
CoA.Note No. 155 

^•'^r~rr:tr^r>.\ f\^,\ 

THE COLLEGE OF AERONAUTICS 

C R A N F I E L D 

THE F R E E - M O L E C U L E FLOW CHARACTERISTICS 

O F CONCAVE SURFACES 

by 

M . J . P r a t t 



NOTE No. 155 

June 1965 

CRANFIELD 

The free-molecule flow characteristics 

of concave surfaces 

-by -

M.J. Pratt, B.A., D.C.Ae. 

CORRIGENDA 

Page 8 , Equat ion (6a) l a s t term. For dcdcu read dcdoi 

Page 1 1 , Equat ion ( 1 5 ) , for 2 n ^ ( | ) T F ( X , S ) read 2n^(|_)T^F(x,S) 

Page Ik, t h i r d equa t ion of Equat ions ( 2 l ) fo r -gA p̂ U^ read -gApp U"' 

Page 18 , Equat ion (29) for . iflib read ^ 

Page 51 ƒ Table I , heading t o f i r s t column fo r H r e a d s . 



NOTE NO. 155 

June 1965 

THE COLLEGE_OF_AERONAUTICS 

CRAIWIELD 

The free-̂ iolecule flow characteristics 

of concave surfaces 

- by -

M.J. Pratt, B.A., D.C.Ae. 

SUMMARY 

The problem of free-molecule flow over concave surfaces is 
investigated, and general equations formulated for the lift, drag, and 
heat transfer characteristics of such surfaces. The effect of multiple 
reflections is taken into account by use of the Clausing integral equation 
to determine the redistribution of molecular flux over the surface. It 
is assumed that emission of molecules from the surface is purely diffuse, 
and that the reflected molecules are perfectly accommodated to the surface 
conditions. 

The equations obtained are solved for the cases of (i) an infinitely 
long circular cylindrical arc and (ii) a section of a spherical surface, 
at hyperthermal velocities. It is found that under the above conditions 
the local heat transfer characteristics are the same as those of the 
corresponding convex surface, the total heat transfer being independent 
of the geometry of the surface. As drag devices, the concave surfaces 
examined prove only slightly more effective than a flat plate at similar 
incidence, and as a generator of lift the cylindrically cambered plate is 
significantly inferior to the flat plate at similar incidence. 
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Notation 

Roman __s^bols 

c 

c , c , c 
x' y' z 

base area of surface 

molecular velocity 

cartesian components of c 

Cj. drag coefficient 

C, lift coefficient 
L> 

C„ total heat transfer coefficient 
n 

D total drag force 

E. , internal energy transfer rate to surface m t "̂"̂  

E, translational energy transfer rate to surface 

f(c^) molecular velocity distribution function 

F) 
G ) functions of (x>S) 
H) 

j number of molecular degrees of freedom 

K kernel of integral equation 

L total lift force 

m molecular mass 

n molecular concentration (no. of molecules per unit volume) 

N molecular number flux 

p pressure 

<̂  total heat transfer rate 

r radius of cylinder or sphere 

rx2 distance between two surface elements 
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R gas constant per gram of gas 

S molecular speed ratio = U //2RT-o 

T temperature 

U free-stream velocity 
00 

z spanwise coordinate of cylindrical surface 

Greek symbols 

a. angle of incidence 

a" Jt/2 - a 

a' thermal accommodation coefficient 

P angle between free-stream and normal to surface 

y ratio of specific heats 

5 angle between normal to surface and velocity vector 
of multiply reflected molecule 

e parameter relating reflection components of aerodynamic 
coefficients to corresponding values for a flat plate at 
similar incidence 

0 polar coordinate of a point on the surface 

6 limit on e 

X angle between L and lift vector at 5 

§ position vector of a point on the surface 

p gas density 

Z area of the surface 

T shear force per unit area 

cp, \|f polar coordinates centred at | 

$, Y limits on cp> \|f 

X sin cp cos (p-t) 



- 5 -

00 

ft 

Subscripts 

solid angle 

limit on ÜÜ 

i relating to total n\mber of incident molecules 

00 relating to free-stream molecules or conditions 

b relating to multiply reflected molecules or surface 
conditions 

r relating to total number of reflected molecules 

Superscripts 

(c) relating to the cylindrical surface 

(s) relating to the spherical surface 
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1. Introduction 

1.1 In gas flows at sufficiently low densities, the scale of molecular 
motion can become comparable to the size of bodies of practical interest 
in aerodynamic applications. VJhen the density is so low that the 
effects of collisions between the gas molecules are far outweighed by 
the effects of collisions of the molecules with a body in the flow, we 
have the régime of free-molecule flow, first defined in 195̂ -̂ by Zahm (l). 
The flow quantities are convected by the individual molecules rather 
than transferred by the intermediary of collisions, and concepts such 
as viscosity, which are intimately connected with intermolecular collision 
processes, entirely lose their sigKificance. It is usual to define a 
free-molecule flow as a flow having a Knudsen number greater than about 
10, where the Knudsen number is the ratio of the molecular mean free 
path-length to a tjrpical dimension of a body in the flow. 

In recent years the study of the aerodynamics of free-molecule 
flows has been stimulated by the practical possibilities of flight in 
the upper regions of the atmosphere. Numerous investigators have examined 
the aerodynamic characteristics of bodies of various configurations in 
free-molecule flows; an article by Schaaf and Chambré (2) conveniently 
tabulates references to some of this work. A comprehensive sxjmmary of 
the theory involved is given in a textbook by Patterson (5). 

The majority of workers in this field have confined their attentions 
to bodies having surfaces which are either flat or convex, and comparat
ively little research has been concerned with non-convex configurations. 
Special problems arise in the treatment of such geometries owing to the 
occurrence of multiple molecular reflections. Hurlbut (U) has obtained 
some approximate results, while the following analysis is founded upon 
an outline by Cohen (5) of the approach to an exact method of solution. 
The present work presents an analysis of two classes of concave surfaces, 
from which solutions for the lift, drag, and heat transfer are obtained. 
At a late stage in the preparation of this work, two articles by Chahine 
(6,7) were published, covering much the same ground, although the results 
given are not entirely in agreement with those obtained here. The 
present analysis appears to have certain advantages over the method used 
by Chahine, notably in the treatment of axisymmetric surfaces. 

2. -̂ nalysis 

2.1 Preliminary 

The total momentum and energy transfer to a body in free-molecule 
flow arises from two components. Firstly, momentum and energy are 
yielded up to the body by the incident molecules, and secondly, momentum 
and energy are transported away from the body by the reflected molecules. 
Since the molecular mean free path is large compared with the body dimen
sions, the incident and reflected flows can be taken as separate and non-
interacting. The precise nature of the reflection of molecules from the 
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surface is at present still imperfectly understood, but a concise 
summary of the present state of knowledge is given by Charwat (8). 
In the following analysis a number of assumptions are made concerning 
the reflection process: 

(i) The reflection is perfectly diffuse. This condition implies 
that the incident molecules are adsorbed by the surface and 
later re-emitted with a Maxwellian velocity distribution. 
The reflected molecules obey Lambert' s cosine law of diffuse 
reflection, 

(ii) The velocity distribution corresponds to the temperature of 
the emitting surface (i.e. perfect accommodation occurs at 
the surface). 

(iii) No surface poisoning or trapping of molecules occurs at the 
surface. 

