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Characteristics analysis of moon-based earth observation 
under the ellipsoid model
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Sciences, Beijing, China; bDepartment of Geodesy and Satellite Earth Observation, Delft University of 
Technology, Delft, The Netherlands

ABSTRACT
Using the Moon as an Earth observation platform for remote sen-
sing offers the benefits of a high orbital altitude and vast surface 
area, which could provide continuous Earth observation capabilities 
over great temporal and spatial scales. Over the course of China’s 
follow-up lunar missions in the next three Five-year plans, the Earth 
observation instruments will be put on the Moon. However, the 
understanding of the characteristics of Moon-based Earth observa-
tions remains limited. Here, the observational characteristics for 
a moon-based platform related to the Earth ellipsoid model is 
studied, which advances previous studies with a spherical Earth 
assumption. We perform three analyses. First, an integrated coordi-
nation transformation equation, which denotes the geometric rela-
tionship between a Moon-based platform and the target on Earth is 
established based on numerical ephemerides and Earth orientation 
parameters. Second, the explicit expression for the intersection 
between the line of sight of the sensor and the Earth oblate 
spheroid is formulated, and the formulae of uncertainties are 
given. Lastly, a theoretical visible area on the Earth ellipsoid 
observed from the sensor is derived based on the geometrical 
relationship between the observation position and the Earth ellip-
soid; two special situations are obtained via explicit expressions and 
series expansion. Based on this, the optimum radius for the sphe-
rical assumption of the Earth is obtained. The simulation and ana-
lyses reveal that the proposed mathematical derivation aimed at 
the Earth spheroid can be used to improve the accuracy of studies 
focused on the geometrical characteristics of Moon-based Earth 
observations.
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1. Introduction

Since the later part of the past century, Earth observation techniques, which utilize remote 
sensors to observe targets on Earth, have been used in many fields, including forestry, 
oceanography, and polar studies (Ryerson 1998; Sandau 2010). To this end, various 
artificial platforms, such as balloons, air planes, Earth orbit satellites, space shuttles, 
space stations, and Lagrange point vehicles have been developed for Earth observation 
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(Herman et al. 1986; Vömel 2002; Lautenbacher 2006; Sandau 2010; Guo et al. 2016aa). 
These Earth observation techniques have provided numerous datasets that aided our 
understanding of planet Earth (Andrew 2015; Chuvieco 2008; Stammer and Cazenave 
2017; Jiang and Shekhar 2017). In recent years, as Earth system sciences have advanced, 
the need to monitor the Earth with both temporal consistency and spatial continuity to 
study the Earth system as a whole and understand global problems, especially climate 
change, has increased (Rosenqvist et al. 2010; Reid et al. 2010; Skinner and Murck 2011; 
Ryu and Hayhoe 2017).

The Moon is the largest and only natural satellite of the Earth, and it is the only place 
other than Earth where humans have been. Since the 1950s, there have been more than 
100 lunar missions (May 2017). Recently, with the rapid advancement of aerospace 
technologies and increasing interest in the Moon, a Moon-based Earth observation 
platform has been proposed (Guo et al. 2016b; Liu et al. 2016) as one part of future 
lunar missions. Compared with air-borne and space-borne satellites, Moon-based Earth 
observations have three unique characteristics (Liu et al. 2016; Ren et al. 2017a): (1) The 
Moon’s rotational period is the same as the orbital period around the Earth. The 
distance from the Moon to the Earth is about 380,000 km; therefore, installing sensors 
with a small field of view (FOV) on the nearside of the Moon could allow us to observe 
the whole Earth disk (Bendek et al. 2015; Stahl 2017) with temporal consistency and 
spatial continuity. (2) The Moon is the largest and only natural satellite of the Earth, with 
a diameter about 3,500 km (May 2017), and various sensors could be installed to 
simultaneously obtain information on the Earth from space to the subsurface, which 
could improve our understanding of the Earth’s dynamic systems. (3) The Moon has 
a stable geological environment (Taylor 1988; Blair et al. 2017), and it, thus, offers the 
opportunity to instal advanced sensor groups with stable baselines and geometric 
configurations.

