
Scriptable Debugging
A Reactive Approach

Georgi Khomeriki

Te
ch
ni
sc
he

U
ni
ve
rs
ite

it
D
el
ft

Scriptable Debugging
A Reactive Approach

by

Georgi Khomeriki

in partial fulfillment of the requirements for the degree of

Master of Science
in Computer Science

at the Delft University of Technology,
to be defended publicly on Friday June 15, 2018 at 04:00 PM.

Supervisor: Prof. dr. H.J.M. Meijer
Thesis committee: Dr. G. Gousios, TU Delft

Dr. S. Erdweg, TU Delft

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Abstract

Debuggers are crucial tools for developers to support the process of developing software systems as
they provide direct insights into the execution of their code. As software development in the industry is
moving towards technology stacks that operate on increasingly higher levels of abstraction, debugging
tools have not evolved as quickly. This creates an abstraction gap between the concrete debugging
needs of developers and the support that debugging tools offer. To reduce this gap, we propose a
generic framework for reactive scriptable debugging. We propose a design and reference implementa-
tion of such a scriptable debugging system. Using this framework we aim to liberate developers from
rigid debugging tools and give the power of debugging back to the developers.

Georgi Khomeriki

ii

Acknowledgments

I would like to thank professor Erik Meijer for his amazing support throughout this wonderful journey.
Thanks to your supervision I have learned and achieved so much more than I could’ve hoped for. I will
never forget the first thing that you told me when we met: ”Think like a fundamentalist, Code like a
hacker”. Although I have a lot to improve on that front, I will always be driven by that motto.

I would also like to thank my family (Lali, Gela, Almina, Maria, Micha, Natasha, Philip, Lucas, and
the rest of the gang) for all the patience and support they have provided me. Thank you for allowing
me to pursue my dreams.

Many thanks go out to Eddy and Mircea for making the whole university experience so much more
enjoyable. Keep doing it live guys!

Last but certainly not least, I want to thank my wife Keti. Thank you for all your love, support and
for following me so far away from home. None of this would have been possible without you.

Georgi

iii

Contents

1 Prelude 1
1.1 Problem description . 1
1.2 Research questions . 2
1.3 Proposed approach/solution . 2

2 Scriptable debugging 3
2.1 Why reactive debugging . 3

2.1.1 Reactive programming . 3
2.2 Current state of scriptable debugging. 4

2.2.1 Related work . 5

3 Java Platform Debugger Architecture 7
3.1 JVM TI . 7
3.2 JDI . 8
3.3 Proposed Architecture . 9
3.4 Limitations . 9

3.4.1 Performance impact . 9
3.4.2 Event volatility . 11

4 Bytecode instrumentation 13
4.1 Byte Buddy . 13
4.2 Proposed Architecture . 13
4.3 Limitations . 16

5 Reactive scriptable debugging 19
5.1 Dx event streams . 19
5.2 Basic examples (CLI) . 20

5.2.1 Running Dx scripts . 20
5.2.2 Scripted breakpoints and state inspection . 21
5.2.3 Scripted state manipulation . 21

5.3 Scripted debugging tools . 21
5.3.1 Example: Instance graps (DxJDI) . 21
5.3.2 Example: Resource usage (DxJDI). 22
5.3.3 Example: Tracking method calls (DxBB) . 23
5.3.4 Example: Flame graps (DxBB) . 24

5.4 Pattern matching . 25
5.4.1 RxParsec . 26
5.4.2 Example: Debugging with patterns . 26
5.4.3 RxParsec implementation . 27

5.5 IDE plugin . 28
5.5.1 Code generation . 29

6 Postlude 31
6.1 Future work: Debugging production . 31

6.1.1 Debugging monoliths . 31
6.1.2 Debugging the cloud . 32

6.2 Future work: Further recommendations . 33
6.3 Conclusion . 34

Bibliography 37

v

1
Prelude

Figure 1.1: Debugger (https://xkcd.com/1163/)

Debugging is a complex activity because there is often a large amount of knowledge about a program
that is not explicitly represented in its execution. Debuggers are crucial tools for developers to support
the process of developing software systems as they give them direct insights into the execution of their
code. Nevertheless, traditional debuggers rely on old concepts to explore and trace the execution stack
and system state. These tools often do not help developers to reason about the application and domain
specific on a higher level of abstraction. As software development in the industry is moving towards
technology stacks that operate on increasingly higher levels of abstraction, debugging tools have been
left behind. This creates an abstraction gap between the concrete debugging needs of developers
and the support that debugging tools offer. To reduce this gap, we propose a generic framework for
reactive scriptable debugging.

When using currently popular tools and techniques, debugging is a laborious, manual activity that
often involves the repetition of primitive operations. Our proposed framework aims to enable developers
to describe these repetitious operations as automated debugging scripts. We strive to show the merits
of pursuing a workflow in which debuggers are exposed as programmable, i.e. scriptable, entities.

1.1. Problem description
The adoption of non-imperative programming paradigms has accelerated in recent times. Languages,
frameworks and libraries that rely on a declarative programming style have emerged and are being
adopted on a large scale. The declarative programming style is seeing adoption due to its advantages
in terms of higher-level abstractions, clear semantics, programmer productivity, meta-programming,
asynchrony, parallelism, etc. [1]. Although the way that developers are writing code is changing
rapidly, the accompanying debugging tools are not evolving as quickly. Many debugging tools still rely
primarily on setting breakpoints and manual stack and heap inspections by the developer. Declarative
code, by definition, does not execute in a strict sequential manner. Hard-to-track bugs can emerge
when you can’t guarantee sequential execution [2]. This situation is made even more complicated when
code is relying primarily on asynchronous and concurrent execution. Such programs are notoriously
complicated to debug, because debugging tools regard the stack trace to be the most important source

1

2 1. Prelude

of information for developers when trying to understand the execution of their code. We argue that a
debugging workflow that revolves around halting the execution of a program and manually looking at
the heap and stack at a single point in time is a very inefficient endeavor.

Figure 1.2: Asynchronous programs result in worthless stack traces; example based on Rx.

1.2. Research questions
In this thesis, we aim to address the following research questions:

• What is a feasible architecture for a scriptable debugging system that operates on the Java Virtual
Machine?

• How can we implement the scriptable debugging system such that all relevant operational events
are exposed to developers?

• Is a reactive approach useful for a scriptable debugging system?

• What are the pros and cons of different implementation techniques?

• Is it feasible to implement real-time pattern matching on top of the scriptable debugging system?

• Explore whether a graphical IDE plugin can be implemented for the scriptable debugging system.

• Explore the practicality of scriptable debugging by demonstrating the implementation of useful
custom debugging tools.

1.3. Proposed approach/solution
Many developers (read: true hackers [3]) will agree that whenever a certain task becomes too laborious
and complicated the first solution to consider should involve automation. Debugging has fallen into
this category, it indeed has become too laborious and complicated, but for unknown reasons we have
not embraced automation for this purpose yet. In this thesis, we will propose a way to automate
the daunting task of debugging modern complex systems via reactive scriptable debugging. We aim to
design and implement a reference implementation of such a scriptable debugging system. Additionally,
our intent is to demonstrate its usefulness through concrete examples of custom automated debugging
tools. In short, our purpose is to liberate developers from rigid debugging tools and give the power of
debugging back to the developers.

2
Scriptable debugging

Figure 2.1: Debugging (https://xkcd.com/1722/)

In this chapter, we will provide the reader with a brief introduction to reactive programming. We
refer the reader to the many available online resources if further insight is required [4]. Furthermore,
we will provide the reader with a summary of the current state of scriptable debugging in literature as
well as the actual usages and implementations that are available.

2.1. Why reactive debugging
Wemade the conscious decision to focus on reactive scriptable debugging when starting this thesis. We
define reactive according to the definition as implemented by the Reactive Extensions (Rx) libraries.
In this understanding of ”reactiveness” the emphasis is placed on higher-order, non-blocking, asyn-
chronous event streams. Our vision of scriptable debugging is that debugger scripts simply subscribe
to one or more debugging event streams that are exposed by the debuggee. Whenever an event is
emitted (i.e. pushed) by any of these streams the debugger will react accordingly. Such an event-push
based architecture allows the debugger to be idle when nothing relevant is happening and only react
when anything of interest happens within the debuggee. As an added benefit the Rx implementation
has a very large library of higher-order methods that allow many useful operations [5] to be composed
in an asynchronous manner with little boilerplate on the user’s side. It is important that users can
create complex debugger scripts with minimal effort and boilerplate involved, Rx allows us to achieve
this.

2.1.1. Reactive programming
In this section, we will briefly introduce the concept and principle of reactive programming. Although
there is no formal definition of reactive programming in general and many different opinions exist
regarding what it really is, we don’t concern us with the general concept. We simply rely on the exact
definition of reactive programming as originally introduced by the Reactive Extensions library initially
implemented for the .NET Common Language Runtime called Rx.NET. This library was later ported
to the Java platform as an open-source community offering called RxJava. Internally there exists
a proprietary commercial/enterprise version of RxJava which was used during the execution of this
thesis. We did not use the community edition because its design had been altered by the community in

3

4 2. Scriptable debugging

a way that we did not find suitable for the implementation of a reactive scriptable debugger. Especially
the particular addition and implementation of backpressure did not suite our needs. The refactoring of
the open-source RxJava made it essentially unusable for true push-based data sources because it forces
backpressure to be implemented. In our case this implies that the debugger must be able to apply
backpressure to the event streams exposed by the debuggee. As such the debuggee’s operational
speed will be tightly coupled to the speed at which the debugger is able to process the events. We
did not want to introduce such coupling and rather implement our system leveraging true push-based
semantics. However, throughout the process of this thesis RxJava has evolved and now facilitates
such push-based semantics as well. This makes it possible to refactor our system to leverage the
open-source RxJava. We will leave this exercise to the interested reader.

Figure 2.2: The four computational effects.

Figure 2.2 shows the four computational effects that developers encounter when creating systems.
When developers need to perform a synchronous (i.e. blocking) action/computation they simply resort
to a function/method call that returns a single value. When developers need to retrieve multiple items
often they resort to a type that implement (or is similar to) the Iterable interface. Although the Iterable
represents a collection of values that can be retrieved lazily, every retrieval of an entity in the collection
is synchronous. The synchronous method call with a single value or an Iterable collection of values
are said to represent the ”pull model”. This is in contrast to the asynchronous (i.e. non-blocking)
variant on the bottom row of the table. When developers require an asynchronous computation to
be performed that results in a single value they usually resort to a type or mechanism semantically
equivalent to a Future (in Java called CompletableFuture [6]). This type essentially represents a callback
that is invocated asynchronously whenever some computed result becomes available. The role of Rx
comes into play when developers want to go beyond returning a single asynchronous value but rather
want to expose a stream of multiple asynchronous values and represent these as a collection type.
For this purpose, Rx implements the Observable [7] type that represents a stream of asynchronous
events. This type is also said to represent the ”push model” of computation. The Observable type can
alternatively be described as an asynchronous collection that promotes event streams as higher-order
entities (i.e. regular types rather than special constructions). Since it is represented as a collection,
Observable offers many operations that developers are accustomed to on synchronous collections as
well. For example, Observable streams can be transformed, filtered and composed with other streams.
In addition, operations for failure handling and concurrency/parallelism are offered.

