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Abstract 
A review is given of double and single arm Larmor diffraction. With the former a lattice-spacing 
resolution down to 10-6 can be obtained. The latter is a good high-resolution alternative if the sample 
or sample environment disturbs the magnetic field, e.g. ferromagnetic samples or applied magnetic 
fields. By choosing the tilt angle of the precession fields the optimum resolution can be set at a 
scattering angle at choice. The resolution for both single-crystal and polycrystalline samples is 
discussed in depth and is compared with conventional neutron-diffraction techniques.      
 

1.  Introduction 
One of the areas of research where high-resolution diffraction is crucial is crystal-structure 
determination of low-symmetry and/or many-component systems. Then, the overlap of Bragg peaks at 
higher wave-vector transfers Q, corresponding to the smaller lattice parameters d is the limiting factor 
is the structure refinement. Another class of diffraction studies only investigates a limited number of 
Bragg peaks. Here the interest lies in the precise determination of a limited number of lattice 
parameters and/or the distribution thereof. Examples for accurate determination of lattice parameter 
can be found in the field of phase transitions with very small changes in the lattice parameters [1], 
weak magneto-elastic effect [2] or engineering materials such as different types and/or heat treatments 
of inconel [3]. Precise determination of the lattice-parameter distribution, or shape of the Bragg peak, 
gives unique information in material science. It can be used to discriminate between crystallite-size 
distribution and micro-strain effects [4], or to study dislocations in composite materials [5].  

The latter class of studies is the subject of this paper. The use of Larmor precession of polarized 
neutrons offers a tool to label the energy transfer or the scattering angle with very high precision. The 
first application was the spin-echo technique to perform high resolution quasi-elastic neutron 
scattering introduced by Mezei [6]. The Larmor coding of scattering angle was proposed by Pynn [7], 
and later applied in small-angle scattering [8] and reflectometry [9]. The application in diffraction, 
with lattice-parameter resolution of 610d d   , the so-called double-arm Larmor diffraction was is 
introduced in [10]. This technique cannot be applied for magnetic samples. Then, an alternative is the 
one-arm Larmor diffraction technique [11] with a resolution in between the double-arm Larmor 
diffraction and the conventional, monochromatic or time-of-flight, diffractometers. The subject of this 
paper is the comparison of these four techniques. In Section 2 the performance of the monochromatic 
and time-of-flight diffractometer is discussed. In Section 3 the double-arm Larmor diffraction method 

http://creativecommons.org/licenses/by/3.0
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is introduced. In Section 4 the single-arm version is treated, with emphasis on the high-resolution 
focusing condition, and the difference in resolution for mosaic crystalline and poly-crystalline 
samples. Section 5 discusses the comparison of the different techniques, and the potential application 
of both Larmor methods. 

2.  Conventional diffractometers  
The vast majority of the present neutron diffractometers can be divided in two types: the 
monochromatic diffractometer, generally located at continuous neutron sources and the time-of-flight 
diffractometers, most often used at pulsed sources. 

2.1.  Monochromatic diffractometers 
This mean components of this type of diffractometers are the monochromator characterized by the 
lattice spacing dM  and mosaic spread , set at a Bragg angle M, , selecting the wavelength , the 
sample position, and an area of detectors covering a range of scattering angles 2. The beam 
divergences between source and monochromator, monochromator and sample, sample and detector are 
characterized by 1, 2, and 3, respectively. The angular resolution, full width half maximum, 

 2  of the diffractometer is given by 

 

  22 tan tanU V W      , (1) 

 
where U, V and W are functions of 1, 2, 3, and M [12,13]. The minimum value of  2 is 

  2

min
2 4W V U   for tan 2 tan MV U    .  The lattice-spacing resolution is through the 

Bragg relation given by 
 

cot
d

d
 

  . (2) 

 
In Fig. 1(a) the angular resolution for a number of state-of-the-art monochromatic diffractometers is 
displayed. The corresponding resolution in lattice spacing is shown in Fig. 1(b). Note that the best 
resolution 310d d   is only reached in a limited d-range.     

