
A
u
to
n
o
m
o
u
s
N
av
ig
a
tio

n
w
ith

O
b
sta

cle
A
v
o
id
a
n
ce

o
f
a
N
o
n
h
o
lo
n
o
m
ic
F
o
u
r
W
h
eel

S
teerin

g
R
o
b
o
tic

P
la
tfo

rm

Autonomous Navigation with Obstacle Avoidance
of a Nonholonomic Four Wheel Steering Robotic
Platform

M.F.A. Damen

T
e
c
h
n
is
c
h
e
U
n
iv
e
r
s
it
e
it

D
e
lf
t

Autonomous Navigation with Obstacle Avoidance of a
Nonholonomic Four Wheel Steering Robotic Platform

MASTER THESIS
For the degree of Master of Science in Mechanical Engineering at Delft University of Technology

M.F.A. Damen

November 11, 2015

Faculty of Mechanical, Maritime and Materials Engineering (3mE) · Delft University of Technology

Copyright c© Biomechanical Design
All rights reserved.

DELFT UNIVERSITY OF TECHNOLOGY
DEPARTMENT OF

BIOMECHANICAL DESIGN

The undersigned hereby certify that they have read and recommend to the Faculty of Mechanical, Maritime and
Materials Engineering (3mE) for acceptance a thesis entitled

AUTONOMOUS NAVIGATION WITH OBSTACLE AVOIDANCE OF A NONHOLONOMIC FOUR WHEEL STEERING
ROBOTIC PLATFORM

by
M.F.A. DAMEN

in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE.

Dated:

Supervisor(s):
Prof. dr. F.C.T. van der Helm

Dr.-Ing A. Schiele

Dr. G.A. Delgado Lopes

Msc. S. Kimmer

PREFACE

This document is part of the graduation project for the master programme BioMechanical Design (BMD) at the Delft
University of Technology, The Netherlands. As a requirement, the work done during the project should be presented
in an IEEE style article. This is to learn how to present a vast amount of work done in a compact way, which is an
important skill for researchers. The article, titled Autonomous Navigation with Obstacle Avoidance of a Nonholonomic
Four Wheel Steering Robotic Platform, is the first part of the document. The remainder of the document, consisting
of several appendices, contains a detailed description of the work done during the project. This is to provide a usable
reference for future research and to show all the work done during the graduation project that was not covered in the
article. The appendices are self-contained, and reading the paper is not required to understand the work described.

The appendices that follow after the article are structured as follows. A short introduction to the thesis project is given
in Appendix I. Appendix II contains a detailed derivation of the configuration kinematic model of the INTERACT robotic
platform. Appendix III shows how the model was verified and validated. It also contains results of experiments where the
simulated platform was compared to the actual platform. Details about visualization of the simulated system including an
accurate CAD model of the platform are given in Appendix IV. In Appendix V the localization algorithm is presented,
along with accuracy results and possible improvements that could be applied in the future to increase performance. One of
the tools used to increase localization performance is platform calibration. This method is covered extensively in Appendix
VI. Appendix VII introduces the Rapid-Exploration Random Trees (RRT) algorithm that is used for path planning for
nonholonomic systems. In a comprehensive table, the performance of several versions of this algorithm is summarized.
The feedback control of the platform is presented in Appendix VIII which is the last part necessary for autonomous
navigation. Results of full autonomous navigation experiments are given in Appendix IX. The final part of the document,
Appendix X, gives a discussion based on the results of the project and proposes further research and improvements.

I would like to thank André Schiele for providing the opportunity of graduating at the Telerobotics and Haptics
laboratory at ESA Estec in Noordwijk, and for his feedback on several reports and this thesis itself. Also, many thanks
to Stefan Kimmer for his daily supervision, feedback and help during the project. Professor Frans van der Helm, who
was the university supervisor and head of the committee present during the defense of the thesis, is also thanked for his
time and contribution to the final result. Finally, a lot of gratitude is directed to the members of the lab that were willing
to help out during experiments and were available for discussion to find the best approach. Especially Joao Rebelo and
Eloise Matheson gave a lot of useful input and feedback during many occasions.

M.F.A. Damen
Delft, November 2015

CONTENTS

I Introduction 1
I-A Problem Statement 1
I-B Goal 2

II Approach 2

III Kinematic Model of the System 3
III-A Implementation 3
III-B Method 5
III-C Results 5

IV Localization 5
IV-A Implementation 5
IV-B Method 6
IV-C Results 6

V Path Planning 7
V-A Implementation 7
V-B Method 8
V-C Results 8

VI Feedback Control 9
VI-A Implementation 9

VI-A1 Four wheel steering . . . 9
VI-A2 Crab mode 9
VI-A3 Rotation in place 10

VI-B Method 10
VI-C Results 10

VII Experimental Evaluation 11
VII-A Implementation 11

VII-A1 Coarse Approach Settings 11
VII-A2 Alignment Settings 11

VII-B Method 12
VII-C Results 12

VIII Discussion 13

IX Conclusion 15

Appendix I: Introduction to the Thesis Project 17

Appendix II: System Modelling 19
II-A Configuration Kinematic Model . . . 19
II-B Rotate In Place 21
II-C Ackermann Steering and Side Slip

Angle 21
II-D Implementation in Simulink 22

Appendix III: Model Validation 23
III-A Error Metric for Performance Assess-

ment 23
III-B Results 23

Appendix IV: Model Simulation and Visualization 28
IV-A Simulation in SPANviewer 28
IV-B ICR Visualization and Predicted Po-

sition Overlay 28
IV-C Arm Base Transform Measurement . . 28
IV-D Results 29
IV-E INTERACT .xml file for SPANviewer 31

Appendix V: Localization 34
V-A Dead-Reckoning 34
V-B Steering Angle Encoders 35
V-C Odometry Calibration 35
V-D Improvements using Sensor Redun-

dancy 36
V-E Odometry 36
V-F Results of Localization 37

Appendix VI: Dead-Reckoning Calibration Method 39
VI-A Type A Errors 39
VI-B Type B Errors 40

Appendix VII: Nonholonomic Path Planning using
RRT 42

VII-A The RRT Algorithm Implementation . 42
VII-B Bidirectional RRT 43
VII-C Several Improvements 43

VII-C1 Path Smoothing 43
VII-C2 Handling of Discontinuities 44

VII-D Implementation for INTERACT . . . 44
VII-E Algorithm Performance Analysis . . . 45
VII-F Path Planning Experiments 45

Appendix VIII: Feedback Control of Nonholonomic
Systems 48

VIII-A Modelling in a Frénet Frame 48
VIII-B PID Control 48
VIII-C Approximate Linearization 49
VIII-D Feedback Control for Rotate in Place 51
VIII-E Simulation Results 51

Appendix IX: Experimental Evaluation of the Nav-
igation Algorithm 53

IX-A Experimental Setup 53
IX-A1 Coarse Approach Settings 53
IX-A2 Alignment Settings 53

IX-B Results 54

Appendix X: Discussion 57
X-A Localization 57
X-B Path Planning 57
X-C Control 57

References 59

1

Autonomous Navigation with Obstacle Avoidance of a
Nonholonomic Four Wheel Steering Robotic Platform

M.F.A Damen, TU Delft

Abstract—INTERACT is a space technology demonstration exper-
iment in which an advanced wheeled mobile robot (WMR) will be
tele-operated from space. The experiment consists of a navigation
phase and a manipulation phase. To cope with adverse communication
conditions and limited means for control, an autonomous navigation
algorithm needs to be developed for the navigation phase of the ex-
periment. The algorithm requires accurate localization, path planning
among obstacles and feedback control of the nonholonomic system.
The main goal is to autonomously position the platform in front of a
taskboard within 15 cm in position and 6◦ in heading.

Such a navigational algorithm has not been developed before for a
four wheel steering platform capable of crab motion and rotation
in place. Furthermore, it is a challenge to achieve the necessary
localization accuracy with the available sensors.

The navigation algorithm is implemented on the actual INTERACT
platform and its performance is experimentally validated. The algo-
rithm is limited to 2D planning and control. The path is planned using
the Rapid-exploration Random Tree algorithm and tracking control
is performed using approximate linearization around the reference
trajectory and PID control laws. Feedback is provided by localization
based on dead-reckoning and odometry. The experimental results show
an average error over 10 trials of 14 cm in x, 13 cm in y and 4.7
degrees in heading, which is within limits.

Index Terms—Navigation, odometry, dead-reckoning, path plan-
ning, RRT, feedback control, approximate linearization

I. INTRODUCTION

THE INTERACT project is a space technology demon-
stration experiment by the European Space Agency

(ESA). A four wheel steering, four wheel drive robotic
platform located on Earth is operated from the International
Space Station (ISS) by an astronaut. The goal of the exper-
iment is to drive the platform through partially unknown
terrain towards a taskboard where several manipulation
tasks such as pressing a button and peg-in-hole can be
performed. The astronaut can operate the robot via a one
Degree of Freedom (DoF) joystick capable of providing
haptic feedback and a custom GUI running on a Dell
tablet PC. The purpose of the project is to prove the
concept of real time control including haptic feedback of
the manipulator arms under micro gravity conditions while
handling time delays of up to 1 second and periods with
loss of signal.

The experiment is a first step towards astronaut control of
a robot in an extraterrestrial environment (e.g. the surface
of Mars) from an orbiter. The use of robots on the surface
is necessary because sending astronauts and especially
returning them is both costly and dangerous.

Previous experiments with this platform have taken place
[1] during which it was manually controlled by the astro-
naut, but results have not been published yet. However,
during the experiments it was noticeable that navigation

M. Damen is a Master student at the Department of Mechanical
Engineering, Delft University of Technology, Delft, The Netherlands,
performing his graduation work at ESA, ESTEC in Noordwijk, The
Netherlands. E-mail: matthijs.damen@esa.int

of the robot under adverse communication conditions and
with limited means for astronaut control, is very tedious
and time consuming work. Furthermore, to reduce the load
on the operator during these experiments, the drive modes
of the platform were limited to rotations in place and
straight driving. The four wheel steering and crab mode
(parallel steering of all four wheels) were not available to
the astronaut, and hence the platform could not be used to
its full capability.

To solve this problem, an autonomous navigation algo-
rithm that takes over the control from the astronaut has been
developed and is presented in this paper. The algorithm is
able to position the platform in front of the taskboard while
avoiding obstacles in the environment. The operator has
to provide a rough location estimate of the taskboard and
the position of obstacles. During navigation, the operator
only has a supervisory role and can intervene at any time
by terminating execution and resetting the start and goal
positions.

To realize autonomous navigation, the INTERACT plat-
form needs to be able to: (1) localize itself within the
environment, which requires an estimate of the system pose,
(2) plan a path while avoiding obstacles, and (3) accurately
track this path using feedback control. These three topics
will constitute the main part of the navigation algorithm
and will be treated thoroughly in this paper. A necessary
tool and basis for designing the algorithm is a mathematical
model of the four wheel steering, four wheel drive platform,
which captures all possible drive modes. Hence, a kinematic
model of the platform will be discussed as well.

A. Problem Statement

Figure 1 shows the navigational problem to be solved
by the algorithm. The platform is initially positioned at an
arbitrary location in the environment and needs to navigate
to the taskboard. It is assumed that the platform cannot
identify all obstacles autonomously, and it is left for the
astronaut to exercise his human judgement on which areas
of the environment are save to traverse. For this purpose, the
astronaut receives a bird’s-eye view similar to Figure 1a to
indicate the obstacles and goal position. After this is done,
a path planning algorithm is required to find a feasible path
to the goal.

The planning algorithm should take the nonholonomic
constraints of the system into account and result in a fea-
sible path. Furthermore, obstacles should be avoided such
as shown in Figure 1b. There exist many planners capable
of doing this. These planners can roughly be divided into
two groups. First, combinatorial based planners, which are
complete (i.e. if a solution exist it will be found, if not, this
will be reported) but generally require long computation

2

(a) Define obstacles, goal position (b) Path Planning (c) Path Tracking (d) Taskboard Reached

Fig. 1. Sequence showing the several steps of the navigational problem. 1a shows the starting conditions with the obstacles (red) and goal position
(grey). 1b shows the planning of a path (blue) towards the goal. 1c shows execution of the paths with accumulating tracking/localization errors (dashed
red). 1d shows the platform arriving at the taskboard.

times. Examples are the potential field method [8] and the
skeleton based method [9]. Second, the sampling based
planners are not complete but are generally faster. They
are based on random sampling of the configuration space
which results in a probabilistic road map (PRM). These
planners often use graph search algorithms to find a solution
path within the generated road map. Examples are Obstacle
Based PRM [2], lazy PRM [3], Medial Axis PRM [4] and
Rapid-exploration Random Tree (RRT) algorithms [5], [6].
RRT algorithms are very suited for nonholonomic problems,
but an implementation that takes all drive modes of the
INTERACT platform into account has not been found in
literature.

For the execution of the path, both localization as well as
feedback control are necessary. Localization is challenging
with this platform as no sensors are available that give an
absolute position measurement. Hence, the estimate of the
system pose must fully rely on the proprioceptive sensors
such as wheel encoders and the inertial measurement unit
(IMU). Because these measurements are all relative, they
suffer from unbound error accumulation, as is indicated
in Figure 1c with a dashed red line. The accuracy can
be increased by performing platform calibration using e.g.
the UMBmark technique [17], [18], [19], [20]. However,
no reports that show application of this method to a four
wheel steering vehicle have been found. Other techniques
to increase accuracy are sensor fusion [15], [16], and wheel
slip detection [21], [22].

Feedback control of nonholonomic systems is compli-
cated because the platforms are generally under-actuated.
This was first described in an article by Brockett [23] where
he shows that one needs discontinuous and/or time-varying
feedback to stabilize nonholonomic systems. Several con-
troller designs can be found in literature that apply this type
of feedback [24], [28], [29], [30]. However, the control laws
are applied to simulated car-like systems and unicycles,
but not to four wheel steering platforms. Furthermore, no
experimental validation of the controller is reported.

To the authors knowledge, no single report exists that
addresses the end-to-end navigation task of a four wheel
drive, four wheel steering vehicle such as INTERACT.

B. Goal

The goal of this work is to develop, implement and ex-
perimentally validate an autonomous navigation algorithm

for the four wheel steering, four wheel drive INTERACT
platform.

The complete algorithm should be accurate enough such
that the resulting final position is suitable for the manipu-
lation tasks, i.e. the taskboard is reachable for the robotic
arms and no relocation is required to do the tasks. While
performing the experiments described in [1], acceptable
limits on the final position were established: it should
be reached with an accuracy of 15 cm in position (both
directions), and 6◦ in heading. The algorithm should be
capable of achieving this accuracy for paths with a length
in the order of 20 meters. Furthermore, a bound on the
localization error of 0.5% of the travelled distance and a
tracking error that does not exceed the minimum turning
radius (1 meter) is required to keep the platform close
enough to the path such that collisions are prevented.

To achieve a feasible path, the system needs to be
modelled including the limitations imposed by the nonholo-
nomic constraints. This mathematical model is used in the
path planning, and to develop a controller capable of accu-
rate tracking of a reference trajectory. Both planning and
control are performed in 2D, which is deemed sufficiently
descriptive while it simplifies the problem greatly.

To summarise the requirements for the navigation algo-
rithm:
• The path planning should be able to incorporate all

platform drive modes.
• The path planning should generate a feasible path while

avoiding obstacles in the environment, keeping into
account the increasing error in the localization estimate.

• Tracking accuracy should be within the minimum turn-
ing radius, which is 1 meter for this platform.

• The upper bound on the localization error is 0.5% of
the travelled distance.

• The final position should be reached with an accuracy
of 15 cm in position, and 6◦ in heading.

• The path length can be up to 20 meter.

II. APPROACH

The structure of the proposed navigation algorithm is
given in Figure 2. After the operator inputs the location
of the obstacles and taskboard position in the environment,
the first stage of navigation is entered: the coarse approach.
The path planning algorithm should plan a feasible path
from the initial platform location to the point indicated by
the operator, while the obstacles in the environment are

3

Operator Input:
Goal

Obstacles

Planning of path
towards goal region

Path Execution

Path Found

Path Error too
Large

Task board in
view?

Planning of segment
for final alignment

Alignment
execution

Final Position for
Manipulation

Path Found

Start

Yes

No

No

NoYes

Yes

Yes

No

Coarse Approach

Alignment

Fig. 2. Flow-chart of the proposed autonomous navigation algorithm. Two
stages of the algorithm can be identified. The first stage is the Coarse
Approach. The second stage is the Alignment stage where the taskboard
is maneuvered in front of the taskboard.

avoided. Preferably, the platform should be used to its full
capability including crab mode, rotate in place, and four
wheel steering. It is not a requirement that the path be
optimized for a certain cost function based on e.g. length.
This results in the Rapid Exploration Random tree (RRT)
algorithm as a choice for the planning. If a path cannot be
found, additional operator input is required. Else, the first
path execution state is entered.

During path execution, the platform should track the path
by using the position estimate from localization as feedback
for the controller. As stated before, the platform can only
use the on-board proprioceptive sensors (wheel and steering
encoders, IMU) to estimate the location. By using platform
calibration and simple wheel slip detection, an accuracy of
0.5% of the total travelled distance should be achieved.

The feedback controller developed for four wheel steering
is based on approximate linearization around the reference
trajectory as described in [28], which is extended to a sys-
tem with four wheel steering. This control method requires
the system to be transformed to the chained form. This
canonical structure is often used for non-linear systems
to generalize the controller derivation and simplify the
establishment of feedback laws (see e.g. [38], [39], [25]).
By putting the equations of the system in the chained form,
an underlying linear structure becomes apparent, although
the system itself is non-linear. The controller uses the
feedforward command generated by the planning algorithm
and computes a correction using the localization estimate. It
is able to stabilize the system on the reference trajectory in
four wheel steering mode. For turn in place and crab mode,
a separate PID controller is developed. If, at any point in the
trajectory execution, the tracking error becomes too large
(i.e. larger than the minimum turning radius), the algorithm
is reset. This means that the operator needs to provide the
obstacle and goal positions again and planning is repeated
with the new data. The operator is able to intervene and
terminate the execution at any point in time if he deems
this necessary for safe and successful operation.

When the platform reaches the end of the path of the first
planning stage, it should be close enough to the taskboard
such that it can be recognized using vision software (namely
Halcon-12) and the 3D position and attitude can be esti-
mated. The implementation of the object recognition itself
is beyond the scope of this paper, and hence assumed to
be available. The distance at which the taskboard should
be recognized is in the order of 5 meter, which is left as
a requirement for the vision system. If the taskboard is in
view, the second stage called alignment is entered and a
final position in front of the taskboard can be deduced.
Furthermore, the odometry error accumulated during the
execution of the first path segment is reset to zero since an
accurate position measurement w.r.t. the taskboard is now
available. Using the same path planning algorithm, a path
is planned that brings the robot in front of the taskboard.
Through the use of visual servoing, the taskboard can be
kept within view of the platform while driving. Hence, the
accurate position measurement w.r.t. the taskboard is also
available during execution, and the localization is not solely
dependent on the proprioceptive sensors, which greatly
increases accuracy.

III. KINEMATIC MODEL OF THE SYSTEM

A. Implementation

A mathematical model of the wheeled mobile robot
(WMR) is developed. The model is used to simulate the
system in Matlab/Simulink and thereby make the devel-
opment of the algorithm faster as different versions and
parameter tuning can be tested in a simulation. Furthermore,
the path planning algorithm requires an accurate model of
the system to generate a feasible path. Finally, some of the
control methods specific to nonholonomic systems require
a (kinematic) model of the system in chained form to derive
appropriate control laws.

A kinematic model is chosen as the system representation.
This has several reasons. The model should preferably take
the same inputs as the actual platform (which are u1, veloc-
ity in [m/s], and u2, steering angle in [◦]). A dynamic model
generally has forces and torques as input, which is not
necessary in this case. Lower level control such as for the
torque of the drive motors is taken care of by the on board
platform controllers designed by the manufacturer. Because
the velocities used during the experiment are relatively
small (well below 1 m/s), many dynamic aspects such as
the suspension, steering actuators and acceleration of the
platform can be neglected without introducing significant
inaccuracy. Hence, it is deemed sufficient to develop a
kinematic model of the platform.

The kinematic model of the four wheel steering, four
wheel drive INTERACT platform is developed based on the
systematic approach given in [24] and uses the simplifica-
tion towards a double steering bicycle model presented in
[34]. With this approach, the front and rear wheel pairs are
merged into a single virtual wheel located in the middle of
the wheel pair axis as is shown by the dashed lines in Figure
3. Figure 3 also shows important platform parameters such
as the wheel base w and the distance L between the front
and rear virtual wheels. A reference point P is chosen which

4

Fig. 3. Sketch of the parameters that define the INTERACT system and
the simplification towards a bicycle model. The image shows the world
frame with the coordinates (x,y) of the reference point P on the chassis.
P indicates the origin of the robot centred coordinate frame. The angle
θfr is the angle between the robot frame and the world frame. Both the
two front wheels as well as the two rear wheels are collapsed into a virtual
wheel centred on the respective axis (dashed wheels). The distance from P
to the front and rear wheel are a and b respectively. The distance between
the wheel axes is L = a+ b. The wheel base is given by w.

serves as the origin for the robot centred reference frame
that indicates the platform position x, y and heading θfr.
The distance from P to the front and rear wheel is given
by a and b respectively. The state vector q is given by the
pose of the platform

q =
[
x y θfr

]T
. (1)

The two inputs to the system are the velocity input u1
and the steering angle u2.

Several assumptions are made to simplify the modelling,
which are:
• The robot frame is a rigid body
• Wheels are non-deformable vertical discs able to roll

around their horizontal axes which are always parallel
to the ground.

• There is a single point of contact between the ground
and the wheel.

• The wheels obey the no side-slip and rolling without
slipping constraints at all times.

The no side-slip constraint is a nonholonomic constraint
[28], [35], which means it is non integrable and implies
limitations on the platform generalized velocities q̇. It limits
the velocity of the wheel to be only in the plane of the
wheel, with no component perpendicular to the wheel disc.
Mathematically, this no side-slip can be expressed as

ẋ sin(θw)− ẏ cos(θw) = 0, (2)

which is the basis for the kinematic model. Here, x and
y are the position coordinates of the wheel, rw is the wheel
radius, and θw is the steering angle of the wheel measured
counter clockwise from the x′-axis, which is the second
control input u2.

Fig. 4. Sketch of the wheel geometry and parameters. For each wheel, l
is the distance from P to A, which is the rotation point of the steering
axis. β is the angle between the line PA and the wheel’s horizontal axis
of rotation. β is the orientation angle of the wheel which is variable if
the wheel is orientable. α is the angle between x′ and the line PA. The
distance between A and the ground contact point B is designated wo.

The wheel geometry of the INTERACT platform includes
an offset wo between the vertical steering axis A and the
wheel-ground point of contact B as shown in Figure 4.
Incorporating this geometry into the no side-slip constraint
results in

ẋ cos(α+ β + θfr) + ẏ sin(α+ β + θfr)

+ lθ̇fr sin(β) = 0, (3)

which can be rewritten into[
cos(α+ β) sin(α+ β) l sin(β)

]
R(θfr)q̇ = 0. (4)

In these equations, α indicates the angle between the x′-
axis and the line PA as shown in Figure 4. β is the angle
between the wheel its horizontal axis of rotation and the
extension of the line PA. R(θfr) is the rotation matrix
from the robot frame to the world frame:

R(θfr) =

 cos(θfr) sin(θfr) 0

− sin(θfr) cos(θfr) 0

0 0 1

 (5)

The relationship between β and the steering angle θw is
given by: θw = α+β−π/2. The subscripts 1 to 4 indicate
the wheel parameters and steering angles for the four real
wheels numbered as shown in Figure 3. The two virtual
wheels are indicated with a subscript f for front and r for
rear.

The no side-slip constraints for the two virtual wheels
can be put into matrix form

C(β)R(θfr)q̇ = 0, (6)

with

C =

[
c(αf + βf) s(αf + βf) lfs(βf)

c(αr + βr) s(αr + βr) lrs(βr)

]
(7)

Here, sin and cos are abbreviated to s and c respectively
for compactness.

The allowed system velocities can now be found by
computing the basis of the null space of the matrix C

Σ = Null [C] (8)

5

and the generalized velocities q̇ can be computed as

q̇ = R(θfr)Σ(β)u1

=


−[12 s(θfr)(c(βr)s(βf)+c(βf)s(βr))+s(βf)s(βr)c(θfr)]

[12 c(θfr)(c(βr)s(βf)+c(βf)s(βr))−s(βf)s(βr)c(θfr)]

−
sin(βf−βr)

L

u1

(9)

Where u1 represents the platform velocity input in [m/s].
In the case of four wheel steering, the front steering angle
is always equal but opposite to the rear steering angle: θf =
−θr = θw. Substituting this in (9) results in the simplified
system for four wheel steering

q̇ =

 cos(θfr) cos(θw)2

sin(θfr) cos(θw)2

sin(2θw)
L

u1 (10)

The kinematic model (9) is able to represent the four
wheel steering and crab mode of the platform. However, it
contains a singularity for θf = π/2 and θr = −π/2 or,
equivalently, βf = βr = 0. The INTERACT platform is
capable of rotation in place, which requires the steering
angles to be precisely this. Hence, a separate kinematic
model needs to be derived for this special maneuver.

The model for rotation in place only has one control
input: the velocity u1, which directly determines the angular
velocity. The x and y coordinates of the point P are
stationary or describe a circular motion if P is offset from
the middle. The generalized velocities can be computed as
follows

θ̇fr = wo +

√
L2

4
+
w2
A

4
η (11)

ẋ = −
(
L

2
− a
)

sin(θfr)θ̇fr (12)

ẏ =

(
L

2
− a
)

cos(θfr)θ̇fr (13)

B. Method

Both the model for four wheel steering and crab mode,
as well as the model for rotate in place are validated by
comparing simulated output with the real platform motion.
This is done by running the simulation and the platform
side by side while giving the same input. The output of the
models is compared to the actual platform pose q which
is measured by a Vicon motion capture system. 6 Vicon
cameras are set-up outdoors in a square of roughly 5 by 5
meter. Several motions of the platform are performed such
as driving straight, 4 wheel steering with angles ranging
from −25◦ to 25◦, and rotate in place. The correspondence
between platform and simulation is quantified by comparing
the final position of both and express this as a percentage
of the travelled distance dtotal

ed =

√
(xm − xv)2 + (ym − yv)2

dtotal
· 100% (14)

where the subscript m and v indicate the final position
according to the model and vicon system respectively.

Fig. 5. Example run of a model validation experiment for a steering angle
of -20 degrees. The blue line shows the actual platform position measured
with the Vicon system. The orange line shows the platform location from
the mathematical model.