In summary, the Observable type allows us to represent events as asynchronous collections and
easily manipulate these for our purposes. As debugging can be seen as the act of observing events in
a running system, this notion of reactive programming will be very useful for our purpose of scriptable
debugging. We intend to demonstrate its usefulness in this thesis.

2.2. Current state of scriptable debugging
In current software development practices, it is not so common for developers to utilize a scriptable
debugging system during their debugging efforts. There aren’t many tools available that allow bugs
to be analyzed through scripting. Nevertheless, it seems to be quite common for developers to write
automated tests when finding or resolving a bug to guard the system against future regressions [8].
It’s surprising that ”scripting” automated tests is a commonly accepted way to avoid bugs but the same
technique is not as commonly used (nor is it commonly available) to analyze bugs in running systems.
However, throughout the years there have been a decent amount of interesting publications which
touch upon the topic of scriptable debugging. In this section, we will provide a chronological overview
of the current state of the literature that cover this topic.

2.2. Current state of scriptable debugging 5

2.2.1. Related work
Dispel [9] proposed by Johnson (1981), is a run-time debugging language that allows the specifica-
tion of conditional breakpoints via augmented regular expressions that are applied to event traces.
Developers specify callbacks that are invoked whenever a regular expression matches. Although regu-
lar expressions are useful for scriptable debugging purposes, we intended to support a richer pattern
matching system based on reactive parser combinators. These combinators allow for efficient matching
of LL(1) grammars on the asynchronous debugging event streams.

The Parasight debugger [10], proposed by Aral and Gertner (1988), allows developers to instrument
a debuggee program with C code at light-weight instrumentation points that are dynamically inserted
and deleted. Debugging events are exposed via a regular callback based interface. The core of our
debugger aims to implement similar capabilities for the JVM but based on a reactive interface so that
composition of debugging event streams is facilitated in a higher-order manner.

The Dalek [11] scripted debugger by Olsson, Crawford and Ho (1990) is an extension of GDB [12].
Dalek is implemented as a separate language that, besides regular language features, provides an event
based programming interface. This interface allows the registration of callback operations associated
with user-specified breakpoints in a program’s execution. Dalek does not utilize first-class events nor
composable streams. This makes it relatively difficult for developers to express complex compositions
of debugging event patterns. Moreover, as Dalek is based on actual breakpoints, it halts the execution
of the debuggee upon each breakpoint and invokes the debugger in a blocking manner. This approach
is often not desirable when debugging systems that are ”live”.

NeD [13] is an extensible debugging server that is programmable via a variation of the tcl [14]
language, namely NeDtcl. The language provides 30 debugging specific functions. The intent is to run
the debugging server within the debuggee. Developers can then remotely execute NeDtcl programs
in the debuggee. The language is cumbersome for developers to write because it was intended as a
means of communication between programs rather than between a human and a program.

DUEL [15], as described by Golan and Hanson (1992), is a high-level language that allows source-
level debugging of C programs. It is implemented as an extension to GDB by adding one new command
that evaluates DUEL expressions. Duel expressions are a superset of C’s and include a way to query data
structures using a comprehension style [16]. DUEL does not address a way to control the debuggee.

Acid [17] is a low-level dynamic (i.e. typeless) debugging language (similar to C) proposed by
Winterbottom (1994). It mainly focuses on representing program state and data rather than expressing
complex computations. The state and resources, such as memory, registers, variables, type information
and source code are first-class citizens in the language. In addition, the language allows developers to
programmatically place breakpoints and manage step commands.

Lencevicius, Hölzle and Singh (1997) [18] describe an implementation of a dynamic query-based
debugger for the JVM. They propose to combine conditional breakpoints with a dynamic query-based
debugger. This would allow developers to check inter-object constraints and invariants. The imple-
mentation uses a bytecode instrumentation technique which we employ as well for one version of our
proposed framework. In contrast, we aim to provide developers with the same querying abilities based
on high-order event streams so that we don’t need to extend the language.

The Coca [19] debugger by Ducassé (1999) allows conditional breakpoints to be defined and
queried. The query language, trace, exposes both control flow as well as program state (i.e. data).
The querying mechanism does not require any storage; analysis is done on-the-fly in runtime memory.
The execution of the queries take place in isolation, this makes it non-trivial to combine the query
results (e.g. that happen over time) and build up some larger view of the system. The queries also
execute synchronously; we will focus on composable asynchronous execution.

Auguston, Jeffery and Underwood (2002) [20] describe a framework for automatic debugging in
which declarative specifications of debugging events (represented as event traces) are translated into
execution monitors. The presented approach is to integrate event trace computations into a monitoring
architecture based on a managed environment (such as the JVM or the .NET CLR). The framework
allows the specification of event grammars that would scope the types of events the debugger can
detect. We intend to allow the same capabilities but without introducing a separate language to describe
the grammars and debuggers.

Marceau, Cooper, Krishnamurthi and Reiss (2004) [21] present a dataflow language for scriptable
debugging based on FrTime [22] which in turn is based on Scheme [23]. The debugger communi-
cates with a Java Virtual Machine to pause and resume execution, query the values of variables, and

6 2. Scriptable debugging

dynamically change the debugging scripts. The implementation is based on the Functional Reactive
Programming (FRP) paradigm [24]. FRP is not to be confused with the Reactive Programming (RP)
approach that we employ. In short, the main difference is that RP deals with discrete event streams
whereas FRP models streams using a continuous representation. The major drawbacks of this im-
plementation are the performance of the system and the semantic differences between Java and the
debugger language. For example, challenges arise with regards to datatype representations and invo-
cation semantics. We build our debugging system based on the JVM itself so that such mismatches do
not occur.

DTrace [25] is a dynamic tracing framework created by Sun Microsystems (2005). It allows users to
analyze running programs in a scriptable manner. DTrace is scripted using the D programming language
[26]. These scripts can access the running state of the whole system in a fine-grained manner. Although
DTrace is an excellent troubleshooting tool it has certain downsides for our purposes. For example, it
is very tightly coupled to the underlying operating system. As such, it is not officially supported for all
operating systems. Because it provides a very low-level view of the running system, the view is not
uniform across different operating systems. In our debugging tool we want to maintain the abstraction
of the JVM over the underlying operating system so that debugging scripts don’t have to deal with
operating system specific details at runtime.

In his dissertation, Al-Sharif (2009) [27] introduces an extensible debugging architecture. The
event-based debugging framework named AlamoDE provides a high-level abstraction mechanism that
allows a variety of debugging tools—including source-level debuggers and custom-defined debugging
tools to be created by developers. In addition, an agent-oriented debugging extension architecture
named IDEA is proposed. IDEA is an extension of AlamoDE which facilitates a pluggable extension
mechanism for debugging tools to execute and operate together simultaneously on the same debuggee
program.

The AspectD system, proposed by Menarini, Yan and Griswold (2010) [28] aims to utilize Aspect-
oriented techniques to provide a means of adding debugging code at certain pointcuts in the debuggee
program. A specialized language (Java Pointcut Language) is presented that allows developers to
specify the aspects for a debugging session. The aspect-oriented system was implemented for the JVM
based on the Java Debugger Interface (JDI). We have used JDI in our first attempt to implement a
reactive scriptable debugger and encountered the same problems as the authors of AspectD describe,
mainly with regards to JDI’s performance impact on the debuggee. For this reason, we decided to
implement a second version based on direct bytecode instrumentation. This approach allows for better
performance and avoids the need to introduce a separate language.

Expositor by Khoo, Foster and Hicks (2013) [29] is a scriptable, time-travel debugger that utilizes
composable higher-order traces. For performance and composability these traces are represented
by lazy data-structures. This system is also inspired by the FRP programming paradigm. It extends
GDB’s Python environment and uses GDB’s time-travel backend UndoDB [30] to store snapshots of the
program execution. As modern (distributed) systems can generate a very large amount of information
with regards to their execution state across multiple program instance, we don’t aim to implement a
time-travel feature in this thesis. We rather focus on real-time debugging based on lazy event streams
so that the technique could be adopted in live systems that run in large distributed clusters.

The Reactive programs DeBuGger (RDBG) by Jahier [31] proposes an extensible debugger based on
a Read-Eval-Print Loop (REPL). The system is aimed at debugging synchronous and reactive programs,
i.e. programs that continuously react to events triggered by their environment. A REPL based approach
to debugging can be very useful for local debugging and could perhaps be extended to be executed
remotely. The debugging system that we propose can be used from a REPL environment as well.
However, a REPL based approach will likely not suffice when the aim is to debug large-scale distributed
systems that run on many nodes.

3
Java Platform Debugger Architecture

Figure 3.1: Golden Hammer (https://xkcd.com/801/)

In this chapter, we want to elaborate on the facilities that the JVM and JDK offer to developers
for writing remote debugger applications. Many other platforms/languages have similar interfaces; for
practical reasons we will focus on the JVM. The Java Platform Debugger Architecture (JDPA) [32] is
a multi-tiered debugging architecture which allows developers to create custom tools for debugging
purposes.

The JDPA consists of three layers:

• JVM TI - Java VM Tool Interface
Defines the debugging services a VM provides.

• JDWP - Java Debug Wire Protocol
Defines the communication between debuggee and debugger processes.

• JDI - Java Debug Interface
Defines a high-level Java language interface which tool developers can easily use to write remote
debugger applications.

Each of the above-mentioned layers are exposed as interfaces that any implementation of the Java
Virtual Machine should provide an implementation for. For our purposes to define and implement a
scriptable debugging system for the JVM, JDPA seems like an obvious starting point. The JVM TI
and JDI layers define interesting capabilities that we can leverage to expose an even higher layer of
abstraction on top of the JDPA. We will not focus on JDWP as the communication protocol between
debugger and debuggee is not of particular interest to us.