Experimentally it is found (9) that for air on 'engineering' surfaces 
(which by molecular standards are 'dirty' due to oxidation and adsorption 
of gases) these three conditions are fulfilled fairly well, although 
work by Roberts (lO) has shown that the situation can be drastically 
altered in certain cases involving clean surfaces. He finds, for instance, 
that the reflection of helium atoms from a clean tungsten surface is almost 
coriipletely specular. This effect is apparently due to the fact that the 
de Eroglie wavelength of the incident atoms is comparable with the lattice 
spacing of the tungsten surface. However, here it will be assimied that 
we are dealing with 'engineering' surfaces. 

The further assimptions will be made that: 

(iv) The gas stream consists of a single molecular species. 

(v) The surface tem.perature is constant over the surface and 
invariant with time. 

(vi) The surface temperature is sufficiently high to avoid ' cold 
wall paradoxes' (ll). This condition stipulates that the 
re-emitted molecules must have sufficient velocity to avoid 
large increases in gas density building up at the surface, 
which may lead to violation of the conditions defining a free-
molecule flow. 

2.2 The molecular flux at the surface 

The total incident molecular flux at a point |j_ on a concave 
surface is given by ~ 

î̂ î ^ = ^JL^^ •" ^ î̂ '̂ (1) 



- 6 -

where N is the flux of free-stream molecules and N, the flux of multiply 
00 D 

reflected molecules from the remainder of the surface. 

In the case of a non-concave surface the term N, (|i) is zero; it is 

this multiple reflection term which gives rise to the additional 
complications inherent in the theory of the concave surface. If we 
consider the number of molecules emitted per unit time by a surface 
element ÜZQ at ^s ^^^ intercepted by dSi at ^̂  we obtain, using the 

cosine law of reflection, 

SE^[^_^)dZ^ = ' ° ' ^^a'°' ̂ ^ N^(l3)c32i ^^, (2) 
12 ~ 

in which the symbols are defined in Figure 1. Since N.^a) = N (I2) 

from assumption (iii), we obtain from equations (l) and (2) 

N.(|_i) = N^(£i) + ƒ K(£i, |_2)N.(|_2)<a2a, (3) 

22 

v.. 1- Tr/- « N cos 5i COS 5 P in which K(|i, I2) = ~ • 
~ ~ «r^ 

12 

Equation (5) is a Fredholm integral equation of the second type, 
in which the kernel is seen to be symmetrical. This type of problem 
was first formulated in terms of an integral equation in 1929 by 
Clausing (l2), who was concerned with the flow of rarefied gases through 
pipes. 

2.3 Mass^ momentum and energy fluxes at the surface 

Using the coordinate system defined in Figure 2, the free-stream 
molecular flux incident on a non-concave surface at the point è, is given 
by 

00 00 00 

''côî  = ƒ ƒ ƒ ^X^(2)^-xV°Z> 

where f(c) is a velocity distribution function whose significance is 
explained in any textbook on the kinetic theory of cases (for example 
that by Kennard (15)). 

The lower limit of zero on c implies that molecules having negative 

x-velocities cannot strike the surface at |. This equation may be 
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rewritten in spherical polar coordinates as 

N (5) = / / sincpcosijf ƒ c-^f(c)dcdüü (k) 

27C 

where c =s csincpcos\jf 

dc_ dc dc = c^sincpdpdij/dc 

düü = sincpdcpd Ĵf. 

In the case of the concave surface, however, only those free-
stream molecules travelling in directions included in the solid angle 
fii subtended by the boundary of the surface at ̂  can actueilly strike 

the surface at |. Moreover, a further contribution to the total 

molecular flux arises from impacts at | of molecules reemitted from 

other parts of the surface, whose velocities will be confined to the 
solid angle us subtended at | by the surface itself. Thus we obtain 
the equation "~ 

N. ( | ) = N (e) + N (1) 
1 ^ 00 u 

^ 00 

= ƒ ƒ sincpcos\|f /c^f3_(c)dcd<D + / /sincpcos^ /c^f2(c)dcdü3 

(5) 

Here fi(c) is a Maxwellian velocity distribution function corresponding 
to the free-stream temperature T , and including the superimposed free-

stream velocity U . The function f2(c) is a Maxwellian velocity 
00 — 

distribution function for a gas at rest with respect to the surface, 
corresponding to the surface temperature T, . 

.In the case of momentimi and energy fluxes at the surface we have 
three contributions: (a) from incident free-stream molecules, (b) 
from incident multiply reflected molecules, and (c) from reemissions 
of molecules at |. These latter are emitted isotropically with a 

distribution function f3(c) corresponding to the surface temperature T, , 
within the solid angle ̂ 3"= fii + 02 = 2^. The cartesian expressions 
have the forms 

Normal momentum flux (pressure) p = m/// c^f(c)dc 
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Tangential momentum flux (shear) T = m///c c f(c)dc 

Translational energy flux E, = ö ///^ (c.c)f(c)dc 

We are led to the following expressions for the pressure, shear, and 
translational energy flux at |. 

p(§) = m/ /s in^cpcos^ / c'*fi(c)dcdoü + m / / s i n ^ c o s ^ /c'*f2(c)dcdcD 

fll o «2 o 

+ m / / s i n ^ c o s ^ / c'*f3(c)dcdaj (6a) 

T ( 5 ) = m//sin^cpcos)ifsin\jr /c'*fi(c)dcdü) + m//sin^cpcos-\|fsin»lf /c'*f2(c)dcdüi 

fii ° fi2 ° 

+ m//sin2(pcosA|rsiniir /c4f3(G)dcdcD (6b) 

O3 o 

r r poo pp poo 
E, (ë ) = -r //sincpcos\lf /c5fjL(c)dcdüi + p //sincpcos^j; /cSf2(c)dcdcD 

~ Ol o 02 ° 

«— //sinq3Cos\|r / cSf3(c)dcdü) (6c) 

O3 ° 

In fact the last term in equation (6b) vanishes on integration because 
of isotropic reemission, the contribution to shear at the surface arising 
from reemitted molecules is zero. 

In calculating the heat transfer rate we must include also the 
effect of internal degrees of freedom of the molecules, in the case of 
gases which are not monatomic. Assuming equipartition of energy, each 
molecule carries internal energy -^mRj. .T, where j. . is the number of 

internal degrees of freedom. For a perfect gas J. j.-, = 5 + J- ^) and 

•̂ total "̂  ̂ Z^'' " '^^' Si'V'ing j^^^ = (5 - 57)/(7 - l)- The internal energy 

transfer is then, from equation (l) 
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E ft) = (̂ —I-_2l\ 2£ ƒN T +N T . 
^int^i^ \y - 1 / 2 [ oo ̂oo % b̂ 

\y - 1 y 2 00̂ '̂ I 00 bj 

N 4̂ 
(7) 

2.4 Drag, lift and heat transfer rate of the surface 

When an element dZ of the surface is inclined so that its normal 
makes an angle p with the free-stream direction, its drag is 

dD = d2;(pcosp + Tsinp) (8a) 

S i m i l a r l y , a pe rpend icu la r l i f t fo rce 

dL = d2(psinp - r c o s p ) (8b) 

will exist, acting in the plane containing the free-stream direction 
and the normal to the surface. Using equations (6) and (8a), the total 
drag of the entire surface becomes 

D = /(pcosp + Tsing)d2 

Z 

= m s in^q jcos^ / c'*fi(c)dcdcD + //sin^cpcos \lf /c*f2(c)dc(iü 

Z Ü1 0 2 

n.ri r\ oo o p p 00 

+ / / s i n ^ c o s ^ /c*f3(c)dcdü3 + / / s i n ^ c p c o s ^ /c*f3(c)dcdüü 

Oi o 02 ° 

cosp 

//sin^(psin(|fCos\j/- /c^f i (c)dcda) + / /sin^sinijfcosij ; / c'^f 2( c )dcdüj 

Oi o 02 ° 

+ //sin^cosiJrsin\|/- / c'^f3(c)dcdoD + //sin^cos\lrsini |f /c'*f3(c)dcda) 

