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ABSTRACT

This paper presents a condition-based treatment methodology for a type of rail surface defect called “squat”.
The proposed methodology is based on a set of robust and predictive fuzzy key performance indicators. A
fuzzy Takagi Sugeno interval model is used to predict squat evolution for different scenarios over a time
horizon. Models including the effects of maintenance to treat squats, via either grinding or replacement of
the rail, are also described. A railway track may contain a huge number of squats distributed in the rail
surface with different levels of severity. We propose to aggregate the local squat interval models into track-
level performance indicators including the number and density of squats per track partition. To facilitate the
analysis of the overall condition, we propose a single fuzzy global performance indicator per track partition
based on a fuzzy expert system that combines all the scenarios and predictions over time. The proposed
methodology relies on the early detection of squats using Axle Box Acceleration measurements. We use real-
life measurements from the track Meppel-Leeuwarden in the Dutch railway network to show the benefits of
the proposed methodology. The use of robust and predictive fuzzy performance indicators facilitates the

visualization of the track health condition and eases the maintenance decision process.

Keywords: Design of key performance indicators, railway track condition monitoring and maintenance,

interval fuzzy models.
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INTRODUCTION

During the recent years, a modal shift from road to rail has been promoted in Europe. The idea is to increase
the share of transport demand for mobility of people and freight. Reduce road traffic congestion, make
efficient use of the energy resources and tackle the major challenges of climate change. Major contributions
are needed in the optimal management of railway assets, evolving towards a more automated predictive
operation where functional assets are monitored. This includes all the important indicators such as
economical, safety and societal impacts, considering the perspective of both railway infrastructure manager

and users (Zoeteman 2001).

A typical set of railway assets is shown in Figure 1, and it includes the track, station, superstructure, sub-
structure, communication, catenary, control room, signalling system, rolling stock, barrier, security and
surrounding. In order to monitor and properly maintain the railway assets, it is necessary to measure the

evolution of important health condition indicators over time, also called key performance indicators (KPIs),

for each of the critical assets. For example, in the Figure 1, J,j;t (?) relates to the KPI for the health condition

of an asset called “Asset”, uniquely labelled as “label” at time t. In The Netherlands, the assets in the railway
network includes more than 3,000 km of track, 388 stations, being one of the densest networks in Europe. In
this network, the design of an optimal maintenance plan for all its assets is a challenging problem. To
optimally design the maintenance plans, infrastructure manager requires to provide crucial information of
each asset (Stenstrom et al. 2015), and maintenance decision making considering risk averse situations
(Rockafellar and Royset 2015). Thus, the optimal maintenance plan is a necessity because of the high
demand from users and government for a better quality of service, and the need of keeping costs as low as
possible.

Maintenance Performance Indicators evaluate the system performance and can be used to guarantee that

these assets operate at an acceptable level of functionality and safety. In Parida and Chattopadhyay (2007), a
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general systems framework is proposed using a hierarchical structure of multicriteria maintenance
performance measurements. In Ahren and Parida (2009), the same framework is applied to the case of
benchmarking railway infrastructures maintenance operations. Three different hierarchical levels are
proposed: strategic level for top management decisions, tactical level for middle management and functional
level for supervisors/operators. The general framework requires effective measurements of the health
condition of the assets considering that the different assets degrade with different rates due to the effect of
different exogenous sources. Particularly, the focus of this paper is to design robust and predictive fuzzy
performance indicators for health condition monitoring of railway tracks, considering a particular major type

of Rolling Contact Fatigue (RCF) called squat (see Li et al. 2015).
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Figure 1: Main components of railway infrastructures.

In The Netherlands over forty percent of the railway maintenance budget is allocated yearly to track

maintenance (Zoeteman and van Meer 2006; Zoeteman et al. 2014). The presence of RCFs accelerates track

degradation which negatively influences its health condition. It also increases the noise level that affects
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people living in the surroundings and in a worst case making a huge impact on safety as severe RCF’s can
result in derailment. For track maintenance to be effective, the planning should consider not only costs but
also the dynamics of RCFs. Complex interactions between environment, vehicles, wheels and track interface,
structure and also different behaviours under maintenance operation such as grinding and rail replacement
can be considered. In Patra et al. (2009) rail degradation is modelled by a time to failure function using MGT
(million gross tons) measurements and around 12 failure events, decision making is proposed in a Monte
Carlo simulation setting. The maintenance operations are modelled as different cost functions, including rail
grinding costs, track tamping costs, rail lubrication costs, among other maintenance operations. Stenstrom et
al., (2015) assess the value of preventive maintenance in comparison with corrective maintenance. The idea
is to analyse cost-benefit of using preventive maintenance including four different maintenance costs:
maintenance inspections, repair of potential failures, repair of functional failures and service/production loss.
In the case study for a Swedish railway line, the ten costliest railway sections are found to have three times
the tonnage compared to the sections with the lowest costs, and also the costliest sections experience 4.5
times more track failures. The conclusion is that the railway sections with the lowest total maintenance cost

have implemented more preventive maintenance actions.

In the literature, different studies have been carried out to present how a degradation model for tracks can
be embedded on asset management to facilitate maintenance plans. Track geometry measurements relying
on statistical analysis are used to capture the track degradation effect (Sadeghi and Askarinejad 2010;
Andrade and Teixeira 2011; Andrews 2012; Andrade and Teixeira 2012; Vale and Lurdes 2013; Nathanail
2014; Guler 2014; Weston et al., 2015). In those papers, different time-dependent degradation models are
proposed, they can all be used to improve maintenance interventions. Estimation of the track safety and
considering the probability of rail break has also been investigated (Schafer and Barkan 2008; Burstow et al.
2002; Sandstrom and Ekberg 2009). Detailed mechanical models can give many insights about the evolution
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of rail defects; however, the use of those models for maintenance planning operations require sophisticated
knowledge about the track and its operational conditions that are not always available or easy to obtain in
practice. Fuzzy logic has increasingly been used in different fields; in particular, in the ones where
uncertainties can influence the decision process. It is used to measure performance in different
infrastructures by predicting failure of components (Senouci et.al 2014; Sadiq et al. 2004), optimizing asset
condition (Xu et al. 2014; Wang and Liu 1997) and decision making (Khatri et al. 2011). In this paper, we
propose the use of interval fuzzy model to capture the most important dynamics of squats in railway
infrastructure, from the maintenance operation point of view. We aim to keep the prediction as simple as
possible, but suitable enough to ease decision making in practice. The use of key performance indicators
(KPIs) that are able to explicitly include the dynamics of the deterioration of the assets, together with an
appropriate set of scenarios for the principal sources of stochasticities that might affect their performance
are recommended. A fuzzy Takagi Sugeno (TS) interval model (Skrjanc, 2011; Nufiez and De Schutter, 2012;
Sdez et al., 2015) is calibrated using real-life data collected over years of field test and measurements. That
helps obtaining numerical models capable to predict squat growth over a time horizon under different

possible scenarios and under different maintenance decisions.

