning that aims to map 

similar data instances close together and dissimilar ones far apart in the representation space. It has proven effective 

and powerful in various computer vision and natural language processing tasks like image retrieval, zero-shot 

learning, and cross-modal retrieval, where the learned representations serve as features for downstream tasks like 

classification, segmentation, and clustering. Adapted from https://paperswithcode.com/task/contrastive-learning. 

https://paperswithcode.com/task/few-shot-learning
https://paperswithcode.com/task/contrastive-learning
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10.2 Anomaly detection 

 

10.2.1 Key findings and summary 

To address anomaly detection in automated driving, two case studies were carried out in 

Chapters 5 and 6, respectively.  

Chapter 5 introduces a novel approach leveraging Transformer-based models (Dosovitskiy et 

al., 2021; Liu et al., 2021) with self-supervised pretraining and customised fine-tuning for 

intelligent anomaly detection in lane rendering images of digital map applications. There are 

seven types of anomalies, including (a): the road centre line extends out of the junction; (b) the 

stop line is in the middle of a road; (c) the navigation route does not match actual roads; (d) 

the road shoulder is bumpy; (e) a part of the road is missing; (f) the road marking arrows 

overlap; (g) the lane lines overlap. This chapter firstly transforms lane rendering image 

anomaly detection into a classification problem and then proposes a four-phase pipeline 

encompassing data pre-processing, self-supervised pre-training using masked image modelling 

(MiM) (He et al., 2022a; Xie et al., 2022), customised fine-tuning with cross-entropy loss and 

label smoothing, and post-processing. Experimental results demonstrate the pipeline’s 

effectiveness, with significant improvements in detection accuracy and reduced training time 

achieved through self-supervised pre-training with MiM. For instance, employing Swin 

Transformer (Liu et al., 2021) with Uniform Masking (UM) as self-supervised pre-training 

(Swin-Trans-UM) yielded an accuracy of 94.77% and an Area Under The Curve (AUC) of 

0.9743, compared to 94.01% accuracy and an AUC of 0.9498 without pre-training (Swin-Trans), 

while reducing the fine-tuning epochs from 280 to 41. Ablation studies further validate the 

pipeline’s performance enhancements, particularly in addressing data imbalance between 

normal and abnormal instances. This approach not only enhances anomaly detection accuracy 

but also contributes to reducing labour costs associated with manual labelling and manual 

anomaly detection efforts, thereby offering significant societal benefits. 

Additionally, Chapter 6 explores the crucial task of detecting abnormal driving behaviour. 

While many existing machine learning (ML) models rely on fully supervised methods, 

requiring substantial labelled data, this thesis addresses the need for more feasible and efficient 

approaches by exploring semi-supervised methods. Leveraging large-scale real-world driving 

data in the CitySim dataset (Zheng et al., 2023), the study identifies various abnormal driving 

behaviours and develops a semi-supervised ML method based on the Hierarchical Extreme 

Learning Machine (HELM). This novel approach utilises partly labelled data for accurate 

detection and introduces Surrogate Measures of Safety (SMoS) as input features to enhance 

performance. Results from extensive experiments demonstrate the effectiveness of the proposed 

Anomaly detection module 

RQ2: How to develop effective semi-supervised/unsupervised machine learning methods for 

anomaly detection leveraging unlabelled data?  

Sub research questions: 

RQ 2-1: What are the key features for anomaly detection, and how can they be identified?  

RQ 2-2: How to develop pipeline and method to make efficient use of unlabelled data for 

enhancing anomaly detection? 
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semi-supervised ML model, showcasing superior performance compared to other semi-

supervised baseline methods. The integration of SMoS, particularly the event-based safety 

indicators of the Two-Dimensional Time-To-Collision (2D-TTC), significantly improves 

detection accuracy, highlighting the pivotal role of SMoS in enhancing model performance. By 

leveraging unlabelled data for training and only a small sample of labelled data for fine-tuning, 

the proposed semi-supervised approach achieves competitive performance while reducing 

dependency on fully labelled datasets, making it suitable for real-world applications with 

limited labelled data. The findings also underscore the critical value of event-based safety 

indicators in effectively detecting abnormal driving behaviours, with significant implications 

for safety-oriented research and evaluations.  

To sum up, the exploration of semi-supervised and self-supervised machine learning methods 

in anomaly detection represents promising avenues for addressing the inherent limitations of 

fully supervised approaches, which heavily rely on extensive accurately labelled data for 

training. The pioneering research presented in this thesis represents a significant stride towards 

enhancing safety in driving environments through the utilisation of data-driven ML-based 

anomaly detection methodologies. 