3.1. JVM TI
The Java VM Tool Interface [33] is a native interface implemented by the JVM. It is a definition of the
services any JVM implementation must provide for debugging. The JVM TI defines capabilities that
allow tools to request information (e.g. current stack frame), actions (e.g. set a breakpoint), and
notification (e.g. when a breakpoint has been hit). Debugger tools can make use of other sources

7

8 3. Java Platform Debugger Architecture

of information as well (e.g. through the Java Native Interface - JNI), but JVM TI is the source of all
debugger specific information.
Specifying the VM Interface allows any VM implementer to plug easily into the debugging architecture.
It also allows alternate communication channel implementations. VM implementations which do not
adhere to this interface can still provide access via the Java Debug Wire Protocol (JDWP).
A concrete implementation of the JVM TI interface manifests itself as a JVM TI agent. When the agent
is loaded the JVM can expose certain capabilities to the agent. These capabilities allow the agent to
hook into several events that occur at runtime in the JVM. For a comprehensive list of JVM capabilities
we refer to the JVM TI documentation [34].

3.2. JDI
The Java Debug Interface [35] is the highest layer of the JDPA. It provides an interface that allows
external tools to access a running virtual machine’s state. For example, tools can programmatically
introspect which classes are loaded, the instances on the stack and heap, the memory, threads, etc.
In addition to introspecting, JDI also provides explicit control over a virtual machine’s execution. For
example, suspend and resume threads, set breakpoints and watchpoints, notifications of method in-
vocations, exceptions, etc.
From the scriptable debugging perspective JDI exposes a set of events that are particularly interesting.
The event based interface will allow us to create a higher-level abstraction layer that exposes the JDI
events as Observable streams. JDI exposes the following events:

• AccessWatchpointEvent - field access

• BreakpointEvent - breakpoint

• ClassPrepareEvent - class loading

• ClassUnloadEvent - class unloading

• ExceptionEvent - exception (caught and uncaught)

• MethodEntryEvent - method invocation

• MethodExitEvent - method return

• ModificationWatchpointEvent - field modification

• MonitorContendedEnteredEvent - a thread is entering a monitor after waiting for it to be
released by another thread

• MonitorContendedEnterEvent - a thread is attempting to enter a monitor that is already
acquired by another thread

• MonitorWaitedEvent - a thread has finished waiting on a monitor object

• MonitorWaitEvent - a thread is about to wait on a monitor object

• StepEvent - step completion

• ThreadDeathEvent - thread completion

• ThreadStartEvent - a new running thread

• VMDeathEvent - target VM termination

• VMDisconnectEvent - disconnection from target VM

• VMStartEvent - initialization of target VM

For a more comprehensive explanation regarding the semantics of the JDI events we refer to the
JDI javadoc documentation [36]. To facilitate a comprehensive scriptable debugging system we want
to expose all the abovementioned events to the users in a reactive manner. Unfortunately, enabling
these capabilities does not come without penalties and limitations.

3.3. Proposed Architecture 9

3.3. Proposed Architecture
To leverage the JDPA for our purpose of implementing a reactive scriptable debugging system we
propose the following extension to the debugging architecture. Based on the JDI we plan to implement
a layer that manages the JVM debugging events and exposes them as reactive streams. A reactive
debugging script can then compose, transform, filter and eventually subscribe to these event streams.
In essence, the Dx layer doesn’t do much more than wrap the boilerplate code that is needed to gain
access to the debugging events and expose them through a convenient reactive API. Figure 3.2 depicts
the proposed architecture on a conceptual level.

Figure 3.2: Architecture for a Reactive Scriptable Debugging System

3.4. Limitations
The events that the JDI exposes offer a wide range of applications and possibilities for scriptable
debugging scripts. In this section, we will cover the limitations of using JDI for our purposes.

3.4.1. Performance impact
It is no secret that running the JVM together with the debugging agent slows down the performance.
One of the goals of our scriptable debugging system is to facilitate live debugging in running systems.
Therefore, it is important to understand exactly what the performance impact is and what the exact
cause is of the impact. To this end we used the DaCapo benchmark suite [37]. This benchmark suite
is intended as a tool for Java benchmarking by the programming language, memory management and
computer architecture communities. It consists of a set of open source, real world applications with
non-trivial memory and CPU loads.
Our approach to gaining insight into the performance impact was to first benchmark based on running
the JVM without any agent. Then we would run the same benchmark using the default JVMTI agent
provided as part of OpenJDK8 [38]. To accurately pinpoint the actual source of impact we modified
and compiled the JVMTI agent so that only one of the following capabilities was enabled at a time:

• breakpoints

• exceptions

• frame pop

• garbage collection

10 3. Java Platform Debugger Architecture

• local variables

• method entry

• method exit

• method order

• monitor

• single steps

• suspend

• tag objects

For each of the ”single capability enabled” agents we would run the full benchmark as well. We
ran all agent/application combinations 200 times to make sure that incidental circumstances would not
have a large effect on the outcome. Since these benchmarks generated too many graphs we present
the results for two of the DaCapo testing applications here. Namely the lusearch (lucene search on a
large textual dataset) and jython (interpreting a pybench Python benchmark) applications.
In figures 3.3 and 3.4 we can see that the impact of enabling most of the capabilities has a relatively
small impact on the performance. Unfortunately, there are certain capabilities that do have a substantial
performance impact. These capabilities are: frame pop, exception and method exit. These capabilities
are required to be able to hook in to the more insightful debugging events on the JDI level. This result
also explains why runtime profiling tools can get away with minimal performance impact whereas
debuggers generally cannot, they simply don’t require the high impact capabilities to be enabled.

1500

2000

2500

3000

3500

breakpoints

default_agent

exceptions

fram
e_pop

garbage_collection

local_variables

m
ethod_entry

m
ethod_exit

m
ethod_order

m
onitor

noagent

singlesteps

suspend

tag_objects

configuration

re
su
lt

Figure 3.3: Benchmark results for lucene search application ran with several JVMTI agent configurations

To further test and verify our findings we performed additional benchmarks in which we compared
three configurations: running without any agent (i.e. no capabilities enabled), running with the de-
fault agent (all capabilities enabled), and running a custom agent that was compiled to only have the
capabilities enabled that show low performance impact in figures 3.3 and 3.4.

3.4. Limitations 11

6000

7000

8000

9000

breakpoints

default_agent

exceptions

fram
e_pop

garbage_collection

local_variables

m
ethod_entry

m
ethod_exit

m
ethod_order

m
onitor

noagent

singlesteps

suspend

tag_objects

configuration

re
su
lt

Figure 3.4: Benchmark results for jython application ran with several JVMTI agent configurations

2000

2500

3000

3500

4000

4500

0 50 100 150 200
run

m
s

bench
lusearch custom agent

lusearch default agent

lusearch no agent

Figure 3.5: Benchmark results for lucene search executed with no capabilities, all capabilities, and only low impact capabilities
enabled

Figure 3.5 shows that enabling all capabilities indeed has a relatively much stronger impact on the
performance compared to only enabling the capabilities that we identified as having a low impact in
our initial benchmarks.

3.4.2. Event volatility
The volatile nature of the events that JDI exposes could pose another potential issue for reactive
scriptable debugging. As the JDI events do not reference persistent data structures, consumption of
the debugging information is time sensitive. More concretely, the information tied to a particular JDI
event becomes obsolete when the JVM is not paused and moves on to the next event. Therefore,
we can only safely read the event information when the JVM is paused, otherwise we are at risk of

12 3. Java Platform Debugger Architecture

reading stale data or even triggering exceptions. In regular breakpoint/stepping debugging workflows
and tools this is not a big limitation. But for reactive scriptable debugging this poses a considerable
disadvantage as we want to handle the events in an asynchronous/non-blocking manner. A potential
solution to this problem would be to copy the event related information into a persistent data structure.
This would cause a large memory overhead when implemented in a generic manner. For this reason,
we will leave it to the user of our reactive scriptable debugging system to filter and store information
in a persistent manner.

4
Bytecode instrumentation

Figure 4.1: Computer Problems (https://xkcd.com/722/)

Due to our findings with regards to the performance impact of using the JPDA for our reactive
debugging system, we decided to look for alternatives. One potential alternative that we came up
with involves bytecode instrumentation and manipulation [39]. Instead of relying on the JVM to run
in debug mode and attaching the JVMTI/JDI agent, we can instrument the debuggee with additional
functionality at runtime. This additional functionality would take care of exposing the same events and
information to the debugger application as JDI would. In essence our reactive scriptable debugger
scripts would run as the Java agent itself. There would be a performance impact at startup time for the
instrumentation to take place. But at runtime the performance impact could be on a by-need basis.
This would be a great improvement over the constant impact that enabling the JVM TI capabilities has
on the runtime.

4.1. Byte Buddy
Byte Buddy [40] is a code generation and manipulation library for creating and modifying Java classes
during the runtime of a Java application and without the help of a compiler. Other than the code
generation utilities that ship with the Java Class Library, Byte Buddy allows the creation of arbitrary
classes and is not limited to implementing interfaces for the creation of runtime proxies 1. Furthermore,
Byte Buddy offers a convenient API for changing classes either manually, using a Java agent or during
a build.

Byte Buddy is written on top of ASM [42], a mature and well-tested library for reading and writing
compiled Java classes. Because ASM is a low-level API that is quite error-prone to write code in, we
decided to stick with the higher-level and type-safe implementation that Byte Buddy offers.

4.2. Proposed Architecture
The intent with bytecode instrumentation through Byte Buddy is to offer an agent that can be attached
to a debuggee JVM. The agent will contain the debugger script that will introspect the debuggee and
1We did consider the possibility of leveraging dynamic proxies [41] for our scriptable debugger. The limitation of mandatory
interfaces made us decide to not pursue this route.

13

14 4. Bytecode instrumentation

perform the actual debugging session on it. There are two ways in which the debugger agents can
be employed. When the debugging session is executed locally then the agent can simply contain a
particular debugging script within the agent directly. Alternatively, if the intent is to debug a running
system without the need to restart it, then a generic debugging agent can be attached which exposes
the asynchronous event streams through a remote protocol like gRPC [43]. Various debugger scripts
could then hook onto the remotely running agent and subscribe to the exposed event streams.