Figure 1. (a) Angular resolution as a function of scattering angle of some monochromatic 
diffractometers with (b) corresponding resolution in lattice parameter. D20hf and D20hr are a high-
flux, Cu (200), and high-resolution, Ge (711) setting of D20, ILL, Grenoble [14], SPODIhf and 
SPODIhr are a high-flux and high-resolution setting of SPODI, FRM2, Munich [15], 3T3 and G4.4 are 
diffractometers at LLB [16], Saclay. 
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2.2.  Time-of-flight diffractometers 
This type of diffractometers is used at pulsed sources. Essentially the instrument consists of a primary 
flight path from source to sample, a secondary flight path from sample to detector and an array of 
detectors covering a large range of scattering angles 2B. The resolution is given by [17]  
 

  
2 2 2 2

2 2

mod

cot
,

4
Bd t L

d t L

                   
     

 (3)  

 
where t is the pulse width of the source, t the time of flight from the source to the detector, L the 
distance from source to detector, with DL its uncertainty,  and  the beam divergences of the 
incoming and scattered beam, respectively. In Fig. 2 the resolution of the high resolution 
diffractometer HRPD [18] and the engineering materials diffractometer Engin-x [19], both at ISIS, 
UK, are shown. In contrast with the monochromatic instruments a large range of lattice parameters is 
covered at one scattering angle as a result of polychromatic nature of the technique.  

 

 
 
Figure 2. Lattice-spacing resolution of the time-
of-flight diffractometer HRPD, [18] and Engin-x 
[19], ISIS, UK.  

HRPD: 2 2      10 mrad, 45 10t t   

(the best time-resolution value, i.e. for  =  0.1 

nm). Engin-x 2 2      6 mrad, 
31 10t t     (valid for  = 0.2 nm). 

3.  Double-arm Larmor diffraction  
The double-arm Larmor diffraction setup, for the first time described by Rekveldt et al. [10], is 
schematically shown in Fig. 3. The main parts are two well-defined Larmor precession regions with 
the same, tuneable magnetic field B, one placed in the incoming polarized neutron beam and one in the 
scattered beam. Before entering the detector that is placed at a scattering angle 2 the polarization of 
the beam is analyzed by a second polarizer. Here we only describe the geometry with parallel 
magnetic fields. The anti-parallel, or spin-echo, geometry is described in the Appendix. We first 
consider the sample to be a single crystal with lattice planes parallel to the faces of the precession 
fields, i.e. 0  in Fig.3. Then hklQ G . The precession angle in the first and second arm is given by 

 

 1
1 1 1

1 1
2L

L

mLL
cBL

v k k

  
  

  


   and   2
2 2

1
2L

L
cBL

v k
  

 

  . (4)  

 

Here, the Larmor frequency L B  with the neutron’s gyromagnetic ratio 8 1 11 382 10  s T   . , 
14 1 24 632 10 T m.c m h     , L is the length of the magnetic field perpendicular to the lattice 

planes,  1 2 0sin 2hklk k k G    , and k is the neutron’s wave number. The total precession is given 
by 
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 1 2
1 2

1 1 8
2 4t hkl

hkl

cBL
cBL cBLd

k k G

   
 

 
      

 
, (5) 

 
independent of the beam divergence  or the neutron’s wavelength  . Note, that  and  are 
directly related through Bragg’s law.  

 

Figure 3. Schematic representation of a double-arm Larmor diffractometer. Left: single-crystal sample 
with lattice planes under investigation parallel to the faces of the precession regions. Right: misaligned 
single crystal. 

 
If the crystal is misaligned with an angle  then 1k   will be larger and 2k  smaller, see Fig.3, resulting 

in cancellation of the effect of  in first order. This is shown mathematically as follows. 
 

   1 sin Bk k      and  2 sin Bk k     . (6) 

 
Using the Bragg relation    2sin sinhkl B hkl Bk G d     and the Taylor expansion  

      2 2 31 sin 1 sin 1 cot 0.5 1 2cotB B B B O              Eq.(5) reads to second order of 



  2 2
1 2

1
4 1 1 2cot

2t hkl BcBLd          
 

 . (7) 

 
The resolution in determining the lattice parameter d for this setup is given by 
 

  
2 2

22 41
1 2cot

4 B

d BL

d BL
          

   
.  (8) 

 
If we now consider a polycrystalline material, or powder, all orientations of the lattice planes are 
present and the role of  in Eq.(8) is taken over by the beam divergence, resulting in a distribution of 
 with spread 
 