Based on the interval fuzzy models for squats, a condition-based methodology for rails is proposed using
different KPIs that are defined in a track-partition level which allows the grouping of defects located in a
given track partition. In this methodology, number and density of squats are considered over a prediction
horizon under three different scenarios, vis. slow, average and fast growth. Then, to facilitate visualization of
the track health condition and to ease the maintenance decision process, we propose a fuzzy global KPI
based on fuzzy rules for each partition that merges the different KPIs over prediction horizon and scenarios.
The methodology is evaluated with data from a Dutch railway track, relying on the use of technology based
Axle Box Acceleration (ABA) measurements, capable to detect the early stage squats on the rail (Molodova et
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al. 2014, Li et al. 2015). An introduction of the ABA measuring system is described in ABA based health
condition monitoring in railways, including background of the ABA measurement system and its application

in rail condition monitoring based on ABA.

Figure 2 shows the flowchart of the proposed methodology divided in three steps. In Step 1, relying on ABA
measurements, the health condition of the track and severity are estimated. A list of defects is assumed to
be provided by the detection algorithm. In Step 2, using interval fuzzy TS model, the growth of each detected
defect i is evaluated over time and different possible evolution scenarios are considered. Three models are
evaluated, with grinding, replacement and without maintenance. The idea is to see the consequences of the
maintenance operations on the detected squats for different scenarios over a prediction horizon. At the end,
in Step 3, a global fuzzy KPI is used to describe the condition at a track partition level, for a given travel
direction, left and right rails. The global fuzzy KPI at a partition, combines the effects of a vector of KPIs over

a prediction horizon, considering three most representative defect evolution scenarios.

The paper is divided as follows. In next section, the main elements of the ABA based detection methods are
presented. Next, fuzzy interval models for squats are presented for three cases: without maintenance, after
grinding and after replacement. After, different KPIs are defined at a track partition level in order to
aggregate the local dynamic behaviour of squats. Because of the number of scenarios and prediction horizon,
the fuzzy global KPI is proposed to facilitate decision making. Later, the numerical results and discussion are

presented. Finally conclusions and further research are discussed.
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147 g T :
148 Step 1 Real rail health condition
149 i Estimation of
: rail health i ABA measurements :
150 % condition based
: on ABA ¥ :
151 & - . . " :
: i Estimated rail health condition :
152 i F :
153 i : :
: ¥ Action
154 ¢ ¥ :
Step 2 i :
155 : H-
: Defect evolution :i| Replacement Defect growth without Grinding
156 E local models EE effect maintenance effect é
157 i ! :
: = Evolution scenarios :
158 i H ;
159 Step 3 Robust and predictive KPIs per partition
160 EGIobaI robust and \:
: predictive fuzzy :: :
161 KPI Fuzzy global KPI
162 Figure 2: flowchart of the proposed methodology
163

164  ABA BASED HEALTH CONDITION MONITORING IN RAILWAYS

165 a. BACKGROUND OF THE ABA MEASUREMENT SYSTEM

166  There are different methods to diagnose the condition of rail defects, including ultrasonic measurements,
167 eddy current testing, image recognition and guided-wave based monitoring among other technologies. Each
168  of them has different advantages and disadvantages. In this paper, we need a technology capable to detect

169 defects in an early stage, thus we consider the use of ABA measurements (Li et al. 2008; Molodova et al.
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2014). Li et al. (2015) investigated the feasibility of detecting early-stage squats using an ABA prototype. It is
reported that squats could be detected by analysing the frequency content of the ABA signals in the wavelet
power spectrum. In practice, the useful frequency band for early detection of squats ranges from 1000-2000
Hz and 200-400 Hz (Molodova et al. 2014). In the literature, it has been reported that ABA systems can be
employed to detect surface rail defects like corrugation, squats and welds in poor condition. The ABA system
offers the advantages of (1) having a lower cost than other types of detection methods, (2) it is easy to
maintain and (3) can be implemented in-service operational trains. Other significant advantages that ABA
offers over similar measurement systems are (4) the ability to detect small defects with the absence of
complicated instrumentation and (5) the ability to indicate the level of the dynamic contact force (Molodova

et al. 2015).

b. RAIL CONDITION MONITORING BASED ON ABA

In this study, we are users of the ABA detection methodology presented in Li et al. (2015) and Molodova et
al. (2014); thus, we assumed that a list of squats and their location are available. Let’s define the counter of
squat defects as i=1,2,...,Nyefects Where x;represents the position of the squat i. We define H(x,k) and L(x,k) as
the real rail condition and real squat length respectively, defined at position x and time step k. We only focus
on positions x; where squats are detected. To simplify the notation, we assume H,(k)=H(x,k) and Li(k)=L(x;k)

represent the severity and the length of squat i at time step k.

To systematically classify squats in terms of severity, we follow the terminology used in Smulders (2003), UIC
Code (2002) and Rail Damages (2001). The definitions of these three references are compatible to one
another. Although the transition between one class to the other is not always abrupt, we have defined fixed
values for those transitions according to our experience. Depending on the squat length L;(k), measured in
mm, the severity of the squat can be used to represent the health condition of the rail at location x; as

follows:

This material may be downloaded for personal use only.
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S if 0<L(k)<8
A if 8<L(k)<30
H(k)={ B if 30<L(k)<50
C if 50<L(k)<60 (1)
RC if  L(k)>60

where S refers to a seed squat, A is a light squat (A squat), B is a moderate squat (B squat), C is a severe squat
(C squat) and RC is a squat with risk of derailment. The boundaries were defined based on general guidelines
to classify squats. Figure 3 depicts an example of defects growths collected from field measurements in the
track Meppel-Leeuwarden. In the figure, x-axis represents kilometre position of the track where the squats
are located and y-axis indicates time in three different months, month 0 (moment of the measurement),
month 6 and month 12. In the diagram, A squats are drawn as circles and B squats are squares. Different
squats grow with different rates. In the average case, the track measurements show that it takes

approximately 9 months for a A squat of 20 mm to evolve into a B squat of 30 mm.