Figure 4.2: Architecture for a Reactive Scriptable Debugging System based on Byte Buddy

The following snippet illustrates how Byte Buddy can be used to set up an agent that intercepts
for example all method entry, exit and exception events (as exposed by JDI as well). The agent
is created through a builder that injects itself eagerly to any type that is not filtered out (using the
isIgnored predicate). For each remaining method, a method interceptor is registered. This interceptor
essentially acts as an aspect [44] wrapping all method calls with additional logic before and after the
method invocation. In our case the interceptor simply does three things. It emits a method entry
before the invocation. Wraps the invocation in a try/catch block and emits an exception event when
a failure occurs (and re-throws the exception to let the debuggee handle it as intended). Finally, it
emits a method exit event after the invocation. All these three events are emitted on separate event
streams.

new AgentBuilder.Default()
.with(AgentBuilder.InitializationStrategy.SelfInjection.EAGER)
.type(t -> !isIgnored(t.getActualName()))
.transform((builder, typeDescription, classLoader) ->
builder.method(ElementMatchers.any())

.intercept(MethodDelegation.to(MethodAccessInterceptor.class)))
.installOn(instrumentation);

The actual event streams for method entry, method exit and exception events are generated in the
MethodAccessInterceptor. This interceptor can be dynamically configured to be enabled or disabled.
As such, when it is disabled there is minimal overhead that the Dx agent adds to the debuggee.
The overhead is mainly in the invocation of the intercept method. Although there’s still overhead,
this overhead is much smaller compared to the impact that the JDI agent introduces as discussed in
the previous chapter. We have performed various benchmarks (again leveraging the DaCapo suite)
using this agent. Figure 4.3 shows one of those benchmarks. When we configure the agent to emit
events for all method invocations the overhead is still considerable during the debugging session.
However, when we only emit events for certain parts of the debuggee code that we are interested in,
the performance impact drops significantly. This confirms our main intended benefit of being able to
filter which code to instrument on a more granular level. Additionally, this approach allows us to run
the agent without fearing a major performance impact when we’re not using the Dx debugger at all.
Of course, there is additional overhead when the debugger script actually subscribes and the events
are indeed propagated. Performance impact during the debugging session is an acceptable situation,
as long as the impact is not present before and after the debugging session. A simple implementation
for the interceptor is shown in the following code snippet.

4.2. Proposed Architecture 15

public class MethodAccessInterceptor {

// the three asynchronous event streams for the different events
private static Subject<MethodEntry> methodEntries = new Subject<>();
private static Subject<MethodExit> methodExits = new Subject<>();
private static Subject<Throwable> exceptions = new Subject<>();

// the actual interceptor
@RuntimeType
public static Object intercept(@Origin Method method,

@SuperCall Callable<?> zuper,
@AllArguments Object[] args) throws Exception {

if (isDisabled(method)) {
return zuper.call();

}
final StackTraceElement[] stackTrace =

cleanStackTrace(method, Thread.currentThread().getStackTrace());
methodEntries.onNext(new MethodEntry(method, args, stackTrace));
try {
final Object result = zuper.call();
methodExits.onNext(new MethodExit(method, result, stackTrace));
return result;

} catch (final Throwable t) {
exceptions.onNext(t);
throw t;

}
}

...

public static Observable<MethodEntry> getMethodEntries() {
return methodEntries.asObservable();

}

public static Observable<MethodExit> getMethodExits() {
return methodExits.asObservable();

}

public static Observable<Throwable> getExceptions() {
return exceptions.asObservable();

}

}

The interceptor essentially hooks into all method invocations in the JVM for which the classes are
instrumented. Dx is able to filter the instrumentation of these classes as well as the invocation of the
interceptor based on a by-need basis. The interceptor receives as input a reference to the methods
metadata, the Callable representing the virtual method to invoke the execution, and the arguments
that were supplied. This information is exactly what we need for our debugging events as well. In the
interceptor, we invoke the Callable in an aspect-oriented manner, i.e. we surround the invocation by
additional logic to emit events for method entries, exits and exceptions. One additional thing we need to
account for is that if Dx is configured to expose the callstacks (this is optional as additional performance
and memory impact is involved) we need to ”clean up” the stack trace because the interceptor itself
will appear throughout the stack trace. We want to represent the stack trace as if no interceptor has
been executing in the system, therefore we need to filter the data structure before sending it to the
debugger.

16 4. Bytecode instrumentation

1800

2100

2400

2700

filtered-agent

no-agent

configuration

re
su
lt

Figure 4.3: This graphs depicts the runtime comparison between running the Lucene Search benchmark without any agent and
with a filtered Dx agent that is configured to introspect the query manager section of the application.

4.3. Limitations
There are certain limitations and complications involved when going down the path of implementing Dx
based on bytecode instrumentation. One of the limitations is that the actual bytecode transformations
are only allowed to happen once during the class load time. After this time, no re-transformations are
allowed. This puts a certain limitation on the dynamic re-configurability of the Dx agent. Without this
limitation, the agent would be much more flexible in terms of changing behavior without the need to
restart the JVM. More importantly, if dynamic re-transformations would be possible, the Dx could be
implemented in a way that would allow zero performance overhead when the debugger is not actively
used. The bytecode transformation could take place only when the debugger subscribes to the agent’s
event streams. Unfortunately, this seems to be impossible to achieve due to the mentioned limitation.

As mentioned earlier, when utilizing the method interceptors in an aspect-oriented style all the stack
traces contain the interceptor calls itself for each instrumented method. If the debugger has the need
to inspect the callstacks the Dx agent will have to perform a stack ”clean up” by filtering out all the
stack entries that originate from the agent itself. This means that there is a performance overhead
that grows with every additional instrumented method. Although in many cases this can be limited,
it is something to keep in mind when trying to eliminate overhead. More importantly, the debugger
agent adding frames on the stack could be problematic for particular systems and bugs. Essentially,
the stack is artificially enlarged by the usage of the Dx agent. It is imaginable that certain (likely rare)
bugs could be affected with such a change in behavior in the JVM internals.

Another limitation to point out is that the actual implementation of the bytecode instrumentation is
very specific to a particular version of the JDK and the JVM. As new versions of the Java ecosystem are
published this can have a big impact on the Dx implementation. The Byte Buddy library already tries
to abstract over the details of the bytecode so there is some level of indirection offered. Nevertheless,
even Byte Buddy breaks when the class formats or the runtime execution changes significantly. For
example, we used Java 8 during this thesis but with the release of Java 9 the Byte Buddy library version
that we used is completely broken. The main reason for breaking is the introduction of the module
system, a.k.a. project Jigsaw [45]. As Byte Buddy is an active project, it is already updated to support
Java 9 directly, in the interest of time we have remained on Java 8. Another thing to keep in mind is
that with these JVM changes the API and semantics of the Byte Buddy implementation also change.
This means that the Dx implementation will need to adopt the new implementation eventually as well.

Finally, to reiterate, our current implementation has (for our purposes) acceptable overhead when
the agent is used but the debugger is not running. This does not mean that the overhead is acceptable
for large scale systems running in production. The performance overhead still needs to be investigated

4.3. Limitations 17

further, and our hope is that someone will continue the work to implement an actual zero overhead
implementation of a scriptable debugging system.

5
Reactive scriptable debugging

Figure 5.1: The General Problem (https://xkcd.com/974/)

In this chapter, we intend to present the two implementations that we created over the course
of this thesis project. The first implementation based on JDI and the second implementation based
on bytecode instrumentation using Byte Buddy as explained in previous chapters. We will show how
the Dx scriptable debugging system can be used by showing practical examples of custom tools that
can be implemented. Although the two Dx implementations differ in the way they are initialized and
setup, the actual API that exposes the debugging event streams to the debugger scripts is very similar.
Therefore, we will demonstrate examples arbitrarily using either implementation to save the reader
from repetition. We will also present an additional library (RxParsec) that we decided to implement
for the purpose of real-time pattern-matching on asynchronous event streams. We deemed such a
library to be very useful to express certain debugging scenarios in a concise manner. Finally, we
will shortly elaborate on the graphical IDE plugin that we developed which integrates the Dx system
with the Intellij IDEA [46] development environment. We developed this IDE plugin to explore the
possibilities of making scriptable debugging more accessible and easier for developers by hiding many
of the boilerplate code involved with setting up the debugging event streams. For this purpose, the
plugin employs code generation techniques to alleviate the developer as much as possible.

5.1. Dx event streams
The API of Dx is built upon the Reactive Extensions library (Rx). The intent of the API is to expose the
debugging event streams as first-class entities. This means that the debugging events are represented
using the highly composable, asynchronous data-structure called the Observable. To this end, the Dx
API exposes methods that have a return type that is conceptually based on the following generic stream
type: Observable�? extends DebuggingEvent!. In practice, the generic type parameter of the stream
will be specific to the particular events being exposed, e.g. MethodEntry, MethodExit, Exception, etc.
Such a representation allows a debugger script to subscribe to the events streams and react with certain
actions whenever an event is emitted. The following snippet shows how to subscribe to the streams:

19

20 5. Reactive scriptable debugging

debuggingEventStream.subscribe(
event -> processEvent(event), // onNext callback
error -> processError(error), // onError callback
() -> processCompletion() // onCompleted callback

);

The above snippet shows that the debugger can subscribe to the event streams by registering
callbacks for the three different events that can occur in an Observable (event, error and stream
completion). The debugger can choose to subscribe to a stream using any permutation of the three
callbacks based on its use cases. Of course, this is the simplest example that would allow a debugger
script to tap into the debugging events. One of the great benefits that the usage of Rx offers us is
the comprehensive collection of composable operators that are defined for Observable streams. Using
these operators, debugger scripts are able to filter, transform, combine, and in general orchestrate
complex expressions based on the event streams that Dx exposes. In the remainder of this chapter
we will present examples that demonstrate these capabilities.

5.2. Basic examples (CLI)
In this section, we’ll show how to initialize Dx scripts and we’ll also show how certain basic debug-
gers can be scripted. As our system natively supports Java as well as Scala we use the languages
interchangeably.

5.2.1. Running Dx scripts
To setup a debugger script that hooks into a given debuggee via DxBB a developer needs to do two
things. The first step is to create a debugger that implements the Debugger interface. This interface
requires a single method debug() to be implemented. In the implementation of the debug() the de-
veloper has access to the various event streams that Dx exposes. The streams can be transformed,
filtered, combined and eventually subscribed to. Once this class has been implemented all that remains
is to instantiate the debugger and invoke the setup() method from within the debuggee. With this ap-
proach the developer doesn’t need to create an actual standalone agent, the agent will be created and
loaded at runtime through the setup() invocation. If altering the debuggee’s code is not an option, e.g.
in a deployed system, the developer can also prepackage the debugger agent and attach it to the JVM
at startup time. The following example code illustrates a minimal setup that simply subscribes to the
event streams and prints out every emission of an event.

public class TestDebuggeeApp {
public static void main(String[] args) {

new TestDebugger().setup();
// code executed after this point will be visible to the debugger

}
}

// A simple debugger that prints to the console upon certain events
class TestDebugger implements Debugger {
@Override
public void debug() {
this.methodEntries()
.subscribe(method -> System.out.println(”[Dx] method entry: ” + method));

this.methodExits()
.subscribe(method -> System.out.println(”[Dx] method exit: ” + method));

this.exceptions()
.subscribe(t -> System.out.println(”[Dx] exception: ” + t.getMessage()));

}
}

5.3. Scripted debugging tools 21

5.2.2. Scripted breakpoints and state inspection
The following example shows how simple it is to create a script that sets a breakpoint in a program
and then automatically invokes step requests to the JVM. Upon each step, some state, in this case a
variable i, is inspected and printed to the debugger console.

