
Delft University of Technology
Faculty of Electrical Engineering, Mathematics, and Computer Science

Computer Graphics and CAD/CAM Group

Simulating Urban Area Development for
Semantic Game Worlds

Author:
G.R. de Ridder

Thesis committee:
Prof. dr. ir. F.W. Jansen

Dr. ir. R. Bidarra
T. Tutenel, M.Sc.

Dr. ir. K.V. Hindriks

July 31, 2012

Preface

This thesis is submitted in partial fulfilment of the requirements for the degree of master of science
in computer science. It is the result of my master of science project which I conducted at the
Computer Graphics & CAD/CAM group of the Delft University of Technology. This project
started in November 2011 and ended in July 2012.

The goal of this project was to develop a procedural approach to generating virtual urban
areas for semantic game worlds. The resulting models of this approach should be shaped by the
rules of the semantic game worlds to be able to use them in semantics-based games.

I would like to thank the following people for their suggestions, discussions, reviewing, and
moral support: Tim Tutenel, Marnix Kraus, Anne van Ee, Antony Löbker, Nick Kraayenbrink,
Arthur Vromans, Christian Kehl, and Erik Jansen.

1

Abstract

Due to the growing need for content in games, more money is spent on creating game content.
Many games are situated in urban areas, complex collections of buildings and roads. To create
these by hand is costly, and therefore procedural techniques have been proposed in the past
decades to automate the creation process to reduce the amount of work needed to create these
complex scenes. The creation process and the resulting urban areas of these methods, however,
lack meaning and cannot be applied directly in a semantic game world due to the lack of semantic
information in the model.

In this thesis I present a simulator called UrbSim that simulates the development of an urban
area over time for a specific semantic game world. The semantic information of the semantic game
world is used to shape the generation process of the urban area and it also influences the shape of
the created model. By doing this, UrbSim adds more meaning to both the creation process and
the urban area itself than previously proposed solutions to procedurally generating virtual urban
areas. It is able to produce urban areas that contain both a history and semantic background,
each created element has semantic data linked to it, allowing it to be used in the semantic game
world it was created for.

2

Contents

1 Introduction 5
1.1 Research Question & Approach . 7
1.2 Outline . 8

2 Related Work 9
2.1 Road Patterns . 9
2.2 Land Use Models . 17
2.3 Discussion . 22

3 Approach 24
3.1 Semantics of Urban Areas . 24
3.2 Land Use Development . 26

4 Implementation 35
4.1 Process . 35
4.2 Structure . 35
4.3 Semantics . 36
4.4 AllocationManager . 40
4.5 Graphical User Interface . 42

5 Results 44
5.1 Default Scenario . 44
5.2 Patch Allocation . 50
5.3 Alternative Settings . 52

6 Discussion 56
6.1 Semantics . 56
6.2 Patches . 58
6.3 Results . 60

7 Conclusion 65

A Planning 69
A.1 Prototype I . 69
A.2 Prototype II . 69
A.3 Prototype III . 69
A.4 Prototype IV . 70
A.5 Prototype V . 70
A.6 Release Candidate I . 70
A.7 Release Candidate II . 70
A.8 Final Release . 71

3

B MoSCoW 72
B.1 Must have . 72
B.2 Should have . 72
B.3 Could have . 72
B.4 Would have . 73

C Proposal 74
C.1 Introduction . 74
C.2 Planning . 75

D Default Database 77
D.1 Abstract Entities . 77
D.2 Patch Types . 77

E Small Database 82
E.1 Abstract Entities . 82
E.2 Patch Types . 82

F Default Database Examples 83
F.1 Visuals . 83
F.2 Statistics . 84

G Class Diagram 87

4

Chapter 1

Introduction

The active development in computer technology allows the game industry to create increasingly
bigger, more detailed and realistic scenes for their games. Game developers are in a race to offer
their consumers games that take as much advantage of the modern hardware as possible. This
poses the game developers a challenge to create more content while budgets are limited. More
artists are needed to create the content and this will increase the costs of a game tremendously if
no other game features are left out which could result worse game play.

Many games, both entertainment games and serious games, are situated in urban areas. In
the Assassin’s Creed series [1] for example the player visits many big cities which can be explored.
Also the games in the Grand Theft Auto series contain detailed cities [2]. From both game series
a screenshot is shown in Figure 1.1. The cities in these game series were modelled by hand and
took years and many people to create. Though still many parts of these cities are not interactive
and purely act as scenery.

(a) A small view of Venice from Assassin’s Creed II
[1].

(b) A view from ground level in Liberty City (based
on New York City) in Grand Theft Auto IV [2].

Figure 1.1: Two entertainment games which are situated in big urban areas are Assassin’s Creed (a)
and Grand Theft Auto IV (b).

For the past few decades many procedural techniques have been proposed for generating content
for games. These methods promise to reduce the effort, and therefore money, needed to create
detailed game content. The subjects range from creating textures and graphical effects [3], [4]
and vegetation [5] to complete gaming worlds as done in SketchaWorld [6] and MojoWorld [7].
The latter two combine multiple procedural techniques to create all objects and terrain features
needed in the virtual world. Examples of procedurally generated content are shown in Figure 1.2.

Many techniques for procedurally generating urban areas have been proposed, see Chapter 2.
These are aimed at recreating patterns seen in real world cities, either by directly implementing
templates for road networks or by using rules for growing road networks. Some also include
determining land uses of lots created within the cells of the road network either via the user or

5

(a) One frame from a corona animation which is
based on noise [4].

(b) A scene with thousands of plants created using
L-systems [5].

(c) A SketchaWorld scene with mountains, vegetation
and a city [6].

(d) An alien world generated and rendered with Mo-
joWorld [8].

Figure 1.2: Procedurally generated content.

via simulation. Many methods proved to be able to generate realistic results. Unfortunately, the
resulting urban areas lack meaning, both in history and semantic relations. Furthermore, the
created models cannot be used in semantic game worlds due to the lack of semantic information.
The created models are just scenery. Some of the methods do include meaning in the land use
simulation and the generation of the road network, but many factors are or cannot be included.
The generation process is static and does not change over the course of the simulation although
these methods simulate an urban area over many decades.

The complete history of a city is important for its growth, especially the first settlement. A
city can start as a small village around a bridge because it is a place for trade and transport. This
will cause the city to develop a harbour for transport over water and gates to be able to levy toll
on carts and keep unwanted people outside the city. Also the resources play an important role
in the early development of villages. If the urban area is near mountains, stone is cheap and will
therefore be used more often in buildings than villages far from rocky areas where buildings are
more likely to be build from clay bricks or wood. This semantics influences the success and growth
of a city and therefore also the later development.

6

1.1 Research Question & Approach

This brings us to the question: how can one incorporate semantic information and history in the
generation process of a virtual urban area suitable for use in a semantics-based game? To answer
this question I want to develop a generic urban area development simulation for semantic game
worlds. UrbSim, as it is called, takes into account the meaning behind the steps made in the
creation of an urban area, although these steps are not necessarily realistic since game worlds
do not have to be realistic. They just need to obey the laws set for the game the urban area is
generated for. This will ensure that the created content will fit into the semantics of the game
and the created content could even be developed further during the game to make the game world
more dynamic. The terrain on which it is build, the available resources, and events that occur
(such as disasters) influence the growth of the settlement and also its type. Other factors like
technological advancement and neighbouring settlements may also contribute to the final shape
of the urban area.

UrbSim simulates the land use over time by placing, updating and removing lots from the
urban area. It uses resources to define which lot types repel and attract each other. As can be
seen in Figure 1.3(a) three locations were tested on the production values and their distance to the
artificial patches. The location at the left near the majority of patches has the highest value and is
likely to be chosen. Also the shapes of lots are affected by local terrain features, see Figure 1.3(b).
The patch is shaped by the sea (blue) at the top and the rocky area (grey) at the bottom. This
gives more meaning to the placement and shapes of lots. The resulting urban area is a collection
of lots shaped by the terrain and the resources either produced by the terrain or the lots around
it. Each lot has specific semantic data attached to it which could be used in the game to interact
with the lot.

(a) Selecting a location for a new patch is affected by
all patches in the neighbourhood. The location at the
left (the yellow circle) has the highest value, while the
one at the bottom right has the lowest value.

(b) The shape of a new patch is affected by the local
borders. One edge follows the shoreline at the top
while a rocky area creates an indent at the bottom of
the patch.

Figure 1.3: The location selection and patch shape are affected by the local terrain features and neigh-
bouring patches.

Novel to this method is the lot generation that is not based on subdivision but rather on
growing and expanding from one location to find a suitable shape and size for a lot. Simulation
of land use for procedural urban area generation is not uncommon, but the used approach is not
grid-based which is not done often [9]. By focusing more on the semantics and game worlds, this
solution to generating virtual urban areas differs even more from other proposed methods. It

7

will extend current techniques by adding more history and meaning to the procedurally generated
urban areas.

1.2 Outline

The following chapter gives an overview of procedural methods that have been proposed in the
past decade for generation of urban areas. It also discusses the techniques in the light of needing a
semantic background. Chapter 3 covers the approach, and Chapter 4 explains the implementation
of UrbSim. The fifth chapter shows what this method produces and how it performs. The
implementation and results are discussed in Chapter 6. The last chapter gives a short summary
of the report and concludes with possible future work.

8

Chapter 2

Related Work

In the past decades dozens of papers have been published on procedurally generating virtual cities.
Some primarily focus on the creation of realistic buildings [10], some only create a road network
[11], and others try to combine these to form urban areas such as [12] and [9]. All of these focus on
generating roads prior to creating the lots in which the buildings are situated. Since my work does
not aim to create realistic building geometry but rather on a functional simulation of an urban
area, I will not cover the solutions for building geometry in detail.

The techniques proposed in the past decades can be divided into two major groups. The first
group is inspired by real world city layouts and try to replicate the found road patterns, see Section
2.1. The second group, described in Section 2.2, focuses more on the land use within a city and
the development of the city over time. The last section, Section 2.3, discusses the results of the
two groups and explains what my focus will be in my urban area simulation.

2.1 Road Patterns

Most methods proposed for procedural modelling of cities involve the creation of road patterns.
These patterns are based on road networks found in many real cities. Five of these patterns are
listed below and shown in Figure 2.1.

(a) Organic (b) Radial (c) Raster (d) Industrial (e) Population ori-
ented

Figure 2.1: The road network layouts used in the discussed papers.

Organic A tree-like approach for generating a road network (see Figure 2.1(a)). No global plan-
ning is needed, only local checks for intersections of roads. This corresponds to the road
network of old city centres. This pattern is in many cases produced using an L-system, see
Section 2.1.2.

Radial Another pattern observed in cities is a radial pattern, depicted in Figure 2.1(b), in which
a few main roads start at the centre of the city and travel outwards. The city is divided into
rings enclosed by circular roads. Such a pattern can be found in Paris for example.

9

Raster When the layout of a city is planned beforehand, the resulting road network is likely to
be a rectangular grid (shown in Figure 2.1(c)). The Romans used to build army bases using
a strict grid pattern and in some cities (like Florence, Italy) this raster can still be seen. A
modern day example of the use of a grid road network is the road network in Manhattan
(New York, United States of America).

Industrial The industrial road plan is used in [12]. It is a combination of a raster and organic
network. It contains grids, but also dead ends as shown in Figure 2.1(d).

Population oriented The population based approach as used in [13] and [11] searches points of
high population density and uses these points as the centre of a Vonoroi diagram. The edges
of the diagram form the main road network (see Figure 2.1(e)).

Most proposed methods allow the user to use multiple patterns in the urban area to create a
more realistic road network. This can be either for the main road structure or for the secondary
roads filling the cells enclosed by the main roads. Also many methods adapt the road network to
fit properly to the elevation of the terrain.

The first method described, see Subsection 2.1.1, uses three of the patterns mentioned above
to generate a road network. Subsection 2.1.2 covers the Citygen [12], which allows the user to
interactively design a city mainly with organic and raster patterns. The CityEngine [14], which
is described in 2.1.3, uses a self-sensitive L-system to generate organic, radial and raster patterns
based on input maps from the user. The road networks in the tensor field approach (Subsection
2.1.4) are also based on a map, but this map is a grid of tensors. The roads are formed by tracing
paths on that map. The last approach described in this section, Subsection 2.1.5, is based on
behavioural modelling using agents and adapts its geometry according to the behaviour of the
agents.

2.1.1 Template-Based Generation

In the approach proposed in ‘Template-based generation of road networks for virtual city modeling’
[11] by Sun et al. the user is free in choosing the road patterns per area in the city. The user
has to provide a map of legal (land) and illegal (water, parks) areas, a population distribution
map and an elevation map. Based on these maps and a selected pattern the application is able to
generate a complete network of roads.

The user is able to choose three different patterns, namely population based, raster, or radial.
The user is also able to choose a mix of these three patterns. Each pattern is connected to a
template that defines the rules and parameters.

A population-based pattern is covered by its own template that tries to extract a Vonoroi
diagram from the population density map with smaller cells in more dense areas. From the edges
of the diagram the roads are created. This results in more roads in denser areas.

The radial and raster pattern share a template. This template is based on iterative growing of
roads. It creates a point at a start location. From that point more points are generated, either in
a circle around the first point or in a rectangle, as a grid, depending on the pattern. Then pairs
of points are linked to create a road network.

The last template used is the mixed template. This template applies the rules and parameters
from the other templates for different regions in the city, creating a mix of different patterns.

All templates described above provide a network of highways for the main transportation of
the city, without paying attention to illegal areas such as water and parks. When a road crosses
an edge of such an illegal area, a break point is created. These break points can also be created
due to the change in template between regions. After finding the illegal road segments between
breakpoints, a new road around the illegal area can be created. Another option is to have it simply
removed or a bridge built over it.

Once the main road network is completed, a secondary road network for each region enclosed
by main roads can be created. Sun et al. have chosen to use a raster pattern for these regions.

10

Figure 2.2: A road map with highways and streets in different patterns. [11]

The result of their approach is shown in Figure 2.2. The resulting urban area does not include
lots with buildings.

2.1.2 Citygen

Citygen, an application partly inspired by [11], was presented by George Kelly and Hugh McCabe
[12]. It does not only feature the creation of highways and streets, but also the procedural gener-
ation of building geometry. In their review of procedural techniques for city generation [15] Kelly
and McCabe found methods that were lacking realism, needed too much input from the user,
or were too slow to be interactive. The creators aimed for an interactive content generator and
therefore Citygen had to be fast, while still being able to create realistic cities. The application
should allow the user close control over the generation process and the manipulations by the user
should be computed and rendered in real-time.

Since the essential character of many cities is often dictated by the pattern of the primary
road network [12], the generation of a new city starts with the construction of the primary roads.
The roads are presented by two graphs. The first graph is a high level representation of the road
network with straight lines between the junctions, called nodes, of the primary roads. The nodes
in this network can be directly controlled by the user to change the shape and topology of the
network. A second graph is used for more detail of the road. The roads still meet at the same
junctions, but can have other trajectories. This is shown in Figure 2.3.

Figure 2.3: The primary roads are represented by two graphs: a high level graph with straight lines
(yellow), and a more detailed low level graph (red). [12]

11

The low level graph is created by growing ’adaptive roads’ between the nodes. The algorithm
used for this works bidirectionally between two nodes. From each node, samples are proposed in
the direction of the other node but with a different angle. For each, the best sample for the next
node in the low level graph is chosen. The selection depends on the elevation differences and the
distance to the destination (the other node). This process is repeated for the newly created nodes
until the two sides meet in the centre. After the creation of the low level graph, the final path is
determined using a Catmull spline [16].

To create the secondary roads, first the city cells are extracted from the primary road network
using the minimum cycle basis algorithm described by David Eberly in [17]. These cells are regions
enclosed by the main roads. In these regions the secondary roads are generated based on a pattern
choice by the user. This can be either a raster, industrial or organic pattern.

Figure 2.4: The growth of a secondary road network using an organic pattern after 10, 100, 300 and
1000 steps. [12]

The growth of the secondary road networks in Citygen was done using Lindenmayer Systems
[18] or L-systems for short. L-systems were originally introduced as a mathematical theory for
biological development by Astrid Lindenmayer [19]. In this theory the objects of study are rep-
resented by a string of modules that describes all properties of the complex system. By parallel
rewriting of the string using predefined rules a new string is generated and the system is updated.
In the case of a road network, the roads and intersections are modules in a string that is rewritten
per module.

The secondary roads start growing at two points at the boundaries of the city cells (Figure 2.4).
The two seeds grow in parallel into a street pattern while being sensitive for existing roads. The
growth can be controlled by changing many parameters. For example the segment size controls
the length of the proposed segments in the secondary road graph, and the deviance parameter
controls the noise introduced to the growth process. Another important aspect of the growth is
snapping. When a raster or industrial pattern is chosen, the proposed segments tend to snap to
existing junctions and roads where possible.

The last stage of the city generation is the creation of the building geometry. For this lots
are extracted from the generated road network by iteratively subdividing the space into smaller
spaces until the target lot size is reached. Both concave and convex boundaries are supported
which enables Citygen to split up complex regions that may occur due to the different patterns
used.

The created lots are used for the placement of buildings. The buildings are generated according
to what type of area they are situated in. Down-town lots, like those in a raster pattern, will have
buildings using as much space available in the lot as possible, while suburban lots, seen adjacent
to roads in organic patterns, will have gardens and therefore less space used up by buildings.

2.1.3 CityEngine

L-systems were also used in the procedural creation of large-scale road networks in CityEngine
[14]. Parish and Müller introduced this application in 2001. The goal of their work was to create a
system that needs little input, but is highly controllable. It creates a traffic network and buildings,
based on the maps provided by the user. These maps define the elevation, placement of water
and vegetation, population density, land use, street patterns and the maximum building height.

12

In Figure 2.5(a) an example of a procedurally generated road network is shown which is based on
input maps of water, elevation, and population density.

(a) A generated road network with (on the left) the
corresponding geographical and socio-statistical input
maps.

(b) A complete city with approximately 26000 build-
ings.

Figure 2.5: The creation of a three-dimensional city generated with CityEngine starts with a description
of the terrain on which a road network is grown. In the last step buildings are placed in the cells of the
road network. [14]

To generate such a road network Parish and Müller use an extended self-sensitive L-system.
By this is meant an L-system with additional functions that check for global goals and local
constraints. The application creates highways to connect areas of the city with high population
density. A secondary network of streets is generated to give the inhabitants access to the highways.

The application starts with an initial road segment. In each cycle the L-system proposes new
road segments, which are branches of existing roads. When the new segment has been proposed,
the global goals function will assign parameter values to it. These parameters, such as orientation
and length, aim to create the dominant pattern. A final step tries to adjust the segment to fit in
the local area (snapping to other roads, not running into water). If this last step cannot fulfil the
local constraints, the proposed segment is discarded.

To generate highways, each highway road-end shoots a number of rays of predefined length at
random angles within a predefined range. Samples along this ray are taken from the population
density map, weighted and summed up to select the ray with the largest sum. This will be the
next road segment. The streets on the other hand typically follow the dominant street pattern (in
many cases a raster). The streets stop growing when they reach an unpopulated area.

The creation of highways is also depending on the global pattern chosen by the user. This can
be organic, in which the highways follow the population density. The raster pattern forces the
roads to make sharp angles and form rectangular blocks. The radial pattern lets the highways form
circles around the city centre. Parish and Müller also introduce a specific rule for mountainous
terrain, such as in San Francisco, where both streets and highways follow the elevation of the
terrain and the roads at different height levels are connected with smaller streets. To enhance the
results that were constructed with straight lines, a simple subdivision scheme based on [16] is used
which results in smooth roads.

