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1. Introduction
The effect of electric (telluric) currents induced in subsurface was observed in time series of geomagnetic 
field variations as early as in Schuster (1889), where it was also proposed that this effect depends on the 
electrical conductivity at depth. Subsequent studies have led to the establishment of an entirely new re-
search field that exploits the electromagnetic (EM) induction phenomenon to sound planetary interiors 
(Price, 1967). Nevertheless, present studies focusing on natural current systems, such as in magnetosphere 
or ionosphere, often neglect the effect of currents induced in the subsurface or treat it by using a variety of 
simplistic assumptions. However, as model parameterizations have become more realistic and accuracy of 
the geomagnetic measurements has improved, the effect of induction may no longer be neglected or sub-
stantially simplified, creating a need for efficient methods which can accurately account for it.

There exist two principal approaches to account for the induction effects in geomagnetic data. First, one 
can separate an observed vector magnetic field into inducing (external) and induced (internal) parts by 
using the classic Gauss method (Gauss, 1877). However, limitations imposed by this method, namely that 
the magnetic field must be potential and measured in a region between the inducing and induced cur-
rents, either restrict or invalidate its applicability. Besides, including more unknowns in statistical models 
to constrain the induced part may quickly degrade the quality of the models given noisy data with limited 
coverage. An alternative to that is to model the EM induction effect due to extraneous currents by invoking 
the governing Maxwell equations.

The latter approach has several advantages. Unlike the Gauss method, the modeling approach is applica-
ble regardless of the position of measurements relative to the inducing and induced current regions, and 
remains valid in regions where the field is not potential. Additionally, this has a positive effect for the con-
ditioning of statistical models since extra unknowns used to describe the induced part can be eliminated.

In practice, the complication behind modeling EM induction in geomagnetic observations is twofold. First, 
one needs to assume a subsurface conductivity model. A number of regional and global conductivity mod-
els exist. This study will not focus on how these models are constructed and whether they represent the 
subsurface accurately, even though inaccurate conductivity models may bias results. It is expected that 
our knowledge about the electrical structure of the subsurface will continuously improve, allowing for the 
construction of more accurate models at different scales (Kelbert, 2020). Second, even if a distribution of 
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the subsurface conductivity was known, modeling induced response of a three-dimensional heterogeneous 
planet remains a computationally demanding problem.

Our goal is to develop an efficient time-domain method for calculating the EM induction effect of a planet 
with an arbitrary three-dimensional conductivity distribution that is suitable for both ground and satellite 
observations.

One way to calculate a planet's EM induction effect is through frequency domain (FD) transfer functions, 
which describe a planet's response due to “elementary” extraneous currents. Modeling three-dimensional 
EM induction effects with transfer functions was previously applied to analyze daily magnetic field vari-
ations (Yamazaki & Maute, 2017) in ground (Guzavina et al., 2019; Koch & Kuvshinov, 2013; Kuvshinov 
et al., 1999) and satellite measurements (Chulliat et al., 2016; Sabaka et al., 2004, 2015, 2018). Additional-
ly, it was applied in the analysis of aperiodic geomagnetic variations in ground observations (Honkonen 
et al., 2018; Munch et al., 2020; Olsen & Kuvshinov, 2004; Püthe et al., 2014; Sun et al., 2015). These stud-
ies focused on Fourier transformed data and applied transfer functions in FD, followed by inverse Fouri-
er transform in order to obtain results in time domain. Therefore, all aforementioned studies effectively 
worked in FD.

However, the FD approach based on transfer functions has limitations in many practical scenarios. Among 
them are applications demanding near real-time predictions of induction effects with constantly augment-
ed time series, such as space weather hazard assessment, or estimation of steering errors in geomagnetic 
navigation while drilling. The limitations of the FD approach are also apparent when working with data 
from constantly moving satellites due to spatiotemporal aliasing. To overcome these restrictions, transfer 
functions can be converted into impulse responses and applied to the data directly in time domain. This 
approach was adopted by Maus and Weidelt (2004); Olsen et al. (2005); and Thomson and Lesur (2007) for 
modeling EM induction effects in satellite data. However, these works only considered the induction effect 
due to an external source described by a single (first zonal) spherical harmonic (SH) function and, moreo-
ver, assumed a one-dimensional subsurface conductivity distribution. The extension of this concept to gen-
eral settings and presentation of all methodological details constitute the main contribution of this study.

Here, we calculate time-domain impulse responses of a medium by converting transfer functions precal-
culated in FD. We achieve high computational efficiency by applying optimal digital linear filters (DLFs; 
Ghosh, 1970, 1971a) with the lagged convolution method (Anderson, 1975), which require only a small set 
of (computationally expensive) FD solutions. For this purpose, we design new DLFs using the methodology 
presented in Werthmüller et al.  (2019). Alternatively, evaluation of impulse responses of a three-dimen-
sional medium can be done by means of dedicated time-domain induction solvers (Velímský et al., 2003; 
Velímský & Martinec, 2005).

The methods developed here are applied to describe induction effect due to ionospheric and magneto-
spheric currents in ground and satellite geomagnetic observations. However, the formalism is amenable to 
observations made around other planets, where conventional methods may be too restrictive (e.g., Olsen 
et al., 2010).

2. Methods
2.1. Governing Equations

EM field variations are governed by Maxwell's equations. In FD, these equations read




   
  ext

0

1 ,B E j (1)

   
 

i ,E B (2)

where μ0 is the magnetic permeability of free space; ω angular frequency; 
 ext ( , )j r  the extraneous (im-

pressed) electric current density;    
  ( , ; ), ( , ; )B r E r  are magnetic and electric fields, respectively;  ( )r  spa-

tial distribution of electrical conductivity; vector  
 ( , , )r r  describes a position in the spherical coordinate 
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system with r, ϑ and φ being distance from the planet's center, colatitude, and longitude, respectively. Note 
that we neglected displacement currents and adopted the following Fourier convention

f t f e
t

( ) ( ) .





