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Abstract. In this paper we prove the equivalence of decoupling inequalities

for stochastic integrals and one-sided randomized versions of the UMD prop-

erty of a Banach space as introduced by Garling.

1. Introduction

In recent years, decoupling inequalities have been used to construct theories of
stochastic integration in UMD Banach spaces [4, 13, 15]. The basic idea underly-
ing this approach is to use abstract decoupling inequalities to estimate stochastic
integrals ∫ T

0

φ(t) dW (t),

where φ is a process with values in a UMD space E and W is a standard Brownian
motion, with its decoupled analogue∫ T

0

φ(t) dW̃ (t),

where W̃ is a standard Brownian motion independent of φ and W . This decoupled
integral is easier to handle, as it is defined in a pathwise sense. Indeed, using a
general two-sided decoupling inequality for E-valued tangent sequences, McConnell
[13] was able to show that a strongly measurable E-valued process is stochastically
integrable with respect to W if and only if its trajectories, viewed as E-valued
functions, are stochastically integrable with respect to W̃ . His techniques depend
heavily on the equivalence of the UMD property and geometric notions related
to ζ-convexity. Decoupling inequalities for tangent sequences may be found in
[7, 9, 13, 14, 17].

Earlier, Garling [4] had derived a two-sided decoupling inequality for stochastic
integrals of elementary E-valued processes directly from the definition of the UMD
property. More precisely, he proved that a Banach space E is a UMD space if and
only if for some (for all) 1 < p < ∞ there exist constants 0 < c ≤ C < ∞ such that
for all elementary E-valued processes φ, we have

(1.1) c E
∥∥∥∫ T

0

φdW̃ (t)
∥∥∥p

≤ E
∥∥∥∫ T

0

φdW (t)
∥∥∥p

≤ C E
∥∥∥∫ T

0

φdW̃ (t)
∥∥∥p

.
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These inequalities, combined with the operator-theoretic approach to stochastic in-
tegration of Banach space-valued functions developed in [16], was used in [15] to
construct a systematic theory of stochastic integration for E-valued processes. In
particular, necessary and sufficient conditions for Lp-stochastic integrability were
obtained, analogues of the Itô isometry and the Burkholder-Davis-Gundy inequali-
ties were proved, and McConnell’s result was recovered as a corollary via standard
stopping time arguments.

Various applications of the decoupling inequalities in (1.1) require only one of the
two a priori estimates. An analysis of the proof of (1.1) in [4] shows moreover that
one-sided decoupling inequalities can be derived from one-sided versions of the UMD
property which were introduced subsequently by Garling in [5]. These properties
are called UMD− and UMD+ below. These properties can be used as in [15]
to obtain generalized theories of stochastic integration in which the necessary and
sufficient conditions and two-sided estimates for stochastic integrals are replaced by
necessary conditions or sufficient conditions, respectively, with one-sided estimates.

The stochastic integration theory in [15] has many consequences and applica-
tions. For instance, many results in the theory of stochastic evolution equations
in Hilbert spaces (cf. [3] and the references therein), have analogues in UMD−PW

Banach spaces. Therefore, we believe it is important to know the largest class of
spaces for which one can construct a stochastic integration theory as in [15]. The
aim of the present paper is to show that this is the class of UMD−PW Banach spaces.
It is shown that the validity of the second one-sided a priori estimate in (1.1) for
all elementary processes implies the UMD−PW property. With the same ideas one
can prove that E has property UMD+

PW if for some 1 < p < ∞ the left estimate
in (1.1) holds for all elementary E-valued processes, so we include this too. The
proofs are based on Skorohod embedding techniques from [4], the Maurey-Pisier
characterization of finite cotype and estimates for randomized sums in spaces of
finite cotype.