After the creation of the roads, the convex spaces enclosed by roads are subdivided into lots.
This subdivision algorithm recursively divides the spaces over the longest edges in half until the
areas of the created lots are under a given threshold. Then another L-system creates the geometry
for the buildings and for the textures on the buildings a procedural method of layered grids is
used. The textures are composed out of several smaller façade elements that are repeated on the
building. This in combination with the different geometry created gives a wide variety of buildings.
These last steps for creating the buildings is by far the most time consuming part of the process
and could easily take several minutes to complete. Therefore this approach could not be used in

13

real-time, but it did produce very interesting cities such as the one in Figure 2.5(b) which is the
virtual city created with the data shown in 2.5(a).

2.1.4 Tensor Fields

A quite recent development is the use of tensor fields to model the road network of a city. An
intuitive and flexible modelling framework is presented by Esch et al. in [20] and enhanced by
Chen et al. [21]. In this system the user is able to create a street network from scratch or modify
an existing network by changing the tensor field on which the network is based by applying
operations such as brush strokes and smoothing. It can also be edited directly via changing the
graph elements.

(a) (b) (c) (d) (e)

(f) (g) (h) (i)

Figure 2.6: Street graph production example. [21]

Figure 2.6 gives an example of how the system can be used to produce a street graph. First a
water map is loaded (a) and by adding some tensor field design elements a tensor field is created
(b). Then the system generates a main road network following the tensor field (c). The user can
also add more elements to refine the network (d, e). The changes can also be done on a local
scale, within city cells enclosed by main roads for example (f). Based on the local tensor field the
secondary roads are generated (g). The user can modify the field even further by using a rotation
noise field to create irregular structures (see (h) and (i)). The following paragraphs will describe
these steps in more detail.

The system starts with four maps that describe the environment the city is based in. These
maps can be loaded as images. There are two binary valued maps for water and forests. The
third map is a height map and also a population map is used. Based on these maps a tensor
field can be created. This tensor field is a continuous function that associates every point with
a tensor. In this context a tensor is a 2 by 2 symmetric and traceless matrix. The eigenvectors
of these matrices are used for finding the paths the roads should follow. Such a path, called a
hyperstreamline, describes a curve that is tangent to the eigenvector field everywhere along its
path. The hyperstreamlines used follow either the major eigenvector field or the minor eigenvector
field. When these hyperstreamlines are parallel for both fields, a grid road pattern is created. A
radial pattern is produced when the major hyperstreamlines are circular around a single point,
while the minor hyperstreamlines emanate from that point. The system can also create a tensor
field from shorelines or other boundaries. In this field the streamlines follow the boundaries. A last
form of basis field described is the height field. This field has streamlines following the elevation
of the terrain.

14

Figure 2.7: The use of a brush stroke to orient streets. [21]

The user can let the system extract the tensor field using the basis fields described above at a
global scale, but those can also be applied on a local scale at specific locations to combine multiple
patterns. Furthermore the user can apply Laplacian smoothing on the tensor field to reduce its
complexity. Another useful tool is the brush interface. This enables the user to make specific
changes by drawing curves on the map, such as the S-curve in Figure 2.7.

(a) (b)

Figure 2.8: (a) A generated street graph for down-town Portland, OR, USA, (b) a city complete with
buildings based on a stretch of the Benue River in Nigeria. [21]

The road graph is created by following the hyperstreamlines. By repeatedly tracing major and
minor hyperstreamline at a pre-set distance, a network of roads is created. This can be done for
both major and minor road, but for minor roads, the distance between the streamlines is smaller.
The network of roads is converted to a graph of vertexes (crossings and loose ends) and edges
(road segments). Also road attributes such as road width and type of lanes is stored at these
vertices and edges. Figure 2.8(a) shows the result of an iterative editing process. The highways
(in orange) have been added manually.

The procedural generation of buildings was not the focus of the work of Chen et al. in [21],
but a module for three-dimensional street and building geometry was included in the system. This
module, also used in a newer version of the CityEngine, is further described by [22]. The cells
enclosed by the road network are subdivided and for each created lot a building is generated. A
resulting city is shown in Figure 2.8(b).

15

2.1.5 Interactive Agent-based Modelling

Vanegas et al. [23] describe an agent-based system, inspired by UrbanSim [24], that is capable of
procedurally generating realistic urban areas spanning over 200 square kilometres within minutes
on a standard computer, including the time taken for iterative and interactive design process. The
main goal of the system is to close the loop between behavioural and geometrical modelling of
cities. Furthermore the system should provide the designer an efficient means to create plausibly
realistic urban areas that are internally consistent, without capturing the numerous behavioural
nuances and modelling the evolutionary processes that shape cities.

The input from the user consists of an initial terrain map and initial values for a set of be-
havioural and geometrical variables. These can be edited via a GUI and a paint-brush like tool.
When the user changes the terrain or the values of the variables, the system tries to find a new
equilibrium of the variables and generates new geometry when this stable solution of the variables
is found. Such an editing process can be seen in Figure 2.9. The creation of the geometry mainly
depends on the simulation of the distribution of population and jobs. A higher population density
or job density automatically results in a high density of roads and higher buildings. To allow in-
cremental editing and editing at various scales the user is able to constrain parts of the generated
model and let the system create a new city model.

Figure 2.9: The road network is updated when the terrain is changed. The population is kept constant,
but its distribution changes (as can be seen in the secondary images). The last image (d) shows an over-
constrained situation in which there is not enough land to allocate the whole population and the desired
combination of values for the variables is infeasible.[23]

All variable changes described above are conducted on values stored on a two-dimensional
grid of cells. Each cell holds the values for the set of variables. These values can be changed
locally or globally. When this happens, the system iteratively updates the other variables to find
a stable solution. To reduce the load for the user and because not all variables are easy to change
intuitively, some variables can be changed directly, such as population and job count, while others
like land value and land use are computed by adaptive algorithms.

The behavioural variables used in the simulation are population count, job count, accessibility,
and land value. The latter two cannot be edited manually. For the placement of the geometry
the variables roads length, average tortuousness, building volume, terrain elevation, parcel size,
and land use are used. The latter two variables cannot be edited directly, but are computed
algorithmically. The return to an equilibrium after a change mostly depends on moving jobs and
population by moving the agents to new locations.

Although most of the construction of the geometry is automatic, the user has to sketch the
highways. The construction of the secondary and tertiary roads is done using seeds that can be
freely placed. The first set of seeds is generated based on a user defined pattern (either radial or
raster), the placement of the highways, and on the distribution of population and jobs. Each seed
is an intersection of the secondary roads connecting them. The seeds for the tertiary roads are
generated along the secondary roads. The streets grow further from these seeds.

In the case of a radial pattern three or more road segments depart from an intersection at
equally spaced angles. The raster pattern lets depart up to four road segments almost perpendic-
ular to each other. The raster pattern does not have to be complete and can therefore contain

16

dead-ends. The placement of the road segments in both patterns is guided by the elevation of the
terrain and the distribution of population and jobs.

When the road network has been formed, each cell surrounded by roads is geometrically parti-
tioned. For this, the strategy of Parish and Müller [14] is applied. However, the number of patches
in a cell differs per area. It depends on the size of the cell, the total count of population, and the
jobs contained within the cell. If the needed number of lots cannot be reached, the height of the
buildings is increased.

2.2 Land Use Models

So far the papers discussed in this chapter were focused on creating a realistic road network and
building geometry. The type of buildings created were mostly commercial and residential buildings
mixed throughout the city not taking into account the functions of those buildings. The placement
of a particular type of building in a city is not random and therefore more recent work focuses
more on land use models.

The approach in Subsection 2.2.1 for example generates an urban layout of roads and land
use per area based on high-level input from the user. A more advanced method is described in
Subsection 2.2.2 which covers the simulation of land use over time including building geometry,
roads and traffic. The last subsection (Subsection 2.2.3) shows a method based on agents. The
agents build the city over time while simulating the land use and road construction.

2.2.1 Urban Land Use Layouts

In [13] a method is proposed that has the main focus on the land use within a city. The method
procedurally creates layouts of large cities using only high-level user input in a matter of seconds.
Due to the simple input, no expert knowledge is needed for the creation of the city.

Figure 2.10: The creation of a city. [13]

Figure 2.10 illustrates how the city layout is generated. The application starts with a terrain
map (1) and the user input of location, city size, and some more parameters to control the
generation process (2). After these first steps the system starts generating districts. Eighteen
district types are used in the model: 3 residential, 2 industrial, 2 commercial, transportation
nodes, green spaces (parks), and 8 special core types (such as cathedrals or town squares). For
the placement of the districts, a road network is created. First highways are generated in a radial
pattern (3) after which candidate locations for the districts are generated (4). Then the best
locations are chosen (5) and a Vonoroi diagram is produced using the chosen locations (6). This
Vonoroi diagram dictates the secondary road network and some noise is applied to make it look
more realistic (7). To finish the road network, known methods such as [14] can be used to create
the street networks in the districts (8).

The positioning of the district is influenced by five parameters: type of neighbouring district,
terrain type, area within the city, distance from rivers, and distance from highways. For each
district that has not been allocated yet, the suitability is computed for all possible locations left
using the mentioned parameters. These parameters are weighted according to their importance
for the city type (western European city, such as the one in Figure 2.11, or Northern American
city). The district is assigned to the location that has the highest suitability. By repeating this,
all districts are added to the city and the land use layout of the city is generated.

17

Figure 2.11: A western European city. [13]

2.2.2 4D Cities

All previously discussed papers focus on the final city layout and its generated geometry. Often
first a road network was produced followed by the creation of land use, either just a label or
complete geometry and textures. Weber et al. in [9] describe a method that is related to [14],
but has many improvements. It simulates the land use, road network construction and building
geometry over time. In each step of the evolution from village to city, the produced model is
realistic and complete (both a road network and building geometry).

In contrast with other systems that simulate the land use and the creation of a road network,
Weber et al. also simulate building geometry. A more common approach for land use simulation
is using a set of agents, discussed in the next subsection. In that approach a regular grid of land
patches is used. The application described in [9] includes realistic geometric configurations that
do not rely on such a grid. Furthermore it aims at fast simulation and interactive speed.

The system starts with an environment defined by the user, this includes maps for elevation
and water. The user can also specify the initial urban layout. This can be a single street, or
an already developed city. Furthermore the land use type definitions have to be specified. The
system has to know how to assign a value and land use to an area.

Based on this initial data set the application starts by expanding the network of main roads
according to the city centres and the defined growth rate. The road expansion is inspired by
[14], but instead of using an L-system, it uses grow seeds to the expansion faster. New street
segments grow from the nodes in a temporally meaningful order. For each node, three values have
to be chosen for expansion: direction (straight, left, right), deviation, and length. The values
for deviation and length are chosen based on the active pattern (organic, grid, or radial). These
patterns can be imposed by the user via painting weights or via the chosen land use type. The
snapping rules as defined in [14] still apply and help the creation of patterns.

During the road expansion the main roads will form quarters, see Figure 2.12. When such a
quarter is created, the dominant land use type for that quarter is estimated based on the land
use type definitions. Based on this type a secondary road network will be constructed. In turn
these minor streets will surround blocks and the blocks are then subdivided into lots. For both
the blocks and the lots the land use is estimated. The land use of a lot and the placement with
respect to the road are of influence on the calculation of the zoning regulation within the lot. This
zoning regulation describes the volume wherein the building on that lot will be constructed.

An important feature of the created application, is the traffic demand model. This model is
used to determine if a new road segment should be built and if existing roads should be wider to

18

Figure 2.12: The structure of the system from
major street expansion to building generation. [9]

Figure 2.13: The number of trips (blue) start-
ing at a street (green) depends on the number of
residents on the number of residents (left) and the
overloaded streets after the simulation (right). [9]

handle the traffic load. Since existing traffic demand models did not offer the detail, or needed
too many external variables to run, a new traffic demand model is proposed.

This simulation calculates the traffic load for each road segment by stochastic sampling. Both
proposed and existing road segments are included in this simulation. The algorithm distributes a
discrete number of trips in the road network by selecting a start and end point for each trip. Then
the shortest path is calculated and the traffic value of all road segments visited on the trip are
updated according to the volume of the trip. The number of trips starting at a street, see Figure
2.13, depends on the residents present at lots at that street. This number depends on the land
use type and value.

When the simulation has finished updating the traffic load values, the system looks for proposed
roads that have enough traffic to be constructed. If the traffic value of such a road exceeds a user-
defined threshold, the road segment is constructed. Also the width of streets that need more
capacity are updated.

The goal of the land use simulation is, unlike many agent-based approaches, to simulate a
system that strives towards better land use configurations, instead of finding the optimal use of
land. The user of the application can define a set of possible land use types (such as residential,
commercial, and industrial). These land use types are defined as a combination of land use
evaluation functions. These define how well the land use configuration matches the user-specified
percentages of land use. An example of a growing city with changing land use over time is shown
in Figure 2.14.

Figure 2.14: The growth of a city after 10, 30, and 50 years (simulated in 58 seconds). [9]

In the update cycle random lots are selected and their land use type is changed if it increases
the land use value enough. This simple algorithm is fast, and is configurable for changes over time
of demands and planning strategies. The land use value, used as a decision basis in the algorithm,
is affected by both global goals (such as the user-specified land use percentages) and local goals
(such as clustering, neighbourhood land use and traffic load of nearby streets).

19

2.2.3 Agent-based Modelling of Urban Land Use

Most methods described above all use a global authority to control the growth of the city. The
agent-based approach by Lechner et al. [25], which is later extended in [26], releases agents in
a city to let the city grow locally instead. Each agent has a specific task; one might be a road
extender, while another has the task to build schools. The agents themselves have a simple rule
set, but due to differences between the rule sets of agents, the agents together can perform complex
behaviour such as the construction of a city.

Agents have the advantage over L-systems of forming a more robust system [25] and are easier to
change and extend for more cases (cultures, eras, unique buildings, etcetera). Another advantage
is that the created land usage and road network has a meaning for the city. Though this approach
does take over much work of the designer which might not be desirable for artist and architects.

The goal of the approach by Lechner et al. is to generate convincing and plausible cities by
capturing developmental behaviour. Furthermore the cities generated should look compelling in
every stage of the growth of the city. Instead of focusing on creating geometry around a generated
road network, the project focuses on the land usage and building distribution in the city.

These agents interact directly with their environment, which consists of a set of rectangular
patches. Each individual patch can also follow behaviours, but cannot move. By interacting with
the patches, the agents can interact indirectly with each other. Although this does give realistic
results, it is still slow and does not generate building geometry. A city of roughly 23 square
kilometres, such as the one shown in Figure 2.15, takes several hours to generate.

Figure 2.15: A vectorised output from a procedural city model with residential (yellow), commercial
(red), industrial (blue) and park (light green) regions. [26]

The only input the user should give to the application is a terrain map. This map consists
of three elements: land (green), water (blue) and a growth centre (grey). The shade of green
determines the elevation of the land. Based on this terrain map, the simulation can start building
a city starting at the growth centre. During the simulation the user can change parameters to
tune the behaviour of the agents and by that the resulting city. The user can for example change
the possible deviation of newly created roads to have a raster pattern used or a more organic road
network.

The application also offers artists the possibility to pause and alter the course of the simulation
freely. One important way is the painting interface that enables the use of removing unwanted de-
velopment by erasing patches. Another feature is painting honey that will attract the development
of a certain property. In Figure 2.15 honey was painted in the harbour area to attract commercial
development. The user can also paint reserved area to prohibit development in a specific area.
Another way of changing the development is by changing the parameter values and weights used
by the agent to determine land values and road construction. These can be applied locally or on
a city wide scale. The use of a few features is shown in Figure 2.16.

20

(a) (b) (c) (d)

Figure 2.16: Steering the simulation, starting with (a), by removing an undesired commercial and
industrial cluster of the city (b) and painting honey (c). The result is shown at the right (d). [26]

The growth of the cities in the application highly depends on the values of the patches and
the added value of changing the patch done by the agents. The agents will only replace a patch
if it results in a higher land value. The value of a patch or collection of patches (parcel) depends
on the weight inherent to the property developer type. For residential developers, elevation and
being close to other residential areas gives higher land values, but industry tends to cluster near
the main roads and water. Figure 2.17 shows this process.

Figure 2.17: The growth of a city from a few roads and growth centres around road junctions and near
water. [26]

The application has four types of developers, namely residential, commercial, industrial and
park developers. They create parcels of corresponding patch types. The residential patches cannot
be converted directly to industrial and vice versa. Park patches cannot be converted at all. Those
are created slightly differently. The creation of parks needs a minimum city size and population
and depends on the total amount of already created park patches. Furthermore, these can only be
built on unused land and are generated using a flood fill operation instead of the method described
above.

These developer agents wander around the terrain and search for unused cells. The agent
chooses a random target parcel size (from a range specific for the type of developer) and starts
creating a parcel starting from the found patch and adding patches while moving away from the
road. When half a block length has been travelled, the agent starts widening the created strip
to the sides, while keeping neighbouring parcels intact. When the agent is not able to add the
chosen number of patches to the parcel, it tries to merge the parcel with neighbouring parcels of
the same type. If then still the preferred parcel size has not been reached, the creation of the
parcel is aborted.

The roads in the city are generated by three types of developers. The tertiary road extender
which makes sure parcels can be reached by road, the tertiary road connector that makes sure the
roads are properly interconnected and the primary road developer. This primary road developer
is unlike the other two less bound to the grid patterns and creates a more organic pattern. Its
goal is to connect the centre of the city to its surroundings and ensure that primary roads are not

21

always nearby to parcels. The primary road developers try not to get close to other primary road
developers and avoid recently visited patches to prevent overly dense road structures.

Figure 2.18: A visualisation of one of the cities using SimCity 3000. [26], [27]

For the visualisation of the city, the generated maps were imported by the authors into Elec-
tronic Arts’ SimCity 3000 [27], see Figure 2.18. SimCity 3000 comes with a library of buildings
that is used for this visualisation.

2.3 Discussion

The previous two sections covered methods proposed for generating realistic urban areas. Many
techniques try to recreate typical road patterns in the generated cities. This can range from using
just a rectangular grid or let the user define patterns and their locations and generate a graph
between the crossings in the selected pattern [11], [12]. Other techniques tend to focus more on
the functional background of a city and how the land use within it changes over time.

2.3.1 Road Patterns

The technique using road patterns described first (Sun et al. [11]) is fast and creates a realistic
road network, but lacks building geometry. The artist has some freedom in shaping the road
network by setting the types of patterns to use and their position. The roads are then generated
in between the crossings defined by the chosen pattern. The second technique (Kelly et al. [12])
also grows roads between crossings, but also adds building geometry and local pattern differences.
The technique is fast enough to generate a complete city in real-time. Just like the first technique,
the created city has no history and does not evolve over time.

The system described in [12] uses L-systems to create a secondary road network, inspired
by the CityEngine [14]. CityEngine cannot produce cities in real-time, and is therefore not as
interactive as [12], but the created cities are realistic. A remarkable property is the meaning
behind the construction of the road network. The roads try to connect parts of the city having a
high population density. Buildings in generated cities depend on the land use chosen by the user.
The created geometry is either a skyscraper, commercial, or residential.

To have a more interactive design tool, a faster technique than L-systems was needed and
therefore tensor fields were used to guide the creation of a road network [20], [21]. The user can
manipulate a tensor field using many tools like brush strokes and rotations. The road network
is created by tracing lines in the tensor field which creates a raster at first that can be bent or
broken to generate any pattern. This method offers fast and interactive road network design. It
does not offer historic context of the city, nor a land use simulation.