1

2
  i

d (3)

We assume that the current density, 
 ext ( , )j r , can be represented as a linear combination of spatial modes  ( )ij r ,

  
  ext ( , ) ( ) ( ),i i

i
j r j r c (4)

where 
 ( )ij r  can, in practice, include electric dipoles, current loops (Sun & Egbert, 2012), or be a continuous 

function.

By virtue of the linearity of Maxwell's equations with respect to the 
 ext ( , )j r  term, we can expand total (i.e., 

inducing plus induced) EM field as a linear combination of individual fields 
 

,i iB E ,

     
  ( , ; ) ( , ; ) ( ),i i

i
B r B r c (5)

     
  ( , ; ) ( , ; ) ( ).i i

i
E r E r c (6)

The  
 ( , ; )iB r  and  

 ( , ; )iE r  fields are solutions of the equations




   
  

0

1 ,i i iB E j (7)

   
 

i ,i iE B (8)

and, following definitions in Appendix A, represent EM transfer functions of a medium.

Therefore, a transfer function of a planet at a position 
r  depends on the subsurface conductivity distribution 

and frequency of excitation as well as on the spatial geometry of the current density expressed through the 
ij  term.

2.2. Current Density Representation

We now elaborate on the form of the current density term 
extj . In this study, we assume that electric cur-

rents flow within an insulated spherical shell above the ground. This allows us to collapse any current den-
sity distribution within the shell into a current sheet characterized by a stream function

        
 ext ( , ) ( ) Ψ( , , ),ˆr Hj r r b e (9)

where a is planet's radius, b = a + h, with h being the altitude of the current sheet,

   
 

  
 

1 1 ˆ ,
sin

ˆH
f ff e e

r r (10)

and ˆre , ̂e  and ̂e  are the unit vectors of the spherical coordinate system. Consequently, we can expand the 
stream function as a linear combination of spatial modes and scalar coefficients, that is

      Ψ( , , ) Ψ ( , ) ( ).i i
i

c (11)

Using Equations 4 and 11, we can rewrite Equation 9 as
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           
 ext ( , ) ( ) Ψ ( , ) ( ).ˆr H i i

i
j r r b e c (12)

2.3. Spherical Harmonic Representation

The choice of spatial functions Ψi is generally problem dependent. In this study, we will adopt SH rep-
resentation. Then, for an external source, a stream function can be written as (Schmucker, 1985)

¤
e

n m

n

n
m

n
m

r
a n

n

b

a
S( , ) ( ) ( , ),

( , )

 


     













0

2 1

1
 (13)

where

    | |( , ) (cos )exp(i )m m
n nS P m (14)

is an SH function of degree n and order m with | |m
nP  being Schmidt semi-normalized associated Legendre 

polynomials, and  is a set of SH functions with corresponding complex-valued SH coefficients   ( )m
n .

This allows us to rewrite Equation 12 as

  


 
   ext

( , )
( , ) ( ) ( ),m m

n n
n m

j r j r


 (15)

with

  





  

     

  1

0

( ) 2 1( ) ( , ),
1

ˆ
n

m m
n r n

r b n bj r e S
n a

 (16)

where ∇⊥ = r∇H. Accordingly, following Equations 5 and 6, total electric and magnetic fields at a position r  can be expressed as

     


 
   

( , )
( , ; ) ( , ; ) ( ),m m

n n
n m

B r B r


 (17)

     


 
   

( , )
( , ; ) ( , ; ) ( ),m m

n n
n m

E r E r


 (18)

where 
 

,m m
n nB E  are magnetic and electric field transfer functions due to the current density distribution as 

given by Equation 16. In what follows, we will work with the magnetic field only, although some applica-
tions in the field of space weather modeling may take advantage of Equation 18 to work with electric fields.

Note that Equations 13–18 are only valid for a source that is external relative to the observer. The equivalent 
derivations for internal sources (such as, for example, ionosphere in satellite data) can be carried out by 
taking (Schmucker, 1985)

    






 
   

 

 
1

( , )0

2 1Ψ ( , ) ( ) ( , )
n

i m m
n n

n m

a n ar S
n b

 (19)

instead of Equation 13.

2.4. Impulse Responses and Transfer Functions

In this section, we present methods to calculate EM signals induced by an electric current of the form 16 
and measured on the ground or in space.
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2.4.1. Local Impulse Responses

For reasons that we discussed in the introduction, it is often more convenient to work with data in time 
domain. Therefore, total magnetic field at a location 

r  and time t can be best described by Equation 17 after 
its transformation to time domain. Equation 17 can be written in time domain as a convolution integral (see 
Appendix A for more details)

     
B r t B r t q t B r t

n m

n
m c

n
m

n
m s

( , ; ) ( , ; ) ( ) ( ,
( , )

( ) ( )       
 

;; ) ( ) , s tn
m

t








 d (20)

where   is a set of SH functions with nonnegative orders (m ≥ 0); q, s inducing SH coefficients; 
 ( )m c

nB  

and 
 ( )m s

nB  are impulse responses of a medium for the m
nq  and m

ns  coefficients, respectively. They can be 

defined as

 
   

B r t
B r B r

n
m c n

m
n

m
( )

( , ; )
( , ; ) ( , ; )

si


   
 














2

2
Im nn( ) t d

0



 (21)

and

 
   

B r t
B r B r

n
m s n

m
n

m
( )

( , ; )
( , ; ) ( , ; )

si


   















2

2
Im

i
nn( ) . t d

0



 (22)

The integrals in Equations 21 and 22 are evaluated by using the DLF method as explained in Appendix B.

