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Abstract
The phenomenological model for cell shape deformation and cell migration Chen (BMM 17:1429–1450, 2018), Vermolen 
and Gefen (BMM 12:301–323, 2012), is extended with the incorporation of cell traction forces and the evolution of cell 
equilibrium shapes as a result of cell differentiation. Plastic deformations of the extracellular matrix are modelled using 
morphoelasticity theory. The resulting partial differential differential equations are solved by the use of the finite element 
method. The paper treats various biological scenarios that entail cell migration and cell shape evolution. The experimental 
observations in Mak et al. (LC 13:340–348, 2013), where transmigration of cancer cells through narrow apertures is studied, 
are reproduced using a Monte Carlo framework.

Keywords Cell geometry · Cell migration · Cellular traction forces · Finite-element method · Agent-based modelling

1 Introduction

Cells may attain various shapes and sizes, for example, stem 
cells can differentiate and adopt the shape and functionality 
of many different cell types in our body: fan-like keratocytes, 
hand-shaped nerve growth cones and spindle-shaped fibro-
blasts Mogilner and Keren (2009), Robey (2017). It has been 
recognized that cell geometry influences cellular activities 
like cell growth and death, cell mobility and adhesion to 
the direct environment Barnhart et al. (2011), Keren et al. 
(2008), Massalha and Weihs (2016), Mogilner and Keren 
(2009), Saeed and Weihs (2019). The shape of a motile cell 
is determined by its boundaries, which dynamically vary 
with a local balance between retraction and protrusion 
Ebata et al. (2018). There are multiple constituent elements 

affecting the cell shape, for instance, the cytoskeleton and 
the cell-substrate adhesions, which have been studied in 
depth in the past years. However, it is still a great challenge 
to understand the mechanisms that determine the global cell 
morphology in the context of its function Keren et al. (2008), 
Mogilner and Keren (2009).

Signalling molecules play an important role in cell migra-
tion and cell shape. During wound healing, chemotaxis is 
one of the most important cues for migration of immune 
cells and fibroblasts in inflammatory and proliferative phases 
Koppenol (2017), Cumming et al. (2009), Enoch and Leaper 
(2008), Peng and Vermolen (2020). Metastasis of cancer 
cells can be induced by nutrients and oxygen, since tumour 
growth requires an adequate supply of oxygen and nutri-
ents. Under most pathological circumstances, oxygen and 
nutrients are supplied though the local blood vasculature 
Wek and Staschke (2010), Siemann and Horsman (2015). 
Commonly, signalling molecules are activated at the plasma 
membrane and de-activated in the cytoplasm. On the other 
hand, the concentration of signalling molecules determines 
the cytoskeletal dynamics Mogilner and Keren (2009).

In wound healing, cells migrate and change shape in both 
the epidermis and the dermis layers. Re-epithelialization is 
the most essential part for the skin to re-establish its barrier 
function Safferling et al. (2013), Singer and Clark (1999), 
Friedl and Gilmour (2009). However, the mechanisms of re-
epithelialization are poorly understood. In the early stage of 

 * Q. Peng 
 Q.Peng-1@tudelft.nl

1 Delft Institute of Applied Mathematics, Delft 
University of Technology, Mekelweg 4, 2628 CD Delft, 
The Netherlands

2 Computational Mathematics Group, Discipline group 
Mathematics and statistics, Faculty of Science, Hasselt 
University, Campus Diepenbeek, Agoralaan Gebouw D, 
3590 BE Diepenbeek, Belgium

3 Faculty of Biomedical Engineering, Technion-Israel Institute 
of Technology, 3200003 Haifa, Israel

http://orcid.org/0000-0002-7077-0727
http://crossmark.crossref.org/dialog/?doi=10.1007/s10237-021-01456-2&domain=pdf


1460 Q. Peng et al.

1 3

the epidermis closure in a wound, the basement membrane 
between the epidermis and dermis extends slightly over the 
ends of the incised dermis, creating an “extension mem-
brane” (or the so-called epidermal tongue) Rittié (2016). 
The mechanism of the occurrence of the epidermal tongue 
is still unclear. A possible explanation is that the supraba-
sal cells (which lie upon the layer of basal cells) form the 
tongue by migrating over the leading basal cells and de-
differentiating to basal cells (which are adhered to the base-
ment membrane between the epidermis and dermis) to form 
new leaders Safferling et al. (2013), Rittié (2016), Vermolen 
and Javierre (2011), Rousselle et al. (2019). When epider-
mal epithelial cells are “crawling” and “climbing up” to re-
establish the epidermis, they elongate and flatten Safferling 
et al. (2013). In the dermis, it has been widely documented 
that the differentiation of fibroblasts is one of the key events 
during wound healing. Differentiation changes the spindle-
shaped fibroblast to dendritic-shaped myofibroblasts. Sub-
sequently, cells’ mechanobiology is modified considerably 
as well. The differentiated myofibroblasts exert much larger 
forces on the extracellular matrix (ECM) than fibroblasts 
Peng and Vermolen (2020). Excessive numbers of myofi-
broblasts will result in contractures, which are morbid and 
pathological macro-scale contractions. Usually, contractures 
concur with disabilities and dysfunction and have a grave 
impact on patients’ daily life.

Cancer metastasis has been reported as the main reason 
of death in cancer patients Massalha and Weihs (2016). Dur-
ing the migration of a cancer cell to its destination, espe-
cially migrating through a narrow and stiff cavity, it has to 
deform to adapt to the obstacles. More invasive cancer cells 
appear be more pliable and dynamic both internally Gal and 
Weihs (2012) and externally Guck et al. (2005), Cross et al. 
(2007), Swaminathan et al. (2011) and thus able to adjust 
their cytoskeleton and morphology, which might provide a 
possible diagnosis for cancer. In addition to that, cancer cells 
are observed to apply a significantly larger traction force 
on the substrate, compared to benign cells Massalha and 
Weihs (2016), yet the specific mechanisms that induce these 
increased forces are still poorly understood.