// set a breakpoint
val breaks = DxScala.setBreakpoint(events, className, line)

// step through the rest of the method
val steps = breaks.flatMap(brk => {
events.createStepRequest(brk.thread(), StepRequest.STEP_LINE,

StepRequest.STEP_OVER)
.filter(e => e.className == className)
.toObservable

})

// print value of i as we step through the code
steps.subscribe(step =>
println(s”> ${step.location.lineNumber}: i = ${step.getValue(”i”)}”))

5.2.3. Scripted state manipulation
Often debugging leads developers to ask ”what if” questions regarding the state of their programs.
For those cases, it is useful to allow developers to manipulate the state of the debuggee from the
debugger scripts. The following snippet shows a simple example in which some particular state of a
simple program is selectively mutated based on its value during execution.

DxScala.setBreakpoint(events, className, line).subscribe(e => {
val x = DxScala.getValue(e, ”state.x”).asInstanceOf[IntegerValue]
// print state
println(”Dx> state.x: ” + x)
// check for a certain condition
if (x.value() % 13 == 0) {
println(”Dx> Found invalid state bug!! Mutating state to fix...”)
// manipulate state
DxScala.setValue(e, ”state.x”, vm.mirrorOf(x.value() + 1))

}
})

5.3. Scripted debugging tools
In this section, we want to demonstrate some of the possible applications of reactive scriptable debug-
ging. In particular, we focus on the ability of developers to quickly create custom debugging tools that
are reusable. Creating custom tools allows a great deal of efficiency and agility for the developers as
these tools can be created to automate many debugging and monitoring/profiling tasks. We will try
to demonstrate (albeit subjectively) the relative ease with which Dx and the exposed debugging event
streams allow such tools to be created.

5.3.1. Example: Instance graps (DxJDI)
The following example creates a real-time visualization of the number of instances per loaded class
at runtime. An animated histogram shows the number of instances in the debuggee program. The
debugger script subscribes to the method entry event stream and samples it periodically. Upon each
sampled method entry event the script retrieves the set of all loaded classes in the virtual machine.
This set of classes is zipped together with the set of respective number of instances per class. For
visual convenience, all classes with less than a configurable number of instances are filtered out. The
debugger script switches to the UI thread and updates the data of the histogram. Figure 5.2 shows
the result of this debugger script.

22 5. Reactive scriptable debugging

events.createMethodEntryRequest().toObservable
.sample(Duration(millisPerFrame, TimeUnit.MILLISECONDS))
.map(e => {
val classes = virtualMachine.allClasses()
val counts = virtualMachine.instanceCounts(classes)
counts.zip(classes).filter(x => x._1 > instanceThreshold)

})
.observeOn(JavaFxScheduler())
.subscribe(xs => {
series.getData.clear()
xs.foreach(x => series.getData.add(new XYChart.Data[Number, String](x._1,

x._2.name())))
}, _ => Unit)

Figure 5.2: Visualizing the number of instances per loaded class in real-time

5.3.2. Example: Resource usage (DxJDI)
A common issue that developers face is memory or resource leakage. Resource leaks are often caused
due to unexpected execution paths in the code that lead to lingering references to certain assets. For
example, opening a file but not closing the handle to the file in all possible execution branches of the
program. The following example shows a debugger script that allows a developer to easily visualize
how many file handles a program holds at any point in time. The visualization allows developers to
easily discover whether there is a leak in their program.

The example starts by retrieving the stream of call preparation events for a File class, it then places
a breakpoint in the constructor to create a stream that emits an event every time a File entity is
instantiated. To track every time a file handle is closed, a method exit stream is created for the Close
method. These two event streams combined allow a graphical depiction of the number of open file
handles at any moment in time as depicted in Figure 5.3.

// Get stream of class prepare events for the File class
val file: Observable[ClassPrepareEvent] = events.createClassPrepareRequest()
.filter(e => e.className == ”examples.resources.File”)
.toObservable.take(1).share()

// Get stream of all calls to File(”name”) by putting a breakpoint inside the
constructor.

val alloc: Observable[Open] = file.flatMap(classPrepare => {
events.createBreakpointRequest(classPrepare.referenceType().location(line))
.toObservable
.map(breakPoint => {
val frame = breakPoint.thread().frame(0)
Open(frame.thisObject().uniqueID(),

frame.visibleVariables.map(frame.getValue).head)

5.3. Scripted debugging tools 23

})
}).share()

// Get stream of all calls to Close() by intercepting MethodExit out of Close.
val dealloc = events.createMethodExitRequest()
.filter(exit => exit.className == ”examples.resources.File”)
.toObservable
.filter(exit => exit.method().name() == ”Close”)
.map(exit => {
val frame = exit.thread().frame(0)
Close(frame.thisObject().uniqueID())

}).share()

Figure 5.3: Visualizing the number of open File handles, to inspect for resource leaks

5.3.3. Example: Tracking method calls (DxBB)
The following example shows how to track all calls and the given parameters to a given method. In
this particular example we hook into two different implementations of a Fibonacci number computing
method. One implementation uses simple recursion whereas the other, although also recursive, is more
optimized with a memoization strategy. We want to compare their behavior by tracking how often the
method is invoked with each parameter. For both the implementations we create two event streams
that emit upon each method entry event in the respective Fibonacci implementations. The example
then subscribes to these streams and visualizes the method calls in a histogram as depicted in Figure
5.4. A simple change in the debugger script would allow for alternative visualizations, for example the
real-time updated pie chart as shown in Figure 5.5.

final Observable<MethodEntry> fibCalls =
methodEntries().filter(methodEntry ->

methodEntry.getMethod().getName().equals(”fib”));

slowFibCalls = fibCalls
.filter(methodEntry ->

methodEntry.getMethod().getDeclaringClass().getCanonicalName()
.equals(SlowFibonacci.class.getCanonicalName()))

.map(methodEntry -> Integer.class.cast(methodEntry.getArgs()[0]));

fastFibCalls = fibCalls
.filter(methodEntry ->

methodEntry.getMethod().getDeclaringClass().getCanonicalName()
.equals(FastFibonacci.class.getCanonicalName()))

.map(methodEntry -> Integer.class.cast(methodEntry.getArgs()[0]));

slowFibCalls.observeOn(JavaFxScheduler.get()).subscribe(i -> {
final XYChart.Data<String, Number> dataPoint = (XYChart.Data<String, Number>)

slow.getData().get(i);
final int n = dataPoint.getYValue().intValue();

24 5. Reactive scriptable debugging

dataPoint.setYValue(n+1);
});

fastFibCalls.observeOn(JavaFxScheduler.get()).subscribe(i -> {
final XYChart.Data<String, Number> dataPoint = (XYChart.Data<String, Number>)

fast.getData().get(i);
final int n = dataPoint.getYValue().intValue();
dataPoint.setYValue(n+1);

});

Figure 5.4: Visualizing the number of method calls per input parameter in a real-time histogram

Figure 5.5: Visualizing the number of instances per loaded class in a real-time pie chart

5.3.4. Example: Flame graps (DxBB)
Flame graphs allow the visualization of the most frequent code-paths of a debuggee to be identified
quickly and accurately. [47] With Dx we provide an example debugger script that allows a real-time
flame graph visualization of a running debuggee. The x-axis shows the stack profile population, and
the y-axis shows stack depth. Each rectangle represents a stack frame. The wider a frame is, the more

5.4. Pattern matching 25

often it was present in the stacks. The top edge shows what is on-CPU, and beneath it is its ancestry.
The colors are not significant, picked randomly to differentiate frames. An example of the visualization
is depicted in Figure 5.6.

The debugger script that creates the real-time flame graphs is essentially governed by a single
reactive expression as depicted below. The expression retrieves the stream of all method entry events
and maps those events to their respective stack traces. Via the scanLeft operator it accumulates
all stacks to a single data structure called a CallStack. This accumulated call stack contains all the
information required to render the flame graph. The resulting stream is sampled at the rate with
which the graphical interface will be refreshing, as we only need the real-time accumulated CallStack
per rendered frame. Then a function is mapped to the stream that actually renders the flames and
returns a set of coordinates per stack entry so that tooltips can be added. This is done by combining
the resulting streams with a stream of mouse move events and subscribing to it with a function that
renders a tooltip with additional metadata per stack entry.

final Debugger debugger = Debugger.simple();
debugger.setup();

debugger.methodEntries()
.map(this::getStackEntries)
.scanLeft(new CallStack(), CallStack::update)
.sample(millisPerFrame, TimeUnit.MILLISECONDS)
.observeOn(JavaFxScheduler.get())
.map(cs -> createFlames(CallStack.root, 0, sceneHeight - blockHeight,

sceneWidth, gc))
.withLatestFrom(mouseMoves(canvas), Pair::of)
.subscribe(pair -> handleTooltip(pair.fst, pair.snd, tooltip, root));

Figure 5.6: Real-time flame graph visualization

5.4. Pattern matching
Exposing debugging information as asynchronous streams using Rx allows us to e.g. filter, transform
and combine these streams. What Rx does not directly implement is a way for the user to filter streams
based on certain patterns. For example, if the user of our library would like to observe a specific chain
of events in the debuggee it would be non-trivial to implement with Rx alone. For our scriptable reactive
debugging system, we want to allow the user to leverage pattern matching in the deubgger scripts.
Our system should fire an event when a specified pattern is matched on the debugging event streams.
Since Rx does not offer such functionality on the Observable type, we have implemented it ourselves.

26 5. Reactive scriptable debugging

5.4.1. RxParsec
Our implementation of a pattern matching system for asynchronous systems is based on the concept of
parser combinators. We have essentially ported and adjusted the implementation of the parsec library
[48]. Parsec implements a parser combinator library for synchronous data structures. The reason
for picking parsec is that it allows for a space and time efficient implementation. Additionally, parsec
implements almost all of its combinators without the need for a ”look-ahead”, this makes it particularly
useful for adoption with asynchronous data structures. Efficient parsers can be written in a concise
manner that will not cause severe performance and memory overhead when limited to parsers for
LL(1) grammars. This means that the users of our library will be able to specify any pattern that can
be expressed by such grammars without worrying too much about the added overhead.