TABLE I
RESULTING ERRORS BETWEEN THE FINAL POSITION OF THE PLATFORM
ACCORDING TO THE MODEL AND ACCORDING TO THE GROUND TRUTH.

Experiment ed

Straight driving 1.38%
Turn-in-place 6.44%

10◦ turn 4.35%
15◦ turn 2.34%
20◦ turn 1.29%
−10◦ turn 0.60%
−20◦ turn 1.14%
−25◦ turn 0.86%

C. Results

The results of the model validation experiments are sum-
marized in Table I. The model shows good correspondence
with reality: the average final position error is about 2%
of the travelled distance. The position comparison of an
example run of a validation experiment for a 20◦ turn is
shown in Figure 5.

IV. LOCALIZATION

A. Implementation

The following sensors are available on the platform to
estimate its location:

• Steering angle encoders
• Wheel rotation encoders
• Three axis gyroscopes (IMU)
• Three axis accelerometers (IMU)

The basis of the localization algorithm is the incremental
distance travelled which is computed from the wheel rota-
tion encoders. This method of localization is called dead-
reckoning. The position update equations for a four wheel
steering platform are taken from [36]. First, the cumulative
encoder count N for the wheel rotation can be used to
compute the incremental count ∆N

∆N = Ni −Ni−1. (15)

From the incremental count, the incremental distance ∆d
can be computed using a conversion factor C based on

6

X Position [m]
-4 -3 -2 -1 0 1 2 3 4 5

Y
 P

os
iti

on
 [m

]

-1

0

1

2

3

4
Platform position comparison

Vicon
Dead-Reckoning
Vicon End Pose
DR End Pose

Fig. 6. Example run of the calibration experiment. The blue line shows
the actual platform position measured with the Vicon system. The red
line shows the platform location computed from localization (before
calibration). The final error which is used to compute the correction factors
is the difference between the blue cross and the pink circle.

the wheel diameter and the number of encoder pulses per
revolution Nrev

∆d = C∆N, (16)

C =
2πrw
Nrev

. (17)

The update on the robot state can be computed by

∆θfr =
∆dL −∆dR

w
, (18)

∆x = ∆d cos(θfri−1
+ ∆θfr/2), (19)

∆y = ∆d sin(θfri−1 + ∆θfr/2). (20)

The position update equations (18)-(20) rely on the
knowledge of the platform parameters rw and w. If the
platform parameters are not accurately known, the position
estimate will have a systematic error. This error can be
compensated for by performing platform calibration. A
widely used method is the UMBmark calibration technique
[37].

For the computation of ∆dL/R in (18), only one encoder
on each side is required. As there are two wheels on each
side, there is a redundancy in sensors. This can be used to
incorporate wheel slip detection. If the encoder counts of
the two wheels on one side differ by more than a couple
counts, it can be assumed that the wheel with the higher
count is slipping. Hence, the encoder measuring the higher
count is ignored, and the lower count is taken to compute
(18).

The localization estimate is further improved by including
IMU sensor data. An attempt has been made to fuse the
IMU accelerometer data with the dead-reckoning estimate
using a Kalman filter. However, it was found that the
accelerometers suffer from bias and drift, which makes
the estimate less accurate than with dead-reckoning alone.
Improved accuracy can be achieved, however, by replacing
the heading update (18) with measurement and integration
of the gyroscope signal from the IMU

∆θ =
(
θ̇gyro − θ̇bias

)
Ts (21)

where Ts is the sample time of the localization update and
θ̇bias is the bias correction for the gyroscope. This correction
factor is computed by measuring the sensor output for an

x Error [m]
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

y
E

rr
or

 [m
]

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Localization Calibration

CW Errors before
CCW Errors before
CW Errors after
CCW Errors after

Fig. 7. Final position errors of the localization calibration experiment
in CW and CCW direction. The red circles show the CW results before
calibration, with the red cross being the mean of the 5 runs. The blue
circles represent the CCW results before calibration. The green circles
and magenta circles show the same error after calibration of the platform
parameters.

extended time while the platform is stationary and averaging
the drift over time.

B. Method

The UMBmark method is used to calibrate the platform
parameters used in (18)-(20). The method relies on driving
the blue pattern shown in Figure 6 five times in both
clockwise (CW) and counter clockwise (CCW) direction.
This is done in a workspace of roughly 5 by 5 meter.
The localization estimate is compared to the ground truth
measured with a Vicon motion capture system. The error in
the final position of the localization estimate is attributed
to unequal wheel diameters and uncertainty in the wheel
base, from which a correction factor for the wheel radius
and wheel base results.

After platform calibration is done, the performance of
the localization is tested by driving longer distances (∼100
meter) incorporating all drive modes. The actual platform
position is compared to the localization estimate, and the
performance is expressed using the metric ed (14) but using
the localization estimate instead of the model result. The
driving is done in a workspace of 10 by 5 meters in an
indoor location with high traction ground. The platform is
operated manually at a speed of about 0.3 m/s.

C. Results

Figure 7 shows the error metric ed of the localization
estimate during the UMBmark experiment before and after
calibration has taken place. The blue and red markers
indicate the CCW and CW results respectively before
calibration. The magenta and green markers show the error
after calibration. A significant improvement of the final
error can be seen.

Figure 8 shows the development of the localization error
ed over time for the long distance experiments. The ac-
ceptable localization error bound of 0.5% of the travelled
distance is indicated by the dashed red line. As can be seen

7

Time [s]
0 100 200 300 400 500 600

E
rr

or
 [m

]

0

0.2

0.4

0.6

0.8

1
Absolute error over Time

Absolute error [m]
0.5% limit [m]

Fig. 8. Development of the localization error over time. The blue line
shows the absolute error in meter. The dashed red line shows the acceptable
limit of 0.5% of the travelled distance at that time instant.

Algorithm 1 General RRT Algorithm
1: T .init(qinit)
2: while !goalReached do
3: qrand ← generateRandomState(bounds);
4: qnear ← nearestNeighbour(qrand,T)
5: [S, qnew] ← extendTree(qrand,qnear ,T)
6: end while

from Figure 8, after exceeding the bounds in the first half of
the path, the localization error seems to stabilize around 0.3
meter on average and stays well within this 0.5% bound.

V. PATH PLANNING

A. Implementation

The basis of RRT is given in Algorithm 1. A tree T is
constructed in the configuration space of the robot, in which
every vertex represents a certain pose or state of the system.
The root of the tree is located at the initial position of the
platform qinit. New vertices are generated by selecting a
random state within the configuration space qrand. Then, by
using Algorithm 2, the nearest neighbour qnear is found,
which is a vertex already in the tree with the lowest distance
ρ to qrand according to the distance metric

ρ(q1, q2) = kpos

√
(xq1

− xq2
)2 + (yq1

− yq2
)2

+kθ
[
1− cos(θfr,q1 − θfr,q2)2

]
(22)

Here, x and y are the position coordinates of the state q,
and θfr is the heading. kpos and kθ are two gains that can
be tuned to put a certain weighting between the position
and heading.

When qnear is found, the RRT Extend function, detailed
in Algorithm 3, is called. This function generates a new
state qnew and checks if this new state causes any collision
with the obstacles present in the environment. Because the
position of the obstacles is known, both the new state itself
and the path from qnear to qnew can easily be checked
for collisions. If no collision is detected, qnew is added
to the tree, and a check is done whether the goal vertex is
reached. Because of the nonholonomic nature of the system,

Algorithm 2 RRT Nearest Neighbour
1: function NEARESTNEIGHBOUR(q1,T)
2: d =∞
3: for all q ∈ T do
4: if ρ(q, q1) < d then
5: qnear = q
6: d = ρ(q, q1)
7: end if
8: end for
9: return qnear

10: end function

Algorithm 3 RRT Extend
1: function EXTENDTREE(qtarget,qnear ,T)
2: qnew ← generateState(qnear ,qtarget,T)
3: if checkCollision(qnew) then
4: T .addVertex(qnew)
5: T .addEdge(unew)
6: if ρ(qnew, qtarget) < ε then
7: S = Reached
8: else
9: S = Advanced

10: end if
11: end if
12: S = Trapped
13: return [S, qnew]
14: end function

it is virtually impossible to exactly reach the goal position.
Hence, if qnew is within a certain threshold ε of the goal
vertex, goal reached is returned. If the distance is larger
than ε, advanced is returned. If no new state can be found
that does not cause a collision, trapped is returned.

Several qnew are generated every time RRT Extend is
called. These qnew are found by integrating the equations
of motion for a certain time interval ∆t, while the input to
the platform u1, u2 is constant during this time interval. In
this way, a discrete set of ”motion primitives” is available
to the path planning, equal to the number of input sets it
is allowed to choose from. The new vertex qnew is chosen
as the motion primitive which minimizes the distance ρ
to the goal vertex. The number of motion primitives that
is available is a tuning parameter. More motion primitives
will make the planning more versatile, but will also increase
planning time. By integrating the equations of motion of
the system, the nonholonomic constraints are automatically
incorporated in the planning, and the resulting path is
always feasible. The RRT algorithm is iterated until goal
reached is returned.

To increase the convergence speed of the algorithm, a
technique called goal bias can be applied. With a certain
chance, the random state qrand is replaced by the goal
vertex qgoal. The amount of bias is a tuning parameter.
Alternatively, instead of taking the exact goal vertex, a
vertex from a region around the goal can be taken. The
size of this region is dynamic and determined by the vertex
already in the tree that is closest to the goal. In this way, the
goal region is reduced in size when the planning advances.
This technique is called goal zoom.

An alternative version of the RRT algorithm is the

8

-60 -40 -20 0 20 40 60
-50

-40

-30

-20

-10

0

10

20

30

40

50

(a) Simple

-60 -40 -20 0 20 40 60
-50

-40

-30

-20

-10

0

10

20

30

40

50

(b) Narrow Corridor

-60 -40 -20 0 20 40 60
-50

-40

-30

-20

-10

0

10

20

30

40

50

(c) Cluttered

Fig. 9. Three environments used to test the performance of the RRT planning algorithm. A solution found by the planner is shown in red. The start
and goal position are indicated with the blue and red cross respectively.

Algorithm 4 Bidirectional RRT Algorithm
1: Ta.init(qinit)
2: Tb.init(qgoal)
3: while !treesConnected do
4: qrand ← generateRandomState(bounds);
5: qneara ← nearestNeighbour(qrand,T)
6: [Sa, qnewa] ← extendTree(q,qneara ,T)
7: if Sa != Trapped then
8: qnearb ← nearestNeighbour(qnewa ,T)
9: [Sb,∼] ← extendTree(qnewa ,qnearb ,T)

10: if Sb = Reached then
11: return path(Ta, Tb)
12: end if
13: swap(Ta, Tb)
14: end if
15: end while

bidirectional one as shown in Algorithm 4. This version
makes use of two trees: one rooted at the initial pose of the
platform Ta and one rooted at the goal pose Tb. As in the
basic algorithm, one tree is extended, but after this is done,
an attempt is made to connect the second tree with the first
one. If the two trees are connected, a path to the goal is
found. If no connection is made, the trees are swapped and
the process is repeated. The connection will again not be
exact, but within the similarity threshold ε. This results in
a discontinuity in the path at the point where the two trees
meet.

The planning results in a reference trajectory that consists
of a state reference and an input reference. Furthermore, the
trajectory has a time schedule, which means every reference
state has a time stamp related to it.

B. Method

The coarse approach and alignment stage both need
specific settings for the planning algorithm. These settings
are found through simulations of the RRT algorithm. Three
simulated test environments as shown in Figure 9 are
used to investigate the effect of several algorithm settings.
The environments have the following key feature: the first
contains a lot of open space, the second contains a narrow
corridor, and in the third the space is cluttered with small
obstacles. For each specific setting of the RRT algorithm,
the planning is run 50 times and the plan time and path
length of the solution path is averaged over these 50

TABLE II
PERFORMANCE ANALYSIS OF DIFFERENT VERSIONS OF THE RRT

ALGORITHM. BOLD ITEMS ARE THE BEST RESULT FOR THAT SPECIFIC
COLUMN.

Simple Narrow corridor Cluttered
Simulation Time

[s]
Length
[m]

Time
[s]

Length
[m]

Time
[s]

Length
[m]

Single tree 32.64 145.26 467.23 173.23 74.65 159.95
Bias (0.05) 23.13 141.10 271.05 179.38 56.23 158.12
Bias (0.2) 17.98 136.52 443.31 172.45 61.78 158.42
Zoom (0.05) 20.54 140.99 424.02 189.58 58.35 161.67
Zoom (0.2) 19.49 144.73 337.57 170.81 47.66 159.67
Random input 45.77 156.24 81.20 181.99 102.80 170.93
Bidirectional 11.99 158.53 318.94 176.86 47.17 162.50
Random input 30.30 191.38 91.16 208.78 117.36 188.00

iterations to reduce the effect of the random nature of the
planner. The input set used during the simulations is

 u1

u2

DM

 =

 1

0

32

 ,
 1

±0.05

32

 ,
 1

±0.1

32


Here, a ± in front of u2 means that both a positive and

negative steering angle are possible. The third entry DM
indicates the drive mode of the platform, which can be four
wheel steering (32), crab mode (48) or rotate in place (64).
The following planner settings are tested:
• Single tree, basic version
• Single tree with a goal bias of 0.05
• Single tree with a goal bias of 0.2
• Single tree with a goal zoom bias of 0.05
• Single tree with a goal zoom bias of 0.2
• Single tree, basic version with an input set consisting

of 5 random inputs.
• Bidirectional, basic version
• Bidirectional, basic version with an input set consisting

of 5 random inputs.

C. Results

Results of the simulations are summarized in Table II.
The time required to find a solution path and its length
are reported. Clearly, the bidirectional algorithm is faster
than the single tree version, except for the narrow corridor
environment. However, it generally results in a longer path.
For the single tree versions, a high goal bias works well in

9

an environment containing much open space. In cluttered
environments, the lower bias of 0.05 works better. For goal
zoom, higher biases can be applied in every environment,
but it only outperforms the goal bias version in the third
environment.

VI. FEEDBACK CONTROL

A. Implementation

Each drive mode (four wheel steering, rotation in place,
crab mode) needs a separate feedback controller, as there is
no single controller that can handle all three modes. Switch-
ing between the controllers is based on the feedforward
input from the path planner. A general control diagram
showing the implementation of the controller within the
system is shown in Figure 10.

1) Four wheel steering: The controller based on approx-
imate linearization around the reference trajectory is im-
plemented. This method requires the system to be in the
chained form. The system (10) is first rewritten into

ẋ

ẏ

θ̇fr

θ̇w

 =


cos(θfr) sin2(θw)

sin(θfr) sin2(θw)
sin(2θw)

L

0

 η1 +


0

0

0

1

 η2
q̇′ = g1η1 + g2η2 (23)

The general velocity vector q̇ is extended with the rate
of change of the steering angle θ̇w. This extended velocity
vector is designated with q̇′. The first input to the extended
system is η1, which is equal to u1: the platform velocity.
η2 is the rate of change of the steering angle, and hence
relates to u2 through:

η2 = u̇2 (24)

The chained form can be achieved through an input and
state transformation, which will transform the system into
the following so called 4 state, 2 input chained form

ż1 = v1

ż2 = v2

ż3 = q′2v1 (25)
ż4 = q′3v1

Where zi are the transformed states and vi are the
transformed inputs.

A systematic way to find the transformation needed to put
the system in the form (25) is given in [26]. This method
is applied to (23) and results in the following chained form
system

z1 = x

z2 =
sin(2θw) sec(θfr)

2

L
z3 = tan(θfr) (26)
z4 = y

v1 = η1 cos(θfr) sin2(θw) (27)

v2 =
2η1 sin(θfr)− 2η1 cos(2θw)2 sin(θ)

L2 cos(θfr)3

+
2Lη2 cos(2θw) cos(θfr)

L2 cos(θfr)3
(28)

Now that the system is in chained form, the control law
can be derived. First, the state and input errors are defined
as

z̃i = zi − zir (29)
ṽj = vj − vjr (30)

Where the subscript r denotes the reference value of the
path that needs to be followed which is a result from the
path planning algorithm.

The system’s error equations now become

˙̃z1 = ṽ1
˙̃z2 = ṽ2
˙̃z3 = z2v1 − z2rv1r (31)
˙̃z4 = z3v1 − z3rv1r

Linearizing this system about the reference trajectory
results in a time-varying linear system

˙̃z =


0 0 0 0

0 0 0 0

0 v1r 0 0

0 0 v1r 0

 z̃ +


1 0

0 1

z2r 0

z3r 0

 ṽ
˙̃z = Az̃ +Bṽ (32)

Now, regular control laws for time-varying linear systems
can be used. The following feedback law is established

ṽ1 = −k1z̃1 (33)

ṽ2 = −k2z̃2 −
k3
v1r

z̃3 −
k4
v21r

z̃4 (34)

The complete control input is given by

v = vr + ṽ (35)

To find the actual input ui to the platform, the input
transformation (27) and (28) can be inverted to find η1
and thus u1, and η2. From (24) it follows that η2 needs
to be integrated to find u2. The choice of (27) shows that
the input transformation is only defined for the platform
heading θfr 6= π/2 ± kπ with k ∈ N. This means the
controller will not work for platform headings close to
π/2 ± kπ: the velocity will go to zero. To solve this, the
controller is disabled and only the feedforward command is
used for θfr = π/2±0.1. Furthermore, note that the choice
of (34) implies that v1r 6= 0 and thus u1r 6= 0.

2) Crab mode: The controller based on approximate lin-
earization is not able to handle crab mode. A control
technique that can be applied whether the system is non-
holonomic or not, is PID control. Two separate error signals
need to be defined: one for the steering input and one for
the velocity input. Then, two PID controllers can be applied
based on this error. Note that heading control is not possible
in this drive mode, as the front and rear steering angle are
always equal.

10

System Model Controller Platform

State Estimator

Path Planning Feedback Control

Localization

Sensor Measurements

Fig. 10. Control diagram of the autonomous navigation algorithm for the INTERACT rover. The three main aspects of the algorithm are indicated.
The feedforward input ur is used when the four wheel steering controller is active. For the PID controllers, no feedforward command is used and the
output of the controller is u directly.

Fig. 11. Definition of the Frénet frame. The new position coordinates are
s and d. The third state, heading, is defined by the difference between the
platform heading and the reference heading: θe = θr − θfr .

To simplify the definition of the two error signals for the
controllers, the system pose is transformed to a so called
”Frénet” frame. This frame is attached to the reference path
C found by the planning algorithm as is shown in Figure
11. Because the reference trajectory has a time schedule, the
origin of the Frénet frame can be attached to the reference
point of the current time instant. The abscissa s of the frame
points in the direction of the current reference heading θfr,r.
The ordinate d is perpendicular to this, defining a right-
handed frame. The position coordinates of the platform in
the Frénet frame can be found by applying a transformation
matrix to the platform coordinates in world frame s

d

1

 =

 cos(θr) − sin(θr) xr

sin(θr) cos(θr) yr

0 0 1


−1  x

y

1

 (36)

The error signals used for the PID controllers are now
defined as follows. The first error related to the platform
velocity is given by the coordinate s. The second error,
related to the steering input, is given by the lateral deviation
d from the path. Based on these two errors, two PID
controllers can be implemented

u1 = −kp1s− ki1
k∑
i=1

s(ti)∆t− kd1
s(tk)− s(tk−1)

∆t
(37)

u2 = −kp2d− ki2
k∑
i=1

d(ti)∆t− kd2
d(tk)− d(tk−1)

∆t
(38)

3) Rotation in place: During a rotation in place maneuver,
only one input is available: the velocity command u1. A
PID controller is defined which uses θe as error input. This
is the difference between the reference heading θfr,r and
the actual heading estimated by the localization algorithm
using (21)

θe = θr − θfr. (39)

The PID feedback law becomes

u1 = −kp3θe − ki3
k∑
i=1

θe(ti)∆t− kd3
θe(tk)− θe(tk−1)

∆t
(40)

B. Method

For the controller for four wheel steering, not every
choice of the gains ki will result in a stable system. The
gains are chosen after performing a stability analysis on
the closed loop system using the Hurwitz stability theorem,
and choosing the gains such that critical damping ζ = 1 is
achieved. These gains are tested during experiments with
the platform.

The gains for the crab mode PID controller are tuned
using the simulated system. The gains are chosen such that
the response of the system on a diagonal path as shown in
Figure 12 shows accurate tracking and the computed input
to the platform shows no significant overshoot and settles
within 2 seconds.

The gains for the turn in place controller are tuned based
on the response of the system on a reference slope as shown
in Figure 13 which is representative for the rate of change
in heading expected during navigation. They are chosen
such that the tracking error never exceeds 0.05 radians after
4 seconds. When the controller is used during reference
trajectory tracking, it is always given this time to converge
to the reference point.

C. Results

The stability analysis for the four wheel steering con-
troller results in the following values for the ki:

k1 = 5

k2 = 15

k3 = 75

k4 = 125

Because the controller is based on linearization, it only
provides local asymptotic stability. Accurate determination

11

X coordinate [m]
0 1 2 3 4 5

Y
 c

oo
rd

in
at

e
[m

]

0

0.5

1

1.5
Platform Position

Position
Reference

Time [s]
0 2 4 6 8 10 12 14

In
pu

t [
m

/s
] a

nd
 [r

ad
]

-1

-0.5

0

0.5

1
Platform Input

u1 = Velocity

u2 = Steering

Fig. 12. Response of the controller for the crab mode on a diagonal
reference path. The reference path is given by a dashed orange line. The
actual position by the blue solid line. The velocity input u1 is shown by
the blue line in the lower graph. u2, the steering command, is given by
the orange line.

of the region of stability is difficult, but simulations and
experiments show that it is quite large (see also [28]).
This means that the system will converge to the reference
trajectory even for quite large errors, and can thus handle the
discontinuities resulting from the path planning. However,
transient behaviour is unpredictable and might result in
collisions, so the discontinuity should preferable be kept
small.

For the crab mode controller, the gains are:

kp1 = 3 ki1 = 0 kd1 = 0

kp2 = 5 ki2 = 2 kd2 = 0

The gains for the PID controller are:

kp3 = 5 ki3 = 0.7 kd3 = 0

The oscillation during the start visible in Figure 13 is
caused by the fact that the platform will only rotate in
place when the velocity input exceeds 0.3 m/s. This is likely
caused by friction in the mechanical system and wheel-
to-ground interaction forces. The limitation is incorporated
in the controller by adding a viscous friction block in
Simulink. However, as a result, a very small error at the start
of the reference will make the controller compensate with
an input of 0.3 m/s minimum, which causes the oscillation.
The amplitude of the oscillation is within the 0.05 radian
limit and hence acceptable.

Time [s]
0 2 4 6 8 10

H
ea

di
ng

 [r
ad

]

0

0.5

1

1.5

2
Controller performance

Reference
Actual

Fig. 13. Response of the controller for rotate in place on a reference slope.
The reference heading is given in blue. The actual heading (measured by
the gyroscope) is given in orange.

VII. EXPERIMENTAL EVALUATION

A. Implementation

For the experiments with the complete autonomous navi-
gation algorithm, the path planning requires specific settings
for the coarse approach and the alignment. These settings
follow from the simulations described in Section V and are
listed below. The gains for the controllers were as reported
in subsection VI-C and identical for both stages.

1) Coarse Approach Settings: For this stage, the single tree
version of the RRT algorithm is used with a goal bias of
0.05. The similarity threshold ε is set to the distance at
which the taskboard can be recognized, which is 5 meter.
The position and heading gain for the distance function (22)
are set to kpos = 1 and kθ = 2. The integration time
∆t = 2 and a total of 7 motion primitives are selected.
As no accurate maneuvering is necessary, it was decided to
not include rotation in place motions as to not excessively
switch between control modes. u1

u2

DM

 =

 0.5

0

32

 ,
 0.5

±0.2

32

 ,
 0.5

±0.3

32

 ,
 0.5

±0.4

48



2) Alignment Settings: For the alignment, the bidirectional
version is used. This was done because this stage needs
to result in an exact alignment of the platform in front of
the taskboard. As stated before, it is virtually impossible
to exactly reach the goal location due to the nonholonomic
constraints of the platform. The goal is only reached with an
accuracy determined by the similarity threshold ε. Choosing
the bidirectional algorithm will relocate this problem to the
point where the trees meet (i.e. in the middle of the path).
Although this causes a discontinuity, the end of the path is
now exactly the goal position. The similarity threshold is set
to ε = 0.1 to keep the discontinuity in the path small, such
that the controller described in Section VI can handle it.
The position and heading gain for the distance function are
unchanged. ∆t = 1 and a total of 9 motion primitives are
selected. Both crab mode and rotation in place are included
in the set. The turn in place input allows rotation in both

12

Obstacles

Rover

Vicon Cameras

Taskboard

X

Y

Fig. 14. Image of the workspace used during the navigation experiments.
The rover and taskboard are both indicated with a red dot. Beams used
as obstacles are indicated with black dots. 9 Vicon cameras, indicated in
blue, are positioned around the perimeter of the workspace.

CW and CCW direction. u1

u2

DM

 =

 0.5

0

32

 ,
 0.5

±0.2

32

 ,
 0.5

±0.25

32

 ,
 0.5

±0.4

48

 ,
 ±0.5

0

64


B. Method

The autonomous navigation algorithm as described in this
paper is implemented on the actual platform and tested.
The workspace used during the experiments was roughly
10 by 6 meter. 9 Vicon cameras were positioned along the
perimeter of the workspace. The platform and the taskboard
were positioned as far as possible from each other within
this workspace as is shown in Figure 14. Obstacles could be
added to the planning algorithm to show obstacle avoidance
capabilities and increase path length. The planning was
done off-line and separated into the coarse approach and
alignment stage. The detection of the taskboard in the
alignment stage is simulated by using the Vicon system. The
resulting reference trajectory and input from the planning
were uploaded to an on-board computer on the platform.
The Simulink model for platform control was run in real
time on this on-board computer. The complete path from the
initial position to taskboard was in the order of 20 meter.

During the coarse approach, the controller performance
is separated from the localization performance by using
two different error metrics. The Localization error eloc
is defined as the difference between the localization pose
estimate and the actual pose as measured by the Vicon
motion capture system.

eloc = qloc − qvicon (41)

This error represents the performance of the localization
algorithm, and is unknown to the system. The tracking error
etrack is defined by the difference between the localization
estimate and the reference trajectory and hence represents
the controller performance

etrack = qloc − qr (42)

x position [m]
-3 -2 -1 0 1 2

y
po

si
tio

n
[m

]

0

2

4

6

8

10

Start

Goal

Reference Path
Coarse Approach
Alignment

Fig. 15. Plot of a possible path from start to goal position. The path for
the coarse approach is plotted in blue. The alignment path is plotted in
orange. Because the position measurement w.r.t. the taskboard is available
when planning for the alignment stage, the localization error gets reset to
0. This explains the small jump in the platform position.