Let (Ω,F , (Fn)n≥1, P ) be a filtered probability space, and let (Ω̃, F̃ , P̃ ) be a
probability space. Both probability spaces are assumed to be rich enough for
constructions as below. We shall consider random variables and processes on
(Ω× Ω̃,F ×F̃ , P × P̃ ). On this probability space we use the filtration (Fn⊗F̃)n≥1.
In most cases our random variables and processes are extensions to Ω× Ω̃ of vari-
ables and processes on Ω or Ω̃. Integration over Ω and Ω̃ will be denoted by E and
Ẽ .

Let (rn)n≥1 be a Rademacher sequence on (Ω,F , P ) and let G0 = {∅,Ω} and
Gn = σ(rk, k = 1, . . . , n). Recall that a martingale difference sequence (dn)N

n=1 is a
Paley-Walsh martingale difference sequence if it is a martingale difference sequence
with respect to the filtration (Gn)N

n=0.
Recall that a Banach space E is a UMD(p) space for p ∈ (1,∞) if there exists a

constant Cp > 0 such that for every N ≥ 1, every martingale difference sequence
(dn)N

n=1 in Lp(Ω, E) and every {−1, 1}-valued sequence (εn)N
n=1, we have(

E
∥∥∥ N∑

n=1

εndn

∥∥∥p) 1
p ≤ Cp

(
E

∥∥∥ N∑
n=1

dn

∥∥∥p) 1
p

.

Similarly, we say E is a UMDPW(p) space if one only considers Paley-Walsh mar-
tingales in the definition of UMD(p). In [11], Maurey has shown that UMDPW(p)
already implies UMD(p). It was shown by Burkholder in [1] that if E is UMD(p)
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space for some p ∈ (1,∞), then E is a UMD(p) space for all p ∈ (1,∞). Spaces with
this property will be referred to as UMD spaces. For the theory of UMD spaces we
refer the reader to [1, 2] and references given therein.

Let (r̃n)n≥1 be a Rademacher sequence on Ω̃.

Definition 1.1. Let E be a Banach space and let p ∈ (1,∞).

(1) The space E is a UMD−PW(p) space if there exists a constant C−p > 0 such
that for every N ≥ 1, every Paley-Walsh martingale difference sequence
(dn)N

n=1 in Lp(Ω, E), we have

(1.2)
(
E

∥∥∥ N∑
n=1

dn

∥∥∥p) 1
p ≤ C−p

(
E Ẽ

∥∥∥ N∑
n=1

r̃ndn

∥∥∥p) 1
p

.

(2) The space E is a UMD+
PW(p) space if there exists a constant C+

p > 0 such
that for every N ≥ 1, every Paley-Walsh martingale difference sequence
(dn)N

n=1 in Lp(Ω, E), we have

(1.3)
(
E Ẽ

∥∥∥ N∑
n=1

r̃ndn

∥∥∥p) 1
p ≤ C+

p

(
E

∥∥∥ N∑
n=1

dn

∥∥∥p) 1
p

.

The corresponding notion of UMD− and UMD+ spaces, where arbitrary mar-
tingale difference sequences are allowed, has been studied by Garling in [5]. It
was shown there that if E is a UMD±(p) space for some p ∈ (1,∞), then E is
a UMD±(p) space for all p ∈ (1,∞). Thus, both definitions are independent of
p ∈ (1,∞) and spaces with this property will be referred to as UMD− and UMD+

spaces. In [5] these properties are called LERMT (Lower Estimates for Random
Martingale Transforms) and UERMT (Upper Estimates for Random Martingale
Transforms) respectively. We preferred the notation UMD− and UMD+, since it
emphasizes the relation with UMD. Here the superscript − stands for Lower and
the superscript + stands for Upper. Similarly, one can show that UMD±PW(p) are
p-independent and these will denoted by UMD±PW. It seems to be an open problem
if UMD−PW implies UMD− and if UMD+

PW implies UMD+.
We list some results on UMD− and UMD+ spaces, the proofs of which can be

found in [5]:

• If E is a UMD+ space, then its dual E∗ is a UMD− space. If E∗ is a UMD+

space, then its predual E is a UMD− space.
• Every UMD− space has finite cotype. Every UMD+ space is super-reflexive.
• E is a UMD space if and only if it is both UMD− and UMD+.

