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Abstract
Object detection and recognition is a computer
vision problem tackled with techniques such
as convolutional neural networks or cascade
classifiers. This paper tackles the challenge of
using the similar methods in the realm of comics
strips characters. We approached the idea of
combining cascade classifiers with various convo-
lutional neural network architectures for character
detection and recognition in consideration of
maintaining low computational overhead. The
alternative with the selective search algorithm step
was also explored. The name of the pipeline is
HaarCNN. We compared it to standard methods
to verify a potential improvement. We evaluate
750 number of images extracted from comic strips
and achieve over 85% precision and around 80%
recall of detected faces and over 80% of correct
main character recognitions. The images were
processed in around 200 seconds. The potentially
satisfying results of character annotation can be
advantageous in deep learning sub-fields such as
generative adversarial networks.

Keywords: deep learning, convolutional neural
networks, cascade classifiers, character detection,
character recognition, comic strips

1 Introduction
Facial detection and recognition algorithms have become a
significant portion of the contributions of the computer vi-
sion field to the modern world in recent years. It includes
comma.ai’s driver monitoring system[1], Microsoft’s Win-
dows 10 authentication system, or the automated PARAFE
system used at French airports[2]. However, the idea evolves
around real-life faces. It doesn’t necessarily fit the domain of
characters present in cartoon drawings. Why is that? It results
from the wide range of different drawing styles - both within
the same cartoon and between different ones. The cartoonist
draws the same character based on what the character does
or where it looks. It means that facial features may signifi-
cantly differ and not sustain the similarities. Therefore, it is
challenging to tune the algorithms to work in this domain.

There are two sides to the coin in regards to deep learn-
ing techniques of face detection. On the one hand, they
can be precise but computationally intensive. The exam-
ple which portrays it is Multi-task Cascaded Convolutional
Networks[3]. It consists of three separate neural networks:
P-Net, R-Net, and O-Net. Training the whole infrastructure
to perform face detection is resource-intensive. On the other
hand, there are techniques capable of processing images ex-
tremely rapidly but prone to higher error rates due to the high
variance of faces (or objects to be detected) in unconstrained
settings[4]. A known example is Haar feature-based cas-
cade classifiers[5] used commonly in OpenCV open-source
library[6].

There are also major differences in approaches towards
object detection only using convolutional neural networks.
One of the classic approaches is using the sliding window
technique on the pyramid of scaled images along with Non-
Maximum Suppression. It is a very inefficient approach as a
neural network is used to evaluate every portion of the image
in different scales but can be very precise. The other approach
is using Selective Search algorithm, which allows to return
regions of interests for further convolutional neural networks
processing. It is significantly faster than the previous men-
tioned approach.

The challenge of executing face detection on cartoon char-
acters seems exceptionally interesting. The detection of car-
toon characters’ faces needs to result in a high rate of true
positives and a low rate of false positives. However, this task
should be achievable without heavy computational workload,
preferably without using multiple neural networks, each re-
quiring enormous data sets for training purposes. Character
recognition, or automated character labeling, requires effec-
tive character detection. The classification of characters for
annotation purposes can be used by illustration synthesizers
such as conditional generative adversarial networks.

We addressed the feasibility of using the techniques men-
tioned above in the detection of cartoon characters and the
possibility of combining them to achieve low resource inten-
sivity and high accuracy, specifically Haar classifiers and con-
volutional neural networks. We specifically considered char-
acters present in Dilbert comic strips series. We evaluated
precision and recall of characters detected, F1-Score and in-
ference time (the length of processing the set of images).

We showed that it is possible to achieve high recall of char-
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acters present in the comic strips using the hybrid approach
of providing candidate windows with the Haar feature-based
cascade classifier and doing conclusive classification with the
convolutional neural network. The computational overhead
in this approach was very low. We did it with only a frac-
tion of time compared to the base line of classic approach of
of using image pyramid, sliding window and Non-Maximum
Suppression technique. Moreover, we show that it was pos-
sible to achieve relatively similar or even higher precision or
recall by embedding Selective Search step along with Non-
Maximum Suppression within this procedure. The computa-
tional overhead in this iteration of the hybrid approach was
relatively similar.