Time
steps L, (k)=24.1 L,(k)=20.14 L(=3521 L,(k)=16.82
H, (k)=A H,(k)=A H,(k)=B H, ()=A
- 0O 0 0O
k Q Q L ¢
| | | |
6 | | | I
I ! | 1
months L,(k+1)=26.2 L,(k+1)=24.89 L,(k+1)=37.75 L,(k+1)=17.15
H1(k+1)=A Hz(k+1)=A H3(k+1)=B H4(k+1):A
10 0 =0
| | | |
| | | |
6 1 1 | |
monthsl L,(k+2)=30.1 L,(k+2)=29.17 L,(k+2)=40.2 L,(k+2)=21.36
H,(k+2)=B H, (k+2)=A H,(k+2)=B H,(k+2)=A
k+2 ?'- | 0— | 0]
T T T T
125 X, Xy 127 X3 X4 129

kilometer position (km)

Figure 3: An example of defects evolution over time. The x axis is the kilometre position in the track, x; the

position of squat i, y axis is time every six months. In circles are A squats, squares are B squats.

In this study, the ABA measurements are used to develop a model for defect evolution. For each squat, the
related energy of the ABA is available using wavelet spectrum analysis and advanced signal processing
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methods (Molodova et al. 2014). Relying on the ABA measurement, the energy values of the ABA signals can
be calculated at every position x at time step k as E(x,k). From the energy signal, we are interested only in
those locations with squats, namely E;(k)=E(x; k). For using the energy of the ABA signal to predict the squat
length evolution, a correlation between the squat length and energy of the ABA signal was performed.
Photographs from track visits of several years are used to measure the lengths of the squats and to fit the

piecewise linear correlation model. The estimated length LAi(k) of squat i at time step k as function of the

energy value Ej(k) is given by:

gk (k)+q, if E,(k)<80

. g,E (k) +q, if 80<E(k)<170
Lk)= | @)
g.E (k) +q, if 170<E, (k)<300

g.E(k)+q, if  E(k)=300

where the slope of local linear functions is g,, m=1,..,4, and the bias ¢, , m=1,..4, are adjusted to the

specific track. For relation (2), we have been users of previous work of our group, Li et al. 2011, Li et al. 2015,
Molodova et al. 2015. In general, we can say that the correlation coefficient and residual standard get
affected by the speed of the measurement train. In this paper, we assumed that the measurement is done at
commercial speed as was done for the test measurement so far, and we have disregard segments that were

measured out of a reasonable range of speed.

A global view of the Step 1 of the methodology, estimation of track health condition based on ABA, is
presented in Figure 4. As shown in the figure, in order to estimate length Li(k), the energy value Ej(k) is
calculated using the ABA measurement. Hence, relying on the estimated squat lengths, the rail health

condition H(k) can be approximated. In the figure, a squat is detected with an energy value Ej(k)=145 m*/s*

the estimated squat length L (k) =43 mm and the estimated health condition I:I,.(k) =B.
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Signal
processing
—_—

Energy value

A

Evaluation of detection

performance

scale-averaged
wavelet power (SAWP)

Accelerometer

Figure 4: Global scheme of the main components of the Step 1: Estimation of track health condition based on

ABA

FUZZY INTERVAL MODELS FOR SQUATS
a. MAINTENANCE ORIENTED MODELS FOR SQUATS

Typically, maintenance slots in the Dutch railway network are decided based on long and short term planning
for preventive and corrective maintenance respectively. In the long term, the contractor should inform asset
manager at least one year before cyclic grinding for using the equipment needed. In the short term,
normally, the maintenance is performed when the squats are in the last stage of growth (C squat). Thus, a
predictive approach by employing well designed KPIs should aim to improve both short and long term
planning, (1) keeping a good balance between costs and health condition of the track, (2) simplify the design

of maintenance plan over the whole time horizon and (3) increase indirectly the track safety.
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The experimental results show that each squat can grow with different rates. The estimation of squat lengths
can be affected by the subjectivity of the human error. For instance, one source of uncertainty comes from
the fact that visually only the rusty area of the defects is used to measure length, while the defect might be
longer. Fuzzy systems can work under subjective environments. In the proposed methodology, the design of
the global fuzzy KPI deals with the subjectivity. The definition of a low or a big number of defects will depend
on the subjectivity of the inframanager, and on how this information is incorporated for maintenance
decision making. In order to generalize this characteristic, fuzzy confidence intervals can be used to capture
the stochasticities of different scenarios for the squat growth. The upper bound of the interval represents a
worst case scenario, while the lower bound represents a slow rate grow scenario. In the fuzzy interval
approach, the average behaviour is given by a Takagi-Sugeno (TS) fuzzy model. This is used to approximate
nonlinearities by smoothly interpolating affine local models. Each local model is involved in the global model
based on the activation of a membership function. According to literature, the identification of fuzzy interval
models is divided on three steps: clustering method to generate fuzzy rules, identification of the TS local
linear parameters (average model), and identification of the fuzzy variance for each rule (Skrjanc et al. 2004;
Skrjanc 2011). In this paper, we use the fuzzy interval approach proposed in Nunez and De Schutter (2012)
and Sdez et al. (2015), which includes Gustafson Kessel clustering, local identification of the linear
parameters and optimization of a parameter ¢ to adjust the width of the interval, minimizing both area of

the band and number of data points outside the band.

The general problem of interval defect evolution is as follows. Let’s consider different defect growth

scenarios h = h, h,, ..., h, ,timesteps t =k, k+1,k+2,....k+ N ,,and u (k) the maintenance action at

>

time step k. The prediction model for the growth of a squat can be written as:

B (k+1)= £} (LkLuh)), 3 e[x,x,,) e
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where Lﬁ’(k-i—l) is an estimation of length of the squat i located in the track partition j at the time step k+1

considering the scenario h. The model considers the effect of maintenance u (k) and the initial condition of

the squat L, (k) Depending on the location of the squat i, X, we use a local model corresponding to the

track partition j where the squat is located, x; € [xj,x. ) . We assume the dynamics for different squats are

j+l
similar if they are in the same track partition under the same scenario.

In this paper, three maintenance actions are considered, u (k) = {ul,uz, u3} , Where u; is without
maintenance, u; is grinding and us is replacement. Also three scenarios are evaluated, s = h,, h,, h,, where

h; represents slow growth, h, average growth and h; is fast growth scenarios.

b. DYNAMICS OF SQUATS WITHOUT MAINTENANCE

In the absence of maintenance, u(k)z u,, the prediction model for the average growth scenario, hy, is

formulated based on TS fuzzy model:

Lk +1) = £ (L (k) w) = £°(L, (k) = Zﬁ' i (L (KL, (F), @)

L,(k)=a,L(k)+b,, (5)

A (L (k
ﬁjr (Li (k) = Ms (6)

R

DA, (L (k)

where a, b

Jr

are the parameters of the fuzzy local model on rule r, ¥=1,2,..., N, and S (L (k)) is the

normalized activation degree of the rule r. In this paper we will use Gaussians to model the membership
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2
degrees, Ajr(Ll,(k))zexp(—O.ScN(Li(k)—cﬁ,wz) ), defined by parameters Ce and . given by the

2

Gustafson Kessel clustering algorithm.