22

Another fast and interactive approach was given by Vanegas et al. [23]. This approach moves
jobs and population to find an equilibrium in the variables saved on a 2D grid. Primarily based
on these variables the roads are generated. It offers the user a tool to iteratively create a large
urban area for which the geometry and the behavioural modelling are linked. The whole process
can be completed in just a few minutes. This approach is interesting due to its fast simulation of
how a city will look like based on the terrain and how the agents move within the city, though it
does not simulate over time and requires a lot of input from the user.

2.3.2 Land Use Models

The methods discussed above focus on the creation of known patterns in roads, a few techniques
however focus on the land use within cities. Three different land use related techniques have
been discussed. The first proposed in [13] aims specifically at generating a realistic layout of the
different land uses. The primary road network is radial, and the secondary network is created by
using the edges of a Vonoroi diagram as roads. The secondary roads also mark the edges of a
land use area. A tertiary road network can be created within the land use areas using a system
like [14]. This technique can generate the layout in seconds using just a minimal input from the
user. The land use in the city has a meaning and is related to the land use in neighbouring areas.
However, this system does not include buildings.

The technique proposed in [9] does include geometry and has many similarities with [14]. It
simulates the land use, building geometry and road construction over time which results in visually
realistic cities. It also simulates the traffic in the city to determine if roads should be built or
replaced. The system can simulate a year of development in a second. The controls can be difficult
since a good configuration of parameters can be hard to define for a non-expert.

The last described approach simulates land use using agents [25], [26]. Each agent in the system
has a specific task and by simulating them over time a city is created based on simple rules. Every
construction operation has a meaning and the growth is simulated over time. The system can
easily be extended by adding new agents with new rules. Though the major disadvantage is the
speed. It can take hours to create big cities.

23

Chapter 3

Approach

Most of the procedural techniques for creating virtual urban areas described in the previous chapter
are capable of creating visually realistic content. Some methods take hours to create an urban
model, while other approaches only need a few seconds. The resulting urban areas, however, lack
meaning and in many cases they also lack history. Some content generators included meaning into
the creation process through land use simulation. However, the used static generation processes
were not very generic and were mostly controlled via unintuitive parameters.

The goal of this project is to create an approach that incorporates semantic information and
history in the creation process of a virtual urban area. The generated model should be suitable
for use in a semantics-based game. It should therefore obey the rules of the semantic game world
it is created for. How this abstract idea is translated into a description of a simulator, is explained
in Section 3.1. The second section elaborates on the relations mentioned in the first section and
describes in detail how the semantic information is used to simulate urban area development.

3.1 Semantics of Urban Areas

To create a procedural method for generating virtual urban areas that are suitable for a semantic
game world, the semantics of the game world should be incorporated in the generation process
of the urban areas. The resulting models should reflect the semantic information specified by
the game world. The diagram in 3.1 shows how this idea is split up and how the components
relate to each other to form a description of a simulator. The yellow blocks represent a high-level
description and the actual game world. The blue blocks are part of the government instance that
guides the simulation and red blocks relate to the actual patches that are used in the simulation.
The blocks and their relations will be described in this section.

3.1.1 Terrain

A major part of the semantic game world is the terrain map. The features of this terrain, such
as mountain ridges, rivers, and forests, define how the terrain looks. These features are not only
of visual importance, but they also contribute in the meaning of the terrain. They affect other
objects on the terrain. For example, if a city is located near a river, the river provides the city
with plenty of water and also offers a possibility for transport. If the city happened to be near
a mountain ridge, the rocky areas could supply the city with stone if the citizens would build a
quarry in the rocky areas.

The resources offered by natural terrain features attract people that need those resources.
This will result in a settlement near those resources to harvest them. So, the locations of the
features also influences where a settlement is located. A settlement in itself can become a place
that attracts people, by offering housing and other facilities wanted by people. as a settlement
grows, it might reach natural borders, such as a steep cliff or a river. When lots of the settlement

24

Figure 3.1: This diagram how the goal of the project is related to the features of the created simulator.

are placed near the borders, the borders of the lots, on which the buildings of the settlement are
located, will follow the natural borders. In this way, the borders of terrain features can shape a
settlement and its lots.

3.1.2 History

The shape and layout of the terrain features are not the only important aspects for the development
of an urban area. The history of the game world also plays a big role. The events that happened
over time shaped the world to what it is. This feature does not occur in other procedural urban area
generators. Events change the environment of the urban area and allow for a content generation
process that is less static. Events can include e.g. disasters that destroy parts of the urban area,
and technologies that change the possibilities of a civilisation. The former shapes the urban area
directly by damaging and vanishing buildings, while the latter allows for creating new types of
buildings and changes how the urban area is regulated. For example, the invention of reinforced
concrete made it possible to create taller and stronger buildings, like skyscrapers, that would
not have been possible without it. Nowadays most modern cities have tall buildings that were
constructed with reinforced concrete.

3.1.3 Government

During the development of the urban area, decisions have to be made about which of the pos-
sibilities are applied to keep the civilisation running. The instance responsible for making those
decisions will be referred to as the government. The decisions made by the government cannot
only be based on what is possible, but should also reflect the desires or goals of the government.
In turn, these goals are based on what is needed to sustain the urban area. The people in the
urban area, for example, need water and food to survive. They also need a place to find shelter
and a place to rest. For that reason, they also need houses and to build houses, building materials
are required. This example shows how the presence of people requires resources to be available.
If more resources are needed than that there are produced, shortages will be created. The gov-
ernment will adjust its goals to create more facilities that produce the needed resources. It will
try to find suitable locations for the facilities, near the locations where the resources are required.
In Figure 3.1 and this chapter, the lots containing the facilities are referred to as ‘patches’. The
semantic information of the patches is referred to as ‘patch types’.

The location, size, and shape of the patches is affected by the terrain features and other facilities
placed in the urban area. The following example will try to clarify this. In general, farms that
grow crops are unlikely to be built in deserts or rocky areas, since crops do not grow well in those
areas. These farms will be built on fertile ground. To operate, the farm also needs resources such

25

as water. It is therefore likely to be located near a river, for example, and the people that work
on the farm need housing, which implies that a house will be situated near the farm. The size
of the farm and its type will rely on the amount of food that is needed, how many resources are
available, and what the technologies allow to be built.

Over time, the government will add more patches. This can result in producing more resources
than needed. These surpluses will, as the shortages did, influence the goals of the government. It
will trigger the government to add patches that consume the resources, or it will replace patches
that produce the resources. The government could also choose to remove the unwanted patches
to lower the production of certain resources. This process of adding, replacing, and removing
patching helps to find a balance between production and consumption of resources.

3.2 Land Use Development

The government manages, based on its goals, patches that produce and consume resources. This
leads to surpluses and shortages which affect the goals of the government. This loop is the basis
of UrbSim. It simulates the land use development over time while incorporating the history and
semantics of the game world. Each simulation cycle, the goals and stock (surpluses and shortages)
of the government are updated (Subsection 3.2.1) to meet the current situation. Then all patches
are updated, which includes the collection and distribution of resources, see Subsection 3.2.2.
These resources are stored in the stock of the government. Old patches that are heavily damaged
are removed and new patches are created (Subsection 3.2.3-3.2.6). Also existing patches are
evaluated for their contribution to the area. If another type of patch would give better results at
that location, the patch is replaced. This can be used for both updating old patches and changing
the local area. This is part of the patch maintenance, see Subsection 3.2.7. After all updates
of the urban area are done, technology and disaster events are triggered. The technology event
will enable and disable patch types for the coming cycles and the disasters might damage existing
patches. These events are not described in more detail in this section.

3.2.1 Updating Stock and Goals

In each cycle the stock of the government is degraded. Both the surpluses and shortages are
reduced since the patches that needed the resources might have been removed or replaced and the
quality of the resources in stock might degrade. Food for example will not be of any value when
it is kept for a long time and starts to rot. The stock reduction is done by multiplying the old
stock value sr,t−1 of resource r at time t− 1 by 1− dsr where dsr is the degradation speed of the
resource, see Equation 3.1.

sr,t = sr,t−1(1− dsr) (3.1)

To help the user even more to get the simulation find an equilibrium between the production
and consumption of resources, the goals of the government are based on the surpluses and shortages
for each resource. The calculation of the new goal value gr,t at time t for resource r is given by
Equation 3.2. The new goal value depends on the finite market restrictions (fmrr,t, see Equation
3.3) and the previous goal value for that resource (gr,t−1). The weight wg determines how much
of the old goal value is retained and how much the current stock influences the new goal value.
This allows for more fluent changes of the goals rather than rapid changes of the government’s
strategy.

As will be explained in more detail in Subsection 3.2.3, the selection of patch types depends on
the goals of the government and the production values of the available patches. The production
values are compared with the goal values to determine which patch types are preferred. If the
goal values however grow to multiples of the maximum production values offered, the differences
between the patch types vanishes with respect to the goal. For example if the goal value is 1000
tonnes of food, there is not much difference between a patch type that consumes 1 tonne of food

26

and a patch type that produces 5 tonnes of food. On the other hand, if the goal value would be 6
tonnes, the latter patch type would have a much higher value than the first one.

Although this makes sense, it will lead to a lack of proper decisions to reach the goal value.
Since the difference in production values is no longer significant, the government will assign the
same value to the patch types. To overcome this, the goal values are capped at the maximum and
minimum production values as shown in Equation 3.3. The capped goal value or finite market
restriction fmrr,t is based on the stock value sr,t for resource r. As long as the shortage or surplus
is between the lowest production value (pr,min) offered by the available patches and the highest
production value (pr,max), the finite market restriction is the same as the negated stock value.
Otherwise it is capped by the mentioned limits.

gr,t = (1− wg)fmrr,t + wggr,t−1 (3.2)

fmrr,t = max(pr,min,min(pr,max,−sr,t)) (3.3)

3.2.2 Patch Update

When the existing patches are updated, the resources are collected from the patches. The produc-
tion of a patch is equal to its default production multiplied by its area, the inverse damage level
and the time that past since the last update. So less damaged and larger patches will produce
more than smaller and damaged patches. During the update also the damage level of the patch is
increased to mimic ageing. The speed of degradation of patches can be different per patch type
and can if needed even be zero.

The update of patches not only includes the gathering of resources but also consuming resources
by the patches. This is done via negatively valued resource productions. The calculation of the
net local production lsx,r for patch x and resource r is given by Equation 3.4. A negative value
indicates a shortage of resource r at the location of the patch and a positive value indicates a
surplus. In this equation the production of all patches in the neighbourhood (N) is cumulated.
Each production pn,r (see Equation 3.5) is weighted by the distance weight wd,n (see Equation
3.6).

lsx,r = px,r +
∑
n∈N

wd,npn,r (3.4)

The production (px,r) of the patch x for resource r depends on the health of the patch (1 −
dmgx), the area of the patch ax, the envisioned size aex, and the production value pvx,r. The
damage level influences the production of the patch negatively as Equation 3.5 shows; heavily
damaged patches produce less resources than equal patches with less damage. To translate the
patch type its production value pvx,r, the production is also scaled by its size divided by the
envisioned size. The latter is the area (width · height) set by the description of the patch type.

px,r = (1− dmgx)
ax
aex

pvx,r (3.5)

The distance weight of patch x is equal to one and is therefore not included in the equation.
The distance weight for the neighbouring patches, elaborated in Equation 3.6, depends on the
radius of influence ri,n and the bounding radius rb,n of neighbour n. When the centre of the patch
is within the bounding radius, the weight is one. If it is outside the radius of influence, the weight
and therefore the contribution of the production value is zero. When it is between these radii, the
weight is closer to one when the Euclidean distance is smaller. This results in neighbours close by
to have more effect on the local production lsx,r than neighbours that are further away.

wd,n =

1 dn ≤ rb,n
dn−rb,n
ri,n

rb,n < dn < ri,n
0 ri,n ≤ dn

(3.6)

27

To determine what part of the surplus and shortage is caused by the tested patch x, and
thus what is added to the global stock, the production of the patches px,r is tested against the
local production lsx,r (Equation 3.7). If px,r is negative and lsx,r is positive, or vice versa, the
contribution of px,r is equal to zero. If the values are both negative or positive, and the value of
px,r is closer to zero, this value is added to the stock, otherwise the value of lsx,r is added to the
stock, see Figure 3.2.

sr,t = sr,t−1 +
∑
x∈X

sign(lsx,r) min(|lsx,r|,max(sign(lsx,r)px,r, 0)) (3.7)

(a) The local shortages and sur-
pluses (lsx,r).

(b) The production values of patch
x (px,r).

(c) The contribution of px,r to the
global stock.

Figure 3.2: The bar graphs represent the production values. The contribution of the production values
of patch x to the global stock is limited by the local shortages and surpluses. In this example only the
yellow and blue resource are added to the stock.

When there are not enough resources available in the local neighbourhood to maintain a patch,
the patch will be damaged proportional to the shortage, see Equation 3.8. By doing so, also the
value of the patch decreases. It ensures that patches that are consuming too much or do not fit
in the local area are more likely to be replaced or removed.

dmgx,t = dmgx,t−1 + wdmg
∑
h∈H

|wh|max(lsx,h,min(px,h, 0))∑
r∈R min(px,r, 0)

(3.8)

The amount of damage done is a positive value between zero and one. The damage is based
on resources for which the patch causes a shortage (H) and thus both the production px,h and
the local production lsx,h are negative. The value of these two that is closest to zero is multiplied
with the absolute weight wh for the resource h to let more important resources have a higher
impact on the damage. The product is divided by the total negative production of the patch to
let shortages of heavily consumed resources do more damage than those that are used in smaller
quantities. The sum of these fractions is weighted with the damage weight (wdmg) and added to
the old damage value of the patch (dmgx,t−1). The damage weight is introduced to give some
control of the maximum amount of damage done each cycle. This gives an option for not directly
destroying a patch when there is a shortage of needed resources, allowing the system to restore
the stock values and maintaining the patch.

If the patch does not consume anything, the negative production is zero in which case the
patch is not affected by shortages. The damaged patches that exceed the damage threshold of one
are removed from the area. The borders are updated to allow new patches to be build on the free
space that became available.

3.2.3 Patch Type Selection

The patch update is followed by the creation of new patches. To determine which patch type
should be built, all available patch types are tested for their production values and creation costs
against the current goals of the government. As Equation 3.9 shows, the value of a patch type is a
weighted sum of the value for the costs (vt,c) and the value for the production (vt,p). The weights

28

wc and wp represent a preference of the government for costs and production respectively. To be
able to control the percentages of patches that are of a certain type, the value is also weighted by
the appearance weight wt,a. The calculated value is between zero and one, where a value between
zero and a half means a negative effect on the available resources and a value above a half indicates
a positive effect on the stock.

vt = wt,a(wcvt,c + wpvt,p) (3.9)

The values for costs (Equation 3.10) and production (Equation 3.11) are calculated by com-
paring the negative production or consumption (ct,r) and positive production (pt,r) value, with
the goal value (gr) for each relevant resource r. Resources for which the goal value is zero are not
taken into account. In the absolute calculation the difference between the goal and production or
cost is compared with the absolute value of the goal. So the closer the values are to the goal value,
the higher the added value is. Since the costs are positive numbers indicating a negative impact,
the costs are added to the goal in Equation 3.10 rather than subtracted from it. The resulting
value is bounded by zero and one, summed up with all values for all resources and normalised by
the number of resources tested. Note that the sets of resources (Rp and Rc) used in the calculation
for the production and costs value can differ. For example, a patch might have a cost value for
wood, but does not have a production value for wood. The resource wood would not be part of
the set of resources Rp, but it would be part of Rc. The normalised sum is subtracted from one
to give a higher value to productions and costs closer to the goal.

vt,c = 1− 1

|Rc|
∑
r∈Rc

min

(
1,
|gr + ct,r|
|gr|

)
(3.10)

vt,p = 1− 1

|Rp|
∑
r∈Rp

min

(
1,
|gr − pt,r|
|gr|

)
(3.11)

To select a patch type, the values are used in a fitness proportionate selection procedure [32]
which is also known as roulette wheel selection. This kind of procedure is often used in genetic
algorithms for selecting individuals from a population to generate offspring [33]. The chance for
selecting a patch type is proportional to its value compared to the other calculated values.

The fitness proportionate selection procedure first creates an array of increasing values. The
first slot in the array is set to the value of the first patch type. The second slot in the array is
the sum of the first slot and the value of the second patch type. The third slot is the sum of the
second slot and the value of the third patch type. This continues until all patch type values have
been used. A random number between zero and the value of the last slot is chosen as the input
of a binary search for the index of the slot in which that value lies. The resulting index points to
the patch type that is selected. This patch type will be used as the basis of location selection in
the next subsection.

Note that this procedure could result in selecting a low valued (a value less than one) patch
type. Although this has a negative effect in this local time span, it could have a positive effect on
the overall process. This prevents the algorithm from getting stuck in a local optimum.

3.2.4 Location Values

Before a new patch can be created, a suitable location has to be selected to the patch. First, a
fixed amount of random points is selected. These random points can only lie on ground types on
which the patch can be built. For each of these points, a suitability score is calculated by adding
up all relations scores that determine how the patch is attracted or repelled. The suitability
score for a location (sx, see Equation 3.12) is a weighted sum of the normalised production value
npsx, the number of artificial patches within the influence radius of the patch (Nx) normalised by
the maximum value found for Nx: Nmax, and a penalty (pyx) for not having any border within
its snapping range. The snapping range is equal to half the diagonal of the envisioned patch:
1
2

√
(width2 + height2), where width and height are the desired dimensions of the patch.

29

The first part of the suitability score equation, weighted with the production weight wp, is
transformed to emphasise the difference between negative and positive values. The last two steps
encourage the algorithm to select points that are near artificial patches to promote clustering. If
Nmax = 0, then the value for the fraction |Nx|/Nmax is set to zero. Otherwise its value between
zero and one is weighted with the neighbours weight wn. To ensure the value for sx is positive
and can be used in a fitness proportionate selection, all values below zero are set to zero and are
therefore neglected in the selection process.

sx = max

(
0, wp sign(npsx)

√
|npsx|+ wn

|Nx|
Nmax

− pyx

)
(3.12)

The most important part in Equation 3.12 is the normalised production score npsx which
represents how the production of the surrounding patches contribute to the score of the location
(x). The normalised production score is calculated by summing up all weighted and normalised
production values in the neighbourhood, as shown in Equation 3.13.

npsx =
∑
r∈R

wr min

(
max

(
spx,r

spmax,r
,−1

)
, 1

)
(3.13)

In this equation R is the set of all resources which are relevant to the chosen patch type.
For each of these resources a weight, wr, has been set. The weight determines if the patch
type is attracted or repelled for this resource. These relations are stored as a rational number
between -1 (repelling) and +1 (attracting). The weighted sum of productions of resource r in the
neighbourhood is denoted as spx,r, see Equation 3.14. The biggest value found for |spx,r| over all
locations is spmax,r and works as a normalising factor. This ensures that npsx, given that all wr
are between -1 and +1, is also between -1 and +1.

spx,r =
∑
n∈Nx

wd,npr,n (3.14)

The value of the weighted production sum spr,x is found by adding up all production values
for resource r of the neighbouring patches Nx. The production values are multiplied by a weight
wd,n which is based on the distance from the tested location to the neighbouring patches. The
calculation of this value was given in Equation 3.6. Instead of using the centre of a patch, the
tested location is used to calculate the distance weight.