Previous lunar missions that orbited, passed over, or landed on the Moon have already 
demonstrated the feasibility to observe the Earth from the Moon. The first panoramic 
photo of the Earth was taken when the United States National Aeronautics and Space 
Administration (NASA) launched the ‘Lunar Orbiter’ in 1966. The Lunar Orbiter travelled 
around the Moon (https://lunar.gsfc.nasa.gov), and in 1972, during the Apollo 16 mission, 
a 75 mm diameter Schmidt telescope with far ultraviolet bandwidth was placed in the 
shadow of the lunar module, and photos of the Earth’s upper atmosphere, including 
airglow and aurorae, were obtained (G. R. Carruthers and Page 1972, 1976). More recently, 
the world has experienced a new wave of lunar exploration and development, including 
the Selenological and Engineering Explorer mission of Japan, the Lunar Reconnaissance 
Orbiter mission and Deep Space Gateway of NASA, the Small Missions for Advanced 
Research in Technology-1 (SMART-1) mission of the European Space Agency (ESA), and 
the Chinese Lunar Exploration Program. These missions have used sensors with different 
wavelengths, including both visible and ultraviolet wavelengths to take valuable photos 
of the Earth (Muinonen et al. 2002; Zheng et al. 2008; Yamazaki et al. 2010). Due to the 
unique characteristics of Moon-based Earth observations, the NASA organized a Lunar 
Earth observatory workshop in 2006 (NASA 2006; P Hamill 2007; Johnson et al. 2007); ten 
years later, a special session on Moon-based Earth observation was held at the 2016 
International Geoscience and Remote Sensing Symposium, where scientists from China, 
the United States, and Europe discussed new perspectives and future research priorities 
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(Guo et al. 2016b ; Renga and Moccia 2016; Patrick Hamill 2016; Huang et al. 2016; 
Kaufmann and Song 2016; Ye et al. 2016; Ren et al. 2016).

Early after the Moon-based Earth observation workshop, several researchers consid-
ered the feasibility of Moon-based Earth observations. Palle et al. proposed to observe the 
surface albedo of the Earth with visible and thermal infrared sensors (Pallé and Goode 
2009). Guo proposed exploring Earth observation systems consisting of multiple plat-
forms, including the Moon, satellites, aircrafts, and land-based sensors (Guo 2009). Moccia 
et al. studied the potential of Moon-based Synthetic Aperture Radar (SAR) sensors to 
observe the Earth and proposed different configurations of SAR systems (Moccia and 
Renga 2010; Fornaro et al. 2010). Zhang studied the observation geometry of Moon-based 
Earth observations, and discussed simulation technologies based on the Jet Propulsion 
Laboratory (JPL) ephemerides (Zhang 2012). Many more studies were conducted after the 
IGARSS 2016. Liu et al. studied the potential of Moon-based observations for studying 
large-scale geological phenomena, and proposed the construction of a Moon-based Earth 
Observation System (Liu et al. 2016). Guo et al. further proposed the installation of 
a Moon-based SAR system to monitor global climate change (Guo, Liu, and Ding 2017). 
An international effort to further develop the theory behind Moon-based Earth observa-
tions was proposed by Song and colleagues (Song et al. 2017). Observation geometry for 
SAR based on a semi-analytic model and assumptions that both the Earth and the Moon 
are spherical was introduced by Moccia and Renga (Moccia and Renga 2010). Fornaro 
et al. used a simplified Keplerian six-parameter Moon orbital model to further develop the 
observation geometry of SAR sensors. Ren et al. proposed an observation geometric 
model for lunar electro-optical region observation, which included the coordination 
system transformation from the principal axis lunar reference system (PALRS) to the 
international terrestrial reference system (ITRS), together with the usage of Jet 
Propulsion Laboratory numerical ephemerides 430 (DE430) and considering the polar 
motion deal with Earth orientation parameters (EOP) for the first time (Ren et al. 2017b). 
Based on Ren’s work, several studies were presented concerning Moon-based Earth 
observation geometry, the analysis of effective coverage and the scope of observation, 
the signal model of Moon-based SAR, and other applications (Ye et al. 2018a, 2018; Xu and 
Chen 2019; Ding et al. 2019; Xu, Chen, and Zhou 2019; Wu et al. 2020). All these studies 
have provided valuable insights for Moon-based Earth observations.