Similar results hold for UMD−PW and UMD+
PW spaces.

It was shown in [5] that l1 is a UMD− space. It can be shown that if E is a
UMD− space and if (S, Σ, µ) is a σ-finite measure space, then Lp(Ω; E) is a UMD−

space for all p ∈ [1,∞). A similar result holds for UMD+ for p ∈ (1,∞).
Apart from trivial cases, the space L1(S, µ) is an example of a UMD− space that

is not UMD. It appears to be unknown if there exist UMD+ or UMD+
PW spaces

that are not UMD (cf. [6, Problem 4.2]).
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2. Main result

Let W be a Brownian motion on (Ω,F , P ) and let (Ft)t≥0 be the augmented
filtration induced by W . Similarly, let W̃ be a Brownian motion on (Ω̃, F̃ , P̃ ) and
let (F̃t)t≥0 be the augmented filtration induced by W̃ .

Let E be a real Banach space. A process φ : [0,∞) × Ω → E will be called an
elementary process if it is of the form

φ(t, ω) = 1[0](t)ξ0(ω) +
N∑

n=1

1(tn−1,tn](t)ξn(ω),

where 0 ≤ t0 < · · · < tN < ∞, ξn is an elementary Ftn−1-measurable random vari-
able, n = 1, . . . , N and ξ0 is F0-measurable. The stochastic integral

∫∞
0

φ(t) dW (t)
is defined in the usual way and is an element of Lp(Ω; E) for all p ∈ [1,∞).

Theorem 2.1 (Garling). For a UMD space E and p ∈ (1,∞) the following state-
ments hold:

(1) There exists a constant cp > 0 such that for all elementary processes φ,

(2.1) E
∥∥∥∫ ∞

0

φ(t) dW (t)
∥∥∥p

≤ cp
pE Ẽ

∥∥∥∫ ∞

0

φ(t) dW̃ (t)
∥∥∥p

.

(2) There exists a constant cp > 0 such that for all elementary processes φ,

(2.2) E Ẽ
∥∥∥∫ ∞

0

φ(t) dW̃ (t)
∥∥∥p

≤ cp
pE

∥∥∥∫ ∞

0

φ(t) dW (t)
∥∥∥p

.

Conversely, if (2.1) and (2.2) hold for all elementary processes φ, then E is a UMD
space.

Inspection of the proof in [4, Theorem 2] shows that (2.1) only requires UMD−

and (2.2) only requires UMD+. The main result of this paper reads as follows.

Theorem 2.2. Let E be a Banach space E and let p ∈ (1,∞). The following
statements hold:

(1) If there exists a constant cp > 0 such that (2.1) holds for all elementary
processes, then E is a UMD−PW space.

(2) If there exists a constant cp > 0 such that (2.2) holds for all elementary
processes, then E is a UMD+

PW space.

Although these results are in some sense not surprising, they appear to be new
and nontrivial to prove.

For the proof we need some lemmas. The first lemma is well-known and follows
from the strong Markov property.

Lemma 2.3. Let τ0 = 0 and define inductively

τn = inf{t ≥ τn−1 : |Wt −Wτn−1 | = 1}, 1 ≤ n ≤ N.

Then (τn)N
n=1 is an increasing sequence of stopping times and (∆τn,∆Wn)N

n=1 is
an i.i.d. sequence of random vectors, where

∆τn = τn − τn−1, ∆Wn = Wτn −Wτn−1 , 1 ≤ n ≤ N.