Mathematical modelling has been proven to be an impor-
tant tool to have a deeper insight into many biological pro-
cesses that are potentially difficult to control in experiments, 
for example, wound healing and tumour growth. Depend-
ing on the scale of the observed domain, continuum models 
and agent-based models are widely used. Continuum models 
have the advantage of modelling a larger scale; however, 
the model neglects the individual cellular activity and cells 
are not tracked Vermolen and Gefen (2012). Agent-based 
model is suitable to model cellular activities of every cell, 
for instance, cell migration and cell deformation. Hence, an 
agent-based model is selected in this manuscript, and this 
work is an extension of Chen et al. (2018) and Vermolen 

and Gefen (2012). In Chen et al. (2018), a model of the 
deformation of both the cell and the nucleus is developed. 
Furthermore, a parameter sensitivity analysis is carried out 
on the basis of Monte Carlo simulations. However, the study 
in Chen et al. (2018) does not consider the traction forces 
applied by the cell and the impact on the substrates. Com-
pared to the work of Vermolen and Gefen (2012), we use 
finite-element methods to solve all the partial differential 
equations, rather than Green’s functions. Therefore, a more 
precise solution is delivered. Furthermore, we implement a 
more intricate approach to model the traction forces applied 
by cells in various applications. In addition to circular pro-
jections of cells in Chen et al. (2018) and Vermolen and 
Gefen (2012), we model elliptic and hypocycloid-shaped 
cells in this manuscript.

This manuscript is structured as follows: Sect. 2 explains 
the agent-based model of cell migration, in the form of a set 
of partial differential equations. Possible applications of this 
model and the corresponding numerical results are exhibited 
in Sect. 3. Finally, conclusions are shown in Sect. 4.

2  Mathematical modelling

In this manuscript, the phenomenological model of cell 
deformation is extended from the work in Chen et al. (2018), 
Vermolen and Gefen (2012), in particular, in two dimen-
sions. With essential biological assumptions and simplifi-
cations, the model mainly describes the impact of extracel-
lular components on the cell deformation and displacement. 
Subsequently, more applications can be developed, for 
instance, cell differentiation and cell repulsion. Different 
from the work in Zhao et al. (2020), where they also model 
the dynamics of intercellular adhesion by connecting a cer-
tain series of points inside the cell with elastic springs, the 
model in this manuscript neglects the intracellular environ-
ment; hence, it is not capable to present the Poisson’s effect 
of the cell.

The cell membrane is split into finite line segments by 
the nodal points, and the centre position of cell is deter-
mined by the mean of all the positions of the nodal points. 
The equilibrium shape of the cell is kept by a collection of 
springs, which connects each nodal point on the cell mem-
brane to the centre of the cell, respectively; see Fig. 1. For 
each nodal point, the displacement is determined by various 
mechanisms of directed motion and random turning Ebata 
et al. (2018), which will be discussed in details in the follow-
ing contents. Regarding different applications of this model, 
there will be some model adjustments.
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2.1  Concentration of generic signal

We assume that cell migration is mainly driven by chemo-
taxis (or mechanotaxis), which is commonly observed in 
wound healing and cancer cell metastasis with various types 
of signalling molecules. In wound healing, immune cells are 
directed to chase a bacterium or virus; high concentration 
of transforming growth factor-beta (TGF-beta) induces the 
migration of (myo)fibroblasts towards the wound from the 
uninjured skin Cumming et al. (2009), Enoch and Leaper 
(2008). Cancer metastasis is triggered by cancer cell prolif-
eration and cell migration. On a cellular level, chemotaxis or 
haptotaxis is an essential cue for cancer cell migration and 
hence for the dissemination of tumours Wek and Staschke 
(2010). Numerous studies indicate that the availability of 
oxygen and nutrients is one of most crucial factors for the 
growth of tumours Roussos et al. (2011). During tumour 
growth, the concentration of oxygen and nutrients depletes 
in the vicinity of the tumour Siemann and Horsman (2015). 
Therefore, cancer cells have a tendency to migrate towards 
regions with higher concentrations of oxygen and nutrients.

Point sources and forces are modelled by the use of 
Dirac delta distribution in a d–dimensional framework. Let 
𝛺 ⊂ ℝ

d be an open region, then this distribution is defined 
by the following two characteristics: 

1. �(x) = 0, for all x ∈ ℝ
d ⧵ {0};

2. ∫
�
�(x)dΩ = 1, if0 ∈ Ω.

The biophysical interpretation of the Dirac delta distribu-
tion is that the cell exerts force by the focal adhesion points. 
Since these points are many orders of magnitude smaller 
than the mesh size in the computational domain, we assume 
their sizes to be negligible. For this reason, we consider 
point forces by the use of Dirac delta distributions. Regard-
ing the chemical signal, which makes the cancer cells move, 

we consider a point source. This is just a working hypoth-
esis, since this could be changed to any type of source.

Together with the reaction-diffusion equation, the con-
centration of the signal is determined by:

where c(x, t) is the concentration of the signalling molecule, 
D is the diffusion rate which has been taken constant in the 
current study, k is the secretion rate of the signal source, xs is 
the position of the source, and v is the displacement velocity 
of the substrate that results from the cellular forces exerted 
on their surroundings. The velocity is computed by solving 
the balance of the momentum, which will be discussed in 
the Sect. 2.2.

Initially, we assume there is no signalling molecules over 
the computational domain, that is,

As a boundary condition, we use the following Robin 
condition

which deals with a balance between the diffusive flux across 
the boundary and the flux between the boundary and the 
region far away from the domain of computation. The sym-
bol �s , which is non-negative, represents the mass transfer 
coefficient. Note that as �s → 0 then the Robin condition 
tends to a homogeneous Neumann condition, which repre-
sents no flux (hence isolation). Whereas as �s → ∞ repre-
sents the case that c → 0 on the boundary, which, physically, 
is reminiscent to having an infinite mass flow rate at the 
boundary into the surroundings. The Robin condition, also 
referred to as a mixing boundary condition, is able to deal 
with both these two limits and all cases between these limits.

2.2  Passive convection of substrate

In wound healing, (myo)fibroblasts exert forces on their 
direct environment, i.e. extracellular matrix, which result 
into contraction of the tissue Cumming et al. (2009), Enoch 
and Leaper (2008), Haertel et  al. (2014), Li and Wang 
(2011). For cancer cells, Massalha and Weihs (2016) indi-
cate that the metastatic cells exert traction forces ranged 
from 100 − 600 nN on the gel, of which the Young’s modu-
lus ranged from 2.2 − 10.9 kPa . Furthermore, for stiffer sub-
strates, the cancer cells remain rounded with changing area 
and they exert large traction forces with large magnitudes to 
its direct environment. Hence, the model includes passive 

(1)
𝜕c(x, t)

𝜕t
+ ∇ ⋅ (vc(x, t)) − ∇ ⋅ (D∇c(x, t))

= k𝛿(x(t) − xs), x ∈ 𝛺, t > 0,

c(x, 0) = 0, in �, t = 0.