 2 2 2      ,  (9) 
 
where  and  are the divergences of the incoming and scattered beam, respectively. The intensity 

measured at the detector is given by     0 1I BL I P BL   with I0 the shim intensity and, if we only 

consider one Bragg peak, 
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      cos cos 4t hklP BL G BL c BL d  .  (10) 

 
The period of the cosine determines the average lattice spacing and the damping envelope is given by 

   0( ) cosG B f d     , where the distribution  f  - see Eq.(7) - is determined by the 

distribution of the lattice spacing hkld , the field-integral aberrations, and angular uncertainties. In dhkl 
space these contributions are convolutions. This results in multiplying the Fourier transforms of these 
contributions in BL-space, leading to   
 

        BL dG BL G BL G BL G BL . (11) 

 
Gd is the Fourier transform of the lattice-spacing distribution and GBL and G describe the instrumental 
resolution. GBL is determined by magnetic field B and its length L and can be measured by using a 
perfect single crystal as a calibration sample. 
 If more lattice parameters are measured simultaneously, The resulting intensity will be a sum of 
damped cosines with different periods and different damping. In Fig. 4 an example is shown of a 
perfect measurement, i.e. no beam divergence, no aberrations, i.e. 1BLG G  of a sample with two 
lattice parameters d = 0.2 and 0.5 nm, both normally distributed with a 0.5% standard deviation, 
corresponding with full width at half maximum of 1.9%. To the 1000 calculated intensities I , with 
spacing 61.36 10BL    Tm,  10% statistics was added (corresponding with a shim intensity of 100 
counts). Note, that the contribution of the 0.5 nm d-spacing is damped faster because of its larger 
width d . The resulting Fourier transform is shown in Fig.4. It shows that in this case 1000 
measuring points with very modest statistics remarkably good lattice-parameter distribution functions 
can be reproduced. Note, that the oscillation of the background noise is an artefact of the Fourier 
transform.   

  
Figure 4. Simulation of a Larmor-diffraction experiment with perfect instrumental resolution. The 
model system has two lattice parameters d, each with a Gaussian distribution with 0.5% standard 
deviation (right, black line). Left: Fourier transform (black line) with 10% statistics added (red dots), 
representing experimental data. Note, that at the smaller BL values a beating representing both d 
values is present (inset top), while for larger BL meanly the contribution of d = 0.2 nm is present (inset 
bottom). The Fourier transform of the noisy data is displayed in the right panel (red dots).   

 

4.  Single-arm Larmor diffraction  

4.1.  Diffraction from perfect single crystal 
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If the sample is magnetic or has spin-flip scattering the double-arm setup may cause problems. Then 
the single-arm geometry, first described in [11],  is a good alternative. In that case the analyzer is 
placed between the precession field and the sample, see Fig. 5. Whereas in the double-arm geometry 
the change of 1k  as a result of the misalignment is in first order compensated by the change of 2k  , 
see Fig. 3, this is not the case in the single-arm geometry, what will lead to a more modest resolution, 
as will be derived in the following. We will consider the single crystal and polycrystalline material 
separately.  

 

 

 
 
Figure 5. Schematic representation of a single-
arm Larmor diffractometer with the Larmor 
precession device in the incoming beam. The 
angle indicates the misalignment of the lattice 
planes with respect to the face of the precession 
region. 

 
For a perfect single crystal, i.e. no mosaic spread, misaligned with angle  with respect to the face of 
the precession field, as indicated in Fig. 6, the Larmor precession phase is given by 
  

   2
1

1

1
2 2 1 cott hkl BcBL cBLd O

k
     



     . (12) 

 
This leads to a resolution that depends linearly on the spread in : 
 

 
2 2

2 2cot B

d BL

d BL
          

   
  (13) 

4.2.  Powder diffraction 
Whereas for the single-crystal case the small parameter is the misalignment , for a polycrystalline 
sample the small parameters are the divergences of the incoming and the scattered beam. We define all 
angles with respect to the face of the precession field, see Fig.6. 
 

 

 
Figure 6. Schematic representation of a 
single-arm Larmor diffractometer with 
Larmor precession device in the incoming 
beam for the description of a powder sample. 
The nominal incoming and scattered beam 
(characterized by 0 and 0) are indicated by 
the black lines. A possible beam with 
deviations and are shown as red lines 
(characterized by  and ). 