If the controller tracks the path perfectly, it is zero. This
error is known to the system and hence the execution can
be terminated if the error gets too large (i.e. exceeds the
minimum turning radius).

The performance of the navigational algorithm as a whole
is assessed using the total error. This error is computed
by taking the difference between the actual location of the
platform according to the Vicon system and the desired
location given by the path planning algorithm. The final
value of this error after execution of the alignment stage
should be within the limits of 15 cm in position and 6◦ in
heading.

Other important variables are the drive mode, which
determines which controller is used to track the path, and
the input to the platform computed by the controller.

During the experiments, 8 trials of the coarse approach
and 10 trials of the alignment are executed. The initial
position for the coarse approach is held constant to within
a couple of centimeters and degrees. The path found by
the planning algorithm is different for every trial but the
configuration of the obstacles and taskboard is identical.
An example path found by the planner is shown in Figure
15. The location of the platform at the start of the alignment
stage is varied, to test if accurate alignment is possible from
several angles and positions w.r.t. the taskboard.

C. Results

The final tracking error and localization error of the 8
coarse approach trials and the average over all trials are
given in Table III. The tracking of the reference trajectory
is always well within the minimum turning radius of 1
meter and the obstacles could be avoided safely. However,
localization errors are quite high: in the order of 0.5 meter.
Taking into account that the travelled distance is in the order
of 20 meter, this error exceeds the 0.5% limit by far. The
graphs of the development of the tracking and localization
errors over time of one of the runs are given in Figure 16.
This indeed shows that the tracking error is within limits at
all times, but the localization error is diverging rapidly.

The final errors of the 10 alignment trials along with the
average are given in Table IV. Bold entries show the values

13

TABLE III
RESULTS OF COARSE APPROACH STAGE

Abs. Tracking Errors Abs. Localization Errors
Trial x [m] y [m] θfr [◦] x [m] y [m] θfr [◦]

1 0.384 0.302 2.550 0.082 0.574 0.745
2 0.113 0.134 0.544 0.010 0.443 0.476
3 0.155 0.265 9.546 0.332 0.424 0.974
4 0.185 0.055 2.074 0.009 0.415 1.089
5 0.133 0.126 2.922 0.057 0.358 0.854
6 0.165 0.434 21.76 0.020 0.545 1.874
7 0.093 0.267 2.487 0.205 0.395 1.742
8 0.102 0.655 0.355 0.278 0.418 2.521

Average 0.166 0.280 5.280 0.124 0.446 1.284

that are not within the specified bounds. Although many of
the trials are close to the required bounds, only 2 out of
10 trials reach the final position with enough accuracy. On
average, the accuracy is 14 cm in x, 13 cm in y, and 5◦ in
heading, which is within the specified limits.

Figure 17 shows the comparison of the actual position
with the reference, and the total error for one of the
alignment trials. In 17a, a significant deviation from the
reference can be observed in the middle segment of the
path. This deviation coincides with a discontinuous jump
in the heading error in Figure 17b around t = 7. The
error is mostly compensated for during the remainder of
the path, but an error in x of about 0.4 meter is still present
after execution is done. This results in the total error being
outside the required bounds for performing the manipulation
tasks.

The set of results shown in Figure 18 is a special case of
the final alignment stage where the platform is placed with
a lateral offset from the platform. Figure 18a shows the this
lateral offset w.r.t. the taskboard. The black arrows visualize
the heading of the platform at equally spaced time intervals.
The positioning is similar to a parallel parking maneuver,
however, the platform is not capable of reversing its motion.
Hence, the turn in place drive mode is used extensively, as
can be seen from Figure 18d. The tracking error shown
in Figure 18b has the largest magnitude (about 0.5 meter)
around half way. The final error is in the order of 5 cm.
This is well within the bounds required for manipulation
without relocation.

VIII. DISCUSSION

From Table IV, it can be seen that the final position
of the platform is not always within the specified bounds.
This shows that the performance of the algorithm is not
consistent enough and needs to be made more robust.
The proposed algorithm is, however, a solid basis for the
development of an improved version.

There can be many explanations for failure of the algo-
rithm and many aspects of it can still be improved. However,
three main causes that can explain the failure of reaching
the goal are considered: (1) the discontinuity that is present
in the path used for the final alignment. (2) Too much error
accumulation in the localization estimate. (3) The fact that
the path has a time schedule. These causes and possible
solutions will be discussed next.

TABLE IV
RESULTS OF ALIGNMENT STAGE. BOLD ENTRIES ARE NOT WITHIN

THE SPECIFIED ACCURACY OF 15 CM IN POSITION AND 6◦ IN HEADING

Absolute Final Errors
Trial x [m] y [m] θfr [◦] Within limits

1 0.162 0.079 0.018 no
2 0.114 0.212 7.523 no
3 0.152 0.046 1.169 no
4 0.060 0.359 3.197 no
5 0.006 0.050 4.165 yes
6 0.426 0.159 5.139 no
7 0.112 0.098 2.236 yes
8 0.140 0.016 11.61 no
9 0.045 0.152 2.022 no

10 0.221 0.135 9.848 no
Average 0.140 0.132 4.693 yes

The discontinuity in the reference path caused by the
connection of the two trees used in the bidirectional RRT
algorithm can result in severe tracking errors. This is
especially apparent in Figure 17a. In this particular case,
the discontinuity is mainly present in the heading, which
can be seen around t = 7 in Figure 17b. Although the
controller does not become unstable, it needs quite some
time to compensate and reduce the tracking error. It is not
able to do this before the path ends and an error in x of
about 0.5 meter remains.

The issue can be solved by reducing or completely
removing the discontinuity. Reduction can be achieved by
making the bounds for connecting the trees more stringent
(i.e. reduce ε). Alternatively, the cost function could be
adapted such that only discontinuities that are ”easy” to
correct for with regard to the nonholonomic constraints
are allowed. For example, a discontinuity of 20 cm in
the direction of motion results in a much smaller tracking
error than the same discontinuity in a lateral direction. To
completely remove the discontinuity one would have to look
to other planning algorithms or controllers that can stabilize
a certain pose of the system. However, these controllers gen-
erally are not capable of incorporating obstacle avoidance.

Unbound error accumulation in the position estimate can
only be solved by adding a sensor to the system that
provides an absolute position measurement. This will likely
also ensure sufficient accuracy on rough terrain, a scenario
that was not experimentally validated in this study. In
this case, the preferred solution would be a stereo camera
pair or a LIDAR sensor. Besides reducing the localization
error, these sensors also make obstacle detection possible.
If the addition of such a sensor is not an option, increased
accuracy could be achieved by reducing wheel slip through
the use of Ackermann steering (currently the platform is
not capable of this), or better wheel slip detection.

Finally, it seems that the tracking accuracy sometimes
suffers from the fact that there is a time schedule attached
to the reference path. If the platform somehow accumulates
a delay during tracking, as is the case due to the excessive
error in the tracking of the path of Figure 17, it will lag
behind the reference. If the controller tries to compensate
for this, strong and possibly erratic input is required, which
sometimes results in saturated input to the platform. Even
with this correction, the platform lags behind and although

14

Time [s]
0 5 10 15 20 25

E
rr

or
 [m

]

-0.5

0

0.5
Tracking errors

x
y
θ

(a)
Time [s]

0 5 10 15 20 25

E
rr

or
 [m

]

-0.5

0

0.5
Localization errors

x
y
θ

(b)

Fig. 16. Tracking (a) and localization error (b) of one of the coarse approach trials. The errors are separated in x (blue), y (orange) and θfr (yellow).

x position [m]
-3 -2 -1 0 1 2

y
po

si
tio

n
[m

]

5

6

7

8

9

10

Start

Goal

Platform Position
Vicon
Reference

(a)
Time [s]

0 2 4 6 8 10 12 14 16 18 20 22

E
rr

or
 [m

]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Total errors

x
y
θ

(b)

Fig. 17. Position comparison (a) and total error (b) of one of the alignment trials. In (a), the heading of the platform is indicated at equally spaced
time intervals by the black arrows. The errors in (b) are separated in x (blue), y (orange) and θfr (yellow).

x position [m]
-3 -2 -1 0 1

y
po

si
tio

n
[m

]

0

1

2

3

4

5

Start

Goal

Platform Position
Vicon
Reference

(a)
Time [s]

0 10 20 30 40 50 60 70 80

E
rr

or
 [m

]

-0.5

0

0.5
Total errors

x
y
θ

(b)

Time [s]
0 10 20 30 40 50 60 70 80

In
pu

t [
m

/s
] a

nd
 [r

ad
]

-2

-1.5

-1

-0.5

0

0.5

1

1.5

2
Platform Input

Velocity
Steering

(c)
Time [s]

0 10 20 30 40 50 60 70 80

M
od

e

0

10

20

30

40

50

60

70
Drive/Control mode

Mode:
32 = 4WS
48 = Crab
64 = TIP

(d)

Fig. 18. Position comparison with heading indication (a), total error (b), platform input (c), and drive mode (d) of one of the alignment trials. In (a),
the heading of the platform is indicated by black arrows at equally spaced time intervals. The peak in the total error graph (b) around t = 48 is because
the platform was out of view of the Vicon setup for one time sample.

15

it converges to the reference, there is still an error visible.
When the path comes to an end, the controller is stopped
and is not given the time to compensate. It might be better
if there would not be a time schedule. The reference point
for the controller would then be established by finding the
closest point on the path. This might solve the issue seen
in the trial shown in Figure 17. However, it makes the use
of a feedforward input more difficult.

IX. CONCLUSION

In this paper, a navigational algorithm was presented and
experimental results of its implementation on the INTER-
ACT platform were given. The goal was to position the
platform in front of the taskboard such that manipulation
tasks could be performed without relocating the platform.

From the experimental results, the following conclusions
can be drawn:
• A algorithm capable of performing end-to-end naviga-

tion for a four wheel steering, four wheel drive platform
has been developed.

• The UMBmark calibration method is successfully ap-
plied to a four wheel steering platform.

• The required accuracy on the final position can be
reached. However, the algorithm is not consistent
enough and fails in several occasions.

• The RRT path planner can incorporate all drive modes
of the platform.

• The three path tracking controllers are capable of
keeping the tracking error well within the maximum
value of 1 meter (the minimum turning radius).

16

NOMENCLATURE

A Location of the steering axis of rotation.
B Location of the center of the wheel, also the ground

contact point.
C Conversion factor between encoder count and dis-

tance [m/pulse].
L Distance between the front and rear axle of the

system [m].
N Cumulative encoder count.
Nrev Number of encoder counts/pulses per revolution.
P Reference point on the chassis of the platform.
S Flag for the RRT algorithm indicating reached,

trapped or advanced.
∆N Incremental encoder count.
∆ψ Incremental change in the side slip angle ψ during

one odometry time sample [rad].
∆θfr Incremental heading change [rad].
∆d Incremental distance [m].
∆dL Average incremental distance of left wheels [m].
∆dR Average incremental distance of right wheels [m].
∆t Time step or sample time.
∆x Incremental distance in x [m].
∆y Incremental distance in y [m].
α Wheel geometry parameter: the angle between the

x′-axis and the line PA [rad].
β Wheel geometry parameter indicating the angle

between the extension of the line PA and the
wheel plane [rad].

C Matrix containing the no side-slip constraints.
J Matrix containing the pure rolling constraints.
R(θ) Rotation matrix representing a rotation of θ around

the z-axis.
S Matrix containing the part of the equations of

motion depending on the velocity.
Γ Matrix containing the part of the equations of

motion depending on the rate of change of the
steering angles.

Σ Matrix containing the allowed velocities of the
nonholonomic system.

η System input vector for the approximate lineariza-
tion controller.

qinit Initial state/vertex of for the RRT tree.
qnear Nearest state/vertex to qrand.
qnew New state/vertex that gets added to the RRT tree.
qrand Random state/vertex used in the RRT algorithm.
u Platform input vector used in the mathematical

model. u1 is the velocity input, u2 is the steering
angle.

v System input after an input transformation.
vr Reference or desired value for the transformed

system input v.
z System state after a state transformation.
zr Reference or desired value for the transformed

system state z.
ξ̇ Time derivative of the extended system state.

q̇ Time derivative of system pose: generalized veloc-
ities.

ξ Extended system state containing system pose q
and wheel rotation.

q′ System pose including steering angle. Used for
four wheel steering controller.

q System pose containing position and heading: Gen-
eralized coordinates.

φ̇w Angular rate of change of the wheel about its
horizontal axis [rad/s].

θ̇w Rate of change of the steering angle [rad/s].
θ̇fr Angular rate of change of the systems heading

[rad/s].
ẋ Velocity in the x direction in world frame [m/s].
ẏ Velocity in the y direction in world frame [m/s].
v̇ Derivative of the system input after transformation.
ż Derivative of the transformed system state.
q̂ Estimated system pose containing position and

heading.
T Tree of the RRT algorithm containing the states as

vertices and edges between them.
φw Rotation angle of the wheel about its horizontal

axis [rad].
ψ Side slip angle of the platform [rad].
θe Heading error signal for the rotation in place

control.
θw Steering angle of the wheel, i.e. rotation about its

vertical axis measured from the x′-axis [rad].
θfr Heading of the system, i.e. angle between the robot

frame and the world frame [rad].
ṽ Input error of the transformed system z with input

v.
z̃ State error of the transformed system z.
a Distance from the reference point P to the front

wheel pair axis [m].
b Distance from the reference point P to the rear

wheel pair axis [m].
d Ordinate of the Frénet frame attached to the refer-

ence trajectory.
kθ Heading gain for the distance metric ρ.
kd Derivative gain for a PID controller.
ki Integral gain for a PID controller.
kpos Position gain for the distance metric ρ.
kp Proportional gain for a PID controller.
l Wheel geometry parameter: distance between the

reference point P and the point steering axis A
[m].

rw Wheel radius [m].
s Abscissa of the Frénet frame attached to the refer-

ence trajectory.
w Wheel base; distance between the ground contact

points of the left and right wheel of a pair [m].
wA Steer axis base; distance between the steering axes

of the left and right wheel of a pair [m].
wo Wheel offset from steering axis [m].
x x position coordinate in world frame [m].
x′ x position coordinate in the robot frame [m].
y y position coordinate in world frame [m].
y′ y position coordinate in the robot frame [m].

17

APPENDIX I
INTRODUCTION TO THE THESIS PROJECT

Figure 19 shows the navigational problem to be solved
by the algorithm. The platform is initially positioned at an
arbitrary location in the environment and needs to navigate
to the taskboard. It is assumed that the platform cannot
identify all obstacles autonomously, and it is left for the
astronaut to exercise his human judgement on which areas
of the environment are save to traverse. For this purpose,
the astronaut receives a bird’s-eye view similar to Figure
19a to indicate the obstacles and goal position. After this is
done, a path planning algorithm is required to find a feasible
path to the goal.

Path Planning
The path planning should take the nonholonomic constraints
of the system into account and plan a path that can
be tracked exactly by the platform (i.e. the path should
be feasible). Furthermore, the planning should take the
obstacles into account and plan the path around these as
shown in Figure 19b. Path planning algorithms can be
roughly divided into two groups: sampling based planners,
which encompass probabilistic roadmap methods (PRM)
and Rapid Exploration Random Trees (RRTs), and combi-
natorial planners, which do not discretize the configuration
space and hence find an exact solution. The former group
applies sampling of the configuration space and thus gener-
ates a discretized graph which can be searched for a solution
using graph search algorithms such as Dijkstra’s algorithm,
A* and D*. Examples are Obstacle Based PRM (OBPRM)
[2], lazy PRM [3], Medial Axis PRM (MAPRM) [4] and
RRT algorithms [5], [6]. The rapid exploration random tree
algorithm is especially suitable for nonholonomic planning
problems [7] as it can use the equations of motion of the
system to generate the path. A drawback of sample based
planners is that they are not complete, i.e. they do not
always find a solution if one exists (or require infinite time
to find one), and are not able to report that no solution
exists. On the contrary, combinatorial methods such as the
potential field method [8] and the skeleton based method
[9] are complete, but require more computation time. A
thorough overview of planning methods is given in the book
by La Valle [10].

Localization
When a path is found, the platform can start its motion,
and the path should be tracked as accurately as possible.
This will require a feedback controller to cope with inaccu-
racies in the system model and external disturbances. The
feedback signal for the controller consists of the platform
pose q =

[
x y θfr

]
: two position coordinates x

and y in the world frame and the platform heading θfr
measured between the x-axis and the longitudinal axis of
the platform. Hence, the platform pose needs to be mea-
sured or estimated, which is called localization. However,
absolute position sensors such as GPS are not available
in the extraterrestrial environment where an evolution of
the INTERACT rover is supposed to operate. Several other
sensors that may provide a solution in these environments
such as sun sensors [11] or LIDAR are not available

on this platform. Hence, localization for INTERACT can
only rely on the on-board proprioceptive sensors such as
wheel encoders and the inertial measurement unit (IMU).
Because these measurements are relative, they suffer from
unbounded error accumulation as indicated by the dashed
red line in Figure 19c. The navigational algorithm should
be able to cope with this increasing error in order to avoid
obstacles safely.

A detailed overview of localization techniques is given
in [12]. Within the topic of localization, much attention is
focussed on the fusion of multiple sensor signals into an
accurate location estimate. The fusion of the measurements
is done using a Kalman Filter, but other approaches such
as fuzzy logic are also possible [13], [14]. The fusion
techniques are mostly applied to fuse high frequency pro-
prioceptive measurements from wheel encoders and IMUs,
with lower frequency absolute position measurements from
e.g. a GPS or camera system using active beacons. In
[15], a method is described to aid IMU measurements
with accurate GPS position and velocity measurements
for the localization of high speed road vehicles. In [16],
an autonomous cargo handling system is equipped with a
RADAR system to aid the dead-reckoning position estimate.

Because dead-reckoning and odometry are the basis for
every localization algorithm, much effort is put into reduc-
ing systematic and non-systematic errors present in this
technique. Systematic errors can be reduced by platform
parameter calibration. The University of Michigan Bench-
mark (UMBmark [17]) is a widely used platform calibration
method targeting the two main contributions to systematic
errors: unequal wheel diameter and uncertainty about the
wheel base (see e.g. [18], [19], [20]). This method, however,
has never been applied to a four wheel steering platform,
but only differential drive robots and car-like systems. Non-
systematic errors are mainly caused by wheel slip and can
be minimized by detection and compensation thereof, which
is described in [21] with the use of so called ”Expert Rules”
and fuzzy logic, and in [22] by fusion of IMU and odometry
data.

Control
Controlling nonholonomic systems is complicated by the
non-linear system equations and by the fact that the plat-
form is under-actuated: the three dimensional system pose
needs to be controlled with only two input variables,
velocity and steering angle. A suitable controller that is able
to handle these difficulties is required to track the path.

Despite the complication due to the nonholonomic con-
straints, controllers can be developed that track reference
trajectories and even stabilize the system at a certain pose
by using linearization techniques and discontinuous or time-
varying feedback [23]. In Chapter 34 of [24], several control
algorithms are derived and applied to a unicycle and car-
like system. This is first done through general methods
not specific to nonholonomic systems (such as PID con-
trollers), which are very limited and generally do not apply
heading control. Several methods especially developed for
nonholonomic systems are then introduced. These require
the system to be in chained form [25], [26], [27] and apply

18

(a) Define obstacles, goal position (b) Path Planning (c) Path Tracking (d) Taskboard Reached

Fig. 19. Sequence showing the several steps of the navigational problem. 19a shows the starting conditions for the algorithm with obstacles (red)
and goal position (grey) defined. 19b shows the planning of a path (blue) towards the goal. 19c shows execution of the paths with accumulating
tracking/localization errors (dashed red). 19d shows the platform arriving at the taskboard.

some form of (feedback) linearization. Reference trajectory
tracking including heading control can be achieved through
approximate linearization around this trajectory, which is
described in [28]. However, this is not done for four wheel
steering platforms.

Stabilization of a certain pose can be done through
dynamic feedback linearization [29], [30] and sinusoidal
inputs [31], [32]. More advanced methods using Lie Groups
[33] are capable of stabilizing both positions and trajecto-
ries. In this case, the trajectories do not have to be feasible,
i.e. the controller can handle infeasible paths which cannot

be exactly tracked. These methods are tested on simulated
platforms, but are not experimentally validated.

To the authors knowledge, an algorithm governing every
single step of the navigational problem and its implemen-
tation on an actual platform has not been presented in
literature before. Furthermore, it is a challenge to achieve
the necessary accuracy in localization based on propriocep-
tive sensors alone. Finally, a feedback controller based on
approximate linearization has not been applied yet to a four
wheel steering, four wheel drive system.

19

Fig. 20. Sketch of the simplification towards a bicycle model and the
parameters that define the INTERACT system. The image shows the world
frame with the coordinates (xp,yp) of the reference point P on the chassis.
The robot coordinate frame is centered on P and indicated with primes.
Both the two front wheels as well as the two rear wheels are collapsed
into a virtual wheel centered on the respective axis (dashed wheels). The
distance from P to the front and rear wheel are a and b respectively. The
wheel base is given by w.

APPENDIX II
SYSTEM MODELLING

This appendix describes the derivation of the configura-
tion kinematic model for the INTERACT platform man-
ufactured by Ambot/Symbotics. It is deemed sufficiently
accurate to only model the kinematics and leave out the
dynamics of the system. Since, the speeds at which the plat-
form will be operated are relatively low (in the order of 1
m/s), which will greatly reduce the contribution of dynamic
effects. Furthermore, including the dynamics will greatly
complicate the modelling and the computations herein.
Finally, although including the dynamic effects might give
a better correspondence with reality, it requires detailed
knowledge of, for example, wheel-ground interaction and
platform/motor parameters and constants. This information
is not available and/or not accurately known, which counters
the possible gain in accuracy by including dynamics.

The system model that is derived goes, in some aspects,
beyond the current capabilities of the INTERACT platform.
The model represents a system capable of both parallel and
Ackermann steering, with independent steering angles of
the front and rear wheel set. At this point, the platform
itself is not capable of Ackermann steering and will always
have equal but opposite steering angles on the front and rear
wheel set in four wheel steer mode. The modelling is done
in this way to keep the derivation more general and to make
future improvements to the platform (which are already
announced by the manufacturer) easier to incorporate.

A. Configuration Kinematic Model

The Ambot platform is a four wheel steer, four wheel
drive system. The derivation of the model is mainly based
on [34], [40], [24], [28]. The configuration kinematic

model of the platform not only contains the state q =[
x y θfr

]T
describing the position and heading of

the system, but is extended with the angular position φ of
the wheels, which is needed to simulate odometry/dead-
reckoning in a later stadium. This extended state is desig-
nated with ξ, or the generalized coordinates of the system.
The modelling and simulation are done in such a way that
both Ackermann and parallel steering are possible.

Derivation of the model starts with the nonslip and pure
rolling constraints. The nonslip condition is a nonholonomic
constraint (see e.g. [28], [41], [42], [35]), which means
it is a non integrable constraint that cannot be expressed
as a relation between the generalized coordinates, but only
between the generalized velocities. It states that the velocity
vector of the wheel must be lying in the plane of the wheel,
i.e. there is no sideslip allowed. The second constraint
indicates that the wheel does not show any rotational
slip, and the travelled distance is equal to the rotation
of the wheel times its radius. Mathematically, these two
constraints have the following form

ẋ sin(θw)− ẏ cos(θw) = 0, (43)
ẋ cos(θw) + ẏ sin(θw) = rw.φ̇w (44)

where x and y are the position coordinates of the wheel, θw
is the angle of the wheel with the x-axis (steering angle),
rw is the wheel radius, and φw is the rotation of the wheel
around its horizontal axis. Each wheel of the platform is
subject to these constraints.

The constraints (43) need to be applied using the specific
parameters of the INTERACT platform and its wheel geom-
etry. The important platform parameters are shown in Figure
20. A reference point P with coordinates xp, yp defines the
origin of a reference frame that is attached to the platform.
The distance from P to the front and rear axle is given by
a and b respectively. The wheel axle distance is given by
L = a + b. The wheel geometry is shown in more detail
in Figure 21. The distance from P to the vertical (steering)
axis A is l. The angle of PA with the x′ axis is given
by α. The wheel-to-ground contact point is indicated by B
and the wheel offset between A and B is wo, which is a
constant. The angle between PA and AB is given by β.
If the wheel is orientable, this angle is variable. Additional
assumptions that are made to create the system model are:
• The robot frame is a rigid body
• Wheels are non-deformable vertical discs able to roll

around their horizontal axis which are always parallel
to the ground.

• There is a single point of contact between the ground
and the wheel.

To derive the equations of motion for the system pose
q, the model is simplified by reducing it to the so called
bicycle model. The front and rear wheel sets are merged into
a virtual wheel located in the middle of the axis (see Figure
20). The resulting system has only two wheels which are
both orientable. With this simplified geometry, the nonslip
condition for each wheel becomes

ẋ cos(α+β+ θfr) + ẏ sin(α+β+ θfr) + lθ̇fr sin(β) = 0,
(45)

20

Fig. 21. Sketch of the wheel parameters. For each wheel, l is the distance
from P to A, which is the rotation point of the steering axis. β is the
angle between the line PA and the wheel its horizontal axis of rotation.
β can be considered to be the steering angle if the wheel is orientable. α
is the angle between x′ and the line PA. The distance between A and
the ground contact point B is designated wo.

which can be rewritten into matrix form

[
cos(α+ β) sin(α+ β) L sin(β)

]
R(θfr)q̇ = 0

(46)
where the following trigonometric identity is used (s =

sin and c = cos):

s(α+β+θfr)=s(α+β)c(θfr)+c(α+β)s(θfr) (47)
c(α+β+θfr)=c(α+β)c(θfr)−s(α+β)s(θfr) (48)

In these equations, α indicates the angle between the x′-
axis and the line PA as shown in Figure 21, with P being a
reference point on the chassis. R(θfr) is the rotation matrix
from the robot frame to the world frame:

R(θfr) =

 cos(θfr) sin(θfr) 0

− sin(θfr) cos(θfr) 0

0 0 1


In a similar way, the pure rolling condition can be written

as:

ẋ sin(α+ β + θfr)− ẏ cos(α+ β + θfr)− woθ̇fr (49)
−woβ̇ − lθ̇fr cos(β) = rwφ̇w (50)[

−s(α+ β) c(α+ β) wo + lc(β)
]
R(θfr)ξ̇

+woβ̇ + rφ̇w = 0 (51)

The choice for β as the steering angle is not very
intuitive when applying input to the system. Hence, the
steering angle θw is defined as the angle between the x′-
axis and the wheel plane. The relation between the two is:
θw = α + β − π/2. The steering angle θw is the second
control input to the platform: θw = u2.