Moreover (∆Wn)N
n=1 is a Rademacher sequence adapted to (Fτn

)N
n=1.
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The next lemma gives some important properties of the independent Brownian
motion W̃ at random times. Such stopped Brownian motions W̃ are not Gaussian
random variables in general, but in this case they inherit some important properties.

Lemma 2.4. For 1 ≤ n ≤ N , let ∆W̃n = W̃τn − W̃τn−1 . Then (∆W̃n)N
n=1 is an

i.i.d. sequence of symmetric random variables, which is independent of (∆Wn)N
n=1.

Furthermore, each ∆Wn has finite moments of all orders.

Proof. For all 1 ≤ n ≤ N , ˜∆Wn is symmetric, because ∆W̃n(ω, ·) is symmet-
ric for each ω ∈ Ω. It follows from the strong Markov property of (W, W̃ ) that
(∆Wn,∆W̃n)N

n=1 is an i.i.d. sequence. So in order to prove the independence of
(∆W̃n)N

n=1 and (∆Wn)N
n=1, it is enough to show that ∆W1 = Wτ1 and ∆W̃1 = W̃τ1

are independent. The following argument is shown to us by Tuomas Hytönen. For
every Brownian motion B on Ω we introduce the following two stopping times:

τB
± = inf{t ≥ 0 : Bt = ±1}.

Note that τ1 = τW
− ∧τW

+ and for the Brownian motion −W , we have τ−W
+ = τW

− and
τ−W
− = τW

+ . Let B ∈ R be some Borel measurable set. Since (W, W̃ ) is identically
distributed with (−W, W̃ ) it follows that

P (Wτ1 = 1, W̃τ1 ∈ B) = P (τW
+ < τW

− , W̃τ1 ∈ B)

= P (τ−W
− < τ−W

+ , W̃τ1 ∈ B) = P (Wτ1 = −1, W̃τ1 ∈ B).

Clearly,

P (Wτ1 = 1, W̃τ1 ∈ B) + P (Wτ1 = −1, W̃τ1 ∈ B) = P (W̃τ1 ∈ B).

Hence

P (Wτ1 = 1, W̃τ1 ∈ B) =
1
2

P (W̃τ1 ∈ B) = P (Wτ1 = 1)P (W̃τ1 ∈ B).

The same holds for −1. This proves the independence.
For 0 < p < ∞ we have

E Ẽ |∆W̃n|p = E Ẽ |W̃τ1 |p = gp
pE τ

p/2
1 ,

where gp
p is the p-th moment of a standard Gaussian random variable and the

statement follows from the elementary fact that τ1 has finite moments of all orders.
�

Below we will consider adapted and measurable processes φ : [0,∞)×Ω → E that
take values in a finite-dimensional subspace of E. Since n-dimensional subspaces
of E are isomorphic to R n, one may construct the stochastic integral for such
processes φ that satisfy t 7→ φ(t, ω) ∈ L2(0,∞, E) for almost all ω ∈ Ω. By
the Burkholder-Davis-Gundy inequalities we have for all p ∈ (1,∞) and for φ
as above,

∫∞
0

φ(t) dW (t) ∈ Lp(Ω; E) if φ ∈ Lp(Ω; L2(0,∞;E)). In this case the
decoupled stochastic integral

∫∞
0

φ(t) dW̃ (t) is defined pathwise as an element of
Lp(Ω;Lp(Ω̃; E)). Moreover, if (2.1) or (2.2) holds for all elementary processes one
may extend this to all processes as above. In fact, Garling proved (2.1) and (2.2)
for this class of processes.

The next lemma is a variation of an example in [5]. We include a proof for
convenience.
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Lemma 2.5. Let E = c0 and p ∈ [1,∞). There does not exist a constant cp > 0
such that for all elementary processes φ, (2.1) holds.