2 Related Work
Firstly, we present the research that has been done in the field
of rapid object detection using cascade classifiers as it is a fo-
cal point of the study conducted in this paper. We continue
with the discussion about image recognition using convolu-
tional neural networks and end with the overview of the work
done on character detection in cartoons. The latter also ex-
plores the idea of using a Selective Search algorithm for pro-
viding regions of interest.

2.1 Rapid Object Detection
One of the most common ways to perform rapid object detec-
tion, which includes identifying faces, is using a boosted cas-
cade of simple features [5]. The algorithm consists of three
main components. Firstly, an integral image extracts infor-
mation from features of the image. Secondly, the AdaBoost
algorithm constructs a classifier that uses a small number of
features within a sub-window of an image. It is used to avoid
evaluating redundant features. Thirdly, there is a concept of
cascading which is based on the idea of combining multiple
classifiers of background features present in the images into
a single strong classifier which allows discarding regions of
an image that are unlikely to contain desired features. As a
result, this classifier called Haar feature-based cascade classi-
fier minimizes computation time while achieving high detec-
tion rates[5].

2.2 Image Recognition using Convolutional Neural
Networks

The convolutional neural network is a specialized kind of
neural network for processing data that has a known grid-
like topology[7] like 2D images. They have recently en-
joyed great success in the large-scale image and video
recognition[8] such as achieving record-breaking results on
a highly challenging data set ImageNet using purely super-
vised learning[9].

They have been used in the detection of faces as well - the
task which also falls into the category of image recognition.
One of the most effective architectures involved in this is a
Multi-task Cascaded Convolutional Network[3]. It consists
of three separate networks. First is responsible for obtain-
ing the candidate windows and their bounding box regression
vectors. Second, further rejects a large number of false can-
didates, performs calibration with bounding box regression,

and NMS candidate merge. Third outputs five facial land-
marks’ positions. The problem with this technique is that it
requires a massive amount of data for training purposes as
there are three major architectures used within the pipeline.
It naturally leads to the issue of long training time.

Multiple different architectures are used for image recogni-
tion: VGGNet, ResNet, R-CNN and Inception to name a few.
These can be used along with the technique of sliding window
and Non-Maximum Suppression to remove overlapping win-
dows returned by the classifier or with Selective Search ap-
proach for providing regions of interest. Simplified versions
of these architectures can be used as well for image recogni-
tion. One of the examples is a smaller VGGNet[10] of which
the architecture is described in detail in the later part of the
paper as it is a major component of the research process.

2.3 Detection of Cartoon Characters
There are multiple papers and repositories on GitHub of
which the focus is primarily on the detection of charac-
ters present in cartoons. The researchers at the University
of Tokyo and Nanyang Technological University have pro-
posed a method of cartoon characters face detection by ex-
tracting such features as skin color, edge, jaw contour, and
symmetry[11]. However, this paper is primarily focused on
the domain of anime characters. The similar work has been
conducted on Simpsons characters. The process is based
mainly on identifying clusters of white pixels that look like
eyes because the characters’ faces do not follow a consistent
enough pattern[12]. None of these methods tackle the prob-
lem by using deep learning techniques.

However, a paper titled ”A Study on Object Detection
Method from Manga Images using CNN”[13] explores con-
volutional neural networks for generating region proposals
using Selective Search. Selective Search is a region proposal
algorithm used in object detection. It is designed to be fast
with a very high recall. It is based on computing hierarchical
grouping of similar regions based on color, texture, size, and
shape compatibility[14].

The work done in this paper follows a similar approach to
what the researchers in this paper have done. We wanted to
compare the hybrid of Haar classifier and convolutional neu-
ral networks in terms of precision, recall, and inference time
to process a set of images. Moreover, we extracted different
types of regions of interest: the human heads by extracting
skin-like color from images or heads of other characters by
extracting colors such as white. Next, we used various con-
volutional neural networks to evaluate if the specific region
represents a character.