10.2.2 Discussion of limitations and recommendations 

While the proposed semi-supervised ML-based anomaly detection approaches showcased 

promising results, certain baseline semi-supervised ML methods demonstrated inefficacy in 

specific use cases, potentially attributed to the unique characteristics of the use case and the 

employed datasets. Further exploration into these discrepancies is warranted in future studies 

to better understand the underlying factors influencing semi-supervised ML model performance. 

Additionally, it is important to acknowledge that semi-supervised ML methods still necessitate 

portions of the data to be labelled with ground truth, thereby imposing constraints on scalability 

and resource efficiency. To address this limitation, future research efforts should focus on the 

continuous refinement and development of more efficient unsupervised ML techniques 

(Usmani et al., 2022), aiming to mitigate the reliance on (large-scale) labelled datasets. 

Furthermore, future investigations can delve into few-shot learning approaches (Wang et al., 

2022; X. Zhou et al., 2021), which enable models to generalise effectively from a small number 

of labelled examples and hold significant promise for extending the applicability of anomaly 

detection models to new and unseen scenarios. By leveraging the inherent structure and 

relationships within the data, few-shot learning techniques have the potential to mitigate the 

dependence on extensive labelled datasets while ensuring accurate predictions with limited 

supervision. 

While this thesis primarily concentrates on anomaly detection within automated driving 

applications, future research endeavours could venture into predictive modelling for identifying 

abnormal behaviours and situations before they occur or at an early stage. Furthermore, 

additional research is needed to develop techniques that extract robust spatial-temporal patterns 

as inputs for anomaly detection models. Integrating a broader range of anomalies, such as more 

diverse abnormal driving behaviours, and incorporating more pertinent features (e.g., other 

advanced safety indicators), could enhance our understanding and identification capabilities. 

Consequently, these advancements would significantly contribute to the advancement of data-
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driven monitoring of abnormal behaviours and situations, thereby bolstering road traffic and 

transportation safety.  

10.3 Planning and control 

 

10.3.1 Key findings and summary 

To address the above research questions concerning AVs’ planning and control in the mixed-

traffic context, an integrated conceptual framework for socially compliant automated driving 

(Schwarting et al., 2019) is developed based on a comprehensive literature review, as outlined 

in Chapter 7. The framework incorporates various social components, including cultural 

differences, norms, and cues, alongside different driving styles (e.g., aggressive, cautious, pro-

social). A novel concept of bidirectional behavioural adaptation is introduced within this 

framework, emphasising the dynamic interactions and adaptations between AVs and human 

drivers, i.e., human drivers will have already adapted their driving behaviour when interacting 

with AVs, and AVs need to adapt to human drivers’ behavioural adaptation. Moreover, the 

proposed framework underscores the importance of balancing the benefits of AVs with the 

needs and expectations of other road users, particularly in terms of safety, comfort, and 

efficiency, highlighting the necessity for a nuanced trade-off strategy on a case-by-case basis. 

Additionally, the framework proposes the implementation of a spatial-temporal memory 

module to facilitate long-term and short-term knowledge and rule upgrading. This module 

enables the regular refinement of driving strategies that consider bidirectional behavioural 

adaptation. Furthermore, an online questionnaire-based survey is conducted to gather expert 

insights and feedback on the proposed conceptual framework, assessing its validity and 

effectiveness. The results provided valuable validation and refinement of the framework’s 

components, along with insightful suggestions for improvement. Overall, Chapter 7 lays the 

groundwork for developing socially compliant automated vehicles by offering a structured 

conceptual framework. This framework serves as a guiding tool for the implementation of 

learning-based [Chapter 8] and model-based [Chapter 9] approaches in this thesis and holds the 

potential for informing future research endeavours in this domain. 

In the learning-based approach, Chapter 8 explores the application of Deep Reinforcement 

Learning (DRL) in automated driving, with a focus on integrating considerations of safety, 

efficiency, comfort, and energy consumption into the learning framework. Multiple DRL 

Planning and control module 

RQ3: How to develop and optimise automated vehicles’ driving strategies and styles to 

ensure safety, efficiency, and, particularly, social compliance in mixed-traffic environments?  

Sub research questions: 

RQ 3-1: How can social norms and driving-related benefits for human-driven vehicles be 

effectively integrated into the development of automated driving strategies?  