2.4.2. Global Impulse Responses

For satellite measurements, using local impulse responses becomes impractical since they require cal-
culating Equations 21 and 22 for every satellite location. Therefore, to describe EM induction effects in 
satellite data, we resort to different transfer functions, namely, Q-responses and Q-matrices, which enable 
factorization of spatial and temporal effects. We note, however, that while transfer functions in Equa-
tion 17 are valid everywhere, Q-responses and Q-matrices are valid only in regions where the magnetic 
field is potential.

Recall that if a magnetic field at a position 
r  and time t is potential, we have

     
   ( , ; ) ( , ) ( , ; ) ,e iB r t V r t V r t (23)

where inducing and induced parts of the potential are given by

V r t a q t m s t m
r

a

e

n

N

m

n

n
m

n
m

( , ) ( )cos( ) ( )sin( )


   











 1 0

  

  




















 

n

n
m

n

N

m n

m

n
m

n

n
m

P

a t
r

a
S

(cos )

( ) ( , )



  Re
1



 (24)

and

V r t a g t l h t l
ai

k

K

l

k

k
l

k
l

( , ; ) ( ; )cos( ) ( ; )sin( )


       



 1 0 rr

P

a t
a

r
S

k

k
l

k

K

l k

k

k
l

k

k
l











  












 



1

1

1

(cos )

( ; ) (



 Re  , ) ,












 (25)

where N, K are some constants that truncate series. Note that we stated the magnetic field potential using 
both real-valued and complex-valued notations with the following relation between the coefficients,
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n
m

n
m

n
m

n
m

n
m

n
m

q s
m

q s
m

q m

























i

i

2
0

2
0

0

,

,

,

.

| | | |

 (26)

The relation between induced (internal in our case) coefficients ,l l
k kg h  and  l

k is derived in an identical way.

We can now rewrite the induced magnetic field 25 using transfer functions instead of induced SH coeffi-
cients. Before presenting the general case, we first consider a case when a planet's conductivity distribution 
is assumed to be one-dimensional, that is,  

( ) ( )r r . In this case, each coefficient  m
n  induces one internal 

coefficient of the same degree and order (e.g., Price, 1967). Inducing and induced coefficients can be related 
via a scalar transfer function called Qn-response. In FD, this relation reads

      n
m

n n
m

Q( ; ) ( ; ) ( ). (27)

Note that Qn is independent of order m (Schmucker, 1985).

Following derivations in Appendix A, transforming Equation 27 to time domain and separating spatial sine 
and cosine terms leads to a pair of convolution integrals

g t Q q Q t qn
m

n n
m

n n
m

t

( ; ) * ( ; ) ( ) ,      

 d (28)

h t Q s Q t sn
m

n n
m

n n
m

t

( ; ) * ( ; ) ( ) .      

 d (29)

Subsequently, substituting Equations 28 and 29 in Equation 25 yields internal magnetic potential

   
  ( ) ( )( , ; ) ( , ; ) ( , ; )i i c i sV r t V r t V r t (30)

with

  




        

 1
( )

( , )
( , ; ) * cos( ) (cos ),

n
i c m m

n n n
n m

aV r t a Q q m P
r

 (31)

  




        

 1
( )

( , )
( , ; ) * sin( ) (cos ).

n
i s m m

n n n
n m

aV r t a Q s m P
r

 (32)

Note that in a one-dimensional case, inducing and induced expansions are identical, hence we used n, m in 
Equations 27–32 for all SH coefficients.

For a general three-dimensional conductivity distribution,  ( )r , in a planet, each coefficient  m
n  induces 

infinitely many internal coefficients (Olsen, 1999). The relation between inducing and induced coefficients 
is then described by a set of transfer functions called Q-matrix

         
,

( ; ) ( ; ) ( ).l lm m
k kn n

n m
Q (33)

An element of the Q-matrix is given by (Püthe & Kuvshinov, 2014)


 

 
Q

k S
B r B r Skn

lm

k
l n r

m
a n r

m
a( ; )

( )
( , ; ) ( ), ,

,   








1

1
2

ext
kk
l*

( )
( , )sin ,    d d 1 (34)

GRAYVER ET AL.

10.1029/2020JA028672

6 of 26



Journal of Geophysical Research: Space Physics

where * denotes complex conjugation,  
 ( , , )ar a  is the position vector at the surface of a planet, and (1)  

the surface of a ball with unit radius. The radial magnetic field ,
m
n rB  is (numerically) computed for a given 

three-dimensional Earth's model induced by a unit amplitude (m
n  = 1) SH current source described by 

Equation 16, and

  
,ext

, ( ) ( , )m m
n r a nB r nS (35)

is the inducing (external) part of the radial magnetic field.

In this case, the internal magnetic potential becomes

  




          

 1
( ) , ,

,( , )
( , ; ) * * cos( ) (cos ),

k
i c lm qg m lm sg m l

kn n kn n k
k ln m

aV r t a Q q Q s k P
r

 (36)

  




          

 1
( ) , ,

,( , )
( , ; ) * * sin( ) (cos ),

k
i s lm qh m lm sh m l

kn n kn n k
k ln m

aV r t a Q q Q s k P
r

 (37)

where

 
   
, 1 0

.
K k

k l k l
 (38)

After some algebra, impulse responses in Equations 36 and 37 can be calculated via sine transform (see 
Equation A9) of the spectra, which are related to the FD Q-matrix (Equation 33) via equations below (the 
dependence on ω and σ is omitted).

For l > 0, m > 0:

     


    , ,
2

lm l m lm l m
lm qg kn kn kn kn
kn

Q Q Q QQ (39)

     


    , i ,
2

lm l m lm l m
lm qh kn kn kn kn
kn

Q Q Q QQ (40)

      


    , i ,
2

lm l m lm l m
lm sg kn kn kn kn
kn

Q Q Q QQ (41)

     


    , ,
2

lm l m lm l m
lm sh kn kn kn kn
kn

Q Q Q QQ (42)

for l = 0, m > 0:




 
0 0

0 , ,
2

m m
m qg kn kn

kn
Q QQ (43)

 


 
0 0

0 , i ,
2

m m
m sg kn kn

kn
Q QQ (44)

for l > 0, m = 0:

   0, 0 0,l qg l l
kn kn knQ Q Q (45)

   0, 0 0i( ),l qh l l
kn kn knQ Q Q (46)

and for l = 0, m = 0:
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 00, 00.qg
kn knQ Q (47)

Note that both internal potentials, Equations 31 and 32 and Equations 36 and 37, depend only on the pre-
calculated Q and inducing coefficients. Additionally, Q does not depend on location, making it particularly 
well suited for satellite data.