Oi o fi2 o • 

(9) 

sinp|-d2 

In the above relation the integrals over O3 in equations (6) have been 
written as the sum of integrals over ̂ i and 02- The second and sixth 
terms, taken together, represent the drag of the surface due to impacts 
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of multiply reflected molecules, while the fourth and eighth terms give 
the drag due to reemissions of molecules which are, however, destined 
to encounter the surface once more. These four terms, then, describe 
a momentum transfer which is purely an internal process, and cannot 
contribute to the total drag of the surface. The only events significant 
in this connection are (i) impacts of free-stream molecules, and (ii) 
reemissions of molecules into the free-stream, carrying momentum 
completely away from the body. We may ignore the even-numbered terms 
in equation (9)> and rewrite it as 

D = m/ / / sin'^cw cos \jrcosp + cos\|ri3in-jfsiriP>- / c 

2 Oi o 

fi(c) + f3(c) dcdcüdZ 

(10) 

while similar expressions may be found for the lift and heat transfer. 

The velocity distribution function for the reemitted molecules is 
assumed to have the Maxwellian form 

MO 
^3^2) = (2^R T^)3/2 2R' •\ (11) 

in which n,(|) is the molecular concentration of emitted particles at |. 

It may be shown (vide, for instance, ref. (ll), p. 40l) that n and N 

are related by 

n,(0 = » , ( 1 ) / / ^ . (12) 

".'iWl 
from condition (iii). Using equation (ll) -we now find 

2 
/ c'̂ f3(c)dc = / '̂ ^̂ î '̂  e " 2RT" dc = •^ n (| )RT, (ij) 

o o ^ "b' 

on evaluation of the standard integral. 

The velocity distribution function for the free-stream molecules 
is also Maxwellian, but includes the free •••stream velocity U 

file:///jrcosp
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n (I) - é r f(^x - U„^osp)2+(c - U^sinp)2+ c|) 
^ / \ 00 _ 00 

1̂̂ 2) = (2R;^V2 ^ 
00 

^»ii) ' •5ÏÏT^^^ - 2cU sincpcos(p-\|r)+ U^} (ik) 
_ .... ,„ «ir ..„ , p. ^-^-^oo 00 00 

- (2«RÏ )V2 ^ 

From this we obtain 

rc*fi(c)dc =f n (̂ )RT F(x,S) 
J - It 00 _ 00 

Here x = sincpcos(p-\|r) and S = U^/y2RT , the ratio of the free-stream 
velocity to the most probable molecular velocity, an important para
meter in free-molecule flow theory which is known as the speed ratio. 
F(X»S) represents the expression 

F(X,S) = [f + I X^S^ + I X^S^I {l + erf(xS)|e- ̂ ^^^ " '̂ ^̂  

+ {I xs + I x̂ ŝ "̂  ̂"' 

Finally, the expression for the total drag becomes 

D = ̂  ƒ /Jsin^cos^lrcos(p-t)|| "^r^l^ + 2n̂ (̂ ()T F ( X , S ) | doidZ (15) 

2 Oi 

By a similar process the lift is given by 

L = ̂ /Tsin2cpcostsin(p-t>||n^(|_)T^ + 2n̂ (e_)T̂  F(x,S)|cos).(£)dQdZ 

Z Oi 3̂_gj 

The angle X is that between the lift-vector of the surface element dZ 
at I and the direction in which the total lift is taken to act. In 
gen'eral there will also be a transverse force, perpendicular both to the 
drag and the lift, whose value is given by equation (I6) with the sub
stitution of sinX. for cos\. Here we will deal only with surfaces which 
are symmetrical about a plane containing the free-stream direction; the 
lift is taken to act in the plane of syimetryand the transverse force is 
then zero. 
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For the translational energy transfer, we obtain from equation 
(6c) 

^ t r = 2j JJ sincpcosiir j c 5 [ f i ( c ) - f3(c)]dcdcDdZ ( I 7 ) 

2 Oi o 

Equat ion (7) may be r e w r i t t e n i n the form 

înt̂ î  = ( r ^ ) T{'^JJ^^^''''^-^J c3fi(c)dcdco 
Oi o 

+ T, //sincpcos\}r / c^f2(c)dc(aü3 - TJ/sincpcosijr / c3f3(c)dcdai 

O2 o Oi o 

« T, //sincpcos\lf / c-'f3(c)dcda) 

O2 o 

We may cancel the second and fourth terms, which describe a purely 
internal process, to find for the transfer of internal energy 

Z Oi o 
^int ^ ? (T~^ J11^^'^''°^^ J "̂ [̂̂ 00̂ 1̂ 2̂  - T f̂3(s)]dcdcüd2 

(18) 

Combining these two equations and integrating, we find for the total 
convective heat transfer rate to the surface 

'5 - 3 
Q = ƒ JJsirxpcost | ( ^ - ^ ^ \ ( 0 G{x,S) +^(y^—^{x,S) 

• ^ ^ ' ^ r . . . I 6 L ± J ^ 1 ^Jü) . t (^^) jdo3az, (19) 

in which 

G(X>S) = { r XS + I x^S^ + I X ŜSJ. | l + erf(xS)j 77 e'^^^^"^^^ 

+ | l + f x^S^ + I X^S^je-
2 s 
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and 

H(X,S) = |f XS + I X^S^j jl + erf(xS)j 77 e'̂ ^̂ "̂'̂ )̂ 

The analysis so far is completely general, and the expressions 
given for the drag, lift, and heat transfer by equations (15), (l6) 
and (19) are valid for any surface, whether concave or not. For non-
concave surfaces certain simplifications arise, since fl^ = 2jt and 

2.5 The bygerthennal^approximation 

Most cases of practical interest, for instance satellites, many 
of which at present have orbits in the free-molecule flow region of the 
atmosphere, are concerned with speed ratios greater than about 6. We 
see that in such cases the exponential term in equations (15), (16) 
and (19) has its maximum value for x = 1, becoming very small as x -> 0-
The functions F(x,S), G(X,S) and H(x,S) also have their smallest value 
for X = 0' Since x = sinq)cos(p-\|/), this implies that by far the greatest 
contribution to D, L, and Q is due to molecules approaching each surface 
element dZ in a small solid angle about the free-stream direction. This 
is to be expected, since the free-stream velocity is considerably greater 
than the average molecular thermal velocity. It has been found (l4) 
that for S > 6 the thermal velocities may justifiably be ignored in 
comparison with the free-stream velocity. This is known as the hyper
thermal approximation, and leads to a considerable simplification in 
the theory. 