3 Methodology
We designed a methodology which is abbreviated as Haar-
CNN. Our goal was to achieve both high recall and precision
of characters detected while maintaining the low computa-
tional overhead. It is a comic strips character detection ap-
proach. The character recognition step is conducted after an
object detection step is performed by HaarCNN. The whole
character detection and recognition pipeline is presented in
Figure 1.



Figure 1: The complete character detection and recognition pipeline. HaarCNN is steps 1 and 2. All steps are described in the following
way: 1 - calculate Haar cascade features of the image and return all the windows; 2 - each window is resized to 50 by 50 pixels and passed

through a convolutional neural network, if the output is above a threshold then it is considered a face (in the image marked as green window,
otherwise red); 3 - each window considered a character is passed to multiclass convolutional neural network intended for classification of a

character; 4 - output of the convolutional neural network indicates which character it is.

3.1 Data Preparation
Beforehand, we conduct data preparation for training classi-
fiers used in both detection and recognition. Images of faces
present in both comic series and images of non-faces are ex-
tracted. All faces are annotated with a number representing
a specific character. Optionally, data augmentation is con-
ducted in order to obtain more data for training purposes.
Different types of transformations were used such as rotation
of an image within the range of 20 degrees, slight change of
brightness, horizontal flip or zoom in/out by at most 20%.

3.2 Character Detection
To solve the conundrum of high accuracy in low computa-
tional overhead, we proposed two similar pipelines. One fo-
cused on combining Haar classifier and convolutional neural
networks. The other included a Selective Search step between
the Haar and convolutional network classifications. We first
give the preliminary of Haar, convolutional neural networks,
and Selective Search algorithm, and then explain the two ver-
sions of the pipeline to combine all of them.

Classifiers
Different types of classifiers can be used in character detec-
tion along with the sliding window technique: Haar feature-
based cascade classifier, convolutional neural network along
with Non-Maximum Suppression or Selective Search based
approach. These can be used separately with varying accura-
cies and computational times. Potentially, their components
can be combined to form a new pipeline.

The Haar classifier is a system that extracts information
from the features of the image. There are three types: two-
rectangle, three-rectangle, and four-rectangle[5] (see Figure
2). The sum of pixels under white rectangles is subtracted
from the sum of pixels under black rectangles. Multiple weak

Figure 2: Rectangle features used for training a Haar cascade classi-
fier.

classifiers are constrained by the small number of features
with help of the AdaBoost learning algorithm. These con-
struct a single strong classifier that evaluates images based
on cascading: instead of applying all features on a window,
the features are grouped into different stages of classifiers and
applied one by one.

As mentioned in the ”Related Work” section, the convolu-
tional neural network is a specialized kind of neural network
for processing data that has a known grid-like topology[7]
like 2D images. In this research, we used two types of neural
network architectures: a smaller VGGNet (shown in detail in
Figure 3) and a simple 3-layer network.

Pipeline of Haar Classifier with Convolutional Neural
Networks
The Haar classifier trained on images of objects of interest
and objects of no interest quickly returns windows represent-
ing these objects due to its low computational intensity. The
training itself may be a lengthy process but object detection
itself processes images very rapidly[5]. However, it may be
prone to higher error rates due to the high variance of objects
to be detected[4]. It leads to an abundance of false positives.
Potentially, we remedied it by filtering out false positives and
retaining as many true positives as possible. We achieved it
by applying a convolutional neural network with binary out-
put to windows returned by the Haar classifier. We trained
a convolutional neural network with a similar data set: im-
ages of objects of interest annotated with ”1” while images of
objects of no interest with ”0”.

We discovered two nuances. The Haar classifier’s role was
to return candidate windows instead of performing conclusive
object detection. We used the convolutional neural network
as a conclusive classifier only on these candidate windows
instead of on every portion of the image (as in the sliding
window technique on a pyramid of scaled images).