2.5. Determination of Inducing Coefficients

The methods presented in the previous sections enable estimation of timeseries of inducing coefficients 
in discrete non-overlapping time intervals (time windows). Let us define time intervals of length Δt. We 
assume that inducing coefficients are piece-wise constant within these time intervals. Then, convolution 
integrals such as Equation 20 or Equations 28 and 29 can be approximated by discrete sums. For instance, 
for a time window centered at t we can rewrite Equation 28 as

 


  
0

( ; ) ( ; ) ( Δ ),
Nt

m m
n Q nnj

g t I j q t j t (48)

where

I j Q t tQn n

j t t

j t t

( ; ) ( ; ) .
/

/

 




 d
 

 

2

2

 (49)

Similar expressions are obtained for other convolution integrals.

With this, coefficients for a time window centered at t can be estimated by solving a minimization problem,

 
  


  

 
     

  


2

* *
, ,

{ , }, ( , )
, arg min ( , ; ) ,o m

i n i
i t n m

B B r t
q s

q s
 

 (50)

where t  is a set of magnetic field observations in the current time window with  ,
o

iB  being the measured 
horizontal magnetic field component at location 


ir  and time ti; 

,q s   are vectors of inducing SH coeffi-
cients for the given time window; and the modeled fields are given by

    

      

  ( ) ( )
, , ,

0
( , ; ) ( , ; ) ( Δ ) ( , ; ) ( Δ ) .

Nt
m m c m m s m
n i n i n n i n

j
B r t I r j q t j t I r j s t j t (51)

For ground observations (see Section 2.4.1), we used

I r j B rn
m c

i n
m c

i

t j t

t j t

,
( )

,
( )

/

/

( , ; ) ( , ; ) ,    
 






 d




2

2

 (52)

I r j B rn
m s

i n
m s

i

t j t

t j t

,
( )

,
( )

/

/

( , ; ) ( , ; ) .    
 






 d




2

2

 (53)

Note that the two equations above are valid for magnetic fields computed both for one-dimensional and 
three-dimensional conductivity models.

For satellite measurements (see Section 2.4.2) and a one-dimensional subsurface conductivity distribution, 
we take

I r j I j
a

r

P
n
m c

i Qn
i

n

n
m

i

,
( )

( , ; ) ( ; )
(cos )

cos
 

 





 














2

d

d
(( ),m i (54)
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    



 

   
 


2

( )
, ( , ; ) ( ; ) (cos )sin( ),

sin

n
m c m
n i Q n i in

i i

a mI r j I j P m
r

 (55)

I r j I j
a

r

P
n
m s

i Qn
i

n

n
m

i

,
( )

( , ; ) ( ; )
(cos )

sin
 

 





 














2

d

d
(( ),m i (56)

    



 

    
 


2

( )
, ( , ; ) ( ; ) (cos )cos( ).

sin

n
m s m
n i Q n i in

i i

a mI r j I j P m
r

 (57)

Similar, although more lengthy, expressions can be derived using Equations 36 and 37 for a three-dimen-
sional subsurface conductivity distribution.

Note that since we have eliminated internal coefficients, it suffices to use only horizontal magnetic field 
components in Equation 50 to determine inducing coefficients. This allows for more accurate description of 
the inducing source since horizontal components are less sensitive to the currents induced in the subsurface 
compared to the vertical component (Kuvshinov, 2008). Since the problem is linear with respect to inducing 
coefficients, we used a Huber-weighted robust regression method to find the minimizer of 50.

For every time window, the performance of the model can be evaluated by means of a R2 statistics, called 
coefficient of determination. To define it, let us assume that for a given field component all observations and 

modeled fields in a time window j are collected into vectors obs
jb  and mod

jb  such that

 obs mod
j j jr b b (58)

is the vector of residuals. Then

 
 

   
2

obs obs obs obs

,
1

,
j j

j
j j j j

R
b b

r r
b b (59)

is the coefficient of determination for time window j. Here obs
jb  denotes the mean value of obs

jb  and 〈⋅, ⋅〉 is an 
inner product. Note that we assumed a uniform measurement error of 1 nT when calculating R2.

2.6. Determination of Induced Coefficients

Previous sections concentrated on evaluation of inducing coefficients. Once they are estimated, we can 
evaluate induced coefficients that describe EM fields induced in the planetary interior. This is useful in 
induction studies, where pairs of inducing and induced coefficients are used to estimate subsurface transfer 
functions, which can be ultimately inverted for the electrical conductivity distribution in the subsurface 
(Püthe & Kuvshinov, 2014).

By adopting our approach, induced coefficients can be estimated from the radial component alone. This is 
advantageous since the radial field exhibits higher sensitivity to the subsurface induction effects and was 
excluded from the estimation of the inducing coefficients (see Equation 50).

Provided that the inducing coefficients ,m m
n nq s  were estimated following the approach presented in the pre-

vious section, the induced part of the total magnetic field can be isolated. In particular, for the observed 
radial magnetic field,

 
  int, o ext, oo( , ) ( , ) ( , ),r r rB r t B r t B r t (60)

where

  




          

 1
ext, o

( , )
( , ) ( )cos( ) ( )sin( ) (cos ),

n
m m m

r n n n
n m

rB r t q t m s t m n P
a

 (61)
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is the inducing part of the radial field (see Equation 23).