Although the assumption of sphericity has been used in previous studies to 
simplify the geometry models for Moon-based Earth observations, there are few 
studies that have defined the criteria for the optimum spherical radius of the Earth 
for specific phenomena, such as the visible area that is related to the position of the 
sensor and the radius of the sphere. Furthermore, for most geological applications, 
the Earth is considered as an ellipsoid, such as that used in the Geodetic Reference 
System 1980 (GRS 80), instead of a sphere. Thus, this study has three main contribu-
tions. The first is to introduce an integrated coordination transformation equation, 
which forms the observation geometry between the Moon-based sensor and the 
target on Earth, and is different from the equations used in previous studies (Moccia 
and Renga 2010; Zhang 2012; Ren et al. 2017a; Ding et al. 2019) that used step-wise 
transformations between the main coordination systems. For example, Ye et al. 
proposed an equation for coordination transformation (Ye et al. 2018b); however, 
their transformation matrix T did not have a real physical meaning. The second 
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contribution of this study is the addition of an explicit expression for the intersection 
between the line of sight (LOS) of the sensor and the modelled Earth ellipsoid to the 
integrated coordination transformation equation, and the provision of sensitive 
factors between the position components relative to the LOS vector components. 
Sensor position components are derived and expressed in the supplemental material 
in close-form. The third contribution is the derivation of the visible area for an 
ellipsoid from remote sensors. An explicit expression is provided for sensors located 
on the polar axis, while a series expansion method is used for sensors on the 
equatorial plan. A distance-related optimum radius of the Earth is finally obtained.

The remainder of this paper is organized as follows: Section 2 first introduces the 
coordination system transformation for Moon-based Earth observation and the inte-
grated coordination transformation equation based on the JPL ephemerides and Earth 
orientation information. Then, the explicit expression of the intersection between LOS 
and the Earth ellipsoid is derived based on the geometrical relationship between the 
Moon and the Earth. Formulae are derived for two special cases of the visible area on the 
modelled Earth ellipsoid observed by the sensors. Section 3 presents the simulations and 
analyses based on the developed mathematical formulae. The temporal and spatial 
distributions of sensitive factors are then simulated and analysed, and the optimum 
radius for visible area research is written as a function of the distance between the 
Earth and the Moon. Finally, we discuss our findings, including sources of error in this 
study, and aims for future studies are provided in Section 4.

2. Data and theory

The regular method of studying the characteristics of Earth observations is to place 
sensors and targets into the same coordinate system. The relative position of the 
Earth and the Moon will determine the Moon-based earth observation geometry, and 
it is a common situation for the position of targets on Earth to be defined in the 
geodetic coordinate system of the Earth, while the positions of sensors on the Moon 
are defined in the geodetic coordinate system of the Moon. These two coordinate 
systems are both body-centred and body-fixed coordinate systems, and coordinate 
system transformation is needed for studying Earth observations from the Moon. 
Another issue is the shape of the Earth, i.e., the assumption of a spherical Earth is 
simple. Under this assumption, the entire Earth is shaped as a sphere, and the 
geometry of Moon-based Earth observation is very simple, which has been obtained 
in other studies (Fornaro et al. 2010; Ren et al. 2017a; Ye et al. 2017; Xu and Chen 
2018). However in geodesy, the Earth is always represented as an ellipsoid, which is 
obtained by rotating an ellipse around its shorter axis (Clarke 1878; Ikeda and 
Dobson 1995; Goodchild et al. 2012). The related observation geometry based on 
an ellipsoid model is studied in this work.

2.1. Coordination transformation for moon-based earth observation

Coordination system transformation is the basis for studying Earth observation from the 
Moon. Several studies related to the transformation of the Moon-based Earth observation 
coordination system have been conducted using a separated coordination transformation 
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(Moccia and Renga 2010; Ren et al. 2017a; Ding et al. 2019). The following section will 
introduce an integrated transformation, considering that JPL Development Ephemeris 
(DE) series are the most popular ephemerides, which include the positions of the Earth 
and the Moon (Folkner, Williams, and Boggs 2009). The JPL DE data were used as 
described in (Ren et al. 2017a) to implement the integrated transformation. Figure 1 
depicts the relationships of the coordination system transformation and the transforma-
tion vector. The vector S points to the sensor on the Moon which is obtained from the 
attitude parameters of the Moon and the Moon’s centre position, while the vector T 
points to the target on Earth which is obtained from the Earth Orientation Parameters and 
the Earth’s position.

