
D
el
ft
U
ni
ve
rs
ity

of
Te
ch
no
lo
gy

FLVoogd: Robust And Pri-
vacy Preserving Federated
Learning
IN5000: Final Project
Yuhang Tian

FLVoogd: Robust And Privacy
Preserving Federated Learning

by

Yuhang Tian

to obtain the degree of Master of Science

in Embedded Systems

Faculty of Electrical Engineering, Mathematics and Computer Science (EEMCS)

at the Delft University of Technology,

to be defended publicly on Thursday August 25, 2022 at 14:00 PM.

Student number: 5219728
Project duration: December, 2021 – August, 2022
Thesis committee: Dr. Kaitai Liang (responsible supervisor)

Rui Wang (co-supervisor)
Prof. Ir. Sicco Verwer (the chair)
Prof. Marco Zuniga

This thesis is confidential and cannot be made public until October 1st, 2022.

An electronic version of this thesis is available at http://repository.tudelft.nl/.

http://repository.tudelft.nl/

Preface
Federated Learning is a private-by-design collaborative learning framework where data holders upload
locally trained models to the server for aggregation. Unlike the centralized learning setting, where a
server collects substantial users’ data to build a commonly used model, data never leaves from local
devices under the federated learning framework. Therefore, Federated Learning claims that privacy is
preserved.

However, many later works have shown that the original federated learning paradigm with naive
aggregation rule cannot provide a robust model to clients under attack, even can still disclose personal
information to the server and adversaries.

With more investigators dedicate to this research, many recent works propose more secure aggre-
gation rules and privacy-preserving frameworks. Nevertheless, most designs still have two common
disadvantages. The first one is some secure aggregation rules are not adaptive. They can successfully
defend one attacking scheme but fails in another. Besides, some defense methods involve too many
unintuitive hyperparameters to tune. The second is the designing or the computational cost of secure-
and-private aggregation is high for many frameworks. Many secure aggregation rules are incompatible
with popular secure-computation protocols leading to extra designs, computations, or communications.

In this work, we propose FLVoogd, an updated federated learning framework in which servers and
clients collaboratively eliminate Byzantine attacks while preserving privacy. In particular, servers use
automatic Density-based Spatial Clustering of Applications with Noise combinedwith SecureMulti-party
Computation to cluster the benign majority without acquiring sensitive personal information. Meanwhile,
clients build dual models and perform test-based distance controlling to adjust their local models toward
the global one to achieve personalizing. Our framework is so automatic and adaptive that servers or
clients don’t need to tune the parameters during the training. In addition, our framework leverages only
simple Secure Multi-party Computation operations, including multiplications, additions, and compari-
son, where costly operations, like division and square root, are not required.

Evaluations are carried out on some conventional datasets from the image classification field. Re-
sults show that FLVoogd can effectively reject malicious uploads in most scenarios without adversely
influencing the predicting accuracy; meanwhile, it avoids data leakage from the server-side. Of course,
there are some limitations, the most of which are the data distribution cannot be highly non-i.i.d. be-
tween the peers, and the reconstruction attack for inferring the class representatives cannot be entirely
eradicated. However, we believe that FLVoogd can inspire other academics with its efficient and ef-
fective architecture and be a critical aspect towards the ultimate robust and confidential Federated
Learning.

In hindsight, the entire thesis process was enjoyable. Dr. Kaitai gave me enough freedom to de-
sign and implement my ideas. Even though they were sometimes incorrect and I might be trapped
in a dilemma, Rui would always help me out in time. We consistently held weekly meetings where I
could learn a lot and be inspired. Both were reliable and provided supportable feedback on time, so I
was well mentored throughout the whole project. Therefore, I sincerely appreciate their efforts in this
unforgettable journey. A particular thanks to Rui, who provided not only excellent comments regularly
but also assisted much in polishing the final work and framing it in such a manner that it would appeal
to the conference reviewers. I would also like to thank Prof. Sicco and Prof. Marco for participating on
my thesis committee and assessing my work.

Yuhang Tian
Delft, The Netherlands

August 2022

i

Contents

Preface i

List of Figures iv

List of Tables vi

Nomenclature vii

1 Introduction 1
1.1 Problem Statement . 1
1.2 Thesis Object . 2
1.3 Thesis Outline . 2

2 Background Knowledge 3
2.1 Federated Learning . 3
2.2 Differential Privacy . 4
2.3 Density-based Clustering . 6

2.3.1 DBSCAN . 7
2.3.2 HDBSCAN . 7

2.4 Secure-two-party Computation . 8
2.4.1 CrypTen . 9
2.4.2 SyMPC . 10

3 Problem Setup 13
3.1 Inference Attack . 13

3.1.1 Leaking surface. 13
3.1.2 Inference strategy . 13

3.2 Poisoning Attack . 14
3.2.1 Classification of attacks . 14
3.2.2 Attacking schemes . 15

4 FLVoogd 18
4.1 Encrypted FLVoogd Server . 18

4.1.1 Assumption . 18
4.1.2 Pipeline and algorithm . 19
4.1.3 Evaluation. 21

4.2 Unencrypted FLVoogd Server . 22
4.2.1 Assumption . 22
4.2.2 Pipeline and algorithm . 23
4.2.3 Evaluation. 24

4.3 FLVoogd Client . 24
4.3.1 Assumption . 24
4.3.2 Pipeline and algorithm . 24
4.3.3 Evaluation. 25

5 Experiment 27
5.1 Experimental Setup . 27
5.2 Experimental Results. 28

5.2.1 Fending off byzantine attacks . 28
5.2.2 Adding and tracking DP noise . 30
5.2.3 Non-IID interference . 31

ii

Contents iii

6 Related Work 34
6.1 Poisoning Defense . 34
6.2 Privacy Preserving . 35
6.3 Other . 36

7 Conclusion 37

Conference Version 38

References 60

List of Figures

2.1 Comparison between centralized and federated learning 3
2.1a Centralized learning . 3
2.1b Federated learning . 3

2.2 A toy-example of HDBSCAN . 8
2.2a 2-dimension samples . 8
2.2b Linkage tree . 8
2.2c Condensed tree . 8

2.3 An example of FSS for comparison . 10
2.3a deviation due to “less than” . 10
2.3b deviation due to “greater than” . 10

3.1 Inference attacks . 14
3.1a Trusted boundaries in FL . 14
3.1b GAN reconstruction . 14

3.2 Some examples of the trigger-backdoor attack . 17
3.2a Digits with top-left rectangle . 17
3.2b Cars in green . 17
3.2c Cars with stripes . 17
3.2d Cars in front of stripe wall . 17

3.3 Samples of the edge-case . 17
3.3a Edge cases for MNIST . 17
3.3b Edge cases for CIFAR-10 . 17

4.1 Encrypted FLVoogd server framework . 18
4.2 Unencrypted FLVoogd server framework . 23
4.3 FLVoogd client framework . 24

5.1 Byzantine attacks on MNIST . 29
5.1a A1: PMR=19/40 . 29
5.1b A2: PMR=19/40 . 29
5.1c A3: PMR=19/40 . 29
5.1d A4: PMR=19/40, PDR=1.0 . 29
5.1e A5: PMR=19/40, PDR=0.2 . 29
5.1f A6: PMR=19/40, PDR=0.33 . 29

5.2 Byzantine attacks on CIFAR-10 . 30
5.2a A1: PMR=19/40 . 30
5.2b A2: PMR=19/40 . 30
5.2c A3: PMR=19/40 . 30
5.2d A4: PMR=19/40, PDR=1.0 . 30
5.2e A5: PMR=19/40, PDR=0.33 . 30
5.2f A6: PMR=19/40, PDR=0.33 . 30

5.3 Byzantine attacks on EMNIST . 31
5.3a A1: PMR=19/40 . 31
5.3b A2: PMR=19/40 . 31
5.3c A3: PMR=19/40 . 31
5.3d A4: PMR=19/40, PDR=1.0 . 31
5.3e A5: PMR=19/40, PDR=0.2 . 31
5.3f A6: PMR=19/40, PDR=0.33 . 31

5.4 DP’s effect on MNIST . 32

iv

List of Figures v

5.4a σ = 1, q = 20/100 . 32
5.4b σ = 2, q = 40/100 . 32
5.4c σ = 3, q = 60/100 . 32
5.4d σ = 4, q = 80/100 . 32
5.4e σ = 5, q = 100/100 . 32
5.4f ϵ recording . 32

5.5 Non-IID effect on MNIST . 32
5.5a A1: PMR=9/20 . 32
5.5b A2: PMR=9/20 . 32
5.5c A3: PMR=9/20 . 32
5.5d A4: PMR=9/20, PDR=1.0 . 32
5.5e A5: PMR=9/20, PDR=0.2 . 32
5.5f A6: PMR=9/20 . 32

5.6 Pretraining and a lower PDR help the defense . 33
5.6a DegnIID = 0.3: lowering PDR to 6/20=30% . 33
5.6b DegnIID = 0.3: pretraining the model to accuracy around 25% 33
5.6c DegnIID = 0.5: pretraining the model to accuracy around 25% 33

List of Tables

2.1 CrypTen operations . 9

3.1 Summary of poisoning attacks . 15

4.1 SMPC operations in encrypted FLVoogd . 21

5.1 2×CNN architectures . 27
5.2 Attack settings . 28

List of Algorithms
1 FL with the naive aggregation rule . 4
2 FSS Comparison for x ≤ α . 12
3 Encrypted FLVoogd - server . 22
4 Auto DBSCAN . 23
5 FLVoogd - client (1) . 26
6 FLVoogd - client (2) . 26

vi

Nomenclature

Abbreviations

Abbreviation Definition

AI Artificial Intelligence
ANNs Artificial Neural Networks
BA Backdoor Accuracy
CNNs Convolutional Neural Networks
DBSCAN Density Based Spatial Clustering of Applications with Noise
DP Differential Privacy
DPF Distributed Point Function
FTL Federated Transfer Learning
FL Federated Learning
FSS Function Secret Sharing
GANs Generative Adversary Networks
GDPR General Data Protection Regulation
HDBSCAN Hierarchical Density Based Spatial Clustering of Applications with

Noise
MA Matin Task Accuracy
ML Machine Learning
NLP Natural Language Processing
PDR Poisoned Data Rate
PIR Private Information Retrieval
PMR Poisoned Model Rate
PRZS Pseudo Random Zero Sharing
RDP Rényi Differential Privacy
S2PC(STPC) Secure 2(Two) Party Computation
SMPC Secure Multi Party Computation
TSS Total Sum of Square
TTP Trusted Third Party

vii

List of Algorithms viii

Symbols

Symbol Definition

accref predicting accuracy of the global model based on the local validation
set

acclocal predicting accuracy of local models based on the local validation set
accthres threshold accuracy of local models learning from the global
b clipping indicator {0, 1}
bavg averaged of clipping indicators
bnoise compensating DP noise for bavg
B local mini-batch
c clipping boundary
C a set of clients
Dtrain local training set
Deval local validation set
e eth local training epoch
E total number of local training epochs
F objective function of neural networks
g gradients of neural networks
m number of remaining clients after filtering
Mcos cosine distance matrix
Mtss total-sum-of-square distance matrix
Madjcos adjusted-cosine distance matrix
n number of selected clients per round
N total number of clients
q ratio of the round chosen clients
t tth FL training round
T total number of FL training rounds
v last-layer model’s update of weights
w model’s update of weights
wglobal average of individual updates
w̃global wglobal added by DP noise
wnoise compensating DP noise for w̃global

Wglobal global model weights
Wlocal local model weights
δ failure probability of differential privacy
ϵ upper bound of max-divergence for differential privacy
ηc learning rate of adaptive clipping
ηditto learning rate of adaptive Ditto
ηglobal learning rate of the global model
ηlocal learning rate of local models
γ expected ratio of clients who should clip updates
γ̂ ratio of clients who did not clip updates
λditto coefficient to control the distance between the global and local model
λmax upper boundary of λditto

λmin lower boundary of λditto

σ DP noise multiplier/strength of model aggregation
σb DP noise multiplier/strength of averaged indicator

∗ unit vector of ∗
| ∗ | length of ∗
|| ∗ || l2-norm of ∗
∗(t) tth round of ∗
▽∗ partial derivative of ∗

1
Introduction

Machine Learning (ML) is the main subset of Artificial Intelligence (AI) techniques. To improve the
performance of ML, data extraction is usually required before the training. However, programmers do
not always know which features should be selected unless they have verified them on an established
model [12]. In order to overcome this challenge, computer scientists invent Artificial Neural Networks
(ANNs), which usually do not necessarily need feature extraction; still, its main weakness is the require-
ment of an adequate and large number of training data. Thanks to the trend of Big Data, tremendous
data collection is relatively undemanding nowadays [114]. However, the traditional training mechanism
adopts the centralized learning setting where a server collects the data from its clients/users to build a
common model for predictions. Consequently, this mechanism cannot sufficiently protect the privacy
of users’ data from the server-side and even leaks personal information to other unauthorized third par-
ties. For instance, users’ data collected by Facebook were revealed and used for political advertising
by another party without consent [112]. Another paradigm was that a standard anonymous dataset of
Netflix could be completely de-anonymized [79] which showed that a centralized training framework,
even with careful anonymity, could hardly guarantee personal privacy. Furthermore, with the growing
privacy concerns from customers and rigorous policies promulgated and executed by European Union’s
General Data Protection Regulation (GDPR) [118], people tend to be unwilling to share their private
data. These factors form a phenomenon so-called data isolation. To tackle this awkward problem,
Konečnỳ et al, in 2015 [54] and 2016 [55], introduced a new collaborative learning framework latterly
generally named as Federated Learning (FL). In the past half-decade, FL had been widely researched
and applied in many fields [60] such as image recognition [42], natural language processing (NLP) [20,
69], financial system [119], medical care [44] and far more.

1.1. Problem Statement
Rather than gathering the raw personal data by a server for specific training purposes, FL requires the
model parameters that clients train independently based on their own data and devices. In FL paradigm
frameworks, such as FedAvg [70], the server iteratively aggregates local models trained by individuals
and sends the global one back to clients for their local updates to achieve collaborative training. Thus,
no actual data is sent to the server. However, this cutting-edge framework still faces two main chal-
lenges - privacy and security. Firstly, the original FL setting cannot get rid of the disclosure of clients’
information and even enlarge the attacking surface. The model provided by a client can be regarded as
a high-level generalization of that person’s data. Taking Convolutional Neural Networks (CNNs) as an
example, convolutional layers and pooling layers constitute a network for feature extraction [82], and
weights in the last fully connected layer are directly relevant to the frequency of classes in the personal
dataset [91]. Not only can the server be an adversary to infer the information from the models sent by
clients in this scenario, but also every participant can perform the inference attack [72] to the global
model constructed by each individual. In this situation, some research employs Secure-multi-party
Computation (SMPC) to encrypt the uploads, such as [85]. However, the design or operations cost is
high, especially when dealing with the division and the square root. Secondly, since participants train
their local models without constraints, the model training can betray the regulation. If the server adopts

1

1.2. Thesis Object 2

the naive aggregation rule, the robustness of the global model cannot be guaranteed because adver-
saries can substitute the data with the poisoned one [109] or even directly change the uploads into
meaningless random numbers such as zero-mean Gaussian noise [116]. Some research, like [61, 91],
builds some practical defensive frameworks to eliminate the attacking consequence. However, those
frameworks include too unintuitive hyper-parameters to tune for different situations. Besides those two
significant challenges, some other aspects currently have also been considered by researchers, such
as communication efficiency [2, 63], fairness [122], non-IID [125] data, etc., but they are not compre-
hensively included in our research. It should be motioned that non-IID data would be used for our
experiments, but mainly for testing and presenting the robustness of our secure aggregation rule, not
for the convergence analysis.

1.2. Thesis Object
To improve the efficiency and save expensive operations, we develop an updated framework that com-
bines SMPC [53, 87], Density-based Spatial Clustering of Applications with Noise (DBSCAN) [31],
differential privacy [111], and personalized local model [61] to eliminate the malicious uploaded pa-
rameters without revealing any sensitive information and guarantee (ϵ, δ)-DP after the aggregation.
Compared with the past research, our framework 1) filters the abnormal uploads without knowing their
sensitive information; 2) performs the training process adaptively, requiring no parameter tuning; 3)
uses SMPC operations efficiently supported by most protocols. We leverage conventional image clas-
sification datasets to evaluate the framework. The results show that the filter can reject the byzantine
attacks under most situations without degrading the model performance. The trade-off between pre-
dicting accuracy and DP strength can be customized for different scenarios.

1.3. Thesis Outline
The thesis is organized as the following:

• Chapter 2 will detail the background knowledge to FL, especially FedAvg, which will be the base
stone where all the defensive schemes will latterly be added. In addition, it will sequentially
demonstrate the background knowledge of Differential Privacy, (H)DBSCAN, and Secure-two-
party Computation, which will be exploited for security and privacy guarantees.

• Chapter 3 will present the adversary strategies which malicious clients/servers use to perform
the inference and poisoning attack, respectively. Furthermore, it will exhibit that those attacks are
realistic and powerful to threaten the current FL frameworks.

• Chapter 4 will provide our FL framework and the design ideas behind it. It will show that our
design effectively and efficiently resists both malicious and inference attacks.

• Chapter 5 will show the setup of our experiments, including the assumptions based on different
scenarios and settings of different hyper-parameters. Subsequently, the outcomes of the investi-
gation will be visualized and analyzed.

• Chapter 6 will mainly provide the literature study of other designs based on robustness and
privacy-preserving FL. After that, some other interesting fields relative to FL will also be men-
tioned.

• Chapter 7 will summarize the whole project and offer suggestions and future research directions.

2
Background Knowledge

This chapter will provide the fundamentals to assist readers in understanding our Federated Learning
framework. In terms of different branches of Federated Learning, we will choose the horizontal one
as our research object. Other two are vertical and transfer federated learning. Then, two significant
challenges on this stem inevitably occur - 1) how can we safeguard the horizontal Federated learning in
case of being poisoned, and 2) how can we preserve the personal information from the model leakage?
We will study three state-of-art techniques - Differential Privacy, Density-based Clustering, and Secure
Multi-party Computation, and try to build defensive mechanisms based on these theorems to tackle the
above issues. The following will sequentially provide the background for Federated Learning and the
fundamentals of defense strategies.

2.1. Federated Learning
Federated Learning (FL) differs from conventional training in which clients are required to upload their
factual data to the server. Figure 2.1 visualizes this main difference. In a centralized setting (fig-
ure 2.1a), clients are required to upload their data to a server that will receive all uploads to obtain
a larger joint dataset and train a model relying on this centralized dataset. In contrast, the FL server
(figure 2.1b) will only collect independently trained models from clients; thereby, it can never access
factual data that does not depart from local devices at all.

(a) Centralized learning (b) Federated learning

Figure 2.1: Comparison between centralized and federated learning

FL can be mainly divided into three categories - horizontal FL, vertical FL, and Federated Transfer
Learning (FTL), and more details can be found in [118]. We think the latter two frameworks are more
applicable for B2B scenarios. In contrast, as the former is more suitable for B2C scenarios and caters
to our interest, we will select the horizontal FL framework for our study. We extend the definition of
FL from [118] for horizontal FL as: N data holders hold datasets {D1, ..., DN}, and traditionally they
unionize them D = D1 ∪ ... ∪DN to train a centralized modelMcentral to achieve accuracy Acccentral,
whereas now they train their own models based on Dis and upload Upis to a server who unionized the
uploads based on a specific operation Up1 ◦ ... ◦ UpN to obtain a modelMFL with accuracy AccFL,
and two accuracy follow eq.(2.1) where δ is a non-negative real number so-called δ-accuracy loss.

3

2.2. Differential Privacy 4

|Acccentral −AccFL| < δ (2.1)

The distribution of datasets can be either IID or Non-IID. The uploads can be gradients, weights [70],
weights’ differences [61] or signs [67, 115]. The operation ◦ can be average, weighted-average [50] or
other criteria such as Krum function [13].

There are two typical model-averaging frameworks - FedSGD and FedAvg [70]. FedSGD is early
developed from SGD [40] and latterly studied by [70] where it is compared with FedAvg. The main dif-
ference is that each client uploads its local gradients for every mini-batch iteration in FedSGD, but each
client uploads its weights/weight-differences after several mini-batch iterations in FedAvg. According
to the experiments in [70], the basic structure of FedAvg will be exploited in our research since it is
more customizable and requires fewer communication rounds which also represents that the privacy
loss can be reduced. Algorithm 1 shows the fundamental structure of our framework without any secu-
rity or privacy-preserving relevant modules. There are two differences compared to FedAvg. Firstly, it
uses average instead of the weighted average for the security concern. Secondly, clients upload the
differences in parameters rather than the raw parameters. According to the structure, it is not a secure
aggregation because clients can use any data for their training and freely modify their uploads. In ad-
dition, since individual uploads are purely plain-text from the server-side and the global model update
is simply the average of uploads for receivers in this communication round, it is not privacy-preserving.

Algorithm 1 FL with the naive aggregation rule
Server:
1: Initialization: w0

2: for round t := 1, 2, ..., T do
3: subsett ← subsample(clientSet, sampling_ratio = q) and |subsett| = K
4: for client with index k ∈ subsett do
5: wk

diff ← Clientk(wt)

6: wt+1 ← βwt + (1− β) 1
K

∑K
t=1 w

k
diff ▷ global model update

Client: ▷ clients locally and parallel do
7: Update: w ← wt ▷ local model update
8: for local epoch epoch := 1, 2, ..., E do
9: batches← dataLoader(Dk, batch_size = B)
10: for batch b ∈ batches do
11: w ← w − η▽L(w; b)
12: return wk

diff ← w − wt

2.2. Differential Privacy
Either the server or participants can analyze the uploaded parameters to infer the membership, such
as the information on whether a specific client has contributed to the model. This inference is detrimen-
tal in specific scenarios, such as the patient’s information in a hospital. Differential Privacy (DP) as a
privacy-preserving technique has already been studied and applied in centralized-training DL [1] where
DP can bound and quantify the privacy loss. Normally, DP introduces randomness to the response [29]
which we want to protect so as to produce indistinguishable outcomes. FL can also incorporate this
mechanism. In particular, whether a specific client participates in the training is hidden after the DP
process - the accuracy is not significantly changed - and this participant cannot be deduced with any
arbitrary side information [5].

(ϵ, δ) − DP also called approximate differential privacy is formally defined as eq.(2.2) where M is
a randomized mechanism mapping domain D to range R: D → R, and d, d′ ∈ D are two neighboring
databases: ||d − d′||1 ≤ 1. It quantifies that with the probability 1 − δ, the maximum privacy loss

2.2. Differential Privacy 5

ln Pr[M(d)∈S]
Pr[M(d′)∈S] is no larger than ϵ. The privacy loss here usesMaxDivergence which can also be regarded

as the maximum difference/distance between the outputs. In contrast, it has the probability δ that the
mechanism fails to produce ’close’ enough outcomes.

Pr[M(d) ∈ S] ≤ exp(ϵ)Pr[M(d′) ∈ S] + δ (2.2)

Gaussian noise is commonly used as a randomized mechanism for the centralized training set-
ting [5], as the l2 based sensitivity measurement [29] and the composition theorems of the Gaussian
mechanism [1] provide less privacy loss for the scenario where high dimensional outputs are iteratively
queried. As known, the dimension of clients’ uploads is usually high in FL, e.g., 269,722 parameters
for ResNet-20 [46], and the number of training epochs is always hundreds or even thousands [91] to
approach the convergence. Therefore, the Gaussian noise mechanism will be embraced in our frame-
work. The formal definition of the Gaussian mechanism is shown as eq.(2.3). The noise adding can be
viewed as a sacrifice to the accuracy to achieve indistinguishable results; thus, considering the amount
of added noise is a trade-off between privacy and accuracy.

M(d) = f(d) +N (0, σ2 ·∆2
2(f)) (2.3)

The standard deviation of the added Gaussian noise is σ∆2(f)where∆2 = max
||d−d′||1=1

||f(d)−f(d′)||2

is the maximum l2-sensitivity. If σ ≥
√

2 ln(1.25/δ)
ϵ and ϵ ∈ (0, 1),M(d) is (ϵ, δ)−DP by theorem 3.22 [29].

However, due to the multiple rounds of training, ϵ is hard to be limited in (0, 1); as a result, ϵ is normally
abused and extended to values larger than 1 in the FL setting [3, 5, 38, 80]. A larger ϵ will influence the
composition theorem, because the higher-order term cannot be ignored when ϵ grows large which will
be detailed later.