The scores for location selection are used in a fitness proportionate selection just like the patch
type values in Subsection 3.2.3. The selection procedure returns the index of the chosen score
and location. The location that corresponds to the found index is used as the starting point for
creating the patch, see Subsection 3.2.6.

3.2.5 Location Selection Example

To show how the mathematics from the previous subsection work, a detailed example is presented
in this subsection. This example starts with three randomly chosen locations and three existing
patches, as shown in Figure 3.3. On one of the three locations a house should be constructed. A
household requires food and water, which results in positive weights: wfood = 0.60, and wwater =
0.40. In this case the weights add up to one, but this is not necessary for the final selection as
long as the sum of the weights is between -1 and 1.

For each of the patches the production values of both food and water are presented in Table
3.1. Also the distance weight for each location to each patch is given (Table 3.2). Location C is
not in range of the house patch and the well patch. Therefore it will only be affected by the farm.
Location A on the other hand is in the range of both the farm and the well, which results in both
a production of food and water for location A. Location B is not near the well and will not be
supplied with water.

To make sure that the location with the best circumstances (food and water are produced
near the location and artificial patches are near) receives the highest score, all productions are

30

Figure 3.3: Three proposed starting locations (A-C) for which the score should be calculated, based on
the surrounding patches (0-2). For the patches the bounding circles (black) and the influence range (red,
yellow, and blue circles) have been drawn. The ocean, at the top of the image, does not offer any resources
in this example.

n pfood pwater
House (0) -10.0 -10.0
Farm (1) 100 -40.0
Well (2) 0.00 50.0

Table 3.1: The production values per
patch type.

n Awd,n Bwd,n Cwd,n
House (0) 0.00 0.70 0.00
Farm (1) 0.80 0.50 0.20
Well (2) 0.60 0.00 0.00

Table 3.2: The distance weights for each
proposed location.

added up, normalised and weighted (Table 3.3). The cumulative food production at location A
for example is −10.0 · 0.00 + 100 · 0.80 + 0.00 · 0.70 = 80.0. This is also the biggest value found
for food production among the three locations (maxfood = 80.0), and so the normalised score for
food for location A is equal to one. When the food weight (wfood = 0.60) is applied, the final
weighted score for food for location A is pfood = 0.60. Although there is some water production
near this location, the consumption of water by the farm and the distance to the well cause the
value for pwater to be negative. Note that the normalising factor for water is the absolute biggest
value, which is 27.0, and does therefore not promote the negative value. Only if the weight for
water was negative, a negative production score would have a positive effect on the final score.

A B C
pfood pwater pfood pwater pfood pwater

spr,x 80.0 -2.00 43.0 -27.0 20.0 -8.00
Normalised 1.00 -0.07 0.54 -1.00 0.25 -0.30
Weighted 0.60 -0.03 0.32 -0.40 0.15 -0.12

npsx 0.57 -0.08 0.03

Table 3.3: The calculation of the normalised production score for each location. The production values
are first summed up, then normalised and weighted. The resulting values are again summed up to get the
normalised production score. The bold values are used to normalise (maxr).

Based on the normalised production scores location A has a clear advantage over the other
two locations. However, using this score directly for selecting a proper location might lead to
selecting locations that are far away from the urban area centre. This could be resolved by using a

31

resource that attracts all patches to promote clustering. To keep the patch types simple, another
option was introduced through counting the neighbouring artificial patches (see Equation 3.12).
The locations A and B are both near two artificial patches while location C is only in the range
of one. Furthermore, location C is not near a border and will therefore get a penalty (pyC = 0.1).
When the weights are set to wp = 0.5 and wn = 0.5, the location scores are calculated as shown
in Equations 3.15-3.17.

sA = max(0, 0.5 · sign(0.57)
√
|0.57|+ 0.5 · 2

2
− 0) = 0.88 (3.15)

sB = max(0, 0.5 · sign(−0.08)
√
| − 0.08|+ 0.5 · 2

2
− 0) = 0.36 (3.16)

sC = max(0, 0.5 · sign(0.03)
√
|0.03|+ 0.5 · 1

2
− 0.1) = 0.24 (3.17)

The found scores clearly indicate that location A is the best location. It has the highest food
production and not as many losses on water as on the other locations. Although location C offers
slightly better production values, location B has a higher score since it is near more artificial
patches. To select the starting location for patch allocation, all scores are placed in the array as
described in the Subsection 3.2.3. This results in the following array: [0.88, 1.24, 1.48]. A random
number between 0.00 and 1.48 is chosen. For example 0.84 is chosen, and index 0 is found by
binary search. Index 0 corresponds to location A and therefore this location is chosen as the
starting point.

3.2.6 Patch Allocation

The starting point is first snapped to the nearest border border, Figure 3.4(a). By doing so, the
algorithm for creating a new patch is more likely creating a patch near other patches and therefore
a more coherent urban area. It also adds meaning to the orientation of the patch since it will
be aligned with the border it snapped to. The closest point on the nearest border replaces the
starting point. The snapping range is half the length of the diagonal of the envisioned patch (see
Subsection 3.2.4). If no border is found within that range, the algorithm uses the given location,
but with a random starting orientation.

(a) A snapped starting
point.

(b) Expansion to the
sides.

(c) Outward expansion. (d) Connect the two end
points.

Figure 3.4: The allocation of a patch starting by (a) snapping to a border, continuing by (b) expanding
the two traces to the sides, followed by (c) growing perpendicular to the first trace and finally (d) connecting
the end points of the two traces.

The algorithm for allocating a patch grows two traces of vertices, see Figure 3.4(b), one to
the left and one to the right relative to the normal of the edge it snapped the starting point to,
or a random normal in case of no snapping point was found. While adding new vertices to the
traces, the algorithm tries to follow or snap to the borders of the terrain and other patches without
crossing borders. By snapping and following the borders on the terrain, the algorithm tries to use
the terrain data to shape the patch to give more meaning to the final shape.

32

When the expanding trace is snapped, it will try to follow the current border it is on until it
has reached half the width of the patch or when the next edge of the border diverges more than
π
16 radians compared to the angle of the last edge of the trace, in which case the trace releases the
border. The latter does not apply to cases in which the border diverges to the right (when tracing
clockwise) and to the left (when tracing counter-clockwise). This prevents the trace from crossing
the border.

If the trace is not snapped to a border or stopped because of the diverging border, it will run
freely in its current direction until it snaps to another border or until it reaches the predefined
length. The direction of this run is the same as the last edge of the trace. This extends the current
borders and creates more consistency in the landscape. Snapping to another border occurs when
a border is within a the specified range of the trace and an angle of π

16 radians relative to the
direction of the trace. When multiple snapping points are found, the closest point is used.

When both traces have reached the specified length, the traces should expand parallel to each
other, perpendicular to the angle between the end points of both traces, as in Figure 3.4(c). Again
the same procedure is applied for expansion of the two traces and so they can snap to and release
borders until they have reached the predefined length, which is the height set for the patch type.
In the example both traces release from the polygon on the top and try to grow parallel to each
other. The trace on the left snaps to the border it meets within its range (the yellow dashed
triangle).

The last step in the process tries to reconnect both traces by expanding the traces towards
each other, Figure 3.4(d). When nothing is near the line between the two trace ends, the trace
can be completed by adding an edge between the end points. However if only one of the traces is
snapped, only this trace may expand for one step. After that another check is done to see whether
there is a line without intersections between the end points. In the case of both traces being
snapped to a border, the system checks if the traces will meet when expanding towards each other
on the snapped borders. If the traces meet, the polygon is linked to the patch type and placed on
the terrain as a patch.

3.2.7 Patch Maintenance

The maintenance of patches ensures that patches are replaced when they do not fit properly in
their neighbourhood or are not producing the right resources for reaching the global equilibrium.
Also, by replacing bad patches rather than removing them, the structure of the local area is
maintained. Since a fully grown urban area will contain many patches, only a random subset is
chosen to reduce the number of calculations needed. For each patch x in the subset a location
(vx,p) and production value (vx,l) is calculated, see Equation 3.18.

vx = 1− wpvx,p + wlvx,l (3.18)

The production value vx,p depends on the goals and was also used in Equation 3.11 in Sub-
section 3.2.3. It is weighted by the production weight wp. In contrary to Equation 3.11 actual
production values are used instead of predicted production values. This means that both the area
and damage level of the patch contribute to the final production value.

The location value vx,l is based on the current consumption by the patch and whether the
surrounding neighbours can supply the patch with the needed resources as shown in Equation
3.19. It is calculated in the same way as the impact of shortages was calculated for damage in
Equation 3.8. The set H holds all resources h for which both the production of the patch px,h
and the production from neighbouring patches lsx,h is negative. These values are compared with
the total consumption by the patch and weighted per resource with wh. By subtracting the sum
of the fractions from one, a value between zero and one is created in which zero stands for a bad
fit with many shortages and a one for a proper location without shortages. If no resources are
consumed, the value of vx,l is equal to one.

33

vx,l = 1−
∑
h∈H

|wh|max(lsx,h,min(0, px,h))∑
r∈R min(0, px,r)

(3.19)

When all values for the subset of patches have been calculated, the values are used in a
fitness proportionate selection (see Subsection 3.2.3). From the subset of patches, a small subset
of patches is selected and used for possible replacement. For each of the selected patches, the
algorithm searches a suitable replacing patch type.

To find a suitable patch type to replace a patch from the small subset, the value of each patch
type t is calculated as in Subsection 3.2.3 was described, based on the centre l of the selected
patch. Though in this case all patch types that do not suit within the bounds of the area of the
selected patch are omitted, so only patch types aimed at a similar size are used. Subsection 3.2.6
already explained the thresholds used for area size. Excluding patch types by size could result in
an empty list of possible replacements. If this happens, the replacement process stops.

The calculation of the score for a patch type consists of calculating the location value vt,l and
the production value vt,p. The latter was already calculated for the patch type selection in the
patch creation phase (Subsection 3.2.3-3.2.6). This results in a score for each patch type (Equation
3.20):

scoret = wpvt,p + wlvt,l (3.20)

This score is also calculated for the selected patch to be able to compare the scores. This score
is based on the current production values and therefore a less damaged patch will have a higher
score. Using fitness proportionate selection, one patch type is selected for replacing the patch.
Though this will only happen if the score of the selected patch type is higher than the score of the
patch itself. The chances of replacing the patch are therefore higher when the patch is damaged
or in a wrong neighbourhood. The costs of the replacement are the same as for placing a new
patch.

34

Chapter 4

Implementation

This chapter explains how the approach described in the previous chapter is transformed into
software, including some solutions to problems that were encountered during the process. For
many parts of the design, implementation aspects are mentioned here. Also the global structure,
communication within the software, and used libraries are discussed.

4.1 Process

To implement the software, an agile software development approach was used. First a rough
planning was made covering the whole project, starting in October 2011 and ending in June 2012.
Each month a working prototype was planned to be delivered covering new features. Before each
monthly cycle the project planning was updated to remain accurate with the current direction
and state of the project. The features of the monthly cycle were spread over the weeks of the
month and for each week a specific planning was made just before the week started. The final
rough planning for the project can be found in Appendix A.

During the implementation process a few parts turned out to be more difficult to implement,
such as the creation of patches and the maintenance of the borders. A lot of time went into
implementing those features. This forced me to adapt the planning causing a few major elements,
like road and traffic simulation that could greatly enhance the simulation, to be left out.

The simulation is run on a terrain created in SketchaWorld [6], an approach for the declarative
modelling of virtual worlds. With it, designers can create three-dimensional game worlds that
include forests, rivers, roads, and cities by using simple, high-level constructs. SketchaWorld also
provides a Polygon class which is used by UrbSim to indicate the borders or patches. This class
relies on the General Polygon Clipper library (GPC) [34] for doing boolean operations on polygons.
The semantic information needed for the simulation is supplied through a database created with
Entika [28], a framework to facilitate the deployment of semantics in games. UrbSim relies on
many elements provided by both the SketchAWorld project and the Entika project. Since both
projects are written in C#, it was convenient to write UrbSim in C# as well.

4.2 Structure

The software system has the Simulator class as its basis. This class controls the simulation by
sending updates to the Display and the Government. The Display, explained in more detail in
Section 4.5, handles user input and also provides graphical feedback to the user. It is created by
the Program class at the start of the program. The Government, see Subsection 4.3.1, manages
the patches. For this process it uses the AllocationManager for creating new patches, and the
Solutions for replacing patches. Figure 4.1 shows these major classes and their associations.

35

Figure 4.1: A simplified class diagram of the system. The complete class diagram is posted in Appendix
G.

4.3 Semantics

All semantic information used in the simulation originates from a database created by the user
with Entika [28]. This semantic information defines all relations between the objects in the world,
their properties and also the types of interaction possible with the objects. Since it can be hard
for designers to write all default information themselves, they can choose to extend a database
that holds the bare necessities for the simulation and game world. In this and the next chapter,
this database will be referred to as the ’default database’. More information on this database can
be found in Chapter 5 and Appendix D. The designers are not restricted to using the default
values. They can still change the generic types which allows them to control the semantics both
on a global scale and in detail.

The semantic information is distributed over a few classes. Most information is stored in the
Solution instances (see Subsection 4.3.2), including the repelling and attractive factors among the
different patch types available. The government receives information about which Solutions can
be used and when. This last part is stored in a subset of the events. The other events hold
information about destruction, see Subsection 4.3.4.

Originally the system intended to use the Semantics Engine from the Entika project rather than
just copying the semantic information into the different classes. This would leave the Semantics
Engine to process most semantic information for distributing and collecting resources, executing
the events and changing patch values and damage levels. However, this turned out to be unfeasible
to create in the database and it would be slower than it is with the use of specialised classes. On
top of that, not all distance checks would be run each cycle to save time which would result in
lacking information.

4.3.1 Government

The most important class in the simulation is the Government class. As described in the pre-
vious chapter, the government is responsible for adding, replacing and removing patches. The
government holds a collection of created patches (PatchCircles) and a list of called patch types
(Solutions) that can be applied to new patches. The collection is updated every cycle by adding
new patches, and replacing and removing low valued patches.

During each cycle, also new goal and stock values are calculate. These are both stored in a
Dictionary, a class that holds a collection of values that can be accessed by giving a key value.
Each key points to a single value. Retrieving a value using a key is very fast (O(1)), because the
Dictionary is based on a hash table. Using the Dictionary class for storing the goal and resource
values does make it more complex to work with compared to arrays, but makes it incredibly flexible
for the generic input given by the semantic database, allowing the user to create any wanted new
type of resource. The keys used in both collections are the same as those used in the patches to

36

make it possible to compare resources, goals and production values.

4.3.2 Solutions

The semantic information of patches is stored in Solution instances which in turn are kept by the
government. These patch types, as they were called in the previous chapter, hold information
like envisioned size and corresponding production and costs, the category of the patch, and the
attraction weights. Just like the resources and goals of the government, the production values,
construction costs, and weights of the solutions are stored in a Dictionary. The keys used in
these Dictionaries correspond to those used for the resources and goals. These values are used
for calculating the production values and construction costs of a PatchCircle when created with
a Solution and for calculating the value of a Solution compared to the current goals and stock of
the government when new patches have to be created.

Which Solutions are available to the government, depends on the technological advancement
of the government. The technologies that enable or disable solutions are stored in a technology
tree. A technology tree is a network of technologies that succeed each other. A technology might
depend on other technologies and can only be triggered once its dependencies have been researched
first. Each technology has a starting time linked to it. When the simulation reaches that point
in time, the technology is triggered. However, if the dependencies of the technology have not
been triggered, the technology is pushed onto a stack of technologies that have to be checked
again in the next cycle. The technology will stay there and it will not be executed as long as the
dependencies have not been researched.

If a technology is executed, all relations are read. A technology may refer to multiple solutions
to be enabled and disabled at the same time. All patch types that should be enabled are added
to a list of available solutions. All patch types that should be disabled are removed from that list.
The latter is useful when a patch type should be replaced or upgraded to allow a farm to produce
more food or change the building style of houses, for example. It can also be used to simulate
the end of an advanced era and introduce old style patches again. However, this will not directly
change the existing patches. The new patch types will be introduced gradually by adding and
replacing patches.

Solutions are also linked to natural patches which are created in the segmentation of the terrain,
which is explained in the following subsection. To inform the system about which natural patch
type is related to which terrain feature, a separate file holds all database references. This file
assigns each ground type and terrain feature found on the terrain to a Solution. Each Solution
can cover one or more terrain features, so not every terrain feature has to be mapped one on one
with Solutions to reduce the number of natural Solutions needed and to keep an overview. For
example, the user can create a new Solution for a mountain top, if specific relations for snowy
mountain tops are needed in the simulation. The database references file can also be used for
changing the ‘Natural’ category reference if one would like to use another category as the basis
for natural Solutions.

4.3.3 Borders

The creation of patches largely depends on the features of the terrain. To reduce the system load
when creating new patches, these features are converted into polygons that mark the borders of
the features. The terrain features are stored as natural patches in the allocation manager. This
is done by the TerrainLoader class.

The simulation starts on a terrain created in SketchaWorld [6]. The terrain features are saved
in five different layers. Each layer has to be processed separately. The last two layers, roads and
buildings, are neglected because the simulation needs a terrain without artificial elements. The
first layer is the terrain layer. This layer is a height map of the terrain combined with a ground
type at each point on the grid. This is converted into maps, one for each category of patch types.
For the ‘Natural’ category even for each patch type.

37

All grounds on which the patch can be built are merged together to form one big polygon
called the allowed building area. The conversion to an allowed building area map is done in four
steps (see Figure 4.2): first a black and white bitmap is created, then the bitmap is converted into
scalable vector graphics (SVG) and finally it is converted into polygons that are used to create
patches which can be used in the simulation. Normally less steps would be needed for such an
operation, but no library for transforming the terrain into polygons was available. The following
paragraphs will elaborate on each step and will cover both the conversion for natural patches (the
creation of natural patches that will be stored in the collection of patches, depicted in Figure
4.2(a)) and the creation of allowed building maps per patch category (shown in Figure 4.2(b)).

(a) Each area with a different ground type is converted into a patch. This conversions results in a set
of separate patches with semantic information attached to them.

(b) To get a set of allowed building area polygons, areas of different ground types are combined based
on the information from the database per patch type category.

Figure 4.2: The terrain is segmented into natural patches (a) and allowed building maps (b).

Sampling First a bitmap of 128 by 128 pixels is created. For each pixel in the bitmap the corre-
sponding point on the terrain is calculated. For this location the ground type is compared
to the list of allowed ground types. If this border map is created for a natural patch, this list
contains all ground types that correspond to the patch. Otherwise it is for a patch category
and will therefore include all ground types on which patches from the category can be built.
If the found ground type is in the list, the pixel is set to black, otherwise it is painted white.
This results in a bitmap indicating all allowed areas with black.

SVG The conversion of the bitmap to a scalar image is done using a library called ‘Potrace’ which
was created by Peter Selinger [35]. It traces borders in the bitmap for finding smooth traces.

Polygons The vector image is saved as a set of lines and curves. The polygons can be constructed
by reading the image file step by step, saving the lines as lines in the polygons directly and
approximate the cubic Bèzier curves at 25, 50 and 75 percent of the curve as connected
points of the polygon.

Patches To complete the conversion, the created polygons are saved as patches (in the case
of natural patches) in the collection of patches, or as an allowed building area map (for
categories). For the natural patches this means that the semantic data from the database is
linked to the polygon. The allowed building areas are stored in the allocation manager that
will use them later on in the creation process of artificial patches.