The pure rolling condition (51) and nonslip condition (46)
can be written down for all four wheels and the two virtual
wheels (which receive the subscript f for front and r for

rear). The values of the wheel parameters needed for the
equations are listed in Table V.

Adopting the notation of [43], all constraints can be put
in the following matrix form:

J1(β)R(θfr)ξ̇ + J2β̇ + J3φ̇ = 0 (52)

C(β)R(θfr)ξ̇ = 0 (53)

Where (52) contains the pure rolling constraints for the
four real wheels and (53) contains the no slip conditions
for the two virtual wheels. Hence, the matrices are the
following:

J1 =


−s(α1 + β1) c(α1 + β1) wo + l1c(β1)

−s(α2 + β2) c(α2 + β2) wo + l2c(β2)

−s(α3 + β3) c(α3 + β3) −wo + l3c(β3)

−s(α4 + β4) c(α4 + β4) −wo + l4c(β4)


(54)

J2 = diag
[
rw,1 rw,2 rw,3 rw,4

]
(55)

J3 = diag
[
b1 b2 b3 b4

]
(56)

C =

[
c(αf + βf) s(αf + βf) lfs(βf)

c(αr + βr) s(αr + βr) lrs(βr)

]
(57)

As discussed before, the nonslip constraint is a nonholo-
nomic one that imposes limits on the generalized velocity
of the system. For example, the platform is not able to
move directly sideways, which is a problem that is often
encountered while driving a regular car. The motions that
are allowed by the constraints can be found by computing
a basis of the null space of C. This basis is contained in a
matrix designated Σ:

Σ = Null [C] =

 −(a+ b) sin(βf) sin(βr)
a+b
2 sin(βf + βr)

− sin(βf − βr)

 (58)

Which means the generalized velocities for the pose q̇
can be computed as:

q̇ = R(θfr)Σ(β)u1 (59)

Here, u1 represents the first input to the system which
is equal to the velocity (in [m/s]) scaled by the platform
length L. The rotation matrix is the transform from robot
to world frame as encountered before.

The model can be extended to a configuration kinematic
model by also including the wheel rotation angles φw in
the state. This can be done by rewriting (52) to

φ̇w = −J−12 J1R(θfr)
T ξ̇ − J−12 J3β̇, (60)

where φ̇w and β̇ are vectors containing the angular speed
of all four wheels and the rate of change of the steering
angles respectively.

The full state space model with extended state
ξ =

[
x y θfr φ1 φ2 φ3 φ4

]T
becomes:

21

TABLE V
WHEEL PARAMETERS FOR THE FOUR REAL WHEELS AND THE TWO VIRTUAL WHEELS OF THE BICYCLE MODEL.

Wheels Subscript Abbreviation α β l offset
Imaginary Front f IF 0 βf a -
Imaginary Rear r IR π βr b -
Front Left 1 FL tan−1(w/2a) β1

√
(w2/4 + a2) wo

Rear Left 2 RL π − tan−1(w/2b) β2
√

(w2/4 + b2) wo

Rear right 3 RR π + tan−1(w/2b) β3
√

(w2/4 + b2) −wo

Front right 4 FR − tan−1(w/2a) β4
√

(w2/4 + a2) −wo

ξ̇ = S(q)u1 + Γ (61)

S(ξ) =

[
R(θ)Σ(β) 0

−J−12 J1R(θ)Σ(β) 0

]
(62)

Γ =

 0

0

−J−12 J3β̇

 (63)

B. Rotate In Place

The configuration kinematic model described above is
able to represent the four wheel steer and crab mode of the
platform. However, it contains a singularity for θf = π/2
and θr = −π/2 or, equivalently, βf = 0 and βr = 0.
In a regular vehicle, these angles would not be actually
possible which removes the need to consider the singularity.
However, the INTERACT platform is capable of rotation in
place, which requires the steering angles to be precisely this.
Hence, a separate configuration kinematic model needs to
be derived for this drive mode.

The model for rotation in place is much simpler, as the
velocity input directly determines the angular velocity. The
x and y coordinates of the point P are stationary or describe
a circular motion if P is offset from the middle. It can
be easily derived that the generalized velocities can be
computed as follows:

θ̇fr = wo +

√
L2

4
+
w2
A

4
u1 (64)

ẋ = −
(
L

2
− a
)

sin(θfr)θ̇fr (65)

ẏ =

(
L

2
− a
)

cos(θfr)θ̇fr (66)

And the wheel rotational speeds:

φ̇w,1 =
u1
rw,1

(67)

φ̇w,2 =
u1
rw,2

(68)

φ̇w,3 =
u1
rw,3

(69)

φ̇w,4 =
u1
rw,4

(70)

C. Ackermann Steering and Side Slip Angle

With a four wheeled vehicle, not all steering angles are
fully independent. As soon as the angles of the virtual

wheels are set, a so called instantaneous center of rotation
(ICR) is defined by the intersection of the rotation axes of
the two wheels. In many vehicular applications, the real
wheels get the same steering angle as the virtual wheels,
so called parallel steering, i.e. θf = θw,1 = θw,4 and
θr = θw,2 = θw,3. However, this introduces wheel slip,
as the rotation axes of the real wheels will not intersect at
the ICR. A different steering geometry was introduced by
Ackermann [44] which lets the axes of rotation intersect at
the same point and hence eliminates slip. This means that
the steering angle of the inner wheels are slightly larger
than the angles of the outer wheels, see also Figure 22.

The steering angles of all four wheels can be computed by
using simple trigonometry and the wheel geometry shown
in Figure 22,

tan(θf) =
Cfront
R1

, tan(θr) = Crear
R1

tan(θ1) =
Cfront
R1−

wA
2

, tan(θ2) = Crear
R1−

wA
2

tan(θ3) = Crear
R1+

wA
2

, tan(θ4) =
Cfront
R1+

wA
2

(71)

Furthermore

L = a+ b = Cf + Cr (72)

In these equations, R1 is the shortest distance from the
ICR to the longitudinal axis of the platform, R is the
distance from the ICR to P and is the radius of rotation
for this reference point. This system can be solved for the
real angles β1 to β4 (and thus for the steering angles θw1−4)
and for the distances Crear, Cfront and R1.

The so called side slip angle can also be computed from
the geometry shown in Figure 22. The side slip is defined as
the angle between the velocity vector at P , which is always
perpendicular to the radius of rotation R, and the current
heading (longitudinal axis) of the platform itself. The side
slip angle is computed as

tan(ψ) =

(
Crear + b

R1

)
, (73)

Using (73) and the expressions for θf and θr from (71)
one can derive:

R1 =
Crear

tan(θr)
(74)

tan(θf)

tan(θr)
=

a+ b+ Crear
Crear

(75)

resulting in:

22

Fig. 22. Geometry of four wheel steer (Ackerman Steering). The hori-
zontal axis of rotation of each wheel intersect in the same point, which is
called the instantaneous center of rotation (ICR). The radius of rotation is
indicated with R, which is the distance from the ICR to point P . When
parallel steering is performed, there is no single instantaneous center of
rotation, and hence there will be slip occurring at the wheels. The velocity
vector at P , perpendicular to R, defines the side slip angle ψ as the angle
between this velocity vector and the current heading of the platform.

Crear =
(a+ b) tan(θr)

tan(θf)− tan(θr)
(76)

Substituting this in (73) gives:

tan(ψ) =
b tan(θf) + a tan(θr)

a+ b
(77)

The radius of rotation then becomes:

ICRdist =
√
R2

1 + (Cfront − a)2 (78)

D. Implementation in Simulink

The mathematical model as described above is imple-
mented in Matlab/Simulink. The inputs to the model are
the following:
• For Ackermann Steering: (1) Velocity input which is

the velocity of point P in the x′ direction scaled by
the platform length: vinput = vx′/L. This means that
if the desired velocity is 1 m/s, this should be divided
by Lp to give the velocity input to the sim. (2) Front
virtual wheel steering angle input in degrees. (3) Rear
virtual wheel steering angle in degrees.

• For parallel steering: (1) Velocity input identical to the
Ackermann steering case (2) Steering angle input for
the front and rear virtual wheels (equal but opposite
sign).

• For rotation in place: (1) Rotational velocity of the
wheel scaled by platform length.

The output of the model is equal to (61): the posture
including orientation and wheel rotation parameters in the
world frame.

23

APPENDIX III
MODEL VALIDATION

To assess the accuracy of kinematic model and the
simulation, the output has to be compared with the output of
the real platform. To be able to compare the two, the pose
of the real platform has to be measured very accurately.
This can be done by using the Vicon motion capture system
available in the lab. This system uses cameras with IR
emitters and reflective markers to estimate the 3D position
and orientation of objects. The accuracy of this system is
in the order of millimetres. The Vicon data is taken as a
ground truth in all validation and calibration experiments.

Several experiments were performed where the platform
was driven outside on tarmac/asphalt. The actual platform
location was measured with 4 Vicon cameras (or 6 for
later experiments). The input (velocity, steering angle) to
the platform was logged along with several other important
parameters such as:

• Motor velocity for each wheel
• Motor position for each wheel
• Steering encoder count for each wheel
• Acceleration, velocity and position according to ac-

celerometers in the on-board IMU
• Attitude and angular velocities according to the gyro-

scopes in the on-board IMU
• Drive mode

The recorded input can be supplied to the Simulink
model and the actual position as measured by the Vicon
system can be compared to the model output. Discrepancies
between the two can have several sources which can be
categorized into systematic and non-systematic errors [37].
The systematic errors include unequal wheel diameters,
wheel diameters that differ from the nominal/documented
diameter, inaccuracies in the wheel base and length of
the platform, and wheel misalignments. Many of these
errors can be reduced or eliminated by performing platform
calibration, which aims at empirically establishing the im-
portant platform parameters to better match reality. Details
of this calibration method are discussed in subsection V-C
of this Appendix.

A. Error Metric for Performance Assessment

To be able to quantify the performance of the model,
some metric is needed that indicates how well the model
represents reality. A metric often used in literature (see e.g.
[45], [46], [11]) is the difference between the estimated/-
modelled final position of the platform and the actual final
position, represented as a percentage of the total travelled
distance. Mathematically, this can be computed as:

ed =

√
(xf,m − xf,v)2 + (yf,m − yf,v)2

dtotal
· 100% (79)

This metric is reported in the subsequent sections to
assess the performance of the model (and later of the
localization accuracy) as compared to the ground truth as
measured by the Vicon system.

TABLE VI
RESULTING ERRORS BETWEEN THE FINAL POSITION OF THE PLATFORM
ACCORDING TO THE MODEL AND ACCORDING TO THE GROUND TRUTH.

Errors
Experiment Initial Calibrated and velocity adj.

Straight driving 1.50% 1.38%
Turn-in-place 9.47% 6.44%

10◦ turn 20.15% 4.35%
15◦ turn 10.49% 2.34%
20◦ turn 2.52% 1.29%

1st run, −10◦ turn 19.96% 0.60%
2nd run, −10◦ turn 11.43% 5.02%
3rd run, −10◦ turn 24.23% 7.96%

−20◦ turn 15.30% 1.14%
−25◦ turn 9.19% 0.86%

B. Results

The following results were obtained by running the actual
platform and the simulation side by side while applying the
same input to both. Besides the platform input, the sim-
ulation requires several relevant platform parameters that
influence the model output. The parameters were measured
on the platform or taken from documentation from the
manufacturer. The values were as follows:
• Distance between front and rear axle: L = 0.805 meter
• Distance between left and right steering axle: wA =

0.787 meter
• Distance between steering axle and ground contact

point: wo = 0.071 meter
• Wheel radius: rw = 0.241 meter
Several maneuvers were performed which included

straight driving and turns to the left and the right with
steering angles ranging from 10 degrees up to 25 degrees.
A turn-in-place maneuver was also performed. In Figures
23, 24 and 25 plots of the straight driving, turn-in-place
and turning with an angle of -20 degrees are given. These
three maneuvers were chosen because the results clearly
show the discrepancies between model and reality. The plots
contain the following information, starting with the top left
graph in Figure 23: the x-position versus the y-position of
both the simulation (orange) and Vicon measurement (blue).
The final positions are indicated with a red square for the
simulation and a blue cross for the Vicon data. The top
right graph shows the platform heading error (blue) defined
as the difference between the simulated heading (θfr) and
the Vicon measurement. Bottom left shows the normalized
absolute velocity of the platform (

√
ẋ2 + ẏ2) versus time

along with the velocity from the Vicon. Finally, the bottom
right figure shows the x-position and y-position errors of
the platform in blue and orange respectively.

The error metric as defined in equation (79) was com-
puted for every maneuver separately. These errors are listed
in Table VI.

From these results it is evident that the actual platform
velocity is slightly lower than the velocity used in the simu-
lation. This can be seen especially well in the norm velocity
graph of Figure 25. It also seems that the velocity difference
is steering angle dependent, with increasing differences for
higher steering angles. The cause of this discrepancy seems
to lie with the platform itself, i.e. it cannot match the
commanded input velocity for some reason. The velocity

24

X Position [m]
0 2 4 6 8 10

Y
 P

os
iti

on
 [m

]

-2

-1

0

1

2

Platform position comparison

Vicon
Sim
Vicon endpoint
Sim endpoint

Time [s]
0 20 40 60 80 100

H
ea

di
ng

 E
rr

or
 [r

ad
]

-1

-0.5

0

0.5

1
Platform heading errors

Heading error

Time [s]
0 20 40 60 80 100

V
el

oc
ity

 [m
/s

]

0

0.5

1

1.5

2
Platform Norm Velocity comparison

Vicon
Sim

Time [s]
0 20 40 60 80 100

P
os

iti
on

 E
rr

or
 [m

]

-3

-2

-1

0

1

2

3
Position errors versus time

x error
y error

Fig. 23. Driving straight, both backwards and forwards. No calibration of platform parameters nor velocity.

input of the simulation is adjusted to match the actual
platform. The values that have to best correspondence with
the ground truth are: 0.92vinput−0.3|θf | for normal motion
and 0.28vinput for rotations in place.

A large error between simulation and experiment can be
seen in the results for the rotate in place maneuver in Figure
24. This error has two causes. The first is again related
to the velocity, with the simulated platform rotating much
faster than the actual platform. This can be seen from the
platform heading error. The second cause is the fact that the
simulation has a perfect reference point P located exactly
in the middle of the platform. While rotating in place, this
point does not move. Evidently, the reference point on the
platform is not stationary, and there is an offset of P to
the rear of the platform. Adjusting the parameters a and b
accordingly in the simulation greatly improves the results
as can be seen in Figure 27.

Another discrepancy is that the radius of rotation of
the simulated platform is much smaller than that of the
actual platform. This phenomenon can have several causes,
for example inaccuracies in wheel radius, wheel base or
wheel axle distance. To be able to calibrate the platform
and discern between the different errors, a good calibration
method is required. This method is described in more detail
in Appendix VI. The distance between the front and rear
axle is corrected to match the experimental results which
requires the value: Lp = 0.9232 meter. The errors are
computed again after adjusting the velocity and calibrating
the platform parameters. The results are listed in the second
column of Table VI and shown in Figure 26 to 28.

25

X Position [m]
-0.2 0 0.2 0.4 0.6 0.8

Y
 P

os
iti

on
 [m

]

-0.2

-0.1

0

0.1

0.2

0.3

Platform position comparison

Vicon
Sim
Vicon endpoint
Sim endpoint

Time [s]
0 2 4 6 8 10 12 14 16 18

H
ea

di
ng

 E
rr

or
 [r

ad
]

-50

0

50
Platform heading errors

Heading error

Time [s]
0 2 4 6 8 10 12 14 16 18

V
el

oc
ity

 [m
/s

]

0

0.1

0.2

0.3

0.4

0.5
Platform Norm Velocity comparison

Vicon
Sim

Time [s]
0 2 4 6 8 10 12 14 16 18

P
os

iti
on

 E
rr

or
 [m

]

-1

-0.5

0

0.5

1
Position errors versus time

x error
y error

Fig. 24. Turn-in-place. No calibration of platform parameters nor velocity.

X Position [m]
-2 -1 0 1 2 3

Y
 P

os
iti

on
 [m

]

0

0.5

1

1.5

2

2.5

Platform position comparison

Vicon
Sim
Vicon endpoint
Sim endpoint

Time [s]
0 5 10 15 20 25 30 35 40

H
ea

di
ng

 E
rr

or
 [r

ad
]

-5

0

5
Platform heading errors

Heading error

Time [s]
0 5 10 15 20 25 30 35 40

V
el

oc
ity

 [m
/s

]

0

0.1

0.2

0.3

0.4

0.5
Platform Norm Velocity comparison

Vicon
Sim

Time [s]
0 5 10 15 20 25 30 35 40

P
os

iti
on

 E
rr

or
 [m

]

-2

-1

0

1

2

Position errors versus time

x error
y error

Fig. 25. −20◦ degree turn. No calibration of platform parameters nor velocity.

26

X Position [m]
0 1 2 3 4 5 6 7 8 9

Y
 P

os
iti

on
 [m

]

-2

-1

0

1

2

Platform position comparison

Vicon
Sim
Vicon endpoint
Sim endpoint

Time [s]
0 20 40 60 80 100

H
ea

di
ng

 E
rr

or
 [r

ad
]

-1

-0.5

0

0.5

1
Platform heading errors

Heading error

Time [s]
0 20 40 60 80 100

V
el

oc
ity

 [m
/s

]

0

0.5

1

1.5

2
Platform Norm Velocity comparison

Vicon
Sim

Time [s]
0 20 40 60 80 100

P
os

iti
on

 E
rr

or
 [m

]

-2

-1

0

1

2
Position errors versus time

x error
y error

Fig. 26. Driving straight, both backwards and forwards. Parameter calibration and velocity correction.

X Position [m]
-0.8 -0.6 -0.4 -0.2 0 0.2

Y
 P

os
iti

on
 [m

]

-0.2

-0.1

0

0.1

0.2

0.3

Platform position comparison

Vicon
Sim
Vicon endpoint
Sim endpoint

Time [s]
0 2 4 6 8 10 12 14 16 18

H
ea

di
ng

 E
rr

or
 [r

ad
]

-1

-0.5

0

0.5

1
Platform heading errors

Heading error

Time [s]
0 2 4 6 8 10 12 14 16 18

V
el

oc
ity

 [m
/s

]

0

0.1

0.2

0.3

0.4

0.5
Platform Norm Velocity comparison

Vicon
Sim

Time [s]
0 2 4 6 8 10 12 14 16 18

P
os

iti
on

 E
rr

or
 [m

]

-1

-0.5

0

0.5

1
Position errors versus time

x error
y error

Fig. 27. Turn-in-place. Parameter calibration and velocity correction.

27

X Position [m]
-3 -2 -1 0 1 2

Y
 P

os
iti

on
 [m

]

0

0.5

1

1.5

2

2.5

Platform position comparison

Vicon
Sim
Vicon endpoint
Sim endpoint

Time [s]
0 5 10 15 20 25 30 35 40

H
ea

di
ng

 E
rr

or
 [r

ad
]

-1

-0.5

0

0.5

1
Platform heading errors

Heading error

Time [s]
0 5 10 15 20 25 30 35 40

V
el

oc
ity

 [m
/s

]

0

0.1

0.2

0.3

0.4

0.5
Platform Norm Velocity comparison

Vicon
Sim

Time [s]
0 5 10 15 20 25 30 35 40

P
os

iti
on

 E
rr

or
 [m

]

-1

-0.5

0

0.5

1
Position errors versus time

x error
y error

Fig. 28. −20◦ degree turn. Parameter calibration and velocity correction.

28

APPENDIX IV
MODEL SIMULATION AND VISUALIZATION

To be able to visualize the model described in Appendix
II, the SPANviewer software is used, which is developed
at the Haptics and Telerobotics Lab. The software is able
to visualize and animate robotic systems based on CAD
model files (.vrml) and input supplied by the user, such
as the Denavit Hartenberg (DH) parameters of the system.
Visualization can help to judge and verify the behaviour
of the model and simulation. Unnatural behaviour of the
platform that cannot always be seen from graphs and plots
can be quickly identified in this way.

A. Simulation in SPANviewer

The .xml code needed to visualize the INTERACT system
can be found on the server of the Haptics and Telerobotics
lab in the miniproject ”AutoNavAmbot” and in section IV-E
of this Appendix. This file defines the exact locations of
the separate components of the platform, which .vrml files
to use, geometrical parameters of the system, and which
parameters are variables that need to be supplied by the
user.

To be able to smoothly simulate the system, the CAD
model needs to be slightly simplified to reduce the number
of components. There is no detail necessary in the platform
chassis itself, as well as in the casing of the robot. Further-
more, internals are not visible and can be left out. Hence,
the first component in SPANviewer is the ”shell” of the
platform including the casing.

To be able to show the motion of the wheels (both steering
and rotation) they need to be separated from the body. The
wheel hubs are attached to the platform shell at the location
indicated in the documentation from the manufacturer and
can, in this way, visualize the steering motion of the wheels.
The wheels itself are attached to the hubs and are able to
rotate around the horizontal axis.

The two Kuka LWR arms for manipulation as well as
the Schunk arm that holds the head are then added to the
model. Because these arms are attached to a custom made
part of which no accurate technical drawing is available,
the position of the arm base relative to the platform needs
to be measured precisely on the actual platform. Details
of this measurement can be found in subsection IV-C. The
resulting model and visualization in SPANviewer can be
seen in Figure 29

To be able to animate the model in SPANviewer, it
needs to receive the extended configuration state q from the
Matlab/Simulink model. Communication between Matlab
and SPANviewer goes through the RTI Data Distribution
Service (DDS). Data from the Simulink model is published
on certain topics. SPANviewer can listen on these topics
and take the data as input.

B. ICR Visualization and Predicted Position Overlay

The Instantaneous Center of Rotation (ICR) and the
radius of rotation are also visualized in SPANviewer. The
radius of rotation is represented by a transparent red disc
centered on the ICR as illustrated in Figure 30.

Fig. 29. Print screen of the SPANviewer GUI showing the INTERACT
model and the scene around it. The arrows show the position and
orientation of the world frame.

Fig. 30. Print screen showing the visualization of the ICR and the radius
of rotation. The input steering angle is 0.2 radians for the front wheels
and -0.2 radians for the rear wheels.

Furthermore, the means for the astronaut to control the
position of the robot are simulated and visualized as well.
The astronaut is able to incrementally increase the position
set point of the platform. This set point can be visualized
in two ways, namely relative to the world or relative to
the platform. In the first case, the set point is fixed w.r.t.
the world and hence indicates the goal position at the
start of the motion. However, the final position of the
platform might not coincide with this location due to wheel
misalignments and other non-ideal mechanical issues and
the lack of feedback control on the position. The second
case updates the goal position during execution based on
the current platform position and travelled distance. In this
sense, the second visualization method better predicts the
final position of the platform. Figure 31 shows print screens
of both overlays.

C. Arm Base Transform Measurement

This section will give details of the measurement per-
formed with the VICON motion capture system to find the
transformation between the AMBOT platform base frame
and the mounting base frame of the three robotic arms (2x
Kuka LWR and 1x Schunk).

Base frame of the AMBOT platform: Because the
middle of the platform was not accessible due to the
mounted components, another location for the base frame

29

(a) Start (b) Execution

Fig. 31. Print screens showing both versions of the predicted goal position overlay. At the start (left image) both predictions overlap. The overlay
relative to the robot is located slightly higher and with longer axes to be able to better see the difference. In the right image, a wheel misalignment is
simulated by giving a very small steering angle. The robot relative prediction hence moves slightly during execution. The overlay that is fixed in the
world frame is stationary.

had to be chosen. A location that is accessible at any time
is the front (nose) of the platform. This place was chosen to
define a temporary base frame (x pointing down, y pointing
to the left, z pointing forward). See also Figure 32c.

Base frame of arm mounting: The frame on the mount-
ing points for the arms needs to be in the middle of the
aluminium cylinder. To find the middle, thread was put
through the mounting holes and crossed over to the hole
on the opposing side. The wand was then aligned with the
middle of the cylinder, with x aligned with a set of holes
pointing forward, y pointing to the middle of the platform
and z pointing up. See also Figure 32.

D. Results

Measuring the rotation matrix and translation using the
Vicon system resulted in the following transformation ma-
trices:

Left Kuka arm:

T =


−0.5319 0.0300 −0.8463 −210.5021

−0.3127 −0.9357 0.1634 291.3380

−0.7870 0.3515 0.5071 −134.1501

0 0 0 1


Right Kuka arm:

T =


0.5295 −0.0284 0.8478 −212.0201

−0.3078 0.9249 0.2233 54.6301

−0.7905 −0.3792 0.4810 −137.8906

0 0 0 1


Schunk arm:

T =


−0.0141 −0.0206 0.9997 −405.2506

−0.0051 0.9998 0.0205 173.5694

−0.9999 −0.0048 −0.0142 −281.7267

0 0 0 1


These values can also be found in the

.mat files LeftKukaBaseTransform.mat,
RightKukaBaseTransform.mat and

SchunkBaseTransform.mat. Conversion to XYZ
Euler angles, which is more convenient for SPANviewer,
gives:

Left Kuka: α = 5.6770, β = 5.3773, γ = 2.6102

Right Kuka: α = 0.6676, β = 5.3716, γ = 0.5266

Schunk: α = 2.8134, β = 4.7274, γ = 2.7929

The final transformation of the platform base (middle
of the platform’s top plate) to the arm base is then a
combination of the transform from the base to the frame
established at the nose and the transform from the nose
frame to the arm base as given above. The transform from
the base frame to the nose frame was measured from the
available CAD drawings and verified on the real platform:

Nose Frame:

T =


0 0 1 619.04

0 1 0 −173.23

−1 0 0 −52.98

0 0 0 1



30

X

Y

Z

(a) Right Kuka arm

X

Y

Z

(b) Detail right Kuka arm

X

Y

Z

(c) AMBOT platform

Fig. 32. Images clarifying the definition of the frames on the AMBOT platform.