Pipeline with Selective Search step
The candidate windows returned by the Haar cascade classi-
fier could be narrowed down by running a Selective Search
algorithm on these specific windows. The goal was to look
for a particular range of colors within them. These clusters
could potentially represent a face of a human-like character
or another non-human character like a white dog.

Before the Haar classifier returned candidate windows rep-
resenting potential character regions, we converted the origi-



Figure 3: Smaller VGGNet architecture.

nal RGB image to an HSV image. On this image, we looked
for particular RGB ranges of colors: the human-like color
of the skin and the white color for a white dog. For each
color range, there was a bitwise mask of the image returned.
Each displayed clusters of pixels that fall within the specific
RGB color range in the HSV image. The Selective Search
algorithm was applied on the mask but within the candidate
windows to narrow these down. Thus, the Selective Search
algorithm is ran only on specific smaller portions of the im-
age instead of on the whole. Afterward, Non-Maximum Sup-
pression was employed to get rid of overlapping windows to
retrieve a single one. Every narrowed-down window is then
put back on the original image. These depict regions of inter-
est.

On these windows, we applied the conclusive convolu-
tional neural network. In the case of human characters, we
used the separate network to distinguish between the face and,
for example, an arm of the character. In the case of a white
dog, another to distinguish between an actual character and
non-character objects like a white shirt or a white cup. The
goal was to recognize what illustrated a character and what
did not within a specified range of colors.

The character detection portion of the pipeline with detec-
tion of human-like characters is presented in Figure 4.

3.3 Character Recognition
Character recognition is a multi-class labeling problem.
There was a specific set of characters present to be anno-
tated. In this sub-problem, convolutional neural networks
could prove to be effective as well. We needed the convolu-
tional neural network architecture with multiple outputs. We
used a smaller VGGNet (Figure 3). The VGGNet was used as
it has been proven that it not only achieves the state-of-the-art
accuracy on ILSVRC classification and localization tasks but
is also applicable to other image recognition data sets, where
it achieves excellent performance even when used as a part
of relatively simple pipelines[8]. Therefore, it was safe to
assume that a simplified version of it would perform well in

the domain of drawn characters. The smaller VGGNet led to
lower computational time, which was the ultimate goal of the
entire research procedure.

Pipeline
Once it was confirmed by the character detection portion of
the pipeline that a candidate window showed a character, we
passed the image within to the smaller VGGNet with multi-
ple outputs. It verified which character is present in it. We
presented this part of the pipeline in steps 4a and 4b in Figure
1.

3.4 Software Architecture
The HaarCNN is explained in a step-by-step manner in Al-
gorithm 1. The alternative pipeline with the Selective Search
step is presented in Algorithm 2. The programming language
used in the research project was Python.

Algorithm 1: HaarCNN high-level pseudo-code
1 threshold← CNN character detection threshold;
2 face predictor← conclusive character detection CNN;
3 char recognition← character recognition CNN;
4 faces← calculate Haar features on an image and

return candidate windows;
5 for face in faces do
6 face resized← resize face to 50x50;
7 output← pass face resized through face predictor;
8 if output >= threshold then
9 character prediction← pass pick resized

through char recognition;
10 end
11 end

The Selective Search algorithm works in the following
way: from set of regions, two are chosen that are most sim-
ilar in terms of color similarity and texture similarity, these

Figure 4: HaarCNN with Selective Search algorithm step. 1 - calculate Haar cascade features of the image and return all the windows; 2 -
return bitwise mask of the original image with clusters of pixels presenting human-like characters; 3 - perform Selective Search on candidate

windows; 4 - perform non-maximum suppression of boxes returned by the Selective Search algorithm; 5 - put returned windows on the
original image. The character recognition portion of the pipeline remains the same as in steps 3 and 4 in Figure 1.