38

The second layer contains all water features like rivers and lakes. These are already stored as
polygons and can therefore be used directly. If a category of patch types cannot be built on the
water features, the polygons are subtracted from the allowed building area map of that category.
If the patches can be built on water, the polygons are unified with the area map. The polygons
are also added to the collection of patches since they can be set to produce water and therefore
attract patches that need water.

The third layer consists of vegetation. Forests are defined as polygons and are treated in the
same way as the water features. The forests are either subtracted from or added to the border maps
for the different categories. The layer also contains pastures and fences, which are neglected since
these are artificial. Applying the vegetation layer concludes the conversion of the SketchaWorld
terrain.

After the conversion, the allocation manager has a set of natural patches and a set of allowed
building area maps. The maps that define the allowed building areas are not static, but are
updated every time a new patch is created or removed. When a patch is added, its footprint
polygon will be removed from all allowed maps with which it intersects, as shown in Figure 4.3.
This prevents new patches from being built on top of other patches. When a patch is removed, the
polygon is merged again with the maps, but only the intersection with the original area is added.

Figure 4.3: For each patch type category an allowed building area (green) is defined. In this area new
patches (yellow) from this category can be created. The area covered by the new patches is subtracted
from the allowed building area.

4.3.4 PEvents

Events can be used to give the user more control over the course of the simulation and to make
the simulation less static. In UrbSim only two types of events are used. The most important
event type is technology, which was explained in Subsection 4.3.2. The other implemented event
is a disaster: destruction. This event will increase the damage level of all patches within the area
of the event. The amount of damage done by the event is proportional to the amount of overlap
the patch has with the destruction area, see Equation 4.1. The area of overlap aox is divided by
the total area of the patch ax to find the percentage of overlap. This fraction is added to the old
damage level dmgx,t−1, resulting in the new damage level dmgx,t.

dmgx,t = dmgx,t−1 +
aox
ax

(4.1)

The destruction area can have any shape and size. If multiple areas are affected, multiple
events should be created. After the execution of the event, the patches that were completely in
the area of destruction, will be removed in the next cycle during the update of the patches, see
Subsection 3.2.2.

The timeline in which the events are stored is both present in the simulator as well as in
the TimelinePanel. The former keeps a list of triggered but not executed events and calls the
government to execute the event. It also asks the timeline to return all events in the current
timespan of the simulation and also forwards them to the selected government. If the government
is not able to execute it, it is temporarily stored in the list of events that have to be executed

39

later. The TimelinePanel just uses the timeline for displaying the current state of the simulation
including the events and the current time.

4.4 AllocationManager

The AllocationManager instance fulfils the task of finding proper locations and shapes for new
patches. It receives a Solution from the government. Using the properties of the solution and
randomly chosen points, the allocation manager tries to select the best location. After that it
grows two traces parallel in time until these join again, see Subsection 4.4.1. Afterwards, the
created polygon is checked to see if it meets the requirements set by the Solution. With over three
months of designing, writing, and testing, this part of the program took by far the most time to
complete. This was not only because of its size and the lack of some mathematical operations in
the used libraries, but also because of its complexity (especially the patch creation) and the many
bugs that popped up during those months. Most severe bugs were related to problems with the
polygon clipper.

4.4.1 Patch Creation

Allocating the polygon for a patch is done in three stages: expansion to the sides, outward ex-
pansion, and connection. The first stage is executed using the angle of the snapped element, the
second stage starts both traces perpendicular to the angle made by an imaginary line between the
end points of the two traces and the last stage tries to link the end points. The stages are all quite
similar, except that the last stage adjusts the direction every step to make sure the two traces will
meet.

In each step the algorithm tries to expand both traces. It first calculates a candidate point
for expansion of the trace, according to its position, direction, and distance it has to travel. This
step also determines the state of the trace (see Figure 4.4). Based on the states of both traces, a
decision is made for either adding the expansion candidates or not. The latter option allows the
traces to wait for each other to avoid missing each other during expansion. The traces can be in
four states:

(a) SNAP (b) END (c) NEXT (d) RELEASE

Figure 4.4: The traces switch between four states. This is done during the selection of a expansion
candidate.

SNAP The trace is not following a border, but encounters an object (blue) in its view (yellow).
The trace will snap to it. The angle of view of the traces is π

8 radians. The value can be
changed via the database as a parameter of a patch type.

END The trace is not following a border, and does not see a border in its view. The end point
of the trace can be set and the trace is finished.

NEXT The trace is following a border, and has the next point of that border in its view. It will
add that point to the polygon.

RELEASE The trace is following a border, but the next point of that border is not in its view.
The trace will release the border.

40

The transitions between these states can be seen in Figure 4.5. This is a simplified state
diagram showing the two decision moments: finding a snapping point, and checking whether the
next point diverges too much from the current direction of the trace. The actual implementation,
however, is a bit more complex. During the allocation of the patch, two traces are expanded in
parallel, giving combinations of states. The essential combinations of states are shown in Table
4.1. The states SNAP and NEXT have an overlap in properties and are therefore shown as one
state: SNAP/NEXT. The actions shown in the table are results of the combinations of actions.

Figure 4.5: The transitions between states are based on finding a snapping point (when the trace is not
attached to a border), or finding a next point in range (when the trace is attached to a border).

State A State B Action A Action B Path found
SNAP/NEXT SNAP/NEXT Expand Expand Maybe*
SNAP/NEXT END Expand Wait No
SNAP/NEXT RELEASE Expand Nothing No

END END Expand Expand Maybe*
END RELEASE Wait Nothing No

RELEASE RELEASE Nothing Nothing No

Table 4.1: The states of two traces (A and B) after calculating the possible next step influence the
decision whether the trace is actually extended or not. * = more information is needed to decide whether
the traces are complete.

The first row, for example, shows that both traces are in the state SNAP/NEXT. Both traces
are following a border. In that case both can proceed in adding the expansion candidate to their
trace of points. This is referred to as ‘Expand’ in the table. If both traces are on the same border
and will, after the addition of the expansion candidates, either meet each other or be just one edge
apart, then a path is found between the two trace ends and the polygon for the patch is finished.
If this is not the case, the traces will have to continue following the border.

In the fifth row an example is shown of a trace in an END-state and one in a RELEASE state.
The first trace waits for the the second trace to finish expanding. This results in a cycle in which
none of the traces expand. The second trace will either snap to a new polygon or jump to an
END-state.

The fourth row shows a case in which both traces have reached an end point. However, this
does not necessarily mean that the polygon is finished. If the ends of the traces meet, then one
of the expansion candidates is added to the trace and the polygon is finished, but otherwise the
traces will continue in the next stage of the expansion process. In the latter case, the two release
candidates are added afterwards.

Once finished, the connected traces form a polygon that is probably not precisely of the same
size as the intended width and height suggest. To overcome these differences thresholds are
introduced. If the area of the polygon is smaller than the (default) lower threshold of 70% or
bigger than 143% of the envisioned width · height, the polygon is rejected. The thresholds can
be set per patch type so for some patches this rule is more important than for other patches. A
polygon is also rejected when the polygon intersects with itself. If the polygon is rejected, a new

41

allocation should be found. If the polygon is not rejected, the patch type is linked to it to form
a patch. The patch is then added to the list of patches of the government so the government can
keep track of the patch. It is also added to the quadtree of the allocation manager in which it
stores all borders. These borders are used during the process described above when searching or
following borders. The border maps are also updated by subtracting the area from the allowed
area to prevent other patches from being built on top of the newly created patch.

4.4.2 Polygon Artifacts

The creation of patches is not perfect and can result in polygons that are too small, too big,
crooked or even overlapping other patches. This is partly due to a wrong update of the borders on
adding and removing patches caused by the polygon clipper that creates artifacts in the borders.
During clipping of polygons, some edges are not always removed, as shown in Figure 4.6. Another
problem that arose due to artifacts is that the patch creation algorithm can get stuck in an endless
loop. The later implementation of the algorithm did not show this error, but to be sure that the
algorithm will not get stuck, a maximum number of segments can be specified. If the number
of segments in the created polygon hits this threshold, the AllocationManager will stop and the
created polygon will be rejected.

Figure 4.6: The general polygon clipper (GPC) does not always correctly add and subtract polygons.
In the example, the blue polygon is added to the yellow polygon. Although the polygons fit perfectly
together, the clipper did not remove some overlapping edges.

To be more certain proper patches are created and added, a few more checks are introduced.
If the patch passes these tests, a PatchCircle is created using the given Solution. Otherwise the
patch is rejected and the government has to start over. The first check subtracts the allowed
area from the patch. This also helps to create holes if the polygon was grown around a smaller
patch. If nothing of the patch is left, the patch did not pass the test. This test uses the polygon
clipper and therefore it can result in wrong patches, though most will be filtered by the following
tests. The second and third test check for area. The user can specify in the database how much
deviation from the intended size is allowed. The last check runs through the polygon to check for
intersections. If the polygon intersects with itself, the polygon is rejected.

4.5 Graphical User Interface

The focus in this project is on creating a simulation, not on creating a vast tool to manipulate
a created urban area via a graphical user interface (GUI). Therefore the GUI, shown in Figure
4.7, is very simple and mainly contains elements for feedback to the user about the simulation.
Controlling the execution of the simulation can be done via the GUI, but controlling the semantic
information used in the simulation is done through the Entika Semantics Editor.

The GUI contains the following elements in order of appearance from top to bottom in Figure
4.7:

Menu and Control bar The two top bars offer controls for loading a SketchaWorld terrain,
a semantic database from Entika, or a whole project that includes both and some side
information like database references and random seed.

42

Figure 4.7: The GUI of UrbSim.

World view The world view shows the current situation of the semantic world including the
natural features and the created objects. The latter two are drawn on different layers to be
able to change the created objects layer every cycle while keeping the natural features layer
unchanged.

TimelinePanel The panel of the timeline displays the current time of the simulation. Events
such as disasters (red) and technological advancement (blue) are displayed on the timeline
as lines to indicate when they will occur in time. The user can zoom in and out to get an
overview of the events.

Console Textual feedback is given to the user via the console at the bottom of the GUI. World
events are displayed here. Also states for loading projects, and starting and stopping the
simulation are written to the console.

43

Chapter 5

Results

The results presented in this chapter show how urban areas are generated by UrbSim. It covers
which information is supplied via the database and how this is used to allocate new patches. This
includes on which values the selection of patch types is based, how a location is selected and how
the resulting patches are shaped. The results are shown both as geometric output as well as the
statistical background of the simulation. To see how the simulator performs in different settings,
it is first tested with the default database on a terrain with a river (see Section 5.1). The selection
of locations is explained in more detail in Section 5.2. The default scenario is used as a basis
for comparison with other settings presented in Section 5.3, including the use of a less complex
database and a scenario with another terrain. A discussion of the found results can be found in
the next chapter.

5.1 Default Scenario

The performance of the simulator is tested by running it with the default database. The patches
provided in the default database are presented in four main categories: agricultural, industrial,
water supplies, and residential. The agricultural patches (garden, small farm, medium farm,
big farm, giant farm) provide food, but require manpower and water. These can only be built on
grassy areas. The industrial patches clay quarry and stone quarry both produce stone, but require
manpower. The water supplies (well and water pump) produce water and require manpower. The
last category contains the residential patches (hut, woodcutters hut, simple house, house, good
house, mini flat). These patches deliver manpower, but require food and water. This database
does not have a patch type that consumes the resource stone directly, but stone is part of the
building costs of many buildings. A detailed overview of the used patch types and their properties
can be found in Appendix D.

The patches are enabled through technologies over time. The technology tree in the default
database is shown in Figure 5.1. At the start of the simulation only small and simple patches
are available. Over time bigger patch types such as the giant farm and mini flat are added that
provide more resources, but also demand more.

The terrain, shown in Figure 4.7, used in these tests contains mountain ridges (grey), grass
lands (green), an ocean at the bottom left (blue), a shore area (yellow), and a river (blue) between
the mountain ridges. The river is subdivided into several patches that provide water to their
surroundings. The other areas do not provide resources. The segmentation of the terrain displayed
in Figure 4.7 is done with a sampling resolution of 128 by 128, but the tests shown in this chapter
are conducted with a segmentation based on a sampling resolution of 32 by 32. This speeds up
the simulation and offers more stability since the polygon clipper has less work to do. A lower
resolution however does result in a less accurate representation of the terrain and therefore also
in a less accurate model.

44

Figure 5.1: The default technology tree.

5.1.1 Visuals

The default database can be used to generate a great variation in urban areas. The output of
the program depends on the random numbers from the pseudo-random number generator. The
project defines a seed used for the generator. To see how the simulator performs with the default
database, it is ran for 200 cycles. More cycles would increase the risk of running into clipper errors
and crashing of the polygon clipper. Figure 5.2 shows the development of an urban area in an
early stage (after 50 cycles) and at a more advanced stage (after 200 cycles).

(a) After 50 cycles. (b) After 200 cycles.

Figure 5.2: An example of an urban areas that developed for 200 cycles with the semantics from the
default database.

The placement after 50 cycles, shown in Figure 5.2(a), seems to be rather random with a slight

45

attraction by the river. The patches are scattered over the terrain, but along the river. This
could be due to the fitness proportional selection which in many cases needs some time to let
the results converge to the aimed clustering. Figure 5.2(b) shows that after 200 cycles more and
bigger patches have created an obvious cluster along the river (region 1 and 3). Unfortunately the
government did not place the patches such that no gaps were present in between the patches.

In the first stage mainly houses (red) were created, but as time goes by and the area starts to
get more crowded and clustered, farms (yellow) tend to use up most of the space available. On
the right of the second image, in region 1, only farms and houses are situated. This is possible due
to the production of manpower by the houses, production of water by the river and production of
food by the farms. No other resources are needed to sustain the patches in this area. This can also
explain why some of the houses which were already present after 50 cycles are still present after
200 cycles. The giant farms in between these houses have replaced their smaller predecessors in
the timespan of 150 cycles. A remarkable feature in this example is the houses near farms. Most
of the farms have a house nearby. The group of farms in region 2, for example, is accompanied by
a few houses, just like the farms in region 1 on the right of the image.

The mix of patches on the top left, in region 3, is completely different from the previously
discussed areas. Although many houses and farms are situated on the top left, the houses are
generally bigger and the farms smaller. Furthermore also water supplies and quarries are present
in this area. Apparently the mini flats and quarries require more water and therefore water supplies
were needed in that area. The quarries are scattered through the area, but some snap to the river
or to each other as expected (region 3 and 4). These quarries provide the government with enough
stone to build new buildings.

The result of a simulation can be saved at any time as a SketchaWorld [6] project to be edited
further and to generate a three-dimensional model. Figure 5.3 shows the three-dimensional model
of the urban area generated in the simulation. SketchaWorld does not allow arbitrarily shaped
patches and therefore divides the patches into rectangular spaces. For each rectangular space, a
CGA grammar [14] is used to generate the three-dimensional geometry. SketchaWorld tries to
flatten out the terrain underneath the patches, but in doing so also creates steep slopes in between
patches. This causes some buildings to be partly underneath the terrain. For some farms, for
example, this causes the land plane to invisible.

Figure 5.3: A render of the model created with SketchaWorld showing the urban area after 200 cycles.

46

5.1.2 Statistics

To get a better view of what is actually happening during a simulation and why certain decisions
were made by the algorithm, this section will describe the statistical background of the simulation
including the development of stock and patch type values. The former is shown in Figure 5.4(a).
All resources start at a value of 10, but these values quickly change when the government starts to
construct new buildings. Within a few cycles a shortage of manpower is created, while a shortage
of water and food prevents the government from building new houses. The shortage of water is
caused by patches that are not near the river. As soon as the food stock becomes positive new
houses are built and the shortage of manpower is converted into a surplus of manpower. This
however has a negative effect on the water stock. The shortage of water gets worse up to cycle
60, 10 cycles after the introduction of the water pump. It takes some time for the government
to place water pumps. With the placement of the new pumps, the shortage seems to stabilise,
but after cycle 80 a huge shortage is created while there is plenty of all other resources at that
moment. In the clustered regions near the river, a group of farms and houses is able to sustain
and even grows, which causes an increase in manpower and food production. The manpower stock
keeps increasing up to cycle number 125, but afterwards the government manages to bring it back
to around zero. On the other side of the zero line, a similar process can be seen for the water
stock. The shortage grows for a long time but eventually it returns to zero around cycle 190, just
like the manpower stock. After this both drop below zero. The food resource gets out of control.
The stock value first grows together with the manpower stock, but when the manpower stock
starts to decrease, the food stock keeps on growing. A possibility exists that it will return to zero
just like the values of manpower and water did, but in these 200 cycles clearly too much food is
produced and too little houses were built to consume the produced food. The stock values of the
two other resources, stone and wood, are stable throughout the whole simulation. These resources
are only used as building materials and are not consumed directly, which can explain the smooth
development of their values.

0 50 100 150 200
−3000

−2000

−1000

0

1000

2000

3000

Cycle

S
to

c
k
 v

a
lu

e

Wood

Water

Food

Stone

Manpower

(a) The changes of stock over time showing shortages
and surpluses.

0 50 100 150 200
−15

−10

−5

0

5

10

15

20

25

Cycle

G
o
a
l
v
a
lu

e

Wood

Water

Food

Stone

Manpower

(b) The goals over time.

Figure 5.4: The calculation of the patch type values is based on the goals (b) which in turn are based
on the stock (a).

Just like the resources the goals (shown in Figure 5.4(b)) start at a value of 10, but since the
goals try to bring the stock to zero, the goal values soon drop. The shortage of manpower and
food after the start result in a positive goal value for both resources, while the surplus of water,
stone, and wood result in negative goal values. The goal values are not only affected by the stock
values, but also by the available patch types, and more specifically the production values of these
patch types. The technology ’Crop circulation’ for example, which is triggered at cycle number
24, offers new farms that produce more food, but also require more wood to be built and water to
operate. The corresponding goal values quickly converge to the new values. A similar event can be

47

seen after cycle 40 when the ‘mini flat’ is introduced. It offers more manpower in return for more
stone and food. Again the goal values adapt to the new maximum values. After the latter event
the manpower goal alternates the maximum production value and maximum consumption value
for some time due to the changing stock value of manpower which switches between a surplus and
a shortage a few times. This period is followed by a stable period of 70 cycles. The goals do not
change as a result of the stock values that do not switch from shortage to surplus and vice versa.
When the manpower stock and water stock do break this silence, the goals rapidly change. The
manpower goal starts to increase and the water goal value drops. As soon as the water stock value
drops again, the corresponding goal value increases.

The patch type values (used for selecting patch types that produce needed resources), Figure
5.5(a), are calculated based on the goal values and the production values of the available patch
types. This results in similar patterns in both the plots of the goal values and the plots of the
corresponding patch types. The positive manpower goal for example raises the values of patch
types that produce manpower, namely the residential patch types. The positive value of the food
goal results in a raised value of food producing patches such as the agricultural patches. Due to
the long period in which there is a shortage of water, the water supplying patch types (well and
water pump) have the highest value. The drops in this value are caused by shortages of manpower
since the water supplies need people to operate them. As the goals do not change in the period
between 100 and 170 cycles, neither the patch type values change. After this long period the order
patch type values changes. The water supplies drop in value, while the values of quarries, farms,
and houses rise.

