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A B S T R A C T

The predominant mode-I response of maritime structures can be multiaxial, involving out-of-plane mode-
III shear components. Semi-analytical mode-III notch stress distribution formulations have been established
for critical details like welded T-joints and cruciform joints, reflecting (non-)symmetry with respect to half
the plate thickness. Using a stress distribution formulation based effective notch stress as fatigue strength
criterion, the mode-III welded joint mid-cycle fatigue resistance characteristics have been investigated. In
comparison to mode-I, the material characteristic length and resistance curve slope estimate suggest the fatigue
damage process to be even more an initiation related near-surface phenomenon. Mean shear stress effects seem
insignificant.
1. Introduction

Maritime structures like offshore support vessels and floating off-
shore wind turbines (Fig. 1) are exposed to cyclic loading, both envi-
ronment (wind, waves) and service (machinery) induced, introducing a
cyclic response. Fatigue can be a governing limit state [1]. Fatigue sen-
sitive locations in plane geometries appear at material scale in micro-
and meso-scopic stress concentrations. In notched geometries, fatigue
sensitive locations emerge at structural scale in macro-scopic stress
concentrations; hot spots facilitating micro- and meso- scopic ones [2],
either as part of structural members (e.g. cut-outs) or at structural
member connections (e.g. joints). Maritime structures are traditionally
structural member assemblies in reinforced panel- or truss/frame-setup;
i.e. planar or tubular structures. For commonly applied materials like
steel, the arc-welded joints typically connecting the structural members
are fatigue sensitive.

In general, maritime structural response conditions can be multi-
axial, involving normal mode-I, in-plane shear mode-II and/or out-of-
plane mode-III shear components (Fig. 2) with potential contributions
from loading, geometry and/or even material sources. Environmental
– external – loading, like sea and swell, can come from different
directions. Stiffness variations because of changing geometry or ma-
terial anisotropy (e.g. in case of polymer composites) enable multiple
– internal – load transfer mechanisms along dissimilar paths. The
(curved) structural member plate thickness is often relatively small
in comparison to the width and length. Since the governing external
environmental loading, water and cargo pressure, is a distributed one,

∗ Corresponding author.
E-mail address: Henk.denBesten@tudelft.nl (H. den Besten).

the normal force 𝐹𝑛 as well as the in-plane and out-of-plane bending
moments, 𝑀𝑏,𝑖𝑝 and 𝑀𝑏,𝑜𝑝 – internal mode-I loading components –
are typically significant. At the same time, the in-plane shear force
𝐹𝑠,𝑖𝑝 mode-II contribution is negligible. However, the out-of-plane shear
force 𝐹𝑠,𝑜𝑝 and torsion moment 𝑀𝑡 mode-III components affect in
specific cases [3,4] the predominant mode-I response and multiaxiality
has to be taken into account for accurate fatigue strength and life time
estimates [e.g.5].

The fatigue damage process involves initiation and growth contribu-
tions [1] and can be modelled adopting respectively intact and cracked
geometry parameters [2]. Although for welded joints crack growth
dominates, the fatigue life time 𝑁 is predominantly spent in the notch
affected region [6], meaning a notch characteristic intact geometry
parameter rather than a cracked geometry one can be adopted as
fatigue strength criterion.

Far field response spectra of welded joints in steel maritime struc-
tures are predominantly linear elastic, explaining why the fatigue
strength criterion 𝑆 is typically of the stress – rather than strain
or energy – type and particularly related to mid- and high-cycle
fatigue [7].

The through-thickness weld toe and weld root notch stress distri-
butions along the expected (2D) crack path are assumed to be a key
element in defining an appropriate fatigue design and detectable repair
criterion [8]. Analytical expressions have already been established for
mode-I [7–9], related to the welded joint far field stress as typically can
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Nomenclature

Symbols

𝛼 (half) notch angle
𝛽 particular stress angle
𝛾 loading & response ratio coefficient
𝛥 prefix indicating stress range
𝜖 residual
𝜃 generic stress angle
𝜆 eigenvalue
𝜆𝜏 first mode-III eigenvalue
𝜇 mean
𝜇𝜏𝐹 force equilibrium coefficient
𝜇𝜏𝑀 moment equilibrium coefficient
𝜌 (real) weld notch radius
𝜌∗ material characteristic length
𝜎 (fatigue life time) standard deviation
𝜏𝑒 effective notch shear stress
𝜏𝑓𝑒 (equilibrium equivalent) linear structural field stress
𝜏𝑛 (𝑟∕𝑡𝑝) weld toe notch shear stress distribution
𝜏𝑛𝑜𝑚 nominal shear stress
𝜏𝑛𝑠 pure shear force induced 𝜏𝑛
𝜏𝑛𝑡 pure torsion moment induced 𝜏𝑛
𝜏𝑠 structural shear stress
𝜏𝑠𝑒 self equilibrium stress
𝜏𝑠𝑠 𝑓𝑠 induced structural shear stress component
𝜏𝑠𝑡 𝑚𝑡 induced structural shear stress component
𝜏𝑡𝑤 weld load carrying shear stress
𝛷 parameter vector
𝐶 fatigue resistance curve intercept
𝐶𝑡𝑤 weld load carrying shear stress coefficient
𝐹𝑠 nodal shear force
𝑓𝑠 line shear force
ℎ𝑤 weld leg height
𝑙𝑤 weld leg length
𝑚 fatigue resistance curve slope
𝑀𝑡 nodal torsion moment
𝑚𝑡 line torsion moment
𝑁 fatigue lifetime in number of cycles
𝑂 coordinate system origin
𝑟0 radial distance of coordinate system origin to notch tip
𝑅 loading & response ratio
𝑟 radial coordinate
𝑟𝜏𝑠 structural shear stress ratio
𝑅𝑡 tube outer radius
𝑆 fatigue strength criterion
𝑆𝑒 effective notch stress criterion
𝑆𝑛 nominal stress criterion
𝑡𝑏 base plate thickness
𝑡𝑐 cross plate thickness
𝑡𝑝 plate thickness
𝑇𝜎𝑆𝑛

10%–90% strength scatter band index
 log-likelihood
̂ circumflex indicating parameter MLE

Abbreviations

DS double side
FE finite element
MLE maximum likelihood estimate
2

Fig. 1. Support vessel and wind turbine, respectively a planar and tubular maritime
structure.

Fig. 2. DS welded T-joint in a tubular structure with internal load components.

be obtained using relatively coarse meshed shell/plate finite element
(FE) models. However, expressions for mode-III are not available yet
and will be established for weld toe notches in double side (DS)
welded T-joints and DS welded cruciform-joints, reflecting respectively
non-symmetry and symmetry with respect to half the plate thickness
(Section 2).

Different fatigue assessment concepts, relating the fatigue life time
𝑁 and a fatigue strength criterion 𝑆 using a resistance curve, have been
developed over time aiming to obtain more accurate life time estimates,
balanced with criterion complexity and computational efforts [8]. In-
corporating local (notch) information provides more generalised 𝑆
formulations and the number of involved fatigue resistance curves
reduces accordingly (i.e. ultimately to one), like for the effective notch
stress concept [8,10–15]. Taking advantage of the weld notch stress
distribution expressions, the effective notch stress Se can be calculated
averaging the notch stress distribution along the expected crack path
over a material characteristic length 𝜌∗, meaning solid FE models to
estimate Se are not required anymore. Following mode-I investiga-
tions [7,8], a mode-III mid-cycle fatigue Se-N curve will be established
for welded joints in steel structures (Section 3), paying particular
attention to the material characteristic length since 𝜌∗ seems never been
investigated before.

2. Mode-III weld toe notch shear stress distributions

In order to capture the mode-III through-thickness weld toe notch
shear stress distributions 𝜏𝑛(𝑟∕𝑡𝑝) along the expected (2D) crack path
with plate thickness 𝑡𝑝 either the base plate or cross plate value, 𝑡𝑏 or
𝑡𝑐 , the welded joint far field response is assumed to be linear elastic.
Adopting a linear superposition principle [9] a far field related equilib-
rium equivalent and self-equilibrium part will be distinguished, 𝜏 and
𝑓𝑒
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Fig. 3. Linear superposition of an equilibrium equivalent and self-equilibrium part for
the mode-III weld toe notch shear stress distribution of a DS welded T-joint and DS
welded cruciform joint.

𝜏𝑠𝑒 (Fig. 3) involving three components: the notch stress (Section 2.1),
the weld-load carrying stress (Section 2.2) and the far field stress
(Section 2.3). Formulations will be derived for both non-symmetry
(Section 2.4) and symmetry (Section 2.5) with respect to half the plate
thickness (𝑡𝑝∕2), using respectively a DS welded T-joint and DS welded
ruciform joint for illustration purposes, in case of both zero and finite
otch radius 𝜌. Please note that the cruciform joint in IIW standard [16]
nd Eurocode [17] is referred to as two-sided transverse attachment,
onsidering both the geometry and loading applied at the continuous
ember. The adopted joint annotation is based on geometry only, since

he variety in loading conditions can be large, in particular in case of
ultiaxiality.

.1. Notch stress component

The singular stress distribution at a V-shaped notch for a fillet
eld geometry with 𝜌 = 0 (Fig. 4) can be obtained [18–22] assuming

symmetry with respect to the notch bisector (𝜃 = 0). A tangential
component formulation for a particular stress angle (𝜃 = 𝛽) has been
established Appendix A, including a relation to the far field stress
parameter 𝜏𝑠 (Section 2.3):

𝜏𝑥𝜃

(

𝑟
𝑡𝑝

)

= 𝜏𝑠

(

𝑟
𝑡𝑝

)𝜆𝜏−1
𝜇𝜏𝐹 cos(𝜆𝜏𝛽) (1)

with

𝜇𝜏𝐹 =
𝐶 ′
1𝑡

𝜆𝜏−1
𝑝

𝜏𝑠
(2)

and

𝜆𝜏 = 𝜋
2𝛼

. (3)

Although the real weld notch radius 𝜌 is often virtually zero –
justifying the 𝜌 = 0 assumption, in some cases the influence of 𝜌 > 0
(Fig. 5) cannot be neglected. The coordinate system origin will be
transformed (𝑂′ → 𝑂), keeping the Polar axis parallel to the original
one:

𝑟′2 = 𝑟2 + 2 cos (𝛽 − 𝜃) 𝑟0𝑟 + 𝑟20 (4)

with

𝑟0 = 𝜌
(

1 − 𝜋
2𝛼

)

. (5)
3

For a particular stress angle 𝜃 = 𝛽, the tangential component
ecomes Appendix A:

𝑥𝜃

(

𝑟
𝑡𝑝

)

= 𝜏𝑠

(

𝑟′

𝑡𝑝

)𝜆𝜏−1
𝜇𝜏𝐹 cos(𝜆𝜏𝛽)

{

1 +
(

𝑟0
𝑡𝑝

)2𝜆𝜏 ( 𝑟′

𝑡𝑝

)−2𝜆𝜏
}

(6)

Comparing 𝜏𝑥𝜃(𝑟∕𝑡𝑝) for zero and finite notch radius (Eqs. 1 and 6), the
(𝜌 = 0) formulation is basically the (𝜌 > 0) limit case. In contrast to the
mode-I formulation [7–9], only one singular term is involved rather
than two.