Algorithm 2: HaarCNN (with Selective Search step
for human characters only) high-level pseudo-code

1 threshold← certain threshold above which image
portion after being passed through CNN is
considered a human face;

2 human clusters← bitwise mask presenting pixels
within RGB range of human skin colour on HSV
version of original image;

3 human predictor← human-like face prediction CNN;
4 char recognition← character recognition CNN;
5 faces← calculate Haar features on an image and

return candidate windows;
6 for face in faces do
7 rectangles← perform Selective Search on

human clusters but on face window coordinates;
8 picks← perform NMS on rectangles and return

non-overlapping windows presenting faces;
9 for pick in picks do

10 pick resized← resize pick to 50x50;
11 output← pass pick resized through

human predictor;
12 if output >= threshold then
13 character prediction← pass pick resized

through char recognition;
14 end
15 end
16 end

are combined into a single region and the process is being re-
peated for multiple iterations. The Non-Maximum Suppres-
sion has proposal boxes B, confidence scores S and overlap
threshold N as input. The output is filtered proposal boxes F.
The pipeline is following: remove the box from B to with the
highest confidence score in S (the confidence score could be
confidence given by the output of the neural network or nor-
malized area of the box), compare this proposal with other
proposals in B, if intersection over union between these box
proposals is greater than N and score of other proposal in S is
higher, then discard this proposal, otherwise add it to F. These
steps are being repeated until all proposal boxes in B are pro-
cessed. In order to check more details about both, the Selec-
tive Search algorithm is explained in [15] and Non-Maximum
Suppression in [16].

3.5 Training Procedure
Character Detection
We trained The Haar classifier using the OpenCV command-
line application on 2700 images total: 900 representing faces
of characters and 1800 presenting objects outside of the face
region in the comic strips. We manually extracted the por-
tion of images with the OpenCV interface for Python and
performed data augmentation to collect these 2700 images.

There were multiple types of training data used for training
convolutional neural networks. All were trained with help of
TensorFlow open source library in Google Colaboratory en-
vironment. In the main version of the pipeline, we trained the
convolutional neural networks (smaller VGGNet and simple

3-layer) to detect objects in the same manner as the Haar clas-
sifier on images of characters’ faces (annotated with ”1”) and
non-character objects (annotated with ”0”). We extracted the
images manually. We performed data augmentation to gener-
ate more images. The networks were trained on 5000 images.

In the alternative version of the pipeline, we trained the
convolutional neural networks differently. We trained the
human-like character detection network on images of human-
like faces annotated with ”1”. We annotated images of non-
faces but of which the dominant color falls within the RGB
range of the skin color with ”0”. Data augmentation was used
as well for the generation of more images. We based the train-
ing process of convolutional neural networks for other char-
acters on the same principle. We used 12 thousand images
to train human-like character detection network and around 7
thousand to train white dog character detection network.

Character Recognition
With help of data augmentation procedure, we trained the
convolutional neural network for character recognition on one
thousand images of characters present in the comic strip se-
ries. We wanted to recognize eight main characters. We an-
notated these with digits spanning from ”0” to ”7”. The con-
volutional neural network has eight outputs.

4 Evaluation
4.1 Experimental Setup
Data Sets
For evaluation of character detection and recognition of Dil-
bert comics, we used two data sets. Both of them consist of
750 images of extracted panels from full comic strips. All of
them have been modified in a way that they do not contain
text. Each ground truth bounding box has a corresponding
character annotation attached to it. There are eight main char-
acters used for annotation. Other characters are annotated as
”8”.

Testing
For testing purposes, the ground truth bounding boxes are
used to verify whether the characters in comic strips are cor-
rectly detected and recognized. The ground truth bounding
box represents a portion of an image that is supposed to be
a true positive. It is annotated by (x,y) top-left of the box
coordinates, width, and height of a box. For evaluation pur-
poses, a certain set of comics are annotated with bounding
boxes around the faces of characters. Results of the evalua-
tion based on bounding boxes may vary due to the fact that
they are manually marked by the human. Therefore, there
is a possibility of a situation in which a classifier may cor-
rectly detect a character face region but it might be discarded
because the returned box may not overlap well enough with
the ground truth bounding box. Thus, it may be required to
manually check the results and verify if correct true and false
positives were given.