𝜕c

𝜕n
+ 𝜅sc = 0, on 𝜕𝛺, t > 0,

Fig. 1  A schematic of the distribution of the nodal points on the cell 
membrane. In our model, we assume the equilibrium shape of the cell 
is maintained by a collection of springs
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convection of the substrate, which can provide a more real-
istic model in various applications.

As the cell membrane is broken into multiple line seg-
ments by nodal points, point forces are implemented here to 
depict the forces exerted by the cell, which are applied on the 
midpoint of each line segment; see Fig. 2 as an example of 
a square-shape cell. Among different applications, the force 
direction may differ. For example, if the cell encounters an 
obstacle, a repulsive force will be exerted to resist the com-
pression of the cell; in wound contraction, (myo)fibroblasts 
exert pulling forces on the extracellular matrix (ECM).

Morphoelasticity is widely used in the biological model-
ling to describe elastic growth, for instance, the growth of 
tumours (Goriely and Moulton 2011), the seashell growth 
(Rudraraju et al. 2019), large contractions in wound heal-
ing (Koppenol 2017; Ben Amar et al. 2015), etc. In wound 
healing, morphoelasticity describes the phenomena when 
the deformation of the skin is so large that the deformations 
are plastic. Conservation of momentum, combined with the 
evolution equation for the effective Eulerian strain, results 
into the following modelling equations Koppenol (2017):

where � is the density of the extracellular matrix, L = ∇v and 
� is a non-negative constant. Note that if � = 0 , then as soon 
as the force f = 0 , then the tissue will gradually recover 
to its original shape and volume. Here, Dy

Dt
=

�y

�t
+ v∇ ⋅ y 

is material derivative where y is any tensor field and v is 
the migration velocity of any point within the domain of 
computation. In order to have a fixed boundary, we use a 
homogeneous Dirichlet boundary condition for the velocity. 
This condition implies that the overall domain boundary � 
does not deform. Hence, the overall � is constant over time. 

(2)

⎧
⎪
⎪
⎪
⎨
⎪
⎪
⎪
⎩

𝜌[
Dv

Dt
+ v(∇ ⋅ v)] − ∇ ⋅ � = f , in 𝛺, t > 0,

D�

Dt
+ � skw (L) − skw (L)� + [ tr (�) − 1] sym (L)

= −𝛼�, in 𝛺, t > 0,

v(x, t) = 0, on 𝜕𝛺, t > 0,

However, due to the cellular traction forces, the tissue, and 
hence the computational domain, is subject to local defor-
mations, which result into local strains and stresses. These 
deformations, indeed, give rise to local displacements within 
the domain of computation. Since the momentum balance 
equations are solved over the entire domain of computa-
tion, the local deformations, stresses and displacements are 
taken into account over the entire domain of computation. 
These local displacements induce the passive convection 
term c(x, t)(∇ ⋅ v) in Eq. (1). From a mechanical point of 
view, we treat the computational domain as a continuous 
linear isotropic domain. Further, as a result of the presence 
of liquid phases in the tissue, the mechanical balance is also 
subject to viscous, that is friction, effects. Therefore, we 
use Kelvin–Voigt’s viscoelastic dashpot model, of which the 
stress tensor reads as

where �s is the Poisson’s ratio of the substrate, � is the strain 
tensor, �1 and �2 are the shear and bulk viscosity, respec-
tively. The morphoelasticity model solves nonlinear equa-
tion and both velocity v and strain tensor � are unknowns. 
The deformation of the domain is actually determined 
by the strain tensor. The displacement of the domain can 
be approximated by integrating the velocity over time: 
u(t) ≈ ∫ t

0
v(s)ds , where the velocity is determined by Eq. 

(2). The approximated solution is then known on the moving 
finite-element meshpoints. This is the discrete counterpart of 
the displacement. Further, we need the displacement (veloc-
ity) at the positions of the nodal points on the cell boundary. 
Since these positions do not coincide with the positions of 
the finite-element meshpoints, we need a mapping from the 
displacement velocity obtained at the finite-element mesh-
points onto the, continuous, positions of the cell boundary 
nodes. This is obtained through interpolation procedures 
based on the Lagrangian finite-element framework. The 
obtained displacement velocities are substituted into the 
equation for the migration of the cell boundary nodes.

In the application of wound healing, (myo)fibroblasts are 
the cells pulling the ECM and causing the contractions. The 
traction force f  of each (myo)fibroblast reads as

where N is the number of nodal points on the cell mem-
brane, P(x;t) is the magnitude of the force exerted by each 
(myo)fibroblast per unit length of the cell membrane. We 

(3)

� = �elas + �visco

=
E

1 + �s

{
� + tr (�)

[
�s

1 − 2�s

]
I

}

+ �1 sym (L) + �2 tr ( sym (L))I,

(4)
f(x;t) =

N∑

j=1

P(xj;t)n(xj(t))�(x(t) − xj(t))��
j,

x ∈ �, t0,

Fig. 2  An example of pulling point forces, tractions applied by a cell, 
in which the cell membrane is split by four nodal points
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have constructed the model such that local differences of the 
cellular traction force over the cell boundary can be incor-
porated. In the current study, however, we have assumed 
the cellular traction force to be constant over the entire cell 
boundary and for all the cells. Furthermore, n(x(t)) is the 
unit inward pointing normal vector (towards the cell cen-
tre) at x(t) (see Fig. 2 as a schematic), xj(t) is the midpoint 
of line segment j, and �� j is the length of line segment j. 
Note that here x refers to any position in � , hence possibly, 
but not necessarily on the cell boundary, or on the finite-
element mesh points. The positions xj(t) represent the posi-
tions of the nodal points on the cell boundary (hence not on 
the finite-element mesh), where the cellular traction force 
is exerted.