RQ 3-2: How do different deep reinforcement learning algorithms perform across different 

driving manoeuvres?  

RQ 3-3: How can model performance be comprehensively evaluated and compared, 

particularly in terms of their adaptability to handle scenario shifts? 
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algorithms, including Deep Q-Network (DQN), Deep Deterministic Policy Gradient (DDPG), 

Proximal Policy Optimisation (PPO), and Trust Region Policy Optimisation (TRPO), are 

employed and evaluated for their effectiveness in guiding automated vehicles through various 

scenarios. The thesis emphasises the importance of considering real-world requirements in the 

reward function design and simulation-based training and verification to ensure the safety and 

efficacy of the learning-based approach. Evaluation and comparison of DRL algorithms, such 

as DQN, DDPG, PPO, and TRPO, are conducted across various driving manoeuvres, including 

highway merging and unsignalised intersections and particularly roundabout driving. Results 

indicate that TRPO outperforms other algorithms in terms of safety and efficiency, while PPO 

excels in comfort level for roundabout driving. Furthermore, to train a uniform driving model 

that can tackle various driving manoeuvres, this thesis expands the highway-env (Leurent, 2018) 

and develops an extra customised training environment, namely, “ComplexRoads”, integrating 

various driving manoeuvres and multiple road scenarios together. Models trained on the 

designed ComplexRoads environment show promising adaptability to other driving scenarios 

with overall good performance. As a preliminary step, this thesis represents a pioneering effort 

in conducting a comprehensive DRL model performance evaluation, particularly considering 

scenario shifting (Hauer et al., 2019), i.e., models trained on one scenario but evaluated on other 

scenarios. Collectively, the findings highlight the potential of DRL-based automated driving in 

addressing complex traffic scenarios, offering meaningful insights for future research towards 

developing automated driving with DRL and simulation.  

Regarding the model-based approach, previous research has predominantly concentrated on 

trajectory planning for AVs using Model Predictive Control. However, there has been a 

significant gap in integrated planning and control methods, particularly in socially aware 

driving scenarios. This thesis aims to address these research gaps by developing an algorithm 

that enhances the understandability and predictability of AVs to human drivers, especially 

during AVs’ interactions with human-driven vehicles (HDVs). Chapter 9 presents an integrated 

social-aware planning and control algorithm, termed DRF-SVO-MPCC, which incorporates 

three interdisciplinary concepts: perceived Driving Risk Field (DRF), Social Value Orientation 

(SVO), and Model Predictive Contouring Control (MPCC). This integration enables AVs to 

consider the welfare of HDVs on the road, balancing their own benefits with those of HDVs, 

particularly during challenging manoeuvres such as driving through roundabouts. The designed 

DRF-SVO-MPCC algorithm undergoes testing and verification through simulation 

experiments on various driving scenarios using the open-sourced highway-env platform 

(Leurent, 2018). Initially, the thesis compares the control accuracy and performance of three 

controllers, i.e., Pure Pursuit (PP) controller, Nonlinear Model Predictive Control (NMPC), and 

the proposed DRF-SVO-MPCC, on different types of roundabouts (e.g, single-lane, two-lane) 

with and without surrounding HDVs. The results demonstrate that DRF-SVO-MPCC 

outperforms the other controllers, achieving smoother trajectory tracking and better handling 

of challenging driving conditions. Furthermore, this thesis investigates the effects of different 

driving styles, such as prosocial and egoistic behaviours, on AV planning. The findings indicate 

that the DRF-SVO-MPCC algorithm can generate different driving styles while maintaining 

safety, potentially enabling AVs to adapt their behaviour based on the prevailing social context. 

Extensive testing results demonstrate the proposed model’s robustness and its superior 

performance compared to baseline methods, particularly the AVs using DRF-SVO-MPCC can 

dynamically adjust their behaviour, prioritising safety and social considerations while 

optimising their own benefits. Overall, Chapter 9 highlights the effectiveness of the model-



Chapter 10 – Discussion, conclusions, perspectives, and recommendations 255 

 

based DRF-SVO-MPCC algorithm in enabling AVs to navigate mixed-traffic environments 

both safely and in a socially responsible manner, paving the way for further advancements in 

social-aware automated driving systems. 

10.3.2 Discussion of limitations and recommendations 

While the methods developed in this thesis primarily focus on controlling a single AV, they can 

be customised and upgraded for the planning and control of multiple AVs simultaneously. This 

scalability is crucial for future urban mobility scenarios where fleets of AVs will operate in 

tandem to optimise traffic flow and ensure safety.  