As mentioned, the FL training process usually takes hundreds or thousands of rounds to converge
or achieve acceptable accuracy. Intuitively, the adversary can obtain more information through quires
during multiple rounds to infer whether a client exists in training. In fact, ϵ will correspondingly grow
larger if someone can query multiple times. There are many quantifying methods for this privacy ac-
countant [71] with multi-time queries. Since the DP’s output can be regarded as a random variable
whose upper bound is ϵ, the simplest accountant method is naively summing the upper bound of T
rounds (ϵ, δ) − DP : ϵ′ = ϵ1 + ϵ2 + ... + ϵT . If ϵ is set identical for each round as FL normally does,
ϵ′ = Tϵ. However, this method is obviously not rigorous because the upper bound of the sum of ran-
dom variables should be much smaller than direct adding up. If the range and expectation of random
variables are considered, a much tighter bound can be found. In [30], Dwork et al studied the upper
bound of the conditional expectation and used Azuma’s Inequality to derive a tighter bound and this
composition is so-called advanced composition shown in eq.(2.4).

ϵ′ =
√
2T ln(1/δ∗)ϵ+ Tϵ(eϵ − 1) δ′ = Tδ + δ∗ (2.4)

If ϵ is small, the second term of ϵ′ approximates zero which can be ignored, thereafter the T rounds
(ϵ, δ)−DP can be approximate to (ϵ·

√
2T ln(1/δ), T δ)−DP . As a consequence, advanced composition

brings the linear increase respective to T down to
√
T . In addition, Abadi et al, noticing the advanced

composition theorem only includes the first moment - expectation, proposed Moments accountant in
2016 which further takes higher-order moments - up to 32nd - into consideration [1]. It provides a rational
tighter bound especially for DL. If using moments accountant for T rounds (ϵ, δ) − DP , it becomes
(O(qϵ

√
T), δ)−DP where q is the subsampling rate and will be given more details in the next paragraph.

Another commonly used accountant method is Rėnyi Differential Privacy (RDP) provided by Mironov
who replaced the Max divergence for measuring privacy loss by Rėnyi divergence shown in eq.(2.5)
and then received (α, ϵ)− RDP where α is the order [74]. When α→∞, Rėnyi divergence is exactly
Max divergence, thus the original privacy loss measurement is a special case for the RDP accountant.

Dα(P ||Q) =
1

α− 1
logEx∽Q(

P (x)

Q(x)
)α (2.5)

2.3. Density-based Clustering 6

In his research, Mironov provided a transformation between (α, ϵ)−RDP and (ϵ, δ)−DP as eq.(2.6)
shows. It can be noticed from the equation that ϵ can save ln 1/δ

α−1 if a smaller α can be found. In other
words, the privacy budget ϵ can be further shrunk by RDP.

(α, ϵ)−RDP ∽ (ϵ+
ln(1/δ)
α− 1

, δ)−DP (2.6)

Similarly, RDP was researched and applied in DL with subsampling by Wang et al. in 2019 [111].
Our research will adopt these two prevalent methods, Moments accountant and RDP, for tracing the
privacy budget ϵ. No matter which one of the methods is chosen, it will not change the strength of
DP. For instance, we set a fixed δ to 10−6 and the standard deviation of Gaussian noise σ · ∆2(f) to
1 · ∆2(f), after several training rounds, ϵ = 20 if using simple composition whereas ϵ = 12 if using
advanced composition. It does not represent advanced composition provides a stronger DP guarantee
because the amount of the added noise is identical for both accountant settings. They only differ in
how they “view” the privacy loss, so “the world is the same world but viewers with different angles”.
The main reason we chose those two accountant methods is that they are prevalent and exhaustively
researched, but some other methods provide even lower bound, such as Bayesian DP [104].

So far, we only provide the definition of DP and some methods for tracing DP but do not provide
any methods to enhance DP or improve its usability. The following paragraphs will detail subsampling
that was mentioned in previous paragraphs. Besides, it will introduce one crucial property of DP, post-
processing resistance. FL always involves a larger number of clients, but due to the limitations of
connection and communication, e.g., bandwidth and dropping-off [96], in each iteration, the server
will ordinarily only choose a part of clients for the communication so-called random sub-sampling [38].
Meanwhile, this random subsampling strategy also enhances the DP process [86]. If the subsampling
ratio is q < 1, then (ϵ, δ)−DP becomes (O(qϵ), qδ)−DP shown in eq.(2.7) [111]. Thanks to this sub-
sampling, whether a specific client participates in this training round is probabilistic, and whether an
adversary participates in this training round who tries to receive the averagedmodel, is also probabilistic.
Accordingly, even without DP Gaussian noise, subsampling itself introduces the randomness to amplify
the DP process. Thus, less noise can be added if the server takes advantage of random sub-sampling.

ϵ′ = log(1 + q · (eϵ − 1)) δ′ = q · δ (2.7)

In terms of post-processing, it guarantees the (ϵ, δ)−DP noisy outcome cannot be enervated. The
formal definition is given by proposition 2.1 in [29]: IfM is a (ϵ, δ)−DP randomized algorithm and f is
an arbitrary mapping,M ◦ f is still (ϵ, δ)−DP . Therefore, using side information for post-processing to
improve the usability of the result without increasing the privacy loss is possible. For instance, based
on our prior knowledge, we can assume that the quired results should be non-zero when counting the
number of people, so we can regard the output as zero when it outputs a negative number because of
the added noise [83].

In conclusion, Moments accountant1 and RDP2 will be selected for tracking the privacy loss; mean-
while, random sub-sampling and post-processing will be exploited by our research to improve usability.

2.3. Density-based Clustering
To separate benign and malicious clients from uploads, algorithms like unsupervised ML are suitable,
such as clustering. However, unlike conventional clustering problems, the number of clusters/centroids
in FL is unknown in advance. There are two types of clusters - the benign cluster and the malicious
cluster. Nonetheless, because the malicious uploads can be capriciously far away from the benign
cluster, algorithms such as K-mean [117] where the number of clusters is a hyper-parameter is imprac-
tical. To overcome this barrier, density-based clustering algorithms such as mean-shift clustering [26],
density-based spatial clustering of applications with noise (DBSCAN) [31] and density-based cluster-
ing based on hierarchical density estimates (HDBSCAN) [18] are embraced for classifying benign and

1https://github.com/SAP-samples/machine-learning-diff-private-federated-learning
2https://github.com/yuxiangw/autodp

https://github.com/SAP-samples/machine-learning-diff-private-federated-learning
https://github.com/yuxiangw/autodp

2.3. Density-based Clustering 7

malicious uploads. After taking efficiency and stability into consideration [84, 85, 91], HDBSCAN will
be used where S2PC is not applicable, and DBSCAN will be used in the case where S2PC is enabled.
Details of DBSCAN and HDBSCAN will be given in the following paragraphs.

2.3.1. DBSCAN
DBSCAN is initially designed for clustering and distinguishing the noise from the high dimensional
database depending on the variance of density [31]. A non-negligible quantity of samples should be
in the cluster if a cluster is formed. In contradiction, the cluster can hardly be formed in areas where
samples are located sparsely. These “depopulated zones” can be used as gaps to separate the different
clusters with different classes and to sift out noisy samples. We will consistently follow some of the
concepts and symbols used in [31]. NEps(p) represents neighbors of a point p within a range with
radius Eps (Eps is a preset hyper-parameter). A point p is a corepoint, if |NEps| ≥ MinPts (MinPts
is a preset hyper-parameter). In addition, a corepoint is the centroid of a cluster, so in other words,
a cluster is only formed when its centroid is a corepoint. A point p is a borderpoint, if its neighbours
contain at least one corepoint. It should be noted that a point can be a borderpoint for different clusters,
but it will be only assigned to a unique cluster eventually, and it depends on which cluster it assigns the
point to first. If a point is neither a corepoint nor borderpoint, it will be classified as noise. The whole
clustering process can be divided into five main steps:

Step 1. Initialization: Label all points as unsigned and initialize an empty set.
Step 2. Core Point Discovering: Retrieve every point from the database and verify if it is a corepoint or

not. If true, it will be labeled as a corepoint. A temporary cluster is formed and added into set.
Step 3. Border Point Discovering: Retrieve the rest unsigned points and verify if it is a borderpoint or

not. If true, it will be labeled as a borderpoint.
Step 4. Cluster Merging: Retrieve every temporary cluster from set and repeatedly verify every point

in this temporary cluster except the original centroid if the point is corepoint or not. If true, the
temporary cluster will be linked with another temporary cluster by this corepoint, and points from
the newly added cluster will be appended to the verification process.

Step 5. Noise Discovering: Label the unsigned points as noise.

According to the process, there are mainly two hyper-parameters that need to be determined initially
-Eps andMinPts. Both together define how conservative the clustering will be. To be specific, the user
needs to define how dense a region is to be regarded as a cluster. There are many later researches
for these two parameters tuning [51, 58, 101]. Nevertheless, these two parameters are not easily and
appropriately set if the foreknowledge of data distribution is lacking [68].

2.3.2. HDBSCAN
HDBSCAN is built on DBSCAN and additionally uses a hierarchical structure to automate the extraction
of clusters. It builds a linkage tree and then auto-estimates the density of each cluster to determine
whether two clusters merge or not. Referencing [68], the whole process can be divided into five steps:

Step 1. Transform the space: Rather than directly measuring the distance between two samples, it intro-
duces core distance dk(a, b) (eq.(2.8)) to measure the distance and names it mutual reachability
distance to distinguish it from the true distance d(a, b) between two samples. corek(a) is the dis-
tance between point a and its kth nearest neighbors. The transformation is for amplifying the
difference between dense region and sparse region so as to build a robust single linkage tree.
For instance, if a point p locates in a dense area where it can find k nearest neighbors easily, even
these k neighbors are pushed further (dk = corek(p) ≥ d(p, q), q ∈ kNeighbors), the distances
between p and its neighbors are still comparably close; in contrast, if a point p locates in a desolate
area where it searches a broad region to find k nearest neighbors, because these k neighbors
are pushed further, p looks more “lonely”. In HDBSCAN library, k is called min_samples.

dk(a, b) = max{corek(a), corek(b), d(a, b)} (2.8)

Step 2. Build the minimum spanning tree: Prim’s algorithm - the shortest edge is selected every time
- is used to find and connect edges for building the minimum spanning tree.

2.4. Secure-two-party Computation 8

Step 3. Build the cluster hierarchy: The single linkage - the distance between two groups, which is
measured by the closest two points respectively in each group - is used to build the hierarchy.

Step 4. Condense the cluster tree: It is the core step of HDBSCAN because the clusters are picked
out during the condensation. It requires a hyper-parameter min_cluster_size as a threshold to
define a cluster, and the minimum threshold is 2. It travels the hierarchy from the top to down
and disconnects the point while the distance is decreasing. Accordingly, the process can also be
viewed as the “points falling out of a cluster”. A point falls out merely because of two reasons: 1)
the distance is too low to preserve the point so that it actively leaves the cluster; 2) the cluster
is split into two smaller clusters so that it passively leaves the old cluster and enters a new one.
The reciprocal of distance λp = 1

distance when the point falls out from a cluster will be recorded so
that a point may have multiple λp corresponding to different clusters. When a cluster is split into
two new clusters, the reciprocal of current distance is λdeath for the death cluster and λbirth for
the born clusters, so every cluster has a pair of λbirth and λdeath and the parent cluster’s λdeath is
the λbirth for its children clusters. The updated tree will only reveal the information for the second
reason; thus, it is the reason why it is called a condensed cluster tree.

Step 5. Extract the clusters: It initially sets all clusters at leaf nodes to be selected ones. Then, it travels
from the bottom to the top and compares the stability defined as eq.(2.9) between children nodes
and parent nodes. The stability of the parent node will be replaced by the sum of children nodes’
if the stability of children nodes is larger; otherwise, the parent node will be selected as a cluster,
and all its descendants will not be selected. In addition, points that do not belong to any cluster
will be labeled as noise.

stability =
∑

p∈cluster

(λp − λbirth) (2.9)

Correspondingly, min_samples and min_cluster_size are two primary hyper-parameter for HDB-
SCAN. min_samples influences the space transformation and a larger value can enlarge the density
variance. However, if the original distance space has already obviously revealed the relations of sam-
ples, min_samples can be set to 1 [84]. min_cluster_size influences the depth of a condensed tree,
so the smaller it is, the more conservative the clustering will be. A toy example is shown in figure 2.2
in which there are three clusters with one additional noise sample. Figure 2.2b and figure 2.2c show
the hierarchy and condensed hierarchy respectively. (min_samples = 2 and min_cluster_size = 2)

(a) 2-dimension samples (b) Linkage tree (c) Condensed tree

Figure 2.2: A toy-example of HDBSCAN

2.4. Secure-two-party Computation
As mentioned, uploading weights instead of the raw data to the server is not privacy-preserving. As is
shown in [72, 124], model parameters can disclose some of the information about individual data. For
example, adversaries can use Generative Adversary Networks (GANs) [49] to reconstruct the class
representatives from the aggregated parameters. This powerful reconstruction is more harmful if it
happens on the server-side because the server can steal the class representatives from each individual
uploading. To avoid revealing the uploads to the server, Secure Multi-party Computation can be used
for private aggregation, and the result will only be revealed eventually. Following the structures in [84,
85, 91], we will use Secure 2-party Computation (S2PC), a sub-domain of SMPC, to guarantee that the

2.4. Secure-two-party Computation 9

individual upload will not be plain-text to the server. Under the S2PC setting, each client will not directly
send the model parameters to the server but separate the upload into two parts and share one with the
server for aggregation and another with the external server. As both servers hold merely one piece of
the secret, the secret cannot be known if they do not collude. Based on the secret sharing scheme,
each server can do arithmetic operations relying on its own share and through some communication. To
achieve this target, two libraries CrypTen3 [53] and SyMPC4 [87] derived from PySyft [127] are used for
the experiment. Both of them use secret sharing but with different protocols to achieve S2PC. CrypTen
is currently designed only for semi-honest parties, while SyMPC can tolerate minor malicious parties.

2.4.1. CrypTen
CrypTen integrating with Pytorch API [90] is developed by researchers from Facebook, and SMPC of
CrypTen is based on pseudorandom zero sharing (PRZS) [23] with trusted third party (TTP) [53], where
PRZS generates |P | randomnesses which sum is 0 and they will mask the secret x into |P | shares, so
only the sum of all shares reveal the secret while TTP comes up with Beaver triples [8] for multi-party
computation such as the multiplication of shares. In [53], researchers claimed that they would remove
the reliance of TTP using the homomorphism of Paillier [88] or the oblivious transfer [10] based on
Mascot [52] for the future plan. The library is originally designed for the whole neural network process,
and it supports operations more than FL needs. This work will only present the operations that will be
used in our FL setting, and other details can be obtained from their original paper. Table 2.1 gives the
partial operations of CrypTen.

Table 2.1: CrypTen operations

Operation Description
Arithmetic sharing The secret value x ∈ Z/QZ where Z/QZ is a Q elements ring is shared with

p ∈ P parties by PRZS, so each party holds a share [x] = {[x]p}p∈P and x can
be reconstructed by x←

∑
p∈P [x]p mod Q.

Boolean sharing Boolean sharing is a special case for arithmetic sharing, where Q now is 2.
Each party holds a share ⟨x⟩ = {⟨x⟩p}p∈P and x can be reconstructed by x←
⊕p∈P ⟨x⟩p.

A2B Each party p ∈ P locally converts its arithmetic share [x]p of x to binary format
yp (yp ≡ [x]p). Then, each party uses Boolean sharing to share {⟨yp⟩q}q∈P with
|P | parties. Thereafter, each party q ∈ P receives all the Boolean shares from
other and locally computes its own share by ⟨x⟩q ←

∑
p∈P ⟨yp⟩q.

Addition For calculating [z] = [x] + [y], each party p ∈ P locally computes [z]p ← [x]p +
[y]p.

Multiplication Beaver triples [8] ([a]p, [b]p, [c]p)p∈P s.t. c = a · b generated by a TTP are sent
to each party. Then, each party locally computes [ϵ] = [x] − [a] and [δ] =
[y] − [b]. After that, all parties collaboratively reconstruct ϵ ←

∑
p∈P [x]p − [a]p

and δ ←
∑

p∈P [y]p − [b]p and two values are then public. Since a and b work
as random masks, x and y will not be revealed. The result of multiplication can
be reconstructed by z ←

∑
p∈P ([c]p + ϵ[b]p + [a]pδ) + ϵδ.

Square Square is a special case for multiplication where Beaver pairs
([a]p, [b]p)p∈P s.t. b = a2 are used. Similarly to multiplication, each party
locally computes [ϵ] = [x] − [a], and then collaboratively reconstructs and
publishes ϵ ←

∑
p∈P [x]p − [a]p. The result of square can be reconstructed by

[x2]←
∑

p∈P ([b]p + 2ϵ[a]p) + ϵ2.
Comparison To compare [x] and [y], their difference [z] = [x] − [y] is computed. Then,

parties use A2B to convert [z] to ⟨z⟩ and only extract the most significant bit
of ⟨z⟩ by logical right shifting. Finally, the most significant bit is collaboratively
reconstructed by all parties.

3https://github.com/facebookresearch/CrypTen
4https://github.com/OpenMined/SyMPC

https://github.com/facebookresearch/CrypTen
https://github.com/OpenMined/SyMPC

2.4. Secure-two-party Computation 10

2.4.2. SyMPC
SyMPC mainly supports two different protocols, FSS [92] + SPDZ [24, 25] where SPDZ acts as an
extension to support matrix operations, and Falcon [108] + ABY3 [75] where ABY3 provides the com-
parison for the missing part of Falcon. FSS cannot tolerate malicious parties, but Falcon can because
Falcon uses replicated secret sharing that each party holdsN−1 shares. The demonstration of SyMPC
will be divided into two parts respective to two different protocols.

FSS: The original designing purpose of Function Secret Sharing (FSS) is mainly for 2-server Pri-
vate Information Retrieval (PIR) where the inquirer only obtains the corresponding result without being
aware of other possible results while the query is not revealed to servers. Inspired by Distributed Point
Functions (DPF) from [39], Boyle et al. extended the original sharing framework into a more general
one in 2014 [15] and further shrunk the computational cost in 2016 [16]. In the later work, Ryffel et al.
referenced this idea and applied FSS to neural networks training and federated learning [92] in 2021.
A point function is namely a function: fx,y(x) = y and fx′,y(x

′) = 0 for all x′ ̸= x. In other words, fx,y
is only allowed to output a value y at a specific position x. This function can be shared by sharing its
truth table, but the complexity of keys will be O(2

√
nλ) which is exponentially increased with respect to

the output space {0, 1}n. If recursive DPF is applied, the complexity will be lowered to O(n1.58λ) [39].
If an optimized tree-based structure is used, it will be further decreased to O(nλ) [16]. As FSS is a kind
of additive secret sharing scheme, it also complies with basic conventions of additive secret sharing.
Therefore, in terms of adding, each party can perform it locally, while multiplication can be completed
by Beaver triples [8]. The main uniqueness of FSS is its comparison.

Taking 2-party secret sharing as an example, FSS scheme contains two processes (KeyGen, Eval)
- (k0, k1) ← KeyGen({0, 1}λ, f) and [f]i(x) ← Eval(i, ki, x) where λ, i, f and x are the length of
a seed, the index of each party, the decryption of a function and the input respectively - such that
Pr[Eval(0, k0, x) + Eval(1, k1, x) = f(x)] = 1. The completed proofs of correctness and security can
be found in [15]. The process of comparison is shown in algorithm 2 [92] that is the improved version
of [17]. α is a private number that waits to be compared, x is the public input number held by two
evaluators, j represents the id of evaluators, s(i)j is the random seed for the ith layer, G : {0, 1}λ →
{0, 1}λ+1 × {0, 1}λ+1 × {0, 1}n+1 × {0, 1}n+1 is a pseudo random generator which takes a λ length in-
put and outputs 2(λ+ n+ 2) length output, cw(i) is the secret for the ith layer, CW (i) is the correction
word that maintains the randomness and 1-share in the special path, and 0-share for other paths.

At the beginning, since two evaluators own different initial t(1) (t(1)0 ⊕t
(1)
1 = 1), one will choose to add

CW (1) and another one will not. In this case, due to line 6, if they are on the special path (α[1] = x[1]),
then their next round seeds s(2) and indicators t(2) has following properties: s

(2)
0 ⊕ s

(2)
1 = sL0 ⊕ sL1

(sL0 ⊕ sL1 is a λ length random number) and t
(2)
0 ⊕ t

(2)
1 = 1; otherwise (α[1] ̸= x[1]), s(2)0 ⊕ s

(2)
1 = 0 and

t
(2)
0 ⊕ t

(2)
1 = 0, which means that both will continue to use and generate same seeds si for the rest of

path. In other words, they will maintain the randomness share if both are on the special path or they
will maintain the zero share if both deviate from that path.

(a) deviation due to “less than” (b) deviation due to “greater than”

Figure 2.3: An example of FSS for comparison

For better understanding, we show an example in figure 2.3, where secret α is 0102 and red bold
path is the special path. Leaves are labeled with the final status, but they are not visible to either of the
evaluators in reality. The following part tests the correctness of the comparison for different scenarios

2.4. Secure-two-party Computation 11

and affirms that the combined shares T ← [T]0 ⊕ [T]1 output 1 only when x ≤ α otherwise 0.

• Equality: If the input x is exactly 0102, it will follow the special path till the end. During the
evaluation and before reaching the leaf, x[i] = α[i] = 0 or x[i] = α[i] = 1 for every nodes. If
x[i] = α[i], we will have s

(i+1)
0 ⊕ s

(i+1)
1 = {0, 1}λrandom, t

(i+1)
0 ⊕ t

(i+1)
1 = 1, σ(i+1)

0 ⊕ σ
(i+1)
1 = 0λ

and τ
(i+1)
0 ⊕ τ

(i+1)
1 = 0, then the layer output will be out

(i)
0 ⊕ out

(i)
1 = (τ

(i+1)
0 − τ

(i+1)
1) · CW

(i)
leaf +

(σ
(i+1)
0 − σ

(i+1)
1) = 0. When both reach the leaf, we have s

(n+1)
0 ⊕ s

(n+1)
1 = {0, 1}λrandom and

t
(n+1)
0 ⊕ t

(n+1)
1 = 1, then the leaf output will be out

(n+1)
0 ⊕ out

(n+1)
1 = (t

(n+1)
0 − t

(n+1)
1) ·CW

(n+1)
leaf +

(s
(n+1)
0 − s

(n+1)
1) = (1−2t

(n+1)
1) · (−1)t

(n+1)
1 · (1− s

(n+1)
0 + s

(n+1)
1)+(s

(n+1)
0 − s

(n+1)
1) = 0 no matter

t
(n+1)
1 = 0 or 1. As a result, [T]0 ⊕ [T]1 =

∑
i out

(i)
0 ⊕ out

(i)
1 mod 2n = 1. Therefore, the equality

test holds.
• Less than: If the input x is less than 0102, e.g. 0012 in figure 2.3a, the tracking path at a node i
will turn left from the special path shown as the blue bold path. This situation occurs when x[i] = 0

and α[i] = 1. If so, we have τ
(i+1)
0 ⊕ τ

(i+1)
1 = 1, then the node output will be out

(i+1)
0 ⊕ out

(i+1)
1 =

(τ
(i+1)
0 − τ

(i+1)
1) ·CW

(i)
leaf + (σ

(i+1)
0 − σ

(i+1)
1) = (1− 2τ

(i+1)
1) · (−1)τ

(i+1)
1 · (α[i]− σ

(i+1)
0 + σ

(i+1)
1) +

(σ
(i+1)
0 − σ

(i+1)
1) = α[i] = 1 no matter τ (n+1)

1 = 0 or 1. In addition, since both leave the special
path, they will use identical seeds for generators such that the zero share is maintained for the
following nodes also the final leaf (out(j)0 ⊕ out

(j)
1 = 0, i < j ≤ n+ 1). As a result, [T]0 ⊕ [T]1 =∑

i out
(i)
0 ⊕ out

(i)
1 mod 2n = 1. Therefore, the less than holds.