Further, we consider (myo)fibroblasts colliding with 
each other, then the cells exert repelling forces on the other 
one. Here, cells are not allowed to intersect each other; see 
Fig. 3 as a schematic. Suppose for (myo)fibroblast i, there are 
Ni
m
= {ji

1
,… , ji

m
} line segments of cell membrane mechani-

cally contacting with other (myo)fibroblasts. Then, online seg-
ments j ∈ Nm , the (myo)fibro-blast exert repelling force, while 
on the rest of the line segments, (myo)fibroblast releases pull-
ing forces on the ECM. Hence, the traction force of the (myo)
fibroblast i is given by

where lm is the portion of the (myo)fibroblast membrane 
mechanically contacting with other cell, Q(d(x), t) is the 
force magnitude per length, and d(x) is the penetration depth. 
According to two-dimensional Hertz theory Popov (2010), 
Liu et al. (2005), Tripp (1985), for each elastic body, the 
explicit relation between the total force and the penetra-
tion depth is not clear. We assume the total force magnitude 
Q̃(d(x), t) is linearly proportional to the penetration depth 
d(x):

where E∗ is the total equivalent Young’s modulus derived by

(5)
f
i(x;t) =

N∑

j=1,j∉Ni
m

P(xi
j
, t)n(xi

j
(t))�(x(t) − xi

j
(t))�� i,j

−
∑

j∈Ni
m

Q(d(xi
j
), t)n(xi

j
(t))�(x(t) − xi

j
(t))�� i,j,

(6)Q̃(d(x), t) =
𝜋

4
d(x)E∗,

Here, �i and Ei with i ∈ {1, 2} represent the Poisson ratio 
and Young’s modulus of two elastic bodies, respectively. In 
particular, if two bodies have the same elastic characteristics 
(i.e. �1 = �2 = � and E1 = E2 = E ), then

We assume that the magnitudes of the repulsive force, which 
is exerted on the boundary segments of cell i that are in con-
tact with another cell, are identical. In other words, Q(d(x), t) 
is given by

where ‖lm‖ is the total length of the portion of the membrane 
of (myo)fibroblast i mechanically contacting with other 
(myo)fibroblast (i.e. the sum of the length of �� i,j, j ∈ Ni

m
 ). 

Subsequently, the total traction force is f =
∑NC

i=1
f i , where 

NC is the number of (myo)fibroblasts that are in contact with 
each other.

Another application is metastasis and invasion of can-
cer cell. Usually, in vitro, a microtube experiment is con-
ducted Mak et al. (2013). To simplify the model, here we 
only consider one cancer cell going through a microtube; 
see Fig. 4. Similar to the case when (myo)fibroblasts col-
lide, we assume that Nm = j1,… , jm is the line segments of 
cell membrane mechanically contacting with the wall of the 
microtube. Here, we will exclude the pulling force. In other 
words, the force released by the cancer cell is only the repel-
ling force exerted on the wall of the microtube:

The magnitude of the force Qm(d(x), t) here follows the same 
definition as in Eq. (7), where d(x) is the radius subtracting 
the distance from the cell membrane to the cell centre.

1

E∗
=

1 − �2
1

E1

+
1 − �2

2

E2

.

E∗ =
E

2(1 − �2)
.

(7)Q(d(x), t) =
Q̃(d(x), t)

‖lm‖
=

𝜋

4
d(x)E∗∕‖lm‖,

(8)fm(x;t) = −
∑

j∈Nm

Qm(d(xj), t)n(xj(t))�(x(t) − xj(t))��
j.

Fig. 3  When cells collide with 
each other, they will deform 
and exert repulsive forces. The 
dashed curves show the equi-
librium shape of cells, and the 
black curve is the overlapping 
membrane of both cells

Fig. 4  The cell is compressed by the wall of the microtube. To inhibit 
any changes from its equilibrium shape, it exerted the repelling force 
on the wall of the microtube, which is proportion to the compressed 
distance d 
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2.3  Cell deformation

According to Chen et al. (2018), Vermolen and Gefen (2012), 
the cell cytoskeleton is depicted as a collection of springs 
between the centre position of the cell and the nodal points 
on the cell membrane. Therefore, the equilibrium shape of 
the cell is kept by these springs, regardless of the original cell 
shape. In this manuscript, we consider circular, elliptic and 
star-shape cells as two-dimensional projections. Combining 
chemotaxis (or mechanotaxis), passive convection and ran-
dom walk, the displacement of the nodal point j on the cell 
membrane is given by

Here, �C represents the cell region, �m is the domain occu-
pied by the microtube, Ec represents the cell elasticity; 
x̂j = x̃j(t) − xc(t) is the vector connecting the equilibrium 
position of nodal point i on the cell membrane to the cell 
centre, xc is the central position of the cell, and x̃j represents 
the equilibrium position of the nodal point j corresponding 
to the cell centre xc (see Fig. 1); � is a small positive constant 
to prevent the denominator being zero; v is the velocity of the 
substrate determined by Eq. (2); �rw is the portion of random 
walk, and dW(t) is a vector-Wiener process, which accounts 
for random walk. Furthermore, � = �(CSI(�C),A(�C)) 
is the weight of chemotaxis (or mechanotaxis), where we 
define the Cell Shape Index (CSI) of cell �C by

where A(�C) is the cell area, l(��C) is the circumference of 
the cell membrane. According to Keren et al. (2008), reduc-
tion of cell area and deformation of cell shape reduce the 
mobility of cell. For simplicity, we propose a linear relation 
here:

where �0 is the maximal response from the cell to the signal, 
�m is the mobility reduction coefficient, and CSI0(�C) and 
A0(�C) represent the CSI and volume of the equilibrium 
cell.

In order to maintain the right orientation of the cell, we 
introduce a matrix after rotation of an angle � , as in Chen 
et al. (2018):

(9)

dxj = 𝛽(CSI(𝛺C),A(𝛺C))
∇c(xj, t)

‖∇c(xj, t)‖ + 𝛾
dt

+Ec(xc(t) + x̂j − xj(t))dt + vdt + 𝜎rwdW(t),

in 𝛺m ⊂ 𝛺.