Furthermore, the current model-based approach only focuses on the interaction between one 

AV and one HDV, it is imperative to recognise the intricate nature of real-world traffic situations, 

particularly in densely congested urban environments. In such dynamic settings, multiple 

interactions between AVs and HDVs must be comprehensively considered to ensure smooth 

and safe navigation. For real-world urban applications, the inclusion of other road participants, 

such as cyclists and pedestrians, is indispensable. Integrating these diverse elements, especially 

vulnerable road users, into automated driving systems is essential for creating holistic solutions 

that cater to the complexities of urban traffic scenarios, prioritising safety, efficiency, and 

benefits for all road users.  

In addition to the current separate implementation of model-based and learning-based 

approaches in this thesis, future endeavours are advised to integrate these methodologies 

simultaneously into a unified framework. By combining model-based and learning-based 

techniques, a synergistic approach can be achieved, leading to the development of more robust 

and adaptive automated driving systems. The integration of these approaches holds the potential 

to capitalise on the strengths of both methodologies: Model-based techniques offer a structured 

and rule-based framework for decision-making and control, leveraging explicit models of the 

environment and vehicle dynamics; On the other hand, learning-based methods, particularly 

deep reinforcement learning approaches, excel in capturing complex patterns and behaviours 

from large datasets and intensive simulation, enabling adaptation to diverse, dynamic, and 

challenging environments. By merging these approaches, AVs can benefit from the precision 

and reliability of model-based planning and control, while also harnessing the adaptability and 

scalability of learning-based methods. This integration would facilitate the development of 

comprehensive systems capable of handling a wide range of traffic scenarios efficiently and 

safely, ultimately advancing the realisation of AVs in real-world settings. 

Lastly, for future research, there is a pressing need to transition towards the development of a 

unified driving model, as opposed to addressing individual driving manoeuvres on a case-by-

case basis. This shift in approach would entail the creation of a holistic framework that 

encapsulates diverse driving scenarios and behaviours within a singular, comprehensive model. 

A unified driving model will promote consistency and coherence in the behaviour of AVs across 

various situations, thereby enhancing predictability and reliability. Furthermore, transitioning 

to a uniform driving model enables more efficient utilisation of resources and expertise in the 

development and testing phases. Rather than developing specialised algorithms for each 

specific manoeuvre or scenario, researchers and engineers can focus on refining a single, 

overarching model that encompasses the entire spectrum of driving tasks. Ultimately, by 

establishing a standardised framework that accommodates diverse real-world scenarios, the 
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adoption of a uniform driving model lays the foundation for safer, more efficient, as well as 

socially responsible and compliant automated driving solutions. 

10.4 Overall conclusions 

This thesis has made significant contributions to the field of automated driving, focusing on 

three key pillars: sensing and perception, anomaly detection, as well as planning and control. 

Through a combination of theoretical frameworks, methodological innovations, and data-driven 

empirical evaluations, the research presented herein has advanced our understanding and 

capabilities in developing safe, efficient, and socially compliant automated driving systems. 

To enhance the sensing and perception capabilities of AVs, this thesis introduces two novel 

hybrid spatial-temporal DNN architectures for vision-based lane detection, emphasising the 

integration of single-image feature extraction with spatial-temporal correlations among 

continuous images. These architectures, coupled with customised spatial-temporal attention 

mechanisms, self-supervised pretraining techniques, and tailored loss function, demonstrate 

remarkable performance improvements in lane detection accuracy and robustness across 

diverse driving scenarios. By leveraging the proposed methodologies, the thesis underscores 

the importance of enhancing spatial relation abstraction and spatial-temporal correlations 

simultaneously to bolster vision-based sensing and perception capabilities in automated 

vehicles. 

Furthermore, the thesis addresses the challenge of anomaly detection in automated driving 

applications through the extensive exploration of supervised, semi-supervised, and self-

supervised machine learning methods. From Transformer-based models for intelligent anomaly 

detection in lane rendering images to novel semi-supervised ML approaches for abnormal 

driving behaviour detection, the research offers valuable insights into enhancing the safety of 

driving. The findings highlight the efficacy of leveraging semi-supervised and self-supervised 

learning techniques to mitigate the reliance on extensive labelled datasets, paving the way for 

scalable and efficient anomaly detection solutions. 