Once the TS model is obtained, slow growth scenario and fast growth scenario are used as lower and upper

bound of the average growth scenario, l,hz (k+1), respectively. The equations can be defined as:

D k+) =7, (L) =Y B, € 0)(L, k) +a A, (L, (k) )

B e+)= £ )= Y8, ()1, 0)-a"A, (2, () ®

A, (L) =0, 14y, (0,9,) v,)" ©)

where L? (k+1) is the estimated growth length of squat i in time step k+1 in fast scenario, and L?l (k+1) is

estimated growth length in slow scenario, & ™ and a " are tuning parameters in the fast growth scenario

. . T r .
and the slow growth scenario respectively. Moreover, @,.@,., ¥, =|:Ll. (k),l] and o, are covariance

matrix, regression matrix and variance of the local model.

Figure 5 depicts the proposed fuzzy confidence interval model including 177 data points used to capture the
squat evolution in different stage of growth. A subset of the data used for analysis is included in Table 1. A
squats from 8 to 30 mm in length have no or shallow cracks. The B squats ranging from 30 to 50 mm grow
quickly. The B squats evolve to C squats when the network of cracks beneath the squat gets further spread. All

three stages are shown by reference photos of A squat, B squat and C squat in Figure 5.
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Figure 5: Interval fuzzy model for squat growth in the case study track.

Table 1: a subset of data used for squat analysis including defect position, km, and visual length, mm, at time k

and k+1
Squat | Position, km | Li(k), mm | Ly(k+1), mm | Squat | Position, km | Lij(k), mm | Ly(k+1), mm
1 104.8438 30.7260 34.7465 11 105.4613 22.8311 24.6695
2 105.1051 37.7420 40.5086 12 105.4953 19.5933 22.0216
3 105.1404 33.2264 37.0496 13 105.5827 14.5360 16.7962
4 105.2116 34.2207 37.7779 14 105.5852 19.5432 21.9787
5 105.3215 46.7870 49.1017 15 105.6353 11.0032 13.9019
6 105.3901 33.0151 36.8862 16 105.6591 25.1642 27.1955
7 105.4195 19.1797 21.6607 17 105.7462 15.4564 17.7552
8 105.4269 20.2236 22.5435 18 106.3105 28.7262 32.2116
9 105.4344 9.4918 12.4747 19 106.8735 55.1141 57.1707
10 105.4561 33.2798 37.0903 20 107.2845 17.8761 20.4044

c. RAIL GRINDING EFFECT
Squats can be effectively treated by grinding when they are in early stage of growth. Cyclic rail grinding keeps
control of not only maintaining the rail profiles but to plan track maintenance efficiently (Magel and Kalousek

2002). Figure 6 depicts squat growth before and after grinding where black points show those squats that did
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not disappear after grinding. As seen in the figure, some A squats are located in the effective zone of grinding
such that these squats have a zero length after grinding. Those A squats that are imminent to become B squats
are located in the ineffective zone for grinding as well as B squats and C squats. Moreover, three growth
scenarios in the effective zone are specified to capture the squat evolution rate. Even though grinding severe
squats postpones rail replacement, it could accelerate squat evolution as the cracks are not totally

disappeared.

60 T ? T T T
= = Slow scenario .

50 || = Average scenario |; Ineffective i
c — Fast scenario zone for
£ i grinding
o 401
c
=
£
@ 30
2
®
= 201 _
+ Effective
s zone for

10 grinding

0 1
0 10

Li(k), before grinding, mm

Figure 6: Squat growth before grinding and after grinding classified in two effective and ineffective zones for

grinding operations. In this case, the depth of the grinding was around 1.0 mm.

The growth model for squat i by considering grinding effect can be expressed as:
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L(k)< Leg - Effective zone for grinding (10)

'k+1)=
Ze(L(k)-LY)  L(k)>LY Ineffective zone for grinding

where LG"/f is the critical squat length that estimate effectivity of grinding, LG"/f is around 20mm in Figure 6

h
G

for a grinding depth of 1.0 mm, z” is the slope of the linear model in the ineffective zone for grinding for

different scenarios h, slow, average and fast growth scenarios.

d. RAIL REPLACEMENT EFFECT

When the squat severity becomes worse and cracks are grown considerably, grinding is not efficient
anymore. Therefore, replacement is the only solution. As replacing a piece of rail takes time and it is costly,
an optimal decision making for when and where the rail should be replaced is important. Higher rail (larger
radius) and low rail (smaller radius) have different degradation behaviours (Patra et al. 2009), thus usually
only the most needed rail is replaced. Rail replacement is performed using welds to connect the new rail with
the old one. After replacement, the rail surface defects will totally disappear by the installation of new rail
whereas development of new squats will depend on various factors, like track conditions, MGT, and other
different factors. In the case of the welds, because they are composed by materials with different properties

than the rails, they are prone to squat defect appearance (Lewis and Olofsson 2009).

Figure 7.a and 7.b show squat growth before and after rail replacement. Figure 7.a shows the squat growth
between welds where all the squats will disappear after replacement. The model assumes that no squats will
appear during a long horizon by considering that new developed squats can be detected in the next
measurement campaign. Figure 7.b shows squat growth on the welds a period after replacement. The exact
time instant when the growth starts is related to quality of the weld. This means that for those welds that

have good quality, the starting point would be much later.
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In the case of between welds, the squat length after replacement is equivalent to zero during a time horizon

N, . The growth model on the weld can be expressed according to the time N,, when squat can appear.

Before time k + N, no squat is present in the weld, while at k‘i'N2 +1 the squat will start to appear and

evolved based on the proposed growth scenarios.

L (x, k+1)=0 t=1,2,.. N, ,h=h,h,h (11)
Li(x,, k+1)=0 t=1,2,..,N,,h="h,h,h,

LTS(AL[) l_f h — hl (12)
Li(x, k+N, +1)=4 f"(AL) if h=h,

FBALY i h=h

where X, is some position between the welds, x,, is the location of the weld, and AL; is small value that

triggers the growth when the squat i starts evolving at the thermite weld at time instant k‘i‘Nz +1. After the

squat appears, the interval fuzzy model will capture its evolution over time.