2.2. Weld load carrying stress component

The weld geometry causes a local change in stiffness, meaning the
centre of twist varies from section to section along the 𝑦-axis (Fig. 6).
Each welded joint section is basically a rectangle containing two axes
of symmetry, meaning the centre of twist is located at the intersection
and coincides at the same time with the centroid. Connecting the
centres of twist of each section introduces the elastic axis (Fig. 6)
and coincides with the neutral axis. A torsion moment induced linear
shear stress distribution 𝜏𝑡𝑤(𝑟∕𝑡𝑝) appears and the weld becomes load
carrying up to some extent. Considering a weld toe notch as typically
encountered in a partial penetrated DS welded T-joint at the base plate
without symmetry with respect to (𝑡𝑝∕2), the torsion moment is counter-
clockwise for 𝑓𝑠 pointing in 𝑥-direction and counter-clockwise 𝑚𝑡 in the

Fig. 4. Notch stress components in Cartesian and Polar coordinates for 𝜌 = 0.

Fig. 5. Notch stress components in Cartesian and Polar coordinates for 𝜌 > 0.
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Fig. 6. Weld geometry induced shift of centre of twist for the non-symmetry and
symmetry case.

x-z plane and the weld load carrying (shear) stress distribution yields:

𝜏𝑡𝑤

(

𝑟
𝑡𝑝

)

= 𝜏𝑠𝐶𝑡𝑤

{

2
(

𝑟
𝑡𝑝

)

− 1

}

for {0 ≤
(

𝑟
𝑡𝑝

)

≤ 1}. (7)

The far field stress (Section 2.3) related magnitude 𝜏𝑠𝐶𝑡𝑤 is geometry
and loading dependent. If symmetry with respect to (𝑡𝑝∕2) is detected,
like for a DS welded cruciform joint (Fig. 6), the 𝜏𝑡𝑤(𝑟∕𝑡𝑝) distribution
is based on half the plate thickness only:

𝜏𝑡𝑤

(

𝑟
𝑡𝑝

)

= 𝜏𝑠𝐶𝑡𝑤

{

4
(

𝑟
𝑡𝑝

)

− 1

}

for {0 ≤
(

𝑟
𝑡𝑝

)

≤ 1}. (8)

2.3. Far field stress component

The linear structural field stress distribution 𝜏𝑓𝑒(𝑟∕𝑡𝑝) in the cross-
section at a weld toe (Fig. 3), in compliance with the fracture mechanics
defined far field stress [23,24], is characterised using the structural
shear stress 𝜏𝑠 and structural shear stress ratio 𝑟𝜏𝑠 :

𝜏𝑓𝑒

(

𝑟
𝑡𝑝

)

= 𝜏𝑠

{

1 − 2𝑟𝜏𝑠

(

𝑟
𝑡𝑝

)

}

for {0 ≤
(

𝑟
𝑡𝑝

)

≤ 1}. (9)

A relatively coarse meshed shell/plate FE model is typically sufficient
to estimate the far-field stress of welded joints in maritime struc-
tures [25,26], naturally embedding the constant membrane (mode-
I)/shear (mode-III) and linear bending (mode-I)/torsion (mode-III)
components [27]. If the welded joint structural stiffness – either in
planar or tubular structures – does not significantly affect the stress
distribution, like in general for groove welds (e.g. in butt joints), the
weld does not need to be modelled and the far field stress information
can be obtained at the intersection line of the connected structural
members [28]. However, if weld modelling is required – like often for
fillet welds (e.g. in T-joints and cruciform joints), several options are
4

available including inclined shell elements, inclined rigid elements or
shell elements with increased local thickness at the joint location [29].
For the considered mode-III loading & response conditions, inclined
shell element modelling has been adopted (Fig. 7) as it seems to be most
convenient in engineering practice [27]. Transforming the nodal shear
forces 𝐹𝑠,𝑖 and torsion moments 𝑀𝑡,𝑖 along the weld seam to line forces
and moments 𝑓𝑠,𝑖 and 𝑚𝑡,𝑖, {𝐹𝑠} = [𝑇 ]{𝑓𝑠} and {𝑀𝑡} = [𝑇 ]{𝑚𝑡} [24,
30,31], the shear force and torsion moment induced structural stress
components 𝜏𝑠𝑠 and 𝜏𝑠𝑡 can be calculated to obtain the structural shear
stress:

𝜏𝑠 = 𝜏𝑠𝑠 + 𝜏𝑠𝑡 (10)

with

𝜏𝑠𝑠 = 𝑓𝑠∕𝑡𝑝 (11a)

𝜏𝑠𝑡 = 6𝑚𝑡∕𝑡2𝑝. (11b)

The structural shear stress ratio (−∞ < 𝑟𝜏𝑠 ≤ 1) represents the relative
contribution of 𝜏𝑠𝑡 to 𝜏𝑠, i.e. the far field stress gradient:

𝑟𝜏𝑠 = 𝜏𝑠𝑡∕𝜏𝑠. (12)

Rewriting 𝜏𝑠𝑠 and 𝜏𝑠𝑡 in terms of 𝜏𝑠 (Eq. 10) and 𝑟𝜏𝑠 (Eq. 12) yield:

𝜏𝑠𝑠 = 𝜏𝑠(1 − 𝑟𝜏𝑠 ) (13a)

𝜏𝑠𝑡 = 𝑟𝜏𝑠𝜏𝑠. (13b)

2.4. Stress distribution for non-symmetry with respect to (𝑡𝑝∕2)

Using the notch stress component 𝜏𝑥𝜃 (Eq. 1), the weld load carrying
stress 𝜏𝑡𝑤 (Eq. 7) and structural field stress formulation 𝜏𝑓𝑒 (Eq. 9), the
mode-III stress distribution for the non-symmetry case (Fig. 8) – along
the (2D) crack path – can be obtained for 𝜌 = 0:

𝜏𝑛

(

𝑟
𝑡𝑝

)

= 𝜏𝑠

[

(

𝑟
𝑡𝑝

)𝜆𝜏−1
𝜇𝜏𝐹 cos(𝜆𝜏𝛽)−

(𝐶𝑡𝑤 + 𝜇𝜏𝑀 )

{

2
(

𝑟
𝑡𝑝

)

− 1

}

− 2𝑟𝜏𝑠

(

𝑟
𝑡𝑝

)

]

.

(14)

The self-equilibrium stress part 𝜏𝑠𝑒 + 1, (𝑟∕𝑡𝑝)𝜆𝜏−1𝜇𝜏𝐹 cos(𝜆𝜏𝛽)−(𝐶𝑡𝑤+
𝜇𝜏𝑀 ){2(𝑟∕𝑡𝑝) − 1} is scaled and projected – using 𝜏𝑠 and 𝑟𝜏𝑠 – onto
the structural field stress. For 𝑟𝜏𝑠 > 0 the stress distribution will be

Fig. 7. Part of a shell FE model of a (non-symmetric) T-joint in a tubular structure.
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Fig. 8. DS welded T-joint showing non-symmetry with respect to (𝑡𝑏∕2), either in a
tubular or planar (𝑅𝑡 → ∞) structure.

monotonic; in case 𝑟𝜏𝑠 ≤ 0 non-monotonic. Involving 𝜏𝑥𝜃 (Eq. 6), the
distribution for 𝜌 > 0 can be obtained as well:

𝜏𝑛

(

𝑟
𝑡𝑝

)

= 𝜏𝑠

[

(

𝑟′

𝑡𝑝

)𝜆𝜏−1
𝜇𝜏𝐹 cos(𝜆𝜏𝛽)

{

1 +
(

𝑟0
𝑡𝑝

)2𝜆𝜏 ( 𝑟′

𝑡𝑝

)−2𝜆𝜏
}

−

(𝐶𝑡𝑤 + 𝜇𝜏𝑀 )

{

2
(

𝑟′

𝑡𝑝

)

− 1

}

− 2𝑟𝜏𝑠

(

𝑟′

𝑡𝑝

)

]

.

(15)

Although principally the notch stress component in Cartesian co-
rdinates is required, a transformation (Eq. A.2) does not affect the
ormulation: 𝜏𝑥𝑧 = 𝜏𝑥𝑟 cos(𝜃) − 𝜏𝑥𝜃 sin(𝜃) = 𝜏𝑠(𝑟∕𝑡𝑝)𝜆𝜏−1𝜇′

𝜏𝐹 cos(𝜆𝜏𝛽)
or 𝜌 = 0, explaining why 𝜏𝑥𝜃 (Eq. 1) has been used. The involved
igenvalue 𝜆𝜏 (Fig. A.29) and the stress angle 𝛽 = (𝛼 − 𝜋∕2) are notch
ngle 𝛼 dependent. For fillet welds (Fig. 8):

= 1
2

{

𝜋 + arctan
(

ℎ𝑤
𝑙𝑤

)

}

. (16)

Like for the mode-I formulation [7–9], two constants are required
in order to satisfy both force and moment equilibrium. Since just one
constant 𝜇𝜏𝐹 is naturally available – comparable to the symmetric
mode-I term – a linear anti-symmetric term −𝜇𝜏𝑀{2(𝑟∕𝑡𝑝)−1} has been
introduced to be able to achieve self-equilibrium. Rather than solving
the system of force and moment equilibrium equations for 𝜇𝜏𝐹 and 𝜇𝜏𝑀 ,
like for mode-I, the two equations can be solved sequentially since force
equilibrium is identically satisfied for the anti-symmetric term. Force
equilibrium in a weak form:
1

∫
0

𝜏𝑛

(

𝑟
𝑡𝑝

)

d
(

𝑟
𝑡𝑝

)

=

1

∫
0

𝜏𝑠

{

1 − 2𝑟𝜏𝑠

(

𝑟
𝑡𝑝

)

}

d
(

𝑟
𝑡𝑝

)

(17)

provides for 𝜌 = 0

𝜇𝜏𝐹 =
𝜆𝜏

cos(𝜆𝜏𝛽)
. (18)

or 𝜌 > 0 the coordinate system transformation (Eqs. 4 and 5) becomes
nvolved and force equilibrium in weak form:

1

∫
𝑟0
𝑡𝑝

)

𝜏𝑛

(

𝑟
𝑡𝑝

)

d
(

𝑟
𝑡𝑝

)

=

1

∫
0

𝜏𝑠

{

1 − 2𝑟𝜏𝑠

(

𝑟
𝑡𝑝

)

}

d
(

𝑟
𝑡𝑝

)

(19)

with
𝑟0 =

𝜌 (

1 − 𝜋 )

(20)
5

𝑡𝑝 𝑡𝑝 2𝛼
provides

𝜇𝜏𝐹 = −

𝜆𝜏

{

𝜇𝜏𝑀

[

(

𝑟0
𝑡𝑝

)2
−
(

𝑟0
𝑡𝑝

)

]

−
(

𝑟0
𝑡𝑝

)2
𝑟𝜏𝑠 − 1

}

cos(𝜆𝜏𝛽)

[

1 −
(

𝑟0
𝑡𝑝

)2𝜆𝜏
] . (21)

Note that with the obtained 𝜇𝜏𝐹 formulation 𝜏𝑛(𝑟∕𝑡𝑝) turns out to be
stress angle 𝛽 independent. Moment equilibrium in a weak form for
𝜌 = 0:
1

∫
0

𝜏𝑛

(

𝑟
𝑡𝑝

)