The positions of targets on Earth are defined in the geodetic coordinate system of the 
Earth, whereas the positions of sensors on the Moon are defined in the lunar geodetic 
coordinate system. For the position vector on Earth in the geodetic coordinate system, it is 
simple to transform it into the International Terrestrial Reference System (ITRS) coordinate 
system, which is expressed as the sum of trigonometric functions for longitude and 
latitude, written here as Ptarget

ITRS x; y; zð Þ, where x, y, and z are the coordinates along the x-, 
y-, and z-axes in the ITRS coordination system, respectively. There have been many studies 
on this matter (Jekeli 2001; Seeber 2003; Torge and Müller 2012), and nearly the same 
position vector may be used to transform the coordinates on the Moon from the lunar 
geodetic coordinate system into the Moon-centred, body-fixed coordinate system 
(MCMF), first the Mean Earth (ME) coordinate system, written as: Psensor

ME x; y; zð Þ . The 
workflow for transforming the position vector Psensor

ME x; y; zð Þ on the ME coordinate system 
to the ITRS coordinate system is complex (Figure 2); there are eight main transformation 
steps. Assuming the position vector of the sensor Psensor

ME x; y; zð Þ was transformed into the 
ITRS Earth-centred, body-fixed coordinate system, and its position vector in the ITRS 
coordinate system is PITRS x; y; zð Þ, then the integrated expression may be written as: 

PITRS x; y; zð Þ ¼ WRNPB Lþ VUPME x; y; zð Þð Þ (1) 

The constant matrix U represents the transformation from the ME system to the principal 
axis (PA) system, which was defined by (Archinal et al. 2011). The matrix V represents the 

Figure 1. Schematic of the relationships for the coordinate system transformation for moon-based 
earth observations.
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transformation from the PA system to the International Celestial Reference System (ICRS) 
Moon-centred system with three Euler angles, and the vector L represents the offset 
between the ICRS Earth-centred system to the ICRS Moon-centred system, which were 
defined by IERS Conventions (Folkner, Williams, and Boggs 2009). The matrix B represents 
the frame bias between the equinox (J2000.0) and the Geocentric Reference System 

Figure 2. Transformation chain workflow for the position vectors of a moon-based sensor in the Mean 
Earth (ME) coordinate system into the International Terrestrial Reference System (ITRS) earth-centred 
coordinate system.
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(GCRS). The matrices P, N, and R reflect the characteristics of the precession, nutation, and 
rotation of the Earth separately, and they are defined in (McCarthy and Petit 2004). The 
matrix W represents the polar motion, which corresponds to the kinematic definition of 
the non-rotating origin in the ITRS when the Celestial Intermediate Pole (CIP) is moving 
with respect to the ITRS (McCarthy and Petit 2004). With the integrated transformation, 
the sensor on the Moon and the target on Earth could be put into the same ITRS Cartesian 
coordinate system. The position of the Sun was transformed to the same ITRS Cartesian 
coordinate system using a similar procedure.

2.2. Geometry analyses for moon-based earth observation

After the coordinate system transformation, the position vectors of the sensor on the 
Moon Psensor

ITRS x; y; zð Þ, the target on Earth Ptarget
ITRS x; y; zð Þ; and the Sun Psun

ITRS x; y; zð Þ were in 
the same ITRS Cartesian coordinate system. For simplicity, they are written as: 
Psensor x; y; zð Þ, Ptarget x; y; zð Þ, and Psun x; y; zð Þ; respectively. As mentioned previously, the 
Earth is commonly modelled as an ellipsoid E (Moritz 1980; Chovitz 1981; Grafarend, 
Klapp, and Martinec 2010); here we assume the target is located on the surface of 

x2

a2 þ
y2

a2 þ
z2

b2 ¼ 1 (2) 

where x, y, and z are the coordination variables on the ITRS system, and a and b are the 
length of the semi-major (equator) and semi-minor (polar) axes of the spheroid.