Following Equation 25, the remaining induced part of the radial field above the ground can be expanded as

  


          

 2
int

,
( , ) ( )cos( ) ( )sin( ) ( 1) (cos ),

k
l l l

r k k k
k l

aB r t g t k h t k k P
r

 (62)

which is suitable for the estimation of the induced coefficients in a statistical manner. Specifically, we can 
estimate coefficients for a time bin centered at t = jΔt by solving a minimization problem

  




                

22
int, o* *
, , ,

,,
, arg min cos( ) sin( ) ( 1) (cos ) .

k
l l l

r i k j i k j i k i
i k lt i

aB g k h k k P
rg h

g h


 (63)

Therefore, by virtue of Equations 50 and 63 pairs of inducing q*, s* and induced g*, h* coefficients can be 
estimated in time bins of constant length Δt, providing input data for mantle conductivity studies. Note 
that estimation of inducing and induced coefficients can be performed repeatedly with updated mantle 
conductivity models.

3. Data
3.1. Geomagnetic Observatories

We applied the developed methods to ground geomagnetic observatory data. Specifically, we took a set 
of quality-controlled measurements of the hourly mean vector magnetic field compiled by the British 
Geological Survey (Macmillan & Olsen,  2013). We concentrate here on the Swarm era measurements 
by using data collected between December 01, 2013 and November 01, 2019. The model of the core and 
crustal fields as given by the Comprehensive Inversion (CI) model (Sabaka et al., 2018) was subtracted. 
The distribution of the observatories over the time range used in this study is shown in Figure 1. We fur-
ther excluded observatories poleward of the 56° and equatorward of 5° geomagnetic latitudes. Thus, the 
variations in the remaining data set are predominantly driven by the midlatitude ionospheric and mag-
netospheric currents. The polar and equatorial latitudes are excluded because the present distribution of 
geomagnetic observatories cannot adequately resolve spatiotemporal structures of the dominant current 
systems at these latitudes.

3.2. Geomagnetic Satellites

We used nearly 6 years (December 01, 2013 to November 01, 2019) of the geomagnetic field measurements 
taken by the Swarm Alpha and Bravo satellites. Similar to the observatory data, core and crustal fields as 
given by the CI model were subtracted. The time windows of 3 hours were used, which corresponds to two 
full orbits and aims to improve the data coverage within a window. Here, we concentrate on studying the 
EM induction effects of the large-scale magnetosphere currents of external origin and thus the dayside data, 
namely, between 5 a.m. and 7 p.m. local time, were excluded.

4. Results
4.1. Transfer Functions and Impulse Responses

All transfer functions and corresponding impulse responses referred to as “one-dimensional” were 
calculated by taking a conductivity model that consists of the one-dimensional conductivity profile 
from Grayver et al.  (2017) with a 7,000 S conductance layer that represents average conductance of 
the oceans and sediments. For the results referred to as “three-dimensional”, a laterally heterogeneous 
conductivity shell of 1/4° resolution was used to account for the variations in the ocean bathymetry and 
thickness of sediments. For the one-dimensional case, transfer function were calculated analytically, 
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Figure 1. Top: Distribution of geomagnetic observatories. Location of geomagnetic observatories are denoted 
with circles. Filled circles show observatories used in this study, after discarding locations at high and equatorial 
geomagnetic dipole latitudes. Bottom: number of used observatories over the time period of the study.

Figure 2. Real (a) and imaginary (b) parts of the 
nQ  transfer functions (Equation 27) for different degrees n and one-dimensional conductivity profile of 

Grayver et al. (2017). The magnitudes of the corresponding discrete impulse responses (Equation 49) are shown in plot (c).

whereas three-dimensional transfer functions were calculated numerically by solving Maxwell's equa-
tions in a spherical shell with a Finite Element code GoFEM (Arndt et al., 2020; Grayver et al., 2019; 
Grayver & Kolev, 2015).
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Figure 2 shows one-dimensional transfer functions and corresponding discrete impulse responses. As ex-
pected, we see that the decay rate for responses with higher degrees n is faster, implying that attenuation 
rate of the induced currents increases with the SH degrees of the inducing field. At periods of 1 year and 
longer, real part of the transfer function flattens as a result of the transient induction effect of the core, 
which has a finite conductivity (Velímský et al., 2003).

Figure 3 shows a selection of discrete impulse responses from the three-dimensional Q-matrix for different 
external and internal degrees and orders. First of all, note that in three-dimensional, the matrix is dense, 
that is, each inducing coefficient leads to infinitely many induced coefficients. However, we observe that 
the diagonal elements dominate the matrix, whereas off-diagonal entries are generally smaller and decay 
with the SH degree.

Finally, Figure 4 shows examples for local impulse responses at several observatory locations where both 
one-dimensional and three-dimensional responses are plotted to highlight the effect of the ocean and sed-
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Figure 3. A selection of the three-dimensional discrete impulse responses from the ,lm qg
knQ  and ,lm qh

knQ  matrices (Equations 36 and 37) due to the 0
1q  (top row) and 

2
2s  (bottom row) inducing terms. Dashed lines denote responses which are nonzero only in the case of a three-dimensional conductivity distribution.
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imentary cover on impulse responses. We see that the difference between one-dimensional and three-di-
mensional responses is particularly large for island and coastal locations.

4.2. Model of External Magnetic Field Variations from Ground Observations

We determined SH coefficients up to degree nmax = 3 and order mmax = 3 within hourly time bins. The length 
of impulse responses was set to six months, thus transient effects older than 6 months are neglected. This 
choice is justified since impulse responses for time lags larger than 6 months are ≤ 10−6 (see Figures 2–4), 
thus the transient effects become negligible for the majority of practical applications. Other details per-
tained to data preprocessing and the method of evaluating SH coefficients are given in Sections 3.1 and 2.5, 
respectively.