60 T T T T T 40 T T T T T
\:IBefore rail replacement 35F [CIFuzzy interval
sor === After rail replacement - = = Slow scenario .
£ 1S 30 | Average scenario
E» E' Fast scenario
= 40 = S
% % 251 ftﬁtartlng ttlmth
~ - of the squat gro
- 30 = ool quat g
< <
‘g'a IS)
S 5 & 157 Rail replaced ]
© ® at month 0
= S 10¢ i
o
n 10 (]
51 i
Y il i is—— 0 T T 7 . . b
5 10 15 20 25 30 35 40 45 0 10 20 30 40 50
Squat length, L,(k), mm Time. month
(a) (b)

Figure 7: (a) After rail replacement with a piece of new rail free of damage, the length of squats L, (k+1) will

become zero no matter their initial length L (k) ; (b) on welds after rail replacement a squat is prone to

appear.
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KPIs FOR RAIL HEALTH CONDITION

KPI DESCRIPTION

The monitoring of the evolution of a single squat might not be practical from the maintenance perspective.
Aggregated information over bigger track partitions can facilitate infrastructure manager decision over the
maintenance plans. In the case of squats, we propose key performance indicators (KPI’s) considering the
number of A, B and C squats and the number of squats with potential risk of rail break called RC squats, at
different time t and different growth scenario h. Moreover, as significant number of B and C squats near to

each other indicate a high potential risk to track safety, a KPI is proposed relying on a measure of density of

squats B and C. Let’s assume the function 5;& (x,k) is provided by the ABA detection algorithm, for the

current instant of measurement k. The function equals to 1 if a squat type d e {A,B,C,RC} is located at
position x, instant k, partition j and growth scenario h and equals to zero otherwise. Used as initial condition,
and relying on the interval fuzzy model, it is possible to predict 5:,]‘ (x,t) for any time horizon, t=1,...,N,. The

growth of new squats during the prediction horizon is not considered in this work, because we assume that
new squats will be detected in the next measurement campaign at instant k+1, where the models can be
updated according to the new conditions. The KPIs of squat numbers at partition j, instant t, scenario h, can

be expressed as:

i, ()= Z S, (x,1)

x€| X; Xy

M= 2, 8060

xe[xj ,xﬁl)

=D &0 1)

XE|:Xj ’fo)

v®= 3 &(x0)

XE[ XX
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Also, to estimate density of B and C squats d,ff(X,Z) , a window is defined around the coordinate x (in this
paper, the window is 50 m in track length). The function dfc (x,t) equals the number of squats B or C in the
moving window [x—0.025,x+0.025]. The KPI density for partition j, instant t, and scenario h can be
defined as the area of the density function as follows:

2 4 (x1)

e (1) = o

Y1 7%

Let’s define a vector containing all the KPIs called y, (0 for partition j, instant t, and scenario h:

T
I, O =1L @0, ©O.35 0.7 O, 35 @) ] (15)

where ij(t),yij(f), y,fj(t),y,ff(t) and y,fﬁc(t) are the number of A squats, B squats, C squats, RC

squat and the density of B squats C squats, respectively. Due to the large number of KPI’s obtained in terms
of all the growth scenarios and predictions over time, we propose two simple steps to include the effect of

the trajectories of the KPIs into one global KPI:
Step 1: First, transform the vector Vi (0 for each partition j, scenario h and instant t, into a single

KPI using a fuzzy expert system yfj (1) = frtarmdani (y;{j (t),y,ij (t),y,ij (t),y,ii (t),y,fﬁc (t)) .

Step 2: Then, aggregate the single KPI over the set of scenarios and over the prediction horizon, for

each partition j. This results into a single global KPI for the current instant k, Jf“”(k) :

TFN ) = fragegme (V3 B 9k Nyt ()it (K +N,))  (16)
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Mamdani fuzzy KPI

For Step 1, a Mamdani fuzzy expert system is used to calculate a single KPI (Mamdani and Assilian 1975).
Even though the Mamdani fuzzy system approach was proposed more than 40 years ago, it is still popular
because of its simplicity and interpretability (Camastra et al. 2015; Rezaei el al. 2015; Ozgur 2013). In this
case, 32 fuzzy if-then rules are generated. The aim is to assign membership degree to each KPI to represent

the contribution of each KPI in the rail health condition:

If yZ ) is A'and y,‘z () is A and y,f ;) is Aland yﬁf(t) is A and y,fﬁ.c(t) is A
then yfj @) isG"

where 4, 4,, A, A,, A and G" are the membership functions for rule r and yfj(t) is the output

Mamdani KPI. The KPIs are first normalized, then Gaussian membership functions are used to fuzzify the KPIs.
Also, to defuzzify, centre of gravity method is applied in order to obtain crisp value at the end. Furthermore,
relying on the fuzzy rules, interdependency of KPIs and Mamdani KPI are captured as shown in Figure 8. In
this figure, it is presented how Mamdani KPlI models the influence in the health of the track of two KPIs,
varying from fully healthy (equals to zero) to completely unhealthy (equals to one), while all the other KPIs
are assumed to be fully healthy (equals to zero). Four plots are presented. In Figure 8(a), a higher value for
the BC density is much relevant than the contribution of the number of B squat. In Figure 8(b), a high number
of C squats makes the most significant impact on the rail health condition. The rail condition will get highly
unhealthy with high values of either density of the BC squats or number of C squat. In Figure 8(c), a high
number of RC squats will influence much strongly on the health condition than the number of A squats. In
the last plot, Figure 8(d), a high number of A squats or B squats will not have strong influence in the short
term (the condition moves between the values 0.28 to 0.37). However, the number of B squats effects more
negatively the rail health condition than the number of A squats. In Figure 8, appears the intuitive fact that

rail condition gets worse with the increasing number of squat from A, B, C to RC.
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Figure 8: Interdependency of KPIs over Mamdani KPI, y,}fj (1).

In general, number of A squats will not have significant impact on the current rail health condition. However
in the long term, if not ground, A squats will evolve into severe defects. In order to capture this and other
dynamic effects, the prediction model is used, and the global KPI is calculated over time and under different

scenarios.

c. FUZZY GLOBAL KPI

Relying on defined Mandani KPls yjf}. (¢), a fuzzy global indicator is calculated to give a KPI over growth

scenarios in partition j:
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k+N,

Z w, .wt.y,fflj (®)

he{hl hy ,/13} t=k

JjRail (k) — (17)

il
where Jf‘" (k) is fuzzy global indicator, W, is growth weight per scenario and W, is a weight exponentially

showing time effect on the KPIs. In this way, we aggregate different KPIs into a single one, that captures

together stochasticities and evolution over time.