Figure 5.5(b) shows that the average patch value starts off at just under a half due to a lack
of resources and soon drops when more patches are placed with even worse placement. The lack
of resources increases the damage level of the created patches which lowers the average patch
value even more, but as soon as the government starts to replace and remove water supplies and
quarries, the average patch value increases and the average damage value decreases. After this
event that happened between cycle number 30 and 45 the damage level starts to increase again,
but not as fast and only after 155 more cycles it has reached its old level again. This steadily
growing damage level also results in a steadily growing number of removals. The average patch
level is steady in two periods of about 40 cycles. It has a value around 0.37 between cycle 50 and
90, then it drops to a value of 0.33 at cycle number 110. This value increases after cycle 150 and
then slowly drops again. In these periods the shortage of water does not change a lot either. This
last drop could be a result of the removal of water supplies which results in a shortage of water.
The increase in average value before the drop can be explained by the reduction of the shortage
in that period.

0 50 100 150 200
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

Cycle

P
a
tc

h
 t
y
p
e
 v

a
lu

e

Water supplies

Agricultural

Residential

Industrial

(a) The values of the patch types over time.

0 50 100 150 200
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

Cycle

A
v
e
ra

g
e
 p

a
tc

h
 v

a
lu

e
/d

a
m

a
g
e

Average patch value

Average damage

(b) The average patch values and damage levels over
time.

Figure 5.5: The development of patch type values, patch values and damage levels over time.

48

Figure 5.6(a) shows how the number of patches per patch type category changes over time. At
the start there is no clear preference for one of the patch types and all grow equally fast. After
cycle number 20 this changes and around cycle 40 there is even a dip in the number of patches
mainly caused by the removal of water supplies and quarries. Due to the high patch type value for
residential patches, the number of houses increases rapidly. This was enabled by a surplus of both
food, stone, and wood and at the same time a shortage of manpower. The only problematic factor
is the production of water. This becomes worse as more houses are built which require water.
After cycle 40 the number of water supplies grows in an effort to reduce the water shortage.

After cycle number 70 a small dip in the number of patches occurs. This is caused by a
destruction event at cycle 70 in the top left part of the map. Mainly farms and some houses were
damaged in the event. The effect of this event can be seen in the other figures as well. Figure
5.6(b) which shows the mutations over time, shows a peak of 18 removed patches at cycle 71. This
operation takes some time to compute which can be seen in the third graph, Figure 5.6(c). The
sudden removal of patches does not have a big effect on the simulation since the number of patches
quickly recovers and continues the growth it was working on. This growth slows down after cycle
150. After cycle number 180 when both the stock values of manpower and water reach zero, the
number of water supplies drops, resulting in a new shortage of water. The number of residential
patches however fills this gap and grows faster than before.

20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

Cycle

C
o
u
n
t

Water supplies

Agricultural

Industrial

Residential

(a) The number of patches of each
patch type category.

0 50 100 150 200
0

2

4

6

8

10

12

14

16

18

Cycle

C
o
u
n
t

Added

Replaced

Removed

(b) The number of mutations done
each cycle.

20 40 60 80 100 120 140 160 180 200
0

200

400

600

800

1000

1200

1400

1600

Cycle

D
u
ra

ti
o
n

Creating new patches

Patch update

(c) The duration of each cycle.

Figure 5.6: The patch type counts, the number of mutations and the duration of the updates per cycle.

The second graph (Figure 5.6(b)) shows the mutations over time. Each cycle a steady number
of patches is created. This number is set in the database, but only sets the upper limit. If the
allocation manager is unable to find a good location for a new patch, when there is too little
space for example, the number of patches added per cycle might drop. The government starts
replacing patches after cycle 50. Before this moment in time, the government was unable to find
good replacement candidates, which could be a result of bad location production and with the
lack of patches that have about the same size. The number of patches removed per cycle slightly
increases over time due to the increasing damage levels. Exceptions to this rule can be found at
the beginning when badly placed and unneeded water supplies and quarries were removed and the
destruction event at cycle number 70.

All these mutations come at a cost. The third graph, Figure 5.6(c), shows the time consumption
of adding and removing patches. Compared to these two, the other processes (replacement and
updating of stock and goals) are negligible and would not be visible in the chart since these actions
combined take less than five milliseconds to complete. When the graph is compared to the plot of
the patch removal count in red in Figure 5.6(b), one can clearly see that removing patches takes
up a lot of time. This is due to the clipping operations involved in updating the border maps.
Also adding patches requires these clipping operations and therefore also this takes a lot of time.

The time consumption of creating the new patches increases over time since the used polygons
grow more complex over time, making it harder to work with. The number of patches added is
constant over time, but the time increases from just under 100 milliseconds to over 600 milliseconds
in 200 cycles. The same process is seen in the removal of patches. Figure 5.6(b) shows a spike at

49

cycle 70 of 18 removals and a much smaller spike of 8 removals at cycle 190. Both appear to be of
the same size in Figure 5.6(c).

The patch update step does not only include the removal of patches, but also the calculation
of patch values and updating damage levels. This process however does not take a significant
amount of time compared to the clipping operations. The patch creation phase consists of finding
a proper location, growing traces, and finally updating the allowed building area borders. If the
latter would not be included, the creation process would only take up twenty milliseconds.

In this simulation example, clearly more food was produced than consumed. In Appendix
F another example is shown. The example shows that a slightly adjusted default database can
lead to an urban area in which the government succeeds in bringing the resource production and
consumption to an equilibrium.

5.2 Patch Allocation

As can be seen in Figure 5.2 the selection of locations is not always optimal. To investigate why
the location selection did not always return good results, the selection is visualised by showing all
tested locations as a coloured circle, where the size corresponds to the value of the location and
the colour corresponds to the type of patch the location was tested for. An example output of this
is shown in Figure 5.7(a). In this case the algorithm selected a patch type from all four categories:
residential (red), industrial (orange), agricultural (yellow), and water supplies (blue).

(a) The selection of new locations (circles) per patch
type category (colour). The black text at the top left
of the image shows the stock values.

(b) When a new patch is created, it tries to follow the
borders.

Figure 5.7: The selection of locations (a), and the creation of new patches that follows borders (b).

The value of a location is influenced by the resources available at that location and also whether
a patch created at that location would snap to the local borders. For example, in the centre of the
image, in region 1, two patches are situated; a farm and a quarry. There is an orange circle and
a red circle nearby. The orange circle (industrial) is much bigger than the red circle (residential).
The site is more suitable for an industrial patch than for a residential patch, partly because the
location for the industrial patch type is close enough to a border to be snapped to it. There
are also some houses further away that could offer some people to work at the quarry. Although
the farm requires some manpower, it is not substantial enough to let the value of the residential
location rise above that of the industrial location. In this case only the quarry was constructed
(the orange patch underneath the circle), but both could have been picked. A location just under

50

the river (region 2) is also close to a farm, but with less houses near it. It therefore has a higher
value than the tested location above the river. Other tested locations further from any patches like
those in the mountains (region 3) tend to get much lower values, pushing the selection mechanism
to pick a location closer to other patches. However, due to the nature of the selection procedure,
there is still a small chance that such a location is picked, which can result in scattered patches.

After a location has been selected, the allocation manager starts to expand traces from the
starting location to form the enclosing of the patch. In doing so the algorithm tries to snap to
borders and follow them. This turned out to work effectively as can be seen in Figure 5.7(b). The
borders of the agricultural patches (yellow) in the centre (1) follow the natural borders such as
the mountains and dunes. Snapping and following borders also helps to align the patches as can
be seen at the bottom left in region 2. The group of water supplies are snapped to each other and
all have the same orientation.

Although snapping to borders and following them works as designed, it does leave some small
gaps and can sometimes create patches that are not shaped as one would expect. The farm in
region 3, for example, follows the rocks at the top and right of it, but has a spike at the bottom
right of it. The trace at the bottom first expanded to the right and then had to wait for the other
trace to come in view to jump to it. This however does not always happen as can be seen just a
bit lower with another farm. This is probably due to the different starting point and orientation
which can have an effect on the final shape of the patch.

(a) After 27 cycles. (b) After 63 cycles. (c) After 97 cycles.

(d) After 130 cycles. (e) After 162 cycles. (f) After 180 cycles.

Figure 5.8: This sequence of screenshots shows that the artificial patches tend to cluster around the
river and how the urban area evolves over time.

To clarify how location selection and clustering work over time, a sequence of images showing
the growth of an urban area is given in Figure 5.8. It shows a lot of scattered patches, but most
patches tend to gather around the river since the river provides the important resource water. The
first frame shows the patches created in the first 27 cycles. Many small patches were placed in the
centre, close to the river. These are mostly small farms and simple houses, since bigger residential

51

and agricultural patches were not available yet. The quarries are mostly placed in rocky areas
and near the river. However, due to a lack of manpower and a surplus of the resource stone,
most of these quarries are removed in the following 36 cycles. During these cycles all technologies
have been executed and bigger patches have become available. This immediately results in bigger
patches being placed on the terrain. A shortage of food results in building more farms near the
river. Also some water supplies were needed and placed mostly south of the river. After 97 cycles
more quarries are created since more manpower is available after the creation of more residential
patches. In this period a lot more big farms are created along the river to supply the town with
food. It also seems that a trail of water supplies and houses has formed from the centre to the sea
at the bottom left (region 1). Another trail on the right (region 2) also contains some farms and
quarries. In the period between the last two frames, the trails grow thicker because the government
places more patches near them. The patches become better clustered but gaps still remain.

5.3 Alternative Settings

This section covers three alternative settings that show how changing the database or terrain can
have a significant effect on the creation process of the urban area. The results are explained and
compared to those from the default scenario.

5.3.1 Ocean Water Use Problem

In the default scenario only the river provides water, and although it is the only source of fresh
water on the terrain, also the ocean on the bottom left can be a source of water albeit seawater.
If the ocean is set to offer water, the resulting urban area is shaped completely differently from
the default scenario urban area. Instead of clustering along the river, the patches are scattered
over the whole map, as can be seen in Figure 5.9(a) and as three-dimensional geometry in Figure
5.9(b). The majority of patches consists of houses and farms. The wild scattering is caused by a
surplus of water on the terrain. The range of influence of the ocean is large enough to easily cover
the complete map and the large size of the ocean promises a large production of water, which
makes the effect of water provided by the river negligible.

(a) Top view of the map. (b) A 3D view of the map. The farms are shown as
brown blocks.

Figure 5.9: The default terrain map with patches scattered over it.

Although there is a great surplus of water in the area, a group of scattered water supplies is
located on the right of the image (region 1). Interestingly water supplies are not located anywhere

52

else on the map. This can be caused by the larger number of residential patches in that area. Also
the quarries seem to form such a group, just above the group of water supplies (region 2). Both
groups are accompanied with many houses. Another interesting feature in this example is the
farms in rocky areas (also region 2). These are constructed there by replacing low valued patches
in those areas. This is a gap in the replacement process that does not check the underground
of the patch when selecting candidates for replacement and thus allowing patches to be built on
areas on which they could normally not be located according to the semantics.

5.3.2 Island Scenario

The default database is also tested on an island scenario (see Figure 5.10). This island has
large dune areas surrounding a grassy mountain peak. On the right of the mountain is a creek.
This creek however is too small to supply a large amount of water and therefore has no significant
influence in clustering the patches, as can be seen in Figure 5.10(a). In this example less clustering
can be seen compared to the result of the default scenario. The patches are scattered around the
island within the zone of grass. Although water supplies and quarries can be built in the dunes,
there are just a few situated there since the location values near the grassy areas, where the other
patches are situated, are higher.

(a) Top view of the island. (b) 3D view of the island.

Figure 5.10: The island map with patches scattered over it.

The statistics in Figure 5.11 show a huge shortage of water which starts at cycle 30 and
never returns to a value near zero. It does however stabilise for over 50 cycles after cycle 100,
but continues dropping afterwards. The other resources however seem to be stable although
the corresponding number of patches fluctuates. the government does not build enough wells to
produce enough water to supply the big number of houses and farms although the patch type
values (not shown in the statistics) of the water supplies are twice as high as those for the other
patch types.

5.3.3 Small Database Scenario

To see how the simulator performs with a much smaller database, a new database was created with
only three patch types (houses, stores, and factories) and two resources (urbanity and pollution).
Houses produce urbanity and are repelled by pollution, factories produce pollution and are repelled

53

0 50 100 150 200
−5000

−4000

−3000

−2000

−1000

0

1000

Cycle

S
to

c
k
 v

a
lu

e

Wood

Water

Food

Stone

Manpower

(a) The stock values.

20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

200

Cycle

C
o
u
n
t

Water supplies

Agricultural

Industrial

Residential

(b) The patch counts.

Figure 5.11: The statistics of the island scenario over 200 cycles.

by urbanity. Stores are attracted by both, but prefer urbanity. All three patch types are available
from the start. The details of this database are presented in Appendix E.

This example shows that if the properties of the patch types are chosen wisely, the patches can
cluster without the strong attracting force of a river. Also the resources in this example are under
control and do not grow to extreme values as seen in the previously shown results. Note that the
patch sizes are almost equal which makes it easier for the government to replace patches by any
other type which can help the government to control the resource productions.

Figure 5.12(a) shows a result of the small database scenario after 199 cycles of development.
The houses are attracted to each other by the resource urbanity which results in a cluster (in
region 1). The factories on the other hand, are more attracted by the river and are scattered along
it. They do not cluster together as the houses did. This could be a result of the river producing
a small amount of the resource urbanity which repels factories. The stores (shown in black) are
mostly attracted by the houses and are therefore scattered through the cluster of houses. The
example also shows some clipping errors at the top of the cluster (2) between a few houses and
three factories. These errors are not visible in the three-dimensional view in Figure 5.12(b) on
the bottom left. SketchaWorld omitted the malformed patch in the model. The three-dimensional
view of the cluster also shows that the patch sizes chosen were not selected to fit the used CGA
grammars, but rather to make the patches pop out in the two-dimensional view.

(a) A top view of the map after 199 cycles. (b) The cluster of houses and stores in SketchaWorld.

Figure 5.12: The houses and stores are clustered together. The factories are located along the river.

In contrast with the default scenario, the resources are under control. They still fluctuate,

54

as Figure 5.13(a) shows, but they do not grow to large values. Interestingly there is rarely a
shortage of the resource pollution. When thinking about the meaning of the term ’pollution’ a
shortage might sound strange, but in this scenario ’pollution’ is just the name for a resources that
tries to glue the factories together and to the river. The patch type values in this example also
follow the stock values resulting in high values for stores (which are attracted by both resources)
and low values for houses (which are repelled by pollution). The number of houses however is
much greater than the number of stores and factories. Apparently the clustering of the houses
allows the houses to exist longer and are therefore present in higher numbers. Another remarkable
feature is the stabilisation of the number of patches after about 50 cycles. This is probably due to
the predictable behaviour of the stock and patch type values. Moments at which this behaviour
changes, for example, after cycle 150 when the pollution stock hits zero, results in spikes in the
number of patches. Afterwards the distribution of patch types restores to its previous state.

0 50 100 150 200
−40

−20

0

20

40

60

80

100

120

140

Cycle

S
to

c
k
 v

a
lu

e

Urbanity

Pollution

(a) The stock values.

0 50 100 150 200
−0.1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

Cycle

P
a
tc

h
 t
y
p
e
 v

a
lu

e

residential

industrial

commercial

(b) The patch type values.

20 40 60 80 100 120 140 160 180 200
0

20

40

60

80

100

120

140

160

180

Cycle

C
o
u
n
t

Residential

Industrial

Commercial

(c) The number of patches per
patch type.

Figure 5.13: The statistics of the small database scenario over 199 cycles.

55

Chapter 6

Discussion

In this project, I developed an urban area development simulator for semantic game worlds. The
system is capable of simulating urban areas over time based on the semantic information assigned
to the different kinds of lots available. It proved to be too hard to create a compelling simulation
that can achieve comparable results to those created by Weber et al. [9] and Vanegas et al. [23].
Reaching that level would take more than nine months and more programmers. Therefore the
focus of this project was more on semantic relationships, resources, and events that shape the
possibilities during the simulation.

During the project, some major concessions had to be done to finish in time. Features like
instant three-dimensional feedback, roads, and traffic simulation were not added in the simulation.
More on this can be read in Section 6.1. These changes to the original plan (see Appendix C) were
needed due to unexpected problems during the implementation of UrbSim. The polygon clipper
that was used for updating the borders for example, was not working as expected. Also some
tested solutions to this problem did not solve all bugs. This is discussed in the second section,
Section 6.2, along with some possible big changes to the design and implementation that would
get around the problem. The last section covers the discussion of the results from the previous
chapter. It evaluates how the simulator performs in terms of clustering, resource control, and
speed. It gives suggestions for improvement and also compares this methods to other methods to
generate urban areas.

6.1 Semantics

The generic nature of UrbSim allows the user to configure every small detail of the patch types
and the government. This however can be overwhelming to the user since so much parameters
are involved. To help the user overcome this problem, the custom patch types can inherit their
configuration from the default patch types. The user can then override a small custom set of
parameters. Though still it is not very user friendly and can still be confusing to the user. It was
not the aim of this system to create a grand user interface to let the user design the behaviour
of the simulation. Such an interface would be a good improvement to help users to configure the
simulation. A feature that could improve the control for example would be a slider that changes
the preferences of the government during the simulation so the user can see the result directly.
Another example is a feature to add new events during the simulation. This would make it a lot
easier to add an event compared to editing the database via Entika.

Given that the user knows how to properly change the database through Entika, this does not
mean the supplied patch type information will lead to a stable simulation. It might result in a bad
selection of patch types resulting in surpluses and shortages running out of control and location
selection might fail to cluster the patches properly. If the user does specify enough different patch
types in the database, the algorithm might not be able to converge to an equilibrium. For each
consumed resource, either via building costs or via negative production, there should be a patch

56

type available that produces it. On top of that, the stability of the simulation can be improved
by adding different kinds of patches that produce the resource, so there is more choice. One could
vary between sizes and production scales or between the costs of the solutions.

If the user however does not follow these guidelines, it could result in an unstable system that
first creates new patches, then discovers that these patches cannot be supplied with the right
resources and removes them from the area after a few cycles. This process could repeat itself
until the government does have the resources to create any patch. The urban area will therefore
pulsate, although the maximum and minimum size and the duration of the pulses can differ.

6.1.1 Events

Currently only two events, namely technology and destruction, are implemented. The technology
event has a clear contribution to the system by changing the options throughout the simulation.
The destruction event on the other hand does not have a huge impact on the simulation. The
event is lacking semantic information. A hurricane for example would damage a wooden structure
differently than it would damage a concrete building. An earthquake on the other hand could
result in the opposite effect. Therefore the destruction event should be split up into specific types
of events and extended with more semantic information.

It would also be nice to extend the set of events with other influences that could shape the
simulation and therefore the urban area. These new events could include a government change
that changes all preferences or goals of the government, or a change in production rate caused by
drought or abundant rainfall, and land deformations and floods that could change the terrain and
the objects on it.

6.1.2 Roads and Transportation

An important feature lacking from UrbSim is roads. This feature could greatly enhance the
resulting urban areas. Patches are heavily dependent on transportation possibilities and would
therefore be likely to be near rivers or roads. In this case a resource called ‘transportation’ could
be used to cluster patches along the roads. The implementation would try to find parts of the
urban area that are lacking transportation possibilities and try to connect these to the known road
network.

A possible implementation for roads could be based on a resource labelled ‘transport’. It could
start by locating an area in need of transport. From this point, the closest point in the existing
roads network should be found. If no roads are present on the terrain, another location in need
of transport might be selected. The points can then be connected by growing adaptive roads (as
done by Kelly and McCabe [12]). By iteratively adding road segments between the points, a road
is generated in between the points. During this process, the segments will favour areas that are
in need of transport, but they would snap to existing road segments to extend the current road
network.