The coefficients were determined using both one-dimensional and three-dimensional impulse responses 
from horizontal magnetic field components (Bθ, Bϕ). Subsequently, coefficient of determination R2 was cal-
culated for every time bin using Equation 59 and three components separately, including Br component, 
which was not used for the model construction. Figure 5 shows histograms of R2 coefficient for one-dimen-
sional and three-dimensional models. One apparent observation is a significantly better fit of the radial 
component with a three-dimensional conductivity model. The fit for horizontal components is virtually 
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Figure 4. Magnetic field discrete impulse responses (Equation 21) due to a 0
1q  inducing field for three magnetic field components (columns) at three locations: 

Fürstenfeldbruck (FUR), Hermanus (HER) and Gan, Maldives (GAN). Both one-dimensional (dashed lines) and three-dimensional responses (solid lines) are 
shown.



Journal of Geophysical Research: Space Physics

identical, and the differences are minute and likely fall within the modeling and observation errors. Note-
worthy that among all components, the highest coherency is observed for the longitudinal component. 
These observations confirm that our model, especially the one based on a three-dimensional conductivity 
model, has a predictive power.

To test how the model performs during different magnetic conditions, we further plot histograms of 
R2 statistics for times when magnetic variations are dominated by magnetospheric disturbances (here 
defined as |Dst| > 40 nT) in Figure 6. Although we still observe a significant improvement in coher-
ency for Br, generally the correlation is lower for Br, Bθ, whereas it remains high for the longitudinal 
component. Further, we plot R2 histograms for times when Kp ≤ 2 in Figure 7. The reason to use Kp 
instead of Dst this time is to emphasize the quiet ionosphere conditions. Similar to the examples with 
disturbed magnetosphere, we again observe significant improvements in the radial component for the 
three-dimensional model. In comparison with the previous case, however, we see systematically higher 
R2 values for all components. Therefore, our model exhibits a better fit during quiet times. Further, the 
improved fit of the Br enabled by the three-dimensional model is observed for all times and magnetic 
conditions, indicating that proper inclusion of the ocean effect is essential when modeling both mag-
netospheric and ionospheric variations.
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Figure 5. Histograms of the R2 statistics (coefficient of determination) for individual magnetic field components 
(from left to right: Br, Bθ, Bϕ) and all time windows. The R2 statistics was determined following Equation 59 between 
observatory hourly means data and model predictions. The model details are described in Section 4.2.

Figure 6. Same as Figure 5, but restricted to time windows when |Dst| > 40 nT.
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To better quantify the effect of the improved fit due to the usage of a three-dimensional model, we calcu-
lated the ratio of three-dimensional and one-dimensional R2 values for radial magnetic field component at 
all observatory locations. These values, plotted as a function of the distance to the shoreline, are shown in 
Figure 8. We observe the improved fit at virtually all locations with the most significant improvement up to 
a factor of 11 for observations that are ≤200 km from the coast. However, even locations as far as 3,000 km 
exhibit considerably better fit. This is explained by including the conductance of continental sediments in 
our three-dimensional model.

Finally, we inspect the observed and modeled time series at a selection of coastal and island observatories. 
Here, we also added predictions based on the Dst index, calculated as

   
Dst ( , ) Est( ) 2Ist( ) cosrB r t t t (64)

     
Dst ( , ) Est( ) Ist( ) sinB r t t t (65)
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Figure 7. Same as Figure 5, but restricted to time windows when Kp ≤ 2.

Figure 8. Ratio of the three-dimensional to one-dimensional models R2 coefficients for Br field at individual 
observatories plotted versus distance to the shoreline. Values larger than one indicate improvement over the one-
dimensional model.
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 
Dst ( , ) 0,B r t (66)

where Dst(t) = Est(t) + Ist(t) is a sum of inducing and induced terms (Maus & Weidelt, 2004; Olsen 
et al., 2005). Figures 9 and 10 each show one week of observed magnetic field variations and mod-
el predictions. These periods were chosen since they cover both magnetically disturbed and quiet 
conditions.
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Figure 9. Time series of observed and modeled variations in horizontal (δX = −δBθ) and radial (δZ = −δBr) components at a set of observatories, ordered by 
latitude. Predictions based on one-dimensional and three-dimensional conductivity models are shown along with Dst-based fields (Equation 64). The offset 
between dotted lines is 100 nT. Lower panels show corresponding Dst and Kp indices. See Figure 1 for locations of selected observatories.
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The origin of the discrepancy in amplitude between the observed and modeled fields is twofold: (i) we used 
the global average mantle conductivity profile whereas in reality the bulk subsurface conductivity varies 
laterally; and (ii) slightly larger discrepancy for quiet times indicates that the adopted SH parameterization 
with nmax = 3, mmax = 3 is still insufficient to explain these variations, mostly related to ionospheric currents 
(Guzavina et al., 2019; Schmucker, 1999).

Additionally, Figures 11 and 12 show spatial distribution of the magnetic field as predicted by estimated 
external coefficients and a three-dimensional conductivity model. Much stronger influence of three-dimen-
sional EM induction effects in the Br components is clearly visible. Most of these effects occur near coastal 
areas and strong lateral conductivity gradients.
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Figure 10. Same as Figure 9, but for a different time period.
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4.3. Model of Magnetospheric Ring Current Variations from Swarm Observations

In this section, the model of inducing coefficients was determined by using only satellite data, which was de-
scribed in Section 3.2. Since we work with nightside data and two satellites, we determined SH coefficients up 
to degree nmax = 2 and order mmax = 1 using time bins of 3 h. Therefore, the resolution of this model is much 
lower than the model in previous section that was based on observatory data. Other parameters pertained to 
data preprocessing and evaluation of SH coefficients are described in Sections 3.2 and 2.5, respectively.