The LOS of the sensor is important in Earth observations as it represents the observa-
tion direction of the sensor. Assuming the sensor is located at the point p ¼ xp; yp; zp

� �

outside of ellipsoid E, where xp, yp, and zp are the components of the position of the 

sensor within the coordinate system, the LOS unit vector is bl ¼ m; n; qð Þ, where m, n, and 
q are components of the LOS unit vector, and the target t ¼ xt; yt; ztð Þ is the intersection 
point between the LOS vector and the ellipsoid surface. The explicit expression for t can 
then be obtained by direct calculation via the equation of the line through the point p 

with the direction vector along LOS bl. It is common for the LOS vector to intersect the 
ellipsoid E, and it will have two solutions 

t ¼ p � l̂ � e
� �

� p � eð Þ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

l̂ � e
� �

� p � eð Þ
� �2

� l̂ � e2 p � ek k
2
� 1

� �
r" #

l̂

k̂l � e2k
(3) 

where � is the dot product, � is the Handmaid product, �k k is the norm of a vector, and 
e ¼ 1=a; 1=a; 1=bð Þ represents the geometric parameters of the ellipsoid E. Equation (3) 
gives the explicit expression of the position vector of the intersection point t ¼ xt; yt; ztð Þ

from a sensor looking at an ellipsoid. This expression shows that the position vector is 
determined by the LOS vector, ellipsoid geometry parameters, and the location of the 
sensor. The uncertainties of the location of the sensor and LOS vector will propagate into 
the position vector. Using Equation (3), the relationship among the uncertainties of t ¼

xt; yt; ztð Þ; the uncertainties of the sensor position p ¼ xp; yp; zp
� �

, and the LOS vector bl ¼
m; n; qð Þ are related via Equation (4) and Equation (5), where Jp and are the matrix of 
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sensitive factors and the definitions of the components of the matrixes are presented in 
the supplemental material. 

Jp ¼

@tx
@px

@tx
@py

@tx
@pz

@ty

@px

@ty

@py

@ty

@pz
@tz
@px

@tz
@py

@tz
@pz

2

6
6
4

3

7
7
5 (4) 

Ĵl ¼

@tx

@ l̂x

@tx

@ l̂y

@tx

@ l̂z
@ty

@ l̂x

@ty

@ l̂y

@ty

@ l̂z
@tz

@ l̂x

@tz

@ l̂y

@tz

@ l̂z

2

6
6
6
4

3

7
7
7
5

(5) 

Commonly, there are two intersection points between the LOS vector and the ellipsoid 
Earth; if these two intersection points shrink into one point, then the LOS vector is tangent 
to the Earth ellipsoid surface. All resulting tangent points t ¼ xt; yt; ztð Þ, with respect to 
the sensor position p ¼ xp; yp; zp

� �
, are located on the same plane, and fulfil 

xtxp

a2 þ
ytyp

a2 þ
ztzp

b2 ¼ 1 (6) 

The visible area on Earth from the sensor located on the Moon is presented in Figure 3. 
Although the moon is far away from the Earth, it is still a finite distance, and the visible 
area is not half of the Earth’s surface. Under normal conditions, for a surface in three- 
dimensional (3D) space, which is defined by z ¼ z x; yð Þ, the visible surface area in 
a rectangular Cartesian coordinate system can be written as standard double integrals 
formula, as in (Harris and Stocker 1998). For a standard ellipsoid, the integration of the 

surface area was derived by Cotes (Gowing 1983) using Equation (7), where ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2
p

=a is the eccentricity of the Earth ellipsoid, which is about 0.08 in the GRS 80. 

Figure 3. The visible area on the earth from the moon-based sensor. Due to the finite distance 
between the earth and the moon, the visible area is not half of the earth’s surface.
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Although the total area of an ellipsoid can be explicitly expressed, it is not yet possible to 
obtain an explicit expression for the visible area of specific parts of the Earth under most 
conditions. 