Proof. Assume there exists a constant cp > 0 such that for all elementary processes
φ, (2.1) holds. Then we may extend (2.1) to all measurable and adapted processes
φ ∈ Lp(Ω;L2(0,∞;E)) that take values in a finite-dimensional subspace of E. For
each N ≥ 1, we will construct a process φ as above and such that(

E
∥∥∥∫ ∞

0

φ(t) dW (t)
∥∥∥p)1/p

= N and
(
E Ẽ

∥∥∥∫ ∞

0

φ(t) dW̃ (t)
∥∥∥p)1/p

≤ Kp

√
N.

Here Kp > 0 is some universal constant. This gives a contradiction.
We modify an example in [5] in such a way that the martingale differences arise

as stochastic integrals. We use the notation of Lemmas 2.3 and 2.4. Fix an integer
N ≥ 1. Let D = {−1, 1}N , and for each e = (en)N

n=1 ∈ D define the process
φe : [0,∞)× Ω → R by

φe(t) =

{
en1Ae,n

for t ∈ (τn−1, τn], n = 1, . . . , N,

0 for t = 0 or t > τN ,

where Ae,1 = Ω and for 2 ≤ n ≤ N ,

Ae,n = {∆W1 = e1, . . . ,∆Wn−1 = en−1}.

Then each φe is stochastically integrable with∫ ∞

0

φe(t) dW (t) =
N∑

n=1

∆Wnen1Ae,n .

Define φ : [0,∞)×Ω → l∞(D) by φ = (φe)e∈D. Then φ is stochastically integrable
and for almost all ω ∈ Ω and e ∈ D we have

∣∣∣(∫∞
0

φ(t) dW (t)
)
(ω)(e)

∣∣∣ ≤ N . For

almost all ω ∈ Ω and e = (∆Wn(ω))N
n=1 we have

∣∣∣(∫∞
0

φ(t) dW (t)
)
(ω)(e)

∣∣∣ = N.

This shows that(
E

∥∥∥∫ ∞

0

φ(t) dW (t)
∥∥∥p

l∞(D)

)1/p

= N, for all p ∈ [1,∞).

On the other hand, we have∫ ∞

0

φ(t) dW̃ (t) =
N∑

n=1

∆W̃nvn,

where for 1 ≤ n ≤ N , vn = (en1Ae,n
)e∈D.

For ω ∈ Ω and e ∈ D let k(ω, e) be 0 if ∆W1(ω) 6= e1 and let k(ω, e) be the
maximum of all integers n ≤ N such that ∆Wi(ω) = ei for all i ≤ n if ∆W1(ω) = e1.
For almost all ω ∈ Ω and for all e ∈ D,

(∑N
n=1 ∆W̃nvn

)
(ω)(e) is equal to

−∆W̃k(ω,e)+1(ω, ·)∆Wk(ω,e)+1(ω) +
∑k(ω,e)

n=1 ∆W̃n(ω, ·)∆Wn(ω), if k(ω, e) < N,∑N
n=1 ∆W̃n(ω, ·)∆Wn(ω), if k(ω, e) = N.

Of course we have for all k ≤ N ,

−W̃k∆Wk +
k−1∑
n=1

∆W̃n∆Wn = 2
k−1∑
n=1

∆W̃n∆Wn −
k∑

n=1

∆W̃n∆Wn.
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We obtain that for almost all ω ∈ Ω,∥∥∥∫ ∞

0

φ(t, ω) dW̃ (t)
∥∥∥

l∞(D)
≤ 3 sup

k≤N

∣∣∣ k∑
n=1

∆W̃n(ω, ·)∆Wn(ω)
∣∣∣.

Since for almost all ω ∈ Ω, (∆W̃n(ω, ·))N
n=1 is a sequence of independent centered

Gaussian random variables on Ω̃, we have by the Lévy-Octaviani inequalities for
independent symmetric random variables (see [9, Section 1.1]) for almost all ω ∈ Ω,

Ẽ sup
k≤N

∣∣∣ k∑
n=1

∆W̃n(ω, ·)∆Wn(ω)
∣∣∣p ≤ 2pẼ

∣∣∣ N∑
n=1

∆W̃n(ω, ·)∆Wn(ω)
∣∣∣p

= 2pẼ
∣∣∣ N∑
n=1

∆W̃n(ω, ·)
∣∣∣p = 2pẼ |W̃τN

(ω, ·)|p = 2pgp
pτN (ω)p/2.