CSI(�C) =
4�A(�C)

l2(��C)
,

�(CSI(�
C
),A(�

C
) = �0 × �

m

× (CSI(�
C
)∕CSI0(�C

) + A(�
C
)∕A0(�C

))∕2,

such that � can be computed from

The orientation of the cell is important in the context of 
how the cell has rotated from its initial position. The ori-
entation of the cell is represented by the angle of the vector 
connecting the “front and tail” of the cell. The overall dis-
placement of the nodes of the cell boundary is determined 
by translation and rotation. This matrix B(�) monitors the 
angle of rotation of the cell with respect to the cell posi-
tion (and hence boundary nodes) at the previous time step. 
This orientation and hence the angle of rotation is important 
for the determination of the equilibrium points of the cell 
boundary nodes. The equilibrium points reflect the position 
to which the cell boundary nodes will converge to if the cell 
does not move (that is the chemical signal is set to zero), 
and if the extracellular matrix is not subject to displacement 
velocities. If this orientation, that is the angle, would not be 
incorporated, then the cell with always return to its initial 
orientation.

Hence, the displacement of nodal point j is adapted to

If there is an obstacle encountered by the cell, adjusting the 
displacement is necessary. Denote ��ob as the boundary of 
the obstacle, which is possibly another cell or the wall of 
the microtube. For the nodal point colliding the obstacle, it 
cannot pass over the boundary of the obstacle. Hence, for 
the displacement of nodal point j, the normal direction of the 
boundary of the obstacle in dxj(t) is vanished. To rephrase it, 
we adjust the displacement of the nodal point if it collides 
the obstacle (see Fig. 5) by

(10)B(�) =

(
cos(�) − sin(�)

sin(�) cos(�)

)
,

(11)�̃� = arg min
𝜙∈[0,2𝜋)

�
N�

i=1

‖B(𝜙)x̃i(t) − xi(t)‖
2

�

.

(12)

dxj = 𝛽(CSI(𝛺C),A(𝛺C))
∇c(x, t)

‖∇c(x, t)‖ + 𝛾
dt

+ Ec(xc(t) + B(�̃�)x̂j − xj(t))dt + vdt + 𝜎rwdW(t).

Fig. 5  A schematic to show that the adjustment of the displacement 
of the nodal point on the cell membrane, when the nodal point con-
tacts the wall of the microtube
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where nob(x) is unit pointing normal vector (outward the 
cell centre).

Furthermore, if a cell tries to go through a microtube, 
which mimic the cancer cell metastasis and invasion, not 
only the direction of the cell migration is limited (since the 
cell cannot pass over the microtube), but also the microtube 
will slow down the velocity of the cell as a result of friction. 
Note that the magnitude of the friction is proportional to the 
repelling force. In our model, we simply distract part of the 
velocity in the tangential direction of the obstacle. Hence, 
the displacement of the nodal point which collides the wall 
of the microtube is given by

where �f  is the cell friction coefficient, f(xj(t)) is the repel-
ling force exerted by the cell and �ob(x) is the tangential 
direction of the obstacle boundary ��ob.

This model provides a simple computational framework 
to describe the dynamics of the cell shape under multiple 
circumstances. However, the model does not describe the 
Poisson effect of the cell if the cell is compressed, since 
the model mainly considers the extracellular environ-
ment. Hence, in this manuscript, the cell length will not be 
investigated.

(13)
dxj(t) ← dxj(t) − (dxj(t), nob(xj(t)))nob(xj(t)),

if xj(t) ∈ ��ob,

(14)
dxj(t) ← dxj(t) − �f‖f (xj(t))‖

× (dxj(t), �ob(xj(t)))�ob(xj(t)), if xj(t) ∈ ��ob,

3  Applications and numerical results

We exhibit several possible applications in this section, 
namely, cells migrating as a result of chemotactic signals, 
cells differentiating to another phenotype, cells repelling 
each other and one cell migrating through a microtube. 
Some parameters are the same in every application. If 
there is no specification, the parameter values are shown in 
Table 1. Note that parameter values are partially determined 
by experimental data from the references and partially esti-
mated in this study, as they are indicated in all the parameter 
tables. We try to use the clinical/experimental data from 
the literature as much as possible; however, some param-
eter values are unknown. Hence, to estimate theses unknown 
parameter values, we determined the value by reproducing 
the experiment as much as possible.

In particular, to validate and calibrate the model, we tried 
to reproduce the key results in Mak et al. (2013) like the 
probability of the occurrence of Phase 3 and the time inter-
val of each phase. We ran four different Monte Carlo simula-
tions to calibrate the model and to see the impact of different 
settings of the model.

3.1  Finite‑element methods

In this manuscript, all the boundary value problems are 
solved by the finite-element methods with Lagrange linear 
basis functions. Regarding the time-integration, we use a 
backward Euler method. From the theory, it is known that 
smooth solutions would be subject to errors of the order 
O(h2) in the L2–norm of the numerical approximation and 
O(�t).

Table 1  Parameter values used in all the applications

Parameter Description Value Units Source

Es Substrate elasticity 100 kg∕(μm ⋅ min2) Liang et al. (2010)
Ec Cell elasticity 5 kg∕(μm ⋅ min2) Chen et al. (2017)
�f Cell friction coefficient 0.03 − Angelini et al. (2012)
�s Poisson’s ratio of the ECM 0.49 − Koppenol (2017)
�c Poisson’s ratio of (myo)fibroblast and cancer cell 0.32 − Trickey et al. (2006)
k Secrete rate of the signal 2.5 kg∕(μm3

⋅min) Peng and Vermolen (2020)
�s Parameter in Robin’s boundary condition to solve Eq. (1) 100 − Peng and Vermolen (2020)
�1 Shear viscosity of the ECM 33.783 − Peng and Vermolen (2020)
�2 Bulk viscosity of the ECM 22.523 − Peng and Vermolen (2020)
�0 Maximal mobility of points on cell membrane 10 min−1 Estimated in this study
N Number of nodal points on the cell membrane 40 − Estimated in this study
�m The coefficient of cell mobility reduction 1 − Estimated in this study
�rw Weight of random walk 1 − Estimated in this study
� Degree of permanent deformation in Eq. (2) 0.1 − Estimated in this study
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Here, we solved the boundary value problem in Eq. (2) 
with the traction forces expressed in Eq. (4). For the sake of 
investigating the convergence of the finite-element method, 
the parameters are dimensionless. We consider one large 
non-moving cell in the computational domain (see Fig. 6), 
of which the membrane is divided into finite line segments, 
and there is a traction force applied on the midpoint of each 
line segment as in Eq. (4). With the refinement of the mesh, 
the convergence rate of L2–norm of the solution to Eq. (2) 
(i.e. the velocity) is computed, which is 1.899828112 that is 
close to the theoretical value 2.