31

E. INTERACT .xml file for SPANviewer

,
<?xml version="1.0"?>

<world>

<scene axis="0.5">
<image s="100" filename="asphalt.jpg" />
<structure convention="dh" >

<offset fixed="0" axis_scale="0" channel="1">
<joint axis_scale="0" fixed="0">

<vrml r="pi/2,pi/2,0" s="0.001" tx="0" ty="0" tz="0.0" name="INTERACT_spanviewer.wrl" />

<!-- left front wheel -->
<offset r="0" tx="0.40237" ty="0.3646625" tz="-0.124471">

<joint a="0" alpha="pi/2" axis_scale="0.1" d="0" theta="0" fixed="0">
<vrml r="-pi/2,0,pi" s="0.001" tx="0" ty="0" tz="0.0" name="wheelhub.wrl" />
<joint a="0.0" alpha="pi/2" axis_scale="0" d="0" theta="0.0" fixed="0">

<vrml r="0,0,0" axis_scale="0" s="0.001" tx="0" ty="0" tz="0.0" name="wheel.wrl" />
</joint>

</joint>
</offset>

<!-- right front wheel -->
<offset r="0" tx="0.40237" ty="-0.3646625" tz="-0.124471">

<joint a="0" alpha="pi/2" axis_scale="0.1" d="0" theta="0" fixed="0">
<vrml r="pi/2,0,pi" s="0.001" tx="0" ty="0" tz="0.0" name="wheelhub.wrl" />
<joint a="0.0" alpha="pi/2" axis_scale="0" d="0" theta="0.0" fixed="0">

<vrml r="0,0,pi" axis_scale="0" s="0.001" tx="0" ty="0" tz="0.0" name="wheel.wrl" />
</joint>

</joint>
</offset>

<!-- left rear wheel -->
<offset r="0" tx="-0.40237" ty="0.3646625" tz="-0.124471">

<joint a="0" alpha="pi/2" axis_scale="0.1" d="0" theta="0" fixed="0">
<vrml r="-pi/2,0,0" s="0.001" tx="0" ty="0" tz="0.0" name="wheelhub.wrl" />
<joint a="0.0" alpha="pi/2" axis_scale="0" d="0" theta="0.0" fixed="0">

<vrml r="0,0,0" axis_scale="0" s="0.001" tx="0" ty="0" tz="0.0" name="wheel.wrl" />
</joint>

</joint>
</offset>

<!-- right rear wheel -->
<offset r="0" tx="-0.40237" ty="-0.3646625" tz="-0.124471">

<joint a="0" alpha="pi/2" axis_scale="0.1" d="0" theta="0" fixed="0">
<vrml r="pi/2,0,pi" s="0.001" tx="0" ty="0" tz="0.0" name="wheelhub.wrl" />
<joint a="0.0" alpha="pi/2" axis_scale="0" d="0" theta="0.0" fixed="0">

<vrml r="0,0,pi" axis_scale="0" s="0.001" tx="0" ty="0" tz="0.0" name="wheel.wrl" />
</joint>

</joint>
</offset>

<!-- Cylinder to show ICR and radius of rotation -->
<offset r="0" t="0" axis_scale="0" fixed="0" channel="2">

<cylinder c="255,50,50,150" fixed="0" />
</offset>

<!-- right kuka arm -->
<offset r="0,pi/2,0" tx="0.61904" ty="-0.17323" tz="-0.05298"

axis_scale="0" channel="3">
<offset r="0.6676,5.3716,0.5266" t="-0.2120201,0.0546301,-0.1378906" axis_scale="0">

<vrml s="1" name="kuka-swivel.wrl" axis_scale="0"/>
<joint alpha="0" d="0.310" label="2" axis_scale="0">

<vrml s="1" r1="0" name="kuka-link1.wrl"/>
<joint alpha="0" label="3" axis_scale="0">

<vrml s="1" r1="pi/2" name="kuka-link2.wrl"/>
<joint alpha="-pi/2" d="0.400" label="3" axis_scale="0">

<vrml s="1" r1="pi/2" name="kuka-link3.wrl"/>
<joint alpha="pi/2" label="4" axis_scale="0">

<vrml s="1" r1="-pi/2" name="kuka-link4.wrl"/>

32

<joint alpha="pi/2" d="0.390" label="5" axis_scale="0">
<vrml s="1" r1="-pi/2" name="kuka-link5.wrl"/>
<joint alpha="-pi/2" label="6" axis_scale="0">

<vrml s="1" r1="pi/2" name="kuka-link6.wrl"/>
<joint d="0.078" label="7" axis_scale="0">

<vrml s="1" tz="-0.078" name="kuka-link7.wrl"/>
<offset tz="0.010" axis_scale="0">

<vrml s="0.001" r="-pi/2,0,0" name="gripper.wrl"/>
</offset>

</joint>
</joint>

</joint>
</joint>

</joint>
</joint>

</joint>
</offset>

</offset>

<!-- left kuka arm -->
<offset r="0,pi/2,0" tx="0.61904" ty="-0.17323" tz="-0.05298"

axis_scale="0" channel="3">
<offset r="5.6770,5.3773,5.7518" t="-0.2105021,0.2913380,-0.1341501" axis_scale="0">
<vrml s="1" name="kuka-swivel.wrl" axis_scale="0"/>
<joint alpha="0" d="0.310" theta="0" label="2" axis_scale="0">

<vrml s="1" r1="0" name="kuka-link1.wrl"/>
<joint alpha="0" theta="0" label="3" axis_scale="0">

<vrml s="1" r1="pi/2" name="kuka-link2.wrl"/>
<joint alpha="-pi/2" d="0.400" theta="0" label="3" axis_scale="0">

<vrml s="1" r1="pi/2" name="kuka-link3.wrl"/>
<joint alpha="pi/2" label="4" axis_scale="0">

<vrml s="1" r1="-pi/2" name="kuka-link4.wrl"/>
<joint alpha="pi/2" d="0.390" label="5" axis_scale="0">

<vrml s="1" r1="-pi/2" name="kuka-link5.wrl"/>
<joint alpha="-pi/2" label="6" axis_scale="0">

<vrml s="1" r1="pi/2" name="kuka-link6.wrl"/>
<joint d="0.078" label="7" axis_scale="0">

<vrml s="1" tz="-0.078" name="kuka-link7.wrl"/>
<offset tz="0.010">

<vrml s="0.001" r1="-pi/2" name="gripper.wrl"/>
</offset>

</joint>
</joint>

</joint>
</joint>

</joint>
</joint>

</joint>
</offset>

</offset>

<!-- Schunk arm -->
<offset r="0,pi/2,0" tx="0.61904" ty="-0.17323" tz="-0.05298"

axis_scale="0" channel="3">
<offset r="2.8134,4.7274,2.7929" t="-0.4052506,0.1735694,-0.2817267" axis_scale="0">
<offset tz="0.205">

<vrml s="1" tz="-0.060" tx="-0.090" r1="pi/2" r2="-pi/2" name="fuss_LWA_4P.wrl" />
<joint alpha="pi/2" d="0" a="0" theta="0" label="1" axis_scale="0">

<vrml s="1" tz="0" ty="0" r1="pi/2" r3="0" name="ERB_145.wrl" />
<joint alpha="-pi" d="0" a="0.350" theta="2" label="2" axis_scale="0">

<vrml s="1" tx="-0.175" ty="0" tz="-0.100" r1="pi" name="vbe_145_145.wrl" />
<joint alpha="-pi/2" d="0" a="0" theta="0" label="3" axis_scale="0">

<vrml s="1" tx="0" tz="0" ty="0" r1="0" r2="0" name="ERB_145.wrl" />
<joint alpha="pi/2" d="0.305" a="0" theta="0" label="4" axis_scale="0">

<vrml s="1" tx="0" ty="-0.205" tz="0" r1="0" r2="pi"
r3="pi/2" name="vbe_145_115.wrl" />

<joint alpha="-pi/2" d="0" a="0" theta="-1" label="5" axis_scale="0">
<vrml s="1" tz="0" ty="0" r1="-0.7854" r2="0" r3="pi" name="ERB_115.wrl" />
<joint alpha="0" d="0.075" a="0" label="6" axis_scale="0">

<vrml s="0.001" t="-0.246,0,0.008" r="pi/2,0,0" axis_scale="0" name="head.wrl"/>
</joint>

33

</joint>
</joint>

</joint>
</joint>

</joint>
</offset>

</offset>
</offset>

</joint>
</offset>

</structure>
</scene>

</world>

34

APPENDIX V
LOCALIZATION

Solving the problem of estimating the location of a
robotic vehicle in a certain reference frame is very im-
portant. If the position and attitude of a system is not
well know, it is nearly impossible to correctly perform
(for example) manipulation tasks, path planning or object
avoidance [47]. This is because these objects are always
defined in the world frame and their position becomes
uncertain in a robot centered frame when the location of the
vehicle is not exactly known in this world frame. Without an
accurate location estimate, the first phase of the navigational
problem (path planning and tracking), as shown in Figure
1b and 1c in the paper, would be impossible to execute.
The method of estimating the location of a system is called
localization or state estimation and has been a topic gaining
much interest in the robotic community because of its
importance for task execution [12].

The variety and number of sensors available on the
INTERACT platform is very limited, and the use of external
sensors (e.g. GPS, radio or IR beacons or cameras) is not
possible in the environments the platform will be used in.
Using the on-board sensors such as wheel encoders for
localization purposes is referred to as dead-reckoning. If
an inertial measurement unit (IMU) is used as well, the
procedure is called odometry. The IMU on the platform
is a MicroStrain 3DM-GX3-15 attitude-heading reference
system (AHRS). The following sensor data is available on
the platform:
• Steering angle encoder data
• Wheel rotation encoder data
• Three axis gyroscope data (IMU)
• Three axis accelerometer data (IMU)
In the next section, the dead-reckoning update equations

are derived. This is the basis for the localization estimate.
The dead-reckoning can be extended with IMU measure-
ments through sensor fusion. This can be done using a
Kalman filter [48], [11] or Fuzzy Logic [21]. Results of
the odometry estimate are presented as well.

A. Dead-Reckoning

Dead-reckoning refers to the use of wheel encoders (mea-
suring the position/angle of the driving axle of the wheels)
to estimate the position of a vehicle. It is a widely used
and simple method (e.g. [37], [20], [49], [18]). The minimal
working configuration to perform this measurement is with
encoders on two kinematically unconnected wheels on both
sides of the vehicle [12]. Computing a position and heading
estimate from these readings can be done as follows. The
rotation of the wheel can be used to compute an estimate
of the distance travelled by using the wheel radius. A
difference between the readings on the left and on the right
suggests a change in heading ∆θfr [37], [50].

The localization method used for INTERACT relies on
the wheel and steering encoder counts. The sensors give
an estimate of the amount of rotation of each wheel and
the current steering angle. These measurements can be
used to estimate the location of the platform. However,

TABLE VII
LOOKUP TABLE FOR THE STEERING ANGLES OF THE WHEELS. THE
REPORTED VALUES ARE FOR THE FRONT LEFT AND REAR RIGHT
WHEEL. FOR THE FRONT RIGHT AND REAR LEFT WHEELS, THE

NEGATIVE VALUE OF THE REPORTED VALUES SHOULD BE TAKEN.

Encoder Count Steering Angle [rad]
-28000 0.4210
-24000 0.3613
-20000 0.3019
-16000 0.2423
-12000 0.1824
-8000 0.1222
-4000 0.0614

0 0.000
4000 -0.0623
8000 -0.1255

12000 -0.1899
16000 -0.2557
20000 -0.3227
24000 -0.3913
28000 -0.4616

each measurement is prone to errors due to uncertainties
in wheel parameters (e.g. radius) and wheel slip or skid.
As each estimate of the position is based on the previous
one, the error is unbound. Hence, localization based on
dead-reckoning alone will get less accurate over time. The
accuracy can be improved by applying certain rules to detect
wheel slip and by using additional sensors such as an IMU.
This last option will be discussed in Section V-E.

The update equations for dead-reckoning are based on
[36]. These equations are for a four wheel steering vehicle,
which is applicable to INTERACT. First, the cumulative
encoder count N for the wheel rotation can be used to
compute the incremental count ∆N :

∆N = Ni −Ni−1 (80)

From the incremental count, the incremental distance ∆d
can be computed using a conversion factor C based on
the wheel diameter and the number of encoder pulses per
revolution Nrev:

∆d = C∆N (81)

C =
2πrw
Nrev

(82)

The vehicle sideslip angle ψ needs to be computed
based on measured data. This can be done directly through
equation (77). The value of the front and rear imaginary
wheel steering angles comes from the steering encoders.
This computation is outlined in more detail in Section V-B.
Using this, the incremental change of ψ is defined as

∆ψ = ψi − ψi−1. (83)

Now, the update on the robot state can be computed by

∆θ =
∆d

a+ b
cos(ψ)(tan(θf)− tan(θr)) (84)

∆x = ∆d cos(θi−1 + ∆θ/2 + ψ + ∆ψ/2) (85)
∆y = ∆d sin(θi−1 + ∆θ/2 + ψ + ∆ψ/2) (86)

Alternatives for the updates of the heading are:

35

Encoder Count ×104

-3 -2 -1 0 1 2 3

S
te

er
in

g
A

ng
le

 [r
ad

]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

fit = -2.6e-11x2 -1.6e-05x -2.1e-05

Front Left and Rear Right

Lookup Table Data
Second Order Fit, R = 0.0059

Encoder Count ×104

-3 -2 -1 0 1 2 3

S
te

er
in

g
A

ng
le

 [r
ad

]

-0.5

-0.4

-0.3

-0.2

-0.1

0

0.1

0.2

0.3

0.4

0.5

fit = 2.6e-11x2 + 1.6e-05x + 2.1e-05

Front Right and Rear Left

Fig. 33. Plots of the data points from the lookup table including the second order polynomial fit through the data.

∆θ = − ∆d

a+ b
sin(θf − θr) (87)

∆θ =
∆dL cos(θL)−∆dR cos(θR)

wB
(88)

These are based on the equations of motion and taken
from [21] respectively.

As can be seen from the equations, the actual steering
angle needs to be derived from the encoder measurements.
Details of this conversion are given in Subsection V-B.

Because the position estimate relies on the integration of
incremental motion, the error on the position is unbounded
and hence keeps increasing. Furthermore, the accuracy
of these estimates suffers from different error sources,
which makes the method unreliable. Two general types of
errors can be distinguished, namely systematic and non-
systematic. The sources that contribute most to these errors
are listed in [37] and repeated here:

Systematic errors:
• Unequal wheel diameters
• Average of wheel diameters differs from nominal di-

ameter
• Misalignment of wheels
• Uncertainty about the wheel base
• Limited encoder resolution
• Limited encoder sample rate

Non-systematic errors:
• Uneven floors
• Unexpected objects
• Wheel slip/skid

When the terrain is relatively smooth, the systematic
errors are dominant. The contribution to this systematic
localization error mainly comes from two sources: unequal
wheel diameters and uncertainty about the wheel base [37].
Hence, the error can be reduced greatly when the wheel
base and diameter are measured or estimated accurately.
This can be done through a series of tests which is called
platform calibration. A method is described in detail in
Appendix VI. The results of calibrating the platform on the
localization estimate is given in Subsection V-C.

X Position [m]
-4 -3 -2 -1 0 1 2 3 4 5

Y
 P

os
iti

on
 [m

]

-1

0

1

2

3

4
Platform position comparison

Vicon
Dead-Reckoning
Vicon End Pose
DR End Pose

Fig. 34. Example run of the calibration experiment. The blue line shows
the actual platform position measured with the Vicon system. The red line
shows the platform location computed from localization. The final error
which is used to compute the correction factors is the difference between
the blue cross and the pink circle.

B. Steering Angle Encoders

The dead-reckoning equations introduced previously re-
quire measurement of the steering angles. The measurement
is done through linear encoders on the steering actuators.
The actual steering angles can be derived from the encoder
counts by using a lookup table provided by the manufac-
turer. This table is given in Table V-A.

A second order polynomial is fitted to this data to be
able to interpolate accurately between the given angles. A
second order fit is chosen because this gives an exact fit, as
shown in Figure 33

C. Odometry Calibration

The calibration method as described in Appendix VI is
applied to the INTERACT platform. The reference trajec-
tory of Figure 38 is driven by the robotic platform in an
open loop fashion. The actual position of the platform is
measured by the Vicon motion capture system. The loca-
tion is also estimated using the dead-reckoning equations
presented before. The resulting trajectory, as well as the
dead-reckoning estimate, are shown in Figure 34 for one of
the experiments. The parameters used in the equations are
taken from documentation or CAD models and are:
• Distance between front and rear axle: L = 0.8047

meter
• Distance between left and right steering axle: wA =

0.78656 meter

36

• Distance between steering axle and ground contact
point: wo = 0.0711 meter

• Wheel radius: rw = 0.24130 meter
This experiment is repeated 5 times in clockwise direction

and 5 times in counter-clockwise direction. The final x
and y error in CW and CCW direction are computed from
the difference of the localization estimate and the Vicon
data. The result are plotted in Figure 35. The results of
the experiments are used to solve te equations described in
Appendix VI and find the correction factors for the platform
parameters. With these corrections, the actual platform
parameters can be estimated. These are found to be:
• L = 0.9232 meter
• wA = 0.8528 meter
• rwl = 0.2408 meter
• rwr = 0.2418 meter
which show significant improvement in the localization

errors, as is shown in Figure 35. Several results of localiza-
tion experiments using different versions of the algorithm
are given in Table VIII. The first column shows the results
for dead-reckoning only, while the third column shows the
results for a calibrated platform. Several other improve-
ments on the algorithm are tested as well, which will be
discussed next.

D. Improvements using Sensor Redundancy

In theory, the dead-reckoning equations given in (84)
require that only one wheel is equipped with an encoder to
compute ∆d. In practice however, platforms usually come
with encoders on at least one pair of wheels (left/right) if
not all wheels. This sensor redundancy can be exploited to
improve the localization estimate. This method is described
in detail in [45] where a couple of so called Expert Rules
are used to incorporate redundant sensors. The main benefit
of redundancy and the expert rules that are used, is detection
of wheel slip. The expert rule is as follows:

Expert Rule: Average + Smallest The difference be-
tween the incremental counts of both right and left side
wheels is taken. If no slip occurs, this count should be
closely matching. If slip occurs on one wheel, the encoder
count will be significantly higher than that of the other
wheel on the same side. In this case, the lower count is
taken as correct.

Result of applying this rule to the localization estimate
is given in Table VIII. As the surface on which the rover
was driving during the experiments was very smooth, wheel
slip was not an issue. Hence, the effect of applying this
rule is rather small. Most likely the effect will be more
visible on low traction, sandy terrain. This has, however,
not been verified in an experiment as there is no proper
location available.

Another type of redundancy that is present in the system
is different sensors measuring the same quantity. For exam-
ple, the accelerometers in the IMU can be used to compute
an estimate of the current position, without using the wheel
encoders at all. The use of an IMU in localization is called
odometry. This technique, along with possible combination
with dead-reckoning, is discussed in the next subsection.

x Error [m]
-0.6 -0.4 -0.2 0 0.2 0.4 0.6

y
E

rr
or

 [m
]

-1

-0.75

-0.5

-0.25

0

0.25

0.5

0.75

1

Localization Calibration

CW Errors before
CCW Errors before
CW Errors after
CCW Errors after

Fig. 35. Final position errors of the localization calibration experiment
in CW and CCW direction without adjusting the platform parameters yet.
The red circles show the CW results, with the red cross being the mean
of the 5 runs. The blue circles represent the CCW results.

X Position [m]
-6 -4 -2 0 2 4 6

Y
 P

os
iti

on
 [m

]

-5

0

5

Platform position comparison
Vicon
Loc.
Vicon End
Loc. End

Fig. 36. Example of one of the localization results for a long distance
run. The blue line shows the actual platform position as measured by the
Vicon system. The red line shows the estimated position based on CDR
with bias compensated odometry. The absolute position error over time is
given in Figure 37.

E. Odometry

To improve the location estimate based on dead-
reckoning alone, IMU data can be used. The simplest
measure to improve localization is by taking the rate of
change of the yaw angle from the gyroscopes and integrate
the measurement to give a heading estimate directly. This
replaces the heading update given in equation (84). How-
ever, the gyroscopes typically suffer from bias and drift.
Because the measurement is integrated, these non-ideal
sensor properties become especially apparent and degrade
the results significantly. The bias and drift of the sensors
can be estimated and compensated for. This can be done
by using a Kalman filter. Sensor measurements from the
IMU such as accelerometer data can also be fused with
the dead-reckoning estimate using a Kalman filter. This
technique has been attempted in the case of INTERACT.
However, it turns out that the gyroscope bias can easily
be estimated by averaging the sensor readings while the

37

Time [s]
0 100 200 300 400 500 600

E
rr

or
 [m

]

0

0.5

1

1.5

2

2.5

3
Absolute error over Time

Absolute error [m]
0.5% limit [m]

(a) CDR and odometry
Time [s]

0 100 200 300 400 500 600

E
rr

or
 [m

]

0

0.2

0.4

0.6

0.8

1
Absolute error over Time

Absolute error [m]
0.5% limit [m]

(b) CDR an bias compensated odometry

Fig. 37. Development of the error over time. The blue line shows the absolute error in meter. The dashed red line shows the acceptable limit of 0.5%
of the travelled distance at that time instant.

platform is stationary, which once removed yields very
accurate localization results. Incorporating accelerometer
data using sensor fusion also turns out to be unnecessary,
as the odometry estimate was always more accurate than
the fused estimate. Nevertheless, fusion might have a more
beneficial result on rougher terrain and this should be tested
and verified in future experiments.

F. Results of Localization

The localization is implemented as described above.
Several versions of the algorithm are tested and compared.
The localization is tested on the motion primitives that were
also used in the simulation validation described in Appendix
III. Furthermore, the localization is tested on several longer
distance runs. Four of these runs are performed with the
following specifics:
• First run: only four wheel steering turns and straight

driving.
• Second run: including turn in place maneuver.
• Third run: including reversals.
• Fourth run: Including crab motion.
The results of the comparison experiments are summa-

rized in Table VIII. As an example, the results of the
position measurement for one of the long distance runs are
shown in Figure 36. The reported errors are the difference
between the actual final position and the estimated final
position expressed as a percentage of the travelled distance,
as defined in equation (79) in Appendix III. The following
versions have been tested:
• Simple dead-reckoning (DR).
• Dead-reckoning with platform calibration (CDR).
• CDR with expert rules.
• CDR with odometry; the gyroscope is used for the yaw

measurement.
• CDR with odometry; bias compensated gyroscope yaw

measurement.
From the error metric ed of the final position it seems

that bias compensation for the gyroscope does not greatly

influence the results. However, if one looks at the error
metric over time during the whole run, a great improvement
can be seen as is shown in Figure 37). This indicates that
only using the error in the final position can be misleading,
and one should keep track of the development of this error
over time.

Furthermore, the error exceeds the 0.5% limit in the
beginning of the run. One possible explanation for this
is that the reference point of the Vicon system does not
exactly match the point P used in the planning algorithm.
This will result in an error between the ground truth and
the reference path that is not actually there. This becomes
especially apparent while turning. However, this hypothesis
has not been tested yet. One can see from Figure 37 that
although the error oscillates, it does not seem to diverge
and has an acceptable maximum value of 0.4 meter.

38

TABLE VIII
RESULTING ERRORS BETWEEN THE FINAL POSITION OF THE PLATFORM ACCORDING TO THE LOCALIZATION ALGORITHM AND ACCORDING TO

THE GROUND TRUTH.

Experiment DR DR expert rules Calibrated DR (CDR) CDR and Odo. CDR and Bias Comp. Odo.

Motion Primitives
Straight driving 0.65% 0.93% 0.78% 0.30% 0.80%

Turn-in-place 5.96% 1.51% 3.36% 1.10% 1.05%
10◦ turn 5.14% 4.98% 3.42% 2.81% 2.84%
15◦ turn 3.78% 2.36% 2.10% 0.49% 0.59%
20◦ turn 1.00% 1.26% 1.23% 1.90% 2.47%
−10◦ turn 5.23% 3.58% 3.59% 3.64% 3.83%
−20◦ turn 5.62% 2.81% 3.57% 1.71% 1.75%
−25◦ turn 6.12% 6.67% 1.94% 2.07% 1.70%

Long distance runs
Turns only 2.23% 1.48% 0.82% 0.61% 0.17%

Including turn in place 1.63% 3.71% 3.51% 0.24% 0.22%
Including reversals 6.54% 8.00% 1.96% 0.61% 0.74%

Including crab motion 4.55% 5.52% 1.17% 1.28% 0.42%

39

CW Starting Point

CCW Starting Point

Fig. 38. Path used for calibration of the the platform. The parameter ρ
describes the shape of the path, with the straight segments being 2ρ and
the two semicircles having radius ρ. The path is executed in a feed-forward
manner.

APPENDIX VI
DEAD-RECKONING CALIBRATION METHOD

As can be seen from (84), (87) and (88) derived above,
the position estimate based on dead-reckoning relies on
several platform parameters such as wheel base and wheel
radius. Although the value of these parameters can be taken
from the documentation that comes with the platform, the
actual value might be slightly different due to e.g. tyre
compression under load. Hence, the exact value of these
parameters on the real platform need to be determined
to reduce the effect of systematic errors and improve
localization performance.

The process of accurately identifying these parameters is
called platform calibration, and a systematic way to do this
called UMBmark is explained in [37]. However, this method
is designed for differential drive platforms with only two
wheels (and a castor wheel for stability). In [51], the method
is adapted for a four wheel car like robot with front wheel
steering. Their version of the UMBmark algorithm requires
only minor adaptations to suit the four wheel steering, four
wheel drive platform used here. The method, including
results, will be further described in this section.

To be able to calibrate the platform, a preprogrammed
path is executed by the robot as is shown in Figure 38. The
path consists of four segments: a straight path of length
2ρ, a semicircle with radius ρ, a straight path of length
2ρ and a semicircle with radius ρ. The final position of
the platform is hence the same as the starting position.
This path can be executed in a feedforward manner as
a minor difference between initial and final positions are
not a problem [37], as long as the two can be measured
accurately. This measurement is done using the Vicon
motion capture system that was also used during the model
validation explained in Section III.

Two main sources of errors are targeted during this
experiment, which are uncalibrated wheel base (designated
Type A error) and unequal wheel diameter (designated Type
B error). Both sources of error influence the localization
estimate in a different way. The effect of the errors on the
localization estimate will be evaluated separately. Later, the
two contributions are superimposed to get the overall error
on the localization.