In effect we now assume that each incident free-stream molecule 
impinges on the surface travelling in the free-stream direction with 
velocity Û,,. The total drag due to incidences of free-stream molecules 
(i.e. the momentum they transport to the surface per unit time) is then 
seen to be simply A^p U^, where Ap. is the base area of the surface. 
Since no molecule carries momentum perpendicular to the free-stream the 
lift due to the incident molecules is zero, while the translational energy 
they transfer to the surface is -gApP U"'. The internal energy transfer 
varies as U , and may be neglected by comparison with the translational 
energy transfer. We shall assime that the velocity of reemission of 
molecules from the surface is sufficiently large that the reflected 
molecules contribute appreciably to D, L, and Q. We thus replace those 
terms representing the contributions of the incident free-stream molecules 
in equations (15), (16) and (19) by the smpler expressions given above, 
which yields 
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3RT^ P p 0 2 r"^ 2 
D = A^p^U^ + -JJ— / / / sin^cpcos;|fCOs(p-\lf).p^(£)d\lrdcpdZ 

Z $1 -Hl 

5RT^ p n $2 r ^2 
L = -T / / / sin3cpcosi];sin(3-\lf)p^(|)cosx(|)<3i<ipdZ (20) 

2 $1 -Tl 

.2RT^^V2 P 0 ^ 2 0 ^ 2 

2 ^1 -^1 

1 1 / + iV^^ '^b \^ /2 P P ^ 2 p T 2 
^ = 2 VooU^ - 3 i ^ J j r ) J J J sin^cpcosMr.p^(0#dcpdZ 

where p ( l ) =mn ( | ) , t he d e n s i t y of r eemi t t ed gas a t | , and we have 

w r i t t e n dco = sincpdqjdilr. We see t h a t t he l i f t developed by the sur face 
i s due e n t i r e l y t o t h e e f f e c t of r e emi s s ions . 

2 .6 Symmetrical su r faces 

We may now perform the i n t e g r a t i o n over cp. The su r faces to be 
cons idered w i l l be ( a ) i n f i n i t e c y l i n d r i c a l s u r f a c e s , wi th g e n e r a t o r s 
normal to t h e f r e e - s t r e a m , and (b) su r faces a x i a l l y symmetric about the 
f r ee - s t r eam d i r e c t i o n . I n e i t h e r c a s e , cp = Tt/2 r e p r e s e n t s a p lane of 
symmetry, and hence the l i m i t s on cp a re r e l a t e d by $2 = Jt - Oi-
Equat ions (20) now l e a d to 

5RT^ n p !̂'a 1 _ 
D = -^PooU^ + "2^ I / p^(Ücos\l;cos(p-\|f){cos$i - -cog<&i)di]fd2 

5RT^ 

' 2 - Ï 1 

L = 
3RT^ r r ^ r r Ï 2 3_ 

/ / P (0'^os-\|fSin(p-\jf){cos$i - — cos^$i}cosX( | )<3-\lf'32 2jt 

2 -Ifi 

^ = I V ~ U f • I ( ^ ) {-i) 7 / P r ' i ) ^ ° ^ ^ f « - 2$^ + sinax}d^^d2 
Z -^1 

(21) 

In the above, p^, and X are functions of the surface co-ordinates, and 

in general for concave surfaces O^ = $i(\lf,0' ï'ô  non-concave surfaces, 

Oi = 0 and the limits on it; are ± 7t/2. 
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and 

H(x,S) =. jl xS + I X^S^I jl * erf(xS)| ̂  e-'^^'^^^' 

The analysis so far is completely general, and the expressions 
given for the drag, lift, and heat transfer by equations (15), (l6) 
and (19) are valid for any surface, whether concave or not. For non-
concave surfaces certain simplifications arise, since r̂ i = 2it and 
n„(l_) = n^(Ü. 

2.5 The hygerthermal_approximation 

Most cases of practical interest, for instance satellites, many 
of which at present have orbits in the free-molecule flow region of the 
atmosphere, are concerned with speed ratios greater than about 6. We 
see that in such cases the exponential term in equations (15), (16) 
and (19) has its maximum value for x = 1, becoming very small as x -> 0. 
The functions F(x,S), G(X,S) and H(x,S) also have their smallest value 
for X = 0' Since x = sincpcos(p-\|f), this implies that by far the greatest 
contribution to D, L, and Q is due to molecules approaching each surface 
element dZ in a small solid angle about the free-stream direction. This 
is to be expected, since the free-stream velocity is considerably greater 
than the average molecular thermal velocity. It has been found (l̂l-) 
that for S > 6 the thermal velocities may justifiably be ignored in 
comparison with the free-stream velocity. This is known as the hyper
thermal approximation, and leads to a considerable simplification in 
the theory. 

In effect we now assume that each incident free-stream molecule 
impinges on the surface travelling in the free-stream direction with 
velocity U^- The total drag due to incidences of free-stream molecules 
(i.e. the momentum they transport to the surface per unit time) is then 
seen to be simply A^p U^, where A^ is the base area of the surface. 
Since no molecule carries momentimi perpendicular to the free-stream the 
lift due to the incident molecules is zero, while the translational energy 
they transfer to the surface is ̂ A^p U-'. The internal energy transfer 
varies as U , and may be neglected by comparison with the translational 
energy transfer. We shall assume that the velocity of reemission of 
molecules from the surface is sufficiently large that the reflected 
molecules contribute appreciably to D, L, and Q. We thus replace those 
terms representing the contributions of the incident free-stream molecules 
in equations (15), (I6) and (19) by the sim.pler expressions given above, 
which yields 
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3RT^ r r^$2 PT2 
D = AgP^U2 + - ï iT-J J J sin3cpcosilfCos(p-^l;).p^(£)dtdcpdZ 

3RT^ P P $2 r ^2 
L =-j^ ƒ / sin^cpcosilrsin(3-->lr)p^(Ocosx(|)dilfdcpdE (20) 

Z $1 - ï i 

1 1 / +iv2^^b\^/2 r r^^r"^^ 
^ = 2 Voo^^ - 8 ( , ^A~^y JJJ ^i^^ '̂̂ ^^^-Pr^i^^^ '̂̂  

where p (§) smn (|), the density of reemitted gas at ̂ , and we have 

written dco = sincpdcpd\|;. We see that the lift developed by the surface 
is due entirely to the effect of reemissions. 

2.6 Symmetrical surfaces 

We may now perform the integration over cp. The surfaces to be 
considered will be (a) infinite cylindrical surfaces, with generators 
normal to the free-stream, and (b) surfaces axially symmetric about the 
free-stream direction. In either case, cp = n/2 represents a plane of 
symmetry, and hence the limits on cp are related by $2 = it - Oi. 
Equations (20) now lead to 

5RT,̂  r. p -'.z -L 
D = Agp^U^ + p '• / / p^(Ocosi];cos(p-i|f){cos$i - -co&^iJdijfdZ 

5RT.̂  

' 2 -l?i 

5RT^ r r ¥ 2 3_ 
L = - p — / / p^(|)cos\|;sin(p-\j;){cosg)i - - cos^iI)i}cosx(| )d\|rd2 

2 -¥3. 

J >^ 
2 -Yi 

Q = I AgP^U^ - I (^^ (-^ y Jp^iÜooB^U - 2$i + sin^i}dilrd2 

(21) 

In the above, p̂ . and X are functions of the surface co-ordinates, and 

in general for concave surfaces ^^ = 'ï>i(-i|f,|). For non-concave surfaces, 

$1 = 0 and the l imi t s on ij; are ± j t /2 . 
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In order to perform the i|f - integration we must determine the 
\|; - dependence of $i, which entails specifyirig the nature of the surface 
to a greater extent. 

2.7 General infinite cylindrical surfaces 

The problem of the cylindrical surface of finite span is three-
dimensional, due to the occurrence of end-effects. A simplification 
to two dimensions is obtained by taking the span of the surface as 
being infinite, when all variables become independent of the spanwise 
co-ordinate. The lift, drag, and heat transfer coefficients can then 
be ascertained per unit length of the surface. 