• Greater than: If the input x is greater than 0102, e.g. 1012 in figure 2.3b, the tracking path at a
node iwill deviate to the right blue bold path. This situation happens when x[i] = 1 and α[i] = 0. If
so, we have τ

(i+1)
0 ⊕τ

(i+1)
1 = 1, then the node output will be out

(i+1)
0 ⊕out

(i+1)
1 = (τ

(i+1)
0 −τ

(i+1)
1) ·

CW
(i)
leaf +(σ

(i+1)
0 −σ

(i+1)
1) = (1− 2τ

(i+1)
1) · (−1)τ

(i+1)
1 · (α[i]−σ

(i+1)
0 +σ

(i+1)
1)+ (σ

(i+1)
0 −σ

(i+1)
1) =

α[i] = 0 no matter τ (n+1)
1 = 0 or 1. In addition, since both leave the special path, they will use

identical seeds for generators such that the zero share is maintained for the following nodes also
the final leaf (out(j)0 ⊕ out

(j)
1 = 0, i < j ≤ n+ 1). As a result, [T]0 ⊕ [T]1 =

∑
i out

(i)
0 ⊕ out

(i)
1

mod 2n = 0. Therefore, the greater than holds.

In terms of security, since neither evaluators can realize the deviation from the special path and the
output information can only be revealed from the querying side who holds the secret α; thus, the whole
process reveals no information respective to α. As both evaluators should obey the rule to choose
left or right based on x[i], the whole process cannot tolerate traitors; thus, FSS is only for semi-honest
settings, not for malicious ones. There is a latest and simpler version for the comparison demonstrated
in [14], but since the library has not cathed up yet, we will keep using the current version.

Falcon: Falcon consists of techniques from SecureNN [107] and ABY3 [75] under the assumption
of honest majority (e.g. two-out-of-three) replicated secret sharing that guarantees the security with
abort in the malicious setting [37]. Since parties hold replicated secret shares, both addition and mul-
tiplication can be done locally in the semi-honest setting. For instance, if there are three parties Pi for
i = 1, 2, 3 who individually hold share ([x]i, [x]i+1) and ([y]i, [y]i+1) (

∑
i[x]i = x,

∑
i[y]i = y), the addi-

tion can be locally computed by ([z]i ← [x]i + [y]i, [z]i+1 ← [x]i+1 + [y]i+1) (
∑

i[z]i = x + y) whereas
the multiplication can be locally computed by [z]i ← [x]i[y]i + [x]i+1[y]i + [x]i[y]i+1 (

∑
i[z]i = x · y). In

terms of multiplication, so as to maintain the replicated secret shares, Pi will mask [z]i by [α]i and send
[z]i ← [z]i + [α]i to Pi+1 where {[α]i}i=1,2,3 are correlated randomness generated by pairwise keys
such that

∑
i[α]i = 0. In the offline phase, Pi and Pi+1 share an identical key ki, then in the online

phase, each party Pi can locally generate mask [α]i ← Fki
(counter)− Fki−1

(counter).

Under themalicious setting, there is onemalicious adversary among three parties who can arbitrarily
betray the protocol to deviate the correct result. Thus, parties will check the validity of the result before
accepting it. To achieve this, each party Pi sends share [z]i to Pi+1 and [z]i+1 to Pi−1. They achieve a
consensus and reconstruct from shares only if they receive an identical value of shares from other two
parties otherwise they will abort the reconstruction. Differing from addition, multiplication includes a
semi-honest broadcasting of shares in order to maintain the replicated secret sharing. Therefore, only
the correctness of received shares is guaranteed, parties latterly can perform the above verification.

2.4. Secure-two-party Computation 12

Algorithm 2 FSS Comparison for x ≤ α

KeyGen:
1: Initialization: α← Z2n , sample random s

(1)
j ← {0, 1}λ and set t(1)j ← j, for j = 0, 1

2: for i=1...n do
3: ((sLj ||tLj , sRj ||tRj), (σL

j ||τLj , σR
j ||τRj))← G(s

(i)
j), for j = 0, 1

4: if α[i] then cw(i) ← ((0λ||0, sL0 ⊕ sL1 ||1), (σR
0 ⊕ σR

1 ||1, 0λ||0)) ▷ true secret for right path
5: else cw(i) ← ((sR0 ⊕ sR1 ||1, 0λ||0), (0λ||0, σL

0 ⊕ σL
1 ||1)) ▷ true secret for left path

6: CW (i) ← cw(i) ⊕G(s
(i)
0)⊕G(s

(i)
1) ▷ correction word

7: statej ← G(s
(i)
j)⊕ (t

(i)
j · CW (i)) = ((statej,0, statej,1), (state

′
j,0, state

′
j,1)), for j = 0, 1

8: parse s
(i+1)
j ||t(i+1)

j = statej,α[i] and σ
(i+1)
j ||τ (i+1)

j = state′j,1−α[i], for j = 0, 1

9: CW
(i)
leaf ← (−1)τ

(i+1)
1 · (α[i]− σ

(i+1)
0 + σ

(i+1)
1) mod 2n

10: CW
(n+1)
leaf ← (−1)t

(n+1)
1 · (1− s

(n+1)
0 + s

(n+1)
1) mod 2n

11: return kj ← [α]j ||s(1)j ||{CW (i); i = 1...n}||{CW
(i)
leaf ; i = 1...n+ 1}, for j = 0, 1

Eval: ▷ each party locally evaluates
12: Inputs: (j, kj , x) where j refers the id of the evaluator
13: parse kj = [α]j ||s(1)||{CW (i); i = 1...n}||{CW

(i)
leaf ; i = 1...n+ 1} and set t(1) ← j

14: for i=1...n do
15: state← G(s(i))⊕ (t(i) · CW (i)) = ((state0, state1), (state

′
0, state

′
1))

16: parse s(i+1)||t(i+1) = statex[i] and σ(i+1)||τ (i+1) = state′x[i]

17: out(i) ← (−1)j · (τ (i+1) · CW
(i)
leaf + σ(i+1)) mod 2n ▷ out(i) = 1 only when first time < happens

18: out(n+1) ← (−1)j · (t(n+1) · CW
(n+1)
leaf + s(n+1)) mod 2n ▷ out(n+1) = 1 only when equality holds

19: return [T]j ←
∑

i out
(i) mod 2n

Similar to other secret sharing schemes, it will exploit Beaver triples [8] to generate replicated secret
shares to avoid using semi-honest broadcasting. The correctness of multiplication relies on Beaver
triples [8] which parties can adopt cut-and-choose [21] during the offline phase to generate adequate
of. When using cut-and-choose paradigm, it requires each party locally performs random permutation
and random verification which are detailed by protocol 3.2 Ftriples in [37]. Supposed that parties apply
Ftriples to obtain a valid Beaver triple ([a], [b], [c]) s.t. c = ab in advance, each party Pi locally computes
([ρ]i ← [x]i− [a]i, [ρ]i+1 ← [x]i+1− [a]i+1) and ([σ]i ← [y]i− [b]i, [σ]i+1 ← [y]i+1− [b]i+1). Then, any two
of three collaboratively reveal ρ and σ and all parties involve to check the reconstructed ρ and σ are iden-
tical for any two of them. Since a and b are randomness, x and y will not be disclosed. After that, each
party Pi locally computes its first replicated secret share [z]i ← [c]i + ρ[b]i + σ[a]i +max(0, 2− i) · ρσ
and the second one [z]i+1 ← [c]i+1 + ρ[b]i+1 + σ[a]i+1 +max(0, 2− i) · ρσ where max(0, 2− i) can also
be regarded as and replaced by Kronecker delta δij|j=1

. In this case, they can do analogous correct-
ness verification as they do for the addition: Pi sends share [z]i to Pi+1 and [z]i+1 to Pi−1. It can be
tested that

∑
i[z]i =

∑
i([c]i + ρ[b]i + σ[a]i) + ρσ = x · y.

To privately compare a secret number x and a public number r, parties should be shared a random
bit β ∈ Z2 and a random secret integer m ∈ Z∗

p beforehand. Firstly, all parties collaboratively compute
and reveal every bit u[i] ← (−1)β(x[i]− r[i]) = (1 − 2β) · (x[i] − r[i]) for i = 1, ..., l (supposed l-bit
length). Bit u[i] discloses no information about x[i] or r[i] because of the random masking bit β. Then,
each party Pj locally computes ⟨w[i]⟩j ← ⟨x[i]⟩j + δj1r[i] − 2r[i]⟨x[i]⟩j . After that they use the results
to jointly disclose c[i] ← u[i] + 1 +

∑l
k=i+1 w[k] where ⟨u[i]⟩j acts like a masking bit for party Pj . The

next step before the final is to compute [d]← [m] ·
∏l

i=1 c[i] mod p. Finally, each party obtains shares
of β′ ⊕ β ∈ Z2 := (x ≥ r) as return where β′ = 1 if d ̸= 0 and 0 otherwise. The general designing
purpose can be found in section 3.3 algorithm 1 in [108].

3
Problem Setup

Any security of a system is assessed in terms of the adversarial aims and capabilities that it is meant
to counter against the threat model [89]. This chapter will taxonomize the definition and scope of threat
models in the FL system. To determine where and how an adversary would seek to undermine the
system by different attacks, it will determine the threat surface of systems built on FL. Depending on
adversaries’ goals, the attacking strategies can be divided into two main categories - inference attack
and poisoning attack. The former aims to infer the personal information from the individual’s upload
or the aggregated model, while the latter tries to mitigate the accuracy of the model or mislead the
prediction result [50].

3.1. Inference Attack
FL seeks to preserve users’ privacy by requesting them to provide local training model parameters
rather than their actual data. However, the parameters are the high summary of personal data; thus, the
gradients have the potential to expose private training data [126]. Leakage from parameters backfires
the primitive design principle of FL. This section will indicate the leaking surface of FL and the strategies
to compromise privacy in FL.

3.1.1. Leaking surface
There are two kinds of trust boundaries in FL, as shown in figure 3.1a, where a trusted boundary is
between the client and the server while another is between two different clients. On the one hand,
the server can observe the individual upload before aggregation, as clients directly upload plain-text
parameters to the server. The server can use reverse engineering, e.g., model inversion [34], to infer the
training samples. On the other hand, every participant can receive the merged model after aggregation.
The participant can deduce the sum of other participants’ models by subtracting his/her model from the
aggregated one. Compared with the server, inference from the client is limited, as the client only obtains
the aggregated model. However, as a participant, the adversary can participate in the FL training to
trigger specific clients to release more information and reconstruct the class representative by GAN [47].
In figure 3.1b, the adversary who does not have class “0”, “3”, and “4”, but can learn from others and
forge the class representatives by joining in the training within 50 rounds.

3.1.2. Inference strategy
The inference attacks are diverse. Based on the target of an adversary, there are mainly four different
types of inference [64, 76].

I1. Class representatives inference: The adversary usesGenerative Adversarial Networks (GAN) [49]
to reconstruct the class representatives that the adversary does not have. The global model of
FL is a natural discriminative model. The adversary builds a generative model locally and feeds
the global model with the forgery of samples. Consequently, the generative model can be well
trained during the training of FL [47]. However, as the discriminative model incorporates many
individual models, the adversary can only obtain every class representative that dominates this
class, not the actual training samples of this class.

13

3.2. Poisoning Attack 14

(a) Trusted boundaries in FL
(b) GAN

reconstruction

Figure 3.1: Inference attacks

I2. Membership inference: In FL, the privacy should be guaranteed on the client level [38], so we
slightly modify the original data level inference to the client level: Given a particular dataset of a
client, membership inference is to decide whether this particular client participates in the training.
The inference can be performed in either passive or active way [98, 105]. In the passive setting,
the adversary is only an observer of the network who tries to use statistical methods to extract
the information from the model but cannot modify the global model. In contrast, under the active
setting, the adversary can upload the malicious parameters to the server to allure the FL model
to share more information regarding a particular client or a particular group of clients [81].

I3. Properties Inference: In [6, 35, 72], adversaries’ goal is to infer attributes that characterize a
particular class. Taking CIFAR-10 as an example, given a trained global model in which one of
the classes is “bird”, the adversary’s goal is to infer what a bird looks like, e.g., the colorful feather.
Another example is given by [72]: Infer what Bob looks like, e.g., whether Bob wears glasses, from
a face recognitionmodel when one of the classes is Bob. Similar to themembership inference, the
properties inference can also be passive or active. Especially under an active setting, properties
inference can proactively modify the objective function of the local model to force the global model
unintentionally leak side information about other clients [72].

I4. Training inputs and labels inference: This inference is powerful but computationally costly.
The honest-but-curious server can carry out this inference to reconstruct the pixel-wise accurate
original images and token-wise matching original texts [64] if the given deep learning model is not
encrypted. The adversaries use the DLG algorithm [126] by minimizing the gradients’ distance to
reduce the differences between the dummy input and the actual input and the differences between
the dummy label and the actual label.

3.2. Poisoning Attack
The attack model in this paper follows previous works [19, 33, 50, 84, 85]. Specifically, an adversary
can pretend to be a legal client before the start of training or hijack a genuine client during the online
phase, but they cannot compromise the server. Adversaries, a.k.a model attackers in this case, can
collude during the training phase, but they have no idea about other benign clients.

3.2.1. Classification of attacks
This section will compare different settings and restrictions on the byzantine client. Furthermore, it will
detail the adversaries’ capability and the knowledge that adversaries master.

C1. Client-side attacks and server-side attacks: An attack is defined as a client-side attack if the
adversary compromises an authentic client or pretends to be an authentic client to poison the
model. In contradiction, an attack is a server-side attack if the adversary can ultimately compro-
mise the server to modify the aggregation rule or the aggregated model. This paper assumes
that the server cannot be compromised, so adversaries can merely attack the model from the
client-side.

C2. Full knowledge attacks and partial knowledge attacks: In the full knowledge scenario, the ad-
versary has access to every worker device where the local training dataset and model are known.

3.2. Poisoning Attack 15

However, the adversary only has access to training datasets and models belonging to compro-
mised workers in a partial knowledge situation. Since full knowledge assumption is impractical
under decentralized setting [36, 96], we will merely consider that adversaries have no information
of other uncompromised clients’ behavior.

C3. Colluded attacks and non-colluded attacks: Depending on whether the adversaries can com-
municate with each other, the attacks can be colluded or non-colluded. The attack can be more
powerful and latent if adversaries collude because they can elaborate their datasets or uploads
to make some of them escape the server’s inspection. In this paper, no restriction is added on
byzantine workers, and they can free contact each other.

C4. Model update poisoning attacks and data poisoning attacks: Through arbitrarily manipulating
compromised clients’ updates or directly sending elaborated updates to the server, attackers try to
corrupt the aggregated model, which so-calls model update poisoning. In terms of data poisoning
attacks, adversaries are not allowed to corrupt the updates; instead, they can only manipulate
the local data to output updates that they expected. Both attacking types are considered in this
paper.

C5. Targeted attacks and untargeted attacks: Targeted attacks corrupt the model such that the
model predicts attacker-desired outcomes for attacker-chosen samples. In contrast, untargeted
attacks corrupt the aggregated model such that the overall accuracy and usability of the model
are declined. This separation is mainly for data poisoning attacks, and both will be considered in
this research.

3.2.2. Attacking schemes
This section will provide the state-of-art attacking schemes used to test the robustness of FLVoogd’s
defense [19, 61, 65, 84, 85, 91, 115]. Their summary is shown in table 3.1.

Table 3.1: Summary of poisoning attacks

Attack C1 C2 C3 C4 C5

A1 client-side % % update untargeted
A2 client-side partial colluded update untargeted
A3 client-side partial colluded update untargeted
A4 client-side partial % data (un)targeted
A5 client-side partial % data targeted
A6 client-side partial % data targeted

A1. Random upload: As its name suggests, the adversary substitutes the factual update with a ran-
dom noise chosen fromX ∼ N (0, 1). Consequently, if there is no defense, the average of param-
eters can arbitrarily deviate from wavg = 1

n

∑n
i=1 wi to wdev = 1

m

∑m
i=1 wi +

1
n−m

∑n
i=m+1N (0, 1),

where m is the number of honest updates and (n−m) is the number of malicious updates. It is
equivalent to adding Gaussian noiseN (0, n−m) to 1

m

∑m
i=1 wi if each adversary draws the noise

independently. Due to the high dimensional randomness, adversaries can at least postpone the
convergence or even destroy the model. In addition, the distribution of malicious random uploads
is sparse and unpredictable because of the randomly diverse directions; thus, they are not easily
filtered at the beginning of the FL training or after the model converges.

A2. Krum attack: Krum attack is designed initially to crack the Krum aggregation rule shown in
eq.(3.1) proposed in [13]. In a nutshell, Krum selects one vector from a set of n vectors that
is the most comparable to the rest. Even if the chosen vector is given by a compromised client,
the impact is limited in this situation. If there are f < n−2

2 compromised vectors, Krum guarantees
the model convergence. The proof relevant to the convergence can be found in [13].

for all i = 1, ...n : compute score(i) =
∑

j∈(n−f−2)NearestNeighbours

||wi − wj ||2

s.t. KR(w1, ..., wn) = wi∗ , where score(i∗) ≤ score(i)

(3.1)

3.2. Poisoning Attack 16

We assume that the first f workers are compromised without loosing the generality, and wi de-
notes the true update without being compromised and w′

i is the compromised one. When adver-
saries try to invalidate the Krum aggregation rule, they can collude to elaborate a set of vectors to
makeKR(w′

1, ..., w
′
f , ..., wn) output w′

1 such that w′
1 mostly inversely differs from the true selected

one without being attacked [33]. Therefore, the problem can be converted to optimize eq.(3.2),
where s is the indicator vectors {−1, 1}∗. When sj = 1 (or sj = −1), it represents the truth jth

parameter of wcur increases (or decreases) compared to the previous round wprev.

max
w′

i,..,w
′
f

sT (w − w′),

subject to w = KR(w1, ..., wf , ..., wn),

w′ = KR(w′
1, ..., w

′
f , ..., wn).

(3.2)

To solve the optimization, in each round, adversaries collaboratively do the following steps.

Step 1. f adversaries receive the global update wprev from the server.
Step 2. Before attacking, they estimate the current model by factual vectors as w̃cur ← 1

f

∑f
i=1 wi.

Step 3. They estimate the indicator vector by s̃← sign(w̃cur − wprev).
Step 4. They use binary search [113] to seek λ in eq.(3.3).
Step 5. After λ is found, (f − 1) vectors {w′

2, ..., w
′
f} are randomly chosen whose distance is at most

ϵ to w′
1. This can be achieved by adding uniformly random noise on w′

1.
Step 6. Then, f workers replace {w1, ...wf} by {w′

1, ..., w
′
f} and send them to the server.

max
λ

λ,

subject to w′
1 = KR(w′

1, w1, ..., wf),

w′
1 = wprev − λs̃.

(3.3)

However, in Step 4, adversaries may fail to find a large enough λ. In this case, they add another
w′

i, e.g., w′
2 = wprev − λs̃, until λ is solved and exceeds the desired threshold (i.e., 10−5 [33]).

A3. Trimmed-mean attack: Trimmed-mean sorts n updates for each jth parameter sort(w1j , ..., wnj),
eliminates the highest and smallest β amount from the sorted list, and averages the remaining
(n− 2β) parameters as the global model’s jth parameter. It is originally proposed in [121], where
authors have proved the convergence when f ≤ β ≤ n

2 . To enervate this aggregation rule,
adversaries do the following steps:

Step 1. f adversaries receive the global update wprev from the server.
Step 2. Before attacking, they estimate the current model by factual vectors as w̃cur ← 1

f

∑f
i=1 wi.

Step 3. They estimate the indicator vector by s̃← sign(w̃cur − wprev).
Step 4. They estimate the mean µ̃j and the standard deviation σ̃j for each jth parameter.
Step 5. Each adversary independently chooses the jth parameter based on eq.(3.4) as the compro-

mised jth parameter [33].
Step 6. Then, f workers replace {w1, ...wf} by {w′

1, ..., w
′
f} and send them to the server.

w′
ij =

{
x ∼ N (µ̃j + 3σ̃j , µ̃j + 4σ̃j) sj = −1
x ∼ N (µ̃j − 4σ̃j , µ̃j − 3σ̃j) sj = +1

(3.4)

A4. Label flipping: Each adversary flips the label of a sample from l to L− l− 1, where l is the truth
label of the sample and L is the total number of classes [78]. For instance, adversaries label
digits “0” to “9” and “9” as “0” to label-flip the MNIST [59] data.

A5. Backdoor triggering: This kind of attack is also known as trojan attacks [41]. The adversary
inserts a specific pattern into training samples or uses the existing one in samples to render the
corresponding testing samples with that pattern to be classified as the desired class. This pattern
functions as a trigger. After the global model learns this pattern, it will be triggered and output the
misled prediction. If the adversary uses the existing pattern in the sample, this backdoor attack is
a semantic backdoor attack [91]. Figure 3.2 shows some examples of how a pattern can be used
as a trigger. A 5×5 pixels rectangle is inserted into the image and used as a trigger to mislead the
learning process in figure 3.2a [85, 91]. Furthermore, some naturally existing patterns in images
can be found as semantic triggers. For instance, figures 3.2b 3.2c 3.2d show that images of cars
contain some natural features that can be used as triggers [7].

3.2. Poisoning Attack 17

(a) Digits with top-left rectangle

(b) Cars in green (c) Cars with stripes (d) Cars in front of stripe wall

Figure 3.2: Some examples of the trigger-backdoor attack

A6. Edge-case attack: Under the edge-case attack setting, adversaries aim to attack the heavy-tail
of the prediction [109]. They try to find or manufacture samples that the model predicts correctly
but with a comparably low confidence value; then, they label those samples with a label they
want. The intuition behind it is that the model cannot assure the correctness of predictions even
if the result is correct, as the predicting score is not such high, so it can be easily misled by
the attacker who feeds those edge-case samples with wrong labels. We will use the samples
provided by [109] and follow the experimental setup of [91, 109] to carry out our experiment.
Figure 3.3 shows some samples of edge-case attack for (E)MNIST and CIFAR-10, respectively,
where edge cases in figure 3.3a are sourced from Ardis [57] and others in figure 3.3b are provided
by FedML [45]. Those “7”s will be labeled as “1”s, and blue airplanes will be labeled as “truck”s,
to delude the server model.

(a) Edge cases for MNIST (b) Edge cases for CIFAR-10

Figure 3.3: Samples of the edge-case

4
FLVoogd

This chapter will present our FL framework - FLVoogd, which has two versions for the server side. One
version does not encrypt the uploaded parameters, which means that the server can monitor every
individual upload. Thus, a trusted server is required, but the filtering and aggregation can be efficient.
Another version encrypts uploads, so uploads are invisible to the server. The encryption guarantees the
process can run on an honest-but-curious server but retards the processing of filtering and aggregation.
Two versions have different application domains. In terms of the client side, there is only one version.
Their technical details will be exhibited in the following sections respectively, and their background
knowledge has been demonstrated in chapter 2.

4.1. Encrypted FLVoogd Server

Figure 4.1: Encrypted FLVoogd server framework

4.1.1. Assumption
This section will give basic assumptions about the server and clients. The server acts as an aggregator
that receives uploads from clients, averages those uploads, and sends them back to each client. In

18

4.1. Encrypted FLVoogd Server 19

addition, the server needs to guarantee the correctness of the merged model, so it tries its best to sift
and merely aggregate benign uploads. Clients train their local models based on their datasets and
upload the parameters if they are chosen in this round. After receiving the averaged parameters from
the server, they can update their local model accordingly. However, not all of them are required to obey
the regulations. They can be malicious to degrade the performance of the global model.

We primarily consider possible server-side and client-side risks. There are two types of servers in
our setting. Firstly, servers can be honest-but-curious who infer the actual data or relevant informa-
tion from uploads while heeding the regulation. Secondly, if FLVoodg runs under SyMPC-Falcon [108],
servers can be malicious (minority) who betray the secure aggregation rule and perform incorrect com-
putations. In terms of participants, in each round, less than half of them can be malicious and perform
byzantine attacks to deteriorate the performance of the global model. In addition, any client can be cu-
rious about information from others and performs client-level inference attacks [38], inferring whether
a particular client participates in the training, given a specific dataset of that client.