Ssurface ¼ π 2a2 þ
b2

ε
ln

1þ ε
1 � ε

� �� �

(7) 

However, there are two extreme situations in which the visible area may be explicitly 
obtained. The first situation is when the sensor is located on the equatorial plane, and the 
visible area may be expressed as 

Sequator
visible ¼ 4a2 ò

1

a=DME

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ε2x2
p

EllipticE
1 � x2

1=ε2 � x2

� �

dx (8) 

where ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2
p

=a is the eccentricity of the Earth ellipsoid, DME is the distance 
from the sensor to the centre of the Earth and the visible area could be obtained with 
series expansion, EllipticE[·] is the complete elliptic integral. It is clear that the visible 
area of the reference ellipsoid of the Earth from the sensor located on the equatorial 
plane is a function of eccentricity, the length of the semi-major and semi-minor axes 
of the ellipsoid, and the distance between the centre of the Earth and the Moon. 
Another situation, in which the total visible area may be explicitly expressed, is when 
the sensor is located on the polar axis; in this case, the visible area may be 
expressed as 

Spolar
visible ¼ πa2 1 � sinθ2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ε2cos2θ2

p� �
þ

πb2

ε
ln

1þ ε
εsinθ2 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1 � ε2cos2θ2
p

� �

(9) 

where ε ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
a2 � b2
p

=a is the eccentricity of the Earth ellipsoid, and θ2 ¼

arctan b2=að Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
D2

ME � b2
p� �

is the angle of the tangent point and x-y plane. This equation 

shows that when the distance goes to infinity, the angle θ2 will approach 90°. Equation (9) 
will then equal half of Equation (7), meaning that half of the Earth will be observed in an 
extreme situation. For simplification, in previous studies the Earth has been treated as 
a sphere with a radius a ¼ b ¼ ρE, wherein the visible area Ssphere of the Earth from 
a sensor could be derived as 

Ssphere ¼ 2πρ2
E 1 �

ρE

DME

� �

(10) 

The above equation could be obtained by substituting a ¼ b ¼ ρE into Equation (8) as 
well, indicating that the spherical assumption is a special case for an ellipsoid, and that the 
greater the eccentricity of the ellipsoid, the larger the difference between the spherical 
assumption and the ellipsoid situation of the Earth.

3. Results and discussion

The observational capabilities of Moon-based Earth observation platforms are mainly 
determined by the relative positions of the Moon and the Earth. However, the observation 
geometry is determined not only by these relative positions, but also by the polar motion 
of the Earth, the libration of the Moon, and the shapes of the Earth and Moon. To quantify 
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the characteristics of Moon-based Earth observations, a simulation system was estab-
lished, and, then, the LOS vector pointing sensitive factors and the visible area were 
analysed.

3.1. LOS vector and uncertainty analyses

According to the geometric relationship between the Moon and the Earth, the Earth has 
an apparent diameter of about 2° when viewed from the Moon. However, a camera with 
a 3° FOV is not enough if the sensor direction is fixed, due to the fact that the rotational 
axis of the Moon is not perpendicular to the ecliptic plane. Moreover, the Moon’s 
liberation extends beyond 6°, and for the Earth to enter the FOV of the Moon-based 
sensor, the FOV must extend beyond 20° if the sensor looking direction is fixed. Another 
option is to align the sensor direction to target the geocentre of the Earth. In this case, 
a small FOV is sufficient, though a more precise control system is required. In both 
situations, the LOS vector is an important parameter; it represents the optical axis of the 
sensor and is crucial for geolocation. Sublunar points are a special situation, wherein the 
LOS of the sensor is from the sensor to the geocentre of the Earth, and this has been 
analysed in previous studies (Ren et al. 2017a; Ye et al. 2017). The distribution of the 
sublunar points on the Earth surface in 2016 is shown in Figure 4. These points are located 
between the latitudes of � 19°, and the points were obtained from the geocentre of the 
Earth.

To analyse the characteristics of the impacts of different sources of uncertainty, 
a virtual sensor was simulated on the Moon. The positions of the sensor were obtained 
daily in 2016 from the simulation system, and we assumed that the sensor was always 
directed towards the geocentre of the Earth. Considering the Moon is close to the ecliptic 
plane, the sensitive factors computed from the simulated results were projected onto an 
x-y plane.