A. Type A Errors

As can be seen from the dead-reckoning equations (84),
an uncertainty in the wheel base will affect the estimated
change in heading of the platform. It will not affect straight
motions. Hence, the first segment of the path will be
estimated correctly, but the first semicircle will be estimated
with a different radius ρodo and will results in a heading
change larger or smaller than 180◦ (depending on the sign
of the wheel base error). The error in the heading angle
is designated by α, as shown in Figure 39a. The final
position estimated by the localization will hence be different
from the actual final location. This effect is dependent on
whether the trajectory is executed clockwise or counter-
clockwise, so both cases are handled separately. By using
the approximation for small angles:

sinα ≈ α (89)
sin 2α ≈ 2α (90)
cosα ≈ 1 (91)

cos 2α ≈ 1 (92)

the final error can be expressed as follows.
CW Direction:

y1 = y0 + 2ρ = 2ρ (93)
x1 = x0 = 0 (94)
y2 = y1 − ρodo sin(α) ≈ 2ρ− ρodoα (95)
x2 = x1 − ρodo − ρodo cos(α) ≈ −2ρodo (96)
y3 = y2 − 2ρ cos(α) ≈ −ρodoα (97)
x3 = x2 + 2ρ sin(α) ≈ 2(ρα− ρodo) (98)
y4 = y3 + ρodo sin(α) + ρodo sin(2α) ≈ 2ρodoα(99)
x4 = x3 + ρodo cos(α) + ρodo cos(2α) ≈ 2ρα (100)

CCW Direction:

y1 = y0 − 2ρ = −2ρ (101)
x1 = x0 = 0 (102)
y2 = y1 + ρodo sin(α) ≈ −2ρ+ ρodoα (103)
x2 = x1 − ρodo − ρodo cos(α) ≈ −2ρodo (104)
y3 = y2 + 2ρ cos(α) ≈ ρodoα (105)
x3 = x2 + 2ρ sin(α) ≈ 2(ρα− ρodo) (106)
y4 = y3 − ρodo sin(α)− ρodo sin(2α) ≈ −2ρodoα(107)
x4 = x3 + ρodo cos(α) + ρodo cos(2α) ≈ 2ρα (108)

To eliminate ρodo from the equations, the fact that the
travelled distance S along the semicircle is identical for both
the reference path and the path containing the localization
error is used. This is because only Type A errors are

40

(a) Type A (b) Type B

Fig. 39. The effect of Type A errors (left) and Type B errors (right) on the localization estimate. For Type A errors, straight line segments are unaltered,
while curves have a modified radius of rotation ρodo. This results in an extra heading change of angle α. For Type B errors, curves are unaltered and
straight line segments show a slight curve which results in a heading angle error β

considered and hence the wheel radius is taken to be equal.
This results in the following relation:

S1 = ρπ (109)
S2 = ρodo(π + α) (110)
S1 = S2 (111)

ρodo =
ρπ

π + α
(112)

The final position errors for Type A then become:

x4,cw = 2ρα (113)

y4,cw = 2
ρπ

π + α
α (114)

x4,ccw = 2ρα (115)

y4,ccw = −2
ρπ

π + α
α (116)

B. Type B Errors

The effect of unequal wheel diameters cannot directly
be seen from the equations presented before. However, the
effect on odometry is easily derived. When the diameter of
an actuated wheel pair is not equal, the wheel with a larger
diameter will travel a larger distance, and hence a path that
would normally be straight, has now a curve away from the
side of the larger wheel. As it is assumed that the wheel
base is correctly estimated (we only consider Type A and
B errors separately and apply superposition later), a curved
path resulting from a certain steering angle will not show
show any deviation from what is expected (i.e. radius of
rotation ρ is as expected). The effect of Type B errors is

shown in Figure 39b. The final error in the localization
estimate can be expressed as follows:

CW Direction:

y1 = y0 + 2ρ cos(β/2) ≈ 2ρ (117)
x1 = x0 + 2ρ sin(β/2) ≈ ρβ (118)
y2 = y1 + 2ρ sin(β) ≈ 2ρ(1 + β) (119)
x2 = x1 − 2ρ cos(β) ≈ ρ(β − 2) (120)
y3 = y2 − 2ρ cos(3β/2) ≈ 2ρβ (121)
x3 = x2 − 2ρ sin(3β/2) ≈ −2ρ(1 + β) (122)
y4 = y3 − 2ρ sin(2β) ≈ −2ρβ (123)
x4 = x3 + 2ρ cos(2β) ≈ −2ρβ (124)

CCW Direction:

y1 = y0 − 2ρ cos(β/2) ≈ −2ρ (125)
x1 = x0 − 2ρ sin(β/2) ≈ −ρβ (126)
y2 = y1 + 2ρ sin(β) ≈ 2ρ(β − 1) (127)
x2 = x1 − 2ρ cos(β) ≈ −ρ(2 + β) (128)
y3 = y2 + 2ρ cos(3β/2) ≈ 2ρβ (129)
x3 = x2 + 2ρ sin(3β/2) ≈ 2ρ(β − 1) (130)
y4 = y3 − 2ρ sin(2β) ≈ −2ρβ (131)
x4 = x3 + 2ρ cos(β) ≈ 2ρβ (132)

To be able to quantify the difference in wheel diameter,
a relation between β and the wheel diameter is needed.
To derive this relation, the geometry of the straight line
segment of the path is used. The geometry is shown in
Figure 40. Note that this is highly exaggerated.

41

Fig. 40. Schematic representation of driving a straight segment with
unequal wheel diameter. Note that the effect is greatly exaggerated.
Because of the difference in diameter, the platform will curve and slightly
change heading. The final heading change is β. The radius of the rotation
is R.

From the geometry it follows that the radius of rotation
R is related to ρ and β as

R =
ρ

sin(β/2)
. (133)

Furthermore, the ratio of the wheel diameters is related
to the ratio of the radius of rotation for each wheel R±w/2

Ed =
rwl
rwr

=
R− w/2
R+ w/2

. (134)

Hence, if β is known, the ratio of the wheel diameters
can be computed.

To find the combined total localization error, the Type A
and Type B errors need to be superimposed. This means
that (99) through (132) need to be combined. This gives:

xcw = 2αρ− 2βρ (135)

ycw =
2παρ

π + α
− 2βρ (136)

xccw = 2αρ+ 2βρ (137)

yccw = − 2παρ

π + α
− 2βρ (138)

Equations (135), (136), (137) and (138) can be used to
solve for α and β:

α1 =
xcw + xccw

4ρ
(139)

α2 =
π(ycw − yccw)

yccw − ycw + 4πρ
(140)

β1 = −xcw − xccw
4ρ

(141)

β2 = −ycw + yccw
4ρ

(142)

Theoretically, (139) and (140) as well as (141) and (142)
should yield an identical result. In practice the result will
differ slightly due to the presence of other (systematic)
errors, but this difference should be small. α and β are

finally taken as the average of (139) and (140), and (141)
and (142) respectively.

Now that α and β are estimated, the correction factors
for the wheel base Eb and wheel diameters Ed can be com-
puted. For the wheel base, this is relatively straightforward,
as the ratio of the actual and the nominal wheel base are
related to α, similar to (112):

Eb =
wactual

wnominal
=

π

π − α
(143)

The corrected wheel base simply becomes:

wactual = Ebwnominal (144)

For the wheel diameter, there is a slight complication.
Increasing one of the wheel diameters with the correction
factor Ed will increase the average nominal radius ra of
the two wheels:

ra =
rwr + rwl

2
(145)

However, this quantity should not be altered as it was
assumed to be correct during the experiments. Alternatively,
one wheel diameter needs to be slightly lowered, while the
other needs to be slightly increased, such that the average
nominal diameter stays the same. This can be done by
solving (134) and (145) for the wheel radii:

rwl =
2

Ed + 1
ra = clra (146)

rwr =
2

E−1d + 1
ra = crra (147)

which results in the two correction factors cl and cr for
the left and the right wheel respectively.

42

APPENDIX VII
NONHOLONOMIC PATH PLANNING USING RRT

Rapid-exploration Random Tree (RRT) is a probabilistic
path planning algorithm. It is very suitable for single
query problems as it does not require a preprocessing step.
Furthermore, because the algorithm does not contain many
heuristics and tunable parameters, it is easy to implement
and performance analysis is straightforward. The key fea-
ture of RRTs is that exploration of the state space is biased
towards unexplored parts, hence the name. The algorithm
generally has consistent behaviour, is probabilistically com-
plete, and the tree is always connected although the number
of edges in the tree is minimal [7]. The RRT algorithm does
not optimize the path in any way, but instead finds a ”good
enough” solution between start and goal state. However,
experiments by LaValle et al. [7], [52] show that the solution
paths are near optimal (length wise), within a factor of 1.3
to 2.0.

The RRT algorithm is chosen because of the useful prop-
erties described above, which satisfy the requirements of the
INTERACT project stated earlier. Furthermore, nonholo-
nomic constraints are easily implemented in the algorithm,
as will be described later in this section. The way the
algorithm works as well as its specific implementation for
INTERACT is described below.

A. The RRT Algorithm Implementation

As the name suggests, the RRT algorithm is based on
the construction of a tree T in the state space. The pseu-
docode of the basic algorithm is shown in Algorithm 5.
The tree is rooted at the start state of the system, qinit.
Iteratively, a random sample state qrand is taken from
the state space, towards which the tree is extended (see
Algorithm 7). This is done by selecting a state qnear that
is already present in the tree and which is closest to the
random state. ”Closest” is defined according to a distance
metric ρ which can range from simple Euclidean distance
to complex metrics that capture limitations of the system
such as nonholonomic constraints. The nearest neighbour is
found using the nearestNeighbour function shown in
Algorithm 6. The distance metric ρ between two states is
computed using the following function:

ρ(q1, q2) = kpos

√
(xq1 − xq2)2 + (yq1

− yq2
)2

+kθ
[
1− cos(θq1

− θq2
)2
]
, (148)

which weights the Euclidean distance between q1 and q2
with the difference in heading using a position gain kpos
and a heading gain kθ.

A new state is computed by integrating the equations of
motion f(t, u) for the time increment ∆t. This action is
called incremental simulation. Note that this incremental
simulation makes it possible to add a time schedule to the
path, as each state receives a time stamp. This can be useful
for the feedback control, which will become apparent in
Section VIII.

The new state is stored in the tree along with the input
(which is called an edge between states) that is required

Algorithm 5 General RRT Algorithm
1: T .init(qinit)
2: while !goalReached do
3: qrand ← generateRandomState(bounds);
4: qnear ← nearestNeighbour(qrand,T)
5: [S, qnew] ← extendTree(qrand,qnear ,T)
6: end while

Algorithm 6 RRT Nearest Neighbour
1: function NEARESTNEIGHBOUR(q1,T)
2: d =∞
3: for all q ∈ T do
4: if ρ(q, q1) < d then
5: qnear = q
6: d = ρ(q, q1)
7: end if
8: end for
9: return qnear

10: end function

to get from qnear to qnew. Here it becomes apparent why
it is useful to have the same input for the equations of
motion and the actual platform: the edge that stores the
inputs can directly be fed to the platform to have it execute
the trajectory in a feedforward manner.

Also, an identifier for the parent state qnear is stored with
the new state, which is needed to trace back the path from
goal to start when a solution is found.

The tree extension process is repeated until the goal state
qgoal or goal region is reached. The algorithm then stores
the resulting path from qinit to qgoal. The tree extension
process is schematically clarified in Figure 41.

If obstacles are present in the workspace, collision de-
tection should also be implemented. The checking is done
when a new state is about to be added to the tree. The new
state, including all the states that are part of the edge, are
checked for collisions.

Application of the RRT algorithm to nonholonomic sys-
tems is very straightforward. By having the incremental
simulator integrate the (nonholonomic) equations of motion
f(t, u), the resulting path will automatically satisfy the non-
holonomic constraints and hence be feasible for the system
to execute. However, it is close to impossible to exactly
reach a (random) state when subject to the nonholonomic
constraints. Hence, the algorithm will return Reached when
the two states are within a certain threshold ρ(q1, q2) < ε
from each other.

This threshold must be chosen small enough to have the
algorithm reach the goal position with acceptable precision,
but large enough such that convergence to the goal does not
take too much time.

The algorithm explorers the state space relatively fast,
however, convergence to the goal state or region might
take a very long time as the chances that the goal state is
taken as qrand is infinitesimally small. There exist several
improvements to the algorithm that reduce the convergence
time. One of these solutions is goal bias, which means
that, with a certain probability, the goal location is selected
as a ”random state”. The bias towards the goal does not
have to be large to significantly speed up convergence

43

Algorithm 7 RRT Extend
1: function EXTENDTREE(qtarget,qnear ,T)
2: qnew ← generateState(qnear ,qtarget,T)
3: if checkCollision(qnew) then
4: T .addVertex(qnew)
5: T .addEdge(unew)
6: if ρ(qnew, qtarget) < ε then
7: S = Reached
8: else
9: S = Advanced

10: end if
11: end if
12: S = Trapped
13: return [S, qnew]
14: end function

Fig. 41. Extension process of the RRT algorithm. Image adapted from
[5].

(e.g. a bias of 0.05) [7]. This can also be seen from the
experimental results given in Section VII-E. Even better
results can be achieved by applying a method called goal
zoom also introduced in [7]. The selection of the random
state is again biased towards the goal. However, instead of
taking the exact goal state a state is picked from a region
around the goal. The size of this region is defined by the
closest vertex to the goal currently in the tree. As a result,
this will gradually focus state selection on the goal as the
tree grows towards it. For performance analysis, also see
Table X in Section VII-E.

A more aggressive version of the algorithm is RRT-
Connect [5]. In this version, the extend operation is replaced
by the connect operation, see Algorithm 8. The connect
operation will iteratively apply the extend function until it
returns either Reached, which means the tree was able to
directly reach the random state qrand, or Trapped, which
means extension is not possible anymore and a new random
state is chosen. Performance of both versions is analysed
in Section VII-E.

Algorithm 8 RRT Connect
1: function CONNECTTREE(q,T)
2: repeat
3: qnear ← nearestNeighbour(q,T)
4: [S, qnew] ← extendTree(q,qnear ,T)
5: until not (S = Advanced)
6: return S
7: end function

B. Bidirectional RRT

Another performance improvement can be expected by
applying a bidirectional search, as this technique also im-
proved results of other, more classical, search techniques
[6]. With this technique, two trees are grown, one rooted at
the start state and one rooted at the goal state. Besides ex-
tending the tree using random samples from the state space,
as with the basic RRT algorithm, half of the computation
time is spend on trying to grow the trees towards each other
and connect them. This slightly adapted version of the RRT
algorithm is given in Algorithm 9.

Algorithm 9 Bidirectional RRT Algorithm
1: Ta.init(qinit)
2: Tb.init(qgoal)
3: while !treesConnected do
4: qrand ← generateRandomState(bounds);
5: qneara ← nearestNeighbour(qrand,T)
6: [Sa, qnewa] ← extendTree(q,qneara ,T)
7: if Sa != Trapped then
8: qnearb ← nearestNeighbour(qnewa ,T)
9: [Sb,∼] ← extendTree(qnewa ,qnearb ,T)

10: if Sb = Reached then
11: return path(Ta, Tb)
12: end if
13: swap(Ta, Tb)
14: end if
15: end while

Just like with the general RRT algorithm, one or both
of the extend operations in line 6 and 9 can be replaced
with connect. This results in a much more ”aggressive”
algorithm.

An issue arises when the bidirectional search is applied
to nonholonomic systems. Because the algorithm returns
Reached when a state from Ta is within ε from a state in
Tb (or vice versa), there is a discontinuity in the path at
the transition of the trees. An appropriate solution needs to
be found to reduce the impact of this discontinuity and/or
handle this transition properly. A planning solution that
keeps the discontinuities as small as possible is discussed in
Section VII-C2. Furthermore, a control algorithm that can
handle (small) discontinuities can be chosen. The perfor-
mance of two controllers w.r.t. discontinuities is discussed
in Section VIII.

C. Several Improvements

Besides the different versions of the RRT algorithm that
were presented in the previous section, a couple of other
improvements can be thought of. Two improvements are
particularly of interest for the INTERACT project. These
improvements are discussed below.

1) Path Smoothing: Because of the random nature of the
planning algorithm, the solution that is found will most
likely contain many unnecessary bends and curves. These
curves increase the path length and make it more compli-
cated, which is not desirable. In an attempt to get rid of
these curves, a preprocessing step called path smoothing
is applied. During this step, two random vertices q1 and
q2 belonging to the path are selected. Then, by using the

44

-60 -40 -20 0 20 40 60
-50

-40

-30

-20

-10

0

10

20

30

40

50

(a) Tree growing

-60 -40 -20 0 20 40 60
-50

-40

-30

-20

-10

0

10

20

30

40

50

(b) Resulting Path

-60 -40 -20 0 20 40 60
-50

-40

-30

-20

-10

0

10

20

30

40

50

(c) Path Smooting

Fig. 42. Visualization of tree growing: showing qrand with a black cross, qnew with a black circle, and the new edge with a black line. The resulting
path is indicated in red. If path smoothing takes place, the smoothed segments are colored blue.

connect function, an attempt is made to find a better path
between the two vertices. In this case, better is defined
as being shorter and/or containing less reversals. If such
a better path is found, the existing segment is replaced by
the new one.

The connect function is chosen over the extend function
because it will result in a more straight (and hence more
desirable) path to q2. This is because there is no random
state selected. Instead, q2 is always taken as qrand, which
results in an aggressive attempt to connect the q1 and q2.

The path smoothing can be applied multiple times. How-
ever, a balance needs to be found between increased compu-
tation time and increased path smoothness. The number of
smoothing iterations is chosen as a fraction of the number
of vertices of the initial path found. This fraction is a
tuning parameter that can be chosen depending on path
requirements and computation time available.

A major downside of path smoothing is that it increases
the number of discontinuities in the path. Because the con-
nect function returns reached when the end of the smoothed
segment is within ε of q2, every smoothed segment adds a
discontinuity to the path. If these are not handled properly,
the benefit of smoothing is nullified. A method to cope with
the discontinuities is discussed next.

2) Handling of Discontinuities: In the case of planning for
nonholonomic systems, as is the case with the INTERACT
platform, two states will never be completely identical,
but a similarity threshold is used on the distance metric
ρ (as described in Section VII-A). As discussed before,
this will result in discontinuities when using the bidirec-
tional algorithm and path smoothing. A (feedback) control
algorithm might be able to handle these discontinuities
correctly. Nevertheless, it is beneficial to keep them as small
as possible to make the platform behaviour predictable.
This can be achieved by selecting the similarity threshold
ε relatively small. However, the algorithm might have
trouble reaching this similarity threshold, which will greatly
increase computation time of the bidirectional algorithm and
will result in many failed attempts on path smoothing. This
is especially evident when a relatively small set of inputs
is available to the system.

To solve this issue, the set of inputs is extended when two
vertices are close to each other and a connection is needed.
This is the case when the two trees of the bidirectional

algorithm are close to each other, or vertices in the path
segment of a smoothing step are close to q2, the goal vertex.
When a certain distance threshold is reached, the set of
inputs gets extended with inputs containing lower speed and
higher steering angles. This keeps the discontinuity small,
while not significantly increasing the computation time. The
exact input set that is used is described in Section VII-D.

D. Implementation for INTERACT

The RRT algorithm (both general and bidirectional as
well as extend and connect) was written in Matlab. For the
incremental simulator, the equations of motions as derived
in Appendix II are used. A discrete set of inputs is selected
to generate new states in the state space. Three different
test environments are defined to assess the performance of
the algorithm.

To monitor the execution of the algorithm, the construc-
tion of the tree is visualized in Matlab. The random state
qrand is indicated by a thin black cross. The new state that
gets added to the tree (either by minimizing the distance
or by random selection) is shown by a small black circle.
The path (or edge) to the new state is visualized by a thin
black line. When the path to the goal is found, vertices
and edges belonging to the path are coloured red. If path
smoothing takes place, path segments that are smoothed are
added in blue. Obstacles are visualized by black rectangles
as is shown in Figure 42.

When the solution path is found, the platform can execute
the path by applying the input stored in the edges that be-
long to the path. While executing, the platform is visualized
in SPANviewer (main details can be found in Section IV).
That path is added by showing waypoints (spheres) along
the path with a small reference frame indicating the heading
of the platform. See also Figure 44.

The RRT algorithm generates new states by applying a
certain input to the system and integrating the equations
of motion. The input can be selected from a pre defined
discrete set of inputs both randomly or by finding the
one that minimizes the distance to qrand according to the
metric ρ. A second option is to generate a random input
within the systems limitations/boundaries every time the
EOM are integrated. The performance of both techniques is
investigated and results are given in Section VII-E, Table X.

45

-60 -40 -20 0 20 40 60
-50

-40

-30

-20

-10

0

10

20

30

40

50

(a) Simple

-60 -40 -20 0 20 40 60
-50

-40

-30

-20

-10

0

10

20

30

40

50

(b) Narrow Corridor

-60 -40 -20 0 20 40 60
-50

-40

-30

-20

-10

0

10

20

30

40

50

(c) Cluttered

Fig. 43. Three environments used to test the performance of the RRT planning algorithm.

Fig. 44. Visualization of the solution path and path execution by the
(simulated) platform in SPANviewer.

TABLE IX
INPUT SETS USED FOR THE PERFORMANCE ASSESSMENT OF THE RRT

ALGORITHM. THE INPUT VECTORS CONTAIN THE VELOCITY INPUT
AND THE STEERING ANGLE INPUT.

Input Set # Available inputs

Set 1
[

1

0

] [
1

±0.05

][
1

±0.1

]

Set 2 Set 1
[

0.8

±0.2

][
0.6

±0.3

][
0.4

±0.4

]

When a discrete set of inputs is used, several possibilities
need to be considered. An extensive set will make many
maneuvers and motions possible, but will also increase the
computation time of the algorithm if every input of the set
is tried. Furthermore, it is not guaranteed that the resulting
path will be better than when a limited set of inputs is used.
To investigate this, several sets are defined and applied to
the same environment. The input sets are given in Table IX.

The two inputs to the platform and algorithm are the
velocity u1 and the steering angle in radians u2. The
inputs contained in the sets are represented by a vector[
u1 u2

]T
. If both steering to the left and to the right

is allowed, a ± is added in front of u2. If also a reversed
velocity is allowed, a ± is added in front of the input vector.

The three test environments that are chosen to assess the
performance are described below and shown in Figure 43.
Each two dimensional environment is bounded to be within
[−50, 50] in both x and y. The starting state, indicated
by a blue cross, is at [−40,−40], while the goal position,
indicated by a red cross, is at [40, 40].
• Simple: See Figure 43a. Environment that should be

easily solvable containing only two obstacles. There is
a lot of free space.

• Narrow Corridor: See Figure 43b. Environment con-
taining a narrow path that has to be taken to reach the
goal. Probabilistic planners generally have difficulties
finding this narrow path.

• Cluttered: See Figure 43c. Environment containing a
high obstacle density.

E. Algorithm Performance Analysis

Several simulations have been performed using the RRT
algorithm described in this Section. The performance of
each version of the algorithm is judged based on the time
needed for planning, the time needed for smoothing and the
path length.

This is done for each of the three environments described
above. Results of the performance analysis are given in
Table X. The maximum number of iterations for tree exten-
sions was set to 500. If there was no solution found within
this number of iterations, the algorithm is considered to
have failed. The number of failures is given in parentheses
in the column for maximum plan time.

F. Path Planning Experiments

Several preliminary experiments on path planning have
been performed on the real platform to test the performance.
The platform was positioned in a workspace of roughly
10 by 5 meter. The initial pose of the platform was taken
from the Vicon motion capture system and used as the
initial position qinit for the RRT algorithm. The goal
location qgoal was selected to be as far from the platform
as possible. Virtual objects could be added to the planner
to increase the difficulty and extend the path length. The
path was planned off-line and the solution path including
the feedforward command was sent to the platform. During
execution, important platform parameters were logged and
the platform position and heading was measured using the

46

x position [m]
-2 -1 0 1 2 3

y
po

si
tio

n
[m

]

-4

-3

-2

-1

0

1

2

3

4

5
Position comparison

Vicon
Planned

Fig. 45. Example run of the path planning experiments.

Vicon setup. A sample run showing the planned path and
the actual path executed using the feedforward command is
shown in Figure 45. Despite the lack of feedback control,
the resulting path is quite close to the planned path.

TA
B

L
E

X
P

E
R

F
O

R
M

A
N

C
E

A
N

A
LY

S
IS

O
F

D
IF

F
E

R
E

N
T

V
E

R
S

IO
N

S
O

F
T

H
E

R
R

T
A

L
G

O
R

IT
H

M
.T

H
E

N
U

M
B

E
R

B
E

T
W

E
E

N
PA

R
E

N
T

H
E

S
E

S
IN

T
H

E
C

O
L

U
M

N
L

A
B

E
L

L
E

D
”M

A
X

.P
L

A
N

T
IM

E
”

IN
D

IC
A

T
E

S
T

H
E

N
U

M
B

E
R

O
F

FA
IL

E
D

P
L

A
N

N
IN

G
A

T
T

E
M

P
T

S
,I

.E
.W

H
E

R
E

M
O

R
E

T
H

A
N

T
H

E
M

A
X

IM
U

M
N

U
M

B
E

R
O

F
IT

E
R

A
T

IO
N

S
W

A
S

R
E

Q
U

IR
E

D
.B

O
L

D
IT

E
M

S
A

R
E

T
H

E
B

E
S

T
R

E
S

U
LT

F
O

R
T

H
A

T
S

P
E

C
IF

IC
C

O
L

U
M

N
.

Si
m

pl
e

N
ar

ro
w

co
rr

id
or

C
lu

tte
re

d

Si
m

ul
at

io
n

In
pu

t
se

t
A

vg
.

pl
an

tim
e

[s
]

M
ax

.
pl

an
tim

e
[s

]1
A

vg
.

sm
oo

th
tim

e
[s

]

A
vg

.
L

en
gt

h
[m

]
A

vg
.

pl
an

tim
e

[s
]

M
ax

.
pl

an
tim

e
[s

]
A

vg
.

sm
oo

th
tim

e
[s

]

A
vg

.
L

en
gt

[m
]h

A
vg

.
pl

an
tim

e
[s

]
M

ax
.

pl
an

tim
e

[s
]

A
vg

.
sm

oo
th

tim
e

[s
]

A
vg

.
L

en
gt

h
[m

]

Si
ng

le
tr

ee
Se

t
1

32
.6

4
63

.3
9

(0
)

9.
89

14
5.

26
46

7.
23

86
5.

32
(4

4)
8.

69
17

3.
23

74
.6

5
17

2.
32

(0
)

21
.0

1
15

9.
95

Si
ng

le
tr

ee
go

al
bi

as
(0

.0
5)

Se
t

1
23

.1
3

85
.8

5
(0

)
10

.4
5

14
1.

10
27

1.
05

79
2.

12
(3

7)
10

.0
9

17
9.

38
56

.2
3

23
4.

21
(0

)
19

.3
0

15
8.

12

Si
ng

le
tr

ee
go

al
bi

as
(0

.2
)

Se
t

1
17

.9
8

49
.5

9
(0

)
9.

75
13

6.
52

44
3.

31
12

47
(3

7)
9.

56
17

2.
45

61
.7

8
28

6.
95

(0
)

19
.2

2
15

8.
42

Si
ng

le
tr

ee
go

al
zo

om
(0

.0
5)

Se
t

1
20

.5
4

51
.3

7
(0

)
9.

37
14

0.
99

42
4.