The lack of roads implies that there is no simulation of the transportation of resources. This
traffic simulation could be used for determining the load on the road network. This load factor
could be used to upgrade or downgrade roads. Also the placement of patches could be enhanced.
Commercial patches for example would prefer busy roads for example while houses are attracted
by quiet areas. The transportation of resources itself could be used for adding some distance
between resource producers and resource consumers, allowing for separation between industrial
and residential areas. Now this has to be covered by changing the influence radii and creating
extra resources (like a population resource) to cluster same type patches more.

6.1.3 SketchaWorld Terrain

The SketchaWorld terrain that is used in the simulation is not fully imported. The layers that
contain roads and buildings are excluded. It would be a great enhancement to also incorporate
these layers in the simulation so one can already start with a filled urban area. The roads that

57

were designed by hand in SketchaWorld could for example help shape the simulated urban area
since the newly created patches that are in need of transportation are likely to cluster along the
roads.

Another addition to UrbSim would be the possibility to import another terrain source. For
example a designer might want to import a terrain it made using another editor than SketchaWorld
such as Maya [36] or 3D Studio Max [37]. Also bitmap images could be used as input, as done in
[14] and [26].

6.1.4 Environment Simulation

The created simulation only simulates the artificial patches created by the government instance.
Though a simulation of the vegetation and other terrain features like the water might also enhance
the simulation. When woodcutters for example chop down trees, the trees should be removed from
the terrain and the woodcutters would have to move to chop down other trees and when all trees
are cut down, it would take a long time for new trees to grow to a proper size to be chopped down.
The same could be done for fish in the sea and rivers; when there are too many fishermen, no fish
will be left and other food source has to be found.

6.2 Patches

The simulation is based on the creation, maintenance, and deletion of patches. This process is
not implemented flawlessly. Especially the use of borders gave problems. Some solutions and
improvements are proposed in this section.

6.2.1 Polygon Clipper

During the simulation the borders are constantly updated to keep track of where new patches
can be built. This is done by subtracting the polygons that are constructed for new patches from
the allowed building area using a polygon clipper. Also when removing patches, the polygons
are added to the area again. The used polygon clipper from the General Polygon Clipper library
(GPC) [34] however does not cope well with polygons that overlap just on their borders. So when
only edges overlap, this can result in strange artifacts like thin protrusions and malformed patches,
as shown in Figure 6.1.

Old borders are thus kept in the allowed area polygon which is used for constructing new
polygons. These can be just a few free lines, but sometimes even L- and U-shaped polylines. On
one hand this would encourage the system to retain some structure over time, but on the other
it disrupts the process of creating new patches. The patch creation algorithm finds the borders
that are left on the terrain and will follow them, resulting in malformed patches. Moreover the
artifacts in the allowed area cause the polygon clipper to slow down, since the malformed allowed
area and patches are harder to process, and sometimes even crash due to errors in the patches
created by the polygon clipper itself. This becomes worse over time since errors in the polygons
are rarely resolved.

A way to get around this problem would be filtering the produced polygons, drop the concept
of borders used in this way, or using another polygon clipper that does the job well. Two of these
were explored during the project. Filtering malformed polygons was tried as explained in Chapter
4 by testing polygon size, self-intersections and clipping the polygons using the allowed area. This
can however also cause errors to be created in the polygons. Checks could be added to delete
contours that do not span an area. This check could also be used for creating a list of allowed
areas of a certain size that could be directly filled with a patch without the need of tracing borders.

The other option for resolving this issue that was explored was using another polygon clipper
that is specialised in solving issues of edges that are overlapping. One month was spent on creating
a new polygon class and an integrated polygon clipper to replace the GPC used by SketchaWorld.
This class would speed up the clipping process, since the polygon would not have to be converted

58

(a) A union of three patches (a quadrilateral on the
left, an L-shape on the right and a shape in between
these two) resulted in one large polygon with an pro-
trusion.

(b) Due to clipping errors, thin patches and patches
with protrusions were created. In the latest version of
UrbSim these patches are filtered out when detected.

Figure 6.1: The polygon clipper does not cope well with edge-on-edge intersections resulting in malformed
patches.

forth and back for using the GPC and all edges were saved in a quadtree to reduce the intersection
checks. The latter could also be used for the patch creation step. Unfortunately the new polygon
clipper did not meet my requirements and remained to cause bugs. Therefore I decided to return
to the GPC although it did not perform well either. The newly created polygon class was kept to
have an advantage in the patch creation process.

Discarding the idea of using the updating borders concept was considered, but was not executed
due to time constraints. The following subsection will explain this approach in detail.

6.2.2 Borders

Currently the borders are saved for both the individual patches and the allowed building area
boundaries for each patch category. The latter is a point of concern, as explained in Subsection
6.2.1, due to the clipping operations performed on it which take a lot of time. The allowed
building areas were originally meant for enabling random point selection within the boundaries
and for making the patch creation easier. The selection of points for starting the creation of
patches however becomes slower as the allowed building area polygon complexity increases. This
is due to the selection of random points based on a triangulation of the area.

In Chapter 4 was stated that an alternative approach for selecting points could be generating
random points and check whether these lie within the allowed area. This does not guarantee that
points will be found and finding proper points will take longer when the allowed area decreases in
size. Though this method can offer a good solution. Instead of checking whether the generated
points fall within a polygon that reflects the allowed building area, the algorithm should check
whether it falls in an already generated patch or somewhere on the terrain. This could be very
fast since it only has to check a point within a quadtree of patches. If it hits a patch, this patch
could be added to the list of patches that could be replaced during this cycle. If it does not hit a
patch, the allocation manager should try to create a polygon from that location, based on the type
of ground. This could be improved further by allowing the user to set constraints, such as that
a location can only be used if a certain resource is available. This would allow the user to force
the system only to select locations near roads (which offer the resource ‘transport’) for example.

59

This could replace the current maintenance selection algorithm and the random point selection
algorithm.

This approach would make the allowed building areas superfluous if these were not needed by
the patch creation algorithm. The borders were introduced to make it easier to detect whether
two patches were snapped to each other. This is needed when the patch creation algorithm snaps
to one of the adjacent polygons and follows it. If the algorithm would not know there is a polygon
snapped to the polygon it is following, it could get stuck in between the two polygons. To overcome
this, all created patches were merged and the inverse was used as boundaries of the building area.
The problem could however also be solved by checking intersections when the algorithm follows
the polygon it is snapped to. This would save a lot of computations used for clipping though it
would make the algorithm more complex.

A positive effect of keeping track of the allowed building area though could be tracking the
allowed areas by size. This way the patch creation algorithm would not have to expand traces to
find a polygon, but when an allowed area is already of the proper size, it can directly use it. This
would also help in filling the gaps created during the simulation making the created urban area
more appealing.

After these considerations the random selection and patch creation without the allowed area
borders is very compelling. If the simulation were to be developed further, this approach should
be used in favour of the current system. This would make the simulation both faster and more
reliable, given the patch creation algorithm does not fail in the new situation.

6.2.3 Patch Influences

Another part of the system that can be improved is the way patches influence their surroundings.
Currently the influence is based on the bounding circle of the patch and a scaled version of that
bounding circle to indicate the outer edge of influence. This can result in too large influence areas
for irregular shaped patches. One solution is to split up irregular shapes into multiple smaller but
regular shapes. The current implementation misses the option to split up large natural patches.
Only for the rivers this option has been implemented. Splitting up these patches is needed to
calculate the distance weights properly. These weights are based on the bounding circle and the
corresponding influence range. The bounding circle should fit tightly around to make the weights
accurate. To do this the large natural polygons could be slit up recursively until the area of the
created parts is under a given threshold.

Another way to resolve this problem is using a grid of influence values that are updated
throughout the simulation. Each cell would then carry the production values for all resources
produced for that location. When a new patch was added, the grid cells would be updated
with the resource production values from that lot based on the distance to that lot. In an early
implementation of the simulation this method was applied, but this turned out to be rather slow
and was therefore discarded.

6.3 Results

This section evaluates the performance of the simulator based on the results presented in Chapter
5. The location selection and corresponding clustering are discussed, along with the shapes of
the created patches. The resource control is analysed and the duration of the cycles is discussed.
This section ends with a comparison of the proposed method and the other methods which were
introduced in Chapter 2.

6.3.1 Test Parameters

The number of cycles of the simulations presented in the previous chapter was bounded to 200
cycles. This limit was chosen to be able to run the simulation without the danger of it crashing
due to a memory shortage. For adding and removing patches the polygon clipper is put to work

60

to clip the allowed area borders. The polygon clipper, as explained before, does not always do
this correctly. This can lead to corrupted polygons returned by the polygon clipper. When the
clipper has to process the corrupted polygons, it can slip into an infinite loop if the computer
had an infinite amount of memory. Since the latter is not the case, the polygon clipper stalls the
program for a minute and then crashes the simulator. The moment at which this event occurs
largely depends on the input from the database (previous runs could get up to 500 cycles without
any problem) and the seed set for the random number generator. To resolve this problem, the
clipper could be adjusted or replaced or even made obsolete by changing another strategy than
updating the borders every time a patch was created. It can also be postponed by changing the
database to allow for less removals. Also replacing patches instead of removing them could help
to postpone the crash.

6.3.2 Patch Allocation

The results from the previous chapter show that the simulator has its difficulties with making a
compact clustering of patches. Many patches tend to scatter over the terrain, leaving gaps in the
urban area. This inconvenient placement of patches is caused by how the database dictates how
patches are repelled and attracted. The database should be tuned further to make the clustering
better, although it is hard to combine this without letting the resources run out of control. Instead
of editing the weights for the resources per patch type, the weight for neighbouring patches could
be increased or an extra resource could be introduced that pulls all patches together. A solution
on the side of implementation can be found using only the best locations for fitness proportionate
selection. For example only the top five locations are compared. This last option would also make
it easier for the designer of the database.

Another source of gaps in the urban area is the removal of patches. Patches are removed when
damaged, but replacing them rather than removing them could help to make both the simulation
faster since less clipping operations are needed and the clustering is improved since no patches are
removed. Though removal should probably be still available for cases in which the patch has no
neighbouring patches.

The creation of patches itself works as intended in most cases. The traces that grow to form
a patch border follow the borders on the terrain as was shown in Figure 5.7(b). Furthermore it
helps to align the newly created patch with neighbouring patches and lets them snap together.
However during the creation the traces sometimes snap too early, leaving small gaps in between
the building area borders and the created patch. The implementation should be improved to also
fill up these gaps. This could be done by analysing the resulting patch and the neighbouring
polygons to see if small gaps were created and if so these should be merged with the patch. In
some cases when objects are encountered in the area where the patch grows, one trace is snapped
to it while another might be extended in its original direction. Once these are joined, the second
trace might have created a spike (also visible in Figure 5.7(b)). This results in unexpected shapes,
which could be a problem for the CGA Grammars that are executed on the patches. This can be
either solved by writing smart CGA Grammars or improving the allocation algorithm so that one
trace does not grow much further in a certain direction compared to the other trace.

6.3.3 Resource Control

The next major part of the simulation next to patch allocation is the control of resources, which is
done through patch allocation and removal. The selection of patch types is based on their values.
The average values presented in the previous chapter in Figure F.2(a) however are quite low and
are never near the maximum value of one. This is because the patch types of one category are
not all at their maximum value since the patch type values are normalised by the goals which
are never exceeding the biggest production value and in the case of the default database just one
patch offers this value while the others produce less. This is probably also why more big farms
are created once these become available since these get a higher patch type value than the other

61

farm which produce less food and use less water and manpower. Only at lower goal values this
will change.

The patch type values follow the goals and stock values as intended, when the stock drops
below zero, the goal becomes positive and patch types offering the requested resource increase in
value. As explained in Chapter 3 the goals try to bring the stock values to zero by converging to
the negated stock value, limited by the biggest production values. Figure F.3(b) shows that this is
working correctly. Also when bigger production values become available through the execution of
technologies or when the stock changes from a shortage to a surplus or vice versa, the goal values
adapt to the new value. A clear example is the water supply category that has a high value for a
long time until there is a surplus of water. Then the goal value for water and patch type value for
water supplies suddenly drop. This process helps to finally restore the production an consumption
of the different resources and the resources start to alternate between shortage and surplus during
the process.

The current implementation of patch type values is not perfect. The values stay constant as
long as the goals do not change in value, but the stock values might change. One might want to
have weights linked to the resources that are most wanted to increase the value of their producers
more. this could be done by sorting the absolute stock values and assigning the biggest weight
to the resource with the biggest stock value and the smallest weight to the resource with the
smallest stock value. This way the patch type values could be guided to solve the biggest surplus
or shortage first, rather than trying to solve all surpluses and shortages at the same time.

The shortages and surpluses from Figure F.3(a) can become quite extreme sometimes. This
is a result of both bad location selection and bad patch type selection. Though the simulation
does manage to solve the big shortages and surpluses after many cycles, one would still prefer a
less extreme shortage and surplus development. Once the algorithms for location and patch type
selection have been improved, these problems might still exist. The best way to resolve them would
be by altering the values in the database, and maybe by adding new patches, to make it easier for
the simulator to find an equilibrium between consumption and production. Another solution that
might help is letting the number of added patches depend on the needs of the government. Rather
than adding a fixed number of patches each cycle, the government might add more patches when
there are bigger shortages and surpluses then when the stock values are smaller.

6.3.4 Time Consumption

The duration of the cycles increases over time. This is due to the time the polygon clipper takes
to process the allowed building area borders that get more complex over time. Also errors made
by the polygon clipper make the borders more complex and harder to work with resulting in more
time used for clipping polygons. After 200 cycles the total time used for one cycle can take up to
1500 milliseconds and it is still gradually growing. This is too much if one would like to rerun a
simulation of 200 cycles when he adjusted one variable and wants to know the effect. One would
rather aim at less than 10 seconds for the complete simulation of 200 patches. A minimum of time
use would also be nice when it would be integrated into a game in which the game world evolves.
In that case just a few milliseconds could be dedicated for simulation, since a game developer
wants the game play to be as smooth as possible and simulation should not slow down the game.

If the polygon clipper would not be used, the time usage would be less than 30 milliseconds
per cycle and the slowing down would be less severe as in the current version. Another possibility
to reduce the load would be to stop removing patches and just replacing them, though still a big
increase in time usage would be seen due to the adding of patches. To improve the performance
even further parallel computing for example with the GPU could be used. Most of the updates
done in the program can be computed in parallel. Also the polygon clipper of the GPU might be
used for clipping the borders which would greatly increase the speed of the simulation.

62

6.3.5 Comparison of Urban Area Simulations

When this simulation is compared to the existing urban area simulations discussed in Chapter 2
one will immediately notice that those all include the creation of roads. In contrast with UrbSim
the other approaches are based on creating a road network first and then placing the patches. This
last steps is done by subdivision of enclosed areas [23], [9] or by flood filling as in the grid-based
approach from Lechner et al. [26]. The latter has some similarity with the growing of traces to
form a border of the patch, though it rarely produces regular shapes. The subdivision approach
does not produce irregular shapes at all. Figure 6.2 shows the differences between the resulting
patches from the different approaches. Although the roads are not necessary for generating all
patches, it is still needed to make the simulator practical as a procedural content generator. It
would also greatly enhance the generated urban areas since it allows for better clustering.

(a) The bucket fill technique used
by Lechner et al. [26] creates ir-
regularly shaped patches.

(b) Subdivision, as used in [9], re-
sults in convex patches.

(c) The patches in UrbSim are
shaped by the local terrain fea-
tures.

Figure 6.2: The differences between the patch shapes from the different approaches.

Just like the approach described by Weber et al. [9], UrbSim does not rely on a grid like the
approach by Lechner et al. [26]. This allows for free placement of patches and also free geometry
that is not bounded by fixed sized and oriented square cells. A possible improvement is shown
by Vanegas et al. [23]. The approach presented in [23] uses a grid for storing values, but does
use geometric modelling. This was one of the discussed solutions for tackling the patch influence
issues described in Subsection 6.2.3.

Another difference with many solutions proposed to procedurally generate urban areas is the
selection of the city centre. Instead of letting the user select a location, the system itself tries
to find the best location. This however can be undesired by a designer that wants to have more
control. A possibility to set a starting point for the city might therefore be a useful contribution,
but this would also weaken the semantic background of the urban area.

An advantage of the simulator is the use of a seed for the random number generator to generate
an urban area. This way a simulation can be ran again and it will return the same output. This
can also be used to compare how the urban area would evolve differently when another patch type
was introduced at a certain moment in time.

The current system is not ready yet for practical use. It lacks an easy interface for interacting
with the resources and patch types. It is therefore hard to control the simulation. Also the
geometry is not generated on the fly but afterwards through SketchaWorld. Since not many
CGA Grammars are available in SketchaWorld, the variety of buildings in the resulting three-
dimensional model will be small. Though there is an option for the user to add them manually to
the configuration of SketchaWorld and in the database for the simulation.

In contrast with many other urban area simulators, UrbSim includes meaning to the placement
and shapes of the lots by taking into account the terrain features and the resources available. These
in combination with economic fluctuations, disasters, and technologies help to shape the created
urban area. The creation process is not as static as in the other simulations, but rather tries to

63

incorporate changes that might during the development of the urban area. This ensures more
meaning is added to the shape and the configuration of the urban area.

64

Chapter 7

Conclusion

Due to the growing need for content in games, more money is spent on creating game content.
Many games are situated in urban areas, complex collections of buildings and roads. To create
these by hand is costly, and therefore procedural techniques have been proposed in the past
decades to automate the creation process to reduce the amount of work needed to create these
complex scenes. The creation process and the resulting urban areas of these methods, however,
lack meaning and cannot be applied directly in a semantic game world due to the lack of semantic
information in the model.

This raises the following question: how can one incorporate semantic information and history
in the generation process of a virtual urban area suitable for use in a semantics-based game? To
answer this question, I developed a simulator called UrbSim that simulates the development of
an urban area over time for a specific semantic game world. This game world includes a terrain
of which the features influence the growth of the urban area by providing resources to their
surroundings. The game world also contains a semantic database that holds all information about
the terrain features, but also about the type of buildings that may be constructed. For each of these
buildings also information is provided through the database about their needs and productions in
terms of resources. The semantic database can also include technologies and disasters to change
the course of the simulation over time.

During a simulation one instance, named the government, leads the creation process. The
decisions made by the government are based on the properties of the game world it operates
in and the shortages and surpluses of resources experienced by its patches. These patches are
the lots on which the buildings are built and carry the semantic information supplied for the
buildings. Based on the shortages and surpluses the government calculates it goals. These goals
aim to bring the production and consumption of resources to an equilibrium. In turn the goals
are used to calculate which types of buildings (patch types) are needed by giving a score to each
of the available patch types. The availability of patch types is determined by technologies. Each
technology is bound to a specific point in time and can both enable and disable patch types.

When all available patch types have been given a score, fitness proportionate selection is applied
to select a number of patch types to be built. Patches that fit the goals of the government better,
gain a higher score and are therefore more likely to be picked. To find a proper location for each
selected patch type, a number of random points is spawned in the allowed building area of the
patch type and evaluated. Based on the preferences of the patch types, its neighbouring patches,
and fitness proportionate selection a location is selected. To start the creation of a patch, this
location is snapped to the closest border. From there a polygon is created that follows the local
borders and is approximately the intended size (specified per patch type). Once the edges of the
patch are set and the semantic information is linked to it, the patch will start to interact with
its neighbouring patches by producing and consuming resources and influencing the placement of
new patches.