Here gp
p is the p-th moment of a standard Gaussian random variable. We may

conclude that (
E Ẽ

∥∥∥∫ ∞

0

φ(t) dW̃ (t)
∥∥∥p

l∞(D)

)1/p

≤ 6gp(E τ
p/2
N )1/p.

Recall that the sequence (τn − τn−1)N
n=1 is identically distributed. For p = 2 we

obtain

(E τ
p/2
N )1/p = (E τN )1/2 =

(
E

N∑
n=1

τn − τn−1

)1/2

=
( N∑

n=1

E (τn − τn−1)
)1/2

=
( N∑

n=1

E τ1

)1/2

=
√

N
√

E τ1.

For 1 ≤ p < 2 we have by Hölder’s inequality,

(E τ
p/2
N )1/p ≤ (E τN )1/2 =

√
N

√
E τ1.

Finally for p > 2, by the triangle inequality in Lp/2(Ω),

(E τ
p/2
N )1/p =

(
E

( N∑
n=1

τn − τn−1

)p/2)1/p

≤
( N∑

n=1

(E (τn − τn−1)p/2)2/p
)1/2

=
( N∑

n=1

(E τ
p/2
1 )2/p

)1/2

=
√

N(E τ
p/2
1 )1/p.

By Lemma 2.4 this proves that for all p ∈ [1,∞) and some universal constant Kp,(
E Ẽ

∥∥∥∫ ∞

0

φ(t) dW̃ (t)
∥∥∥p)1/p

≤ Kp

√
N.

Since l∞(D) can be identified isometrically with a finite-dimensional subspace of
c0, this completes the proof. �

Corollary 2.6. Let E be a Banach space. If there exists a constant cp > 0 such
that for all elementary processes (2.1) holds, then E has finite cotype.

Proof. It follows from the above example that c0 is not finitely representable in E.
Hence the Maurey-Pisier Theorem (see [12]) implies that E has finite cotype. �
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Proof of Theorem 2.2. We may assume that the martingale starts at zero (see [1,
Remark 1.1 ]). Let (rn)N

n=1 be a Rademacher sequence on the probability space
(Ω,F , P ) and let (dn)N

n=1 be an E-valued martingale difference sequence with re-
spect to the filtration (σ(r1, r2, . . . , rn))N

n=0. We may write dn = rnfn(r1, . . . , rn−1)
for n = 1, . . . , N , for some fn : {−1, 1}n−1 → E. Let (r̃n)N

n=1 be a Rademacher
sequence on the probability space (Ω̃, F̃ , P̃ ).

(1): We will show that there exists a constant C−p > 0 only depending on E
such that

(2.3) E
∥∥∥ N∑

n=1

dn

∥∥∥p

≤ (C−p )pE Ẽ
∥∥∥ N∑

n=1

r̃ndn

∥∥∥p

.

We use the notation of Lemmas 2.3 and 2.4. Define a process φ : [0,∞) × Ω → E
by

φ(t) =

{
fn(∆W1, . . . ,∆Wn−1) for t ∈ (τn−1, τn], n = 1, . . . , N

0 for t = 0 or t > τN .

The process φ is stochastically integrable and we have

E
∥∥∥∫ ∞

0

φ(t) dW (t)
∥∥∥p

= E
∥∥∥ N∑

n=1

∆Wnfn(∆W1, . . . ,∆Wn−1)
∥∥∥p

= E
∥∥∥ N∑

n=1

rnfn(r1, . . . , rn−1)
∥∥∥p

= E
∥∥∥ N∑

n=1

dn

∥∥∥p

.