⋅
(

𝑟
𝑡𝑝

)

d
(

𝑟
𝑡𝑝

)

=

1

∫
0

𝜏𝑠

{

1 − 2𝑟𝜏𝑠

(

𝑟
𝑡𝑝

)

}

(

𝑟
𝑡𝑝

)

d
(

𝑟
𝑡𝑝

)

(22)

yields 𝜇𝜏𝑀 = {3(𝜆𝜏 − 1) + 𝐶𝑡𝑤(𝜆𝜏 + 1)}∕(𝜆𝜏 + 1). However, substitution
in 𝜏𝑛(𝑟∕𝑡𝑝) provides a 𝐶𝑡𝑤 independent equation, since the introduced
anti-symmetric term and the weld load carrying stress have the same
form. Ignoring the weld load carrying stress contribution denotes:

𝜇𝜏𝑀 =
3(𝜆𝜏 − 1)
(𝜆𝜏 + 1)

. (23)

For 𝜌 > 0 the same considerations apply:

1

∫
𝑟0
𝑡𝑝

)

𝜏𝑛

(

𝑟
𝑡𝑝

)

⋅
(

𝑟
𝑡𝑝

)

d
(

𝑟
𝑡𝑝

)

=

1

∫
0

𝜏𝑠

{

1 − 2𝑟𝜏𝑠

(

𝑟
𝑡𝑝

)

}

(

𝑟
𝑡𝑝

)

d
(

𝑟
𝑡𝑝

)

(24)

providing

𝜇𝜏𝑀 =

6𝜆𝜏 (𝜆𝜏 + 1)
(

𝑟0
𝑡𝑝

)2𝜆𝜏+1
− 3(𝜆2𝜏 − 1)

(

𝑟0
𝑡𝑝

)2𝜆𝜏+2
−

12𝜆𝜏

(

𝑟0
𝑡𝑝

)𝜆𝜏+2
− 3(𝜆𝜏 + 1)2

(

𝑟0
𝑡𝑝

)2𝜆𝜏
+ 12𝜆𝜏

(

𝑟0
𝑡𝑝

)𝜆𝜏+1
+

3
[(

𝑟0
𝑡𝑝

)

− 1
]

(𝜆𝜏 − 1)
{[(

𝑟0
𝑡𝑝

)

− 1
]

𝜆𝜏 +
(

𝑟0
𝑡𝑝

)

+ 1
}

6𝜆𝜏 (𝜆𝜏 + 1)
(

𝑟0
𝑡𝑝

)2𝜆𝜏+1
− (9𝜆2𝜏 + 6𝜆𝜏 − 3)

(

𝑟0
𝑡𝑝

)2𝜆𝜏+2
−

12𝜆𝜏

(

𝑟0
𝑡𝑝

)𝜆𝜏+2
− (𝜆2𝜏 − 1)

(

𝑟0
𝑡𝑝

)2𝜆𝜏
+ 12𝜆𝜏

(

𝑟0
𝑡𝑝

)𝜆𝜏+3
+

{

[

−4
(

𝑟0
𝑡𝑝

)3
+ 9

(

𝑟0
𝑡𝑝

)2
+ 4

(

𝑟0
𝑡𝑝

)2𝜆𝜏+3
− 6

(

𝑟0
𝑡𝑝

)

+ 1
]

𝜆𝜏−

4
(

𝑟0
𝑡𝑝

)3
+ 3

(

𝑟0
𝑡𝑝

)2
+ 4

(

𝑟0
𝑡𝑝

)2𝜆𝜏+3
+ 1

}

(𝜆𝜏 − 1)

. (25)

The 𝜇𝜏𝐹 and 𝜇𝜏𝑀 expressions obtained for 𝜌 = 0 are basically
𝜌 > 0 limit values. Although moment equilibrium is not exactly
satisfied since the weld load carrying stress has been ignored, at least
𝜏𝑠𝐶𝑡𝑤

{

2(𝑟∕𝑡𝑝) − 1
}

is still part of 𝜏𝑛(𝑟∕𝑡𝑝) to take care of the welded joint
geometry and loading dependent weld notch stress contributions.

The weld load carrying stress magnitude 𝜏𝑠𝐶𝑡𝑤 is assumed to be a
linear superposition of a shear force 𝑓𝑠 and torsion moment 𝑚𝑡 induced
component, meaning 𝐶𝑡𝑤 is 𝑟𝜏𝑠 dependent. For a tubular structure with
attachment involving a DS welded T-joint and exposed to a torsion
moment 𝑀𝑡 (Fig. 8), the structural stress ratio 𝑟𝜏𝑠 changes for varying
ratio of tube radius 𝑅𝑡 and thickness 𝑡𝑝. For the limit cases, respectively
𝑅𝑡 → 𝑡𝑏 (corresponding to a solid shaft) and 𝑅𝑡 → ∞ (corresponding to
a quasi-planar structure), the pure torsion and pure shear case appear.
However, the pure torsion case introduces geometrical symmetry at the
same time. Investigating the relative load path contributions using a 2D
axisymmetric FE model (Fig. 14), the pure shear case will be considered
to identify the weld load carrying mechanism for non-symmetry with
respect to (𝑡𝑝∕2). If a torsion moment is applied to the tube with
𝑅𝑡 → ∞ (Fig. 8), the DS welded T-joint contains two parallel load
paths: one through the base plate and one through the weld and cross
plate. The shear stiffness and torsion stiffness of the load paths define
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how the loading is divided. The base plate load path related shear
stiffness dominates generally speaking the weld and cross plate load
path related torsion stiffness, explaining the (𝑓𝑠,𝑡𝑏∕𝑓𝑠) values closer to

(Fig. 9). For increasing 𝑡𝑏, the shear force through the base plate
ncreases because of increasing base plate load path stiffness. The weld
nd cross plate load path torsion stiffness increases for increasing 𝑡𝑐 ,
𝑤, and ℎ𝑤, meaning the base plate load path contribution decreases.
he considered range of dimensions is representative for maritime
tructures consisting of structural members with relatively small plate
hickness in comparison to the width and length.

In order to obtain the required 𝐶𝑡𝑤 values, FE solutions and analyti-
al results (Eq. 14) for a range of geometry dimensions have been used
o establish a 4th order polynomial fitting function (Eq. B.1). Geometry
ontributions – including the notch angle (𝑙𝑤∕ℎ𝑤) – and two load path
arameters: (𝑙𝑤∕𝑡𝑏) and the log-ratio of (𝑡𝑐∕2 + 𝑙𝑤)∕𝑡𝑏 are involved, as

well as (𝑡𝑏∕𝑅𝑡) implicitly representing the internal loading contribution
in terms of 𝑟𝜏𝑠 Appendix B. The weld load carrying stress turns out to be
virtually 𝜌 independent for realistic values: (𝜌∕𝑡𝑏) ≤ 0.2, and has been
neglected in establishing the 𝐶𝑡𝑤 fitting function.

Comparing the required 𝐶𝑡𝑤 values to the estimates (Fig. 10) reflect
a good match. Depending on the joint dimensions, the weld load
carrying stress level for the weld toe notch at the base plate can be
up to about 30 [%] of the structural stress 𝜏𝑠. For varying 𝑡𝑏, 𝑡𝑐 , and
ℎ𝑤, the trends are the same and opposite to the relative base plate loads
(Fig. 9) as expected because of the same physics. Increasing 𝑡𝑏 decreases
𝐶𝑡𝑤 since the relative stiffness contribution of the weld and cross plate
load path decreases. For increasing 𝑡𝑐 and ℎ𝑤, the 𝐶𝑡𝑤 values increase
because the relative weld and cross plate load path stiffness increases.
For increasing 𝑙𝑤, the load through the base plate decreases; the load
through the weld and cross plate increases accordingly. However, 𝐶𝑡𝑤
decreases for increasing 𝑙𝑤, meaning the weld notch becomes less
effective. Asymptotically decreasing 𝐶𝑡𝑤 behaviour – related to the pure
shear limit case (𝑟𝜏𝑠 = 0) – can be observed for increasing 𝑅𝑡, meaning
𝐶𝑡𝑤 is relatively small in comparison to the pure torsion case (𝑟𝜏𝑠 = 1).

A monotonic through-thickness stress distribution at the weld toe
notch of the base plate is shown (Fig. 11) for a combined load case
(𝑟𝜏𝑠 = 0.24); the torsion moment is applied counter-clockwise. A non-
monotonic one is shown (Fig. 12) for a pure shear force (𝑟𝜏𝑠 = 0). The
joint dimensions are arbitrary, but realistic for maritime structures. A
comparison of the weld toe notch stress- and far field stress distribu-
tions indicate that force and moment equilibrium is (approximately)
satisfied indeed. Converged solid FE model solutions (Fig. 14) are added
for comparison (Figs. 11 and 12), showing that the semi-analytical
𝜏𝑛(𝑟∕𝑡𝑝) formulations (Eqs. 14 and 15) provide accurate stress distribu-
tions. In general, the relative error (Fig. 13) – obtained considering all
stress distributions for the full parameter range – is within 5 [%]. Like
for the mode-I formulations, three zones can be identified: the zone
1 peak stress value, the zone 2 notch-affected stress gradient and the
zone 3 far-field dominated stress gradient, demonstrating stress field
similarity.

2.5. Stress distribution for symmetry with respect to (𝑡𝑝∕2)

Weld toe notches appear at both sides of a plate/shell if stress
distribution symmetry with respect to (𝑡𝑝∕2) is detected, as shown for
a DS welded cruciform joint (Fig. 15). The self-equilibrium stress part
components, 𝜏𝑥𝜃 (Eq. 1) and 𝜏𝑡𝑤 (Eq. 8) are assumed to be important
for fatigue crack development at the considered notch location only and
another 𝜏𝑠𝑒 contribution for the symmetry part will be ignored. The far
field stress component is assumed to be dominant for {1∕2 < (𝑟∕𝑡𝑝) < 1},
meaning that no 𝜏𝑡𝑤 correction is required for this region. For a pure
6

out-of-plane shear force 𝐹𝑠,𝑜𝑝 induced load case (𝜏𝑠 = 𝜏𝑠𝑠), the notch
stress formulation for 𝜌 = 0 becomes:

𝜏𝑛𝑠

(

𝑟
𝑡𝑝

)

= 𝜏𝑠𝑓𝜌=0

(

𝑟
𝑡𝑝

)

= 𝜏𝑠

[

(

𝑟
𝑡𝑝

)𝜆𝜏−1
𝜇𝜏𝐹 cos(𝜆𝜏𝛽) − 𝜇𝜏𝑀

{

2
(

𝑟
𝑡𝑝

)

− 1

}

−

𝐶𝑡𝑤

{

4
(

𝑟
𝑡𝑝

)

− 1

} ]

(26)

nd for 𝜌 > 0:

𝑛𝑠

(

𝑟
𝑡𝑝

)

= 𝜏𝑠𝑓𝜌>0

(

𝑟
𝑡𝑝

)

= 𝜏𝑠

[

(

𝑟′

𝑡𝑝

)𝜆𝜏−1
𝜇𝜏𝐹 cos(𝜆𝜏𝛽)

{

1 +
(

𝑟0
𝑡𝑝

)2𝜆𝜏 ( 𝑟′

𝑡𝑝

)−2𝜆𝜏
}

−

𝜇𝜏𝑀

{

2
(

𝑟′

𝑡𝑝

)

− 1

}

− 𝐶𝑡𝑤

{

4
(

𝑟′

𝑡𝑝

)

− 1

} ]

.