Metrics
Intersection over union is a technique to compare the coor-
dinates and area of the box returned by any classifier and the



Classifier type Haar cascade classifier* smaller VGGNet for detection smaller VGGNet for recognition simple 3-layer network for face detection
Training time (seconds) 1920* 46 42 42

Table 1: Training times for classifiers used in the research.

ground truth bounding box. The formula is following:

intersection of boxes

union of boxes
(1)

Precision is a metric comparing the number of correctly
detected objects (true positives) to the number of all detec-
tions (true positives and false positives). The number of cor-
rect detection is divided by the number of all detections.

true positives

true positives+ false positives
(2)

Recall is a metric comparing the number of correctly de-
tected objects to the number of ground truths. First is divided
by second.

true positives

true positives+ false negatives
(3)

F1-Score is a metric that indicates how good are both pre-
cision and recall. The formula is:

2 ∗ precision ∗ recall
precision+ recall

(4)

4.2 Training Times
We show training time for different classifiers in Table 1. The
Haar cascade classifier was trained on the local machine with
Intel(R) Core(TM) i7-6600U CPU @ 2.60GHz. The convo-
lutional neural networks were trained within Google Colabo-
ratory environment utilizing the GPU runtime. Therefore, it
is hard to compare training time of Haar classifier with train-
ing time of convolutional nets. The training times exclude the
time required for data augmentation process.

4.3 Effectiveness of identifying face
How does the main pipeline perform on the extracted panels
from comic strips with no text with varying convolutional
network threshold? How does it compare to the classic image
pyramid, sliding window and Non-Maximum Suppression
approach?

To answer the first question, we executed two separate ses-
sions: first with the smaller VGGNet as a part of the pipeline
responsible for the detection of a character, and the second
with the simple 3-layer network. Both sessions were executed
on the first set of 750 panels from Dilbert comics without
text. Different thresholds of the convolutional networks were
tested for classification. For example, the threshold was 0.5.
It means that if the convolutional neural network has given
the output of 0.5 or above for character detection within the
given window, we accepted it as a character. The range of
thresholds used in the experiment is 0, 0.1, 0.2, ..., 0.9, 1.0.
The precision, recall, F1-Score, and inference time were mea-
sured for each threshold. Ultimately, the returned window
was recognized as a true positive if the intersection over the
union between the window and ground truth bounding box
was 0.4. The reason for that is that candidate windows re-
turned by the Haar classifier could be relatively big compared
to ground-truth bounding boxes. Otherwise, it was consid-
ered a false positive. The results are presented in Table 2 and
Table 3.

The threshold of 0 basically represents how the sole Haar
classifier performed without the convolutional network step.
It meant that any candidate window provided was considered
a character. It led to high recall but very low precision.

To answer the second question, it was required to set up
another session in which images from the first set were eval-
uated on the classifier using the image pyramid, sliding win-
dow, and Non-Maximum Suppression. The goal was to ver-

Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision 0.42 0.84 0.84 0.84 0.85 0.86 0.86 0.86 0.86 0.85 0

Recall 0.89 0.81 0.80 0.80 0.80 0.80 0.80 0.80 0.79 0.78 0
F1 score 0.57 0.82 0.81 0.81 0.81 0.82 0.82 0.82 0.82 0.81 0

Inference time (seconds) 248 214 220 205 206 218 220 249 224 201 115

Table 2: The results of running character detection pipeline with the smaller VGGNet. The session is performed on the first set of 750
images of Dilbert comics series without text present in them. Precision, recall, F1-Score and inference time are all measured.