Also, we have

Ẽ E
∥∥∥∫ ∞

0

φ(t) dW̃ (t)
∥∥∥p

= E Ẽ
∥∥∥ N∑

n=1

∆W̃nfn(∆W1, . . . ,∆Wn−1)
∥∥∥p

.

By Lemma 2.4, Corollary 2.6 and [10, Proposition 9.14], we have

E Ẽ
∥∥∥ N∑

n=1

∆W̃nxn

∥∥∥p

≤ KpE Ẽ
∥∥∥ N∑

n=1

r̃nxn

∥∥∥p

,

where (xn)N
n=1 is a sequence in E and Kp > 0 is some constant depending only on

E and p. By conditioning (cf. [8, Lemma 3.11]) this result extends to

(2.4) E Ẽ
∥∥∥ N∑

n=1

∆W̃nXn

∥∥∥p

≤ KpE Ẽ
∥∥∥ N∑

n=1

r̃nXn

∥∥∥p

,

where (Xn)N
n=1 is a sequence of E-valued random variables independent of (∆W̃n)N

n=1

and independent of (r̃n)N
n=1. By Lemmas 2.3 and 2.4, we may apply (2.4) to the

random variables Xn = fn(∆W1, . . . ,∆Wn−1) for 1 ≤ n ≤ N to obtain:

E Ẽ
∥∥∥ N∑

n=1

∆W̃nfn(∆W1, . . . ,∆Wn−1)
∥∥∥p

≤ Kp
pE Ẽ

∥∥∥ N∑
n=1

r̃nfn(∆W1, . . . ,∆Wn−1)
∥∥∥p

= Kp
pE Ẽ

∥∥∥ N∑
n=1

r̃nfn(r1, . . . , rn−1)
∥∥∥p (i)

= Kp
pE Ẽ

∥∥∥ N∑
n=1

r̃nrnfn(r1, . . . , rn−1)
∥∥∥p

= Kp
pE Ẽ

∥∥∥ N∑
n=1

r̃ndn

∥∥∥p

.
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In (i), we used that (r1, . . . , rN , r̃1, . . . , r̃N ) and (r1, . . . , rN , r1r̃1, . . . , rN r̃N ) are
identically distributed. By assumption we have

E
∥∥∥∫ ∞

0

φ(t) dW (t)
∥∥∥p

≤ cp
pE Ẽ

∥∥∥∫ ∞

0

φ(t) dW̃ (t)
∥∥∥p

.

We may conclude that (2.3) holds with constant cpKp.
(2): We will show that there exists a constant C+

p > 0 only depending on E
such that

(2.5) E Ẽ
∥∥∥ N∑

n=1

r̃ndn

∥∥∥p

≤ (C+
p )pE

∥∥∥ N∑
n=1

dn

∥∥∥p

.

Let φ be as before. By Lemmas 2.3, 2.4 and [10, Lemma 4.5] and the same argu-
ments as before we have

E Ẽ
∥∥∥ N∑

n=1

r̃ndn

∥∥∥p

= E Ẽ
∥∥∥ N∑

n=1

r̃nfn(r1, . . . , rn−1)
∥∥∥p

= E Ẽ
∥∥∥ N∑

n=1

r̃nfn(∆W1, . . . ,∆Wn−1)
∥∥∥p

≤ 1
(E Ẽ |W̃1|)p

E Ẽ
∥∥∥ N∑

n=1

∆W̃nfn(∆W1, . . . ,∆Wn−1)
∥∥∥p

.

By assumption we have

E Ẽ
∥∥∥∫ ∞

0

φ(t) dW̃ (t)
∥∥∥p

≤ cp
pE

∥∥∥∫ ∞

0

φ(t) dW (t)
∥∥∥p

.

We may conclude that (2.5) holds with constant
cp

E Ẽ |W̃1|
. �
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