We have implemented the same set of combinators as offered by the parsec API. We had to imple-
ment the internals in a different way than what is described in the original paper in order to adapt the
system to asynchronous streams. It is worth noting that our RxParsec library can be used for pattern
matching on any Rx stream; the library is generic and thus not limited to debugging purposes.

Due to the compositional nature of parser combinators, basic parsers can be employed to build more
complex parsers which can be used to build parsers that are even more complex. This will allow our
users to define a sophisticated set of parsers for common patterns that can be combined and reused.

5.4.2. Example: Debugging with patterns
The following example shows how to leverage pattern matching on Observable streams to detect certain
execution patterns. In this example, we want to detect whether some part of our system attempts
to write to a File that has already been closed earlier. In other words, we wants to detect invalid file
writes. Without a pattern matching system, we would need to keep track of some global mutable
state in the debugger script to be able to detect such occurrences. Using RxParsec together with Dx
allows us to write the following declarative debugger script that has no global mutable state at all. The
example also shows how complex parsers can be created by combining simple parsers. First, a parser
is declared that matches on any invocation of the File.close method. Secondly, we create a parser that
matches on any invocation of the Files.write method for some given File instance. Finally, we combine
these two simple parsers to a parser that can detect whether the debuggee attempts to write to a file
that was closed earlier. We use a monadic for comprehension for our expression. We first match on a
file closed event, which returns to us the particular file in question. Finally, we use the built-in RxParsec
combinators endBy and many (discussed in the following sections) to match whether at some point a
write event occurs to the file that was closed.

// a parser that matches all invocations of the File.close method
def fileClosedEvent: Parser[DxEvent, File] =
satisfy(dxEvent => dxEvent.clazz == File.class && dxEvent.method.name == ”close”)

// a parser that matches all invocation of the Files.write method for a given File
def fileWriteEvent(file: File): Parser[DxEvent, File] =
satisfy(dxEvent =>

dxEvent.clazz == Files.class
&& dxEvent.method.name == ”write”
&& DxScala.getValue(dxEvent, ”path”).toFile == file)

// combine the above parsers to match for invalid writes
def invalidWrites: Parser[DxEvent, File] =
for {
file <- fileClosedEvent
_ <- endBy(fileWriteEvent(file), many(anyEvent))

} yield file

// execute the parser on the stream of method entry events
invalidWrites.run(dx.methodEntries).subscribe(file =>

println(”Invalid write: ” + file))

This is just a simple example of the usage of pattern matching in debugging scripts. RxParsec has
many more combinators built-in that would allow developers to perform complex pattern matching for

5.4. Pattern matching 27

the detection of event sequences that otherwise would be very hard to perform.

5.4.3. RxParsec implementation
As stated before, our implementation of parser combinators that work with Rx is strongly based on
the implementation of parsec [48]. Parsec is a ”monadic parser combinator library”. It is designed to
be efficient in terms of space and time usage. In case of a parse error it is able to report both the
position of the error as well as all grammar productions that would have been legal at that point in the
stream. The compositional nature of its combinators allows complex parsers to be created from simpler
ones. In fact, most of the default combinators that parsec provides are compositions of other simpler
combinators. The three main combinators that ”bootstrap” the rest of the Parsec implementation
are the monadic bind (»=) (a.k.a. flatMap), a method to perform a predicate check satisfy and a
conditional combinator (<|>) (i.e. OR).

// a stream parser with Observable<S> as input and Observable<R> as output
public class Parser<S,R> {

// a function ’Observable<Optional<S> -> Observable<Parse<S,R>>’ representing
the actual parser

private Func1<Observable<Optional<S>>, Observable<Parse<S,R>>> p;

// execute the parser on a given input Observable<S> yielding an Observable<R>
public Observable<R> parse(Observable<S> os) { ... }

// satisfy combinator
public static <S> Parser<S,S> satisfy(Func1<S,Boolean> pred) { ... }

// monadic return
public <T> Parser<S,T> to(T t) { ... }

// monadic bind
public <T> Parser<S,T> flatMap(Func1<R,Parser<S,T>> f) { ... }

}

The following abstract data type represents the Parse class that is used to propagate events and
manage state in the reactive parser combinators. This type is exclusively used internally to maintain
the state of the composed parser. Instances of this type are therefore never exposed to the users of
the library. The user is only exposed to the conceptual parser which is represented as a function that
parses and transforms a source stream (Observable<S>) into a result stream (Observable<R>).
In fact, only the core combinators mentioned in the snippet above directly refer to this type all other
combinators are composed based on them and thus needn’t refer to the Parse type directly. This
allows easy refactoring of the internals of the libraries as the internal representation can be changed
easily while only impacting a handful of operators.

// the abstract data type
public abstract class Parse<S,R> { ... }

// type constructor for a parsing result
class Res<S,R> extends Parse<S,R> {
private R r;
...

}

// type constructor for a source element
class Src<S,R> extends Parse<S,R> {
private Optional<S> s;
...

}

28 5. Reactive scriptable debugging

// internal flag for the completion of a successful parse
class Win<S,R> extends Parse<S,R> { ... }

// internal flag for a failed parse, carries a failure mesage
class Fail<S,R> extends Parse<S,R> {
private String msg;
...

}

The following snippet shows some of the derived combinators implemented in RxParsec. Notice that
they do not refer to any implementation specific construct, only the core combinators. The implemen-
tations of these derived combinators are for the most part a direct port of their parsec counter-parts,
simply translating the logic from Haskell to Java.

public static <S> Parser<S,S> oneOf(List<S> xs) {
return satisfy(xs::contains);

}

public static <S,R> Parser<S,List<R>> many(Func0<Parser<S,R>> p) {
return many1(p).or(() -> unit(new LinkedList<R>()));

}

public static <S,R> Parser<S,List<R>> many1(Func0<Parser<S,R>> p) {
return p.call().flatMap(x -> many(p).flatMap(xs -> unit(x,xs)));

}

public static <S,R,O,C> Parser<S,R> between(Func0<Parser<S,O>> open,
Func0<Parser<S,C>> close, Func0<Parser<S,R>> p) {

return open.call().andThen(p).flatMap(xs -> close.call().andThen(() ->
unit(xs)));

}

public static <S,R,Sep> Parser<S,List<R>> sepBy1(Func0<Parser<S,R>> p,
Func0<Parser<S,Sep>> sep) {

return p.call().flatMap(x -> many(() -> sep.call().andThen(p)).flatMap(xs ->
unit(x,xs)));

}

public static <S,R,Sep> Parser<S,List<R>> endBy(Func0<Parser<S,R>> p,
Func0<Parser<S,Sep>> sep) {

return many(() -> p.call().flatMap(x -> sep.call().andThen(() -> unit(x))));
}

With this implementations of parser combinators for Rx Observables we can support pattern match-
ing on event streams. This will be very useful for our scriptable debugging purposes as the act of
debugging often boils down to searching for patterns in the execution of a program. Developers can
now formulate the patterns in a script and automate the search instead of looking for them manually.

5.5. IDE plugin
As we were developing examples for Dx we noticed that many common patterns revealed themselves.
Many debugger scripts contained similar pieces of code to setup the debugging event streams. In order
to avoid boilerplate and needless repetition we decided to experiment with an IDE plugin that would
allow developers to easily generate the setup code for their debugging scripts. To this end, we created
a plugin for the Intellij IDEA development environment. The plugin allows the user to visually select
certain types of events in the code, the plugin would generate the necessary debugging code that is
needed to setup the event streams. The IDE allows developers to easily generate the code to create
event streams for setting breakpoints, method entry/exit events, field notifications, class load/unload
events, exceptions, threads and monitors. Such a plugin lowers the barrier to entrance to scriptable

5.5. IDE plugin 29

debugging and allows developers to focus on their bugs rather than the tools. The Dx IDE plugin is
depicted in Figure 5.7.

Figure 5.7: Dx Intellij IDEA plugin

5.5.1. Code generation
The main part of the Dx IDE plugin is the code generation module. It essentially offers a UI component
in the IDE that allows users to start leveraging scriptable debugging sessions quickly. The user can
create, modify and delete the following event streams relating to the following entities through the
IDE:

• breakpoints

• methods

• fields

• classes

• exceptions

• threads

• monitors

The plugin allows users to select the event streams that he/she would want to expose in their
scripted debugging session. When the user makes a selection the plugin automatically generates source
files that expose the particular streams of interest. These source files contain all the ”boilerplate” that
goes with setting up the event streams. The user can simply access these streams directly by means
of a simple function call. In addition, the user is also able to easily access the generated streams
from a REPL (e.g. the Groovy or Scala REPL as supported by Intellij IDEA). The REPL allows a more
interactive debugging session to be easily scripted for quick verification and simple debugging. For
more complicated debugging sessions, it would be more practical to use a separate script. The following
snippet shows an example of the code that the plugin generates when the user sets a method entry and
a method exit breakpoint. The name of the method is fib, the plugin generated two methods: fibEntry
and fibExit. The implementations of these methods simply hide all the boilerplate that is required
to set up the event streams for these events. The user can now simply call these methods from a
debugging script or a REPL session and directly get access to the streams emitting MethodEntryEvent
and MethodExitEvent instances.

public class DxFibonacci {
private final com.sun.jdi.VirtualMachine vm;
private final Events events;

public DxFibonacci() {
vm = com.applied_duality.dx.VirtualMachine.launch(”com.company.Fibonacci”,

System.getProperty(”user.dir”) + ”/out/production/DxPluginTest:” +
System.getProperty(”user.dir”) + ”/lib/Dx-Scala.jar”);

events = VirtualMachineExtensions.events(vm);
}

30 5. Reactive scriptable debugging

public void start() {
events.connect();
vm.resume();

}

public Observable<? extends MethodEntryEvent> fibEntry() {
MethodEntryRequest methodEntries = events.createMethodEntryRequest();
methodEntries.addClassFilter(”com.company.Fibonacci”);
return EventRequestExtensions.toObservable(methodEntries).asJavaObservable()

.filter(entry -> entry.method().name().equals(”Fib”));
}

public Observable<? extends MethodExitEvent> fibExit() {
MethodExitRequest methodExits = events.createMethodExitRequest();
methodExits.addClassFilter(”com.company.Fibonacci”);
return EventRequestExtensions.toObservable(methodExits).asJavaObservable()

.filter(exit -> exit.method().name().equals(”Fib”));
}

}

When the developer changes the original code in the debuggee it is possible that the previously
generated debugging classes are no longer valid. Ideally, the Dx plugin would automatically update the
previously generated debugging code to reflect the latest state of the application. Since this is quite a
time-consuming feature to implement we chose to leave this capability for future work. In the plugin’s
current state the user can simply trigger a full regeneration to execute on demand.