Strictly speaking, in taking one dimension of the surface as 
infinite we are violating one of the restrictive conditions defining a 
free-molecule flow. Reemitted molecules travelling nearly parallel 
to the spanwise direction, since their mean free path is finite, will 
certainly undergo collisions in the vicinity of the surface, either with 
other reemitted molecules or with free-stream molecules. The incident 
and reflected flows are thus interacting. The foregoing objection may 
be overcome, however, by applying the results obtained for the infinite 
surface to a surface having the same cross-section but finite span. 
This span must be sufficiently large compared with the chord that end-
effects may be neglected, but not so large compared with the mean free 
path of the reemitted molecules that the free-molecnjle flow conditions 
are infringed. The results of Sections 2.8 and 2.10 are valid within 
these limitations. 

For the general infinite cylindrical surface with parallel generators 
normal to the flow $1 = 0, and since the lift contributions from each 
surface element act parallel and in planes of symmetry, X = 0. Integration 
over \|f now yields 

RT, P C -\ 
^ = Voo"~ •*• ~27J PrM°°^(^2+Ti)-*- sin(T2+Ti)cos(Y2-*i-p)jd2 

L = 
RT^ 

2«, 
j P^(ü_)|sinp(T2+Ti) - sin(Y2+Ti)sin(Y2-Ti-p)|dZ 

2 

^ = 2 Voo^» - ̂  (^) ("^) Jpr(i)^i4(^2+Yi)cosl<Y2-¥i)d2 

2 

(22) 

Integration over the surface 2 now involves specifying Y^, Y2 and 
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p as functions of the surface co-ordinates. To find p the Clausing 

integral equation (5) must be solved; the simplest case is -that of the 
circular cylindrical surface. 

2.8 The infinite circular cylindrical arc 

This surface, with its co-ordinate system, is shown in Figure 5-
We shall deal first with the case where the chord of the arc is normal 
to the flow. The analysis is restricted to values of e between 0 and 
jt/2, so that no part of the surface is shielded from the free-stream. 
Then in equations (22) the following relationships hold 

^1 = i-(« - e - e ) , 

^2 = è(rt - e + e ) , 

p = e,. 

substitution yielding (per unit length of the surface) 

RT, r® 
.XB)\ in - e)cos0 + sin 

RT r^ r ^ 
D = AgP^U^ + - ^ / p^(e)j (n - e)cos0 + sineV-rde 

-0 

RT pe ni; pö 
L = - ^ / p̂ (0)(Tt - e)sine.rdÉ) (25) 

- e 

/ ,\ /RT̂ N-'/ap® 
Q = è^P^U^ - ̂  {jZïJ [ ^ ) J p^(0)cos^cosie.rd© 

-G 

Since the surface has infinite span, p is a function of gonly. 

In order to carry out the integration over 0, it remains to determine 
, which entails solving the Clausi 

the equation proves to be in t h i s case 

p (0 ) , which en ta i l s solving the Clausing equation (5 ) . The kernel of 

V - cosSiCosSg _ . It-r^sin"^^! 0i-02[ 
K-i - ĵ "j,li = ic{(z2-Zi)2+i|-r'2sin^-|J0i-02| }2, 

12 

and hence we have 

ƒ
00 p © 

J Ki(0i,02,Zi,Z2)N^(e2)rd02<i22. 
- 00 - e 
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The integration over Z2 is effected by a trigonometrical substitution 
to give 

N.(0i) = N^(0i) +1 J N.(02)sinij 01.^21 «302 (2̂ +) 
- 0 

In this form the equation has a degenerate kernel, and the standard 
method of solution is to express the relation as a pair of linear 
simultaneous equations which may be solved in a straightforward manner 
(15). Alternatively, N.(0) may be expressed as a Fourier series 

N.(0i) = a + ) a cos WT_, 
1 o A n 

n=l 

the coefficients a being determined in the usual manner by substitution 
into equation {2k). However, in the present case a solution is obtained 
most conveniently by differentiating equation {2k) twice with respect 
to 01. Care must be exercised in that although sin -1101-021 is continuous 
for - 0 $ 01 ̂  0, its first derivative is not. 

The number of free-stream molecules incident per second per unit 
a?.\-.a of surface is given simply by N (©i) = n U cos0i (volume swept 
ov'./'second x particle concentration)" and we "ïhus have 

e 
Differentiation twice gives 

1 pS n® 
N^(0i) = n^U^cos0i + -jj- / N^(02)sin^(0i-02)d02 + 75; / N^(02)sinK02-0i)d02 

d% (0 i ) pQ 

J2 = - ' ^ A ' ' ° ^ i " IZJ N^(e2)sinl(0i-02)de2 + 5 N.(0i ) d0̂  
L 

- 0 

1 r® 1 
• HJ N. (02)sin^(02-0i)<a02 + 5 N. (0 i ) 

^0 

"0 

= - '^„U.cosói - ^ r N . ( 0 2 ) s i n i 01-02! d02 + I N^(0i) . (25) 

- 0 

The integreil term may be eliminated between equations (24) and (25) 
to give the simple differential equation 
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d % ( e i ) , 
—-=— = - f n U COS01, 
d 0 2 4 00 00 -^^ 

(26) 

whose solution i s of the foxTii 

N . ( 0 i ) = f n^U^cos0i + B01 + C, (27) 

in which the constants B and C are determined from the boundary 
conditions by substitution of this solution back into equation {2k). 
We find 

B = 0, C = T ; - n U ( 2 - cos©). 
4 00 00 

The complete solution of the Clausing equation is thus 

N.(0) = n U 
1 00 o 

•f COS0 + •j-(2 - COS©) (28) 

Equat ion ( l 2 ) may now be used t o g ive 

/RT F'̂  1 
Pj.(ö) = P „ U , J _ _ k X COS0+ ^2 - CO3 0 ) (29) 

which expression must be substituted into equations (25). Evaluation 
of the resulting integrals gives 

5 . 1 . 
^ 0 + sm© + -jj- sm© cos© 

D = Â p Û  + p U r J'^Un - ©) 
UCOOO 0000 V o I 

+ sin© I© + ^ sin© - ^ cos© i-

= 0 (50) 

= |A^p U^ - p U rRT, ( J ± i \ i n 0 
• ^ ^ 0 0 00 '̂ 00 00 b \ 7 - l / 

These results are reduced to coefficient form with reference to the 
base area per unit length, Ap = 2 r sin© (the heat transfer coefficient 

C„ is here defined as C = ^/^Pj^^^' 
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We f ind 

s = ^ ^ 4^ (̂®) ' Ï 
Tb 

0^ = 0 , (31) 

H - ^ - [j-lj T^ 

where i n equa t ion ( 5 l ) 

1_ 
S2 

. ( c ) 
D̂ 

( © ) = | ^ | ( . - © ) 

. ( c ) 

1 + T- CO® M. 
s m © 

© + !• sin© •g-0 cos© 

The v a r i a t i o n of eJl ' wi th © i s i l l u s t r a t e d i n Table 1 and F igure 7 . 
(c) 

It is apparent that for the case 0 = 0, eĵ  ' = 1; this gives the well-

known result for the drag of a flat plate normal to a hyperthermal flow. 

C„ has in fact proved to be independent of 0, the result being identical 
XI 

to that for a flat plate (or, for that matter, any non-concave body) 
having the same frontal area. This is entirely to be expected, since 
in a hyperthermal flow the total number of incident free-stream molecules 
per unit time, which is equal to the total number reflected completely 
away from the surface per unit time, is dependent upon frontal area only 
for given values of U and p . Tlie energy yielded up by the incident 

00 00 

molecules is a function only of U , while the avexage energy transported 
away by the reflected molecules is a function only of T, for perfect 
thermal accommodation. Thus the surface configuration nowhere enters 
into the total heat transfer characteristics. 