The nominal incoming angle is 0 . We follow the neutron path entering at incoming angle 

 0      (14) 
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and scattered at angle , determined by the nominal angle 0 and deviation  

 0    . (15) 

The Bragg angle is given by 
 
 2 B    . (16) 

The relation between the actual Bragg angle B and the nominal Bragg angle  0 0 0 2B     is 

given by 0 2 2,B B      . Note that the scattering-plane orientation B     is not 

necessarily a small parameter. Using 1 sink k    and    2sin sinhkl B hkl Bk G d    , a Taylor 

expansion of    1 ,0 02 sin sin 2 sin 2 2 sinhkl B hkl BcBLd cBLd             with small 

parameters   and   yields, in first order,  
 

  ,0
1 ,0 0 ,0

0

sin
2 1 cot 2cot cot

sin 2 2
B

hkl B BcBLd
     


      
. (17) 

 
If we assume  and   to be uncorrelated, which is the case for a polycrystalline sample, having 

distributions with spread   and  , then this leads to the resolution  
 

  
2 2

2 2 2 2
,0 0 ,0

1 1
cot 2cot cot

4 4B B

d BL

d BL
                

   
  (18) 

 
The contribution of the divergence of the incoming neutron beam to the resolution cancels in first 
order, if the focussing condition 
 
 ,0 0cot 2cotB    (19) 

 
is met, see Fig.7. It shows that by tuning the tilt angle the minimum resolution, that is of the order 

310d d    can be chosen to be at a scattering angle of choice.       
   

 

  
Figure 7. Left: Single-arm Larmor diffraction focusing condition, Eq.(19),  for a polycrystalline 
sample. Right: resulting resolution for three different focusing conditions, corresponding 2 B  60o, 

90o and 120o. Here the divergences of the incoming beam,  , and scattered beam,  , were taken 5 
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and 2 mrad, respectively. As a comparison the resolution of Engin-x is shown, with the same 
divergences.   

 

4.3.  Mosaic single crystal 
For a powder the divergences  and  are uncorrelated, i.e. for any combination of divergences of 
incoming and scattered beam reflection planes are available. In the case of a mosaic crystal these 
parameters are correlated: assuming     , then for every value of  a range of is available 

satisfying 2      for all  within the mosaic spread . Then, for     , Eq.(17) 
should be replaced by     
 

 

 

   

,0
1 ,0 0 ,0

0

,0
,0 0 0 ,0

0

sin 2
2 1 cot 2cot cot

sin 2 2

sin
2 1 cot 2cot cot cot ,

sin

B
B B

B
B B

cBLd

cBLd

      



     



       

      

 (20) 

 
and then the resolution is given by 

    
2 2

2 22 2
0 0 0 0cot 2cot cot cot .B B

d BL

d BL
                  

   
 (21)  

 
In the double-arm geometry the mosaic spread only enters in second order, and is independent of the 
divergences of incoming and scattered beam, see Eq.(8). However, in the single-arm geometry the 
mosaic spread, in combination with the divergence   of the scattered beam, will determine the 
resolution. Some examples are given in Fig. 8. For a perfect single crystal the minimum resolution is 
reached for scattering angle  02 2B  , conform Eq.(13). For increasing mosaic spread the minimum 
shifts to smaller scattering angles approaching the focusing value for powders, Eq.(19), if the mosaic 
spread approaches the divergence  of the incoming beam.      
 

Figure 8. Resolution of a mosaic single crystal sample for three values of the mosaic spread   and 
two values of the precession-field tilt angle 0 . The divergence of the scattered beam is taken 2 
mrad. As comparison, the resolution for a polycrystalline sample (with 5  mrad and 2  mrad) 
is shown (black line), also displayed in Fig. 7. 
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5.  Discussion  
Double-arm Larmor diffraction yields a resolution of 610d d    that is orders of magnitude better 
than conventional diffractometers. For magnetic samples the single-arm geometry is a good alternative 
that may reach a resolution down to 510d d    for single crystals and better than 310 for powder 
samples around the focussing condition, that can be set at any scattering at choice by changing the tilt 
angle of the precession region. For polycrystalline samples,  the contribution of the divergence of the 
incoming beam is cancelled in first order at this focussing condition. This may be used to separate 
overlapping diffraction lines around this scattering angle while the data at the other scattering angles 
are used to increase the statistics. If the Larmor modulation is performed in the scattered beam instead 
of the incoming beam, a similar focussing condition will cancel the contribution of the divergence of 
the scattered beam. 
 One of the advantages of Larmor diffraction compared with monochromatic diffraction is the 
considerable gain in intensity because the former makes use of the total wavelength spectrum and 
accepts much larger beam divergences. Due to technical restrictions, the double-arm configuration has 
in general a limited range of scattering angles, while in the single-arm version a large range can be 
used. The argument that is often used against Larmor techniques that long measuring times are needed 
because one has to perform a large B scan is not valid. The important quantity is the total number of 
neutrons acquired. This is shown in Fig. 5 where the individual points have very poor statistics and the 
extracted information about the lattice-space distribution is of high quality. However, as a result of the 
Fourier technique the information in the tails of the distribution is less accurate.       