02
77

2.
91

(4
2)

10
.3

9
18

9.
58

58
.3

5
14

6.
27

(0
)

21
.1

6
16

1.
67

Si
ng

le
tr

ee
go

al
zo

om
(0

.2
)

Se
t

1
19

.4
9

47
.4

8
(0

)
10

.0
9

14
4.

73
33

7.
57

90
8.

05
(4

1)
9.

26
17

0.
81

47
.6

6
13

6.
51

(0
)

20
.8

9
15

9.
67

B
id

ir
ec

tio
na

l
Se

t
1

11
.9

9
22

.7
6

(0
)

10
.4

0
15

8.
53

31
8.

94
49

7.
07

(4
0)

8.
88

17
6.

86
47

.1
7

11
0.

48
(0

)
23

.0
6

16
2.

50

Si
ng

le
tr

ee
in

cl
ud

in
g

re
ve

rs
al

s
±

Se
t

1
26

.7
8

67
.9

9
(0

)
11

.8
8

14
7.

39
35

0.
50

67
3.

67
(3

9)
13

.0
0

20
3.

88
67

.4
7

15
5.

96
(0

)
25

.3
0

16
0.

34

B
id

ir
ec

tio
na

l
in

cl
ud

in
g

re
ve

rs
al

s
±

Se
t

1
12

.8
5

27
.4

1
(0

)
13

.0
1

17
6.

41
16

8.
32

25
2.

71
(3

8)
14

.0
6

18
3.

94
66

.5
4

15
0.

22
(0

)
28

.9
3

17
3.

52

Si
ng

le
tr

ee
ra

nd
om

in
pu

t
5

R
an

do
m

45
.7

7
71

.4
8

(2
8)

24
.6

3
15

6.
24

81
.2

0
99

.8
1

(4
8)

26
.0

3
18

1.
99

10
2.

80
16

6.
70

(1
5)

53
.6

3
17

0.
93

B
id

ir
ec

tio
na

l
ra

nd
om

in
pu

t
5

R
an

do
m

30
.3

0
10

7.
94

(0
)

29
.2

7
19

1.
38

91
.1

6
13

7.
02

(3
1)

30
.1

8
20

8.
78

11
7.

36
25

8.
37

(5
)

63
.5

8
18

8.
00

Si
ng

le
tr

ee
ex

te
nd

ed
in

pu
t

se
t

Se
t

2
29

.5
8

94
.0

2
(0

)
18

.8
8

12
9.

64
10

7.
10

29
1.

64
(2

1)
18

.8
1

17
4.

40
84

.2
8

20
0.

66
(0

)
38

.0
1

15
2.

33

B
id

ir
ec

tio
na

l
ex

te
nd

ed
in

pu
t

se
t

Se
t

2
19

.8
6

46
.6

1
(0

)
19

.8
9

16
5.

22
96

.8
3

29
1.

62
(4

)
21

.5
4

18
0.

39
88

.7
1

16
5.

10
(0

)
44

.1
0

16
2.

92

48

APPENDIX VIII
FEEDBACK CONTROL OF NONHOLONOMIC SYSTEMS

The path planner presented in Appendix VII generates
both a reference trajectory (full pose consisting of x, y
and θ) and the platform input required to track this path.
In principle, the path can be executed by using only the
generated input, i.e. in a feedforward manner. However,
due to inaccuracies in the model and possible disturbances
during execution, the platform might deviate from the
path. To compensate for these errors, a feedback control
algorithm needs to be implemented. However, because of
the nonholonomic nature of the system, feedback control is
not so straightforward. A theorem by Brockett [23] states
that asymptotic stabilization of WMRs is not achievable
by continuous time-invariant state feedback. The intuitive
explanation is that three states need to be controlled (sta-
bilized) by using only 2 control inputs. For holonomic
systems this is not the case; each element of the state
can be controlled by its own corresponding input, i.e.
there are as many inputs as controlled states. Hence, to
stabilize the full state of a WMR, discontinuous and/or time-
variant feedback is necessary. If one, however, only wants
to stabilize the position and not the heading as well (as in
the path following with no orientation control, [24]), control
becomes much simpler.

For the case of INTERACT, feedback control needs to be
developed for every possible drive mode (4WS, crab, rotate
in place). The controllers are presented in this section. The
controller for four wheel steering is the most complex. In
this mode, heading control is not necessary but it might
increase the accuracy of the final position. Hence, two
different control methods are applied, one with and one
without heading control. The former is a very simple
technique which decouples steering and velocity control
and applies two PID controllers. This controller works for
both four wheel steering as well as crab mode. The latter is
slightly more advanced, incorporating the heading control
by applying approximate linearization around the reference
trajectory. For rotation in place, a PID controller is used
as well. A useful tool that is applied in the PID control
method is introduced first. To simplify the expressions of
errors it is common to express the state of the system in path
coordinates (see e.g. [53], [28], [54]), which is a reference
frame attached to the desired path. This frame is also called
Frénet frame (see e.g. [24]).

A. Modelling in a Frénet Frame

A Frénet frame is a coordinate system that is related
to the path or curve that needs to be followed. Let C be
the desired trajectory consisting of xr and yr reference
positions and reference heading θr. Now let Fs be the
Frénet frame attached to the path. Because the reference
path generated by the path planner has a time schedule,
the origin of the Frénet frame is attached to the reference
point at that particular time instant. The rotation of this
frame with respect to the world is θr. The new position
coordinates are the abscissa s, and d, the corresponding
ordinate, perpendicular the direction defined by θr, as
shown in Figure 46.

The position of the INTERACT system can now be
expressed with respect to the Frénet frame. A detailed
derivation of this transformation can be found in [24] and
[55]. In the case of INTERACT, it can easily be verified
that the transformation to the path coordinates is given by:

Fig. 46. Definition of the path coordinates or Frénet frame. The new
coordinates are s and d, representing the distance travelled along the path
C and the lateral deviation from it respectively.

 s

d

1

 =

 cos(θr) − sin(θr) xr

sin(θr) cos(θr) yr

0 0 1


−1  x

y

1

 (149)

B. PID Control

By using the system expressed in path coordinates, a
separate PID controller for the steering and the veloc-
ity can be implemented. The reference trajectory qr =[
xr yr θfr

]T
which is generated by the RRT planning

algorithm is converted to the path coordinates. Now, two
errors can be defined. Because of the transformation towards
path coordinates, the error related to the execution speed
of the path is s itself, and the lateral error is equal to the
coordinate d. The main benefit from a control point of view
of expressing the system in path coordinates is that both s
and d need to be regulated to 0.

The discrete time PID law used to compute the velocity
and steering input of the system requires the discrete time
derivative and integral of the error:

de(tk)

dt
=

e(tk)− e(tk−1)

∆t∫ tk

0

e(t)dt =

k∑
i=1

e(ti)∆t (150)

The input to the platform can then be computed by:

u1 = −kp1s− ki1
k∑
i=1

s(ti)∆t− kd1
s(tk)− s(tk−1)

∆t
(151)

u2 = −kp2d− ki2
k∑
i=1

d(ti)∆t− kd2
d(tk)− d(tk−1)

∆t
(152)

The controller gains are tuned using the simulated system.
Several reference trajectories are tried and the gains are
tuned until the tracking error is within the minimum turning
radius of the platform (about 1 meter) and the controller

49

output does not show high frequency oscillations. This
results in the following values for k:

kp1 = 3 ki1 = 0 kd1 = 0

kp2 = 3 ki2 = 0.5 kd2 = 0.1

The benefit of a PID controller is that it does not requires
a model of the system. However, the method does not make
use of the fact that a feedforward input is available, and
heading control is not available. A more advanced method
that does apply heading control for nonholonomic systems
is control through approximate linearization of the system.

C. Approximate Linearization

To apply the method of approximate linearization as
described in [28], the system needs to be put in so called
chained form. It is a canonical form that is often used
for controlling nonlinear systems because it shows a linear
structure of the system equations (see e.g. [28], [25], [38]).
The equations of motions that were found in Appendix II
are slightly simplified before they are put in the chained
form. The platform parameters a and b (see Figure 20) are
assumed to be equal. Furthermore, the front steering angle
is always equal but opposite to the rear steering angle,
θf = −θr. The equations of motion for the INTERACT
platform then become:

ẋ = η1 cos(θfr) sin2(θw) (153)
ẏ = η1 sin(θfr) sin2(θw) (154)

θ̇fr =
η1 sin(2θw)

L
(155)

θ̇w = η2 (156)

Or equivalently:


ẋ

ẏ

θ̇fr

θ̇w

 =


cos(θfr) sin2(θw)

sin(θfr) sin2(θw)
sin(2θw)

L

0

 η1 +


0

0

0

1

 η2
q̇′ = g1η1 + g2η2 (157)

The general velocity vector q̇ is extended with the rate
of change of the steering angle θ̇w. This extended velocity
vector is designated with q̇′. The first input to the extended
system is η1, which is equal to u1: the platform velocity.
η2 is the rate of change of the steering angle, and hence
relates to u2 through:

η2 = u̇2 (158)

The chained form can be achieved through an input and
state transformation, which will transform the system into
the following so called 4 state, 2 input chained form

ż1 = v1
ż2 = v2
ż3 = q′2v1 (159)
żn = q′3v1

This two input case represents many kinematic models of
wheeled mobile robots, such as the INTERACT platform.

The linear structure becomes especially apparent when v1
is assigned a predetermined function of time and is not
considered as an actual control input. The system (159)
then becomes a linear time-variant system.

A systematic way to transform a system to the (2,4)
chained form can be found in literature (e.g. [26]). Nec-
essary conditions to do this are given as well.

Now, according to [26], the system can be put into
chained form if g1 and g2 are linearly independent and the
following distributions are of constant rank and involutive:

∆0 = span
{
g1, g2, adg1g2, ..., adn−2g1

g1
}

(160)

∆1 = span
{
g2, adg1g2, ..., adn−2g1

g2
}

(161)

∆2 = span
{
g2, adg1g2, ..., adn−3g1

g2
}

(162)

Furthermore, there exists a function h1(q) such that:

dh1 ·∆1 = 0 and dh1 · g1 = 1 (163)

If these conditions are met, a second function h2 can be
chosen such that

dh2 ·∆2 = 0 (164)

Once the functions h1 and h2 are found, the system can
be put in chained form by the state transformation given
by:

z1 = h1 (165)
z2 = Ln−2g1

h2 (166)
... (167)

zn−1 = Lg1h2 (168)
zn = h2 (169)

and input transformation:

v1 = u1 (170)
v2 = (Ln−1g1

h2)u1 + (Lg2L
n−2
g1

h2)u2 (171)

In these equations, Lkf designates the Lie derivative:

L0
fh(x) = h(x) (172)

L1
fh(x) =

∂h(x)

∂x
f(x) (173)

... (174)

Lkfh(x) =
∂

∂x

[
Lk−1f h(x)

]
f(x) (175)

and the adkfg(x) operator, which uses the Lie bracket
[f(x), g(x)], is defined by:

[f(x), g(x)] =
∂g(x)

∂x
f(x)− ∂f(x)

∂x
g(x) (176)

ad0
fg(x) = g(x) (177)

ad1
fg(x) = [f(x), g(x)] (178)

... (179)

ad0
fg(x) =

[
f(x), adk−1f g(x)

]
(180)

50

This procedure can be applied to system (157) by first
applying the transformation v1 = η1 cos(θfr) sin2(θw),
which transforms g1 into:

[
1 tan(θfr)

sin(2θw)
L cos(θfr) sin2(θw)

0
]T

(181)

Then, the functions h1 = x and h2 = y can be chosen. It
is easily verified that these functions satisfy the necessary
conditions (163). This choice results in the following state
and input transformations that give the single-chain form:

z1 = x

z2 =
sin(2θw) sec(θfr)

2

L
z3 = tan(θfr) (182)
z4 = y

v1 = η1 cos(θfr) sin2(θw) (183)

v2 =
2η1 sin(θfr)− 2η1 cos(2θw)2 sin(θ)

L2 cos(θfr)3

+
2Lη2 cos(2θw) cos(θfr)

L2 cos(θfr)3
(184)

Now that the system is in chained form, the control
by approximate linearization as presented in [28] can be
applied. First, the state and input errors are defined as:

z̃i = zi − zir (185)
ṽj = vj − vjr (186)

Where the subscript r denotes the reference value related
to the path that needs to be followed. This reference value
follows from the path planning stage.

The system’s error equations become:

˙̃z1 = ṽ1
˙̃z2 = ṽ2
˙̃z3 = z2v1 − z2rv1r (187)
˙̃z4 = z3v1 − z3rv1r

Linearizing this system about the reference trajectory
results in a time-varying linear system:

˙̃z =


0 0 0 0

0 0 0 0

0 v1r 0 0

0 0 v1r 0

 z̃ +


1 0

0 1

z2r 0

z3r 0

 ṽ
˙̃z = Az̃ +Bṽ (188)

Now, regular control laws for time-varying linear systems
can be used. The following feedback law is established:

ṽ1 = −k1z̃1 (189)

ṽ2 = −k2z̃2 −
k3
v1r

z̃3 −
k4
v21r

z̃4 (190)

The complete control input is then given by:

v = vr + ṽ (191)

To find the actual input to the platform, input transforma-
tion (183) can be used to find η1 and thus u1. Furthermore,
(184) can be inverted to find η2. Together with (158), this
gives u2. However, the choice of (183) shows that the input
transformation is only defined for the platform heading
θfr 6= π/2 ± kπ with k ∈ N. This means the controller
will not work for platform headings close to π/2 ± kπ:
the velocity will go to zero. To solve this, the controller
is disabled and only the feedforward command is used for
θfr = π/2±0.1. Furthermore, note that the choice of (190)
implies that v1r 6= 0 and thus u1r 6= 0.

Not all choices of ki will results in a stable controller
for every path that can be generated by the path planner.
Hence, the choice of the gains ki is very important. A short
stability analysis similar to what is done in [56] can be
performed, to find the gains that will stabilize the system.
The open loop transfer function of the time-varying linear
system becomes:

L(s) = K(sI −A)−1B (192)
=

[
k1/s k2/s+ k3/s

2 + k4/s
3
]

(193)

with K =
[
k1 k2 k3/v1r k4/v

2
1r

]
.

Now the stability of the system is determined by the
denominator T (s) of the closed loop transfer function:

T (s) = 1 + L(s) (194)
T (s) =

[
k1/s+ 1 k2/s+ k3/s

2 + k4/s
3 + 1

]
(195)
(196)

This gives two separate polynomials, one for k1 and one
for k2, k3 and k4. Now the Hurwitz stability theorem can
be applied to both. This theorem states that the system is
stable iff all sub-determinants of the Hurwitz matrix are
positive. The Hurwitz matrix can be constructed from the
coefficients of the Hurwitz polynomials given by (194):

H1 =

[
k1 0

0 1

]
(197)

H2 =

 k2 1 0

k4 k3 k2

0 0 k4

 (198)

This results in the following constraints for the choice of
the gains:

k1 > 0

k2 > 0

k2k3 − k4 > 0 (199)
k2k3k4 − k24 > 0

These constraints leave many choices for the gains. In
[28] it is suggested to choose the gains such that four
coincident closed-loop eigenvalues at −5 are established
and a damping coefficient of ζ = 1. This results in:

k1 = 5

k2 = 15

k3 = 75

k4 = 125

51

Time [s]
0 2 4 6 8 10

H
ea

di
ng

 [r
ad

]

0

0.5

1

1.5

2
Controller performance

Reference
Actual

Fig. 47. Response of the controller for rotate in place on a slope. The
reference heading is given in blue. The actual heading (measured by the
gyroscope) is given in orange.

D. Feedback Control for Rotate in Place

Feedback control of the rotation in place drive mode
is more simple than the other modes, as only one input
is available: the velocity command. A PID controller is
defined which uses θe as error input. This is the difference
between the reference heading θr and the actual heading
estimated by the localization algorithm (i.e. the integrated
gyroscope measurements θfr)

θe = θr − θfr (200)

and the PID feedback law becomes

u1 = −kp3θe − ki3
k∑
i=1

θe(ti)∆t− kd3
θe(tk)− θe(tk−1)

∆t
(201)

The gains are tuned based on the response of the system
on a reference slope as shown in Figure 47 which is
representative for the rate of change in heading expected
during navigation. They are chosen such that the tracking
error never exceeds 0.05 radians after four seconds. When
the controller is used during reference trajectory tracking,
it is always given this time to converge to the reference
point. The oscillation during the start is caused by the fact
that the platform will only move when the velocity input
exceeds 0.3 m/s. This is likely caused by friction in the
mechanical system and wheel-to-ground interaction forces.
The limitation is incorporated in the controller by adding
a viscous friction block in Simulink. However, as a result
of this viscous friction, a very small error at the start of
the reference will make the controller compensate with an
input of 0.3 m/s minimum, which causes the oscillation.
The amplitude of the oscillation is within the 0.05 radian
limit and hence acceptable. The gains for the PID controller
are:

kp3 = 5 ki3 = 0.7 kd3 = 0

E. Simulation Results

Both the PID controller as well as the controller based
on approximate linearization are simulated using the math-
ematical model of the platform described before. The
reference trajectory is manually generated for a straight
reference along the x axis and for a maneuver containing

a reversal (parallel parking). A more complex trajectory is
generated using the RRT planner explained in Appendix
VII. The bidirectional mode is used here to create a discon-
tinuity roughly halfway the path. This is to assess whether
the controller can handle such discontinuities, which can
arise by using the bidirectional planning mode and/or path
smoothing. The results of the simulations are given in
Figure 48 for the PID controller and in Figure 49 for
the approximate linearization. In each set of figures, the
reference is given by a dashed orange line, while the
simulated platform response is given by the solid blue line.
In the lower graphs, the controller output (which is the
platform input) is given.

It is evident that the tracking accuracy for the controller
based on approximate linearization is generally better. It
shows less overshoot and a faster settling time. Both con-
trollers are not able to handle the reversal in the second
path, but can cope with the discontinuity in the third path.

52

X coordinate [m]
0 5 10 15 20

Y
 c

oo
rd

in
at

e
[m

]

-0.2

0

0.2

0.4

0.6
Platform Position

Position
Reference

Time [s]
0 10 20 30 40 50

In
pu

t [
m

/s
] a

nd
 [r

ad
]

-1

-0.5

0

0.5

1
Platform Input

u1 = Velocity

u2 = Steering

(a) Straight line reference

X coordinate [m]
-5 0 5 10

Y
 c

oo
rd

in
at

e
[m

]

0

2

4

6

8

10

12
Platform Position

Position
Reference

Time [s]
0 10 20 30 40 50 60

In
pu

t [
m

/s
] a

nd
 [r

ad
]

-20

-10

0

10

20

30

40

50
Platform Input

u1 = Velocity

u2 = Steering

(b) Reversal maneuver

X coordinate [m]
0 0.5 1 1.5 2 2.5 3 3.5 4

Y
 c

oo
rd

in
at

e
[m

]

0

1

2

3

4

5
Platform Position

Position
Reference

Time [s]
0 5 10 15 20 25 30

In
pu

t [
m

/s
] a

nd
 [r

ad
]

-1.5

-1

-0.5

0

0.5
Platform Input

u1 = Velocity

u2 = Steering

(c) RRT plan with discontinuity

Fig. 48. Results of simulations applying platform control using the PID controller. The top figure show the reference trajectory (red) along with the
actual platform location (blue). Bottom figures show the input computed by the controller.

X coordinate [m]
0 5 10 15 20

Y
 c

oo
rd

in
at

e
[m

]

-0.1

0

0.1

0.2

0.3

0.4

0.5
Platform Position

Position
Reference

Time [s]
0 10 20 30 40 50 60

In
pu

t [
m

/s
] a

nd
 [r

ad
]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6

0.8
Platform Input

u1 = Velocity

u2 = Steering

(a) Straight line reference

X coordinate [m]
-5 0 5 10

Y
 c

oo
rd

in
at

e
[m

]

0

2

4

6

8

10

12
Platform Position

Position
Reference

Time [s]
0 5 10 15 20 25 30 35 40

In
pu

t [
m

/s
] a

nd
 [r

ad
]

-2.5

-2

-1.5

-1

-0.5

0

0.5

1
Platform Input

u1 = Velocity

u2 = Steering

(b) Reversal maneuver

X coordinate [m]
0 1 2 3 4 5

Y
 c

oo
rd

in
at

e
[m

]

-1

0

1

2

3

4

5
Platform Position

Position
Reference

Time [s]
0 5 10 15 20 25 30

In
pu

t [
m

/s
] a

nd
 [r

ad
]

-0.6

-0.4

-0.2

0

0.2

0.4

0.6
Platform Input

u1 = Velocity

u2 = Steering

(c) RRT plan with discontinuity

Fig. 49. Results of simulations applying platform control using the controller based on approximate linearization. The top figure show the reference
trajectory (red) along with the actual platform location (blue). Bottom figures show the inpute computed by the controller.

53

APPENDIX IX
EXPERIMENTAL EVALUATION OF THE NAVIGATION

ALGORITHM

A. Experimental Setup

The feedback controllers are tested along with the full
testing of the autonomous navigation algorithm as described
in these appendices. The algorithm is implemented on
the INTERACT platform and experimentally tested. The
workspace used during the experiments was roughly 10
by 6 meter. 9 Vicon cameras were positioned along the
perimeter of the workspace. The platform and the taskboard
were positioned as far as possible from each other within
this workspace. An image of the workspace and set-up is
shown in Figure 51. Objects could be added to the planning
algorithm, to make the task more difficult and increase path
length. The planning was done off-line and separated into
the coarse approach and alignment stage discussed before.
During the first stage, the localization is based on the
wheel encoders and IMU. During the alignment stage, the
localization is improved by the detection of the taskboard.
However, as this is not implemented yet, it is simulated by
using the Vicon measurement as a location estimate during
the alignment stage. The resulting reference trajectory and
input from the planning were uploaded to the platform. The
complete path from initial position to taskboard was in the
order of 20 meter.

The reference point used for the Vicon system should
be as close as possible to the reference point P used for
the mathematical model and planning algorithm. If these
do not match, the Vicon ground truth will show a deviation
from the reference path, although the platform might be
following it exactly. The problem is, however, that due
to the bodywork and components on the platform, the
exact reference point P is not reachable, and hence no
markers can be attached. As the height of the reference
does not matter since the navigation problem is considered
in 2D only, the reference point P could be projected on
the ground. However, this location is not visible to the
Vicon cameras, because the robot itself is covering it. As
a solution, markers are attached to the head of the robot
which define the head reference frame H as in Figure 50.
The calibration wand of the Vicon system is placed under
the rover at the position of the projection of P on the
ground. The location of the head THW in the world frame W
(as measured by the Vicon system) is recorded. Then, the
platform is driven away and the wand becomes visible to
the Vicon system. This makes measurement of the location
of the reference point P in the world frame TPW possible.
The transformation TPH between the head position in the
world frame and P in the world frame can now be found
through:

TPH = TWH TPW =
(
THW
)−1

TPW (202)

When the experiments are executed, the head position
is measured by the Vicon system, and transformed to the
reference point P by using TPH

TPW = THWT
P
H (203)

The path planning requires specific settings for the coarse
approach and the alignment. These settings follow from the
simulations described in Appendix VII and are listed below.
The gains for the controllers were as reported in Appendix
VIII and identical for both stages.

P

Fig. 50. Definition of the frames and transformations used to be able to
measure the position and heading of the reference point P in the world
frame.

1) Coarse Approach Settings: For this stage, the single tree
version of the RRT algorithm is used with a goal bias of
0.05. The similarity threshold ε is set to the distance at
which the taskboard can be recognized, which is 5 meter.
The position and heading gain for the distance function (22)
are set to kpos = 1 and kθ = 2. The integration time
∆t = 2 and a total of 7 motion primitives are selected.
As no accurate maneuvering is necessary, it was decided to
not include rotation in place motions as to not excessively
switch between control modes. u1

u2

DM

 =

 0.5

0

32

 ,
 0.5

±0.2

32

 ,
 0.5

±0.3

32

 ,
 0.5

±0.4

48



2) Alignment Settings: For the alignment, the bidirectional
version is used. This was done because this stage needs
to result in an exact alignment of the platform in front of
the taskboard. As stated before, it is virtually impossible
to exactly reach the goal location due to the nonholonomic
constraints of the platform. The goal is only reached with an
accuracy determined by the similarity threshold ε. Choosing
the bidirectional algorithm will relocate this problem to the
point where the trees meet (i.e. in the middle of the path).
Although this causes a discontinuity, the end of the path is
now exactly the goal position. The similarity threshold is set
to ε = 0.1 to keep the discontinuity in the path small, such
that the controller described in Section VI can handle it.
The position and heading gain for the distance function are
unchanged. ∆t = 1 and a total of 9 motion primitives are
selected. Both crab mode and rotation in place are included
in the set. The turn in place input allows rotation in both
CW and CCW direction. u1

u2

DM

 =

 0.5

0

32

 ,
 0.5

±0.2

32

 ,
 0.5

±0.25

32

 ,
 0.5

±0.4

48

 ,
 ±0.5

0

64


During the coarse approach, the controller performance is

separated from the localization performance by using two
different error metrics. The Localization error is defined

54

Obstacles

Rover

Vicon Cameras

Taskboard

X

Y

Fig. 51. Image of the workspace used during the navigation experiments.
The rover and taskboard are both indicated with a red dot. Beams used
as obstacles are indicated with black dots. 9 Vicon cameras, indicated in
blue, are positioned around the perimeter of the workspace.

as the difference between the localization position estimate
and the actual position as measured by the Vicon motion
capture system. This error represents the performance of
the localization algorithm, and is unknown to the system.
The tracking error is defined by the difference between the
localization estimate and the reference trajectory and hence
represents the controller performance. If the controller
tracks the path perfectly, it is zero. This error is known
to the system and hence the execution can be terminated if
the error gets too large (i.e. exceeds the minimum turning
radius).

The performance of the navigational algorithm as a whole
is assessed using the total error. This error is computed
by taking the difference between the actual location of the
platform according to the Vicon system and the desired
location given by the path planning algorithm. The final
value of this error after execution of the alignment stage
should be within the limits of 15 cm in position and 6◦ in
heading.

Other important variables are the drive mode, which
determines which controller is used to track the path, and
the input to the platform computed by the controller.

During the experiments, 8 trials of the coarse approach
and 10 trials of the alignment are executed. The initial
position for the coarse approach is held constant to within
a couple of centimeters and degrees. The path found by
the planning algorithm is different for every trial but the
configuration of the obstacles and taskboard is identical.
An example path found by the planner is shown in Figure
15. The location of the platform at the start of the alignment
stage is varied, to test if accurate alignment is possible from
several angles and positions w.r.t. the taskboard.