4.1.2. Pipeline and algorithm
The overview of our framework, FLVoogd with SMPC, has been shown in figure 4.1. The symbols
used in this section are presented in table 2 for reader’s reference. Initially, each client computes the
l2-norm of its uploaded parameters wi as the amplitude ||w||i and unitizes the parameters to wi as
the direction. Their relations satisfy eq. (4.1). The unitizing can simplify the later computations, e.g.
cosine distance where the division is avoided, and convert the high dimensional parameters to floating
numbers between −1 to 1 for the fixed-point encoding. Similarly, the client performs the same thing
for the parameters from the last layer, and obtains the unitized last layer parameters vi. The reason
for extracting the last layer is that parameters in the final layer reveal more explicit information relevant
to the dataset’s distribution [91] which can be used for distinguishing backdoor uploads. Then, the
client secretly shares the direction wi, the amplitude ||w||i, and last-layer direction vi with two parties,
the server for aggregation and external server. If the SMPC protocol uses Falcon, one more server
is added and receives the third share from the client. Falcon can detect if either of them betrays the
regulation.

||w||i =
√∑

j

w2
ij wi =

wi

||w||i
(4.1)

Once servers receive the uploads from the selected clients, they can perform secure aggregation.
It is supposed that the number of received uploads is n and the clipping boundary for the current round
is c(t). The server firstly carries out the filtering process, the block with a light yellow background
in figure 4.1, and the procedure can be divided into six steps. 1⃝: In the first step, the server uses
the directional vector w to compute the cosine distance matrix Mcos by eq. (4.2), where Mcosij =
cos − dist(i, j) for i ̸= j and Mcosij = 0 for i = j, i or j denotes the client’s index, and u denotes
the parameter’s index. Since the vectors are unit vectors, the cosine distance between two vectors
can be simplified into a dot production. The computation is collaboratively completed by two/three
servers, involving the addition and multiplication among secret shares. 2⃝: In the second step, the
server feeds the Total-Sum-of-Square (TSS) based DBSCAN with the distance matrix from the former
step. DBSCAN calculates the TSS by eq. (4.3) for each pair of rows to obtain a new distance matrix
Mtss. Mcos provides the directional similarity, while Mtss enlarges the variance of counter-directions
and narrows the variance of identical directions such that the filter can capture the difference more
easily. There are two hyper-parameters for DBSCAN, Eps and MinPts as mentioned in Chapter 2.
As honest-majority is the basic assumption, MinPts is set to ⌊n/2⌋+ 1 and Eps is the average of the
lower-bound median (⌊n/2⌋) in each row of the distance matrix Mtss ∈ Rn×n. If the index of each row
starts from 0 and ends at n− 1, the median locates at ⌊n/2⌋ no matter whether n is even or odd, which
is different from the standard median for an even number. This setting for Eps andMinPts guarantees
the DBSCAN can automatically adjust its radius accordingly through the whole process without manual
involvement. The selection makes full use of the honest-majority assumption. This step includes the
addition, multiplication, and comparison of shares.

4.1. Encrypted FLVoogd Server 20

cos− dist(i, j) =

∑
u wi,uwj,u√∑

u w
2
i,u

√∑
u w

2
j,u

=
∑
u

wi,uwj,u = wi · wj (4.2)

tss− dist(i, j) =
∑
u

(Mcosi,u −Mcosj,u)
2 (4.3)

3⃝: In the third step, DBSCAN filters out the noise and minority group and returns indices of the
majority group. The server selects the corresponding clients’ parameters from the last layer according
to the indices. 4⃝: For the next step, similar to step 1, the server again computes the cosine distance
matrix but only uses the last-layer parameters. Then, the server obtains cosine distance matrix M ′

cos.
5⃝: The fifth step is identical to the second step. 6⃝: In the final stage, DBSCAN outputs the indices
that the server will consider benign.

After knowing which clients are considered as benign ones, the server clips their amplitudes before
performs the aggregation by ||w||i = min(||w||i, c(t)). The clipping controls the step size. Although the
server sieves potential malicious uploads based on the direction, some cunning clients may still use
the correct direction but amplify the norm of parameters multiple times to make the actual learning rate
larger than expected. The learning process will become fluctuated, so the server needs to perform
clipping on all filtered clients. The weight difference after clipping is equivalent to eq. (4.4).

wi := wi ·min(1,
c(t)

||w||i
) (4.4)

In addition, during the clipping, the clipper records the ratio of clients not being clipped as γ̂. The
expected clipping ratio is set as γ. The next round clipping boundary c(t+1) is updated by eq. (4.5)
where ηc is the learning rate of the clipper. If the actual non-clipping number of clients is larger than
expected, the clipping boundary will decrease to cut more clients in the next round; otherwise, it will
increase to be looser. The exponential base guarantees that any adjustment is a positive number.
Therefore, the clipping boundary learning process becomes adaptive and can accompany the clipping
procedure (only need count), which is computational efficiency under SMPC. SMPC’s operation in this
step requires comparing a share with a public number.

c(t+1) = c(t) · exp(−ηc(γ̂ − γ)) (4.5)

The aggregation rule is simply averaging benign clients’ uploads by eq. (4.6). It is supposed that
the number of clients after filtering is m(≤ n). After obtaining the merged model wglobal, servers col-
laboratively reveal and announce the plain text of wglobal. The aggregation contains the addition and
multiplication of shares and the multiplication of shares and public numbers.

wglobal =
1

m

m∑
i=1

wi ·min(||w||i, c(t)) (4.6)

The server eventually knows the global parameter till finishing aggregation, and local parameters
are alreadymerged into one; thus, the server has no idea of individual local updates. Before sending the
global update back to clients, the server adds Gaussian noise to provide a differential privacy guarantee.
The mean is 0, and the standard deviation is the maximum l2-sensitivity multiplied by a coefficient σ
that represents the strength of DP. Thanks to the clipping, all uploads are bounded into a sphere whose
radius is exactly the clipping boundary c(t). Therefore, the noise is added following eq. (4.7). Notably,
the noise is added to the sum of updates not after averaging. DP-Noise Adder also tracks the DP
budget for the server because it knows the number of clients used in this round and the amplitude
of Gaussian noise. Finally, ||w̃global|| is compared with ||c(t)||. If ||w̃global|| > ||c(t)||, from which the
server deduces that the amount of noise is added too much, the server will scale down ||w̃global|| to a
smaller value by eq. (4.8). This operation follows the post-processing property of differential privacy so
that (ϵ, δ) cannot be influenced. This post-processing is equivalent to adjusting the model learning rate
lower after knowing the noise influences too much on the result.

4.1. Encrypted FLVoogd Server 21

w̃global =
1

m
{

m∑
i=1

wi ·min(||w||i, c(t)) +N (0, σ2 · (c(t))2)} (4.7)

w̃global := w̃global ·min(1,
c(t)

||w̃global||
) (4.8)

4.1.3. Evaluation
The previous sub-section exhibits how individual updates are filtered and ultimately aggregated by the
server. This sub-section will reflect the procedures and convince how those modules are combined to
provide security and privacy guarantee.

The server requires three things from each client, the unit vector of the update, the unit vector of
the last layer’s update, and the norm of updates. The update can be gradient, weight, or weight dif-
ference (in our experiment), which is the digest from the learning process, indicating the direction and
step-size (with learning rate) for the next round. This is why the server requires those three things from
clients, as the direction and amplitude can be used as features to distinguish the malicious ones from
all updates. The purpose of uploading norm and unit vector separately is to avoid division and square
root operations since they are needed when calculating the denominator of cosine distance. Those
two operations are computationally costly in most secure multi-party computation and homomorphic
encryption protocols. Even though the protocol supports them in our experiment, we want to eliminate
them for efficiency and for users who prefer to change to other unsupported protocols. The important
thing is the removal is quite simple that only requires clients to send one more encrypted value. The
data distribution, namely the label distribution, significantly affects the last layer’s neurons that directly
link to the predicting scores when the neural performs backward propagation. Therefore, the param-
eters from the final layer expose more information than the general. The server will use these three
metrics for the filtering.

The later SMPC procedures reveal nothing from clients to the server except the indices of suspicious
clients, whether the amplitude is greater than the clipping boundary, and the final averaged aggregated
updates. Since the direction and amplitude of updates are masked texts for the server, the server can
learn nothing from updates. Different SMPC modules marked by the red outline in figure 4.1 require
different SMPC operations, and the operations are listed in table 4.1. It should be noticed that the com-
parison between two secret shares in TSS Auto DBSCAN is different and relatively simpler compared
with the comparison between a secret share and a public number in Clipper shown in chapter 2. For
instance, [a]i and [b]i, where i = 1, 2, are secret shares of a and b for two parties P1 and P2. To compare
the relationship of [a] ≤ [b], they locally compute [a]i − [b]i, then cooperatively reveal c←

∑
i[a]i − [bi],

where c can determine which one is greater than the other. Although c is disclosed due to comparison,
the server only knows the gap between [a] and [b] from c, and truth values a and b can not be inferred.

Table 4.1: SMPC operations in encrypted FLVoogd

Module Operation
Cosine Distance - multiplication between two shares

- addition between two shares
TSS Auto DBSCAN - multiplication between two shares

- addition between two shares
- comparison between two shares

Clipper - comparison between a share and a public number
Aggregator - multiplication between two shares

- multiplication between a share and a public number
- addition between two shares

Clipper is a crafty module, much like “kill two birds with one stone”. On the one hand, it restrains
the abnormally large amplitude and controls the next descent step-size. On the other hand, it provides

4.2. Unencrypted FLVoogd Server 22

the l2-sensitivity for the DP budget tracer. In addition, the clipper is adaptive learning during the learn-
ing process. Using the median of norms [85] as the clipping boundary sounds like a more unadorned
alternative since it also fully uses the honest-majority assumption but is not applicable in our setting.
The median should be a public number because it will be used for DP noise adding. All the amplitudes
are secret shares, and the comparison among them reveals no information. However, secrets will be
disclosed if the median after comparison is published because the server knows those gaps. Thus, this
efficient and adaptive learning clipper is irreplaceable in our setting.

Till now, the filtering process maintains the robustness of the model, and SMPC preserves the par-
ticipant’s privacy to the server. One more step - DP noise adding - is carried out by the server to assure
the participant’s privacy to other participants. The DP-Noise Adder module also provides methods for
tracking the ϵ-budget for differential privacy. The proportion of clients used in each round is dynamic
because of sub-sampling and filtering; the amount of adding noise is adaptively changed and deter-
mined by the clipper. Still, the DP accountant can automatically monitor and track the process, then
report back to the server.

Different modules in figure 4.1 are elaborately designed to provide privacy and security for the model
cooperatively. The algorithm of encrypted FLVoogd is manifested in algorithm 3.

Algorithm 3 Encrypted FLVoogd - server
1: Input:
2: C, N ▷ C is the set of clients, N = |C|
3: T , q ▷ T is the number of training iteration, q is the sampling ratio
4: c(0), γ, ηc ▷ c(0) is the initial clipping boundary, γ is the expected clipping ratio, ηc is Clipper’s
learning rate

5: σ, δ ▷ σ is the coefficient to control the noise strength, δ is for DP
6: for round t: 1, 2, ..., T do
7: C(t), n← subsample(C, N , q) ▷ n = |C(t)|
8: for clienti ∈ C(t) do
9: w

(t)
i , ||w||(t)i , v(t)i ← clienti(t, send) ▷ w is the unit vector of weight difference, ||w|| is the

norm of weight difference, v is the unit vector of last layer’s weight difference
10: idx

(t)
f1 , n(t)′ ← Auto_DBSCAN({w(t)

1 , w
(t)
2 , ..., w

(t)
n }) by algorithm 4 ▷ n(t)′ = |idx(t)

f1 |
11: idx

(t)
f2 , n(t)′′ ← Auto_DBSCAN({v(t)i : i ∈ idxf1}) by algorithm 4 ▷ n(t)′′ = |idx(t)

f2 |
12: w

(t)
global ← 0, γ̂(t) ← 0

13: for index i ∈ idx
(t)
f2 do

14: if ||w||(t)i > c(t) then
15: ||w||(t)i ← c(t)

16: else
17: γ̂(t) ← γ̂(t) + 1

18: w
(t)
global ← w

(t)
global + ||w||

(t)
i · w

(t)
i

19: w
(t)
global ←

w
(t)
global

n(t)′′ , γ̂(t) ← γ̂(t)

n(t)′′

20: c(t+1) ← c(t) · exp(−ηc(γ̂(t) − γ)), ϵ(t) ← DP_budget(n
(t)′′

N , σ, δ)
21: w̃

(t)
global ← w

(t)
global +

1
n(t)′′N (0, σ2(c(t))2) ▷ satisfying (ϵ, δ)-differential privacy

22: w̃
(t)
global ← w̃global ·min(1, c(t)

||w̃global||) ▷ satisfying post-processing
23: clienti(t, receive)← w̃

(t)
global

4.2. Unencrypted FLVoogd Server
4.2.1. Assumption
Assumptions regarding the client inherit assumptions in subsection 4.1.1. In contrast, the server should
be honest and trusted because this framework does not encrypt clients’ uploads. The server can

4.2. Unencrypted FLVoogd Server 23

Algorithm 4 Auto DBSCAN
1: Input: W ▷ W ∈ Rn×m represents n×m matrix where each row is a client’s unit vector from n
clients and the dimension of the vector is m

2: Output: idx, |idx| ▷ idx is a list of indices of benign clients
3: Mcos ← CosDist(W) by eq. (4.2)
4: Mtss ← TSSDist(Mcos) by eq. (4.3)
5: for row i: 1, 2..., n do
6: mediani ← quickMedian(Mtss,i)
7: median← 1

n

∑n
i=1 mediani

8: Eps← median, MinPts← n//2 + 1
9: idx← DBSCAN(Mtss, Eps,MinPts, precomputed)
10: return idx, |idx|

Figure 4.2: Unencrypted FLVoogd server framework

observe the plaintext of each upload, so the server can perform reconstruction attacks on clients.

4.2.2. Pipeline and algorithm
The unecrypted version is shown in figure 4.2. The server receives local model parameters wi and
clipping indicator bi from each individual. Clients have already decided whether to clip wi or not to
make its norm not larger than c(t). If the client clips the model updates, bi is set to 0; otherwise, bi is
1. In addition, clients have already added N (0, σ2(c(t))2

n) and N (0,
σ2
b

n) amount of noise to wi and bi,
respectively. If no one has been filtered out, according to the property of sum of Gaussian noise, the
amount of noise is N (0, σ2(c(t))2) for w(t)

global and N (0, σ2
b) for bavg after averaging aggregation. The

noise strength (noise multiplier) can be calculated as (σ−2+(2σb)
−2)−1/2 [5] for tracing the DP budget.

Similar to the previous section, the filtering process contains six steps. 1⃝: In the first step, the
server uses the whole model parameters wi from each client to compute the adjusted-cosine distance
matrix Madjcos by eq. (4.9), where the diagonal elements of Madjcos are 0. Not only does this distance
metric consider the relative direction, but also the relative position [93]. 2⃝: In the second step, the
server feeds the adjusted-cosine distance matrix to HDBSCAN, which measuring metric is set to l2
and allow_single_cluster is set to True. 3⃝: As a return, HDBSCAN gives a cluster with the majority.
The server selects the corresponding clients’ parameters from the last layer according to the returned
indices. 4⃝: In the fourth step, similar to step 1, the server again computes the adjusted-cosine distance
matrix but only uses the last-layer parameters from the selected clients. 5⃝: The fifth step is identical
to the second step. 6⃝: Finally, HDBSCAN outcomes the indices containing m clients who will be
considered benign.

cos− distadj(i, j) =
(wi − 1

n

∑
k wk) · (wj − 1

n

∑
k wk)

||w||i||w||j
(4.9)

4.3. FLVoogd Client 24

Before using the benign parameters and indicators for updating, Noise Compensator will compen-
sate the noise loss due to the filtering. The compensating noise is wnoise ← N (0, n−m

n σ2(c(t))2) and
bnoise ← N (0, n−m

n σ2
b) for parameters and indicators, respectively. However, The compensation is

optional. If the subsampling rate is smaller than 1% and the number of clients per round is fewer than
20, the the compensation is unnecessary (wnoise = 0, bnoise = 0). Subsampling can significantly slow
down the increase of DP-budget if it is small enough [111]. The proportion of clients who has not clipped
their updates is γ̂ ← min{max[1m (

∑m
i bi + bnoise), 0], 1}. The min and max guarantee γ̂ to locate in a

meaningful scale, which follows DP post-processing. Then, the clipping boundary for the next round
can be computed as eq. (4.5). The aggregation follows w̃global =

1
m (

m∑
i=1

wi +wnoise). Finally, ||w̃global||

is compared with ||c(t)||. If ||w̃global|| > ||c(t)||, from which the server deduces that the amount of noise
is added too much, the server will scale down ||w̃global|| to a smaller value by eq. (4.8).

4.2.3. Evaluation
Varying from the encrypted version, the unencrypted one does not use S2PC. Even though the noise
adding moves to the client-side, which somewhat deviates the uploaded parameters from the true
ones, it cannot provide strong (ϵ, δ)-DP with respect to the server but only guarantees (ϵ, δ)-DP after
aggregation. Therefore, it cannot be supposed that the server infers nothing from the uploads if the
server is honest-but-curious. However, it has two advantages. The first one is that the computation is
fast since no secure computations are needed. The second one is, compared to DBSCAN, HDBSCAN
is less sensitive to the noise, so it generates clusters more stably.

4.3. FLVoogd Client

Figure 4.3: FLVoogd client framework

4.3.1. Assumption
Assumptions regarding the client inherit assumptions in subsection 4.1.1. As mentioned, the server
tries its best to maintain security and privacy for clients. However, clients cannot entirely rely on those
mechanisms executed remotely. Clients can also build a local mechanism for the model’s robustness.
Since clients are owners of the data, the client can locally conduct a performance-based test to verify
whether the model can be accepted or not. In other words, clients can separate some of their data for
the model evaluation, e.g., testing the model’s accuracy. The number of training samples will reduce
because of data splitting, but the number of evaluating samples does not need so many [19].

4.3.2. Pipeline and algorithm
Referencing the idea from Ditto [61], each FLVoogd’s client builds two identical models, namely, the
global model and local model shown in figure 4.3. In each round, the client receives the averaged
aggregated weight difference w̃global from the server and updates the weight of the global model ac-
cordingly by eq. (4.10). In contrast, the local model is not updated in this step. After updating the

4.3. FLVoogd Client 25

locally global model, the client tests the model accuracy using evaluation data and obtains the testing
accuracy accref .

Wglobal := Wglobal + w̃global (4.10)

The client starts the training process in the next step. The client feeds the partial training data to the
global and local models in each mini-batch iteration. It is supposed that there is a coefficient λditto to
control the distance of the local model from the global model. The objective function of the local model
becomes like eq. (4.11), where F (·) is the objective function for the global model and originally for the
local model. The change in the local model’s objective function now is that the client adds an additional
l2-regularization term to force the local model to approximate the global model. Consequently, the local
model can learn from the global model, and the gap between them is constrained by λditto.

min
Wlocal

F ′(Wlocal;Wglobal) = F (Wlocal) +
λditto

2
||Wlocal −Wglobal||2 (4.11)

Furthermore, eq. (4.11) can be converted into a gradient decent format shown in eq. (4.12), where
ηlocal is the client’s local learning rate. The formula shown in eq. (4.12) can be easily implemented
by PyTorch [90] where the client extracts the gradient and adds the λditto(Wlocal −Wglobal)) term to it
before running optimizer.step().

g := g − ηlocal(▽F (Wlocal) + λditto(Wlocal −Wglobal)) (4.12)

Till now, the client has λditto as a controller to adjust the learning distance between the local and
global models, but how to set an appropriate value λditto for the local model? Intuitively, if the global
model is admirable and exemplary, we expect the local model to learn as much helpful information as
possible from the global model; otherwise, we desire the local model to learn less or even not learn
from the global model. Then, the client can use the testing accuracy accref as a reference to flexibly
adjust λditto by eq. (4.13). In the formula, λmax and λmin are the maximum and minimum values for
λditto, ηditto is the learning rate, acclocal is the testing accuracy of the local model, and accthres is the
minimum threshold to increase λditto. λmax and λmin restrain the coefficient of the l2-regularization
in a reasonable interval. ηditto controls each mini-batch iteration’s growing/decaying speed for λditto.
accthres is the threshold to control whether the current global model is worth being learned. In other
words, the local model will absorb from the global model, only if accref is higher than acclocal + accthres.

λditto := min(λmax,max(λmin, λditto + ηditto(accref − acclocal − accthres))) (4.13)

If the server uses the encrypted framework, the client secretly shares his/her update with servers
after the training is completed; otherwise, the client should do extra two steps. Under the unencrypted
framework setting, the server broadcasts the clipping boundary in each round. Once the client receives
and compares its update’s norm with the clipping threshold, he/she decides whether to clip the update
or not and sends the indicator b with added noise back to the server. If the update is clipped, the
indicator is 0; otherwise, the indicator is 1. Besides, the weight difference will be added by Gaussian
noise and sent back to the server. The amount of Gaussian noise is equivalent to the original noise
added from the server-side but divided into n parts for n clients. Since the sum of Gaussian distribution
is Gaussian distribution and the post-processing property of DP noise, (ϵ, δ)-DP is still provided after
the aggregation.

4.3.3. Evaluation
The idea of splitting the model into local and global is originally from Ditto [61]. For each client, we
request them to build two models, one for training and communication with others and another for train-
ing and self-use. Rather than directly loading the weight difference aggregated by the server, the local
model learns from the global model by l2-regularization controlled by the coefficient λditto. Different
from [61] where λ is a fixed value, we use performance-based evaluation to make λditto adaptive. As
the clients are data holders, they can test the model performance, e.g., predicting accuracy, to deduce
whether the global model is admirable for approximating.

Furthermore, varying from [19, 84, 85, 91] where the server fully takes the responsibility of a robust
model, clients share that responsibility locally in our setting. Due to the pre-validation, the local model

4.3. FLVoogd Client 26

will not learn from the global model if the global one is found being poisoned. For some attacks, they
can escape from the server’s check at the initial few iterations or the converging stage. Though some
are temporary effects, Ditto can prevent them from influencing the local model. Notably, the metric of
test-based performance can vary, not limited to the general accuracy. This defensive scheme, to some
extent, also offers personalized to users. In figure 4.3, readers may notice that an interface is left for
“private data”, meaning that clients can also feed the data to the local model, which they do not want
to share with others. The local model stands alone from the global model and is only for self-use.

The algorithm of FLVoogd’s client is manifested in algorithm 5 and algorithm 6.

Algorithm 5 FLVoogd - client (1)
1: Input:
2: Dtrain, Deval ▷ Dtrain is the training set, Deval is the testing set
3: Wlocal, Wglobal, F ▷ Wlocal/Wglobal are the local/global parameters, F is the objective function
4: ηlocal, ηglobal, E ▷ ηlocal/ηglobal is the learning rate for the local/global model, E is the number of
local training epochs

5: λ(0)
ditto, ηditto, accthres, λmin, λmax ▷ λ

(0)
ditto is the initial value for λditto, ηditto is the learning rate for

λditto, accthres is the threshold to start learning, λmin/λmax is the minimum/maximum learning rate
of λditto

6: Output: w ▷ w is the weight difference between before and after training
7: w̃global ← client(receive) ▷ receive the update from the server
8: Wglobal ←Wglobal + w̃global

9: Wtemp ←deepCopy(Wglobal)
10: accref ←Eval(Wglobal,Deval)
11: for local epoch e: 1, 2, ..., E do
12: for batch iteration B ∈ Dtrain do
13: Wglobal ←Wglobal − ηglobal▽F (Wglobal,B) ▷ train global model
14: Wlocal ←Wlocal − ηlocal(▽F (Wlocal,B) + λditto(Wlocal −Wglobal)) ▷ train local model
15: acclocal ←Eval(Wlocal,Deval)
16: λditto ← λditto + ηditto(accref − acclocal − accthres) by eq. (4.13)
17: w ←Wglobal −Wtemp

18: return w

Algorithm 6 FLVoogd - client (2)
1: Input: w ▷ clients will process w according to the server framework
2: ||w|| ←

√∑
j w

2
j

3: if Encrypted FLVoogd Server then
4: w ← w

||w||

5: v ← {wj :j=k,...,m}√∑m
j=k w2

j

▷ k is the starting index of the last layer
6: client(send)← w, ||w||, v
7: else
8: if ||w|| > c then
9: w ← w · c

||w|| , b← 0 ▷ b is the indicator
10: else
11: b← 1
12: w ← w +N (0, σ2c2

n), b← b+N (0,
σ2
b

n) ▷ add Gaussian DP noise component
13: client(send)← w, b

5
Experiment

5.1. Experimental Setup
We conducted all the experiments using PyTorch [90] and the source code was available on GitHub1.