2.9 The spherical surface 

The coordinate system for this surface is defined in Figure k. We 
shall consider only the case for which the surface is axially symmetric 
about the free-stream direction. 

We must first determine how <& in equations (2l) varies with \jf. Now 

•DP _ 3:(cos0 - cos©) 
^^ = cos(0-Ajr) 

But from c i r c u l a r geometry 

cotO (52) 

BC^ = MB.BN = r^sin^© _ OB^ 

= r^sin^© - r^ ( (cos0 - cos© )tan(ö-i\j;) - s i n 0 ) ^ 

(55) 
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yielding finally, from equations (52) and (53), 

cot̂ il" = 7 "̂. A "Vi-^-- sin^ --I (cos0 - cos0)tan(0-\ir) - sin0 • 
(_cos0 - coHb/'- I 1 v.-/ \ T' J 

(3M 

Once again the analysis is restricted to cases for which 
0 ^ 0 ^ Tt/2 so that no part of the surface is shielded from the free-
stream. 

The Clausing equation for the spherical surface has the constant 
kernel 

cos6iCos52 1 

^ = — 7 ^ — = X^ ' 
IS 

and hence, 

p2ji p&^ 
N . ( 0 i ) = N_^(0i) + J j - j j ^ N. (02) . r2sin02d02cl^. 

o o 

Since from the axisymmetry of the configuration N is a function of 0 
i 

alone, we may carry out the integration over t, to obtain 

0 

N^(0i) = n^U^cos©! + i / sin02 N^(02)d0a. (55) 

The solution of the equation is best found by multiplying by sin0i and 
integrating with respect to 0i 

p© p© p© p® 
/ N.(0i)s in0id0i = nU / sin0icos0id0i + |- /s in0id0i / s i 
o o 0 0 

Thus 
„0 

/ Nn-(02)sin02<aÖ2 = 2n U sin^-i-0 , 
±^ •-' •- '- 0 0 0 0 ^ 

o 
and 

N . (0 ) = n TT (cose + s in ' - - iQ) , (56) 
1 ^ W 00 ^ 
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the contribution due to reflections being constant over the surface. 
Equations (2l) and (56) now lead to 

» 00 

c^ = 0 , (57) 

^H ~ -̂  ^H ^^^ • 2 [^y-lj T^ • S2 ' 

where 

•̂ 0 p Y / \ /- p o P Ï 2 -1 
A^J _ —__^— / /(cos0+sin^-^)cos\|/cos(0-i|f){cosiï '- •rcos^$}sin0d\lfd9 

JJ : t s in B J J 5 
o -Y 

fs) 1 r® r'^s 

e!^^^ = — . -JJ / /(cos0+sin^^)cos\|f(jr-2O+sin2$}sin0dijfd0 . 

0 - Ï 1 

The c o e f f i c i e n t s a re made dimensionless wi th r e s p e c t t o t h e base a rea 
« r s in^©. Here 0 i s given by equa t ion ( 5 ^ ) , and the l i m i t s on ^ a r e , 
as i n t h e c y l i n d r i c a l c a s e , 

¥2 = è(rt - 0 + 0 ) 

-^1 = - è(« - 0 - Ö) 

CT vanishes owing to the axisymmetry of the problem. Since the expressions 

above cannot be integrated analytically they were evaluated numerically 
using a Ferranti Pegasus ccjmputer. The variations of el^-' and e^^' with © 
are portrayed in Table II and Figure 8, and it will be noted that 
f s) 

e„ ^ is found to differ by less than 0.1^ from unity over the entire 
n 
range of 0, whereas in fact its value must be exactly unity, as previously 
explained (Section 2.8). This affords some indication as to the accuracy 

fs) 
to be expected in the calculated values of eĴ  '. 

2.10 Extension of cylindrical surface theory - the L/D characteristics 

of cambered plates 

The theory of the cylindrical surface is now extended to include 
cases where the chord is not normal to the flow (see Figure 5). In 
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order that no part of the surface is shielded from the free-stream we 
must impose the restriction 0 ^ a, where a is the angle of incidence. 
The limits on 0 are now (TC/2 - a + 0) and («/2 - a - 0). It is in 
fact found simpler to work in tenns of a"' = ̂ /2 - a; we obtain for 
the limits on ^ 

^2 = ̂ (n - 0 - a' + 0) 

-"̂ 1 = - 2('t - 0 + «"' ~ Ö ) 

giving from equations (22) 

RT.ĵ  pa''+ © 
D = A_p U^ + -TT / p.„(0)[(3t-©)Gos0+cosQ;'"'sin0}rd0 

±5 00 00 dTi J_ r 
a"'- 0 

L = -^J p ( 0 ) { ( « - 0 )sin0+sinQ:"''sin0 }rde (58) 
icjt _;••• r 

a - 0 

^RT.^,\''='pa"+© 

J'^ 
a"-© 

V^ 
^ = s V o o " ^ " ^ V ^ J V 2 r ) j _ P r ( ^ ) ^ ° ^ i 0 cosl(0<^-'-)rd0 

The equation for the variation of molecrular flux over the surface is 
identical with equation {2k), except that the limits on the integral term 
become a"' ± © . It is solved similarly, the result of this somewhat 
tedious process being 

N.(0 ) = n U 
1 ^ ' 00 00 

1 
5 ^ it-sino;" cos-'-i-0 /„ ---s 1 -:;-/„ ^ \ 
•tfcos0 - / 1—. 1 - 1 ̂  \{Q-Ci )+"i-cosa (2-COS0) 
k (cos^0+^0sin-|-© )^ ^ k ^ ' 

(59) 

Equation (l2) now gives p (0), which is substituted into equation (58). 

Integration and reduction to coefficient form with respect to the chord 
2rsin © yield 

C = 2sirxz + €f)°^(0 ,a) I Jïk sin^ 
T 
00 

Ĉ  = e ( ^ \ © ) ^ , & sirx̂ cosa (UO) 
T 
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where 

4°^'id^W-^\ V s ï n © " * ^°^® "̂̂  s i n ^ a ( c o s 0 + 1 ) 

0 cos 0 ^SCOS^QJCOS-^^© 

^cos-^© -Hg-0 s i n ^ 0 ) V s in© - 1 

+ s in^a 
'5 11 
^ i n © + i © (2 - cos© ) V 

and 

. ( c ) 1_ 
2jt 

| ( 7 t - © ) 
/• ^ . T ^ J -Icos^i© ( 0 cos© 
( ^ ° ^ •" ^^ + (cos |© 4 ©^ini© ) V~TÏÏÏ0" 

- 1 

^ sin© + f© (2 - cos© ) } 
Once again C is found to be dependent on frontal area only. The 

(c) "(c) 
factors e.2 ' and eJ; ' are chosen to refer Ĉ., and C to the standard 

results for a flat plate at the same incidence, namely 

77 Cjj = 2 sino: + '~ / r r s in^a 
CO 

r 77 fb . 

(c) (c) 
The variations of €.1 ' and e^ ' with a and © are shown in Figures 9 and 

u is 

10, while the variations of C^, Ĉ. and Gyl^-r. are portrayed in Figures 11, 

12, 15 and \k and Table III for various values of ay 0 and ^ , /_£. 
00 

2.11 Coefficients of local heat transfer for concave surfaces 

At any point on a concave surface the three contributions to the 
heat transfer are: 

(i) Incidences of free-stream molecules, each transporting a total energy 
e (U ). 
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(ii) Incidences of molecules which have been multiply reflected, each 
carrying an average total energy e. (T, ). 