B. Results

The error metrics for the trials of both stages are listed in
Table XII and Table XI. For the alignment stage, only the
absolute total error after execution is reported. These values
must be within te limits specified. The last column of the
table shows if the final position was within these limits. For
the coarse approach, all three error metrics are reported.

Several plots of the error metrics and a position compari-
son are given as well. The first set of graphs in Figure 52 is
from the coarse approach trial. In the top left graph of 52a,
the position of the platform from the Vicon system (blue)
is compared to the localization estimate (yellow) and the
reference trajectory (orange). The remaining figures show

TABLE XI
RESULTS OF ALIGNMENT STAGE. BOLD ENTRIES ARE NOT WITHIN

THE SPECIFIED ACCURACY OF 15 CM IN POSITION AND 6◦ IN HEADING

Absolute Total Errors
Trial x [m] y [m] θfr [◦] Within limits

1 0.162 0.079 0.018 no
2 0.114 0.212 7.523 no
3 0.152 0.046 1.169 no
4 0.060 0.359 3.197 no
5 0.006 0.050 4.165 yes
6 0.426 0.159 5.139 no
7 0.112 0.098 2.236 yes
8 0.140 0.016 11.61 no
9 0.045 0.152 2.022 no

10 0.221 0.135 9.848 no
Average 0.140 0.132 4.693 yes

the tracking and localization error, and finally the combined
total error. In each graph, the error is subdivided into the
error in x position (blue), y position (orange) and heading θ
(yellow). The set of graphs in Figure 52b shows the control
input and the drive model respectively.

The tracking of the reference trajectory is always within
0.3 meter. The error when path execution is finished is
around 0.1 meter. The localization accuracy, however, is
diverging quite rapidly, with a final error of about 0.3 meter
in both x and y.

Figure 53 shows the performance of the navigation al-
gorithm for the alignment stage. During this experiment,
the localization based on wheel encoders is replace by the
Vicon position measurement to simulate the recognition
and feedback of the taskboard and its pose. The tracking
shows a large deviation in the middle segment of the path,
which coincides with a jump in the heading error as can
be seen in the top right figure. The tracking error is mostly
compensated for during the remainder of the path, but an
error in x of about 0.4 meter is still present after execution
is done. The results in the total error being outside the
required bounds for performing the manipulation tasks at
the taskboard.

The final set of results is shown in Figure 54. This
is a special case of the final alignment stage where the
platform is placed with a lateral offset from the platform
but with the right final heading. This is similar to a parallel
parking maneuver except that this platform (or actually the
controller) is not capable of a reversal. Hence, the resulting
path requires extensive use of the rotation in place mode.
The tracking error has the largest magnitude (about 0.5
meter) around half way. The final error is in the order
of 5 cm. This is well within the bounds required for
manipulation without relocation.

55

TABLE XII
RESULTS OF COARSE APPROACH STAGE

Abs. Tracking Errors Abs. Localization Errors Abs. Total Errors
Trial x [m] y [m] θfr [◦] x [m] y [m] θfr [◦] x [m] y [m] θfr [◦]

1 0.384 0.302 2.550 0.082 0.574 0.745 0.285 0.153 1.037
2 0.113 0.134 0.544 0.010 0.443 0.476 0.117 0.301 3.673
3 0.155 0.265 9.546 0.332 0.424 0.974 0.164 0.143 7.735
4 0.185 0.055 2.074 0.009 0.415 1.089 0.194 0.359 0.712
5 0.133 0.126 2.922 0.057 0.358 0.854 0.074 0.235 1.283
6 0.165 0.434 21.76 0.020 0.545 1.874 0.182 0.128 19.35
7 0.093 0.267 2.487 0.205 0.395 1.742 0.297 0.674 5.764
8 0.102 0.655 0.355 0.278 0.418 2.521 0.177 1.073 2.246

Average 0.166 0.280 5.280 0.124 0.446 1.284 0.186 0.383 5.223

x position [m]
-3 -2 -1 0 1 2

y
po

si
tio

n
[m

]

0

2

4

6

8

10

Start

Goal

Platform Position
Vicon
Reference
Localization

Time [s]
0 5 10 15 20 25

E
rr

or
 [m

]

-1

-0.5

0

0.5

1
Tracking errors

x
y
θ

Time [s]
0 5 10 15 20 25

E
rr

or
 [m

]

-1

-0.5

0

0.5

1
Localization errors

x
y
θ

Time [s]
0 5 10 15 20 25

E
rr

or
 [m

]

-2

-1

0

1

2
Total errors

x
y
θ

(a) Errors

Time [s]
0 5 10 15 20 25

In
pu

t [
m

/s
] a

nd
 [r

ad
]

-2

-1

0

1

2
Platform Input

Velocity
Steering

Time [s]
0 5 10 15 20 25

M
od

e

0

10

20

30

40

50

60

70
Drive/Control mode

Mode:
32 = 4WS
48 = Crab
64 = TIP

(b) Control Input

Fig. 52. Experimental results of the first planning and execution stage. The top left graph in 52a contains the platform position comparison between
Vicon (blue), localization (yellow) and the reference (orange). The other three graphs contain the errors in x (blue), y (orange) and θ (yellow). 52b
includes the platform input computed by the controller and the drive/control mode determined by the path planning algorithm. In this stage, only four
wheel steer and crab mode are used.

56

x position [m]
-3 -2 -1 0 1 2

y
po

si
tio

n
[m

]

5

6

7

8

9

10

Start

Goal

Platform Position
Vicon
Reference

Time [s]
0 5 10 15 20 25

E
rr

or
 [m

]

-2

-1

0

1

2
Total errors

x
y
θ

Time [s]
0 5 10 15 20 25

In
pu

t [
m

/s
] a

nd
 [r

ad
]

-2

-1

0

1

2
Platform Input

Velocity
Steering

Time [s]
0 5 10 15 20 25

M
od

e

0

10

20

30

40

50

60

70
Drive/Control mode

Mode:
32 = 4WS
48 = Crab
64 = TIP

Fig. 53. Experimental results of the alignment stage of the navigation algorithm. The top left figure contains the platform position reference (orange)
and the position according to the Vicon system (blue), which is also the localization estimate during this stage. The top right graph shows the total
error. The lower two graphs show the input tot the platform computed by the controller and the drive/control mode respectively.

x position [m]
-3 -2 -1 0 1 2

y
po

si
tio

n
[m

]

-1

0

1

2

3

4

5

6

Start

Goal

Platform Position
Vicon
Reference

Time [s]
0 10 20 30 40 50 60 70 80

E
rr

or
 [m

]

-2

-1

0

1

2
Total errors

x
y
θ

Time [s]
0 10 20 30 40 50 60 70 80

In
pu

t [
m

/s
] a

nd
 [r

ad
]

-2

-1

0

1

2
Platform Input

Velocity
Steering

Time [s]
0 10 20 30 40 50 60 70 80

M
od

e

0

10

20

30

40

50

60

70
Drive/Control mode

Mode:
32 = 4WS
48 = Crab
64 = TIP

Fig. 54. Experimental results of the alignment stage where a ”parallel parking” maneuver needs to be executed. The content of the graphs is the same
as in Figure 17. Note that reversals are not possible and hence the rotation in place mode needs to be used extensively.

57

APPENDIX X
DISCUSSION

This section provides a discussion of the work done
during the Msc. project. As the goal of the project was
to develop and implement a working navigation algorithm,
but not necessarily an optimal one, there are numerous
improvements possible in various aspect of the algorithm.
This section gives an overview of these improvements and
references if available. Furthermore, it will list the situations
that were not (thoroughly) tested during the Msc. project
and that require more attention and/or future research.

A. Localization

The localization algorithm based on dead-reckoning has
been shown to provide a position estimate within 0.5% of
the travelled distance. However, this was only tested on very
smooth terrain (no slopes) with high traction (no sandy or
slippery surface). The performance of the localization will
most likely deteriorate when the platform is driving on more
difficult terrain. For the Msc. project it was not necessary
to test the localization on very rough terrain. Besides, a
suitable location that was large enough, indoors, and had the
necessary equipment (such as Vicon motion capture system)
available, could not be found.

If the platform, in its current state, needs to perform on
more rough terrain, the following improvements could be
implemented:
• Take the whole attitude of the rover into account while

performing dead-reckoning (See for example: [57] [58]
[59]), i.e. move towards 3D. This will increase the
dead-reckoning accuracy when the environment con-
tains slopes.

• Use accelerometer data to detect all wheel slip. This
will give the possibility to reduce localization errors
when all wheels are slipping, as the wheel encoder
count can be ignored when the accelerometer does not
show movement [60], [61], [14].

• Add Ackermann steering to the platform. This is a
hardware improvement that would reduce localization
errors. If the platform is capable of Ackermann steer-
ing, wheel slip would be reduced [44].

Additionally, it would be very beneficial to add a sensor
to the platform that would give an absolute position mea-
surement. This could be a stereo camera pair or a LIDAR.
Not only would this greatly increase the accuracy of the
localization, it would also add the capability of obstacle
detection.

B. Path Planning

The path planning algorithm based on RRT is capable
of planning a path using all drive modes of the platform.
The RRT algorithm is generally used to find a ”good
enough” path, which is not optimized for a certain cost
function (based on e.g. length or control effort). However,
the distance function ρ(q1, q2) used in the algorithm can
still be tuned to influence the resulting path and adapt it
to the needs of the specific situation. For example, the
cost function could be defined such that the nonholonomic
constraints are taken into account. This means that the same
distance in the Euclidean sense would be valued higher if
it is a lateral offset as compared to longitudinal. This can
improve the accuracy of reaching the goal vertex qgoal and

help match the vertices if the bidirectional version or path
smoothing is used.

The algorithm parameter ∆t influences the length of the
motion primitives and how often the platform can change its
drive mode. In wide workspaces containing few obstacles,
it is beneficial to choose a high value for this parameter.
It will make the planning faster, as the space will be
traversed quicker using less vertices, and the behaviour
of the platform will be more smooth as it switches less
between drive modes. In more confined spaces, where many
obstacles are present, it is necessary to choose ∆t low
to be able to find a solution. An unwanted side effect is
that the platform can switch the drive mode every time a
new motion primitive is selected. This does not benefit the
localization and tracking accuracy. One solution could be to
penalize the switch of drive modes, such that the behaviour
becomes more smooth. Another solution could be to make
∆t variable, and let the algorithm reduce its value if the
specific environment requires this.

Finally, the same argumentation could be used for the
number of motion primitives available to the planning
algorithm. If the workspace is large and relatively free of
obstacles, only a few motion primitives are necessary to
find a path. If the platform is required to be very versatile,
more motion primitives are necessary. If this number could
be set dynamically during path planning, this would benefit
the performance of the algorithm.

C. Control

Three different controllers, one for each drive mode, were
implemented on the platform. The final experiments using
the navigation algorithm show the performance of these
controllers. Despite the difficulty of controlling nonholo-
nomic systems, the controllers are able to keep the tracking
error well within the minimum turning radius. Nevertheless,
several improvements might be possible to increase the
tracking accuracy, and make the system more robust to
external disturbances.

Currently, the main limitation of the controllers is that
they are not able to handle reversals of the platform. This
greatly limits its versatility and results in more complicated
paths than necessary. In [28], several techniques are pre-
sented that should solve this problem.

A hardware limitation of the platform is that velocity
inputs lower than 0.3 m/s will not result in any motion.
Apparently this input is too low for the internal controllers
of the platform to overcome friction in the mechanical sys-
tem. As a result, the platform has to drive at relatively high
speeds. Especially at the end of the path, when a certain
position needs to be reached, this results in overshoot.

The controller for the crab drive mode is currently a
simple PID one. Although the controller is able to track
the reference, performance is not as good as with the
controller based on approximate linearization and the feed-
forward command is not used. Furthermore, because the
PID feedback law for the steering is based on an error
signal that is not directly controlled by the steering angle
(a forward velocity is always needed), the control is not
ideal. By modifying the mathematical equations of the
system, it should be possible to also apply the control
through approximate linearization on the crab mode. This
is expected to increase the tracking performance.

Regarding the choice of the gains ki of the approximate
linearization method, the following needs to be considered.

58

Tuning the gains to give better tracking could be possible.
However, because the steering and velocity input becomes
more aggressive and rapidly changing, this will deteriorate
the performance of the localization estimate based on dead-
reckoning. A balance needs to be found between track-
ing accuracy and localization accuracy. If the localization
algorithm is not improved by the addition of an extra
sensor providing an (absolute) position measurement, the
controller should be tuned to give acceptable tracking while
the localization estimate is not affected.

From the control effort that was necessary during the
experiments, it seems that the controller needs to give quite
some correction on the feedforward command. Furthermore,
the steering input is often saturated at the bounding val-
ues, both positive and negative. This could suggest that
the model used in the planner does not represent reality
particularly well, or the control gains could be tuned more
to reduce the control effort. This should be investigated.

Finally, the path planning algorithm results in a trajectory
with a time schedule. The reference point for the controllers
is hence the point on the trajectory which has the current
time stamp. Although this makes it very straightforward
to use feedforward control, it has some drawbacks. If the
platform somehow accumulates a delay w.r.t. the path (e.g.
because of a large external disturbance), the controller needs
great effort to compensate for this, which results in extreme
controller outputs for both velocity and steering. This is
again not beneficial for the localization estimate, as wheel
slip becomes more probable. Instead, the closest point on
the path to the platform could be chosen as the reference
point. This might make the path tracking more smooth and
one does not have to worry about accumulating delays.

59

REFERENCES

[1] A. Schiele, T. Krueger, J. Smisek, E. Mattheson, J. Rebelo, D. E.
E., F. Van der Hulst, and S. Kimmer, “Towards the Interact Space
Experiment: Controlling an Outdoor Robot on Earth’s Surface from
Space,” Proc. 13th ASTRA Conference on Space Robotics, 2015.

[2] N. Amato, O. B. Bayazit, L. K. Dale, C. Jones, and D. Vallejo,
“OBPRM: An Obstacle-based PRM for 3D Workspaces,” Proc.
Third Work. Algorithmic Found. Robot. Robot. Algorithmic Perspect.
Algorithmic Perspect., pp. 155–168, 1998.

[3] R. Bohlin and L. Kavraki, “Path planning using lazy PRM,” Proc.
2000 ICRA. Millenn. Conf. IEEE Int. Conf. Robot. Autom. Symp.
Proc. (Cat. No.00CH37065), vol. 1, no. April, 2000.

[4] S. Wilmarth, N. Amato, and P. Stiller, “MAPRM: a probabilistic
roadmap planner with sampling on the medial axis of the free space,”
Proc. 1999 IEEE Int. Conf. Robot. Autom. (Cat. No.99CH36288C),
vol. 2, no. May, pp. 1024–1031, 1999.

[5] J. Kuffner, J.J. and S. LaValle, “RRT-connect: An efficient approach
to single-query path planning,” Proc. 2000 ICRA. Millenn. Conf.
IEEE Int. Conf. Robot. Autom. Symp. Proc. (Cat. No.00CH37065),
vol. 2, no. April, pp. 995–1001, 2000.

[6] S. LaValle and Kuffner, “Rapidly-Exploring Random trees: Progress
and Prospects,” 2000.

[7] S. LaValle, “Rapidly-Exploring Random Trees: A New Tool for Path
Planning,” 1998.

[8] J. Barraquand and J. Latombe, “Robot Motion Planning: A Dis-
tributed Representation Approach,” Int. J. Rob. Res., vol. 10, no. 6,
pp. 628–649, 1991.

[9] B. Mirtich and J. Canny, “Using skeletons for nonholonomic path
planning among obstacles,” Proc. 1992 IEEE Int. Conf. Robot.
Autom., 1992.

[10] S. LaValle, “Planning Algorithms,” Methods, vol. 2006, p.
842, 2006. [Online]. Available: http://ebooks.cambridge.org/ref/id/
CBO9780511546877

[11] E. Baumgartner, H. Aghazarian, a. Trebi-Ollennu, T. L. Huntsberger,
and M. S. Garrett, “Rover Localization Results for the FIDO Rover,”
Spie, vol. 4571, pp. 34–44, 2001.

[12] J. Borenstein, H. R. Everett, L. Feng, and D. Wehe, “Mobile robot
positioning: Sensors and techniques,” J. Robot. Syst., vol. 14, no. 4,
pp. 231–249, 1997.

[13] L. Ojeda and J. Borenstein, “FLEXnav: fuzzy logic expert rule-based
position estimation for mobile robots on rugged terrain,” Proc. 2002
IEEE Int. Conf. Robot. Autom. (Cat. No.02CH37292), vol. 1, no.
May, 2002.

[14] L. Ojeda, G. Reina, and J. Borenstein, “Experimental results from
FLEXnav: An expert rule-based dead-reckoning system for Mars
rovers,” IEEE Aerosp. Conf. Proc., vol. 2, pp. 816–825, 2004.

[15] G. Dissanayake, S. Sukkarieh, E. Nebot, and H. F. Durrant-Whyte,
“The aiding of a low-cost strapdown inertial measurement unit using
vehicle model constraints for land vehicle applications,” IEEE Trans.
Robot. Autom., vol. 17, no. 5, pp. 731–747, 2001.

[16] H. F. Durrant-Whyte, “An Autonomous Guided Vehicle for Cargo
Handling Applications,” Int. J. Rob. Res., vol. 15, pp. 407–440, 1996.

[17] J. Borenstein and L. Feng, “Measurement and Correction of Sys-
tematic Odometry Errors in Mobile Robots,” IEEE Trans. Robot.,
vol. 12, no. 6, 1996.

[18] K. S. Chong and L. Kleeman, “Accurate odometry and error mod-
elling for a mobile robot,” Proc. Int. Conf. Robot. Autom., vol. 4, no.
April, pp. 2783–2788, 1997.

[19] A. Martinelli, “The accuracy on the parameter estimation of an
odometry system of a mobile robot,” Proc. 2002 IEEE Int. Conf.
Robot. Autom. (Cat. No.02CH37292), vol. 2, no. May, pp. 1378–
1383, 2002.

[20] J. Borenstein, “Experimental Results from Internal Odometry Error
Correction with the OmniMate Mobile Robot,” IEEE Trans. Robot.,
vol. 14, no. 6, pp. 963–969, 1998.

[21] L. Ojeda, G. Reina, D. Cruz, and J. Borenstein, “The FLEXnav
precision dead-reckoning system,” Int. J. Veh. Auton. Syst., vol. 4,
no. 2/3/4, p. 173, 2006.

[22] C. C. Ward and K. Iagnemma, “Classification-based wheel slip
detection and detector fusion for mobile robots on outdoor terrain,”
IEEE Int. Conf. Robot. Autom., vol. 26, no. April, pp. 33–46, 2007.

[23] R. W. Brockett, “Asymptotic stability and feedback stabilization,”
Differ. Geom. Control Theory, pp. 181–191, 1983. [Online]. Avail-
able: http://hrl.harvard.edu/publications/brockett83asymptotic.pdf

[24] B. Siciliano and O. Khatib, Springer Handbook of Robotics. Se-
caucus, NJ, USA: Springer-Verlag New York, Inc., 2007.

[25] R. Murray and S. Sastry, “Steering nonholonomic systems in chained
form,” [1991] Proc. 30th IEEE Conf. Decis. Control, no. December,
pp. 1121–1126, 1991.

[26] R. Murray, Z. Li, and S. S. Sastry, A Mathematical Introduction to
Robotic Manipulation, 1994, vol. 29.

[27] P. Morin and C. Samson, “Time-varying exponential stabilization of
chained form systems based on a backstepping technique,” Proc. 35th
IEEE Conf. Decis. Control, vol. 2, no. December 1996, 1996.

[28] A. DeLuca, G. Oriolo, and C. Samson, Feedback control
of a nonholonomic car-like robot, 1998. [Online]. Available:
http://link.springer.com/content/pdf/10.1007/BFb0036073.pdf

[29] B. D’Andréa-Novel and G. Campion, “Dynamic feedback lineariza-
tion,” 29th IEEE Conf. Decis. Control, pp. 1–6, 1992.

[30] G. Oriolo, A. DeLuca, and M. Vendittelli, “WMR control via
dynamic feedback linearization: Design, implementation, and experi-
mental validation,” IEEE Trans. Control Syst. Technol., vol. 10, no. 6,
pp. 835–852, 2002.

[31] D. Tilbury and Y. France, “Steering a Three-Input Nonholonomic
System using Multi-rate Controls,” Proc. Eur. Control Conf., pp. 1–
4, 1993.

[32] R. Murray and S. Sastry, “Nonholonomic motion planning. Steering
using sinusoids,” IEEE Trans. Automat. Contr., vol. 38, no. 5, pp.
700–716, 1993.

[33] P. Morin and C. Samson, “Control of Nonholonomic Mobile Robots
Based on the Transverse Function Approach,” IEEE Trans. Robot.,
vol. 25, no. 5, pp. 1058–1073, 2009.

[34] K. N. Spentzas, I. Alkhazali, and M. Demic, “Kinematics of four-
wheel-steering vehicles,” vol. 66, 2001.

[35] G. Campion, B. D’Andréa-Novel, and G. Bastin, “Modelling and
state feedback control of nonholonomic mechanical systems,” IEEE
Conf. Decis. Control, pp. 1184–1189, 1991. [Online]. Available: http:
//ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=261553

[36] K. Bohlmann, H. Marks, and A. Zell, “Automated Odometry Self-
Calibration for Car-Like Robots with Four-Wheel-Steering,” pp. 6–
11.

[37] J. Borenstein and L. Feng, “Measurement and Correction of Sys-
tematic Odometry Errors in Mobile Robots,” IEEE Trans. Robot.,
vol. 12, no. 6, pp. 869–880, 1996.

[38] C. Samson, “Control of chained systems application to path following
and time-varying point-stabilization of mobile robots,” IEEE Trans.
Automat. Contr., vol. 40, no. 1, pp. 64–77, 1995.

[39] P. Morin and C. Samson, “Control of nonlinear chained systems: from
the Routh-Hurwitz stability criterion to time-varying exponential
stabilizers,” IEEE Trans. Automat. Contr., vol. 45, no. 1, pp. 141–146,
2000.

[40] E. N. Moret, “Dynamic Modeling and Control of a Car-Like Robot,”
2003.

[41] A. DeLuca and M. Benedetto, “Control of nonholonomic systems
via dynamic compensation,” Kybernetika, vol. 29, no. 6, pp. 593–
608, 1993.

[42] P. R. Giordano, M. Fuchs, and G. Hirzinger, “On the Kinematic
Modeling and Control of a Mobile Platform Equipped with Steering
Wheels and Movable Legs.”

[43] G. Campion, G. Bastin, and B. D’Andréa-Novel, “Structural proper-
ties and classification of kinematic and dynamic models of wheeled
mobile robots,” pp. 47–62, 1996.

[44] J. Ackermann, “Robust decoupling, ideal steering dynamics and yaw
stabilization of 4WS cars,” Automatica, vol. 30, no. 11, pp. 1761–
1768, 1994.

[45] L. Ojeda and J. Borenstein, “Methods for the reduction of odometry
errors in over-constrained mobile robots,” Auton. Robots, vol. 16,
no. 3, pp. 273–286, 2004.

[46] J. Borenstein, “The CLAPPER : A Dual-drive Mobile Robot With
Internal Correction of Dead-reckoning Errors,” pp. 3085–3090, 1994.

[47] M. W. Powell, T. Crockett, J. M. Fox, J. C. Joswig, J. S. Norris, K. J.
Rabe, M. McCurdy, and G. Pyrzak, “Targeting and localization for
Mars rover operations,” Proc. 2006 IEEE Int. Conf. Inf. Reuse Integr.
IRI-2006, pp. 23–27, 2006.

[48] B. Barshan and H. F. Durrant-Whyte, “Inertial navigation systems
for mobile robots,” IEEE Trans. Robot. Autom., vol. 11, no. 3, pp.
328–342, 1995.

[49] A. Kelly, “General solution for linearized systematic error propa-
gation in vehicle odometry,” Proc. 2001 IEEE/RSJ Int. Conf. In-
tell. Robot. Syst. Expand. Soc. Role Robot. Next Millenn. (Cat.
No.01CH37180), vol. 4, pp. 1938–1945, 2001.

[50] J. Crowley, “Asynchronous Control of Translation and Rotation in
a Robot Vehicle,” Proceedings. IEEE/RSJ Int. Work. Intell. Robot.
Syst. ’. (IROS ’89) ’The Auton. Mob. Robot. Its Appl., 1989.

60

[51] K. Lee, W. Chung, H. W. Chang, and P. Yoon, “Odometry calibration
of a car-like mobile robot,” ICCAS 2007 - Int. Conf. Control. Autom.
Syst., pp. 684–689, 2007.

[52] S. LaValle and J. Kuffner, J.J., “Randomized kinodynamic planning,”
Proc. 1999 IEEE Int. Conf. Robot. Autom. (Cat. No.99CH36288C),
vol. 1, 1999.

[53] C. Cariou, R. Lenain, B. Thuilot, and P. Martinet, “Adaptive control
of four-wheel-steering off-road mobile robots: Application to path
tracking and heading control in presence of sliding,” 2008 IEEE/RSJ
Int. Conf. Intell. Robot. Syst. IROS, no. OCTOBER 2008, pp. 1759–
1764, 2008.

[54] C. Samson, “Path following and time-varying feedback stabilization
of a wheeled mobile robot,” in Int. Conf. Autom. Robot. Comput.,
vol. 9, no. 0, 1992.

[55] C. Cariou, R. Lenain, and B. Thuilot, “High accuracy path tracking
of a four-wheel-steering all-terrain vehicle on a slippery slope,” Eng.
a, no. September 2015, 2008.

[56] M. Rufli, “Driver-in-the-Loop Path Control for a Non-Holonomic
Vehicle,” Bachelor Thesis, ETH Zurich, no. July, 2006.

[57] J. Vaganay and M. Aldon, “Attitude estimation for a vehicle using
inertial sensors,” Control Eng. Pract., vol. 2, no. 2, pp. 281–287,
1994.

[58] Y. Fuke and E. Krotkov, “Dead reckoning for a lunar rover on uneven
terrain,” pp. 411–416, 1996.

[59] L. Ojeda and J. Borenstein, “Improved Position Estimation for
Mobile Robots on Rough Terrain Using Attitude Information,” no.
August, pp. 1–14, 2001.

[60] C. C. Ward and K. Iagnemma, “Model-based wheel slip detection
for outdoor mobile robots,” Proc. - IEEE Int. Conf. Robot. Autom.,
no. April, pp. 2724–2729, 2007.

[61] J. Yi, J. Zhang, D. Song, and S. Jayasuriya, “IMU-based localization
and slip estimation for skid-steered mobile robots,” IEEE Int. Conf.
Intell. Robot. Syst., pp. 2845–2850, 2007.