Datasets and Neural Network. We followed the recent research on Byzantine attacks [33, 109]
on FL and chose a typical application scenario - image classification. The datasets in our experiments
included MNIST [59], CIFAR-10 [56], and EMNIST [22]. MNIST is a grayscale digit image classification
dataset with 10 categories consisting of 60,000 training and 10,000 testing instances. CIFAR-10 is a
color image classification dataset that includes 50,000 training examples and 10,000 testing examples.
EMNIST is an extending MNIST to handwritten letters dataset constituted by 62 unbalanced classes
with 814,255 characters. The non-IID data splitting for MNIST and CIFAR-10 in our experiment fol-
lowed the method carried out in FLTrust [19], where DegnIID (q in [19]) controlled the level of non-IID.
Specifically, to split clients into I groups, a training instance with label i is assigned to group Ii with
probability q > 0 and to other groups with probability (1− q)/(|I| − 1). In terms of EMNIST, we applied
the method from [110] where the smaller αsim was, the more tasks were dissimilar. CNNs were used
as our global and local models, where CIFAR-10 was trained by ResNet-20 [46] (269,772 parameters
in total), and MNIST & EMNIST were trained by a 2×convolutional layers’ NN shown in table 5.1.

Table 5.1: 2×CNN architectures

Layer Size (MNIST) Size (EMNIST)
Input (1, 28, 28) (1, 28, 28)
Conv2d+Sigmoid (1, 6, 5) (1, 6, 5)
MaxPool2d (2, 2) (2, 2)
Conv2d+Sigmoid (6, 16, 5) (6, 16, 5)
MaxPool2d (2, 2) (2, 2)
Linear+Sigmoid (256, 120) (256, 120)
Linear+Sigmoid (120, 84) -
Linear (84,10) (120, 62)

#Parameters 44,426 40,914

Evaluation Metrics. Main Task Accuracy (MA) represents the accuracy of a model tested by its
benign task. It indicates the fraction of correct predictions. Untargeted-attack adversaries aim to re-
duce MA, while the defensive mechanism should not be designed to influence MA. If the model is under
targeted attacks, Backdoor Accuracy (BA) is the metric to reflect how successful the adversaries are. It
denotes the fraction of correct predictions for backdoor samples. Adversaries try their best to augment

1https://github.com/Timo9Madrid7/maliciousfl

27

https://github.com/Timo9Madrid7/maliciousfl

5.2. Experimental Results 28

BA, while a defensive mechanism should be designed for deflating BA.

FL Configuration. The total number of clients N was set to 100. Each client received unique train-
ing samples and testing samples from the split. ResNet-20 was a pre-trained version2 to accelerate
the training process, while other networks were not pre-trained. The learning rates of global model
ηglobal and local model ηlocal were 0.01. The local training epoch E was 1 since clients did not hold
an adequate number of samples. The coefficient of l2-regularization λditto was initialized as 0 and its
min-max interval was [0.0, 2.0], where the maximum was suggested by [61]. The threshold accthres for
the local model starting learning from the global was 0.05. The learning rate ηditto for λditto was 1. The
expected clipping ratio γ, the initial clipping boundary c(0), the clipping learning rate ηc were 0.5, 10,
0.3. Other settings varied for different experiments.

Malicious Configuration. Both model poisoning attacks and data poisoning attacks share a pa-
rameter, Poisoned Model Rate (PMR), indicating the fraction of poisoned models for each round. If
the attacking type is data poisoning, it has one more parameter, Poisoned Data Rate (PDR), represent-
ing the poisoned ratio of the data. Due to our assumption, PMR was less than 50% in our experiments.
The adversary should carefully select PDR because they are not the higher, the better. Higher PDR can
impact BA more adversely, but adversaries’ uploads can be detected and filtered out more effortlessly.
Settings of attacking parameters, such as PDR, in section 5.2.1, are nearly marginal thresholds, below
which the attacking effect is non-significant even if it escapes from being detected. In terms of PMR, it
is set with a rigorous value, approximately 50% following the assumption. Common attacking settings
are shown in table 5.2.

Table 5.2: Attack settings

Attacks (E)MNIST CIFAR-10
A1 mean = 0, std = 1
A2 Krum’s ϵ = 10−3, threshold = 2× 10−2

A5 a 5x5 white square is inserted into
the targeted data and labeling it as “0”

the semantic pattern is a car
with stripes and labeling “car” to “bird”

A6 by adding Ardis_IV to
training and labeling “7” as “1”

by adding Southwest Airline images to
training and labeling “airplane” as “truck”

5.2. Experimental Results
This section will evaluate FLVoogd against different attacks outlined in chapter 3 and demonstrate that
our defense mechanism is robust to those byzantine attacks under different malicious configurations.
In addition, it will also present the effect on MA because of adding DP noise. Finally, it will assess the
impact of the degree of non-IID data on the defensive scheme.

5.2.1. Fending off byzantine attacks
Byzantine attacks in Chapter 3 are separately tested on MNIST, CIFAR-10, and EMNIST, shown in
figure 5.1, figure 5.2, and figure 5.3 respectively. All the experiments were run at least five times in
case the defense effectively but occasionally works. Results of MNIST will be used as a paradigm for
the analysis, and the analysis and conclusion for other datasets are similar.

Figure 5.1 shows MNIST under different attacks from A1 to A6. Training and testing samples are
IID split in advance, and each sample merely belongs to one client, such that clients hold unique IID
datasets. “Baseline” or “without defense” results from the server ruining naive aggregation. Except
for the baseline, where 21 clients are chosen for each round, 40 clients are uniformly randomly se-
lected from 100 participants for other situations. The number of benign clients keeps at 21 to make
the result comparable. In figure 5.1a, due to malicious random uploads, the aggregated updates are
meaningless, leading to the blue curve with extremely low accuracy; however, the filtering process
conducts so effectively that the learning curve - the green one - can behave normally under this attack.

2https://github.com/chenyaofo/pytorch-cifar-models

https://github.com/chenyaofo/pytorch-cifar-models

5.2. Experimental Results 29

0 20 40 60 80 100
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy baseline

MA without defense
MA with defense

(a) A1: PMR=19/40

0 20 40 60 80 100
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy baseline

MA without defense
MA with defense

(b) A2: PMR=19/40

0 20 40 60 80 100
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
MA without defense
MA with defense

(c) A3: PMR=19/40

0 20 40 60 80 100
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(d) A4: PMR=19/40, PDR=1.0

0 20 40 60 80 100
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(e) A5: PMR=19/40, PDR=0.2

0 20 40 60 80 100
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(f) A6: PMR=19/40, PDR=0.33

Figure 5.1: Byzantine attacks on MNIST

In figure 5.1b, the Krum attack tries its best to upload counter-directional updates to devalue the global
accuracy. Consequently, the global accuracy is even worse than a random guess (50%). However, the
global accuracy can reach an original level using the defense of FLVoogd. In figure 5.1c, the trimmed-
mean attack starts to degrade the model accuracy approximately at midterm and reduces accuracy
from higher than 80% to less than 60% within 50 rounds. According to the result, FLVoogd prevents
this malicious reduction of accuracy effectively. In figure 5.1d, byzantine clients flip the labels of all
training samples, rendering the final prediction like a random guess. Thanks to the honest majority,
MA can be slightly better than 50%, and BA can be marginally worse than 50%; still, the result is unac-
ceptable unless the defense is introduced. One notable point is that the filter cannot correctly recognize
flipping uploads in several initial rounds, but it can acknowledge and expel malicious updates once the
global model learns a little from those majorities. In figure 5.1e, the backdoor triggering attack shows
its supremacy at the initial stage, and BA can easily approximate to 100% in the first several rounds.
After the model learns sufficient benign samples, BA tends to decrease while MA tends to increase.
Without the defense, BA again grows sharply at midterm and finally attains relatively high accuracy.
In contrast, under the protection, BA is restrained at low accuracy and can impossibly revive after the
filter starts to work. The filter does not work at the initial stage because the model is chaotic, and the
updates produced from the model reveal little information about the data distribution. In figure 5.1f, un-
der no defense, BA manifests likewise A5 at the initial stage but does not decline after MA rises. Since
the malicious data is sampled from another dataset without intersection with MNIST, learning from the
benign samples cannot benefit the model, so BA persists at high accuracy. However, FLVoogd can
successfully detect and block these uploads according to the abnormal data distribution, preventing
the intrusion of edge-case.

Figure 5.2 shows CIFAR-10 under different attacks from A1 to A6. Similar to MNIST, all the attacks
have been eliminated or restrained below comparably low accuracy, but there is a noteworthy point in
figure 5.2e, where BA’s learning curve notably fluctuates no matter whether there is defense or not. It
is because the backdoor images are still the original images but with a naturally specific pattern, differ-
ent from MNIST, where a pattern is manually added to make the backdoor image vary from the origin.
Thereafter, these minor samples are forced to be labeled as another, like label flipping applied to partial
images from one class.

Figure 5.3 shows EMNIST under different attacks from A1 to A6. Similar to MNIST and CIFAR-10,
all the attacks have been eliminated or restrained below comparably low accuracy. However, we initially
found that FLVoogd could not prevent EMNIST from A6 productively. Firstly, we did not use the whole
dataset for the training but followed the advice from [45], where 20% was suggested for 100 clients.

5.2. Experimental Results 30

0 20 40 60 80 100
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ac

cu
ra

cy baseline
MA without defense
MA with defense

(a) A1: PMR=19/40

0 20 40 60 80 100
Round

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy baseline

MA without defense
MA with defense

(b) A2: PMR=19/40

0 20 40 60 80 100
Round

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy baseline

MA without defense
MA with defense

(c) A3: PMR=19/40

0 20 40 60 80 100
Round

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(d) A4: PMR=19/40, PDR=1.0

0 20 40 60 80 100
Round

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(e) A5: PMR=19/40, PDR=0.33

0 20 40 60 80 100
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(f) A6: PMR=19/40, PDR=0.33

Figure 5.2: Byzantine attacks on CIFAR-10

In addition, there were 62 classes to be classified. Consequently, the model initially required several
rounds to figure out what correct “7” and “1” roughly looked like. The model would not rebound those
edge cases if edge-case clients instructed the model incorrectly with the mislabelled pictures at the
beginning. Therefore, in the first five rounds, we put the model under training with benign-only samples
to compensate for this unfairness. After that, the model could successfully filter out those malicious
uploads. Nonetheless, pre-training is not mandatory for other scenarios.

5.2.2. Adding and tracking DP noise
The experiments in subsection 5.2.1 were not added by Gaussian DP noise. As shown in figure 4.1,
the DP Noise Adder is independent from the filtering procedure. Therefore, experiments that test the
DP effect and monitor the ϵ budget will be independently studied in this subsection. The experiments
consist of different combinations of subsampling ratio q and noise strength coefficient σ. The DP noise,
to some extent, will adversely affect the convergence and accuracy of the model. In return, this kind
of sacrifice gains a differential privacy guarantee. The growth of ϵ after each iteration is estimated by
Moments accountant or RDP, where δ is set as a constant (= 10−3 [38]) considering 100 is the total
number of clients.

The consequence of DP Gaussian noise is tested by MNIST and shown in figure 5.4. We kept the
ratio of noise strength σ and the chosen number of clients for each round n constant, σ

n = 1/20. For
each experiment, we changed the subsampling rate q from 0.2 to 1.0. The total number of training
rounds extended to 200, as the noise postponed the convergence. Figures 5.4a, 5.4b, 5.4c, 5.4d, 5.4e
nearly exhibit an identical trending. In general, the added noise decreased the final accuracy by 7.0%.
In return, almost in all the experimental settings, (ϵ, δ) was better than (20, 10−3), and the best one can
achieve (13.29, 10−3) estimated by RDP. The subsampling did not play an important role in significantly
moderating the growth of ϵ, as the total number of clients was inadequate. The subsampling could
be more effective if 1,000 or 10,000 clients participated in the FL training [38]. Solid lines and dash
lines in figure 5.4f are ϵ estimated by Moment’s accountant and RDP, respectively, where RDP always
provides a lower ϵ’s boundary compared with Moments account. Adding more noise can provide a
stronger differential privacy guarantee but may harm the final model accuracy and slow the converging
speed. The trade-off between ϵ and accuracy is a challenging problem [28]. The FLVoogd framework
provides an adaptive supervisor for ϵ, which the server can customize, so the server can stop the
training or adjust the sampling ratio and the amount of adding noise in time once ϵ is undesirable.

5.2. Experimental Results 31

0 20 40 60 80 100
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8
Ac

cu
ra

cy baseline
MA without defense
MA with defense

(a) A1: PMR=19/40

0 20 40 60 80 100
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy baseline

MA without defense
MA with defense

(b) A2: PMR=19/40

0 20 40 60 80 100
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy baseline

MA without defense
MA with defense

(c) A3: PMR=19/40

0 20 40 60 80 100
Round

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(d) A4: PMR=19/40, PDR=1.0

0 20 40 60 80 100
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(e) A5: PMR=19/40, PDR=0.2

0 20 40 60 80 100
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(f) A6: PMR=19/40, PDR=0.33

Figure 5.3: Byzantine attacks on EMNIST

5.2.3. Non-IID interference
FLVoogd successfully enervates or eliminates themodel’s attacking effect when clients hold IID datasets.
All benign models behave similarly with IID datasets and upload relative weights’ updates. However,
the defense can be more problematic if those datasets are non-IID because the filter may not distin-
guish whether the poisoning or the non-IID data cause the directional differences. Using non-IID data
to train the model leads to the deviation of the local model’s updates. For example, if one class dom-
inates the training set, the backward propagation may adjust some neurons’ parameters more than
the others. In this subsection, a non-IID data split is used for testing the robustness of FLVoogd under
different attacks. The training and testing samples will be split into non-IID datasets. Experiments will
test DegnIID from 0.2 to 0.7. The number of clients per round is reduced from 40 to 20 since DBSCAN
is unstable with noise points where the non-IID noise may connect clusters. The defense may collapse
if too many clients are selected per round under the non-IID setting.

The defensive effect under the non-IID setting has been tested on the MNIST dataset, shown in
figure 5.5. In general, FLVoogd cannot completely tolerate that clients hold extreme non-IID samples.
In figure 5.5a, adversaries perform random uploading chosen from N (0, 1). The filter rejects all these
uploads until the model converges. After convergence, the filter hardly distinguishes between the ma-
licious and model uploads because both appear somewhat random behaviors, resulting in fluctuations
in the convergence state. However, the accuracy is still above 90% since benign uploads again be-
come meaningful once below this threshold, and the filter once more rejects malicious random uploads.
Krum attack shows ineffectual regardless of the non-IID degree in figure 5.5b. The filter is so sensi-
tive to the direction of uploads that uploads with reverse direction can scarcely pass the filtering. In
figure 5.5c, the filter relinquishes its duty after the non-IID degree is larger than 0.5. Compared to A1,
A3 is a more advanced scheme, which chooses the randomness adaptively, so the attacking effect is
more significant. In figure 5.5d, random flipping works after the non-IID ratio is higher than 0.6. After
DegnIID > 0.5, one class completely dominates a dataset, leading that each mini-batch iteration con-
tains over 50% samples from the same class. Consequently, the learning process is tampered with by
the flipping of one class intermittently once the non-flipped samples of this class miss the training round.
In figure 5.5e, backdoor accuracy cannot be constrained if increasing the non-IID degree to more than
0.5, as the filter cannot discriminate whether the non-IID or the backdoor targets cause the directional
difference. This situation similarly happens in figure 5.5f where the result is even worse because the
defense collapses when the non-IID ratio is higher than 0.2. Contradicting A5, where the backdoor
targets are still the samples in the dataset, A6 introduces the backdoor targets from another dataset
and aims to compromise the weakness of the model prediction. The filter relies on the model digest.
In other words, the filter performs ineptly if the model digest cannot reflect normal/abnormal directions.

5.2. Experimental Results 32

0 25 50 75 100 125 150 175 200
Round

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy
baseline
DP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 D
iff

er
en

ce

difference

(a) σ = 1, q = 20/100

0 25 50 75 100 125 150 175 200
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
DP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 D
iff

er
en

ce

difference

(b) σ = 2, q = 40/100

0 25 50 75 100 125 150 175 200
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
DP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

 D
iff

er
en

ce

difference

(c) σ = 3, q = 60/100

0 25 50 75 100 125 150 175 200
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
DP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 D
iff

er
en

ce

difference

(d) σ = 4, q = 80/100

0 25 50 75 100 125 150 175 200
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
DP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 D
iff

er
en

ce

difference

(e) σ = 5, q = 100/100

0 25 50 75 100 125 150 175 200
Round

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
1:20 rdp
moments
2:40 rdp
moments
3:60 rdp
moments
4:80 rdp
moments
5:100 rdp
moments

(f) ϵ recording

Figure 5.4: DP’s effect on MNIST

0.2 0.4 0.6
DegNiid

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

baseline
MA

(a) A1: PMR=9/20

0.2 0.4 0.6
DegNiid

0.970

0.975

0.980

Ac
cu

ra
cy

baseline
MA

(b) A2: PMR=9/20

0.2 0.4 0.6
DegNiid

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

baseline
MA

(c) A3: PMR=9/20

0.2 0.4 0.6
DegNiid

0.0

0.5

1.0

Ac
cu

ra
cy

baseline
MA
BA

(d) A4: PMR=9/20, PDR=1.0

0.2 0.4 0.6
DegNiid

0.25

0.50

0.75

1.00

Ac
cu

ra
cy baseline

MA
BA

(e) A5: PMR=9/20, PDR=0.2

0.2 0.4 0.6
DegNiid

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

baseline
MA
BA

(f) A6: PMR=9/20

Figure 5.5: Non-IID effect on MNIST

Since the model can never learn those edge cases with true labels, the model cannot provide evidence
of abnormal behaviors. When the non-IID ratio is lower than 0.3, the filter can detect those edge cases
mainly because of the distribution of uploads. However, after non-IID increases, the upload lacks this
kind of information.

Since the FLVoogd performed worse when it suffered from A6’s attack, we selected this situation
for further study. We wanted to assist FLVoogd somewhat - training the model ahead or decreasing
the PMR. As mentioned, pre-training is doable for some application scenarios. In addition, according
to [96], PMR≈ 50% is a very pessimistic assumption, so we tried to lower it a little bit to see how our
framework would react.

In figure 5.6, it shows more experiments for improving the defense performance. In figure 5.6a,
PDR is reduced from 45% to 30%, and the BA learning curve declines once the model has learned the
correct direction from the benign uploads. The poisoning effect is weakened because of the lower PDR.
In figure 5.6b and figure 5.6c, the model accuracy is trained approximately to 25% before the attacks
deploy. The updating directions of models become consistent after the pre-train. Thus, the filter can sift
those malicious uploads once it first time meets the upload in an abnormal direction. The results also

5.2. Experimental Results 33

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

MArefer

BArefer

MAlowerPDR

BAlowerPDR

(a) DegnIID = 0.3: lowering PDR to
6/20=30%

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MArefer

BArefer

MApretrain

BApretrain

(b) DegnIID = 0.3: pretraining the model
to accuracy around 25%

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MArefer

BArefer

MApretrain

BApretrain

(c) DegnIID = 0.5: pretraining the model
to accuracy around 25%

Figure 5.6: Pretraining and a lower PDR help the defense

verify that defending against targeted attacks depends on the performance of models on the dataset.
If the model can separately recognize the poisoned and normal samples, it can output distinguishable
model updates. Then, after the filter captures this variance, the defense effectively works.

6
Related Work

Since its inception, Federated Learning has been extensively researched because of its interdisciplinary
and pragmatism. The application domain of FL is diverse, as mentioned in chapter 1, and the FL
structure is flexible and can be applied in either B2B or B2C modes. Besides, constructing a robust
and privacy-preserved framework requires the knowledge of cryptography, machine learning, and deep
learning. Many scientists from different fields have participated in this research in the recent half-
decade. Furthermore, the commonly used assumption of FL - clients are honest-majority [96] - renders
the defense strategies applicable. This chapter will present some related state-of-art or classical FL
frameworks and summary their performances.

6.1. Poisoning Defense
This section will provide other research relevant to the defense of poisoning in FL. Those approaches
can generally be categorized into statistical distance-based filtering, prior performance testing filtering,
and unsupervised machine learning clustering filtering.

Statistical distance-based filtering: The statistical distance-based approach relies on the dis-
tances of uploads to distinguish the potential malicious ones from the benign ones. Filtering by dis-
tance is relatively efficient because it does not require the server to acquire additional knowledge of the
dataset. Section 3.1 analyzes that the uploaded parameters are the high summary of the individual data,
so the distances of parameters can be used as a criterion to classify the latent malicious uploads. These
methods include but not limit to Krum [13], Geometric Median [73, 115], Auror [97], FoolsGold [36], and
AFA [77]. However, these methods have a common issue: they all strongly assume the distribution of
clients’ datasets. In terms of Krum, Geometric Median/Mean, and Auror, they assume that the datasets
of benign clients are almost IID, so they have nearly identical behaviors, while malicious clients behave
abnormally to degrade the model. This kind of filter normally selects a reference. Clients who are too
far away from the reference will be regarded as potentially malicious. In contrast, the authors of Fllods-
Glod and AFA assume that all the malicious clients have a general-purpose, e.g., flipping one class’
label, so they behave identically, while benign clients will behave not exactly the same and contribute
to each class equally. Besides, statistical distance-based approaches do not have the resilience to the
adaptive attack. For instance, section 3.2.2 presents adversaries of Krum and Geometric Mean who
can tamper with the model by colluding with each other. Other methods, like Ditto [61], aim to keep
a distance between the local and global models to safeguard the local predicting accuracy. However,
the gap is not easy to control. Under some extremely pessimistic situations, e.g., the global model is
wholly compromised, even learning a little bit from the global model, the local model will be adversely
influenced.

Prior performance testing filtering: Prior performance testing requires that the server or partici-
pants have some prior knowledge of a correct model. For instance, if the server has some prior knowl-
edge, e.g., a root validation dataset [19], the server can test the upload parameters on the validation
set to find malicious ones that degrade the model’s accuracy. This root dataset is sometimes feasible

34

6.2. Privacy Preserving 35

for the server. Google hired some workers to type using Gboard to collect data as a root dataset [69].
However, not every server has the ability to collect enough data for the root dataset, and data often
includes personal information that may betray the regulations of GDPR [118]. In addition, the validation
process occupies the extra time of FL, leading to lower communication efficiency, especially when the
number of clients is tremendous. The alternative method is to let clients test the performance of the
aggregated model, such as Baffle [4], where partial clients receive the aggregated model and vote to
accept or abort the model, which depends on the performance of the global model on the local dataset.
However, backdoor attacks are still hard to detect, especially under the Non-IID setting, if the local
number of data is not adequate.

Unsupervised machine learning clustering filtering: Similar to distance-based filtering, cluster-
ing also computes distances among uploads, employing the unsupervised ML algorithm to handle the
distance matrix. It tries to extract feature variance from different uploaded parameters and uses the
variances to distinguish malicious and benign clients, such as [84, 85, 91, 120] to name a few. Those
papers commonly employ HDBSCAN/DBSCAN introduced in section 2.3 because density-based clus-
tering is suitable under this scenario where the number of clusters is unknown in advance. Besides,
the distance measuring metric is flexible because HDBSCAN/DBSCAN accepts precomputed distance
matrix. As parameters in each layer can reflect different properties of the dataset, e.g., the last fully-
connected layer reveals the distribution of a dataset [91], the filter can process selected layers individ-
ually. Furthermore, the procedures of DBSCAN are able to be encrypted so that the output labels can
be computed privately.

6.2. Privacy Preserving
Depending on the adversary, either participants or the server, the defending strategies can roughly be
divided into two classes, DP based approach and encryption based approach. For the sake of simplic-
ity, both homomorphic encryption and secret sharing are classified as the encryption based approach.

Differential Privacy based approach: DP is an efficient tool to defend membership inference from
the client-side and provides a quantified privacy budget. Clipping and adding Gaussian noise are one
of the known techniques to achieve differential privacy for deep learning proposed in [80]. By adding
the appropriate amount of noise, the honest-but-curious clients cannot distinguish whether a specific
person has participated in the FL training or not. At the same time, the paramount task accuracy is
not significantly destructed. One ramification of this field is to explore different accountant methods to
quantify the privacy loss introduced in section 2.2 so as to lessen the added noise. Another is to lower
clipping bound to add noise, such as the adaptive clipping proposed in [5], so as to reduce the magni-
tude of the added noise. Still, there are other methods to achieve DP. In [63], authors used Canonical
sketches to instigate the errors to achieve DP while reducing the communication bandwidth.