Threshold 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Precision 0.40 0.40 0.41 0.45 0.55 0.68 0.80 0.87 0.92 0.98 0

Recall 0.89 0.89 0.89 0.89 0.87 0.84 0.76 0.64 0.41 0.03 0
F1 score 0.55 0.55 0.56 0.6 0.67 0.75 0.78 0.74 0.57 0.06 0

Inference time (seconds) 241 241 238 236 264 197 178 163 141 104 115

Table 3: The results of running character detection pipeline with the simple 3-layer network. The session is performed on the first set of 750
images of Dilbert comics series without text present in them. Precision, recall, F1-Score and inference time are all measured.



ify what precision, recall, F1-Score, and inference time was
obtained with varying step sizes of the sliding window and
rescale factor of the images for the image pyramid. However,
instead of running it on 750 images, it is executed only on
100. The results are presented in Table 4.

step size / pyramid scale 16 / 1.5 16 / 1.1 12 / 1.1 8 / 1.1
Precision 0.59 0.62 0.60 0.60
Recall 0.72 0.76 0.80 0.80
F1 score 0.65 0.68 0.69 0.69
Inference time (seconds) 2351 2929 4777 10457

Table 4: The results of using image pyramid, sliding window and
NMS technique for character detection. The architecture of the
convolutional neural network used for conclusive classification is
smaller VGGNet. Precision, recall, F1-Score and inference time are
all measured.

Firstly, the F1-Score had the similar value over the span of
thresholds from 0.1 to 0.9 when smaller VGGNet was used.
It was safe to assume that the threshold of around 0.6 was the
optimal choice of threshold to be used. In the first session
with smaller VGGNet, the values of 0.86 precision and 0.80
recall are relatively satisfying results because the precision
oscillates between 0.84 and 0.86 while recall is within the
range of between 0.78 to 0.81. Secondly, the inference times
differed for the two networks. It is not surprising as a smaller
VGGNet is a more complex network than a simple 3-layer
network. It resulted in a slightly longer processing time.

Thirdly, in another session the smaller the step size and
the rescale factor, the higher the recall but not necessarily
the precision. The F1-Score neither improved nor regressed
significantly enough. However, it is not the most important
observation. The most striking one is the fact that the
inference time was substantially higher. It took at least
ten times as much time to process 100 images using this
technique as to process 750 images with the main pipeline.
The HaarCNN approach was superior to this approach by a
substantial margin in terms of computational overhead.

How does the main pipeline with Selective Search step
perform on the extracted panels from comic strips? How
does it compare to the main pipeline with no Selective Search

step and the pure Selective Search approach?

To answer these questions, there were four steps taken.
The first step verified how the main pipeline performed. We
wanted to see how many true positives and false positives are
detected compared to ground truths. The threshold chosen for
detection was 0.6. The second step was to see how the main
pipeline with Selective Search step performs only by detect-
ing human characters. The third step was to verify if adding
more characters of which dominant color falls within a dif-
ferent RGB range improved the performance of the pipeline.
The new character we wanted to detect was a white dog.
The fourth step was to run a Selective Search algorithm for
human-characters only on the whole image instead of candi-
date windows, similar to the approach in [13]. We compared
the result of this step to the results of the second step. The
results are presented in Table 5. The first set of images of 750
Dilbert comics was used for this experiment.

For first three steps, the results were relatively similar.
Still, there was an interesting trend that we noticed. Once
we added a new color range, we detected more characters.
However, there was a risk of picking up more false positives.
Moreover, more neural networks needed to be used. It meant
that inference time increased due to more convolutional neu-
ral networks doing the data processing work.

For the fourth step, we had to compare the output of Selec-
tive Search approach to the HaarCNN with Selective Search
step for humans. Looking at Table 5, it is clear that the Haar-
CNN with Selective Search step was faster in terms of infer-
ence time than the object detection based on Selective Search
algorithm on the whole image by over 500 seconds. Other
metrics were relatively similar.

4.4 Effectiveness of character recognition
How does the smaller VGGNet perform in regards of recog-
nizing 8 main characters in Dilbert comic strip series?