(27)

To calculate the coefficients 𝜇𝜏𝐹 and 𝜇𝜏𝑀 , half the plate thickness is
onsidered. Using force and moment equilibrium only is not sufficient
nd a symmetry condition has been added as 3rd equation. However,
he system of equations has become over determined, meaning a least
quares solution will be obtained. Allowing for some relaxation, i.e. ig-
oring moment equilibrium, provides quite accurate results – like for
ode-I [9]. Force equilibrium in a weak form for 𝜌 = 0:

1∕2

∫
0

𝜏𝑛

(

𝑟
𝑡𝑝

)

d
(

𝑟
𝑡𝑝

)

=

1∕2

∫
0

𝜏𝑠 d
(

𝑟
𝑡𝑝

)

(28)

provides

𝜇𝜏𝐹 =
𝜆𝜏

(

𝐶𝑡𝑤 + 1
)

cos
(

𝜆𝜏𝛽
)

21−𝜆𝜏
(

1 + 𝜆𝜏
2

(

𝜆𝜏 − 1
)

) . (29)

In case 𝜌 > 0, the coordinate system transformation (Eqs. 4 and 5)
becomes involved and force equilibrium in weak form:
(

2𝑟0+1
2𝑡𝑝

)

∫
(

𝑟0
𝑡𝑝

)

𝜏𝑛

(

𝑟
𝑡𝑝

)

d
(

𝑟
𝑡𝑝

)

=

1∕2

∫
0

𝜏𝑠 d
(

𝑟
𝑡𝑝

)

(30)

denotes

𝜇𝜏𝐹 =

𝜆𝜏

{

𝜆𝜏
(

𝑟0
𝑡𝑝

)2𝜆𝜏 ( 2𝑟0+1
2𝑡𝑝

)

(

4𝑟0+1
4𝑡2𝑝

){

2𝜆𝜏−1 + 𝐶𝑡𝑤2𝜆𝜏
(

1
2𝑡𝑝

)

}

−

2𝜆𝜏+1𝐶𝑡𝑤

[

(

2𝑟0+1
2𝑡𝑝

)2 ( 𝑟0
𝑡𝑝

)𝜆𝜏
−
(

2𝑟0+1
2𝑡𝑝

)(

𝑟0
𝑡𝑝

)𝜆𝜏+1
−
(

2𝑟0+1
2𝑡𝑝

)2+𝜆𝜏
+

(

𝑟0
𝑡𝑝

)(

2𝑟0+1
2𝑡𝑝

)𝜆𝜏+1
]

−2𝜆𝜏
[

(

𝑟0
𝑡𝑝

)𝜆𝜏 ( 2𝑟0+1
2𝑡𝑝

)

−
(

2𝑟0+1
2𝑡𝑝

)𝜆+1
]

}

cos
(

𝜆𝜏𝜃
)

(

2𝑟0+1
2𝑡𝑝

)

[

𝜆𝜏

[(

4𝑟0+1
4𝑡2𝑝

)]

(

𝑟0
𝑡𝑝

)2𝜆𝜏
− 2

(

𝑟0
𝑡𝑝

)𝜆𝜏
+

2
(

2𝑟0+1
2𝑡𝑝

)𝜆𝜏
]

{

(

2𝑟0+1
2𝑡𝑝

)

𝜆𝜏2𝜆𝜏
[(

1
2𝑡𝑝

)](

𝑟0
𝑡𝑝

)2𝜆𝜏
+

2𝜆𝜏
[

(

2𝑟0+1
2𝑡𝑝

)𝜆𝜏
−
(

𝑟0
𝑡𝑝

)𝜆𝜏
]

+ 𝜆𝜏(𝜆𝜏−1)
2𝑡2𝑝

}

.

(31)

Imposing symmetry:

d𝜏𝑛

(

𝑟
𝑡𝑝

)

d
(

𝑟
𝑡𝑝

)

|

|

|

|

|

|

|

|

|

(

𝑟 = 1
)

= 0 (32)
𝑡𝑝 2
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Fig. 9. Relative base plate shear load for a DS welded T-joint, varying 𝑡𝑏, 𝑡𝑐 , 𝑙𝑤 and ℎ𝑤 for 𝑅𝑡 → ∞.

Fig. 10. Required 𝐶𝑡𝑤 value and fit estimate for a DS welded T-joint varying 𝑡𝑏, 𝑡𝑐 , 𝑙𝑤, ℎ𝑤 and 𝑅𝑡.
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Fig. 11. Weld toe notch stress distribution for 𝜌 = 0 (left) and 𝜌 > 0 (right) for a DS welded T-joint; 𝑟𝜏𝑠 = 0.24.
Fig. 12. Weld toe notch stress distribution for 𝜌 = 0 (left) and 𝜌 > 0 (right) for a DS welded T-joint; 𝑟𝜏𝑠 = 0.
n

𝜏

d

ields 𝜇𝜏𝑀 = (2𝜆𝜏
(

𝜆𝜏 − 1
)

− 4𝐶𝑡𝑤)(𝜆2𝜏 − 𝜆𝜏 + 2)−1 for 𝜌 = 0. However,
ike observed for moment equilibrium in case of non-symmetry (Sec-
ion 2.4), substitution in 𝜏𝑛(𝑟∕𝑡𝑝) provides a 𝐶𝑡𝑤 independent equation,
ince the introduced anti-symmetric term and the weld load carrying
tress have the same form. Ignoring the weld load carrying stress
ontribution yields for 𝜌 = 0:

𝜏𝑀 =
2𝜆𝜏

(

𝜆𝜏 − 1
)

𝜆2𝜏 − 𝜆𝜏 + 2
(33)

nd for 𝜌 > 0, considering the notch radius induced shift of the
oordinate system origin (Eqs. 4 and 5):

𝜏𝑀 =

(

2𝑟0+1
2𝑡𝑝

)2
𝜆𝜏

{

2𝜆𝜏
(

𝑟0
𝑡𝑝

)2𝜆𝜏
+ 4

(

𝜆𝜏 − 1
)

}

{

𝜆𝜏2𝜆𝜏
(

𝑟0
𝑡𝑝

)2𝜆𝜏 ( 2𝑟0+1
4𝑡2𝑝

)

+

2𝜆𝜏
[

(

2𝑟0+1
2𝑡𝑝

)𝜆𝜏
−
(

𝑟0
𝑡𝑝

)𝜆𝜏
]

+ 𝜆𝜏 (𝜆𝜏−1)
2𝑡2𝑝

}

. (34)

In order to acquire the pure torsion moment 𝑀𝑡 induced notch stress
istribution in a similar formulation as for non-symmetry (Eq. 15),
.e. including a far field torsion stress projection, 𝜏𝑛𝑠(𝑟∕𝑡𝑝) needs to
e shifted first by {1 − 𝑓 (𝑟∕𝑡𝑝 = 1∕2)} – with 𝑓 (𝑟∕𝑡𝑝) = 𝑓𝜌=0(𝑟∕𝑡𝑝) or
(𝑟∕𝑡𝑝) = 𝑓𝜌>0(𝑟∕𝑡𝑝) for respectively 𝜌 = 0 and 𝜌 > 0 – in order to
eet the condition 𝜏𝑛𝑡(𝑟∕𝑡𝑝 = 1∕2) = 0. To satisfy anti-symmetry, the

𝑛𝑡 gradient at (𝑟∕𝑡𝑝 = 1∕2) should be equal to the far field torsion
alue −2. Subtracting the shift in terms of a torsion stress gradient
8

2{1 − 𝑓 (𝑟∕𝑡𝑝 = 1∕2)} from the unit stress 1, the obtained formulation 𝜏
eeds to be scaled using {2𝑓 (𝑟∕𝑡𝑝 = 1∕2) − 1} and becomes for 𝜌 = 0:

𝜏𝑛𝑡

(

𝑟
𝑡𝑝

)

= 𝜏𝑠

[

2𝑓𝜌=0

(

𝑟
𝑡𝑝

= 1
2

)

− 1
]

{

𝑓𝜌=0

(

𝑟
𝑡𝑝

)

+

[

1 − 𝑓𝜌=0

(

𝑟
𝑡𝑝

= 1
2

) ]

−2
(

𝑟
𝑡𝑝

)

} (35)

with

𝑓𝜌=0

(

𝑟
𝑡𝑝

= 1
2

)

=

[

( 1
2

)𝜆𝜏−1
𝜇𝜏𝐹 cos(𝜆𝜏𝛽) − 𝐶𝑡𝑤

]

(36)

and for 𝜌 > 0:

𝑛𝑡

(

𝑟′

𝑡𝑝

)

= 𝜏𝑠

[

2𝑓𝜌>0

(

𝑟′

𝑡𝑝
= 1

2

)

− 1
]

{

𝑓𝜌>0

(

𝑟′

𝑡𝑝

)

+

[

1 − 𝑓𝜌>0

(

𝑟′

𝑡𝑝
= 1

2

) ]

−2
(

𝑟′

𝑡𝑝

)

} (37)

with

𝑓𝜌>0

(

𝑟′

𝑡𝑝
= 1

2

)

=

[

(

2𝑟0 + 1
2𝑡𝑝

)𝜆𝜏−1
𝜇𝜏𝐹 cos(𝜆𝜏𝛽)⋅

{

1 +
(

𝑟0
𝑡𝑝

)2𝜆𝜏 (2𝑟0 + 1
2𝑡𝑝

)−2𝜆𝜏
}

−

𝜇𝜏𝑀

{

2
(

2𝑟0 + 1
2𝑡𝑝

)

− 1

}

−

𝐶𝑡𝑤

{

4
(

2𝑟0 + 1
2𝑡𝑝

)

− 1

} ]

.

(38)

Finally, adopting a linear superposition principle, the mode-III stress
istribution for symmetry can be obtained for 𝜌 = 0 using the 𝜏𝑛𝑠 and

formulations (Eqs. 26 and 35) as well as structural stress relations
𝑛𝑡
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Fig. 13. Relative stress distribution error for DS welded T-joint, comparing the FE
solutions and the analytical results. The fillet weld angle is in between 30 and 60
[deg], i.e 210◦ < 2𝛼 < 240◦.

(Eq. 13):

𝜏𝑛

(

𝑟
𝑡𝑝

)

= 𝜏𝑠

([

1 − 2𝑟𝜏𝑠

{

1 − 𝑓𝜌=0

(

𝑟
𝑡𝑝

= 1
2

)}

]

𝑓𝜌=0

(

𝑟
𝑡𝑝

)

+

[

2𝑓𝜌=0

(

𝑟
𝑡𝑝

= 1
2

)

− 1
]

{

[

1 − 𝑓𝜌=0

(

𝑟
𝑡𝑝

= 1
2

)]

−

2
(

𝑟
𝑡𝑝

)

})

.