As in the previous section, we first look at the distribution of R2 statistics for all time bins and magnetic 
field components (see Figure 13). First observation that we make is that R2 values are very similar between 
one-dimensional and three-dimensional models, indicating that the three-dimensional induction effect 
from the ocean is largely attenuated at satellite altitudes. Interestingly that now we also have much higher 
R2 values for the radial component compared to the Bθ, even though Br was not used in the construction of 
the model. One possible explanation are signals that mostly affect horizontal (Bθ, Bϕ) components at midlat-
itudes, such as those generated by F-region ionospheric currents (Olsen, 1997). These signals cannot be ex-
plained by our low-resolution parameterization that is based on the potential field assumption. To test this 
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Figure 11. Maps of the radial (top) and horizontal (bottom) components of modeled magnetic field variations at 
a surface. Predictions based on the three-dimensional conductivity model for a given UT instance are shown. The 
recorded Dst index value at this instance was −155 nT. Significant coastal electromagnetic induction effects are visible 
in the radial component.
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Figure 12. Same as Figure 11, but for a different time. The Dst index value at this instance was −95 nT.

Figure 13. Histograms of the R2 statistics (coefficient of determination) for individual magnetic field components and 
all time windows. The R2 statistics was determined following Equation 59 between observatory data and predictions 
from satellite data model described in Section 4.3.
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hypothesis, histograms limited to the time windows for which Kp ≤ 2 are shown in Figure 14. Indeed, during 
periods with the less disturbed ionosphere we obtain significantly higher values of R2 for the Bθ component.

Finally, Figure 15 plots time series of the 0
1q  coefficient determined using the observatory and satellite data. 

For reference, we also plot the Dst index. We observe very good match between coefficients estimated from 
satellite and observatory data, confirming the validity of both models and approaches.
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Figure 14. Same as Figure 13, but restricted to time windows when Kp ≤ 2.

Figure 15. Time series of the first zonal spherical harmonic coefficient, 0
1q , as given by satellite (Section 4.3) and 

observatory (Section 4.2) data based models in geomagnetic coordinate frame. Two five-month intervals featuring quiet 
and disturbed magnetic conditions are shown. For comparison, the negative Dst magnetic index is plotted. Systematic 
offset in Dst against 0

1q  seen in Figure 15 is due to the absence of stable quiet time ring current in the Dst index.
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5. Conclusions
The EM induction effect from a time-varying magnetic field significantly influences magnetic field obser-
vations, where it can be both a polluting signal to be removed or a primary signal to study (e.g., mantle 
induction and space weather applications). We showed that the inducing currents of ionospheric and 
magnetospheric origin can be effectively estimated while the effect of the planetary induced response 
is modeled. This work has presented a unified framework for modeling EM induction effects in ground 
and satellite data by means of time domain impulse responses due to arbitrary external sources and in 
presence of a three-dimensional subsurface conductivity distribution. This approach is amenable to in-
tegrate with models that involve constantly augmented time series and require “on the fly” updates of 
geomagnetic models.

We have elaborated the underlying mathematical machinery for the case when basis functions used for 
spatial parameterization of magnetic field are given by SH functions. This choice was made owing to the 
ubiquity of SH basis in Earth's and planetary magnetism community. However, the approach is general 
and straightforward to extend to other basis functions should practical applications demand this.

We further showed that the effects from heterogeneities in subsurface electrical conductivity can dom-
inate the radial magnetic field component and should be accounted for provided that some knowl-
edge about three-dimensional subsurface conductivity structure for Earth is available. Contrary to the 
common presumption, the three-dimensional effects are significant during both quiet and disturbed 
magnetic conditions since the induction effect is transient, hence widely used selection criteria based 
on instant values of magnetic indices and local time cannot completely eliminate the effects of EM 
induction, making the modeling approach presented here a suitable tool that accounts for its transient 
nature.

Appendix A: Properties of Transfer Functions and Impulse Responses
Convolution integrals such as in Equations 20 and 28-29 represent a response of a medium to a time-varying 
extraneous current. These relations follow from the (often omitted) properties of a physical system that we 
model. We state these properties here and discuss implications. Our presentation closely follows a more 
detailed analysis by Svetov (1991).

1.  Linearity allows us to define a response, ζ(t), of a medium at time t to an extraneous forcing as

 ( ) ( , ) ( ) ,t t t t dt   




  (A1)

 where χ is the extraneous forcing that depends on time t′ and ( , )t t  is the medium Green's function that 
does not depend on the amplitude of the exerted force.

2.  Stationarity implies that the response of a medium does not depend on the time of occurrence of the 
excitation. In this case   ( , ) ( )t t f t t  and Equation A1 can be rewritten as a convolution integral

        ( ) ( ) ( ) ( ) ( ) ,t f t d f t d   








  (A2)

 where f(t) represents the impulse response of a medium. In FD, the convolution integral reduces to

      ( ) ( ) ( ),f (A3)

 where ( )f  is called the transfer function and we used tilde sign () to denote complex quantities. Equa-
tion A2 and A3 are related through the Fourier transform

f f t e t
t

( ) ( ) . 




 i
d (A4)
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3.  Since we work in time domain with a real valued forcing, the impulse response is also real. To see impli-
cations of this, let us define the inverse Fourier transform of    ( ) ( ) i ( )R If f f  as

f t f e

f t f t

t

R I

( ) ( )

( )cos( ) ( )sin( )



  








1

2

1

2


 


   

 i
d

d


    











  
i

d
2

f t f tI R( )cos( ) ( )sin( ) .

 (A5)

 For an impulse response to be real, the last term in the integral A5 has to vanish. This is possible only if 
fR (ω) and fI (ω) are even and odd functions of the angular frequency ω, respectively. Therefore, Equa-
tion A5 reduces to

f t f t f tR I( ) ( )cos( ) ( )sin( ) .  