Finally, to advance AVs’ planning and control, the thesis presents an integrated conceptual 

framework for socially compliant automated driving, emphasising bidirectional behavioural 

adaptation and the balance between AVs’ benefits and the needs of other road users. Model-

based and learning-based approaches for implementations on simulated environments further 

verify and extend these concepts, demonstrating the effectiveness of social-aware planning and 

control algorithms in navigating mixed-traffic environments safely, efficiently, and responsibly. 

Through comprehensive evaluations of deep reinforcement learning algorithms and the 

preliminary exploration of a unified driving model, the research showcases the potential of 

simulation-based learning approaches in optimising AV behaviours across diverse driving 

scenarios. Furthermore, the incorporation of social psychological factors, i.e., Social Value 

Orientation, enables a model-based implementation that accommodates different driving styles, 

e.g., prosocial and egoistic. The prosocial driving style allows AVs to navigate complex traffic 

scenarios while balancing their own safety and efficiency with the benefits of surrounding 

HDVs. This research represents an early but significant step toward implementing socially 

compliant automated driving, highlighting the importance of integrating social factors into AV 

decision-making to enhance acceptance and safety in real-world mixed-traffic environments. 
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Limitations and Recommendations: 

While the research presented in this thesis represents significant advancements in the field, 

several limitations and opportunities for future research have been identified. These include the 

need for more extensive datasets encompassing diverse driving scenarios, the exploration of 

domain adaptation techniques, and the integration of model-based and learning-based 

methodologies. Moreover, transitioning towards the development of a unified driving model 

and addressing the challenges of multi-agent interactions in complex urban environments 

remain critical areas for future investigation. 

Overall, this thesis makes substantial contributions to the advancement of automated driving 

technologies, spanning vision-based sensing and perception, anomaly detection, and planning 

and control. By integrating innovative methodologies with rigorous empirical evaluations, the 

research presented herein lays the groundwork for developing safer, more efficient, and socially 

responsible automated driving systems. Moving forward, continued interdisciplinary research 

efforts are essential to address the remaining challenges and realise the full potential of 

automated vehicles in transforming the future of transportation. 

10.5 Implementations and recommendations 

The methods, findings, and contributions outlined in this thesis offer valuable insights and 

recommendations for various stakeholders involved in the development, implementation, and 

regulation of AVs in mixed-traffic environments. To be specific, the following implementation 

strategies and recommendations are proposed: 

(1) Integration of Advanced Deep Learning Based Sensing and Perception Technologies: 

Original Equipment Manufacturers (OEMs) and automotive technology developers are 

encouraged to integrate advanced deep learning based sensing and perception technologies, 

such as the hybrid spatial-temporal DNN models with spatial-temporal attention mechanism 

developed in this thesis, into their vehicles. These models, along with the proposed self-

supervised pretraining method and customised loss function, can significantly enhance 

vision-based sensing and perception capabilities, improving accuracy while reducing model 

complexity. By incorporating these technologies, OEMs can enhance the perception 

capabilities and pave the way for safer and more reliable AVs. 

(2) Enhanced Road Maintenance Practices: Road maintenance operators are encouraged to 

adopt the developed lane detection methods to streamline lane marking inspection and 

maintenance processes. Automation or semi-automation of lane detection tasks can lead to 

cost savings, improved productivity, and enhanced road safety by ensuring clear and well-

maintained lane markings. 

(3) Adoption of Anomaly Detection Systems: OEMs and automotive safety stakeholders are 

advised to adopt anomaly detection systems for early detection and prediction of abnormal 

situations in vehicle systems and driving behaviour patterns. The semi-supervised, self-

supervised, and fully-supervised machine learning techniques for anomaly detection offer 

opportunities for predictive maintenance strategies and proactive interventions to mitigate 

potential risks. By implementing these systems, stakeholders can enhance overall system 

reliability and contribute to safer traffic flow and transportation systems. 
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(4) Implementation of Driving Monitoring Systems: Based on the developed abnormal driving 

behaviour detection methods, authorities and insurance companies should consider 

implementing monitoring systems in a privacy-protective way, e.g., under the General Data 

Protection Regulation (GDPR). These systems can support driver training initiatives, 

insurance pricing strategies, and accident prevention efforts. 