(39)

The same formulation applies for 𝜌 > 0, using 𝑓𝜌>0(𝑟∕𝑡𝑝 = 1∕2) rather
than 𝑓𝜌=0(𝑟∕𝑡𝑝 = 1∕2); i.e. (Eq. 27) and (Eq. 37). Like for non-symmetry
(Section 2.4), the 𝜌 = 0 expressions are a 𝜌 > 0 limit case. For a tubular
structure with attachment involving a DS welded cruciform joint and
exposed to a torsion moment 𝑀𝑡 (Fig. 15), the structural stress ratio
𝑟𝜏𝑠 changes for varying tube radius 𝑅𝑡. For the limit cases, respectively
𝑅𝑡 → 𝑡𝑏 (corresponding to a solid shaft) and 𝑅𝑡 → ∞ (corresponding to
a quasi-planar structure), the pure torsion and pure shear case appear,
meaning that for symmetry – in contrast to non-symmetry (Section 2.4)
– both extremes can be considered to establish the 𝑟𝜏𝑠 dependent weld
load carrying stress 𝜏𝑠𝐶𝑡𝑤 behaviour.

Investigating the relative load path contributions for the DS welded
cruciform joint, three parallel load paths are involved: one through
the base plate and two through the weld and cross plate. The shear
forces through the base plate (Fig. 16; 𝑅𝑡 → ∞) are relatively small
in comparison to the DS welded T-joint values (Fig. 9) because of the
smaller stiffness contribution of each load path. The trends for 𝑓𝑠 (Fig. 9
for the T-joint – as well as Fig. 16; 𝑅𝑡 → ∞ for the cruciform joint) and
𝑚𝑡 (Fig. 16; 𝑅𝑡 → 𝑡𝑏) are the same. For 𝑚𝑡, the radius dependent torsion
stiffness is involved for all load paths and becomes larger towards
the outer load path through the weld and cross plate, clarifying the
relatively small (𝑚𝑡,𝑡𝑏∕𝑚𝑡) values. For increasing 𝑡𝑏, the shear force and
torsion moment through the base plate increase because of increasing
base plate load path stiffness. The weld and cross plate load path torsion
stiffness increases for increasing 𝑡𝑐 , 𝑙𝑤, and ℎ𝑤, meaning the base plate
load path contribution decreases. Like for non-symmetry (Section 2.4),
a 4th order polynomial fitting function (Eq. B.2) has been established
to capture 𝐶𝑡𝑤 estimates. The weld load carrying stress turns out to be
virtually 𝜌 independent for realistic values: (𝜌∕𝑡𝑏) ≤ 0.2 and has been
neglected in establishing the 𝐶 fitting function.
9

𝑡𝑤
For DS welded cruciform joints, the weld load carrying stress level
does not even reach 5 [%] of 𝜏𝑠 (Fig. 17). Since 𝑅𝑡 = 100 [mm],
the far field stress involves both a (constant) shear force and (lin-
ear) torsion moment induced contribution. For varying 𝑡𝑐 and 𝑙𝑤, the
trends (Fig. 17) are the same and opposite to the relative base plate
loads (Fig. 16) as expected because of the same physics. Although, a
decreasing 𝐶𝑡𝑤 might be expected for increasing 𝑡𝑏 and ℎ𝑤 (Fig. 16),
the increased radius dependent torsion stiffness for the outer load
path through the weld and cross plate is responsible for counteracting
behaviour and provides even a small 𝐶𝑡𝑤 increase. Like for the non-
symmetry case (Section 2.4), asymptotically decreasing 𝐶𝑡𝑤 behaviour
– related to the pure shear limit case (𝑟𝜏𝑠 = 0) – can be observed for
increasing 𝑅𝑡, meaning 𝐶𝑡𝑤 is relatively small in comparison to the pure
torsion case (𝑟𝜏𝑠 = 1).

Monotonic through-thickness stress distributions at the weld toe
notch of the base plate are shown (Figs. 18 and 19) for a pure torsion
moment (𝑟𝜏𝑠 = 1) and combined load case (𝑟𝜏𝑠 = 0.24); the torsion
moment is applied counter-clockwise. A non-monotonic one is shown
(Fig. 20) for a pure shear force (𝑟𝜏𝑠 = 0). For {0 ≤ (𝑟∕𝑡𝑏) ≤ (1∕2)}
equilibrium conditions are (approximately) satisfied as imposed. The
(anti-)symmetry condition (Eq. 32) ensures a stress gradient close to 𝑟𝜏𝑠
for {(1∕2) ≤ (𝑟∕𝑡𝑏) ≤ 1}. Converged solid FE model solutions are added
for comparison, showing that the semi-analytical 𝜏𝑛(𝑟∕𝑡𝑝) formulations
(Eq. 39) provide accurate weld notch stress distributions. Like for
the non-symmetry case (Section 2.4), three zones can be identified
meaning stress field similarity is maintained. In general, the relative

Fig. 14. Two-dimensional harmonic axisymmetric FE model for a non-symmetric
T-joint.

Fig. 15. DS welded cruciform joint showing symmetry with respect to (𝑡𝑏∕2), either
in a tubular or planar (𝑅𝑡 → ∞) structure.
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Fig. 16. Relative base plate shear load for a DS welded cruciform joint, varying 𝑡𝑏, 𝑡𝑐 , 𝑙𝑤 and ℎ𝑤 for both 𝑅𝑡 → ∞ and 𝑅𝑡 → 𝑡𝑏.

Fig. 17. Required 𝐶𝑡𝑤 value and fit estimate for a DS welded cruciform joint, varying 𝑡𝑏, 𝑡𝑐 , 𝑙𝑤, ℎ𝑤 and 𝑅𝑡.
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Fig. 18. Weld toe notch stress distribution for 𝜌 = 0 (left) and 𝜌 > 0 (right) for a DS welded cruciform joint; 𝑟𝜏𝑠 = 1.
Fig. 19. Weld toe notch stress distribution for 𝜌 = 0 (left) and 𝜌 > 0 (right) for a DS welded cruciform joint; 𝑟𝜏𝑠 = 0.24.
Fig. 20. Weld toe notch stress distribution for 𝜌 = 0 (left) and 𝜌 > 0 (right) for a DS welded cruciform joint; 𝑟𝜏𝑠 = 0.
error (Fig. 21) – obtained considering all stress distributions for the full
parameter range – is within 5 [%] for {0 ≤ (𝑟∕𝑡𝑏) ≤ (1∕2)}. Relatively
large errors appear in the far field dominated stress gradient zone since
the notch contribution for the symmetry part in {(1∕2) ≤ (𝑟∕𝑡𝑏) ≤ 1} has
been neglected.

3. Mode-III welded joint fatigue resistance

Using fatigue resistance data from literature (Section 3.1), the
mode-III welded joint mid-cycle fatigue resistance characteristics will
be established using the nominal stress concept (Section 3.2), as well
as the effective notch stress concept (Section 3.3) employing the
semi-analytical weld notch stress formulations (Section 2).

3.1. Fatigue resistance data

Principally, only data series involving steel specimens with circu-
lar cross-sections – typical tubular structural joints – are considered
11
(Fig. 22 and Table 1), in order to ensure pure mode-III response con-
ditions at the governing fatigue sensitive location; a DS welded T-joint
geometry showing non-symmetry with respect to (𝑡𝑝∕2) of the hot spot
type C [8,9]. Only specimens showing weld toe induced fatigue damage
are included, involving predominantly failures and some run-outs. The
sample size is ∼50.

The external loading basically involves a torsion moment 𝑀𝑡. For
gripping and/or load application purposes, the specimens typically con-
tain flanges. In case of non-circular cross-sections, warping constrains
will introduce a mode-I response contribution at the governing hot
spot, explaining why the often used square cross-section data [38,39]
is not included this time. Specimens involving attachments [40] are
not included as well. Although the external loading involves a torsion
moment 𝑀𝑡, the attachment locally affects the stiffness distribution
and the governing hot spot – type A – response involves a mode-I
contribution.

The loading & response ratio 𝑅 = −1 for most data series, mean-
ing the loading & response condition is fully reversed and the mean
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Table 1
Fatigue resistance data from literature.
Author 𝑡𝑏 [mm] 𝑡𝑐 [mm] 𝑙𝑤 [mm] ℎ𝑤 [mm] 𝑅𝑡 [mm] 𝜌 [mm] 𝑅 No. specimens Thermal condition

Sonsino [32] 10.0 25.0 9.0 9.0 44.45 0.45 −1 4 stress-relieved
Yousefi [33] 8.0 25.0 10.0 10.0 42.42 n.a. [0; −1] [9; 8] stress-relieved
Siljander [34] 9.5 9.5 8.0 8.0 25.40 0.18 [0; −1] [2; 6] stress-relieved
Witt [35] 8.0 16.0 9.0 9.0 44.45 n.a. −1 11 stress-relieved
Seeger [36] 8.0 20.0 6.3 6.3 54.00 1.00 −1 6 stress-relieved
Yung [37] 8.0 8.0 7.7 7.7 23.80 n.a. −1 2 as-welded
m
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m
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component is zero. For some data series 𝑅 = 0, reflecting a repeated
(impact) loading & response condition with non-zero mean. Since the
thermal condition for the majority of the specimens is stress-relieved
and for some as-welded – introducing a welding induced mean compo-
nent as well, the influence of mean stress will be investigated. Looking
at the life time range of the considered data, 𝑁 = (104 ∼ 5.106) cycles,
meaning virtually all data reflects mid-cycle fatigue characteristics.
Correlating a fatigue strength criterion 𝑆 to the fatigue life time 𝑁 ,
typically a (n approximately) log–log linear dependency is observed

Fig. 21. Relative stress distribution error for DS welded cruciform joint, comparing
the FE solutions and the analytical results. The fillet weld angle is in between 30 and
60 [deg], i.e 210◦ < 2𝛼 < 240◦.

Fig. 22. Fatigue test specimen geometry, external loading (arrows) and constraints
(thick lines).
12

s

and a Basquin type of relation is naturally adopted [7]: log(𝑁) =
log(𝐶)−𝑚 log(𝑆). One way to estimate the single slope curve parameters,
intercept log(𝐶) and slope 𝑚 as respectively the endurance and damage

echanism coefficient, is using linear regression on fatigue life time:
og(𝑁) = log(𝐶) − 𝑚 log(𝑆) + 𝜎𝜖, introducing the scatter (i.e. perfor-
ance) parameter 𝜎. The maximum likelihood approach [9,41] will

e employed to obtain the most likely parameter vector estimate �̂� ∶
max
𝛷

{ (𝛷;𝑁|𝑆)} with 𝛷 = {log(𝐶), 𝑚, 𝜎}.