Figure 4. Sublunar points in the geodetic coordinate system. The scatter points are the sublunar 
positions for UTC time 00:00:00 every day, and each line with a different colour represents a 12 months 
period from January to December 2016.
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Figure 5(a–c) show the sensitivity factors of Equation (4) for the target position of the 
vector t ¼ xt; yt; ztð Þ with respect to each of the coordinate components of the sensor 
position p ¼ xp; yp; zp

� �
. These figures reveal that there were several characteristics of the 

fractional uncertainties associated with the sensor position. First, the uncertainties of the 
target position and the uncertainties of the sensor position exhibited nearly the same 
scale, which suggests that the lunar orbit error may cause small errors in the target 
position. The second characteristic was that the error of the sensor position along one 
axis can cause errors for every direction of the target position, indicating that the error in 
one direction will propagate in other directions. Figure 6(a–c) show the sensitivity factors 

of Equation (5) of the looking vector bl ¼ m; n; qð Þ with respect to each of the coordinate 
components of the sensor position. The figures show that the uncertainties of the target 
position due to uncertainties of the looking vector were much larger than those of the 
sensor position; the scale of these uncertainties was about 107 to 108. These findings 

Figure 5. Sensitive factors of the sensor position to the components of the intersection position. (a) 
x-component of the intersection position. (b) y-component of the intersection position. (c) z-compo-
nent of the intersection position. For each intersection component, the x- (i), y- (ii), and z- (iii) 
components of the sensor positions are given.
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suggest that a small angle error can cause a large position error of the target on Earth. 
Moreover, the angular accuracy of the Moon-based sensor presents a critical challenge 

Figure 6. Sensitive factors of the line of sight (LOS) position to the components of the intersection 
position. (a) x-component of the LOS vector. (b) y-component of the LOS vector. (c) z-component of 
the LOS vector. For each intersection component, the x- (i), y- (ii), and z- (iii) components of the LOS 
vector are given.
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that must be solved to enable an on-orbit geolocation. This is especially important for SAR 
imaging, as the range history and focus plane are very important for SAR focusing.

In addition to the temporal changes of the sensitive factors, another important 
phenomenon in Earth observation is spatial variability. The sensitive factors calculated 
using the equations in the supplemental material, in which the target is located at 
different places on the Earth’s surface, and the Moon is located on the x-axis (i.e., the 
LOS vector is along x-axis), are shown in Figure 7. The figure shows that for most of the 

positions, the sensitive factors @tz=@blz and @ty=@bly are larger than @tx=@blx . This is because 
the LOS vector is along the x-axis, so the change in the x-component of the LOS vector will 
have less impact on the x-component of the location of the target. Additionally, if the 

Earth is a sphere, then after a 90° rotation, the sensitive factors @tx=@bly and @tx=@blz will be 

Figure 7. Spatial variability of the sensitive factors of the components of the LOS vector to 
the components of the intersection position. (a) x component of the LOS to the 
x component of the position. (b) y component of the LOS to the x component of the 
position. (c) z component of the LOS to the x component of the position. (d) x component 
of the LOS to the y component of the position. (e) y component of the LOS to the 
y component of the position. (f) z component of the LOS to the y component of the 
position. (g) x component of the LOS to the z component of the position. (h) y component 
of the LOS to the z component of the position. (i) z component of the LOS to the 
z component of the position.
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equal. This was also tested via simulation; however, we found that the y- and z-compo-

nents of the LOS vector impact to the position of the target @tx=@bly and @tx=@blz was not 
rotationally equal, as the lengths of the ellipsoid semi-axes differed.

3.2. Visible area and optimum radius analysis

The visible area of the Earth is an important parameter for Earth observation. It denotes 
the capability of the observation platform, and the visible area is determined by the 
geometric shape of the Earth and the position of the observer. The visible area of the 
Moon-based sensor has been discussed assuming a spherical Earth (Ren et al. 2017a; Ye 
et al. 2017). For the Earth ellipsoid, such as that used in GRS 80, the analytical form of the 
visible area from the sensor could be obtained only when it is placed on a polar axis. For 
sensors located on the equatorial plane of the Earth, the visible area could only be 
obtained using series expansion. Due to the difficulties in obtaining the visible area for 
the Earth ellipsoid, the alternative, which assumes sphericity, is also feasible. However, the 
radius of the Earth then becomes a critical parameter for determining the visible area. 
There are several possible methods to define the radius of a spherical Earth, such as using 
the length of semi-axes or the mean value of them. In this study, we further analysed the 
optimum radius of a spherical Earth for Moon-based Earth observations that could 
achieve a visible area as accurate as that of the ellipsoid.