To perform this experiment, two sets of 750 images were
used. Different thresholds of the convolutional neural net-
work for face detection were used in the same way as in the
first experiment. We verified what portion of main charac-
ters (annotated with numbers ranging from 0 to 7) marked
with ground truth bounding boxes were correctly recognized.

pipeline version HaarCNN HaarCNN + Selective step [H] HaarCNN + Selective step [HD] Selective Search
true positives 1118 1037 1108 1035
false positive 178 92 158 120

ground truths 1394 1394 1394 1394
precision 0.86 0.92 0.88 0.89

recall 0.80 0.74 0.83 0.74
f1 score 0.82 0.82 0.83 0.81

time elapsed 199 200 221 755

Table 5: The results of running three iterations of the main pipeline and the pure Selective Search approach for extracting human-like
character regions of interest in the whole image. The HaarCNN column corresponds to running a main pipeline of Haar classifier returning
candidate windows and convolutional neural networks for conclusive classification. The next two columns correspond to expanded version

of the main HaarCNN pipeline with Selective Search algorithm added between Haar and convolutional neural networks classifiers. [H]
stands for human-like characters detection and [HD] for both human-like characters and a white dog. The data set used is 750 images of
Dilbert comics with no text. True positives, false positives, ground truths, precision, recall, F1-Score and inference time are all measured.



The actual numbers of character recognitions could be lower
due to the fact that face detection portion of the pipeline still
picked up false positives. The results are present in Table 6.

Threshold 0 0.2 0.4 0.6 0.8
Character recognitions in set of images 1 0.86 0.88 0.88 0.88 0.88
Character recognitions in set of images 2 0.85 0.86 0.86 0.87 0.87

Table 6: The results of using smaller VGGNet for character recog-
nition with different thresholds of the convolutional neural network.
We verified what portion of eight main characters marked with
ground truth bounding boxes were correctly recognized. Two sets
of 750 images of Dilbert comics with no text were used.

Looking at these results, it is clear that the smaller VG-
GNet architecture performed well on the recognition of char-
acters. At least 85 percent were correctly identified. There
are certain probable reasons why it was not higher. False pos-
itives were picked up from the face detection portion of the
pipeline. It meant that the network tried to recognize the char-
acter in a situation where there was no character present. It
also explains why the higher the threshold of the face detec-
tion network, the higher the ratio of correctly identified char-
acters. The higher threshold led to higher precision which
meant fewer false positives. In this experiment, it translated
to fewer misclassifications.

5 Responsible Research
5.1 Ethics
When it comes to the usage of comics strip images, the data
that has been used in the research has been acquired from
dillbert.com. We have used the comics for purely educational
purposes without any intention of profiting from the work of
the creators of this particular comic strip series.

The desire to decrease the computational intensity was par-
tially inspired by the fact that a lot of work being done in the
field of deep learning is resource intensive. This is due, for
example, to the usage of graphics processing units for per-
forming complex calculations which is energy intensive and
not environmentally friendly. This problem was an inspira-
tion to perform object detection and recognition in an efficient
manner.

5.2 Reproducibility
This research project is reproducible. The interested entity
needs to follow the steps in the section titled ”Methodology”
- specifically the subsection titled ”Software Architecture” in
which the higher level pseudo-code has been described for
both alternatives of the pipeline.

6 Conclusions and Future Work
The two alternatives of the HaarCNN pipeline for detection
of comic strip characters displayed three common key fea-
tures. Firstly, they were fast. The rapid object detection
technique using a Haar cascade classifier for returning can-
didate windows in combination with conclusive classifica-
tion accomplished with the convolutional neural networks led
to satisfactory inference times compared to other baselines.
The same applied to the alternative approach with Selective

Search step. Secondly, both alternatives gave high precision
and recall. The recall of characters present in the comic strips
series could be especially higher when the alternative with a
Selective Search step was used for more types of characters.
Thirdly, given the solid precision and recall ratios the char-
acter recognition could lead to exceptional results which can
prove to be useful for automated annotation in deep learning
domains such as illustration synthesizers with generative ad-
versarial networks for the purpose of automated image anno-
tation. However, there are a couple of things which also need
to be addressed. The whole pipeline is going to work only on
the very specific comics strip series. It is domain specific. It
is impossible to use techniques verified and trained for a spe-
cific comic strips series in this research and apply them to a
different domain of drawn characters.
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