3.2. Nominal stress assessment

For reference purposes, the nominal stress criterion 𝑆𝑛 = 𝛥𝜏𝑛𝑜𝑚,
a global structural detail- and linear elastic intact geometry param-
eter [2], will be used to establish the mid-cycle fatigue resistance
characteristics. The intercept log(𝐶) defines the fatigue strength and is
typically expressed in terms of FATigue classes and detail CATegories.
The damage mechanism is assumed to be similar for all structural
details, meaning the slope 𝑚 is invariant. As long as material, geometry,
loading & response, environment as well as failure location and weld
quality fit the FAT or CAT description, computational effort is limited
and concept complexity is relatively low. However, local geometry
and loading & response variations are not explicitly considered, paying
off in terms of fatigue resistance accuracy since 𝑆𝑛 is processed as
point criterion, as ‘local’ nominal stress, meaning (notch stress gradient
induced) size effects are not taken into account explicitly and have to be
corrected for. Although a spatial description of a loading & response cy-
cle requires two parameters, e.g. range and ratio 𝑅 = (𝑀𝑡,min∕𝑀𝑡,max) =
𝜏min∕𝜏max), the ratio – reflecting a mean stress effect – is typically not
xplicitly considered. However, Walker’s mean stress model will be
dopted, typically providing the best results for welded joints [7,8,42]
nd turning the nominal stress criterion into an effective one:

𝑛,eff = 𝛥𝜏𝑛,eff =
𝛥𝜏𝑛𝑜𝑚

(1 − 𝑅)1−𝛾
∀ 0 ≤ 𝛾 ≤ 1. (40)

For 𝛾 → 1, the nominal stress range 𝛥𝜏𝑛𝑜𝑚 dominates the fatigue
resistance; the mean stress becomes governing for 𝛾 → 0. The load-
ing & response ratio coefficient 𝛾 is a fitting parameter and will be
added to the parameter vector: 𝛷 {log(𝐶), 𝑚, 𝛾, 𝜎}. Assuming that the
fatigue life time 𝑁 is most likely log(Normal) distributed, maximum
ikelihood based regression analysis of the mode-III welded joint fatigue
esistance data confirms the log–log linear behaviour (Fig. 23). The
arameter confidence is relatively large (Table 2), and in agreement
ith expectations considering the sample size (Section 3.1).

The fatigue strength as reflected in log(𝐶) is for the R95C75 design
urve – reliability level is 95 [%] and confidence level is 75 [%] – at

= 2 ⋅ 106 cycles ∼ 150 [MPa], meaning that the IIW FAT80 [16]
nd Eurocode CAT80 [17] seem conservative. Slope �̂� ∼ 4.7 is close
o the typical design value 𝑚 = 5 [16,17]. The standard deviation
𝜎 ∼ 0.29 can be used to calculate the strength scatter band index
𝜎𝑆𝑛

= 1 ∶ (𝑆𝑛,10∕𝑆𝑛,90) = 1 ∶ 1.25, the fatigue strength ratio for 10 [%]
nd 90 [%] probability of survival, and turns out to be already small in
omparison to a typical value of 1:1.5 [12].

Walker’s loading & response ratio coefficient �̂� ∼ 1, meaning that
he mean stress does not affect the mode-III fatigue resistance, in
ontrast to mode-I [7,8]. The external loading induced mean shear

tress contribution for the considered data sets with 𝑅 = {0,−1}
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Fig. 23. Nominal stress based fatigue resistance including mean stress correction.

Table 2
Nominal stress based parameter estimates and 75 [%] lower and upper
confidence bounds.

Parameter

log(𝐶) 16.95 [16.06, 17.85]
𝑚 4.71 [4.34, 5.08]
𝜌∗ / /
𝛾 1.00 [0.97, 1.00]
𝜎 0.29 [0.26, 0.33]

is insignificant and at the same time the contribution of the quasi-
constant welding induced residual stress seems negligible as well, since
the stress-relieved and as-welded data match the same scatter band.
Whether the welding induced residual stress would be a mode-I or
mode-III component – or even a mixed one – is unknown, although
the mode-I component effect is typically small in the mid-cycle fatigue
region as well [43], but can become more significant when shifting
to the high-cycle fatigue region [1]. The statement that stress-relieve
clearly influences mode-III fatigue resistance [39] seems to be a result
of a comparison to a mode-I fatigue resistance curve. Different mean
stress effects have been reported for various materials and geometries
– both plane and notched [44–48]. However, common denominator
seems that for mode-III mean stress effects are less significant than for
mode-I, at least in case more ductile materials like steel are involved.
Since 𝛾 ∼ 0.9 for mode-I [7], the same observation applies to the fatigue
esistance of welded joints in steel (maritime) structures.

.3. Effective notch stress assessment

Although for welded joints (short and long) crack growth dominates
he damage process, the fatigue life time 𝑁 is predominantly spent

in the notch affected region [6], meaning a local notch characteristic
intact geometry parameter rather than a cracked geometry one can be
adopted as fatigue strength criterion as well. Since the (as) weld(ed)
notch radius 𝜌 is typically small, a zone 1 peak stress criterion would be
too conservative. Adopting a micro- and meso-structural notch support
hypothesis, an effective notch stress estimate 𝜏𝑒 can be obtained by
averaging the notch stress distribution along the expected crack path
over a material characteristic micro- and meso-structural length 𝜌∗,
partially incorporating a zone 2 notch stress gradient – and zone 3 far
field stress gradient contribution as well [7,8,10–13,49]:

𝜏𝑒 =
𝑡𝑝
𝜌∗

𝜌∗
𝑡𝑝

∫ 𝜏𝑛

(

𝑟
𝑡𝑝

)

d
(

𝑟
𝑡𝑝

)

. (41)
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0

Typically, a solid FE model solution is required in order to estimate
𝜏𝑒. However, taking advantage of the stress distribution formulations
(Eqs. 14, 15 and 39), the effective notch stress criterion 𝑆𝑒 = 𝛥𝜎𝑒 in
case of non-symmetry becomes for 𝜌 = 0:

𝑆𝑒 =
𝛥𝜏𝑠
𝜆𝜏

𝑡𝑝
𝜌∗

{

cos(𝜆𝜏𝛽)𝜇𝜏𝐹

(

𝜌∗

𝑡𝑝

)𝜆𝜏
− 𝜆𝜏

(

𝜌∗

𝑡𝑝

)

[

(

𝜌∗

𝑡𝑝

)

(𝜇𝜏𝑀 + 𝑟𝜏𝑠+

𝐶𝑡𝑤) − 𝜇𝜏𝑀 − 𝐶𝑡𝑤

]}

(42)

and for 𝜌 > 0:

𝑒 =
𝛥𝜏𝑠
𝜆𝜏

(

𝑟0 + 𝜌∗

𝑡𝑝

)−1
⋅

{

cos(𝜆𝜏𝛽)𝜇𝜏𝐹

[

(

𝑟0 + 𝜌∗

𝑡𝑝

)𝜆𝜏
−
(

𝑟0
𝑡𝑝

)𝜆𝜏
]

−

cos(𝜆𝜏𝛽)
(

𝑟0
𝑡𝑝

)2𝜆𝜏
𝜇𝜏𝐹

[

(

𝑟0 + 𝜌∗

𝑡𝑝

)−𝜆𝜏
−
(

𝑟0
𝑡𝑝

)−𝜆𝜏
]

−

𝜆𝜏
𝜌∗

𝑡𝑝

[

(

2𝑟0 + 𝜌∗

𝑡𝑝

)

(

𝜇𝜏𝑀 + 𝑟𝜏𝑠 + 𝐶𝑡𝑤

)

− 𝜇𝜏𝑀 − 𝐶𝑡𝑤

] }

.

(43)

In case of symmetry with respect to (𝑡𝑝∕2) and 𝜌 = 0 :

𝑒 =
2𝛥𝜏𝑠
𝜆𝜏

𝑡𝑝
𝜌∗

{

cos(𝜆𝜏𝛽)𝜇𝜏𝐹

(

𝜌∗

𝑡𝑝

)𝜆𝜏 {1
2
+ 𝑟𝜏𝑠

[

𝑓𝜌=0

(

𝑟
𝑡𝑝

= 1
2

)

− 1
]}

−

𝜆𝜏

(

𝜌∗

𝑡𝑝

)

[

(

𝜌∗

𝑡𝑝

) {

𝜇𝜏𝑀
2

+ 𝑓𝜌=0

(

𝑟
𝑡𝑝

= 1
2

)

+ 𝐶𝑡𝑤 − 1
2
+

[

𝑓𝜌=0

(

𝑟
𝑡𝑝

= 1
2

)

− 1
]

(

𝜇𝜏𝑀 + 2𝐶𝑡𝑤
)

𝑟𝜏𝑠

}

−

[

𝑓𝜌=0

(

𝑟
𝑡𝑝

= 1
2

)

− 1
]

(

𝜇𝜏𝑀 + 𝐶𝑡𝑤
)

𝑟𝜏𝑠 +
[

𝑓𝜌=0

(

𝑟
𝑡𝑝

= 1
2

)]2
−

1
2

[

𝜇𝜏𝑀 + 3𝑓𝜌=0

(

𝑟
𝑡𝑝

= 1
2

)

+ 𝐶𝑡𝑤 − 1
]

]}

(44)

nd for 𝜌 > 0:

𝑒 =
2𝛥𝜏𝑠
𝜆𝜏

(

𝑟0 + 𝜌∗

𝑡𝑝

)−1
⋅

⟨[

cos(𝜆𝜏𝛽)𝜇𝜏𝐹

{

1
2
+
[

𝑓𝜌>0

(

𝑟
𝑡𝑝

= 1
2

)

− 1
]

𝑟𝜏𝑠

}

]

⋅

{ (

𝑟0
𝑡𝑝

)2𝜆𝜏 [( 𝑟0
𝑡𝑝

)−𝜆𝜏
−
(

𝑟0 + 𝜌∗

𝑡𝑝

)−𝜆𝜏 ]

−

[(

𝑟0
𝑡𝑝

)𝜆𝜏
−
(

𝑟0 + 𝜌∗

𝑡𝑝

)𝜆𝜏 ] }

−

𝜆𝜏
𝜌∗

𝑡𝑝

{

𝑟𝜏𝑠

[

𝑓𝜌>0

(

𝑟
𝑡𝑝

= 1
2

)

− 1
]

⋅

[

(

𝜇𝜏𝑀 + 2𝐶𝑡𝑤
)

(

2𝑟0 + 𝜌∗

𝑡𝑝

)

− 𝜇𝜏𝑀 − 𝐶𝑡𝑤

]

+

𝜌∗

𝑡𝑝

[

𝜇𝜏𝑀
2

+ 𝐶𝑡𝑤 + 𝑓𝜌>0

(

𝑟
𝑡𝑝

= 1
2

)

− 1
2

]

+

[

𝑓𝜌>0

(

𝑟
𝑡𝑝

= 1
2

)]2
+
[(

𝑟0
𝑡𝑝

)

− 3
2

]

𝑓𝜌>0

(

𝑟
𝑡𝑝

= 1
2

)

+

(𝜇𝜏𝑀 + 𝐶𝑡𝑤 − 1)
(

𝑟0
)

+ 1 −
𝜇𝜏𝑀 −

𝐶𝑡𝑤

}⟩

.

(45)
2 2 𝑡𝑝 2 2 2
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Fig. 24. Effective notch stress based fatigue resistance including mean stress correction

or 𝜌 = 0.