In contrast to the spherical assumption, for an ellipsoid Earth, the visible area of the 
sensor could only be obtained in special cases. Considering that the Moon is always near 
the equatorial plane of the Earth, it is reasonable to set the sensor on the equatorial plane 
of the Earth. For the reference system, we consider GRS 80, which was suggested by the 
International Astronomical Union (IAU). The semi-major axis was a ¼ 6:378� 106 

m around the equator, and the semi-minor axis was b ¼ 6:357� 106 m along the polar 
axis. Six types of radii were defined for comparison. The first radius type was defined as 
the length of the semi-major axis, which was denoted as �ρ1 ¼ a; the second type was 
defined as the length of the semi-minor axis, denoted as �ρ2 ¼ b. The third radius type was 
defined as the arithmetic mean of the semi-axis, which was denoted as �ρ3 ¼ aþ bð Þ=2; 
the fourth type was defined as the geometric mean of the semi-axis, denoted as 
�ρ4 ¼

ffiffiffiffiffiffi
ab
p

. The fifth radius type was defined as the area of the sphere equal to the 
ellipsoid, which was denoted as �ρ5 ¼

ffiffiffiffiffiffiffiffiffiffiffi
A=4π

p
; where A is the area which obtained from 

equation (7); the sixth type was defined as the volume of the sphere equal to the ellipsoid, 

denoted as �ρ6 ¼
ffiffiffiffiffiffiffi
a2b3
p

. The visible area of the GRS 80 ellipsoid from the sensor was 
computed with series expansion.

As the distance from the Moon to the Earth is about 350,000 to 400,000 km, different 
types of radii were computed, and the visible area is plotted in Figure 8. It is clear that the 
visible areas of the different types of radii were between the limits of type and �r2, while the 
visible areas for the types of radii defined as the arithmetic and geometrical mean of the 
semi-axis were smaller than those for the real situation. The closest situation was the sixth, 
followed by the fifth radius type. Figure 8(b) shows more details for the real situation and 
type five and six. The radius could be adjusted to meet the real situation, and after some 
simple derivation, the optimum radius could be written as a function of the distance 
between the Earth and the Moon 
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ρ ¼ 6370719:3436þ 7:817� 10� 7DME � 7:0104� 10� 16D2
ME (11) 

The first term on the left side is the constant which denotes the median value between 
the length of the semi major axis and minor axis, the linear term shows that the optimum 
radius is related to the distance between the Earth and the Moon, and the third term is 
a small adjustment. Considering that the distance between the Earth and the Moon is 
temporally changing, the above function is always time related and will make the visible 
area accurate for Moon based Earth observations.

4. Conclusions

China’s Chang’e-4 relay satellite, named Magpie Bridge, has been successfully launched 
on 21 May 2018, and Moon-based Earth observation platforms will be constructed in the 
near future as one sub task of the follow-up lunar mission of China. This study focused on 
the characteristics of Moon-based Earth observation platforms relative to an ellipsoid 
Earth. Our work employs an underlying geometry that differs from that used in previous 
studies with spherical assumptions, and can, thus, describe the Earth’s shape more 
accurately. Furthermore, the explicit expression of the sensitive factors of the LOS and 
sensor position to the intersection point of the LOS vector and the Earth 
ellipsoid are given. Our findings suggest that, although Moon-based Earth 
observations could obtain a full view of the Earth with a small view angle, 
more accurate angular control is needed to ensure a precise geolocation. 
Furthermore, different from studies that assumed a spherical Earth, the visible 
area of the sensor for an ellipsoid Earth could only be obtained in special cases. 
In such cases, the optimized radius for computing the visible area of the Earth 
from the Moon may be obtained as a function of the distance between the Earth 
and the Moon. Moon-based Earth observation is a new area of study, and while 
several questions remain, this study provides another step that may further 
advance the development and understanding of future Moon-based Earth 

Figure 8. (a) Area comparison between different radius definitions. (b) The magnified plot near 
2:506� 108.
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observation systems.
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