(5) Development of Socially Compliant AVs: Car manufacturers and AV developers should 

leverage the proposed conceptual framework for socially-compliant automated driving to 

design AVs that interact seamlessly with other road users. By systematically integrating 

social components (such as culture, social norms, and cues), driving styles (e.g., aggressive 

and defensive, selfish and prosocial), and bidirectional behavioural adaptation into AV 

design, manufacturers can ensure that AVs prioritise safety, efficiency, and social 

responsibility in their interactions with surrounding vehicles and other road users. 

(6) Considerations of Multi-Vehicle Interactions: This thesis primarily focused on one-and-

one interaction, i.e., one AV interacting with one HDV. In future studies, AV developers 

should prioritise the modelling and simulation of multi-vehicle interactions to address the 

complexities of mixed-traffic environments. Multi-agent reinforcement learning (MARL) 

techniques could be explored to enhance AVs’ decision-making capabilities in scenarios 

involving numerous interacting vehicles, such as roundabouts and urban intersections. This 

would ensure AVs can navigate cooperatively while minimising disruptions and risks. 

Additionally, the design of AVs should include adaptive algorithms capable of dynamically 

responding to the intentions and behaviours of multiple road users in real time. 

(7) Consideration of Vulnerable Road Users in the Design and Development: Ensuring the 

safety of vulnerable road users (VRUs), such as pedestrians and cyclists, is also paramount 

in the development of AVs. Advanced sensing technologies, such as LiDAR and thermal 

imaging, combined with predictive models of VRU behaviour, can enhance the ability of 

AVs to detect and respond to VRUs effectively. Incorporating ethical decision-making 

frameworks that prioritise the safety of VRUs is also essential. Collaboration with urban 

planners and traffic engineers is recommended to design infrastructure that accommodates 

VRUs alongside AVs, fostering safer and more inclusive transportation systems. 

(8) Unified End-to-end Research Framework: This thesis addresses various tasks utilising 

distinct datasets and diverse use cases. For future research endeavours, it is recommended 

to concentrate on an integrated setting, employing a consistent inclusive dataset, and 

progressing seamlessly from sensing and perception, anomaly detection, to planning and 

control, covering the entire spectrum of automated driving functionality. This approach can 

provide a comprehensive understanding and evaluation of AV systems within a unified 

framework, facilitating deeper insights and advancements in automated driving technology. 

To accomplish this, close cooperation with dataset providers such as OEMs and automated 

driving companies, e.g., Waymo, is imperative. Such collaboration ensures access to high-

quality, integrated datasets necessary for comprehensive research and development. 

(9) Multidisciplinary Research Cooperation: Collaboration across disciplines is crucial to 

advancing socially compliant automated driving. Multidisciplinary research cooperation 

among, e.g., engineering, human factors, social psychology, ethics, and urban planning 

experts, can provide valuable insights and solutions to complex challenges in AV 

development and deployment. 
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(10) Policy Formulation for AV Deployment: Policymakers are urged to develop 

comprehensive strategies and regulatory frameworks for the deployment of socially 

compliant AVs. By considering social factors such as culture, norms, and stakeholder 

engagement, policymakers can promote the equitable integration of AV technology into 

existing transportation systems while ensuring adherence to socially acceptable norms and 

behaviours. 

(11) Public Awareness and Engagement: Efforts should be made to increase public 

awareness and understanding of AV technology as well as its benefits and implications for 

transportation systems. By fostering informed dialogue and engagement among 

stakeholders, including human drivers, OEMs, and the general public, misconceptions and 

concerns surrounding AV technology can be addressed, paving the way for a smoother 

transition and widespread adoption and acceptance of AV technology in real-world 

environments. 

Overall, it is suggested that relevant stakeholders make reasonable plans for prioritising the 

implementation of these recommendations through collaborative efforts and strategic planning 

to foster the development of technologically advanced and socially responsible AVs. By 

strategically allocating resources and efforts to integrate these recommendations into existing 

frameworks, stakeholders can lay the groundwork for a future where automated vehicles play a 

pivotal role in shaping a safer, more efficient, more sustainable and inclusive transportation 

system. 
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Summary

As automated vehicles (AVs) gradually integrate into mixed traffic with human-

driven vehicles, this thesis addresses critical challenges during the transition 

era. It enhances AV capabilities in sensing and perception, anomaly detection, as 

well as planning and control. Employing spatial-temporal deep learning models, 

self-supervised pretraining methods with masked sequential autoencoders, and 

innovative social-aware decision-making strategies, this thesis aims to facilitate 

safe, efficient, and socially compliant automated driving, thereby advancing future 

transportation systems.
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