(iii) Reemissions of molecules from the surface, these molecules also 
carrying average total energy e, (T, ). 

The local heat transfer rate is therefore, per unit area, 

E(|_) = N̂ (|_)ê  + N̂ (|_)ê  - N̂ (|_)ê  

However, since N.(|) « N (|) we have by virtue of equation (l) 

E(|_) = Nj|_)e^ + N^(^)e^ - Rj|_)e^ - N̂ (|_)ê  

= \(i) (-00 - % ) (̂ 1) 

But this is precisely the result which holds for non-concave surfaces, 
and it arises because of our assumption of perfect thermal accommodation 
at the surface. With this assumption an impact and subsequent reemission 
of a multiply reflected molecule leads to no net transfer of energy. 

We see thus that the heat transfer characteristics of a concave 
surface are identical with those of the corresponding convex surface, the 
local heat transfer coefficient being given by the standard result 

•^00 00 N \' / OO / 

where p is the angle between the free-stream direction and the noïiual 
to the surface at ̂ . 

5. Discussion of results 

5.1 The effects of surface temperature and speed ratio 

It is apparent from equations (51), (57) and {ko) that the reflection 
contributions to C-n, C_ (which is entirely governed by reflections) and C„ 

1 — 
are proportional to the parameter -r̂ T /T, )^. The lift in particular, 

o CO D 

therefore, will be strongly influenced by variations in this quantity. 

We are restricted by the hyperthermal approximation to values of 
S > 6, and investigations of the upper atmosphere by means of satellite 
observations have revealed that daytime values of T vary from ~ 1200°K 

00 

at an altitude of 200kra to ~ 2000"K at 600km. These figures are very 
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approximate, being subject to large diurnal fluctuations and to con
siderable uncertainty due to the difficulty of the measurements (l6). 
The surface temperature may be found by setting up and solving an 
energy balance equation, using the heat transfer characteristics already 
determined, and taking into account the effects of radiation. However, 
this problem contains a great many variables, and satellite measurements 
indicate that the surface temperature of bodies in the free molecule 
flow region remains at about 500°K. Thus a figure of O.k - 0.5 for 

— 1 — 
(T,/T )2 is realistic, leading to a maximum value for —(T, /T ) ^ of 
^b'oo' ' S b ' o o ' 
~ 0.1 for most applications operating in this region. Figure lii- shows 
the important effect of —(T., / T )2 in determining the L/D characteristics 
of a flat plate in free-molecule flow; this form of variation is typical 
also of the ciurved surfaces studied. 
5.2 The effect of surface geometry on aerodjmamic forces 

We consider first those cases which give rise solely to a drag 
force' (Sections 2.8, 2.9; Figures 7 and 8). The drag of the surface 
is determined by the balance between two conflicting processes. Firstly, 
the effect of concavity is to channel the outgoing momentum, so that from 
any point on the surface those molecules which escape completely all 
carry a momentum component contrary to the free-stream direction. In 
contrast, the corresponding convex surface permits a certain proportion 
of molecules to escape in such directions that they carry momentum 
components travelling with the free-stream. The channelling of reflected 
momentxua by the concave surface leads to an increase in the reflection 
drag. The second effect of concavity is to redistribute the incident 
molecular flux over the surface, the increase in flux due to the multiple 
reflections being proportionately greater on those parts of the siorface 
at low local incidences to the flow. Since Lambert' s law is assumed to 
hold, most molecules are emitted in directions nearly perpendicular to 
the surface, and hence a greater proportion of molecules are emitted in 
directions nearly normal to the flow than would be the case in the absence 
of multiple reflection, leading to a corresponding decrease in the 

(c) (s) 
reflection drag. The factors eĴ  ' in equation (51a) and e^ ' in equation 
(57a) are both in fact found to be in excess of 1 (Figures 7 and 8); the 
surfaces thus have reflection drag exceeding that of a flat plate normal 
to the flow, for which €„ = 1, and the first of the effects described 
above predominates. 

The maximum possible drag coefficient for a concave surface would 
occur if this chanxielling process could be taken to its logical extrone 
and all the emitted molecules were constrained to travel exactly in 
opposition to the free-stream motion. The average velocity of molecules 
emitted diffusely at temperature T, is ̂ /̂  72TrRT, , leading to a value of 

1.5 for 6.̂  . Possibly surfaces having a considerably greater degree 
max 

of concavity than those studied here may prove to have values of e_̂  

approaching this maximum. 
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Figures 7 and 8 show that the maxim\jm reflection contributions to 
the drag coefficients of the two surfaces studied are larger than that 
for the flat plate normal to the flow by ~ yfo for the cylindrical 
surface and ~ 5^ i"or the spherical surface. For a realistic value of 

— ( T /T )2 the reflection contribution is in any case small (less than 
D 0 00 

~ 10^), and increments thereto of this order are unlikely to have any 
practical significance. 

Turning now to cases involving lift forces (Section 2.11, Figures 
9-l4 and Table III) it is found that once again the drag is substantially 
independent of concavity for practical values of 1(T /IJ \-g- (Figure ll). 

The flat plate is seen to generate the most lift at a given incidence, 
the value of C_ falling off as 0 increases. For 0 = n/lO we have a 

reduction in lift of ~ % over the flat plate valve, and for higher 
curvatures the lift falls off rapidly. Maximum lift is developed at 
an incidence of 45°, independent of curvature. 

The L/D ratio (Figure 15) is largest at low incidences, the highest 
value obtained being that for the flat plate at Incidences approaching 
zero, although the hyperthermal approximation is not strictly valid for 
very low incidences since the molecular thermal velocities are not 
necessarily negligible in comparison with the free-stream velocity 
component normal to the surface. Of the surfaces examined, the flat 
plate is plainly the most efficient as far as the generation of lift is 

-[_ 1. 
concerned, but with —(T,/T )2 « 0.1 the maximum attainable L/D ratios 

b D 00 ' 

are none the less very small (Figure Ik). One cannot in fact expect 
much aerodynamic lift in the free-molecule flow regime, and in practice 
speeds must be high enough to generate substantial centrifugal lift in 
the earth' s gravitational field in order to sustain any vehicle at such 
extreme altitudes. 

It must be borne in mind that the theoretical analysis has been 
restricted to those Instances in which no part of the concave surface is 
shielded from the free-stream; the necessary condition is that a ^ 0 . 
For lower incidences impacts of free-stream molecules will occur on the 
convex upper surface, giving rise to a negative lift component. The 
shielding also leads to a reduction in molecular flux over the lower 
surface, with a consequent further diminution in total lift. Thus 
although the L/D ratio increases with decreasing incidence until the 
condition a = 0 is reached, it falls off markedly with further decrease 
in incidence, be.lng entirely negative for zero Incidence. 

5.5 Comparison with results obtained by Chahine 

In his papers (6,7) Chahine has presented an analysis of both the 
infinite cylindrical surface and the spherical surface. His approach 
to the problem is in principle similar to that employed here, though 
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throughout he considers the three contributions due to the incident 
free-stream molecules, the incident inter-reflected molecules, and the 
emitted molecules, separately at each point on the surface (as in 
equation (6) of this report). Rather greater generality is achieved 
in the treatment of the energy transfer, however, by the introduction 
of partial surface accommodation. The thermal accommodation coefficient 
is assumed to be constant over the surface, the distribution of incident 
energy over the surface being found from an equation analogous to the 
Clausing equation for the distribution of molecular flux. This equation 
has the form 

^i^i^ = Ti(E^(êi), T^, a') + / (1 - a')E^(|_2)K(£i42)d2 

in which TJ is a function of the incident free-stream energy, the surface 
temperature and the accommodation coefficient. 