3.2  Cells moving towards the point source

The basic application is that cell migrates towards the con-
centration gradient of a signalling molecule, which can be 
oxygen, growth factors or virus. The displacement is mainly 
determined by the gradient of the concentration of the sig-
nal. Subsequently, the closest part of the cell to the emitting 
source will develop a “nose”; see Fig. 7. All parameter val-
ues are documented in Tables 1 and 2. The “nose” behaviour 
(or the so-called a triangular tailed shape) has also been 

Fig. 6  The plot shows the solution Eq. (2), as an example to investi-
gate the convergence of the finite-element methods. Blue curve repre-
sents the initial cell membrane, and red curve represents the original 
subdomain boundary. Black curves show the deformed shape of the 
cell and the subdomain

(a) (b) (c)

(d) (e) (f)

Fig. 7  The figure shows the positions of cells at consecutive times. The red circles show the original shape and position of cells, and the red dots 
in the centre is the point source of a generic signal
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observed in biological experiments, which is due to the loca-
tions of the adhesion sites over the cell membrane Mogilner 
and Keren (2009). In the simulation, we accommodate for 
the engulfment of the chemical source by switching off the 
chemical signal once the cell physically contacts it. Once 
this signal has been switched off, the concentration gradient 
flattens as a result of diffusion processes and therewith the 
cell recesses back to its equilibrium (original) shape and 
volume. At that moment, the cell geometry is no longer 
determined by chemotaxis.

From t = 0 , the cells are attracted towards the centre 
of the computational domain, which is the location of the 
source of signalling molecules. Due to the difference of the 
gradient of the concentration of the signal over the domain, 
cells are deformed into a droplet shape, where the “nose” 
points in the direction of the point source. As the diffusion 
of the signal proceeds, the “nose” gradually disappears and 
cells recover to the equilibrium shape. To evaluate the cell 
geometry quantitatively, we provide the evolution of the CSI 
and cell area as a function of time in Fig. 8. These quanti-
ties are of interest from a clinical point of view Keren et al. 
(2008). Resulting from the displacement of the direct envi-
ronment, the volume of the cell decreases. The permanent 
volume changes of the cell are imposed by the permanent 
displacements from the morphoelastic model. Furthermore, 
the cells are tethered within a rigid deformed structure; 
hence, it makes cells deform as well. We note that cells have 
already recovered to the original shape but not the volume. 
It can be implied that a stiffer cell deforms less compared 
to a softer one.

3.3  Differentiation of cells

Cell differentiation is a process of a cell changing from one 
phenotype to another one, for example, a stem cell differ-
entiates into various phenotypes, like blood cells and nerve 
cells, etc. In this manuscript, we mainly focus on the cellular 
differentiation in wound healing. In the proliferative phase of 

wound healing, some regular fibroblasts (which are spindle-
shaped Chaudhari 2015; Phan 2008) differentiate into myofi-
broblasts (which are dendritic-shaped Hirahara et al. 2004; 
Desai et al. 2014), which pull the skin ever harder and cause 
the permanent contractions. It is commonly recognized that 
high concentration of TGF-beta induces the fibroblast-to-
myofibroblast differentiation Keren et al. (2008), Cumming 
et al. (2009), Desai et al. (2014). In this section, since we 
mainly want to present a model of differentiation, only dif-
ferentiation from fibroblasts to myofibroblasts is exhibited 
as an example: the signal is TGF-beta, and initially, there 
are four regular fibroblasts in unwounded region, which are 
simulated by ellipses.

We assume that the two phenotypes of cells have the 
same volume when they are in the equilibrium status. Here, 
for ellipse and hypocycloid, there are two parameters to 
determine each shape: long (denoted by ae ) and short axis’s 
(denoted by be ) determine the ellipse; the radius of basis 
circle (de noted by ah ) and rotating circle (denoted by bh ) 
determine the hypocycloid. Note that the hypocycloid-
shaped cell may not be realistic, and it is mainly to show that 
the model is capable to model the differentiation of cells, in 
which mostly the cellular skeleton and geometry are altered. 
To develop a smooth differentiation process, we introduce a 
function such that each parameter changes over time:

where Ra(�) and Rb(�) represent two parameters to deter-
mine the shape, and � = 1 − exp{−��(t − t�)}. Here, �� is 
the parameter of the exponential distribution and t� is the 
time point when the fibroblast starts differentiating.

Figure 9 presents the cells positions at different time. In 
this manuscript, we only consider a phenomenological mod-
elling formulation in the sense that the cell differentiates if 
it is exposed to concentrations of signalling molecule that 
exceed a given threshold. The shape evolution is determined 
by the parameters in Eq. (15).

As regular fibroblasts approach to the region with high 
concentration of TGF-beta, some of them start differentiat-
ing into myofibroblasts gradually. Subsequently, they exert 
larger forces on the ECM and contractions are developed in 
the wound, which is marked with red curves as a subdomain. 
The parameter values of the simulations are from Tables 1 
and 3.

3.4  Repulsion between two colliding cells

Cells will deform when they encounter each other or 
an obstacle. On the contacting surface, cells will exert a 
repelling force (as it is shown in Eq. (7)) to recover to its 

(15)

{
Ra(�) = ah� + ae(1 − �),

Rb(�) = bh� + be(1 − �),

Fig. 8  The cell shape index and relative ratio of cell area of all cells 
in Fig.  7 are shown in the plot. The solid curves represent the cell 
area, and the dashed curves are the cell shape index. Different colours 
of curves indicate different stiffness of the cells
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equilibrium shape. We consider two cells colliding with each 
other and adjust the displacement of nodal points on the cell 
membrane by Eq. (13). Here, cells are not allowed to inter-
sect with each other. Hence, initially, cells are located with 
a small distance between each other. In Fig. 10, we present 
the cell positions at different times, and cells deform due 

to mechanical contact (hard impingement). The parameter 
values are from Tables 1 and 2.