1

0
    d (A6)

4.  Impulse response is causal. This property implies that f(t) = 0 for t < 0. Under this assumption, the 
convolution integral (A2) can be recast to

        ( ) ( ) ( ) ( ) ( ) .t f t d f t d
t

   





0

 (A7)

 Due to causality and taking into account Equation A6, the impulse response can be determined by using 
either only real or imaginary part of ( )f :

f t f tR( ) ( )cos( )



2

0
  d (A8)

 



2

0
  f tI ( )sin( ) .d (A9)

 Note that for the sake of clarity, dependence on spatial variables and electrical conductivity pertinent to 
our application was omitted from the equations above.
 In practice, we observed that using sine transform (A9) results in a slightly better accuracy compared to 
the cosine transform (A8) given the same filter length.

Appendix B: Digital Linear Filters
In order to carry out the sine transform (A9) efficiently, we applied the digital linear filter (DLF) method. DLF 
was introduced to geophysics by Ghosh in the early 1970s (Ghosh, 1971a, 1971b), as a means of fast compu-
tations for geoelectric resistivity responses. The method was subsequently improved and expanded to other 
methods by many authors, and a lot of filters have been published. There are two particular developments, out 
of all these improvements, which are relevant for our application: (1) The kernel under consideration was ear-
ly on always Bessel functions of some sort, and it was Anderson (1973) who first applied it to Fourier sine and 
cosine transforms. (2) If the kernel computation is very expensive the lagged-convolution type DLF introduced 
by Anderson (1975) is very powerful, as additional times come at no or very little extra cost due to the reuse of 
the already computed kernels for new times. Although the use of DLF in geophysics is focused on Hankel and 
Fourier transforms in electromagnetics, the method itself works for any linear transform.

Werthmüller et al. (2019) presented a tool to design filters for any linear transform provided that there exist (a) an 
analytical transform pair or (b) a numerical computation in both domains with sufficient accuracy and precision 
over a wide range of argument values. We refer to that publication for an in-depth review of DLF in geophysics.
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Using substitutions t = ex and ω = e−y and multiplying by ex we can rewrite (A9) as a convolution integral 
and approximate it by a N-point digital filter η as (Anderson, 1975)


 

  
1

2 ( / )( ) ,
N

I n n

n

f b tf t
t

 (B1)

where the log-spaced filter abscissa values bn are a function of spacing Δ and shift ν,

b N nn( , ) exp ( ( ) / ) .        1 2 (B2)

The optimal values for ηn, Δ and ν in Equations B1–B2 were found by following the method of Werthmüller 
et al. (2019). In this work, we designed a 50-point filter such that it requires as few values of ( )f  as possible 
without compromising accuracy. To this end, we used the following analytic transform pair

 exp
sin( ) .

 







ab x

a x
xb dx

2 2 2
0

 (B3)

The Figure B1 shows the designed filter and its performance for the chosen analytic pair.

Note that the naive application of Equation B1 will require calculating ( )f  at N × Nt frequencies, where 
Nt is the length of an impulse response in time domain. This number can be drastically reduced by invok-
ing the aforementioned lagged convolution approach. To give an example, for the one-year-long impulse 
response with the hourly time step (i.e., Nt = 8,766) our filter required evaluating a maximum of 112 fre-
quencies that range ≈ 12 decades.
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Figure B1. Left: minimum recovered value of the analytic pair (B3) as a function of spacing and shift. Center: filter values for the best filter with Δ = 0.114 and 
ν = 1.07. Right: the performance of the filter on the Equation B3.

Base Value

0.020351539057584585 0.015612515803531853

0.02394618633584547 −0.09462903411749914

0.028175748203049585 0.3117770493488479

0.0331523682171173 −0.7331733032969688

0.039007997604279074 1.3887195607048695

0.045897893843668 −2.256657066578928

0.05400473719916161 3.2805358935454616

0.06354347434512761 −4.3780014125702555

Table B1  
Filter used in this study to approximate the sine transform A9.
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Base Value

0.0747670175110597 5.472633981207025

0.08797295025351011 −6.487680055307104

0.1035114176536700 7.379203081547922

0.121794410143077 −8.101406699379584

0.1433066871108987 8.655711019132568

0.16861862992378368 −9.017610106427929

0.19840136514614606 9.229490585407783

0.23344455894136176 −9.263211469329843

0.2746773544586444 9.201625018217383

0.3231930073442032 −8.981017420159862

0.38027787256818374 8.741193586707128

0.44744551113066483 −8.339636911178598

0.5264768209596123 8.017252694339163

0.6194672560404727 −7.484385258748044

0.728882385756068 7.168939484640828

0.8576232675496689 −6.5205283437188415

1.009103366216787 6.298382148011787

1.1873390592811512 −5.517835729490835

1.3970561281348315 5.467376261589812

1.6438150584726328 −4.53662000270438

1.9341584722647591 4.6731213626935695

2.2757846003123405 −3.691290054788441

2.6777513948763136 3.782371098562427

3.1507166942679676 −3.2281439933834775

3.7072208071793002 2.5592546437619657

4.36201900925792 −3.232119665813557

5.1324727678156865 1.5126346621525144

6.039010067691346 −2.2490157798136283

7.105667043450954 2.624917369559576

8.360725278884502 −0.38778344764051975

9.837461671301405 0.7697565678585556

11.575030742696057 −2.8607107883073972

13.619502791580832 3.1199881060456427

16.025085411278443 −1.9120353599090574

18.855560762285485 0.809753326019789

22.185976706870886 −0.2641923369068591

26.104636645033704 0.07088122130542221

30.715440810780017 −0.016121403161804555

36.14064110637662 0.0030871244528753875

42.524082516878885 −0.00047298225758749283

50.03501704852909 5.153158194873856e-05

58.87259131464845 −2.9723596837103312e-06

Table B1  
Continued
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Data Availability Statement
Satellite and observatory input data used in this study as well as estimated time series of SH coefficients can 
be retrieved from https://doi.org/10.5281/zenodo.4047833. Subsurface conductivity model is available at 
https://doi.org/10.5281/zenodo.4058852.
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