NUMERICAL RESULTS
a. FUZZY CONFIDENCE INTERVAL

This section summarizes the simulation results to predict the squats length. A data set of squat lengths
collected from different track visits are used to evaluate performance of squat growth model. Identification
data and validation data for the interval fuzzy TS model are selected randomly, using 60% of the data for
identification and 40% for validation (see Figure 9).

To optimize number of clusters, models from two to ten clusters are tested. For each number of cluster, the
root mean square (RMS) of the prediction error is used to determine the best model. During the training,
tuning parameters of the confidence interval fuzzy model are considered the same for the lower and upper
fuzzy bounds. The idea is to obtain optimum parameter a, that results into a minimum number of data points
outside the band whereas the band is as narrow as possible. Figure 10(a) depicts the Pareto front of the
normalized area of the band versus the normalized number of data points outside the band ranging a from 0
to 40. Figure 10(b) shows how a behaves in terms of area of the band. As shown in the Figure 10(b), the area
will reach maximum value if a equals to 32.

In reality, the variance of the worst case scenario is much larger than the best case scenario; thus the

assumption of a fixed a must be relaxed. Using full trajectories of different squats, ad-hoc & " and a ™

This material may be downloaded for personal use only.
Any other use requires prior permission of the American Society of Civil Engineers 23



457

458

459

460

461

462

463

464

465

466

467
468

Please cite as: A. Jamshidi, A. Nufiez, R. Dollevoet, and Z. Li, “Robust and predictive fuzzy key performance indicators for condition-
based treatment of squats in railway infrastructures”. Journal of Infrastructure Systems, Volume 23, Issue 3, September 2017.
DOI: 10.1061/(ASCE)IS.1943-555X.0000357
Find published version at www.ascelibrary.org

were obtained to better fit the dynamics. The use of interval fuzzy model for prediction is presented in Figure
12, with a selected a=1.5 from the Pareto front, and modified parameters o« =0.32-«, and
a™ =1.7-«a . The squat length starts from a small defect in 8 mm to a severe squat in 60 mm. An important
characteristic is when the predictive model reaches the highest bound 60 mm. This happens for squats of 48
mm for the one-step ahead prediction (within 6 months), and it will happen for squats of 18 mm in the case
of four-step ahead prediction (within 24 months). For testing purposes, we have evaluated this model with
another data set of the trajectories presented in Li et al. (2010). All of them are contained within the interval

model.
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Figure 9: Validation and identification data for the squats length.
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Figure 11: Interval fuzzy model predictions, one, two, three and four steps-ahead.
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b. FUZZY GLOBAL KPI FOR TRACK HEALTH CONDITION

The full track of the Meppel-Leeuwarden is used to show the proposed methodology. The Figure 12 shows a
simple map of the track and the four partitions j;, j, j3 and j;. The partitions can be adapted according to the
maintenance plans or other design considerations. The partitions in this paper, are all around 10 kilometres

long, except the last one which is 15 kilometres long. Meppel is in kilometre at 105, Leeuwarden is at 150,

the partitions are defined between the kilometres: x, =105, x, =115, x =125,x =135 and x, =150.

g

Leeuwarden

Figure 12: Schematic track map between two stations, Meppel and Groningen, divided into four partitions, j;,

jZl j3l and j4

Figure 13 shows the different KPIs squats number over four step-ahead prediction when no maintenance is
performed. All the cases are calculated for the scenarios slow (in blue), average (in yellow) and fast (in red).
In Figure 13(a), the number of A squat tends to get reduced over time, as they are becoming B squats. In
Figure 13(b), the number of B squat increases because of the A squats becoming B squats, but after t=12, the

number of B squat decreases as most of them are becoming C squat. When no corrective maintenance is
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performed, it can be seen from Figure 13(c) that after t=12, huge number of C squats are in the track (worst
case scenario), which is a very expensive situation as the only solution will be to replace the rails. In Figure
13(d), it is possible to see the moment when operational risk locations start to appear, indicating that

maintenance should be done before the worst case scenario indicates their appearance.
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(c) (d)
Figure 13: Squat number KPIs for the slow, average and fast growth scenarios in the absence of maintenance

operation, (a) number of A squat, (b) number of B squat, (c) number of C squat and (d) number of RC squats.

Figure 14a shows how potential risk squats will start to appear over time. Figure 14b shows the KPI related to
density of B and C squats. As seen in Figure 14a, the first squats with high potential risk of derailment, RC

squats, appear for the worst case scenario at t=12, in four kilometre positions {130.9,132.0,132.5,133.0} .
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Three of those four locations were already detected at t=0 in Figure 14b, while all of them are already
present in the B-C squat density signal at t=6 for all the scenarios. It means that within the first 12 month, the

infrastructure manager is expected to take actions, to prevent risk of derailment.
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Figure 14: For track position between 130.5 and 133.5km, predictions over 24 months and three scenarios

for: (a) Potential risk locations, (b) B-C squats density.

The Figure 15 collects all the scenarios and the signals over the whole prediction horizon, to indicate a single

global fuzzy KPI for each track partition. Three cases are considered, no maintenance, grinding at t=0, and

local rail replacement at t=0 for each severe squat. Maintenance considerably can improve the rail health
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condition, but to be fully efficient a combination of both grinding and replacement is necessary. After the
maintenance operations, the condition is in the average condition range, where the potential risk of
derailment is considerably lower during the prediction horizon. The following result allows the infrastructure
manager to decide how to manage the rail in the future at each track partition. As in the case of the absence
of maintenance operation, a cost of zero Euro with the clear consequence of the bad rail health condition. In
the case of the grinding effect and the replacement effect, the results can be applied as an effective factor

for cost analysis of the track maintenance plan.

'| I No maintenance |~~~ - TooTooToToTooo
1 1 Grinding [ CCCCIoIICCCoIIICCooIIIIIoIIIIE
- BB Replacement - -----oooooooooooooooooooo oo
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Partition

Figure 15: Fuzzy global KPls

CONCLUSION AND FUTURE RESEARCH

In this paper a condition-based monitoring methodology is developed for a type of surface defect in the rail
called “squats”. This methodology is employed to construct an interval-based TS fuzzy prediction modelling
in order to monitor the track condition over maintenance time horizon per track partition.