3.5  Cell moving through a microtube

Metastasis is a difficult phenomena to study due to its large 
variation in spatiotemporal scales. Hence, studying the 

Table 2  Parameter values 
estimated in the application of 
cell migrating toward the signal 
source

Parameter Description Value Units

R Cell radius 5 μm

�t Time step 0.1 min

D Diffusion rate of the signal 200 μm2∕min

x0 Length of computational domain in x-coordinate 120 μm

y0 Length of computational domain in y-coordinate 120 μm

xw Length of the subdomain in the centre of computational 
domain in x-coordinate

40 μm

yw Length of the subdomain in the centre of computational 
domain in y-coordinate

40 μm

(a) (b) (c)

(d) (e) (f)

Fig. 9  The figure shows the positions of cells at consecutive times by the black curves. The red circles show the original shape and position of 
cells, and the red dots in the centre is the point source of TGF-beta which triggers the differentiation from regular fibroblasts to myofibroblasts
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mechanics of one single cell is essential since the individual 
cell needs to break out from the tumour and invade though 
the ECM. To achieve that, Mak et al. (2013) developed an 
active microfluidic system with several features to mimic the 
metastasis and invasion of the cancer cell. In this section, we 

will use our model to reproduce results of the experiment in 
Mak et al. (2013).

Mak et al. (2013) introduced a device and procedure to 
investigate mechanical transition effects of invading can-
cer cells. They constructed a set up with periodic micro-
fluidic channels with various lengths and widths. This set 

Table 3  Parameter values estimated in the application of cell differentiation

Parameter Description Value Units

ae Length of long axis in elliptic cell 6.25 μm

be Length of short axis in elliptic cell 4 μm

ah Radius of the basis circle to draw hypocycloid-shape cell 20∕
√
6 μm

bh Radius of the rotating circle to draw hypocycloid-shape cell 5∕
√
6 μm

�� Parameter in the exponential distribution to compute � 10 −
�t Time step 0.1 min

D Diffusion rate of the signal 233.2 μm2∕min

x0 Length of computational domain in x-coordinate 120 μm

y0 Length of computational domain in y-coordinate 120 μm

xw Length of the subdomain in the centre of computational domain in x-coordinate 40 μm

yw Length of the subdomain in the centre of computational domain in y-coordinate 40 μm

(a) (b) (c)

(d) (e) (f)

Fig. 10  The figure shows the positions of cells in blue and green at consecutive times when two cells collide. The red circles show the original 
shape and position of cells, and the red dots in the centre is the point source of a signal
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up consists of a repeated pattern of large channel (LC) and 
subnuclear barriers (SNB). Mak et al. (2013) let cancer cells 
load at the reservoir. Subsequently, cells move simultane-
ously through the microtubes and data regarding the velocity 
and cell length are collected.

3.5.1  Simulation settings

Following the settings in the experiment, we define a 
microtube with a varying width: a 15 μm larger channel 
(LC) and 3.3 μm subnucleus barriers with length 10 μm 
(SNB10). Since the main reason for the active migration 
of the cell is not evident in Mak et al. (2013), we keep 
on using random walk, with either chemotaxis or fixed 
velocity of the cell. Rather than having a periodic setting 
of subnucleus barriers (SNBs), we have one SNB in the 
middle connected with two LCs and run the simulations, 
respectively. In this manuscript, we only run the simula-
tions regarding SNB10 in Mak et al. (2013).

We consider the reduction of the cell mobility caused 
by cell shape and cell area Keren et al. (2008), which is 
explained in Eq. (12), the repelling forces exerted by the 
cell on the obstacles in Eq. (13) and the friction between 
the cell and the wall of the microtube in Eq. (14).

The position and shape of the cell are shown in Fig. 11, 
which indicates how the cell migrates through the micro-
tube. Since the repelling force on the wall of the micro-
tube is included, we investigate the results regarding the 
cell velocity, pressure and the cell shape index over time; 
see Fig. 12. The parameter values are taken from Tables 1 
and 4.

Initially, there is a short distance before the cell enters 
the microtube; here, the cell encounters no distraction. 
Therefore, the cell travels at maximal speed and the cell 
is not compressed in the beginning. Next to this, the gra-
dient of the signal results into the “nose” behaviour, and 
hence, the cell shape index changed. As the cell enters the 
wider part of the microtube, it slows down due to the fric-
tion, and the cell is compressed; therefore, the cell starts 
exerting pushing forces on the wall of the tube. In the 
LC part, the cell shape index stays stable around 0.95. 

Further, the cell approaches the SNB, which is much more 
narrow than the LC; the cell suffered more from the fric-
tion and the compression from the microtube. As a con-
sequence, the minimal cell velocity, the cell shape index 
and the maximal pressure are recorded when the cell is in 
the SNB. After that, cell moves further towards the signal 
source through the LC again. Hence, the cell velocity and 
cell shape index increase again, while the cell pressure 
reduces. According to Angelini et al. (2012) and McCann 
et al. (2010), we manage to keep the cell velocity and pres-
sure in a reasonable range: 6 − 20 μm/min and the maximal 
pressure that a cell can handle is around 12 kPa.

3.5.2  Monte Carlo simulations

In Mak et al. (2013), the displacement of the cell is catego-
rized as four phases:

– Phase 1 The cell enters the microtube via the LC and 
slows down in particular when it is approaching the SNB;

– Phase 2 The cell is compressed strongly to enter the 
SNB;

– Phase 3 The cell fails to migrate monotonically forward 
when it is in the SNB;

– Phase 4 The cell enters the LC again and continues to 
migrate monotonically.

Hence, in the simulations, we try to collect the data and 
distinguish these different phases. Different from Mak et al. 
(2013) that the microtube is designed periodically (such that 
the sample can be collected multiple times with one indi-
vidual cell), one cell is supposed to go through one set of 
the microtube in each simulation. To reproduce the experi-
mental results, Monte Carlo simulations are conducted to 
estimate the probability of the occurrence of phase 3 and 
the time cost for each phase, with different aforementioned 
reasons of active migration. The input values for the Monte 
Carlo simulations are shown in Table 5. In our simulation, 
we determine phase 3 when the cell stops moving monotoni-
cally forward when it is in the SNB until it leaves the SNB 
completely and reenters the LC.