A crucial part of Larmor diffraction is the accurate dimensioning of the precession fields. In 
practice this is established by using two radio-frequency neutron flippers per precession region. These 
have been implemented in the triple-axes spectrometers TRISP (FRM II, Munich) [20], FLEXX 
(HZB, Berlin) [21] and ZETA (ILL, Grenoble) [22]. These instruments are operated in a single 
wavelength mode, ideally suited for the investigation of a single Bragg peak. A general disadvantage 
of the Fourier technique is the fact that the contribution of low-intensity Bragg peaks is difficult to 
detect in the measured data, that are mainly determined by the high-intensity peaks. For this reason 
Larmor diffraction is especially suited for determining the intensity and shape of a limited number of 
Bragg peaks, e.g. for strain scanning. Usually this technique is used at a scattering angle of 90 degrees. 
Fig.7. shows that at that angle Larmor diffraction is considerably better than Engin-x, ISIS. The 
Fourier technique is also applied by making use of a Fourier chopper, examples being FSS at the 
former GKSS, Geesthacht [24] and FSD, IBR-2, Dubna [25]. The advantage of the Larmor diffraction 
is that there are no rotating parts and that a many orders in Fourier space can be covered electronically. 

The comparison of applying the technique at a steady-state (reactor) and a pulsed (spallation) 
source is not straight forward. If only one Bragg peak is investigated the reactor sources are better 
compared to the present spallation sources. Because the sample acts as a monochromator the neutron 
intensity will be considerably higher in the former. If the Larmor diffractometer makes use of the 
complete spectrum it is in principle possible to measure more Bragg peaks simultaneously, as shown 
in ref [11]. However, in that case it will be difficult to measure low-intensity peaks. This problem can 
be circumvented at a pulsed source. Then the different time-of-flight channels will only contain a few 
Bragg peaks, even at relaxed time-of-flight resolution. The ESS, Lund, will be the ideal source for the 
Larmor diffraction technique. It combines a high average neutron flux, comparable with ILL, with a 
sufficient time-of-flight resolution. Having a broad-wavelength spectrum makes it possible to measure 
many Bragg peaks at one scattering angle in focussing condition. Possible application may be found in 
multiple-phase systems where precise d spacing and distribution for all phases can be determined; for 
separating two overlapping Bragg peaks; in engineering materials determining Q-dependent line 
broadening to discriminate grain-size and micro-strain contributions; the information from more lattice 
planes will give information about anisotropic strain.  
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Appendix: Double-arm spin-echo geometry 
In the spin-echo geometry the direction of the magnetic field in the second arm is opposite to that of 
the first arm. The total precession angle for a perfect single crystal with misalignment angle  is 
 

   3
1 2 4 cott hkl BcBLd O          . (A1) 

and 

      ( ) cosP BL G BL f d      (1) 

where the distribution  f   is determined by both the spreads in lattice spacing hkld  and the 

misalignment parameter .  
 

  
22 2

2hkl

hkl

BL d

BL d

 


                
 (A2) 

 
For a single crystal sample the variation is lattice parameter may be neglected and  P BL  directly 

yields the mosaic spread. For a polycrystalline samples  P BL  yields the distribution of the lattice 

parameter, i.e. the Fourier transform of the Bragg peak.  In ref [7] is stated that in this setup the peak 
shape can be determined with ‘extremely fine’ resolution. However, we show that for a polycrystalline 
sample the peak is broadened by the angular resolution of the setup. Here, the same arguments hold as 
for the parallel-field geometry.  
 