6
Postlude

Figure 6.1: Thesis Defense (https://xkcd.com/1403/)

In this chapter, prior to concluding this thesis we will present some of our ideas and considerations
for future work.

6.1. Future work: Debugging production
In this thesis we have discussed the possibilities and merits of scriptable debugging from a local de-
bugging perspective. We have presented several practical examples of scripts and tools that can be
created in order to gain insights into complex systems. The scriptable debugging approach that was
presented can be employed in a local setting as well as in a remote setting. Nothing is stopping us
from hooking the scriptable debugger into a running system (that is running with either the JDI agent
or the generated ByteBuddy agent) in order to do ”live” debugging. In this section we want to explore
the possibilities of debugging systems that are running in ”production” [49]. To this end we will present
reference debugging architectures that could be employed to debug the most common software ar-
chitectures employed in the industry nowadays. Namely, monolithic architectures and cloud based
microservices architectures [50].

6.1.1. Debugging monoliths
Nowadays many monolithic software architectures (especially the ones operating at large scale) are
often refactored in favor of microservices architectures [51]. Nevertheless, monoliths are still quite
common (especially in legacy applications). Therefore, many developers still find themselves devel-
oping and debugging systems that have this architectural style. For such monolithic systems, we will
propose the following approach to leverage our scriptable debugging system. In a monolithic archi-
tecture, the actual system is a single cohesive executable application that is deployed on a cluster

31

32 6. Postlude

comprising of one or more nodes. Every node in the cluster is running identical software. Often the
incoming requests and interactions to these nodes are distributes across the cluster via a load balancer.
This means that although bugs can be explored completely by looking at a single node, at runtime it
could be difficult to identify on which exact node bugs are occurring. This is especially the case when
these bugs do not result in explicit failures to be exposed to the ”outside world” (for example, invalid
internal state transitions). Therefore, to debug such systems we recommend the approach as depicted
in Figure 6.2.

Figure 6.2: Reference architecture for debugging monoliths

Every node in the deployed cluster is running with the Dx agent loaded into the running JVM. The
Dx agent is configured such that when the debugger script is not subscribed to the debugging event
streams the event interceptor does nothing (i.e. no-op). This is important to allow the system to not
suffer from performance impact when the debugger is not being used. Unfortunately, in our current
implementation there is still some performance impact on the running system. In the Dx implemen-
tation based on JDI this impact is unacceptably high as explained in chapter 3. The implementation
based on bytecode instrumentation does allow us to have much less performance impact because we
can simply no-op when no one is subscribed to the event streams. Unfortunately, there still is some
overhead due the invocation (i.e. method dispatch) of the event interceptors. We will leave further
improvement of Dx to allow for zero performance overhead for future work.

The actual debugger would be running on a separate node that will be able to subscribe to the de-
bugging event streams of one or more nodes in the cluster. Any processing, computations, visualizing,
etc. that this node needs to do for the analysis of the sought-after bug will not impact the running
system. The debugger node can utilize the debugging event streams to perform any custom debugging
task. For example, it could be scanning for certain ”unexpected” patterns using the RxParsec pattern
matching library and trigger some report to be generated when the patterns occur.

6.1.2. Debugging the cloud
Systems that are running in the cloud are often employing the microservices approach to software
architecture. Whereas monolithic systems represent a single centralized artefact that contains all com-
ponents of the software, microservices allow a more distributed approach to systems development.
Often a single system is divided into multiple smaller services that communicate with each other via
a certain remote protocol. Many such services are event-driven and rely heavily on concurrency and
asynchrony in their implementations. This type of architecture allows for a much more resilient and
scalable system, but does come at a cost of a much more difficult debugging cycle.

Bugs in a microservices architecture are also much harder to trace. An inconsistent state of a
particular service might reveal itself as a bug in a completely different service that potentially doesn’t
even have a direct dependency on the service that contains the true source of the bug. The transitive
impact of bugs in distributed systems make it much harder to locate the actual source of misery. This
is not made easier by the fact that, in contrast to monoliths, microservices have completely different
codebases for each service. To maintain some level of observability across the complete architecture

6.2. Future work: Further recommendations 33

implementers often use a technique called distributed tracing (a.k.a. transaction marking or end-to-end
tracing) [52]. This technique is employed to be able to identify a single request on an end-user facing
system and trace its complete distributed execution across all the microservices involved in serving that
particular request. As one can imagine, in large scale systems such tracing can generate a lot of data.
Manually looking at the data of such distributed trace logs seems highly inefficient. To alleviate this
situation, we propose the employment of the Dx system as depicted in Figure 6.3.

Figure 6.3: Reference architecture for debugging microservices clouds

In this setup, the complete architecture is comprised of multiple decoupled services. Every service
is deployed on several nodes; these nodes can be running in one or more clouds that are located in
one or more data centers. Thus, not only is there a high level of distribution between the several
services but a single service internally is also deployed in a distributed manner. To deal with this level
of distribution and loose coupling an event aggregator is recommended. The event aggregator is the
single system where all observed debugging events of the complete architecture come together. Such
a level of indirection is especially useful when many microservices are deployed across several clouds,
datacenters, and perhaps even cloud providers (e.g. AWS, Azure, etc.). There are many systems that
have proven themselves to be efficient event streaming systems in high scale systems. Examples, of
such systems include Apache Kafka, ZeroMQ, ActiveMQ, RabbitMQ, Splunk, ElasticSearch, etc. For our
conceptual purposes, it doesn’t matter which of these systems is utilized, therefore we won’t make a
concrete recommendation. Similar to the setup for debugging monoliths, in the microservices setup the
debugger script is also running on a separate node. For very complex/intensive debugging a cluster of
debugging nodes could be utilized as well. Though the main difference in this case is that the debugger
doesn’t directly connect to the debugger agents but it rather subscribes to the event aggregator. The
actual Dx agents are setup to be aware of the whereabouts of the event aggregator’s nodes. The Dx
agents push debugging events into the event aggregator based on dynamic cloud configuration. This
dynamic configuration can be used to select at runtime which events from which nodes will be pushed.
From the perspective of the debugger script there is still a single stream of all events in the complete
system. Of course, in this case it is crucial that all events contain some metadata with regards to its
origins (i.e. node hostname, cloud, datacenter, service name, etc.). It is therefore equally as important
that this metadata is exposed by all services in a uniform manner. This should not be complicated to
achieve as all events are generated by the same Dx agent.

6.2. Future work: Further recommendations
The work of developing a fully battle-proven scriptable debugging system is far from done. In this
thesis, we have discussed two implementation techniques, one based on the JDPA and one based on
bytecode instrumentation.

34 6. Postlude

For the former we recommend that further exploration is done to achieve a debugging agent (based
on the JVMTI) interface that does not cause a substantial performance impact as discussed in this
thesis. Especially in the case that the debugger is not being used the agent should not cause a
slowdown of the system. For the bytecode instrumentation, it would be interesting to dive further
into the possibilities and alternative approaches, perhaps based on other implementations than Byte
Buddy. In our implementation based on Byte Buddy, the more information a debugger script needs
the higher the performance impact becomes. Optimizing the generated agents to have the smallest
footprint possible would have great benefits for the purpose of debugging live systems.

Furthermore, it would be useful to explore what additional styles of debugging can be facilitated
through the use scriptable debugging systems. Our implementation of RxParsec to allow pattern match-
ing on asynchronous event streams is a first step in the direction of expanding the possibilities. Those
that are interested are advised to look at its implementation and perhaps derive a more efficient or a
more feature-rich implementation.

We have only scratched the surface when it comes to IDE integration. Although we have demon-
strated that it is indeed possible to integrate scriptable debugging into the graphical IDE and aid
developers through code generation, it seems like there is a lot of interesting innovation possible in
this space. A survey could also be conducted to assess the usefulness of such integrations.

Performing a case-study and analysis of the proposed approaches to debug monoliths and micro-
services architectures would certainly yield interesting results. There is a lot of improvement possible
in the proposed approaches and putting the system to work in real-life systems would allow for further
insights into the pros and cons.

Finally, it would be interesting to investigate the application of reactive scriptable debugging in the
context of systems that are part of the ”Internet of Things”. Distributed systems that are running on
small devices embedded in many everyday entities seems to call for a novel approach to debugging as
well.

6.3. Conclusion
In this thesis we have performed a deep dive into the design, implementation and analysis of reactive
scriptable debugging. We have presented two different ways of implementing our reactive scriptable
debugging system (Dx).

In our research we set out to understand the feasablility of a reactive scriptable debugging system
from an architectural and implementation-oriented perspective. We looked at leveraging the Java
Platform Debugging Architecture (JPDA) to achieve our goals. Although we were able to show that
implementing the Dx API is indeed possible on top of the Java Debugger Interface (JDI) we had to
conclude that it is not a good fit to debug systems that are running live in ”production”. The performance
impact that is caused by using JDI is the main reason that lead us to conclude this.

As an alternative, we decided to implement Dx based on bytecode instrumentation. With this
approach, we showed that it is possible to implement a scriptable debugging system that does not
mandate the high performance impact, especially when the debugger is not connected to the system.
Whereas using JDI impacts the runtime even when the debugging session is not active, our alternative
approach allows us to avoid this. Nevertheless, there is a lot of room for improvement to minimize the
impact during the actual debugging sessions as well.

In our research questions we also phrased the intent to explore the practicality of scriptable de-
bugging by demonstrating the implementation of useful custom debugging tools. To this end, we have
demonstrated various practical reactive scriptable debugging utilities and tools implemented using Dx.
While creating many of these examples we encountered noticeably many repetitive patterns in the
debugging scripts.

To alleviate developers from writing such ”boilerplate” and to explore the possibilities of integrating
Dx into the developer environment (IDE) we experimented with the implementation of a Dx IDE plugin
for Intelij IDEA. The plugin allows developers to graphically interact with Dx and use it to generate
debugging code that can be customized and extended.

Another question we set out to answer in this thesis was whether it is feasible to implement real-
time pattern matching on top of asynchronous debugging event streams. During the process of writing
examples, we noticed that although the provided Rx operators for Observable streams allowed us to
do most of the scripting there were certain more complex patterns that we were unable to react to

6.3. Conclusion 35

without the debugger scripts becoming very complicated. To this end, we implemented an additional
library that complements Rx and allows reactive pattern matching by specifying the patterns in the
form of LL(1) grammars. The idea of this pattern matching library is an adaptation of the Parsec library
originally implemented for Haskell. We adopted the ideas of Parsec, which operates on pull-based data
structures, to make it work for push-based data structures like the Rx Observable.

Finally, we discussed some of our ideas for future work. We have mostly focussed on the utilization
of Dx for the purpose of debugging live production systems.