Table 4  Parameter values used 
in the application of cell going 
through a microtube

Parameter Description Value Units Source

R Cell radius 9 μm Mak et al. (2013)
�t Time step 0.07 min Estimated in this study
D Diffusion rate of the signal 874.5 μm2∕min Estimated in this study
x0 Length of computational 

domain containing SNB10 in 
x-coordinate

400 μm Estimated in this study

y0 Length of computational 
domain containing SNB10 in 
y-coordinate

400 μm Estimated in this study
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We run the simulations with four assumptions of the 
main mechanism provoking the active cell displacement: 
chemotaxis, fixed velocity with 10 μm/min , velocity gener-
ated from (6, 15) μm/min and (6, 20) μm/min in horizontal 
direction according to McCann et al. (2010). The number 
of samples and the Monte Carlo error of the occurrence 

of phase 3 collected from the Monte Carlo simulations of 
each aforementioned category are displayed in Table 6. 
Figure 13 illustrates the probability of the occurrence of 
phase 3, which is the stage when the cell stops monotonic 
forward migration. The mechanism that makes the cell 
move forward is not clear in Mak et al. (2013); hence, this 
could be reason for a mismatch between the experimental 

(a) (b)

(c) (d)

(e) (f)

(g) (h)

Fig. 11  The figure shows the positions and shapes of cells at consecutive times by the blue contours when it travels through a microtube. The red 
circles show the original shape and position of cells, and the red dots in the end of the microtube is the point source of a signal
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and simulated results. However, the results are signifi-
cantly close regarding the probability of the occurrence 
of phase 3. Coincidentally, according to our current simu-
lations, with either chemotaxis or velocity 10 μm/min , the 

probability of the occurrence of phase 3 is the same in the 
first 3 digits.

Furthermore, the time cost of each phase is recorded and 
shown in Fig. 14. The results with different modelling set-
tings or simulations do not show many differences, in par-
ticular between chemotaxis and fixed velocity v = 10 . The 
reason is that the microtube restricts the displacement of 
the cell in the vertical direction; therefore, the cell mainly 
migrates in the horizontal direction. In general, the results 
between any simulation and the experiment differ more, 
compared with the results of the occurrence of phase 3, in 
particular, phase 1 and phase 3. Therefore, to investigate the 
possible reasons of mismatching results in phase 1 and phase 
3 in phase time, we reran the simulation with the same set-
tings as Simulation 4 in Table 6, except for the cell stiffness 
modified to Ec = 1 . The results are shown in Fig. 15. With a 
softer cell, the simulation data in phase 3 match better with 
the experimental data. However, now a discrepancy between 
simulation and experiments results in phase 4 instead.

There are several possible reasons causing the discrep-
ancy in the time interval of each phase. Firstly, for phase 3, 
we only obtain valid data when the cell moves non-monoton-
ically, which results into a reduction of the sample size of the 

(a) (b) (c)

Fig. 12  The cell velocity, pressure and shape index over time when the cell migrates through the microtube, where there is a 10 μm subnucleus 
barrier. The simulation mimics the experiment in Mak et al. (2013)

Table 5  Parameter values used 
in the application of cell going 
through a microtube

Parameter Description Distribution Source

�f Friction coefficient for the cell going through 
the microtube

U(0.03, 0.06) Angelini et al. (2012)

�m The coefficient of cell mobility reduction U(0.6, 1) Estimated in this study

Table 6  Monte Carlo 
simulations of various models, 
in which the main mechanisms 
of cell active displacement 
differ

Mechanism of cell active 
displacement

Number of samples from 
Monte Carlo simulations

Monte Carlo error 
of the occurrence of 
phase 3

Simulation 1 Chemotaxis 1400 9.2171 × 10−3

Simulation 2 Fixed velocity v = 10 1390 9.7022 × 10−3

Simulation 3 Fixed velocity v ∈ (6, 15) 1360 1.2102 × 10−2

Simulation 4 Fixed velocity v ∈ (6, 20) 1378 1.0621 × 10−2

Fig. 13  The probability of the occurrence phase 3 in Mak et  al. 
(2013) and from Monte Carlo simulations by implementing different 
mechanisms of cell active displacement (see Table 6 for more infor-
mation). The parameter values are taken from Table 5
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simulation data. Apparently the cell “dwells” and “doubts” 
whether it “wants” to keep on going if its pathway is (par-
tially) obstructed. Secondly, the length of LC is not stated 
clearly in Mak et al. (2013); therefore, we could only esti-
mate that from the scale in the figures. Thirdly, it is not clear 
if the velocity of active migration of the cell is constant, 
while in our simulation, the velocity can change over time, 
depending on the gradient of the chemotactic signal. Despite 
all these uncertainties, we still managed to reproduce the 
results which are close to the experimental results. Fourthly, 
the transaction of each phase from Mak et al. (2013) to our 
simulations may cause a mismatch of the duration time of 
each phase. Fifthly, it has been observed in Mak and Erick-
son (2013) that after the first time moving through the nar-
row channel, cells deform easier to move faster through the 
following narrow channels, which may indicate that the cell 
characteristics change regarding its geometry.

(a) (b)

(c) (d)

Fig. 14  The figure shows the time cost of each phase in Mak et al. (2013) and from Monte Carlo simulations by using the model. Red dots with 
the error bar represent the experimental data from Mak et al. (2013) and the box plots are the data collected from the simulations

Fig. 15  The time cost of each phase from the Monte Carlo simula-
tion, in which the cell stiffness is E

c
= 1 and the cell velocity is ran-

domly generated from (6, 20). Red dots with error bar represent the 
experimental data from Mak et  al. (2013) and the box plots are the 
data collected from the simulation
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4  Conclusions

A phenomenological model for cell shape evolution and 
migration has been developed, with primary focus on the 
mechanics of the extracellular environment. Furthermore, 
the impact of passive convection, due to local displacements 
within the extracellular matrix, on the evolution of the cell 
shape has been taken into account. A morphoelastic model 
has been used in the current study to incorporate permanent 
deformations of the extracellular tissue. The model can be 
applied to mimic several microscopic biological observa-
tions such as cell deformation and migration during wound 
contraction and cancer metastasis. To validate the model, the 
experimental set-up in Mak et al. (2013) has been modelled. 
This experiment entailed cell migration through microtubes 
with different widths and with a varying width over the 
length. The model is able to reproduce the most important 
trends that were observed in the experimental data despite 
some experimental uncertainties such as the determination 
of which phase a cell is in during the transmigration pro-
cess. Furthermore, the current model provides a basis that 
can be expanded to describe more experimentally observed 
phenomena in cell geometry.
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