Encryption based approach: Encryption is a productive tool to defend the inference from the
server-side because once the parameters are encrypted, the server cannot individually observe each
upload. Encryption can be performed via either homomorphic encryption or secret sharing. If the server
adopts the vanilla FL framework shown in algorithm 1, any encryption scheme with additive homomor-
phism can be used for the encryption. Secure aggregation requires more than addition; thus, fully
homomorphic encryption is often needed when the algorithm operates both addition and multiplication.
However, homomorphic encryption causes severe computational overhead, e.g., the lattice-based ho-
momorphic encryption used in Poseidon [94]. In this case, some studies such as [67] try to send the
encoded signs rather than the parameters to the server. Nevertheless, the computational overhead is
still not significantly improved due to the latency of convergence. Secret sharing is the substitution of
homomorphic encryption and has a relatively lower computational overhead, but the cost is the com-
munication rounds [9, 99, 100]. Furthermore, both methods face the issue that clients may drop off due
to network congestion or local shutdown. The developers need to design the protocol to deal with such
issues carefully; otherwise, the secret parameters cannot be reconstructed. To avoid these issues,
instead of using SMPC, some scientists use S2PC [27, 85], where clients send one secret share to the
aggregator and another to the external server, which can also be regarded as a third-party supervisor.
Consequently, the remaining calculations can be cooperatively done by only two parties - the server

6.3. Other 36

and the external server. In addition, the original communication costs from clients are reduced. Recent
state-of-art works have also employed this framework, such as [84, 91].

6.3. Other
Many other prospective fields are relevant to FL but not included in this research. This section will
present some of them. On the one hand, those studies play an essential role in FL, especially in the
application domain. On the other hand, those researches are provided as hints to inspire the readers
who want to continue this study.

Fairness: Fairness is another popular field in FL. Referencing an example from [66], several banks
collaboratively train an FL model, but one of them owns much more clients’ data than others’. It will
generate a conflict that the larger bank, which contributes more than other banks during the training,
gains fewer returns from the joint training, while small banks benefit more from the model. Conse-
quently, there should be an incentive policy to motivate the participants privately share more data, and
in return, the more they share, the more rewards they will get. There are already some papers [62, 66,
123] aiming to solve this kind of issue.

Personalized and Non-IID: Statistical heterogeneity due to non-IID datasets is a cumbersome
problem in FL. Some non-IID dataset holders may receive the global model that performs worse locally
since their true model is far from the aggregated model. Consequently, contributors do not have identi-
cal accuracy on their local datasets, which breaks the promise of fairness. Meanwhile, the parameters
behave differently because of deriving from non-IID datasets. As a result, distinguishing malicious pa-
rameters from uploads is more complicated. Besides, learning from non-IID datasets influences the
convergence of the global model and makes the analysis even harder. Some researches come up with
some methods to tackle this issue, e.g., [32, 43, 95, 103]. It should be noted that those scientists who
are dedicated to solving non-IID in FL, to some extent, also try to solve the fairness simultaneously due
to the common goal - identical local accuracy.

Communication efficiency: FL is a kind of decentralizedmachine/deep learning, requiring network
communication between parties. In addition, FL is also a popular application for IoT devices, the com-
munication efficiency of which is highly demanding [48]. The commonly used strategy is to decrease
the information entropy, in other words, to lower the communication bandwidth, such as Sketch [63]
mentioned in previous sections and signSGD [11]. Sketch uses Canonical sketches where the gradi-
ents are quantized to lower-precision values, while signSGD only requires clients to upload signs of
parameters. In addition, some methods use statistical observation from the model parameters to shrink
down the number of uploaded parameters. For instance, because the majority of a neural network’s
parameters are near zero, it is recommended to send only gradients larger than a predefined thresh-
old [102]. Furthermore, by merely broadcasting the last output layer, similar to transfer learning, Bristle
greatly minimizes communication overhead [106].

7
Conclusion

In this thesis, we introduce Federated Learning by comparing it with the traditional centralized machine
learning. Although Federated Learning claims it is confidential and privacy-preserving, the recent works
show that the original paradigm cannot guarantee those because of malicious participants who perform
byzantine attacks on the model. In order to filter the byzantine clients out while maintaining personal
privacy, we propose FLVoogd, which is a robust and privacy-preserving federated learning framework
that restrains the adverse impact of Byzantine attacks within an acceptable level while maintaining the
performance of model predictions on the main task.

Our framework applies Differential Privacy to guarantee the aggregated model somewhat deviates
from the truth. Hence, adversaries hardly observe the membership’s variance from the result. In addi-
tion, (H)DBSCAN is used to extract the honest-majority participants for robust aggregation effectively.
Meanwhile, secure Multi-party Computation accompanies DBSCAN to make the actual content of up-
loads invisible to the server, such that the inference from the server side is eliminated. The background
knowledge of these three main techniques used from the server side is fully demonstrated. Besides,
clients in our framework build dual models, one for the global training and another for the local training,
combined with performance-based testing that controls the distance between both models so as to
achieve model separation and personalization.

To attack and test the robustness of our framework, we detail six attacking methods, including three
untargeted and three targeted attacks. Those attacks can adversely decrease the main task accuracy
or achieve a comparably high backdoor accuracy if federated learning adopts a naive aggregation rule.
However, FLVoogd can productively defend against those attacks in most situations.

There are two critical differences between our encrypted framework and prior works. Firstly, most
procedures are executed adhering to privacy preservation, where operations are doable for mostly pop-
ular SMPC protocols. Secondly, we provide adaptive adjustments such that the whole process can run
automatically.

The performance of the design is tested in the field of image classification. Experimental results
show that our framework can successfully resist state-of-art attacking schemes under an i.i.d. situation.
At the same time, it still works effectively when the non-i.i.d. ratio is not such high. The filtering pro-
cess relies on whether the model can provide a distinguishable and pertinent digest for datasets from
different clients.

Future works could include: merging the transfer learning into the current framework to tackle GAN
inference and combine it with other efficiently communicative schemes, e.g., sketch, to reduce the
communication bandwidth and enhance differential privacy.

37

Proceedings of Machine Learning Research , 2022

FLVoogd: Robust And Privacy Preserving Federated
Learning

Yuhang Tian y.tian-13@student.tudelft.nl
Delft University of Technology

Rui Wang r.wang-8@tudelft.nl
Delft University of Technology

Yanqi Qiao y.qiao@tudelft.nl
Delft University of Technology

Emmanouil Panaousis e.panaousis@greenwich.ac.uk
University of Greenwich

Kaitai Liang kaitai.liang@tudelft.nl

Delft University of Technology

Abstract

In this work, we propose FLVoogd, an updated federated learning method in which servers
and clients collaboratively eliminate Byzantine attacks while preserving privacy. In par-
ticular, servers use automatic Density-based Spatial Clustering of Applications with Noise
(DBSCAN) combined with S2PC to cluster the benign majority without acquiring sen-
sitive personal information. Meanwhile, clients build dual models and perform test-based
distance controlling to adjust their local models toward the global one to achieve personal-
izing. Our framework is automatic and adaptive that servers/clients don’t need to tune the
parameters during the training. In addition, our framework leverages Secure Multi-party
Computation (SMPC) operations, including multiplications, additions, and comparison,
where costly operations, like division and square root, are not required. Evaluations are
carried out on some conventional datasets from the image classification field. The result
shows that FLVoogd can effectively reject malicious uploads in most scenarios; meanwhile,
it avoids data leakage from the server-side.

Keywords: federated learning; secure-multi-party computation; differential privacy

1. Introduction

Unlike the centralized learning setting, where a server collects substantial users’ data to
build a model for predictions, Federated Learning (FL) requires the model parameters that
clients train independently with their data and devices. In FL paradigm frameworks, such
as FedAvg McMahan et al. (2016), the server iteratively aggregates local models trained by
individuals and sends the global one back to clients for their local updates, to achieve col-
laborative training. Since no actual data is sent to the server, this paradigm was considered
privacy-preserving. In the past half-decade, FL has been widely researched and applied
in many fields such as image recognition Li et al. (2021a), Natural Language Processing
(NLP) Liu et al. (2021), financial system Long et al. (2020), and medical care Dayan et al.
(2021).

© 2022 Y. Tian, R. Wang, Y. Qiao, E. Panaousis & K. Liang.

38

Tian Wang Qiao Panaousis Liang

However, such a framework still faces two main challenges - privacy and security. On the
one hand, the conventional FL setting cannot get rid of the disclosure of clients’ information
and even enlarge the attacking surface Aono et al. (2017). Not only can the server be an
adversary to infer the information from local models sent by clients in this scenario, but
also every participant can perform the inference attack on the global model constructed
by each individual. Therefore, some research employs SMPC to encrypt the uploads, such
as Nguyen et al. (2021a). However, the cost of the design or operations is high, especially
when dealing with the division and the square root. On the other hand, without counter-
measures, adversaries can arbitrarily substitute the data with the poisoned one Wang et al.
(2020) or even directly change the upload into a meaningless random number, leading their
uploads to betray the regulation. To eliminate the attacking consequence, some research,
like Li et al. (2021b) and Rieger et al. (2022), builds a practical defensive framework, but
with too unintuitive hyper-parameters to tune for different situations.

To improve the efficiency and save expensive operations, we develop an updated frame-
work that combines SMPC Knott et al. (2021); OpenMined (2021), DBSCAN Ester et al.
(1996), differential privacy Geyer et al. (2017), and personalized local model Li et al. (2021b)
to eliminate the malicious uploaded parameters without revealing any sensitive informa-
tion and guarantee (ϵ, δ)-DP after the aggregation. Compared with the past research, our
framework 1) filters the abnormal uploads without knowing their sensitive information;
2) performs the training process adaptively, requiring no parameter tuning; 3) uses SMPC
operations efficiently supported by most protocols. We leverage the conventional image clas-
sification dataset to evaluate the framework. The results show that the filter can reject the
Byzantine attacks under most situations without degrading the model performance, and
the trade-off between predicting accuracy and DP strength can be customized for different
scenarios.

2. Background and Problem Setting

2.1. Adversarial Attack

Six different state-of-art attacking schemes are used to test our FL defenses’ robustness and
named from A1 to A6.
•Random upload (A1): As its name suggests, the adversary substitutes the factual update
with a random noise chosen from X ∼ N (0, 1). Consequently, the average of parameters
can arbitrarily deviate from wavg = 1

n

∑n
i=1wi to wdev = 1

m

∑m
i=1wi+

1
n−m

∑n
i=m+1N (0, 1),

where m is the number of honest updates and (n−m) is the number of malicious updates.
•Krum attack (A2): It is designed to crack the Krum aggregation rule. In a nutshell,
Krum selects one vector from a set of n vectors that is the most comparable to the rest.
Even if a compromised client gives the chosen vector, the impact is limited in this situation.
However, when adversaries try to invalidate the Krum aggregation rule, they can conspire
to elaborate a set of vectors to make KR(w′

1, ..., w
′
f , ..., wn) output w

′
1 such that w′

1 mostly
inversely differs from the true selected one without being attacked Fang et al. (2020).
•Trimmed-mean attack (A3): Trimmed-mean sorts n updates for each jth parameter
sort(w1j , ..., wnj), eliminates the highest and smallest β amount from the sorted list, and
averages the remaining (n− 2β) parameters as the global model’s jth parameter Yin et al.
(2018). To enervate this aggregation rule, adversaries collude to submit deviating models in

FLVoogd

the opposite direction that the global model would change in the absence of attacks.
•Label flipping (A4): Each adversary converts the label of a sample from l to L − l − 1,
where l is the truth label of the sample, and L is the total number of classes Muñoz-González
et al. (2017). For instance, adversaries label digit “0” as “9” and digit “9” as “0” to label-flip
the MNIST data.
•Backdoor triggering (A5): This kind of attack is also known as trojan attacks Gu et al.
(2017). The adversary inserts a specific pattern into training samples or uses existing ones
to render the corresponding testing samples with that pattern classified as the desired class.
This pattern functions as a trigger. After the global model learns this pattern, it will be
triggered and output the misled prediction. If the adversary uses the existing pattern in the
sample, this backdoor attack is a semantic backdoor attack Rieger et al. (2022).
•Edge-case attack(A6): Under the edge-case attack setting, adversaries aim to attack the
heavy-tail of the prediction Wang et al. (2020). They try to find or manufacture samples
that the model predicts correctly but with a comparably low confidence value; then, they
label those samples with a label they want. The intuition behind it is that the model cannot
assure the correctness of predictions even if the result is correct, as the predicting score is
not such high, so it can be easily misled by the attacker who feeds those edge-case samples
with wrong labels.

2.2. DBSCAN

DBSCAN is initially designed for clustering and distinguishing the noise from the high
dimensional database depending on the variance of density Ester et al. (1996). A non-
negligible quantity of samples should be in the cluster if a cluster is formed, while the cluster
can hardly be formed in areas where samples are located sparsely. These “depopulated
zones” can be used as gaps to separate the different classes and to sift out noisy samples.
We will consistently follow some of the concepts and symbols used in Ester et al. (1996).
NEps(p) represents neighbors of a point p within a range with radius Eps (Eps is a preset
hyper-parameter). A point p is a corepoint, if |NEps| ≥MinPts (MinPts is a preset hyper-
parameter). In addition, a corepoint is the centroid of a cluster, so in other words, a cluster
is only formed when its centroid is a corepoint. A point p is a borderpoint, if its neighbours
contain at least one corepoint. It should be noted that a point can be a borderpoint for
different clusters, but it will be only assigned to a unique cluster eventually, and it depends
on which cluster it assigns the point to first. If a point is neither a corepoint nor borderpoint,
it will be classified as noise.

2.3. SMPC

As mentioned, uploading weights instead of the raw data to the server is not privacy-
preserving. As shown in Zhang and Luo (2020), model parameters can disclose some in-
formation about individual data. For example, adversaries can use Generative Adversary
Networks (GANs) to reconstruct the class representatives from the aggregated parameters.
This powerful reconstruction is more harmful if it happens on the server side because the
server can steal the class representatives from each individual uploading. To avoid revealing
the uploads to the server, SMPC can be used for private aggregation, and the result will
only be revealed eventually. Following the structures in Nguyen et al. (2021b,a); Rieger

Tian Wang Qiao Panaousis Liang

et al. (2022), we will use Secure 2-party Computation (S2PC), a ramification of SMPC, to
guarantee that the individual upload will not be plain-text to the server. Under the S2PC
setting, each client will not directly send the model parameters to the server but separate
the upload into two parts and share one with the server for aggregation and another with
the external server. As both servers hold merely one piece of the secret, the secret cannot be
known if they do not collude. Based on the secret sharing scheme, each server can do arith-
metic operations relying on its own share and through some communication. To achieve
this target, two libraries CrypTen1 Knott et al. (2021) and SyMPC2 OpenMined (2021)
derived from PySyft are used for the experiment. Both of them use secret sharing but with
different protocols to achieve S2PC. CrypTen is currently designed only for semi-honest
parties, while SyMPC can tolerate minor malicious parties.

2.4. Security Assumption

We primarily consider possible server-side and client-side risks. There are two types of
servers in our setting. Firstly, servers can be honest-but-curious who infer the actual data or
relevant information from uploads while heeding the regulation. Secondly, if FLVoodg runs
under SyMPC-Falcon Wagh et al. (2020), servers can be malicious (minority) who betray
the secure aggregation rule and send an incorrect model back to participants. In terms of
participants, in each round, less than half of them can be malicious and perform byzantine
attacks 2.1 to deteriorate the performance of the global model. In addition, any client can
be curious about information from others and performs client-level inference attacks Geyer
et al. (2017), inferring whether a particular client participates in the training, given a specific
dataset of that client.

3. FLVoogd Overview and Design

3.1. FLVoogd Server

Figure 1: FLVoogd server framework.

1. https://github.com/facebookresearch/CrypTen
2. https://github.com/OpenMined/SyMPC

FLVoogd

The overview of our framework, FLVoogd with SMPC, is shown in Fig. 1. Initially,
each client computes the l2-norm of its uploaded parameters wi as the amplitude ||w||i ←√∑

j w
2
ij and unitizes the parameters to wi ← wi

||w||i as the direction. The unitizing can

simplify the later SMPC computations, e.g., cosine distance where division and square root
operations are saved. Besides, the client performs the same for the parameters from the last
layer and obtains the unitized last layer parameters vi. The reason for extracting the last
layer is that parameters in the final layer reveal more explicit information relevant to the
dataset’s distribution Rieger et al. (2022) which can be used for distinguishing backdoor
uploads. Then, the client secretly shares the direction wi, the amplitude ||w||i, and last-layer
direction vi with two parties, the server for aggregation and external server. If the SMPC
protocol uses Falcon, one more server is added and receives the third share from the client.

Once servers receive the uploads from the selected clients, they can perform secure
aggregation. It is supposed that the number of received uploads is n, and the clipping
boundary for the current round is c(t). The server firstly carries out the filtering process,
the block with a light yellow background in Fig. 1, and the procedure can be divided into
six steps. 1○: In the first step, the server uses the directional vector w to compute the
cosine distance matrix Mcos by Eq. (1), where Mcosij = cos− dist(i, j) for i ̸= j, Mcosij = 0
for i = j, i or j denotes the client’s index, and u denotes the parameter’s index. Since the
vectors are unit vectors, the cosine distance between two vectors can be simplified into a dot
production. The computation is collaboratively completed by two/three servers, involving
the addition and multiplication among secret shares. 2○: In the second step, the server feeds
the Total-Sum-of-Square (TSS)-based DBSCAN with the distance matrix from the former
step. DBSCAN calculates the TSS by Eq. (2) for each pair of rows to obtain a new distance
matrix Mtss. Mcos provides the directional similarity, while Mtss enlarges the variance of
counter-directions and narrows the variance of identical directions such that the filter can
capture the difference more easily. There are two hyper-parameters for DBSCAN, Eps and
MinPts. As honest-majority is the basic assumption, MinPts is set to ⌊n/2⌋+ 1 and Eps
is the average of the median (⌊n/2⌋) in each row of the distance matrix Mtss ∈ Rn×n. This
setting for Eps and MinPts guarantees the DBSCAN can automatically adjust its radius
accordingly through the whole process without manual involvement, and the selection makes
full use of the honest-majority assumption. This step includes the addition, multiplication,
and comparison of shares. 3○: In the third step, DBSCAN filters out the noise and minority
group and returns indices of the majority group. The server selects the corresponding clients’
parameters from the last layer according to the indices. 4○: For the next step, similar to
step 1, the server again computes the cosine distance matrix but now uses the last-layer
parameters. Then, the server obtains cosine distance matrix M ′

cos. 5○: The fifth step is
identical to the second step. 6○: In the final steps, DBSCAN outputs the indices that the
server will consider as benign.

cos− dist(i, j) =

∑
uwi,uwj,u√∑

uw
2
i,u

√∑
uw

2
j,u

=
∑
u

wi,uwj,u = wi · wj (1)

tss− dist(i, j) =
∑
u

(Mcosi,u −Mcosj,u)
2 (2)

Tian Wang Qiao Panaousis Liang

After knowing which clients are considered as benign ones, the server clips their am-
plitudes before performs the aggregation by ||w||i = min(||w||i, c(t)). On the one hand, it
restrains the abnormally large amplitude and controls the next descent step size. On the
other hand, it provides the l2-sensitivity for the DP budget tracer. Furthermore, during
the clipping, the clipper records the ratio of clients not being clipped as γ̂. The expected
clipping ratio is set as γ. The next round clipping boundary c(t+1) is updated by Eq. (3)
where ηc is the learning rate of the clipper. If the actual non-clipping number of clients is
larger than expected, the clipping boundary will decrease to cut more clients in the next
round; otherwise, it will increase to be looser. The exponential base guarantees that any
adjustment is a positive number. SMPC’s operation in this step requires comparing a share
with a public number.

c(t+1) = c(t) · exp(−ηc(γ̂ − γ)) (3)

The aggregation rule is simply averaging benign clients’ uploads by Eq. (4). It is supposed
that the number of clients after filtering is m(≤ n). After obtaining the merged model
wglobal, servers collaboratively reveal and announce the plain text of wglobal. The aggregation
contains the addition and multiplication of shares, and the multiplication of shares and
public numbers.

wglobal =
1

m

m∑
i=1

wi ·min(||w||i, c(t)) (4)

The server eventually knows the global parameter till finishing aggregation, and local
parameters are already merged into one; thus, the server has no idea of individual local
updates. Before sending the global update back to clients, the server adds Gaussian noise
to provide a differential privacy guarantee to defend against client-level inference from
the client side. The mean is 0, and the standard deviation is the maximum l2-sensitivity
multiplied by a coefficient σ that represents the strength of DP. Thanks to the clipping,
all uploads are bounded into a sphere whose radius is exactly the clipping boundary c(t).
Therefore, the noise is added following Eq. (5). Notably, the noise is added to the sum
of updates not after averaging. DP-Noise Adder also tracks the DP budget for the server
because it knows the number of clients used in this round and the amplitude of Gaussian
noise. Finally, ||w̃global|| is compared with ||c(t)||. If ||w̃global|| > ||c(t)||, from which the server
deduces that the amount of noise is added too much, the server will scale down ||w̃global|| to
a smaller value by Eq. (6). This operation follows the post-processing property of differential
privacy so that (ϵ, δ) cannot be influenced. This post-processing is equivalent to adjusting
the model learning rate lower after knowing the noise influences too much on the result.
The algorithm of FLVoogd server is manifested in Alg. 1.

w̃global =
1

m
{

m∑
i=1

wi ·min(||w||i, c(t)) +N (0, σ2 · (c(t))2)} (5)

w̃global := w̃global ·min(1,
c(t)

||w̃global||
) (6)

FLVoogd

Algorithm 1 FLVoogd server algorithm

1: Input:
2: C, N ▷ C is the set of clients, N = |C|
3: T , q ▷ T is the number of training iteration, q is the sampling ratio
4: c(0), γ, ηc ▷ c(0) is the initial clipping boundary, γ is the expected clipping ratio, ηc is

Clipper’s learning rate
5: σ, δ ▷ σ is the coefficient to control the noise strength, δ is for DP
6: for round t: 1, 2, ..., T do
7: C(t), n← subsample(C, N , q) ▷ n = |C(t)|
8: for clienti ∈ C(t) do
9: w

(t)
i , ||w||(t)i , v

(t)
i ← clienti(t, send) ▷ w is the unit

vector of weight difference, ||w|| is the norm of weight difference, v is the unit vector of
last layer’s weight difference

10: idx
(t)
f1 , n

(t)′ ← Auto DBSCAN({w(t)
1 , w

(t)
2 , ..., w

(t)
n }) by Alg. 2 ▷ n(t)′ = |idx(t)f1 |

11: idx
(t)
f2 , n

(t)′′ ← Auto DBSCAN({v(t)i : i ∈ idxf1}) by Alg. 2 ▷ n(t)′′ = |idx(t)f2 |
12: w

(t)
global ← 0, γ̂(t) ← 0

13: for index i ∈ idx
(t)
f2 do

14: if ||w||(t)i > c(t) then

15: ||w||(t)i ← c(t)

16: else
17: γ̂(t) ← γ̂(t) + 1

18: w
(t)
global ← w

(t)
global + ||w||

(t)
i · w

(t)
i

19: w
(t)
global ←

w
(t)
global

n(t)′′ , γ̂(t) ← γ̂(t)

n(t)′′

20: c(t+1) ← c(t) · exp(−ηc(γ̂(t) − γ)), ϵ(t) ← DP budget(n
(t)′′

N , σ, δ)

21: w̃
(t)
global ← w

(t)
global +

1
n(t)′′N (0, σ2(c(t))2) ▷ satisfying (ϵ, δ)-differential privacy

22: w̃
(t)
global ← w̃global ·min(1, c(t)

||w̃global||) ▷ satisfying post-processing

23: clienti(t, receive)← w̃
(t)
global

3.2. FLVoogd Client

Referencing the idea from Ditto Li et al. (2021b), each FLVoogd’s client builds two identical
models, namely, the global model and the local model. Varying from Cao et al. (2020);
Nguyen et al. (2021a,b); Rieger et al. (2022) where the server entirely takes the responsibility
of a robust model, clients can share that responsibility locally. This defensive scheme builds
a gap between the self-used local and global models to enhance the robustness and offers
personalization to users. In each round, the client receives the averaged aggregated weight
difference w̃global from the server and updates the weight of the global model accordingly by
Wglobal := Wglobal + w̃global. In contrast, the local model is not updated in this step. After
updating the locally global model, the client tests the model accuracy using evaluation data
and obtains the testing accuracy accref .