Chahine's results indicate, as do those obtained in the present 
analysis, that for perfect accommodation the heat transfer coefficient 
(referred to the base area) is independent of surface geometry. However, 
the values he obtains for the C_̂  and C^ of the cylindrical surface do not 
agree with those derived in Section 2 of this report, he finds, for 
instance, that the drag of a concave cylindrical surface with chord normal 
to the flow is less than that of a flat plate at equal incidence, while 
here it is found to be greater (Figure 7)« The source of this discrepancy 
appears to lie in the last term of the equation (2.55) of Ref. (6), which 
should contain a factor ^. With this correction Chahine" s analysis 
yields the same results as that employed here. He quotes no numerical 
results for the drag of the spherical surface, and to obtain one from 
his paper it appears necessary to evaluate numerically a quadruple 
integral involving an unwieldy trigonometrical function. 

The method developed in Section 2, which considers only the effect 
of incident free-stream particles and of particles reemitted directly 
into the free-stream, appears the more suited to the investigation of 
other classes of concave surfaces, especially in cases of axially 
symmetric surfaces, since the equations lead to a double integral rather 
than the quadruple integral resulting from Chahine's method. The task 
of computation of the coefficients will thus be correspondingly lessened. 

k. Conclusions 

An examination has been made of the problem of free-molecule flow 
over concave surfaces. With the assumption of perfectly diffuse 
molecular reflection with complete accommodation to the surface conditions, 
general equations have been derived for the lift, drag, and heat transfer 
characteristics of such surfaces. These equations have been applied to 
the infinitely long circular cylindrical arc and to a section of a 
spherical surface for the case of a hypertheimal flow velocity. 
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The results obtained Indicate that the heat transfer characteristics 
are identical with those of the corresponding convex surfaces, the total 
heat transfer being Independent of the surface configuration. The 
effects of concavity are found, for the surfaces investigated, to be an 
increase in drag and a decrease in lift, when compared to a flat plate 
at the same incidence to the flow. For most practical cases, however, 
the effect on the total drag is small, amounting to no more than about 
1^ for the extreme cases considered; the lift developed is more seriously 
influenced. Of the geometries examined, the most efficient lifting 
surface proves to be the flat plate, although the L/D ratios which can 
be achieved under practical conditions are nevertheless very small. 

5. Suggestions for further work 

Clearly, scope exists for the application of the method developed 
in this report to the examination of other types of concave surface in 
free-molecule flow. Cases which may px-ove amenable to analysis are 
(a) two flat plates of infinite span at an angle to each other, (b) an 
infinite rectangular trough, (c) a reentrant cone, and (d) a circular 
cylinder with a closed end. The chief problem appears to lie in 
obtaining a solution of the Clausing equation for the molecular flux 
redistribution. The method could also be extended to yield pitching 
moments. 

Chahine (6,7) has shown how greater generality may be achieved by 
the introduction of partial surface accommodation; possibly a further 
type of surface interaction recently proposed by Schamberg (17) could 
be employed in a future analysis, to Include the effects of imperfectly 
diffuse reflection. At velocities too low for the hyperthermal approx
imation to remain valid, the application could be attempted of an 
approximate method due to Schrello (l8) which holds down to S "̂  1. At 
these lower velocities the reflection contributions to the aerodynamic 
characteristics will be proportionately larger, and the effects of con
cavity more marked. 

In any but the more simple cases the solution of the Clausing 
equation will pose a severe problem, and it is interesting to note that 
in an article by Larish (l9) an analogy is pointed out between this 
equation and the integral equation describing the illumination in a space 
having non-absorbing walls which reflect in accordance with Lambert's 
law. Larish suggests that the Clausing equation can be solved by means 
of such an optical analogue, where the incident molecular flux is 
represented by external light sources. The intensity of illumination 
over the surface then provides a measure of the emitted molecular flux. 
The solution for hj'perthermal velocities is particularly easy to find, 
since the model need only be placed in a parallel beam of light. This 
relatively simple experimental method for determining the molecular flux 
redistribution would make possible the treatment of more complicated 
surfaces than could be tackled by purely theoretical means. 
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Table^I 

Values of e^L '(©) for the cylindrical surface, chord normal to the flow 

H 

0 

7t/20 

7t/l0 

5«/20 

n /5 

V^ 
5«/lO 

7«/20 

4rt/ l0 

9«/20 

« /2 

4̂^ 
1.0000 

1.0000 

1.0001 

1.0005 

1.0015 

1.0055 

1.0065 

1.0107 

1.0166 

1.0242 

1.0555 

Table_II 

(s) (s) 
Values of eĴ  and e^ ' for the spherical surface, chord normal to the flow 

0 

0 

Tt/20 

l t /10 

5«/20 

V5 
yi/k 

5Tt/lO 

7«/20 

4Tt/lO 

9rt/20 

V2 

,(0 
^D 

1.0000 

0.9999 

1.0000 

1.0001 

1.0016 

1.0044 

1.0092 

1.0164 

1.0262 

1.0588 

1.0559 

The values given here have been obtained by correcting the results of 
a nvmierical analysis carried out using the Pegasus computer. 

,(s) 
H 

1.0000 

1.0005 

1.0005 

1.0006 

1.0006 

1.0006 

1.0007 

1.0007 

1.0007 

1.0007 

1.0007 



.(c) :(C) 

e 
0 

0 . 0 5 K 

O.lit 

0.15it 

0.2ji 

0.25jt 

0.5JI 

0.35K 

O.kn 

O.U5it 

0 . 5 K 

"L 

a l l c^0 

1.0000 

0.9922 

0.9709 

0.9594 

0.9015 

0.8602 

0.8195 

0.7817 

0.7490 

0.7227 

0.7057 

T a b l e _ I I I 

The v a r i a t i o n 

a=it/2 

1.0000 

1.0000 

1.0001 

1.0005 

1.0015 

1.0055 

1.0065 

1.0107 

1.0166 

1.0242 

1.0555 

0.4=) 

0.45;t 

1.0000 

1.0002 

1.0008 

1.0020 

1.0040 

1.0069 

1.0110 

1.0164 

1.0255 

1.0517 

0.4rt 

1.0000 

1.0008 

1.0052 

1.0070 

1.0120 

1.0184 

1.0260 

1.0549 

1.0449 

( c ) 
and e^ ^ wi th a and ©. 

o.55it 

1.0000 

1.0020 

1.0077 

1.0164 

1.0275 

l . o 4 o 4 

1.0548 

1.0701 

D 

0.5fl 

1.0000 

1.0041 

1.0155 

1.0528 

1.0545 

1.0788 

1.1049 

0.25rt 

1.0000 

1.0078 

1.0295 

1.0616 

1.1016 

1.1464 

0.2jt 

1.0000 

1.0148 

1.0555 

1.1165 

1.1912 

0.15jt 

1.0000 

1.0500 

i . n ? 7 

1.2560 

O.lrt 

1.0000 

1.0758 

1.2770 

0.05n 0 

1.0000 1.0000 

1.5105 

Values of C, and C_̂  are obtained by substitution of €^^' or e^^ into equations (kO), 

ro 
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FIG I. FIG. 2. 

CYLINDRICAL ARC SOflFACE - NON LIFTING CASE 

FIG. 3 



SPHERICAL SURFACE; NON-LIFTING C A S E 

F I G . 4 . 

C Y L I N D R I C A L ARC S U R F A C E . LIFTING CASt 

RANGE OF INTEGRATION OF EQUATION (3?) 

FIG 5. 

FIG.6. 
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