The idea of using fuzzy interval is to capture all the possible growth scenarios. Based on the interval fuzzy

models for squats, a condition-based methodology for railway tracks is proposed using different KPIs defined
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in a track-partition level, allowing the grouping of defects located in a given track partition. In the
methodology, number and density of squats are considered over a prediction horizon under three different
scenarios, slow, average and fast growth. Then, to facilitate visualization of the rail health condition and to
ease the maintenance decision process, we propose a fuzzy global KPI based on fuzzy rules for each partition,
that combine the different KPIs over prediction horizon and scenarios. Hence, the proposed methodology
adds value by defining fuzzy global KPIs which are predictable over time to facilitate maintenance decision
making of the rail. As an example, the KPIs obtained are presented for the track Meppel-Leeuwarden.

As a further research, the study will be oriented into an optimization-based methodology to reduce life cycle
costs effectively and to fit the methodology much closely to the real-life maintenance operations. The use of
new predictive and robust KPIs defined for different parties will be considered, including infrastructure

manager, rolling stock manager, contractors and users.

ACKNOWLEDGEMENTS
Research sponsored by the NWO/ProRail project “Multiparty risk management and key performance
indicator design at the whole system level (PYRAMIDS)”, project 438-12-300, which is partly financed by the
Netherlands Organisation for Scientific Research (NWOQO) and by the Collaborative Project H2020-MG-2015-
2015 GA-398 636237b Needs Tailored Interoperable Railway - NeTIRail-INFRA. We also thank Meysam

Naeimi for the discussions about the effect and modelling of grinding.

REFERENCES

Ahrén, T., and Parida, A. (2009). “Maintenance performance indicators (MPIs) for benchmarking the railway

infrastructure: a case study.” Benchmark. Int. J., 16(2), 247-258.

This material may be downloaded for personal use only.
Any other use requires prior permission of the American Society of Civil Engineers 30



565

566

567

568

569

570

571

572

573

574

575

576

577

578

579

580

581

582

583

584

585

586

Please cite as: A. Jamshidi, A. Nufiez, R. Dollevoet, and Z. Li, “Robust and predictive fuzzy key performance indicators for condition-
based treatment of squats in railway infrastructures”. Journal of Infrastructure Systems, Volume 23, Issue 3, September 2017.
DOI: 10.1061/(ASCE)IS.1943-555X.0000357
Find published version at www.ascelibrary.org

Andrade, A. R., and Teixeira, P. F. (2011). "Uncertainty in Rail-Track Geometry Degradation: Lisbon-Oporto Line Case

Study." J. Transp. Eng., 10.1061/(ASCE)TE.1943-5436.0000206, 193-200.

Andrade, A. R., and Teixeira, P. F. (2012). “A Bayesian model to assess rail track geometry degradation through its life-

cycle.” Res. Transport. Econ., 36(1), 1-8.

Andrews, J. (2012). “A modelling approach to railway track asset management. Proceedings of the Institution of

Mechanical Engineers.” P. I. Mech. Eng. F-J. Rai., 227(1), 56-73.

Burstow, M.C., Watson, A.S., and Beagles, M. (2002). “Application of the whole life rail model to control rolling contact

fatigue.” Proc., Int. Conf. of Railway Engineering, London.

Camastra, F., Ciaramella, A., Giovannelli, V., Lener, M., Rastelli, V., Staiano, A., and Starace, A. (2015). “A fuzzy decision
system for genetically modified plant environmental risk assessment using Mamdani inference.” Expert Syst.

Appl., 42(3), 1710-1716.

Guler, H. (2014). “Prediction of railway track geometry deterioration using artificial neural networks: a case study for

Turkish state railways.” Struct. Infrastruct, E., 10(5), 614-626.

Khatri, K., Vairavamoorthy, K., and Akinyemi, E. (2011). "Framework for Computing a Performance Index for Urban

Infrastructure Systems Using a Fuzzy Set Approach." J. Infrastruct. Syst., 10.1061/(ASCE)IS.1943-555X.0000062, 163-175.

Kisi, O. (2013). “Applicability of Mamdani and Sugeno fuzzy genetic approaches for modeling reference

evapotranspiration.” J. Hydrol., 504, 160-170.

Lewis, R., and Olofsson, U. (Eds.). (2009). Wheel-rail interface handbook, Woodhead publishing limited, Cambridge, U.K.

Li, Z., Dollevoet, R., Molodova, M., Zhao, X. (2011). “Squat growth—Some observations and the validation of numerical

predictions.” Wear, 271(1-2), 148-157.

Li, Z., Molodova, M., Nuiiez, A., and Dollevoet, R. (2015). “Improvements in axle box acceleration measurements for the

detection of light squats in railway infrastructure.” IEEE T. Ind. Electron., 62(7), 4385-4397.

This material may be downloaded for personal use only.
Any other use requires prior permission of the American Society of Civil Engineers 31



587

588

589

590

591

592

593

594

595

596

597

598

599

600

601

602

603

604

605

606

607

608

Please cite as: A. Jamshidi, A. Nufiez, R. Dollevoet, and Z. Li, “Robust and predictive fuzzy key performance indicators for condition-
based treatment of squats in railway infrastructures”. Journal of Infrastructure Systems, Volume 23, Issue 3, September 2017.
DOI: 10.1061/(ASCE)IS.1943-555X.0000357
Find published version at www.ascelibrary.org

Li, Z., Molodova, M., Zhao, X., and Dollevoet, R. (2010). “Squat treatment by way of minimum action based on early

detection to reduce life cycle costs.” Proc., of the Joint Rail Conf., Urbana lllinois.

Li, Z., Zhao, X., Esveld, C., Dollevoet, R., and Molodova, M. (2008). “An investigation into the causes of squats—

correlation analysis and numerical modeling.” Wear, 265(9), 1349-1355.

Magel, E.E., and Kalousek, J. (2002). “The application of contact mechanics to rail profile design and rail

grinding.” Wear 253(1), 308-316.

Mamdani, E.H., and Assilian, S. (1975). “An experiment in linguistic synthesis with a fuzzy logic controller.” Int. J. Man.

Mach. Stud., 7(1), 1-13.

Mohammad, R., Mostafa, A., Abbas, M., and Farouq, H. M. (2015). “Prediction of representative deformation modulus

of longwall panel roof rock strata using Mamdani fuzzy system.” Int. J. of Mining Science and Technology, 25(1), 23-30.

Molodova, M., Li, Z., Nufiez, A., and Dollevoet, R. (2014). “Automatic detection of squats in railway infrastructure.” IEEE

T. Intell. Transp., 15(5), 1980-1990.

Molodova, M., Li, Z., Nufiez, A., and Dollevoet, R. (2015). “Parameter study of the axle box acceleration at squats.” P. I.

Mech. Eng. F-J. Rai, 229(8), 841-851.