Bibliography

[1] J. W. Lloyd, Practical advtanages of declarative programming. in GULP-PRODE (1) (1994) pp.
18–30.

[2] M. Donat, Debugging in an asynchronous world, Queue 1, 50 (2003).

[3] How to become a hacker, http://www.catb.org/esr/faqs/hacker-howto.html.

[4] Reactivex, http://reactivex.io/ ().

[5] Reactivex - operators, http://reactivex.io/documentation/operators.html ().

[6] Completablefuture (java platform se 8), https://docs.oracle.com/javase/8/docs/
api/java/util/concurrent/CompletableFuture.html.

[7] Observable (rxjava javadoc 2.1.14), http://reactivex.io/RxJava/javadoc/io/
reactivex/Observable.html.

[8] G. J. Myers, C. Sandler, and T. Badgett, The art of software testing (John Wiley & Sons, 2011).

[9] M. S. Johnson, Dispel: A run-time debugging language, Computer languages 6, 79 (1981).

[10] Z. Aral and I. Gertner, High-level debugging in parasight, in ACM SIGPLAN Notices, Vol. 24 (ACM,
1988) pp. 151–162.

[11] R. A. Olsson, R. H. Crawford, and W. W. Ho, Dalek: A gnu, improved programmable debugger.
in USENIX Summer, Vol. 90 (1990) pp. 221–231.

[12] Gdb: The gnu project debugger, https://www.gnu.org/software/gdb/.

[13] P. Maybee, Ned: The network extensible debugger. in USENIX Summer (1992).

[14] J. K. Ousterhout et al., Tcl: An embeddable command language (University of California, Berkeley,
Computer Science Division, 1989).

[15] M. Golan and D. R. Hanson, Duel: a very high-level debugging language, in USENIX Winter, Vol.
107 (1993) p. 118.

[16] D. A. Turner, Recursion equations as a programming language, in A List of Successes That Can
Change the World (Springer, 1982) pp. 459–478.

[17] P. Winterbottom, Acid: A debugger built from a language. in USENIX Winter (1994) pp. 211–222.

[18] R. Lencevicius, U. Hölzle, and A. K. Singh, Query-based debugging of object-oriented programs,
in ACM SIGPLAN Notices, Vol. 32 (ACM, 1997) pp. 304–317.

[19] M. Ducassé, Coca: An automated debugger for c, in Proceedings of the 21st international confer-
ence on Software engineering (ACM, 1999) pp. 504–513.

[20] M. Auguston, C. Jeffery, and S. Underwood, A framework for automatic debugging, in Auto-
mated Software Engineering, 2002. Proceedings. ASE 2002. 17th IEEE International Conference
on (IEEE, 2002) pp. 217–222.

[21] G. Marceau, G. H. Cooper, S. Krishnamurthi, and S. P. Reiss, A dataflow language for scriptable
debugging, in Proceedings of the 19th IEEE international conference on Automated software
engineering (IEEE Computer Society, 2004) pp. 218–227.

[22] Frtime: A language for reactive programs, http://docs.racket-lang.org/frtime/.

37

http://www.catb.org/esr/faqs/hacker-howto.html
http://reactivex.io/
http://reactivex.io/documentation/operators.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
https://docs.oracle.com/javase/8/docs/api/java/util/concurrent/CompletableFuture.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Observable.html
http://reactivex.io/RxJava/javadoc/io/reactivex/Observable.html
https://www.gnu.org/software/gdb/
http://docs.racket-lang.org/frtime/

38 Bibliography

[23] G. L. Steele Jr and G. J. Sussman, The Revised Report on SCHEME: A Dialect of LISP., Tech. Rep.
(MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL INTELLIGENCE LAB, 1978).

[24] C. Elliott and P. Hudak, Functional reactive animation, in ACM SIGPLAN Notices, Vol. 32 (ACM,
1997) pp. 263–273.

[25] dtrace.org - about dtrace, http://dtrace.org/blogs/about/.

[26] Home - d programming language, https://dlang.org/.

[27] Z. A. Al-Sharif, An Extensible Debugging Architecture Based on a Hybrid Debugging Framework,
Ph.D. thesis, University of Idaho (2009).

[28] M. Menarini, Y. Yan, and W. G. Griswold, Aspectd: Enhancing a standard debugger with aspects,
(2010).

[29] Y. P. Khoo, J. S. Foster, and M. Hicks, Expositor: scriptable time-travel debugging with first-class
traces, in Proceedings of the 2013 International Conference on Software Engineering (IEEE Press,
2013) pp. 352–361.

[30] Undo products, https://undo.io/products/undodb/.

[31] E. Jahier, Rdbg: a reactive programs extensible debugger, in Proceedings of the 19th International
Workshop on Software and Compilers for Embedded Systems (ACM, 2016) pp. 116–125.

[32] Java platform debugger architecture (jpda), https://docs.oracle.com/javase/8/docs/
technotes/guides/jpda/index.html ().

[33] Java virtual machine tool interface (jvm ti), https://docs.oracle.com/javase/8/docs/
technotes/guides/jvmti/index.html ().

[34] Jvm(tm) tool interface 1.2.3, https://docs.oracle.com/javase/8/docs/platform/
jvmti/jvmti.html.

[35] Overview (java debug interface), https://docs.oracle.com/javase/8/docs/jdk/api/
jpda/jdi/index.html.

[36] Event (java debug interface), https://docs.oracle.com/javase/8/docs/jdk/api/
jpda/jdi/com/sun/jdi/event/package-frame.html.

[37] S. M. Blackburn, R. Garner, C. Hoffmann, A. M. Khang, K. S. McKinley, R. Bentzur, A. Diwan,
D. Feinberg, D. Frampton, S. Z. Guyer, M. Hirzel, A. Hosking, M. Jump, H. Lee, J. E. B. Moss,
A. Phansalkar, D. Stefanović, T. VanDrunen, D. von Dincklage, and B. Wiedermann, The dacapo
benchmarks: Java benchmarking development and analysis, SIGPLAN Not. 41, 169 (2006).

[38] Jdk 8, http://openjdk.java.net/projects/jdk8/.

[39] S. Liang and G. Bracha, Dynamic class loading in the java virtual machine, Acm sigplan notices
33, 36 (1998).

[40] R. Winterhalter, Byte buddy - runtime code generation for the java virtual machine, http://
bytebuddy.net/.

[41] Dynamic proxy classes, https://docs.oracle.com/javase/8/docs/technotes/
guides/reflection/proxy.html.

[42] Asm - home page, http://asm.ow2.org/.

[43] grpc / grpc.io, https://grpc.io/.

[44] T. Elrad, R. E. Filman, and A. Bader, Aspect-oriented programming: Introduction, Commun. ACM
44, 29 (2001).

[45] Project jigsaw, http://openjdk.java.net/projects/jigsaw/.

http://dtrace.org/blogs/about/
https://dlang.org/
https://undo.io/products/undodb/
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jpda/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/index.html
https://docs.oracle.com/javase/8/docs/technotes/guides/jvmti/index.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/platform/jvmti/jvmti.html
https://docs.oracle.com/javase/8/docs/jdk/api/jpda/jdi/index.html
https://docs.oracle.com/javase/8/docs/jdk/api/jpda/jdi/index.html
https://docs.oracle.com/javase/8/docs/jdk/api/jpda/jdi/com/sun/jdi/event/package-frame.html
https://docs.oracle.com/javase/8/docs/jdk/api/jpda/jdi/com/sun/jdi/event/package-frame.html
http://dx.doi.org/10.1145/1167515.1167488
http://openjdk.java.net/projects/jdk8/
http://bytebuddy.net/
http://bytebuddy.net/
https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/proxy.html
https://docs.oracle.com/javase/8/docs/technotes/guides/reflection/proxy.html
http://asm.ow2.org/
https://grpc.io/
http://dx.doi.org/10.1145/383845.383853
http://dx.doi.org/10.1145/383845.383853
http://openjdk.java.net/projects/jigsaw/

Bibliography 39

[46] Intellij idea: The java ide for professional developers by jetbrains, https://www.jetbrains.
com/idea/.

[47] B. Gregg, The flame graph, Commun. ACM 59, 48 (2016).

[48] D. Leijen and E. Meijer, Parsec: Direct style monadic parser combinators for the real world, (2002).

[49] history - why do we call it ”production”? - software engineering stack exchange,
https://softwareengineering.stackexchange.com/questions/68136/
why-do-we-call-it-production.

[50] M. Villamizar, O. Garcés, H. Castro, M. Verano, L. Salamanca, R. Casallas, and S. Gil, Evaluating
the monolithic and the microservice architecture pattern to deploy web applications in the cloud,
in Computing Colombian Conference (10CCC), 2015 10th (IEEE, 2015) pp. 583–590.

[51] D. Taibi, V. Lenarduzzi, C. Pahl, and A. Janes, Microservices in agile software development: A
workshop-based study into issues, advantages, and disadvantages, in Proceedings of the XP2017
Scientific Workshops, XP ’17 (ACM, New York, NY, USA, 2017) pp. 23:1–23:5.

[52] J. Mace, End-to-End Tracing: Adoption and Use Cases, Survey (Brown University, 2017).

https://www.jetbrains.com/idea/
https://www.jetbrains.com/idea/
http://dx.doi.org/10.1145/2909476
https://softwareengineering.stackexchange.com/questions/68136/why-do-we-call-it-production
https://softwareengineering.stackexchange.com/questions/68136/why-do-we-call-it-production
http://dx.doi.org/10.1145/3120459.3120483
http://dx.doi.org/10.1145/3120459.3120483

	Prelude
	Problem description
	Research questions
	Proposed approach/solution

	Scriptable debugging
	Why reactive debugging
	Reactive programming

	Current state of scriptable debugging
	Related work

	Java Platform Debugger Architecture
	JVM TI
	JDI
	Proposed Architecture
	Limitations
	Performance impact
	Event volatility

	Bytecode instrumentation
	Byte Buddy
	Proposed Architecture
	Limitations

	Reactive scriptable debugging
	Dx event streams
	Basic examples (CLI)
	Running Dx scripts
	Scripted breakpoints and state inspection
	Scripted state manipulation

	Scripted debugging tools
	Example: Instance graps (DxJDI)
	Example: Resource usage (DxJDI)
	Example: Tracking method calls (DxBB)
	Example: Flame graps (DxBB)

	Pattern matching
	RxParsec
	Example: Debugging with patterns
	RxParsec implementation

	IDE plugin
	Code generation

	Postlude
	Future work: Debugging production
	Debugging monoliths
	Debugging the cloud

	Future work: Further recommendations
	Conclusion

	Bibliography