Table 3
Effective notch stress based parameter estimates and 75 [%] lower and
upper parameter confidence bounds.
Parameter 𝜌 = 0 𝜌 > 0

log(𝐶) 21.67 [20.25, 23.10] 18.80 [18.06, 19.53]
𝑚 4.74 [4.40, 5.09] 5.08 [4.79, 5.35]
𝜌∗ 0.00 [0.00, 0.13] 0.12 [0.06, 0.21]
𝛾 1.00 [0.97, 1.00] 1.00 [0.98, 1.00]
𝜎 0.27 [0.24, 0.31] 0.21 [0.19, 0.24]

Table 4
𝑆𝑒 −𝑁 normalised co-variance matrix for 𝜌 = 0.
Parameter log(𝐶) 𝑚 𝜌∗ 𝛾 𝜎

log(𝐶) 1.00 −0.47 −0.33 0.35 −0.56
𝑚 1.00 0.79 −0.61 0.79
𝜌∗ 1.00 0.00 0.33
𝛾 1.00 −0.83
𝜎 1.00

Incorporating Walker’s mean stress model turns the notch stress
riterion into an effective one:

𝑒,eff =
𝑆𝑒

(1 − 𝑅)1−𝛾
. (46)

In order to obtain a most likely material characteristic length 𝜌∗ and
oading & response ratio coefficient 𝛾 estimate, both parameters will
e added to the parameter vector 𝛷(log𝐶,𝑚, 𝛾, 𝜌∗, 𝜎).

Adopting the Basquin type of relation (Section 3.1), maximum like-
ihood based regression analysis of the fatigue resistance data confirms
he log–log linear behaviour (Fig. 24 and Table 3). Results are obtained
or a most likely log(Normal) distributed fatigue life time 𝑁 . Since 𝜌 is
ypically a stochastic variable along the weld seam and quite small,
= 0 has been assumed.

Obviously, the fatigue strength parameter log(𝐶) is different from
he nominal stress concept value (Section 3.2), since local information
s included. As can be expected for log–log linear mid-cycle fatigue
ehaviour, the scaled co-variance matrix ( Table 4) shows a highly cor-
elated intercept log(𝐶) and slope 𝑚. However, the introduced log(𝐶) −
14
𝜌∗ correlation seems responsible for the decreased parameter confi-
dence. In comparison to the nominal stress value, slope 𝑚 has hardly
hanged. The most likely material characteristic length 𝜌∗ is virtually
ero, suggesting the notch stress gradient hardly affects the fatigue
esistance. However, since 𝜌∗ basically covers size (i.e. thickness) ef-
ects, the limited variation in 𝑡𝑏 values (Table 1) could be at least
artially responsible for the 𝜌∗ → 0 result, since the notch gradient
nduced scaling of all 𝑆𝑒 values is approximately the same. On the
ther hand, the confidence bounds (Table 3) indicate that 𝜌∗ → 𝑡𝑏 is
ot likely, since at the same time the obtained scatter and performance
arameter 𝜎 has decreased a bit in comparison to the nominal stress
ased result, introducing the hypothesis that the mode-III fatigue dam-
ge process might even be a more near-surface phenomenon than the
ode-I process. Experimental results involving 𝑡𝑝 values in the range

f 5, 15 and even 20 [mm] could help to investigate the validity of
his hypothesis. The loading & response ratio coefficient estimate for a
ocal strength criterion like 𝑆𝑒 is not different from a global one like
𝑛: �̂� → 1, suggesting mean (shear) stress hardly affects the mode-III

atigue resistance. Performance parameter 𝜎, the standard deviation,
as slightly improved in comparison to the nominal stress based result
Table 3), suggesting that the notch stress gradient contributes at least
p to some extent to the effective notch stress performance. However,

Fig. 25. Most likely parameter estimates as function of adopted real notch radius for
specimens with unknown 𝜌.

Fig. 26. Most likely parameter estimates as function of adopted real notch radius for
all specimens.
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Fig. 27. Effective notch stress based fatigue resistance including mean stress correction
or 𝜌 > 0.

Table 5
𝑆𝑒 −𝑁 normalised co-variance matrix for 𝜌 > 0.
Parameter log(𝐶) 𝑚 𝜌∗ 𝛾 𝜎

log(𝐶) 1.00 0.88 −0.25 −0.26 0.24
𝑚 1.00 −0.35 −0.68 0.63
𝜌∗ 1.00 0.49 −0.47
𝛾 1.00 −0.94
𝜎 1.00

since the 𝜌 = 0 assumption is in conflict with 𝑆𝑒 (𝜌∗ → 0) estimates,
results for 𝜌 > 0 needs to be explored.

Real notch radius values are not available for all data sets (Table 1).
n order to establish a reasonable 𝜌 estimate, regression analysis results
or a range of real notch radii provides insight (Fig. 25). Note that
= 1 for all cases. Any 0 ≤ 𝜌 ≤ 2 [mm] could be realistic based

on the available information (Table 1). Adopting 𝜌 ∼ 1.3 [mm] seems
o provide an optimum, i.e. most likely 𝜎. Using the same 𝜌 value for
ll data sets (Fig. 26), however, shows that the most likely results are
btained for 𝜌 → 0. Since 𝜌∗ → 0 at the same time, results would not
mprove and 𝜌 ∼ 1.3 [mm] has been selected as most likely – average
estimate for the data sets with unknown real notch radius.

The 𝑆𝑒 − 𝑁 and parameter profile likelihood plots (Figs. 27 and
8) as well as the normalised co-variance matrix (Table 5) show the
nalysis results. In comparison to the 𝜌 → 0 result (Fig. 24 and
able 4), the most likely fatigue strength parameter estimate log(𝐶)
as decreased since 𝑆𝑒 typically gets smaller for 𝜌 > 0. The confidence
as increased, mainly as a result of the 𝜌∗ confidence and log(𝐶) −
∗ correlation (Table 5), confirming that 𝜌∗ effectively contributes to
he fatigue strength characterisation of welded joints, since 𝜌∗ affects
𝑒 and log(𝐶) accordingly. Damage mechanism parameter, slope �̂�,
irtually equals the well-known value 𝑚 ∼ 5.

The most likely 𝜌∗ ∼ 0.12 for welded joint mode-III fatigue resistance
n steel structures is still relatively small and quite different from the
btained mode-I value: 𝜌∗ ∼ 1.14 [7], meaning 𝜌∗ would be at least both
material and damage mechanism (i.e. mode) characteristic parameter.
he 𝜌∗ confidence is quite large (Table 3). Since physically speaking 𝜌∗

eflects the length in which the majority of the fatigue life has been
pent, a relatively small mode-III value in comparison to the mode-I
∗ supports the hypothesis that the fatigue damage process in mode-III
ight even be more a near-surface phenomenon than in mode-I. At the

ame time, the slope 𝑚 for mode-III is larger than the mode-I value
i.e. ∼ 5 > 3), meaning the relative contribution of initiation – a (near)
15
urface phenomenon – to the total fatigue life time seems larger for
ode-III. Anyway, if 𝜌∗ for mode-III is that small indeed, the real (weld)
otch radius stochastics 𝜌 (𝜇, 𝜎) will be important to capture accurately
he zone 2 notch stress gradient. Although a mean stress contribution to
he fatigue resistance would seriously affect all parameters, as reflected
n the co-variance matrix (Table 5) the stress-relieved and as-welded
ata does not show any effect, �̂� ∼ 1 and the confidence is quite
arge (Table 3). Another local fatigue strength criterion, the Battelle
tructural stress [39], provides for the same data 𝜎 ∼ 0.32 – rather than
∼ 0.26 as confirmed by the authors – meaning the effective notch

tress performance is much better, since 𝜎 ∼ 0.21 and the related scatter
ndex has improved to 𝑇𝜎𝑆𝑒

= 1 : 1.22.

. Conclusions

Assuming stress distributions along the expected (2D) crack path
re a key element to obtain accurate mode-III fatigue strength and
ife time estimates, semi-analytical expressions related to the far field
tress have been developed for weld toe notches in DS welded T-joints
nd DS welded cruciform joints, reflecting respectively non-symmetry
nd symmetry with respect to half the plate thickness. Results for wide
ange of geometry parameters show an excellent match with solid FE
odel solutions. For accurate far field stress information, the weld has

o be modelled using inclined shell/plate elements. Like for the mode-
formulations, three zones can be identified for all weld notch stress
istributions: the zone 1 peak stress value, the zone 2 notch-affected
tress gradient and the zone 3 far-field dominated stress gradient,
emonstrating stress field similarity.

Taking advantage of the developed semi-analytical weld notch stress
istributions, the effective notch stress has been adopted as fatigue
trength criterion to establish the welded joint mode-III mid-cycle
atigue resistance characteristics. The involved material characteristic
icro- and meso-structural length for mode-III has not been inves-

igated before and the most likely estimate 𝜌∗ ∼ 0.1 turns out to
be different from the mode-I value 𝜌∗ ∼ 1.1 [7] and is relatively
small, meaning 𝜌∗ would be at least both a material and damage
mechanism (i.e. mode) dependent parameter. Since 𝜌∗ basically covers
size (i.e. thickness) effects, the limited variation in 𝑡𝑏 values (Table 1)
could be at least partially responsible for 𝜌∗ → 0, since the notch
gradient induced scaling of all 𝑆𝑒 values is approximately the same.
On the other hand, the confidence bounds indicate that 𝜌∗ → 𝑡𝑏 is
not likely, introducing the hypothesis that the mode-III fatigue damage
process might even be a more near-surface phenomenon than the
mode-I process. Physically speaking 𝜌∗ reflects the length in which the
majority of the fatigue life has been spent, meaning a relatively small
mode-III value in comparison to the mode-I 𝜌∗ supports the hypothesis.
At the same time, the slope 𝑚 for mode-III is larger than the mode-I
value (i.e. ∼ 5 > 3), meaning the relative contribution of initiation
– a (near) surface phenomenon – to the total fatigue life time seems
larger for mode-III indeed. However, since the available amount and
variety of data is limited, conclusive answers cannot be provided yet.
Anyway, if 𝜌∗ for mode-III is that small indeed, the real (weld) notch
radius stochastics 𝜌 (𝜇, 𝜎) will be important to capture accurately the
zone 2 notch stress gradient.

Walker’s loading & response ratio coefficient �̂� ∼ 1, implying that
mean stress does not affect the mode-III fatigue resistance. The external
loading induced mean shear stress contribution for the considered
data sets with 𝑅 = {0,−1} is insignificant and at the same time
the contribution of the quasi-constant welding induced residual stress
seems negligible as well, since the stress-relieved and as-welded data
match the same scatter band. Different mean stress effects have been
reported and common denominator seems that for mode-III the mean
stress effects are less significant than for mode-I, at least in case more
ductile materials like steel are involved. Since 𝛾 ∼ 0.9 for mode-I [7,8],
the same observation applies to the fatigue resistance of welded joints

in steel (maritime) structures.
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Fig. 28. Effective notch stress based parameter profile likelihood plots including two-sided 75% and 95% confidence bounds for 𝜌 > 0.
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ppendix A. Notch stress component formulation

Adopting a complex potential, identically satisfying equilibrium
body forces are assumed to be zero) and compatibility requirements
deformations without any gaps or overlaps, the characteristic stress

istribution singularity at a V-shaped notch for a fillet weld geometry
ith 𝜌 = 0 (Fig. 4) can be obtained [18–22]:

𝜏𝑥𝑟(𝑟, 𝜃) = 𝐶1𝑟
𝜆−1 sin(𝜆𝜃) − 𝐶2𝑟

−𝜆−1 sin(𝜆𝜃)

𝑥𝜃(𝑟, 𝜃) = 𝐶1𝑟
𝜆−1 cos(𝜆𝜃) + 𝐶2𝑟

−𝜆−1 cos(𝜆𝜃).
(A.1)

he transformation from Cartesian (Eq. A.1) to Polar coordinates has
een obtained using [19]:

𝜏𝑥𝑟 = 𝜏𝑥𝑧 cos(𝜃) + 𝜏𝑥𝑦 sin(𝜃)

= 𝜏 cos(𝜃) − 𝜏 sin(𝜃).
(A.2)
16

𝑥𝜃 𝑥𝑦 𝑥𝑧
Boundary conditions to be satisfied at the free surface denote:

𝜏𝑥𝑟(𝑟, 𝜃 = 𝛼) = 0 (A.3a)

𝜏𝑥𝜃(𝑟, 𝜃 = 𝛼) = 0. (A.3b)

Because of symmetry, 𝜏𝑥𝜃(𝑟, 𝜃 = 𝛼) = 𝜏𝑥𝜃(𝑟, 𝜃 = −𝛼) = 0 is identi-
cally satisfied. Substitution of the stress components (Eq. A.1) in the
boundary conditions (Eq. A.3) yield:

(𝐶1𝑟
𝜆−1 − 𝐶2𝑟

−𝜆−1) sin (𝜆𝛼) = 0 (A.4a)

(𝐶1𝑟
𝜆−1 + 𝐶2𝑟

−𝜆−1) cos (𝜆𝛼) = 0. (A.4b)

Fig. A.29. Eigenvalue solutions 𝜆𝜏 (2𝛼).

http://www.repository.tudelft.nl
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Since (𝐶1𝑟𝜆−1+𝐶2𝑟−𝜆−1) ≠ 0, the 𝜏𝑥𝜃 boundary condition (Eqs. A.3b and
.4b) provides the eigenvalue solution 𝜆:

os(𝜆𝛼) = 0

𝜆 = 𝜆𝜏 = 𝜋
2𝛼

.
(A.5)

Only the first governing notch angle dependent 𝜆𝜏 , defining the de-
gree of weld notch stress field singularity, will be considered
(Fig. A.29). To satisfy the 𝜏𝑥𝑟 boundary condition (Eqs. A.3a and A.4a)
as well: sin(𝜆𝛼) = 0 → 𝜆 = 𝜆𝜏 = 𝜋∕(2𝛼) cannot be satisfied at the same
time, meaning:

𝐶2 = 𝐶1𝑟
2𝜆. (A.6)

Substitution of 𝐶2 (Eq. A.6) into the stress components 𝜏𝑥𝑟(𝑟, 𝜃) and
𝑥𝜃(𝑟, 𝜃) (Eq. A.1) yields:

𝜏𝑥𝑟(𝑟, 𝜃) = 0

𝑥𝜃(𝑟, 𝜃) = 𝐶 ′
1𝑟

𝜆−1 cos(𝜆𝜃).
(A.7)

Introducing the dimensionless coordinate (𝑟∕𝑡𝑝) as well as 𝜏𝑠 in order
to establish a relation to the far field stress (Section 2.3) provides for a
weld notch angle dependent stress angle 𝜃 = 𝛽:

𝜏𝑥𝜃

(

𝑟
𝑡𝑝

)

= 𝜏𝑠

(

𝑟
𝑡𝑝

)𝜆𝜏−1
𝜇𝜏𝐹 cos(𝜆𝜏𝛽) (A.8)

with

𝜇𝜏𝐹 =
𝐶 ′
1𝑡

𝜆𝜏−1
𝑝

𝜏𝑠
. (A.9)

For 𝜌 > 0 (Fig. 5), the stress distribution is assumed to be affected
or 𝑟 → 0 only, suggesting the same complex potential as for 𝜌 = 0 can

be adopted, but the boundary conditions (Eq. A.3) have to be changed
into [22]:

𝜏𝑥𝑟(𝑟 = 𝜌, 𝜃) = 0 (A.10a)

𝜏𝑥𝜃(𝑟, 𝜃 = 𝛼) = 0. (A.10b)

Because of symmetry, 𝜏𝑥𝜃(𝑟, 𝜃 = 𝛼) = 𝜏𝑥𝜃(𝑟, 𝜃 = −𝛼) = 0 is identically
satisfied, like for 𝜌 = 0. Substitution of the stress components (Eq. A.1)
in the boundary conditions (Eq. A.10) yield [22]:

(𝐶1𝜌
𝜆−1 − 𝐶2𝜌

−𝜆−1) sin(𝜆𝜃) = 0. (A.11)

Since the 𝜏𝑥𝜃 boundary condition (Eq. A.10b) for (𝜌 = 0) and (𝜌 > 0)
is the same, the eigenvalue solution does not change: 𝜆 = 𝜆𝜏 = 𝜋∕(2𝛼).
However, to satisfy 𝜏𝑥𝑟 (Eq. A.10a) requires:

𝐶2 = 𝐶1𝜌
2𝜆. (A.12)

ubstitution of 𝐶2 (Eq. A.12) into the stress components 𝜏𝑥𝑟(𝑟, 𝜃) and
𝑥𝜃(𝑟, 𝜃) (Eq. A.1) denotes:

𝜏𝑥𝑟(𝑟, 𝜃) = 𝐶 ′
1𝑟

′𝜆𝜏−1 sin(𝜆𝜏𝜃)
(

1 − (𝑟0∕𝑟′)2𝜆𝜏
)

𝑥𝜃(𝑟, 𝜃) = 𝐶 ′
1𝑟

′𝜆𝜏−1 cos(𝜆𝜏𝜃)
(

1 + (𝑟0∕𝑟′)2𝜆𝜏
)

.
(A.13)

ntroducing the dimensionless coordinate (𝑟∕𝑡𝑝) as well as 𝜏𝑠 in order
o establish a relation to the far field stress (Section 2.3), like for 𝜌 = 0,
rovides for a weld notch angle dependent stress angle 𝜃 = 𝛽:

𝜏𝑥𝑟

(

𝑟
𝑡𝑝

)

= 𝜏𝑠

(

𝑟′

𝑡𝑝

)𝜆𝜏−1
𝜇𝜏𝐹 sin(𝜆𝜏𝛽)

{

1 −
(

𝑟0
𝑡𝑝

)2𝜆𝜏 ( 𝑟′

𝑡𝑝

)−2𝜆𝜏
}

𝜏𝑥𝜃

(

𝑟
𝑡𝑝

)

= 𝜏𝑠

(

𝑟′

𝑡𝑝

)𝜆𝜏−1
𝜇𝜏𝐹 cos(𝜆𝜏𝛽)

{

1 +
(

𝑟0
𝑡𝑝

)2𝜆𝜏 ( 𝑟′

𝑡𝑝

)−2𝜆𝜏
}

(A.14)

with

𝜇𝜏𝐹 =
𝐶 ′
1𝑡

𝜆𝜏−1
𝑝

. (A.15)
17

𝜏𝑠
Appendix B. Weld load carrying shear stress coefficient

To capture 𝐶𝑡𝑤 estimates, 4th order polynomial fitting functions
have been established. In case of non-symmetry:

𝐶𝑡𝑤 =
0.166 + 0.078𝑄3𝑃 + 0.037𝑊𝑄2 − 0.003𝑇𝑊𝑄2 −
0.372𝑃 − 0.758𝑄𝑃 − 1.517𝑄𝑃 2 + 0.020𝑊𝑄𝑃 +
0.908𝑃 2 + 0.436𝑄2𝑃 + 0.355𝑄2𝑃 2 − 0.024𝑇𝑊 2𝑃 −
2.309𝑃 3 − 0.168𝑊𝑃 3 + 0.004𝑊𝑃 + 0.001𝑊𝑄2𝑃 +
0.536𝑄 − 0.079𝑊𝑄 + 2.487𝑄𝑃 3 − 0.051𝑊𝑄𝑃 2 −
0.398𝑄2 + 0.179𝑊𝑃 2 − 0.003𝑊𝑄3 + 0.012𝑇𝑊𝑄 +
0.127𝑄3 + 0.002𝑊 2𝑃 2 − 0.003𝑊 2𝑄 + 0.016𝑊 2𝑄𝑃 −
0.015𝑄4 − 0.019𝑊 2𝑃 + 0.003𝑊 3𝑄 + 0.028𝑇𝑄2𝑃 −
0.225𝑊 + 0.087𝑇𝑃 3 − 0.015𝑇𝑄 − 0.179𝑇𝑄𝑃 +
0.095𝑊 2 + 0.013𝑇𝑄2 + 0.271𝑇𝑃 + 0.024𝑇𝑊 𝑃 2 −
0.014𝑊 3 − 0.006𝑇𝑊 − 0.003𝑇𝑄3 + 0.062𝑇𝑊 𝑃 −
.027𝑇𝑊𝑄𝑃 − 0.003𝑊 2𝑄2 − 0.402𝑇𝑃 2 + 0.301𝑇𝑄𝑃 2

(B.1)

nd in case of symmetry:

𝐶𝑡𝑤 =
−0.036 − 0.049𝑄𝑃 − 0.018𝑄2𝑃 + 0.087𝑇𝑄𝑃 +
0.257𝑃 − 0.035𝑄𝑃 2 + 0.235𝑄𝑃 3 − 0.024𝑇 2𝑊𝑃 −
0.159𝑃 2 + 0.038𝑄2𝑃 2 + 0.008𝑇 2𝑄 − 0.004𝑇 2𝑊𝑄 +
0.599𝑃 3 + 0.047𝑊𝑃 3 − 0.036𝑊𝑄 − 0.022𝑊𝑄𝑃 −
1.619𝑃 4 + 0.006𝑊𝑄2 + 0.004𝑇 2𝑄2 − 0.036𝑇𝑊 𝑃 −
0.012𝑄 − 0.012𝑊 2𝑃 2 − 0.003𝑊 2𝑄2 + 0.004𝑇𝑄2𝑃 +
0.016𝑄2 − 0.084𝑊𝑃 + 0.0189𝑊 2𝑃 + 0.028𝑊𝑄𝑃 2 +
0.006𝑇 + 0.093𝑇𝑃 − 0.102𝑇𝑃 2 + 0.013𝑇𝑄𝑃 2 −
0.016𝑇 2 + 0.022𝑇𝑄 + 0.016𝑊𝑃 2 + 0.038𝑇𝑊 𝑃 2 +
0.056 𝑊 − 0.278𝑇𝑃 3 − 0.024𝑇𝑄2 + 0.005𝑇𝑊𝑄 −
0.012𝑊 2 + 0.005𝑇 2𝑃 − 0.058𝑇 2𝑃 2 − 0.036𝑇 2𝑄𝑃 +
.028𝑇𝑊𝑄𝑃 − 0.002𝑇𝑊 2 + 0.002𝑇 2𝑊 − 0.004𝑇𝑊 2𝑃

(B.2)

ith
𝑇 = log(𝑡𝑐∕2 + 𝑙𝑤)∕𝑡𝑏
= 𝑙𝑤∕ℎ𝑤

𝑄 = 𝑙𝑤∕𝑡𝑏
𝑃 = 𝑡𝑏∕𝑅𝑡.

(B.3)

egligible terms are excluded. Fitting function application is not lim-
ted to the absolute geometry dimensions as shown (Figs. 10 and 17),
ut the range for particular relative ones: (𝑙𝑤∕ℎ𝑤), (𝑙𝑤∕𝑡𝑏), log((𝑡𝑐∕2 +
𝑤)∕𝑡𝑏), (𝑡𝑏∕𝑅𝑡), has to be satisfied.
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