Nathanail, E. (2014). "Framework for Monitoring and Assessing Performance Quality of Railway Network Infrastructure:

Hellenic Railways Case Study." J. Infrastruct. Syst., 10.1061/(ASCE)IS.1943-555X.0000198, 04014019.

Nufiez, A., and De Schutter, B. (2012). “Distributed identification of fuzzy confidence intervals for traffic

measurements.” Proc., 51st Annual Conf. on Decision and Control (CDC), Hawaii, 6995-7000.

Parida, A., and Chattopadhyay, G. (2007). “Development of a multi-criteria hierarchical framework for maintenance

performance measurement (MPM).” J. Qual. Mainten. Eng., 13(3), 241-258.

Patra, A. P., Séderholm, P., and Kumar, U. (2009). “Uncertainty estimation in railway track life-cycle cost: a case study

from Swedish National Rail Administration.” P. I. Mech. Eng. F-J. Rai, 223(3), 285-293.

This material may be downloaded for personal use only.
Any other use requires prior permission of the American Society of Civil Engineers 32



609

610

611

612

613

614

615

616

617

618

619

620

621

622

623

624

625

626

627

628

629

Please cite as: A. Jamshidi, A. Nufiez, R. Dollevoet, and Z. Li, “Robust and predictive fuzzy key performance indicators for condition-
based treatment of squats in railway infrastructures”. Journal of Infrastructure Systems, Volume 23, Issue 3, September 2017.
DOI: 10.1061/(ASCE)IS.1943-555X.0000357
Find published version at www.ascelibrary.org

Rail Damages, (2001). “The Blue Book of RailTrack.” U.K.

Rockafellar, R., and Royset, J. (2015). "Engineering Decisions under Risk Averseness." ASCE-ASME J. Risk Uncertainty Eng.

Syst., Part A: Civ. Eng., 1(2).

Sadeghi, J., and Askarinejad, H. (2010). “Development of improved railway track degradation models.” Struct.

Infrastruct. E., 6(6), 675-688.

Sadig, R., Rajani, B., and Kleiner, Y. (2004). "Fuzzy-Based Method to Evaluate Soil Corrosivity for Prediction of Water

Main Deterioration." J. Infrastruct. Syst., 10.1061/(ASCE)1076-0342(2004)10:4(149), 149-156.

Sdez, D., Avila, F., Olivares, D., Cafiizares, C., and Marin, L. (2015). “Fuzzy prediction interval models for forecasting

renewable resources and loads in microgrids.” IEEE Trans. Smart Grid, 6(2), 548-556.

Sandstrom, J., and Ekberg, A. (2009). “Predicting crack growth and risks of rail breaks due to wheel flat impacts in heavy

haul operations.” P. I. Mech. Eng. F-J. Rai, 223(2), 153-161.

Schafer, D., and Barkan, C.P. (2008). “A prediction model for broken rails and an analysis of their economic impact.”

Proc., of the AREMA, Salt Lake, UT.

Senouci, A., El-Abbasy, M., and Zayed, T. (2014). "Fuzzy-Based Model for Predicting Failure of Qil Pipelines." J.

Infrastruct. Syst., 10.1061/(ASCE)IS.1943-555X.0000181, 04014018.

Skrjanc, I. (2011). “Fuzzy confidence interval for pH titration curve.” Appl. Math. Model, 35(8), 4083-4090.

Skrjanc,l., Blazi¢, S., and Agamennoni, O. (2004). “Identification of dynamical systems with a robust interval fuzzy

model.”, Automatica, 41(2), 327-332. DOI: 10.1016/j.automatica.2004.09.010

Smulders, J. (2003). “Management and research tackle rolling contact fatigue.” Railway Gazette Int., 158(7), 439-442

Stenstrom, C., Norrbin, P., Parida, A., and Kumar, U. (2015). “Preventive and corrective maintenance—cost comparison

and cost-benefit analysis.” Struct. Infrastruct. E., 1-15.

This material may be downloaded for personal use only.
Any other use requires prior permission of the American Society of Civil Engineers 33



630

631

632

633

634

635

636

637

638

639

640

641

642

643

644

645

646

647

Please cite as: A. Jamshidi, A. Nufiez, R. Dollevoet, and Z. Li, “Robust and predictive fuzzy key performance indicators for condition-
based treatment of squats in railway infrastructures”. Journal of Infrastructure Systems, Volume 23, Issue 3, September 2017.
DOI: 10.1061/(ASCE)IS.1943-555X.0000357
Find published version at www.ascelibrary.org

Stenstrom, C., Parida, A., Lundberg, J., and Kumar, U. (2015). “Development of an integrity index for benchmarking and

monitoring rail infrastructure: application of composite indicators.” Int. J. Rail Transp., 3(2)-61-80.

UIC Code, (2002). “Rail Defects.” Int. Union of Railways, 4th ed., Paris, France.

Vale, C., and Lurdes, S. M. (2013). “Stochastic model for the geometrical rail track degradation process in the

Portuguese railway Northern Line.” Reliab. Eng. Syst. Safe, 116, 91-98.

Wang, K. and Liu, F. (1997). "Fuzzy Set-Based and Performance-Oriented Pavement Network Optimization System." J.

Infrastruct. Syst., 10.1061/(ASCE)1076-0342(1997)3:4(154), 154-159.

Weston, P., Roberts, C., Yeo, G., and Stewart, E. (2015). “Perspectives on railway track geometry condition monitoring

from in-service railway vehicles.” Vehicle Syst. Dyn., 57(7), 1063-1091.

Xu, J., Tu, Y., and Lei, X. (2014). "Applying Multiobjective Bilevel Optimization under Fuzzy Random Environment to
Traffic Assignment Problem: Case Study of a Large-Scale Construction Project." J. Infrastruct. Syst.,

10.1061/(ASCE)IS.1943-555X.0000147, 05014003.

Zoeteman, A. (2001). “Life cycle cost analysis for managing rail infrastructure.” E.J.T.I.R., 1(4), 391 - 413.

Zoeteman, A. and van Meer, G. (2006). “A yardstick for condition based and differential planning of track and turnout
renewal: A major step towards full decision support.” Proc., 7th World Cong. on Railway Research (WCRR2006),

Montreal.

Zoeteman, A,, Dollevoet, R., and Li, Z. (2014). “Dutch research results on wheel/rail interface management: 2001-2013

and beyond.” Proceedings of the Institution of Mechanical Engineers, P. I. Mech. Eng. F-J. Rai, 228(6), 642-651.

This material may be downloaded for personal use only.
Any other use requires prior permission of the American Society of Civil Engineers 34