Tian Wang Qiao Panaousis Liang

Algorithm 2 Auto DBSCAN

1: Input: W ▷ W ∈ Rn×m represents n×m matrix where each row is a client’s unit
vector from n clients and the dimension of the vector is m

2: Output: idx, |idx| ▷ idx is a list of indices of benign clients
3: Mcos ← CosDist(W) by Eq. (1)
4: Mtss ← TSSDist(Mcos) by Eq. (2)
5: for row i: 1, 2..., n do
6: mediani ← quickMedian(Mtss,i)

7: median← 1
n

∑n
i=1mediani

8: Eps← median, MinPts← n//2 + 1
9: idx← DBSCAN(Mtss, Eps,MinPts, precomputed)

10: return idx, |idx|

The client feeds the partial training data to the global and local models in each mini-
batch iteration. It is supposed that there is a coefficient λditto to control the distance of the
local model from the global model. The objective function of the local model becomes like
Eq. (7), where F (·) is the objective function for the global model and originally for the local
model. The change in the local model’s objective function now is that the client adds an
additional l2-regularization term to force the local model to approximate the global model.
Consequently, the local model can learn from the global model, and the gap between them
is constrained by λditto.

min
Wlocal

F ′(Wlocal;Wglobal) = F (Wlocal) +
λditto

2
||Wlocal −Wglobal||2 (7)

Furthermore, Eq. (7) can be converted into a gradient decent format shown in Eq. (8),
where ηlocal is the client’s local learning rate. The formula shown in Eq. (8) can be easily
implemented by PyTorch where the client extracts the gradient and adds the λditto(Wlocal−
Wglobal)) term to it before running optimizer.step().

g := g − ηlocal(▽F (Wlocal) + λditto(Wlocal −Wglobal)) (8)

Till now, the client has λditto as a controller to adjust the learning distance between
the local and global models, but how to set an appropriate value λditto for the local model?
Intuitively, if the global model is admirable and exemplary, we expect the local model to
learn as much helpful information as possible from the global model; otherwise, we desire
the local model to learn less or even not learn from the global model. Then, the client
can use the testing accuracy accref as a reference to flexibly adjust λditto by Eq. (9). In
the formula, λmax and λmin are the maximum and minimum values for λditto, ηditto is the
learning rate, acclocal is the testing accuracy of the local model, and accthres is the minimum
threshold to increase λditto. λmax and λmin restrain the coefficient of the l2-regularization in
a reasonable interval. ηditto controls each mini-batch iteration’s growing/decaying speed for
λditto. accthres is the threshold to control whether the current global model is worth being
learned. In other words, the local model will absorb from the global model, only if accref is
higher than acclocal + accthres. The client secretly shares his/her update with servers after
completing the training. The algorithm of FLVoogd’s client is manifested in Alg. 3.

FLVoogd

λditto := min(λmax,max(λmin, λditto + ηditto(accref − acclocal − accthres))) (9)

Algorithm 3 FLVoogd client algorithm

1: Input:
2: Dtrain, Deval ▷ Dtrain is the training set, Deval is the testing set
3: Wlocal, Wglobal, F ▷ Wlocal/Wglobal are the local/global parameters, F is the objective

function
4: ηlocal, ηglobal, E ▷ ηlocal/ηglobal is the learning rate for the local/global model, E is the

number of local training epochs

5: λ
(0)
ditto, ηditto, accthres, λmin, λmax ▷ λ

(0)
ditto is the initial value for λditto, ηditto is

the learning rate for λditto, accthres is the threshold to start learning, λmin/λmax is the
minimum/maximum learning rate of λditto

6: w̃global ← client(receive) ▷ receive the update from the server
7: Wglobal ←Wglobal + w̃global

8: Wtemp ←deepCopy(Wglobal)
9: accref ←Eval(Wglobal,Deval)

10: for local epoch e: 1, 2, ..., E do
11: for batch iteration B ∈ Dtrain do
12: Wglobal ←Wglobal − ηglobal▽F (Wglobal,B) ▷ global train
13: Wlocal ←Wlocal − ηlocal(▽F (Wlocal,B) + λditto(Wlocal −Wglobal)) ▷ local train
14: acclocal ←Eval(Wlocal,Deval)
15: λditto ← λditto + ηditto(accref − acclocal − accthres) by Eq. (9)

16: w ←Wglobal −Wtemp

17: ||w|| ←
√∑

j w
2
j , w ←

w
||w|| , v ←

{wj :j=k,...,m}√∑m
j=k w2

j

▷ k is the starting index of the last layer

18: client(send)← w, ||w||, v

4. Experiment

4.1. Experimental Setup

We conducted all the experiments using PyTorch, and the source code was available on
GitHub3.

Datasets and Neural Network. We followed the recent research on Byzantine at-
tacks Fang et al. (2020); Wang et al. (2020) on FL and chose a typical application scenario
- image classification. The datasets in our experiments included MNIST, CIFAR-10, and
EMNIST. The non-IID data splitting for MNIST and CIFAR-10 in our experiment followed
the method carried out in FLTrust Cao et al. (2020), where DegnIID (q in Cao et al. (2020))
controlled the level of non-IID. In terms of EMNIST, we applied the method from He et al.
(2020) where the smaller αsim was, the more tasks were dissimilar. CNNs were used as
our global and local models, where CIFAR-10 was trained by ResNet-20 He et al. (2016)

3. https://github.com/Timo9Madrid7/maliciousfl

Tian Wang Qiao Panaousis Liang

(269,772 parameters in total), and MNIST & EMNIST were trained by a 2×convolutional
layers’ NN. ResNet-20 was a pre-trained version4 to accelerate the training process.

Evaluation Metrics. Main Task Accuracy (MA) represents the accuracy of a model
tested by its benign task. It indicates the fraction of correct predictions. If the model is
under targeted attacks, Backdoor Accuracy (BA) is the metric to reflect how successful the
adversaries are. It denotes the fraction of correct predictions for backdoor samples.

FL Configuration. The total number of clients N was set to 100. Each client received
unique training samples and testing samples from the split. The learning rates of global
model ηglobal and local model ηlocal were 0.01. The local training epoch E was 1 since clients
did not hold an adequate number of samples. The coefficient of l2-regularization λditto was
initialized as 0 and its min-max interval was [0.0, 2.0], where the maximum was suggested
by Li et al. (2021b). The threshold accthres for the local model starting learning from the
global was 0.05. The learning rate ηditto for λditto was 1. The expected clipping ratio γ, the
initial clipping boundary c(0), the clipping learning rate ηc were 0.5, 10, 0.3. Other settings
varied for different experiments.

Malicious Configuration. Both model poisoning attacks and data poisoning attacks
share a parameter Poisoned Model Rate (PMR), indicating the fraction of poisoned models
for each round. If the attacking type is data poisoning, it has one more parameter Poi-
soned Data Rate (PDR), representing the poisoned ratio of the data. Common attacking
settings are shown in table 1, where settings are nearly marginal thresholds, below which
the attacking effect is non-significant even if it escapes from being detected.

Table 1: Attack settings
Attacks (E)MNIST CIFAR-10

A1 mean = 0, std = 1
A2 Krum’s ϵ = 10−3, threshold = 2× 10−2

A5
a 5x5 white square is inserted into

the targeted data and labeling it as “0”
the semantic pattern is a car

with stripes and labeling “car” to “bird”

A6
by adding Ardis IV to

training and labeling “7” as “1”
by adding Southwest Airline images to

training and labeling “airplane” as “truck”

4.2. Fending-off Byzantine Attacks

Fig. 2 shows MNIST under different attacks from A1 to A6. “Baseline” or “without defense”
results from the server ruining naive aggregation. 21 clients are uniformly randomly selected
from 100 participants for the baseline, while 40 clients for other situations. In Fig. 2(a), due
to malicious random uploads, the aggregated updates are meaningless, leading to the blue
curve with extremely low accuracy; however, the filtering process conducts so effectively that
the learning curve - the green one - can behave normally under this attack. In Fig. 2(b),
the Krum attack tries its best to upload counter-directional updates to devalue the global
accuracy. Consequently, the global accuracy is even worse than a random guess (50%).
However, the global accuracy can reach an original level using the defense of FLVoogd. In
Fig. 2(c), the trimmed-mean attack starts to degrade the model accuracy approximately at

4. https://github.com/chenyaofo/pytorch-cifar-models

FLVoogd

0 20 40 60 80 100
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy baseline

MA without defense
MA with defense

(a) A1: PMR=19/40

0 20 40 60 80 100
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy baseline

MA without defense
MA with defense

(b) A2: PMR=19/40

0 20 40 60 80 100
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
MA without defense
MA with defense

(c) A3: PMR=19/40

0 20 40 60 80 100
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(d) A4: PMR=19/40, PDR=1.0

0 20 40 60 80 100
Round

0.2

0.4

0.6

0.8

1.0
Ac

cu
ra

cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(e) A5: PMR=19/40, PDR=0.2

0 20 40 60 80 100
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(f) A6: PMR=19/40, PDR=0.33

Figure 2: Byzantine attacks on MNIST

midterm and reduces accuracy from higher than 80% to less than 60% within 50 rounds.
FLVoogd prevents this malicious reduction of accuracy effectively. In Fig. 2(d), Byzantine
clients flip the labels of all training samples, rendering the final prediction like a random
guess. One notable point is that the filter cannot correctly recognize flipping uploads in
several initial rounds, but it can acknowledge and expel malicious updates once the global
model learns a little from those majorities. In Fig. 2(e), the backdoor triggering attack
shows its supremacy at the initial stage, and BA can easily approximate to 100% in the
first several rounds. After the model learns sufficient benign samples, BA tends to decrease
while MA tends to increase. Without the defense, BA again grows sharply at midterm and
finally attains relatively high accuracy. In contrast, under the protection, BA is restrained
at low accuracy and can impossibly revive after the filter starts to work. The filter does not
work at the initial stage because the model is chaotic, and the updates produced from the
model reveal little information about the data distribution. In Fig. 2(f), under no defense,
BA manifests likewise A5 at the initial stage but does not decline after MA rises. Since the
malicious data is sampled from another dataset without intersection with MNIST, learning
from the benign samples cannot benefit the model, so BA persists at high accuracy. However,
FLVoogd can successfully detect and block these uploads according to the abnormal data
distribution, preventing the intrusion of edge-case.

Fig. 3 shows CIFAR-10 under different attacks from A1 to A6, where all the attacks
have been eliminated or restrained below comparably low accuracy. Fig. 4 shows EMNIST
under various attacks from A1 to A6. Similar to MNIST and CIFAR-10, all the attacks
have been eliminated or restrained below comparably low accuracy. However, we initially
found that FLVoogd could not prevent EMNIST from A6 productively since 1) we did not
use the whole dataset for the training but followed the advice from He et al. (2020), where
20% was suggested for 100 clients; 2) there were 62 classes to be classified. Consequently,
the model initially required several rounds to figure out what correct “7” and “1” roughly

Tian Wang Qiao Panaousis Liang

0 20 40 60 80 100
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy baseline

MA without defense
MA with defense

(a) A1: PMR=19/40

0 20 40 60 80 100
Round

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy baseline

MA without defense
MA with defense

(b) A2: PMR=19/40

0 20 40 60 80 100
Round

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy baseline

MA without defense
MA with defense

(c) A3: PMR=19/40

0 20 40 60 80 100
Round

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(d) A4: PMR=19/40, PDR=1.0

0 20 40 60 80 100
Round

0.0

0.2

0.4

0.6

0.8
Ac

cu
ra

cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(e) A5: PMR=19/40, PDR=0.33

0 20 40 60 80 100
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(f) A6: PMR=19/40, PDR=0.33

Figure 3: Byzantine attacks on CIFAR-10

0 20 40 60 80 100
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy baseline

MA without defense
MA with defense

(a) A1: PMR=19/40

0 20 40 60 80 100
Round

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy baseline

MA without defense
MA with defense

(b) A2: PMR=19/40

0 20 40 60 80 100
Round

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy baseline

MA without defense
MA with defense

(c) A3: PMR=19/40

0 20 40 60 80 100
Round

0.0

0.2

0.4

0.6

0.8

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(d) A4: PMR=19/40, PDR=1.0

0 20 40 60 80 100
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(e) A5: PMR=19/40

0 20 40 60 80 100
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
MA without defense
BA without defense
MA with defense
BA with defense

(f) A6: PMR=19/40, PDR=0.33

Figure 4: Byzantine attacks on EMNIST

looked like. The model would not rebound those edge cases if edge-case clients instructed
the model incorrectly with the mislabelled pictures at the beginning. Therefore, in the first
five rounds, we put the model under training with benign-only samples to compensate for
this unfairness. After that, the model could successfully filter out those malicious uploads.

4.3. Adding and Tracking DP

Experiments that test the DP effect and monitor the ϵ budget will be independently studied
in this subsection. The experiments consist of different combinations of subsampling ratio

FLVoogd

q and noise strength coefficient σ. The DP noise, to some extent, will adversely affect the
convergence and accuracy of the model. In return, this kind of sacrifice gains a differential
privacy guarantee. The growth of ϵ after each iteration is estimated by Moments accountant
or Rėnyi-DP (RDP) Wang et al. (2019), where δ is set as a constant (= 10−3 Geyer et al.
(2017)) considering 100 is the total number of clients.

0 25 50 75 100 125 150 175 200
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
DP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 D
iff

er
en

ce

difference

(a) σ = 1, q = 20/100

0 25 50 75 100 125 150 175 200
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
DP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 D
iff

er
en

ce

difference

(b) σ = 2, q = 40/100

0 25 50 75 100 125 150 175 200
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
DP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

Ac
cu

ra
cy

 D
iff

er
en

ce

difference

(c) σ = 3, q = 60/100

0 25 50 75 100 125 150 175 200
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
DP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

Ac
cu

ra
cy

 D
iff

er
en

ce

difference

(d) σ = 4, q = 80/100

0 25 50 75 100 125 150 175 200
Round

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

baseline
DP

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Ac
cu

ra
cy

 D
iff

er
en

ce

difference

(e) σ = 5, q = 100/100

0 25 50 75 100 125 150 175 200
Round

0.0

2.5

5.0

7.5

10.0

12.5

15.0

17.5

20.0
1:20 rdp
moments
2:40 rdp
moments
3:60 rdp
moments
4:80 rdp
moments
5:100 rdp
moments

(f) ϵ recording

Figure 5: DP’s effect on MNIST

The consequence of DP Gaussian noise is tested by MNIST and shown in Fig. 5. We kept
the ratio of noise strength σ and the chosen number of clients for each round n constant,
σ
n = 1/20. Each experiment used a different subsampling rate q from 0.2 to 1.0. The total
number of training rounds extended to 200, as the noise postponed the convergence. Figures
nearly exhibit a similar trend. In general, the added noise decreased the final accuracy by
7.0%. In return, almost in all the experimental settings, (ϵ, δ) was better than (20, 10−3),
and the best one can achieve (13.29, 10−3) estimated by RDP. Solid lines and dash lines in
Fig. 5(f) are ϵ estimated by Moment’s accountant and RDP, respectively, where RDP always
provides a lower ϵ’s boundary. The FLVoogd framework provides an adaptive supervisor for
ϵ, which the server can customize, so the server can stop the training or adjust the sampling
ratio and the amount of adding noise in time once ϵ is undesirable.

4.4. Non-IID Interference

Experiments will test DegnIID from 0.2 to 0.7. The number of clients per round is reduced
from 40 to 20 since DBSCAN is unstable with noisy points where the non-IID noise may
connect clusters. The defense may collapse if too many clients are selected per round under
the non-IID setting.

The defensive effect under the non-IID setting has been tested on the MNIST dataset,
shown in Fig. 6. In general, FLVoogd cannot ultimately tolerate that clients hold extreme
non-IID samples. In Fig. 6(a), the filter rejects all these uploads until the model converges.
After convergence, the filter hardly distinguishes between the malicious and model uploads

Tian Wang Qiao Panaousis Liang

0.2 0.4 0.6
DegNiid

0.92

0.94

0.96

0.98

Ac
cu

ra
cy

baseline
MA

(a) A1: PMR=9/20

0.2 0.4 0.6
DegNiid

0.970

0.975

0.980

Ac
cu

ra
cy

baseline
MA

(b) A2: PMR=9/20

0.2 0.4 0.6
DegNiid

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

baseline
MA

(c) A3: PMR=9/20

0.2 0.4 0.6
DegNiid

0.0

0.5

1.0

Ac
cu

ra
cy

baseline
MA
BA

(d) A4: PMR=9/20, PDR=1.0

0.2 0.4 0.6
DegNiid

0.25

0.50

0.75

1.00

Ac
cu

ra
cy baseline

MA
BA

(e) A5: PMR=9/20, PDR=0.2

0.2 0.4 0.6
DegNiid

0.25

0.50

0.75

1.00

Ac
cu

ra
cy

baseline
MA
BA

(f) A6: PMR=9/20, PDR=0.33

Figure 6: Non-IID effect on MNIST

because both appear somewhat random behaviors, resulting in fluctuations in the conver-
gence state. However, the accuracy is still above 90% since benign uploads again become
meaningful once below this threshold, and the filter once more rejects malicious random
uploads. Krum attack shows ineffectual regardless of the non-IID degree in Fig. 6(b). The
filter is so sensitive to the direction of uploads that uploads with reverse direction can
scarcely pass the filtering. In Fig. 6(c), the filter relinquishes its duty after the non-IID
degree is more extensive than 0.5. Compared to A1, A3 is a more advanced scheme, which
chooses the randomness adaptively, so the attacking effect is more significant. In Fig. 6(d),
random flipping works after the non-IID ratio is higher than 0.6. After DegnIID > 0.5,
one class completely dominates a dataset, leading that each mini-batch iteration contains
over 50% samples from the same class. Consequently, the learning process is tampered with
by the flipping of one class intermittently once the non-flipped samples of this class miss
the training round. In Fig. 6(e), backdoor accuracy cannot be constrained if increasing the
non-IID degree to more than 0.5, as the filter cannot discriminate whether the non-IID
or the backdoor targets cause the directional difference. This situation similarly happens
in Fig. 6(f) where the result is even worse because the defense collapses when the non-IID
ratio is just higher than 0.2. Contradicting A5, where the backdoor targets are still the sam-
ples in the dataset, A6 introduces the backdoor targets from another dataset and aims to
compromise the weakness of the model prediction. The filter performs ineptly if the model
digest cannot reflect normal/abnormal directions. Since the model can never learn those
edge cases with true labels, the model cannot provide evidence of deviant behaviors. When
the non-IID ratio is lower than 0.3, the filter can detect those edge cases mainly because of
the distribution of uploads. However, after non-IID increases, the upload lacks this kind of
information.

Since the FLVoogd performed worse when it suffered from A6’s attack, we selected this
situation for further study. We wanted to assist FLVoogd somewhat - training the model
ahead or decreasing the PMR. As mentioned, pre-training is doable for some application
scenarios. In addition, according to Shejwalkar et al. (2021), PMR≈ 50% is a very pessimistic

FLVoogd

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MArefer

BArefer

MAlowerPDR

BAlowerPDR

(a) DegnIID=0.3: lowering PDR
to 6/20=30%

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MArefer

BArefer

MApretrain

BApretrain

(b) DegnIID=0.3: pretraining the
model to accuracy around 25%

0 10 20 30 40 50
Round

0.0

0.2

0.4

0.6

0.8

1.0

Ac
cu

ra
cy

MArefer

BArefer

MApretrain

BApretrain

(c) DegnIID=0.5: pretraining the
model to accuracy around 25%

Figure 7: Pretraining and a lower PDR help the defense

assumption, so we tried to lower it a little bit to see how our framework would react. In
Fig. 7(a), PDR is reduced from 45% to 30%, and the BA learning curve declines once the
model has learned the correct direction from the benign uploads. The poisoning effect is
weakened because of the lower PDR. In Fig. 7(b) and Fig. 7(c), the model accuracy is
trained approximately to 25% before the attacks deploy. The updating directions of models
become consistent after the pre-train. Thus, the filter can sift those malicious uploads once it
first time meets the upload in an abnormal direction. The results also verify that defending
against targeted attacks depends on the performance of models on the dataset. If the model
can separately recognize the poisoned and normal samples, it can output distinguishable
model updates. Then, after the filter captures this variance, the defense effectively works.

5. Conclusion

We introduce FLVoogd, a robust and privacy-preserving federated learning framework that
restrains the adverse impact of Byzantine attacks within an acceptable level while maintain-
ing the performance of model predictions on the main task. There are two critical differences
between our design and prior works. Firstly, most procedures are executed under privacy
preservation, where operations are doable for mostly popular SMPC protocols. Secondly,
we provide adaptive adjustments such that the whole process can run automatically. Future
works could include: merging the transfer learning into the current framework to tackle
GAN inference and combine it with other efficiently communicative schemes, e.g., sketch,
to reduce the communication bandwidth and enhance the differential privacy.

References

Yoshinori Aono, Takuya Hayashi, et al. Privacy-preserving deep learning via additively
homomorphic encryption. IEEE TIFS, pages 1333–1345, 2017.

Xiaoyu Cao, Minghong Fang, et al. Fltrust: Byzantine-robust federated learning via trust
bootstrapping. arXiv preprint arXiv:2012.13995, 2020.

Ittai Dayan, Holger R Roth, et al. Federated learning for predicting clinical outcomes in
patients with covid-19. Nature medicine, pages 1735–1743, 2021.

Martin Ester, Hans-Peter Kriegel, et al. A density-based algorithm for discovering clusters
in large spatial databases with noise. In kdd, volume 96, pages 226–231, 1996.

Tian Wang Qiao Panaousis Liang

Minghong Fang, Xiaoyu Cao, et al. Local model poisoning attacks to {Byzantine-Robust}
federated learning. In 29th USENIX Security Symposium (USENIX Security 20), pages
1605–1622, 2020.

Robin C Geyer, Tassilo Klein, et al. Differentially private federated learning: A client level
perspective. arXiv preprint arXiv:1712.07557, 2017.

Tianyu Gu, Brendan Dolan-Gavitt, et al. Badnets: Identifying vulnerabilities in the machine
learning model supply chain. arXiv preprint arXiv:1708.06733, 2017.

Chaoyang He, Songze Li, et al. Fedml: A research library and benchmark for federated
machine learning. Advances in Neural Information Processing Systems, Best Paper Award
at Federate Learning Workshop, 2020.

Kaiming He, Xiangyu Zhang, et al. Deep residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and pattern recognition, pages 770–778,
2016.

Brian Knott, Shobha Venkataraman, et al. Crypten: Secure multi-party computation meets
machine learning. Advances in Neural Information Processing Systems, 34:4961–4973,
2021.

Qinbin Li, Bingsheng He, et al. Model-contrastive federated learning. In CVPR, pages
10713–10722, 2021a.

Tian Li, Shengyuan Hu, et al. Ditto: Fair and robust federated learning through person-
alization. In International Conference on Machine Learning, pages 6357–6368. PMLR,
2021b.

Ming Liu, Stella Ho, Mengqi Wang, et al. Federated learning meets natural language
processing: A survey. arXiv preprint arXiv:2107.12603, 2021.

Guodong Long, Yue Tan, et al. Federated learning for open banking. In Federated learning,
pages 240–254. Springer, 2020.

H Brendan McMahan, Eider Moore, et al. Federated learning of deep networks using model
averaging. arXiv preprint arXiv:1602.05629, 2016.

Luis Muñoz-González, Battista Biggio, et al. Towards poisoning of deep learning algorithms
with back-gradient optimization. In Proceedings of the 10th ACM workshop on artificial
intelligence and security, pages 27–38, 2017.

Thien Duc Nguyen, Phillip Rieger, et al. Flguard: secure and private federated learning.
arXiv preprint arXiv:2101.02281, 2021a.

Thien Duc Nguyen, Phillip Rieger, et al. Flame: Taming backdoors in federated learning.
Cryptology ePrint Archive, 2021b.

OpenMined. Sympc: A smpc companion library for syft. GitHub repository, 2021. URL
https://github.com/OpenMined/SyMPC.

Phillip Rieger, Thien Duc Nguyen, et al. Deepsight: Mitigating backdoor attacks in federated
learning through deep model inspection. arXiv preprint arXiv:2201.00763, 2022.

Virat Shejwalkar, Amir Houmansadr, et al. Back to the drawing board: A critical evaluation
of poisoning attacks on production federated learning. arXiv preprint arXiv:2108.10241,
2021.

Sameer Wagh, Shruti Tople, et al. Falcon: Honest-majority maliciously secure framework
for private deep learning. arXiv preprint arXiv:2004.02229, 2020.

Hongyi Wang, Kartik Sreenivasan, et al. Attack of the tails: Yes, you really can backdoor
federated learning. Advances in Neural Information Processing Systems, 33:16070–16084,

FLVoogd

2020.
Yu-Xiang Wang, Borja Balle, et al. Subsampled rényi differential privacy and analytical
moments accountant. In The 22nd International Conference on Artificial Intelligence and
Statistics, pages 1226–1235. PMLR, 2019.

Dong Yin, Yudong Chen, et al. Byzantine-robust distributed learning: Towards optimal
statistical rates. In International Conference on Machine Learning, pages 5650–5659.
PMLR, 2018.

Xianglong Zhang and Xinjian Luo. Exploiting defenses against gan-based feature inference
attacks in federated learning. arXiv preprint arXiv:2004.12571, 2020.

References
[1] Martin Abadi et al. “Deep learning with differential privacy”. In: (2016), pp. 308–318.
[2] Naman Agarwal et al. “cpSGD: Communication-efficient and differentially-private distributed

SGD”. In: Advances in Neural Information Processing Systems 31 (2018).
[3] Nasser Aldaghri, Hessam Mahdavifar, and Ahmad Beirami. “FeO2: Federated Learning with

Opt-Out Differential Privacy”. In: arXiv preprint arXiv:2110.15252 (2021).
[4] Sebastien Andreina et al. “Baffle: Backdoor detection via feedback-based federated learning”.

In: (2021), pp. 852–863.
[5] Galen Andrew et al. “Differentially private learning with adaptive clipping”. In:Advances in Neural

Information Processing Systems 34 (2021).
[6] Giuseppe Ateniese et al. “Hacking smart machines with smarter ones: How to extract meaningful

data from machine learning classifiers”. In: International Journal of Security and Networks 10.3
(2015), pp. 137–150.

[7] Eugene Bagdasaryan et al. “How to backdoor federated learning”. In: (2020), pp. 2938–2948.
[8] Donald Beaver. “Efficient multiparty protocols using circuit randomization”. In: Annual Interna-

tional Cryptology Conference. Springer. 1991, pp. 420–432.
[9] James Henry Bell et al. “Secure single-server aggregation with (poly) logarithmic overhead”. In:

(2020), pp. 1253–1269.
[10] Mihir Bellare and Silvio Micali. “Non-interactive oblivious transfer and applications”. In: (1989),

pp. 547–557.
[11] JeremyBernstein et al. “signSGD: Compressed optimisation for non-convex problems”. In: (2018),

pp. 560–569.
[12] Stefano A Bini. “Artificial intelligence, machine learning, deep learning, and cognitive computing:

what do these terms mean and how will they impact health care?” In: The Journal of arthroplasty
33.8 (2018), pp. 2358–2361.

[13] Peva Blanchard et al. “Machine learning with adversaries: Byzantine tolerant gradient descent”.
In: Advances in Neural Information Processing Systems 30 (2017).

[14] Elette Boyle. FSS Part 2 - Elette Boyle (The 12th BIU Winter School on Cryptography). 2022.
URL: https://www.youtube.com/watch?v=Zm- MUVve2_w&list=LL&index=2&t=2938s
&ab_channel=TheBIUResearchCenteronAppliedCryptographyandCyberSecurity (visited on
04/20/2022).

[15] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Function secret sharing”. In: (2015), pp. 337–367.
[16] Elette Boyle, Niv Gilboa, and Yuval Ishai. “Function secret sharing: Improvements and exten-

sions”. In: (2016), pp. 1292–1303.
[17] Elette Boyle et al. “Function secret sharing for mixed-mode and fixed-point secure computation”.

In: (2021), pp. 871–900.
[18] Ricardo JGB Campello, Davoud Moulavi, and Jörg Sander. “Density-based clustering based on

hierarchical density estimates”. In: (2013), pp. 160–172.
[19] Xiaoyu Cao et al. “Fltrust: Byzantine-robust federated learning via trust bootstrapping”. In: arXiv

preprint arXiv:2012.13995 (2020).
[20] MingqingChen et al. “Federated learning of out-of-vocabulary words”. In: arXiv preprint arXiv:1903.10635

(2019).
[21] Kai-Min Chung, Yael Kalai, and Salil Vadhan. “Improved delegation of computation using fully

homomorphic encryption”. In: (2010), pp. 483–501.

55

https://www.youtube.com/watch?v=Zm-MUVve2_w&list=LL&index=2&t=2938s&ab_channel=TheBIUResearchCenteronAppliedCryptographyandCyberSecurity
https://www.youtube.com/watch?v=Zm-MUVve2_w&list=LL&index=2&t=2938s&ab_channel=TheBIUResearchCenteronAppliedCryptographyandCyberSecurity

References 56

[22] Gregory Cohen et al. “EMNIST: Extending MNIST to handwritten letters”. In: (2017), pp. 2921–
2926.

[23] Ronald Cramer, Ivan Damgård, and Yuval Ishai. “Share conversion, pseudorandom secret-
sharing and applications to secure computation”. In: (2005), pp. 342–362.

[24] IvanDamgård et al. “Multiparty computation from somewhat homomorphic encryption”. In: (2012),
pp. 643–662.

[25] Ivan Damgård et al. “Practical covertly secure MPC for dishonest majority–or: breaking the
SPDZ limits”. In: (2013), pp. 1–18.

[26] Konstantinos G Derpanis. “Mean shift clustering”. In: Lecture Notes 32 (2005).
[27] Ye Dong et al. “FLOD: Oblivious Defender for Private Byzantine-Robust Federated Learning

with Dishonest-Majority”. In: Cryptology ePrint Archive (2021).
[28] Cynthia Dwork, Nitin Kohli, and Deirdre Mulligan. “Differential privacy in practice: Expose your

epsilons!” In: Journal of Privacy and Confidentiality 9.2 (2019).
[29] Cynthia Dwork, Aaron Roth, et al. “The algorithmic foundations of differential privacy.” In: Found.

Trends Theor. Comput. Sci. 9.3-4 (2014), pp. 211–407.
[30] Cynthia Dwork, GuyNRothblum, and Salil Vadhan. “Boosting and differential privacy”. In: (2010),

pp. 51–60.
[31] Martin Ester et al. “A density-based algorithm for discovering clusters in large spatial databases

with noise.” In: 96.34 (1996), pp. 226–231.
[32] Alireza Fallah, Aryan Mokhtari, and Asuman Ozdaglar. “Personalized federated learning with

theoretical guarantees: A model-agnostic meta-learning approach”. In: Advances in Neural In-
formation Processing Systems 33 (2020), pp. 3557–3568.

[33] Minghong Fang et al. “Local Model Poisoning Attacks to {Byzantine-Robust} Federated Learn-
ing”. In: (2020), pp. 1605–1622.

[34] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. “Model inversion attacks that exploit
confidence information and basic countermeasures”. In: (2015), pp. 1322–1333.

[35] Matt Fredrikson, Somesh Jha, and Thomas Ristenpart. “Model inversion attacks that exploit
confidence information and basic countermeasures”. In: (2015), pp. 1322–1333.

[36] Clement Fung, Chris JM Yoon, and Ivan Beschastnikh. “The limitations of federated learning in
sybil settings”. In: (2020), pp. 301–316.

[37] Jun Furukawa et al. “High-throughput secure three-party computation for malicious adversaries
and an honest majority”. In: (2017), pp. 225–255.

[38] Robin C Geyer, Tassilo Klein, and Moin Nabi. “Differentially private federated learning: A client
level perspective”. In: arXiv preprint arXiv:1712.07557 (2017).

[39] Niv Gilboa and Yuval Ishai. “Distributed point functions and their applications”. In: (2014), pp. 640–
658.

[40] Ian Goodfellow, Yoshua Bengio, and Aaron Courville. Deep learning. MIT press, 2016.
[41] Tianyu Gu, Brendan Dolan-Gavitt, and Siddharth Garg. “Badnets: Identifying vulnerabilities in

the machine learning model supply chain”. In: arXiv preprint arXiv:1708.06733 (2017).
[42] Xu Han, Haoran Yu, and Haisong Gu. “Visual inspection with federated learning”. In: Interna-

tional Conference on Image Analysis and Recognition (2019), pp. 52–64.
[43] Filip Hanzely et al. “Lower bounds and optimal algorithms for personalized federated learning”.

In: Advances in Neural Information Processing Systems 33 (2020), pp. 2304–2315.
[44] Shirin Hasavari and Yeong Tae Song. “2019 IEEE 17th International Conference on Software

Engineering Research, Management and Applications (SERA)”. In: (2019), pp. 71–75.
[45] Chaoyang He et al. “FedML: A Research Library and Benchmark for Federated Machine Learn-

ing”. In: Advances in Neural Information Processing Systems, Best Paper Award at Federate
Learning Workshop (2020).

[46] Kaiming He et al. “Deep residual learning for image recognition”. In: (2016), pp. 770–778.

References 57

[47] Briland Hitaj, Giuseppe Ateniese, and Fernando Perez-Cruz. “Deep models under the GAN:
information leakage from collaborative deep learning”. In: (2017), pp. 603–618.

[48] Hanpeng Hu, DanWang, and ChuanWu. “Distributed machine learning through heterogeneous
edge systems”. In: 34.05 (2020), pp. 7179–7186.

[49] Goodfellow Ian et al. “Generative adversarial nets.” In Advances in neural information process-
ing systems”. In: (2014).

[50] Peter Kairouz et al. “Advances and open problems in federated learning”. In: Foundations and
Trends® in Machine Learning 14.1–2 (2021), pp. 1–210.

[51] Amin Karami and Ronnie Johansson. “Choosing DBSCAN parameters automatically using dif-
ferential evolution”. In: International Journal of Computer Applications 91.7 (2014), pp. 1–11.

[52] Marcel Keller, Emmanuela Orsini, and Peter Scholl. “MASCOT: faster malicious arithmetic se-
cure computation with oblivious transfer”. In: (2016), pp. 830–842.

[53] B. Knott et al. “CrypTen: Secure Multi-Party Computation Meets Machine Learning”. In: (2021).
[54] Jakub Konečnỳ, Brendan McMahan, and Daniel Ramage. “Federated optimization: Distributed

optimization beyond the datacenter”. In: arXiv preprint arXiv:1511.03575 (2015).
[55] Jakub Konečnỳ et al. “Federated optimization: Distributed machine learning for on-device intel-

ligence”. In: arXiv preprint arXiv:1610.02527 (2016).
[56] Alex Krizhevsky, Geoffrey Hinton, et al. “Learning multiple layers of features from tiny images”.

In: (2009).
[57] Huseyin Kusetogullari et al. “ARDIS: a Swedish historical handwritten digit dataset”. In: Neural

Computing and Applications 32.21 (2020), pp. 16505–16518.
[58] Wenhao Lai et al. “A newDBSCAN parameters determinationmethod based on improvedMVO”.

In: IEEE Access 7 (2019), pp. 104085–104095.
[59] Y. Lecun et al. “Gradient-based learning applied to document recognition”. In: Proceedings of

the IEEE 86.11 (1998), pp. 2278–2324. DOI: 10.1109/5.726791.
[60] Li Li et al. “A review of applications in federated learning”. In:Computers & Industrial Engineering

149 (2020), p. 106854.
[61] Tian Li et al. “Ditto: Fair and robust federated learning through personalization”. In: (2021),

pp. 6357–6368.
[62] Tian Li et al. “Fair resource allocation in federated learning”. In: arXiv preprint arXiv:1905.10497

(2019).
[63] Zaoxing Liu et al. “Enhancing the privacy of federated learning with sketching”. In: arXiv preprint

arXiv:1911.01812 (2019).
[64] Lingjuan Lyu, Han Yu, and Qiang Yang. “Threats to federated learning: A survey”. In: arXiv

preprint arXiv:2003.02133 (2020).
[65] Lingjuan Lyu et al. “Privacy and robustness in federated learning: Attacks and defenses”. In:

arXiv preprint arXiv:2012.06337 (2020).
[66] Lingjuan Lyu et al. “Towards fair and privacy-preserving federated deep models”. In: IEEE Trans-

actions on Parallel and Distributed Systems 31.11 (2020), pp. 2524–2541.
[67] Xu Ma et al. “Privacy-preserving Byzantine-robust federated learning”. In: Computer Standards

& Interfaces 80 (2022), p. 103561.
[68] LelandMcInnes, John Healy, and Steve Astels. “hdbscan: Hierarchical density based clustering”.

In: The Journal of Open Source Software 2.11 (2017), p. 205.
[69] Brendan McMahan and Daniel Ramage. “Federated learning: Collaborative machine learning

without centralized training data”. In: Google Research Blog 3 (2017).
[70] H Brendan McMahan et al. “Federated learning of deep networks using model averaging”. In:

arXiv preprint arXiv:1602.05629 (2016).
[71] Frank D McSherry. “Privacy integrated queries: an extensible platform for privacy-preserving

data analysis”. In: (2009), pp. 19–30.

https://doi.org/10.1109/5.726791

References 58

[72] Luca Melis et al. “Exploiting unintended feature leakage in collaborative learning”. In: (2019),
pp. 691–706.

[73] Stanislav Minsker. “Geometric median and robust estimation in Banach spaces”. In: Bernoulli
21.4 (2015), pp. 2308–2335.

[74] Ilya Mironov. “Rényi differential privacy”. In: (2017), pp. 263–275.
[75] Payman Mohassel and Peter Rindal. “ABY3: A mixed protocol framework for machine learning”.

In: (2018), pp. 35–52.
[76] Viraaji Mothukuri et al. “A survey on security and privacy of federated learning”. In: Future Gen-

eration Computer Systems 115 (2021), pp. 619–640.
[77] Luis Muñoz-González, Kenneth T Co, and Emil C Lupu. “Byzantine-robust federated machine

learning through adaptive model averaging”. In: arXiv preprint arXiv:1909.05125 (2019).
[78] Luis Muñoz-González et al. “Towards poisoning of deep learning algorithms with back-gradient

optimization”. In: (2017), pp. 27–38.
[79] Arvind Narayanan and Vitaly Shmatikov. “Robust de-anonymization of large sparse datasets”.

In: 2008 IEEE Symposium on Security and Privacy (2008), pp. 111–125.
[80] Milad Nasr, Reza Shokri, et al. “Improving deep learning with differential privacy using gradient

encoding and denoising”. In: arXiv preprint arXiv:2007.11524 (2020).
[81] Milad Nasr, Reza Shokri, and Amir Houmansadr. “Comprehensive privacy analysis of deep

learning: Passive and active white-box inference attacks against centralized and federated learn-
ing”. In: (2019), pp. 739–753.

[82] T.M. Navamani. Chapter 7 - Efficient Deep Learning Approaches for Health Informatics. Ed. by
Arun Kumar Sangaiah. Academic Press, 2019, pp. 123–137. ISBN: 978-0-12-816718-2.

[83] Joseph P. Near and Chiké Abuah. Programming Differential Privacy. Vol. 1. 2021. URL: https:
//uvm-plaid.github.io/programming-dp/.

[84] Thien Duc Nguyen et al. “FLAME: Taming Backdoors in Federated Learning”. In: (2022).
[85] Thien Duc Nguyen et al. “FLGUARD: secure and private federated learning”. In: arXiv preprint

arXiv:2101.02281 (2021).
[86] Kobbi Nissim, Sofya Raskhodnikova, and Adam Smith. “Smooth sensitivity and sampling in

private data analysis”. In: (2007), pp. 75–84.
[87] OpenMined. “SyMPC: A SMPC companion library for Syft”. In: GitHub repository (2021). URL:

https://github.com/OpenMined/SyMPC.
[88] Pascal Paillier. “Public-key cryptosystems based on composite degree residuosity classes”. In:

(1999), pp. 223–238.
[89] Nicolas Papernot et al. “Towards the science of security and privacy in machine learning”. In:

arXiv preprint arXiv:1611.03814 (2016).
[90] Adam Paszke et al. “PyTorch: An Imperative Style, High-Performance Deep Learning Library”.

In: 32 (2019). Ed. by H. Wallach et al. URL: https://proceedings.neurips.cc/paper/2019/
file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf.

[91] Phillip Rieger et al. “DeepSight: Mitigating Backdoor Attacks in Federated Learning Through
Deep Model Inspection”. In: arXiv preprint arXiv:2201.00763 (2022).

[92] Théo Ryffel et al. “Ariann: Low-interaction privacy-preserving deep learning via function secret
sharing”. In: Proceedings on Privacy Enhancing Technologies 2022.1 (2020), pp. 291–316.

[93] Badrul Sarwar et al. “Item-based collaborative filtering recommendation algorithms”. In: Pro-
ceedings of the 10th international conference on World Wide Web. 2001, pp. 285–295.

[94] Sinem Sav et al. “POSEIDON: privacy-preserving federated neural network learning”. In: arXiv
preprint arXiv:2009.00349 (2020).

[95] Aviv Shamsian et al. “Personalized federated learning using hypernetworks”. In: (2021), pp. 9489–
9502.

https://uvm-plaid.github.io/programming-dp/
https://uvm-plaid.github.io/programming-dp/
https://github.com/OpenMined/SyMPC
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

References 59

[96] Virat Shejwalkar et al. “Back to the Drawing Board: A Critical Evaluation of Poisoning Attacks
on Production Federated Learning”. In: arXiv preprint arXiv:2108.10241 (2021).

[97] Shiqi Shen, Shruti Tople, and Prateek Saxena. “Auror: Defending against poisoning attacks in
collaborative deep learning systems”. In: (2016), pp. 508–519.

[98] Reza Shokri et al. “Membership inference attacks against machine learning models”. In: (2017),
pp. 3–18.

[99] Jinhyun So, Başak Güler, and A Salman Avestimehr. “Byzantine-resilient secure federated
learning”. In: IEEE Journal on Selected Areas in Communications 39.7 (2020), pp. 2168–2181.

[100] Jinhyun So, Başak Güler, and A Salman Avestimehr. “Turbo-aggregate: Breaking the quadratic
aggregation barrier in secure federated learning”. In: IEEE Journal on Selected Areas in Infor-
mation Theory 2.1 (2021), pp. 479–489.

[101] Artur Starczewski, Piotr Goetzen, and Meng Joo Er. “A new method for automatic determining
of the DBSCAN parameters”. In: Journal of Artificial Intelligence and Soft Computing Research
10 (2020).

[102] Nikko Strom. “Scalable distributed DNN training using commodity GPU cloud computing”. In:
(2015).

[103] Canh T Dinh, Nguyen Tran, and Josh Nguyen. “Personalized federated learning with moreau
envelopes”. In: Advances in Neural Information Processing Systems 33 (2020), pp. 21394–
21405.

[104] Aleksei Triastcyn and Boi Faltings. “Federated learning with bayesian differential privacy”. In:
(2019), pp. 2587–2596.

[105] Stacey Truex et al. “Demystifying membership inference attacks in machine learning as a ser-
vice”. In: IEEE Transactions on Services Computing (2019).

[106] Joost Verbraeken,Martijn de Vos, and Johan Pouwelse. “Bristle: Decentralized Federated Learn-
ing in Byzantine, Non-iid Environments”. In: arXiv preprint arXiv:2110.11006 (2021).

[107] Sameer Wagh, Divya Gupta, and Nishanth Chandran. “SecureNN: 3-Party Secure Computation
for Neural Network Training.” In: Proc. Priv. Enhancing Technol. 2019.3 (2019), pp. 26–49.

[108] Sameer Wagh et al. “Falcon: Honest-majority maliciously secure framework for private deep
learning”. In: arXiv preprint arXiv:2004.02229 (2020).

[109] Hongyi Wang et al. “Attack of the tails: Yes, you really can backdoor federated learning”. In:
Advances in Neural Information Processing Systems 33 (2020), pp. 16070–16084.

[110] HongyiWang et al. “Federated learning withmatched averaging”. In: arXiv preprint arXiv:2002.06440
(2020).

[111] Yu-XiangWang, Borja Balle, and Shiva Prasad Kasiviswanathan. “Subsampled rényi differential
privacy and analytical moments accountant”. In: (2019), pp. 1226–1235.

[112] Wikipedia. Facebook–Cambridge Analytica data scandal. 2018. URL: https://en.wikipedia.
org/wiki/Facebook-Cambridge_Analytica_data_scandal (visited on 03/29/2022).

[113] Louis FWilliams Jr. “Amodification to the half-interval search (binary search)method”. In: (1976),
pp. 95–101.

[114] Xindong Wu et al. “Data mining with big data”. In: IEEE Transactions on Knowledge and Data
Engineering 26.1 (2014), pp. 97–107.

[115] Jian Xu et al. “SignGuard: Byzantine-robust Federated Learning throughCollaborativeMalicious
Gradient Filtering”. In: arXiv preprint arXiv:2109.05872 (2021).

[116] Xinyi Xu and Lingjuan Lyu. “Towards building a robust and fair federated learning system”. In:
arXiv e-prints (2020), arXiv–2011.

[117] Jyoti Yadav andMonika Sharma. “AReview of K-mean Algorithm”. In: Int. J. Eng. Trends Technol
4.7 (2013), pp. 2972–2976.

[118] Qiang Yang et al. “Federated machine learning: Concept and applications”. In: ACM Transac-
tions on Intelligent Systems and Technology (TIST) 10.2 (2019), pp. 1–19.

https://en.wikipedia.org/wiki/Facebook-Cambridge_Analytica_data_scandal
https://en.wikipedia.org/wiki/Facebook-Cambridge_Analytica_data_scandal

References 60

[119] Wensi Yang et al. “Ffd: A federated learning based method for credit card fraud detection”. In:
International conference on big data (2019), pp. 18–32.

[120] Abbas Yazdinejad et al. “Block hunter: Federated learning for cyber threat hunting in blockchain-
based iiot networks”. In: arXiv preprint arXiv:2204.09829 (2022).

[121] Dong Yin et al. “Byzantine-robust distributed learning: Towards optimal statistical rates”. In:
(2018), pp. 5650–5659.

[122] Han Yu et al. “A fairness-aware incentive scheme for federated learning”. In: (2020), pp. 393–
399.

[123] Jingfeng Zhang et al. “Hierarchically fair federated learning”. In: arXiv preprint arXiv:2004.10386
(2020).

[124] Xianglong Zhang and Xinjian Luo. “Exploiting defenses against GAN-based feature inference
attacks in federated learning”. In: arXiv preprint arXiv:2004.12571 (2020).

[125] Hangyu Zhu et al. “Federated learning on non-IID data: A survey”. In: Neurocomputing 465
(2021), pp. 371–390.

[126] Ligeng Zhu, Zhijian Liu, and Song Han. “Deep leakage from gradients”. In: Advances in Neural
Information Processing Systems 32 (2019).

[127] Alexander Ziller et al. “Pysyft: A library for easy federated learning”. In: (2021), pp. 111–139.

	Preface
	List of Figures
	List of Tables
	Nomenclature
	Introduction
	Problem Statement
	Thesis Object
	Thesis Outline

	Background Knowledge
	Federated Learning
	Differential Privacy
	Density-based Clustering
	DBSCAN
	HDBSCAN

	Secure-two-party Computation
	CrypTen
	SyMPC

	Problem Setup
	Inference Attack
	Leaking surface
	Inference strategy

	Poisoning Attack
	Classification of attacks
	Attacking schemes

	FLVoogd
	Encrypted FLVoogd Server
	Assumption
	Pipeline and algorithm
	Evaluation

	Unencrypted FLVoogd Server
	Assumption
	Pipeline and algorithm
	Evaluation

	FLVoogd Client
	Assumption
	Pipeline and algorithm
	Evaluation

	Experiment
	Experimental Setup
	Experimental Results
	Fending off byzantine attacks
	Adding and tracking DP noise
	Non-IID interference

	Related Work
	Poisoning Defense
	Privacy Preserving
	Other

	Conclusion
	Conference Version
	References