Over the course of time the patches loose value due to shortages of resources they consume
or due to damage gained by destruction events. Patches with a lower value are more likely to be

65

removed or replaced by the government. In the case of replacement, a new patch type is selected
and applied that suites the size of the patch and the local production of resources. As before,
the selection is fitness proportionate and the values of the patch types depends on the goals of
the government. In the case of removal, the patch is just removed and the land on which is was
situated is released for later use. By repeating addition, replacement, and removal of patches over
time, the urban area evolves and is shaped by the terrain, its resources, the technologies available
to the government and disasters that occur.

The resulting urban areas show clustering of patches around resource producing patches. For
example, rivers provide water, patches that are in need of water cluster along the river. These
patches may produce food or manpower, which attracts other patches, resulting in a cluster near
the river. The selection of patch types also follows the needs of the government. If there is
a shortage of a resource, the government tries to counter that by creating more patches that
produces the needed resource. This also works the other way around. If there is a surplus of a
certain resource, the government will try to build more patches that consume the resource. This
allows the government to control the resource production and consumption. The selection of patch
types is also affected by technologies. At the start of the simulation, the government can only
select small and simple patches. When the technology allows for more advanced patches, the
government takes advantage of this by selecting these new patch types to control the resources.

Despite the results correspond to the objective of the project and its design, the simulator is
not yet ready for use by game designers. Currently, it is hard to design a semantic database that
results in a stable simulation: a simulation in which resources are not running out of control and
in which the patches are located in compact clusters. Furthermore, many simulations may end up
creating urban areas with many gaps in them or even scattering patches because they can repel
each other by offering certain resources.

One of the major features that has not been added to the simulator is roads. Roads will
help to enhance the urban area, and to provide options for clustering (like the river does) and
for transport of resources. The latter would allow for patches growing far away from the needed
resources, but still being supplied to them. Another downside of the simulator is its speed. This
is mainly caused by the duration of updating the borders. When a patch is added or removed, the
borders of the allowed building area are updated. This is done with a polygon clipper. This process
is slow and error-prone which can result in artifacts in the patches. To solve this problem, and
to greatly speed-up the simulation, one could remove the allowed building area borders from the
implementation. The new implementation could rely on selecting random locations in the whole
area and only selecting points that are on a ground type on which the patch type may be build.
When the selection hits another patch, the government might consider replacing the hit patch.
This strategy will probably be more reliable and be a lot faster than the current implementation.

Although many improvements can be thought of, UrbSim does add more meaning to both
the creation process and the urban area itself than previously proposed solutions to procedurally
generating virtual urban areas. It is able to produce urban areas that contain both a history and
semantic background, each created element has semantic data linked to it, allowing it to be used
in the semantic game world it was created for.

66

Bibliography

[1] Ubisoft Montreal, “Assassin’s Creed II,” 2009.

[2] Rockstar North, “Grand Theft Auto IV,” 2008.

[3] D. Ebert, S. Worley, F. Musgrave, D. Peachey, and K. Perlin, Texturing & Modeling, a
Procedural Approach, 3rd ed. Elsevier, 2003.

[4] K. Perlin, “Making noise,” http://www.noisemachine.com/talk1/, 1999.

[5] O. Deussen, P. Hanrahan, B. Lintermann, R. Měch, M. Pharr, and P. Prusinkiewicz, “Realistic
Modeling and Rendering of Plant Ecosystems,” in SIGGRAPH ’98: Proceedings of the 25th

Annual Conference on Computer Graphics and Interactive Techniques. ACM, 1998, pp.
275–286.

[6] R. Smelik, T. Tutenel, K. de Kraker, and R. Bidarra, “A declarative approach to procedural
modeling of virtual worlds,” Computers & Graphics, vol. 35, no. 2, pp. 352–363, 2011.

[7] K. Musgrave, “Mojoworld,” http://www.pandromeda.com/products/, 2006.

[8] A. Postma, “On higher ground,” http://www.pandromeda.com/gallery/, 2004.

[9] B. Weber, P. Müller, P. Wonka, and M. Gross, “Interactive geometric simulation of 4d cities,”
Computer Graphics Forum: Proceedings of Eurographics 2009, vol. 28, pp. 481–492, April
2009.

[10] S. Greuter, J. Parker, N. Stewart, and G. Leach, “Real-time Procedural Generation of ‘Pseudo
Infinite’ Cities,” in GRAPHITE ’03: Proceedings of the 1st International Conference on
Computer Graphics and Interactive Techniques in Australasia and Southeast Asia. ACM,
2003, pp. 87–94.

[11] J. Sun, X. Yu, G. Baciu, and M. Green, “Template-based generation of road networks for
virtual city modeling,” in VRST ’02: Proceedings of the ACM Symposium on Virtual Reality
Software and Technology. ACM, 2002, pp. 33–40.

[12] G. Kelly and H. McCabe, “Citygen: An interactive system for procedural city generation,” in
Proceedings of GDTW 2007: The Fifth Annual International Conference in Computer Game
Design and Technology, 2007, pp. 8–16.

[13] S. Groenewegen, R. Smelik, K. de Kraker, and R. Bidarra, “Procedural city layout genera-
tion based on urban land use models,” in Eurographics 2009: Short Papers. Eurographics
Association, 2009, pp. 45–48.

[14] Y. Parish and P. Müller, “Procedural modeling of cities,” in SIGGRAPH ’01 Conference
Proceedings, 2001, pp. 301–308.

[15] G. Kelly and H. McCabe, “A survey of procedural techniques for city generation,” Institute
of Technology Blanchardstown Journal, vol. 14, pp. 87–130, 2006.

67

[16] E. Catmull and J. Clark, “Recursively generated b-spline surfaces on arbitrary topological
meshes,” Computer-Aided Design, vol. 10, no. 6, pp. 350–355, 1978.

[17] D. Eberly, “The minimal cycle basis for a planar graph,” 2005.

[18] P. Prusinkiewicz and A. Lindenmayer, The Algorithmic Beauty of Plants. Springer-Verlag,
1990.

[19] A. Lindenmayer, “Mathematical models for cellular interactions in development, parts i and
ii,” 1968.

[20] G. Esch, P. Wonka, P. Müller, and E. Zhang, “Interactive procedural street modeling,” in
SIGGRAPH ’07: ACM SIGGRAPH 2007 sketches. ACM, 2007.

[21] G. Chen, G. Esch, P. Wonka, P. Müller, and E. Zhang, “Interactive procedural street model-
ing,” in SIGGRAPH ’08: Proceedings of the 35th Annual Conference on Computer Graphics
and Interactive Techniques, vol. 27, no. 3. ACM, 2008, pp. 1–10.

[22] PROCEDURAL, “Cityengine,” http://www.procedural.com, 2008.

[23] C. Vanegas, D. Aliaga, B. . Beneš, and P. Waddell, “Interactive design of urban spaces using
geometrical and behavioral modeling,” ACM Transactions on Graphics: Proceedings of ACM
SIGGRAPH Asia 2009, vol. 28, no. 5, pp. 1–10, 2009.

[24] P. Waddell, “Urbansim: Modeling urban development for land use, transportation and en-
vironmental planning,” Journal of the American Planning Association, vol. 68, no. 3, pp.
297–314, 2002.

[25] T. Lechner, B. Watson, U. Wilensky, and M. Felson, “Procedural city modeling,” in 1st

Midwestern Graphics Conference, 2003.

[26] T. Lechner, U. Wilensky, M. Felsen, P. Ren, B. Watson, S. Tisue, A. Moddrell, and C. Brozef-
sky, “Procedural modeling of urban land use,” in SIGGRAPH ’06: ACM SIGGRAPH 2006
Research posters, 2006.

[27] Electronic Arts, “SimCity 4 Deluxe,” 2003.

[28] J. Kessing, T. Tutenel, and R. Bidarra, “Designing semantic game worlds,” in Proceedings of
the The third workshop on Procedural Content Generation in Games. PCGames, 2012.

[29] R. Ensemble Studios, Big Huge Games, “Age of Empires,” 1997.

[30] Westwood Studios, “Command & conquer,” 1995.

[31] Wikia, “Age of empires tech-tree,” http://ageofempires.wikia.com/wiki/Age of Empires Tech-
Tree, 2012.

[32] J. Holland, Adaptation in Natural and Artificial Systems. Ann Arbor, MI: University of
Michigan University Press, 1975.

[33] T. Bäck, Evolutionary Algorithms in Theory and Practice. Oxford University Press, 1996.

[34] A. Murta and T. Howard, “General polygon clipper library,”
http://www.cs.man.ac.uk/ toby/gpc/, 2011.

[35] P. Selinger, “Potrace: a polygon-based tracing algorithm,” http://potrace.sourceforge.net/,
2003.

[36] Autodesk, “Autodesk maya,” http://usa.autodesk.com/maya/, 2012.

[37] ——, “Autodesk 3ds max products,” http://usa.autodesk.com/3ds-max/, 2012.

[38] M. Alberti and P. Waddell, “An integrated urban development and ecological simulation
model,” Integrated Assessment, vol. 1, pp. 215–227, 2000.

68

Appendix A

Planning

A.1 Prototype I

• Continuing literature survey (urban simulation)
• Software orientation (C#, Terrain, Game Semantics Engine, Shape grammars/models)
• Showing image of a terrain
• Drawing on terrain image
• Making planning
• Writing proposal
• Deadline: 2011-11-25

A.2 Prototype II

• Loading an XML-file containing events that have to be triggered
• Display time line
• Trigger the events stated in that document
• Simple semantics (connection with Semantics Engine)
• Updating drawing on changes world
• Linking drawing and semantic data
• Start writing document (Related Work)
• Presentation of seminar
• Deadline: 2011-12-16

A.3 Prototype III

• Document: Related Work
• Government instance that regulates use and creation of patches
• Introducing land use development

– Lot creation
– Update borders on lot creation
– Resource production facilities

• Resources

– Resource gathering
– Resource consumption

• Two-dimensional representation
• Deadline: 2012-02-10

69

A.4 Prototype IV

• Extracting natural borders from a terrain map
• Loading properties and possibilities from database
• Enhancing allocation algorithm

– Linking vertices/intersections
– Triangle patches
– Single point connected patches
– Better compensations (measuring width/height)
– Extrude using average angle over bottom trace
– Smaller alpha, but adaptive per extension step (relative to current direction)
– Not growing outside proper ground (fertile terrain for example)

• Extend land use development

– Residential/Commercial
– Resource processing plants (industry)

• Land use depending on terrain

– Proper ground (ground should be fertile for a farm)
– Elevation
– Water
– Distances to other lots

• Mid-term presentation (2012-03-22)
• Assembling committee
• Deadline: 2012-04-13

A.5 Prototype V

• Tech tree based improvement of possibilities
• Deadline: 2012-04-20
• Event execution
• Deadline: 2012-04-27
• Land use maintenance

– Buildings become older and are less worth when badly maintained
– Replacement of low value lots
– Removing patches that are damaged

• Creating and loading pre-set profiles
• Running through TODO-list
• Deadline: 2012-05-04

A.6 Release Candidate I

• Tuning semantics
• Document: Introduction
• Document: Design and Implementation
• Deadline: 2012-05-25

A.7 Release Candidate II

• Fixes and tuning
• Designing examples for report and presentation
• Document: Results

70

• Document: Discussion
• Deadline: 2012-07-02

A.8 Final Release

• Fixes and tuning
• Correct errors in document and add more images
• Finish document
• Deadline: 2012-07-23

71

Appendix B

MoSCoW

B.1 Must have

• Land use simulation

– Lot creation
– Simple buildings (filling the lot)
– Residential/Industrial/Commercial
– Resource production facilities (industrial)

• Resources

– Resource gathering
– Resource consumption

• Two-dimensional representation

B.2 Should have

• Building construction depending on resources
• Land use depending on terrain

– Elevation
– Water
– Distances to other lots

• Buildings become older and are less worth when badly maintained
• Replacement of low value lots
• Technologies
• Resource, disaster and technology event execution

B.3 Could have

• Zooming the time line (with scroll wheel)
• Road network simulation

– Extending existing roads
– Creating new connections

• Three-dimensional representation

– 3D road display
– 3D buildings (extruded lots)

• Saving & loading projects

72

• Going backward in time to test changed parameters
• Multiple governments

B.4 Would have

• Traffic Simulation
• Resource transport
• Event editor
• More buildings (custom made CGA-buildings for example)
• Special land/road elements (bridges, dykes, tunnels, etc.)
• Pop up at hovering an event at the time line
• Terrain simulation

73

Appendix C

Proposal

C.1 Introduction

Over the years many methods have been proposed for the procedural generation of urban areas,
like [14], [10], [12], and [9] to cite a few. The road structures in those generated cities were mostly
dictated by strict rules based on real world city patterns. In most methods the road network
shapes the city. The placement of buildings depends on the creation of cells in the road pattern.
After the creation of cells enclosed by roads, the cells are divided into lots so that buildings can
be placed along the roads.

Other methods that are more aimed at semantics, mainly use a different approach. Urban area
simulations done using agents [25][26] and applying ecological and urban development models
[38] focus on the development of patches. The simulations evolve a city over time by changing
the properties of a grid of patches. Each patch can be either road, water, residential, industrial,
commercial, or natural (like a patch of forest or grass). The simulation selects patches at random
and evaluates if a patch type change would increase the value of the patch taking into account
the surrounding patches and economic models of the city. If changing does increase the value, the
patch is replaced; if it does not, it is kept the same.

Later work extends this principle for geometric modelling and urban land use simulation which
is not tied to a grid of patches. This allows free forms of roads and building lots and therefore
more realistic cities. An important example is the land use simulation and traffic simulation that
form the basis of the procedural city generator proposed in [9]. Another simulation, which is based
on agents and focusses on behavioural modelling and how this is tied to geometric modelling, is
shown in [23]. Both result in very attractive city models that can change iteratively based on
modelling relations seen in real world urban areas.

Although some of the presented methods do include meaning to the land use simulation and
the generation of the road network, many factors are not included. The complete history of a
city is important for its growth, especially the first settlement. A city can start as a small village
around a bridge because this is a place for trade and transport. This will cause the city to develop
a harbour for transport over water and gates to be able to levy toll on carts and keep unwanted
people outside the city. Also the resources play an important role in the early development of
villages. If the urban area is near mountains, stone is cheap and will therefore be used more often
in buildings than villages far from rocky areas where buildings are more likely to be built from
wood or clay bricks. These factors influence the success and growth of a city and therefore also
the modern development.

In my research I want to develop a urban area simulation that takes into account the meaning
behind the steps made in the creation of the city. The initial placement, resources, and events (such
as disasters) influence the growth and type of the city. Other factors like economic fluctuations,
technological advancement, and neighbouring cities may also contribute to the final shape of the
city. These events might be triggered automatically or by the user.

74

This research poses interesting and exciting challenges. It will extend current techniques by
adding more history and meaning to the procedurally generated cities and will therefore create
functionally realistic cities. This however will not be limited to real world situations, but could
also be used for creating cities in fantasy worlds in games.

C.2 Planning

This section covers the global planning for this project. It has been subdivided into eight stages
each with a resulting working program and a part of the documentation. Due to lack of knowledge,
this planning will change over time under influence of new insights. Each stage will start with a
refinement of the goals in that stage.

C.2.1 Prototype I

• Continuing literature survey (urban simulation)

• Software orientation (C#, Terrain, Game Semantics Engine, Shape grammars/models)

• Showing image of a terrain

• Drawing on terrain image

• Making planning

• Writing proposal

• Deadline: 2011-11-25

C.2.2 Prototype II

• Loading an XML-file containing events that have to be triggered

• Applying the events stated in that document

• Simple semantics (connection with Semantics Engine)

• Updating drawing on changes world

• Linking drawing and semantic data

• Start writing document (Related Work)

• Deadline: 2011-12-16

C.2.3 Prototype III

• Extending semantics

• Document: Related Work

• Deadline: 2011-12-23

• Introducing road development

• Introducing land use development

• Deadline: 2012-02-10

75

C.2.4 Prototype IV

• Extending semantics

• Enhancing road and land use development

• Introducing 3D view (buildings and terrain)

• Deadline: 2012-03-09

C.2.5 Prototype V

• Tuning semantics

• Integrating road visualisation

• Document: Design

• Deadline: 2012-03-23

C.2.6 Prototype VI

• Creating and loading pre-set profiles

• Tuning semantics

• Tuning visualisation

• Introducing own geometry

• Deadline: 2012-04-27

C.2.7 Release Candidate

• Loading and saving results

• Speed improvements

• Tuning visualisation

• Document: Introduction, Results

• Deadline: 2012-05-16

C.2.8 Final Release

• Fixes and tuning

• Writing final report

• Assembling committee and picking a date

• Deadline: 2012-06-29

76

Appendix D

Default Database

D.1 Abstract Entities

D.1.1 Government

The properties of the government are described in Table D.1 and D.2.

Parameters Value Explanation
Damage weight 0.1 The maximum amount of damage due to shortages.
Goal weight 0.6 The proportion of the old goals that is retained on update.
Costs weight 0.4 The importance of costs in solution selection.
Production weight 0.6 The importance of production in solution selection.
Grow speed 4 The number of patches the government tries to construct.
Allocation tries 20 The number of times it tries to construct a patch.
Replace count 3 The maximum number of patches replaced per time unit.
Replace subset 25 The number of patches randomly selected for replacement.

Table D.1: The properties of the default government, their values and a short explanation.

Resource Stock Goal Degradation
Food 10.0 10.0 0.10
Manpower 10.0 10.0 0.10
Stone 10.0 10.0 0.02
Water 10.0 10.0 0.02
Wood 10.0 10.0 0.02

Table D.2: The resources of the government at the start of the simulation.

D.2 Patch Types

Table D.3 describes the properties of the default patch. The resource production values, costs,
and weights are shown in Table D.4, which are all zero.

D.2.1 Natural

The natural patches are described in Table D.5.

77

Parameters Value Explanation
Appearance weight 1.00 A weight for selecting this patch type.
Area threshold 0.00 The lower limit for the area of the patch.
Building type Automatic The name of the building type used in SketchaWorld.
Colour 0,0,0 The colour of the patch (RGB values between 0 and 1).
Degradation speed 0.005 The speed for losing its value and gaining damage.
Influence range 6 The multiplier for calculating the range of influence.
Location tries 20 The number of random locations tested to build this patch on.
MaxSegments 40 A polygon segments threshold for cancelling the allocation process.
Precision 0.00005 The precision of the allocation manager.
Shape Diamond The icon displayed at the centre of the patch.
Width 20 The envisioned width of the patch.
Height 20 The envisioned height of the patch.
View angle 0.314 The size of the expansion view in radians.

Table D.3: The properties of the default patch (root) and a short explanation of the parameters.

Resource Weight Costs Production
Food 0.00 0.00 0.00
Manpower 0.00 0.00 0.00
Stone 0.00 0.00 0.00
Water 0.00 0.00 0.00
Wood 0.00 0.00 0.00

Table D.4: The weights, costs, and production values for the default patch. It does not produce or cost
anything and does not have preferences.

D.2.2 Residential

The residential patches (Table D.6 and D.7) can be built on grass and on mountains.

D.2.3 Industrial

The industrial patch type contains two quarries: clay quarry and stone quarry. Both produce the
resource stone. the clay quarry can only be built on grass, preferably near water. Stone quarries
can only be positioned on rocky areas like mountain ridges. The properties of the quarries are
shown in Table D.8 and D.9.

D.2.4 Water Supplies

Water supplies (Table D.10 and D.11) can be built on grassy and desert areas.

D.2.5 Agricultural

Farms can only be positioned on grass and forest areas. The other properties are described in
Table D.12 and D.13.

78

Parameter Desert Forest Grass Mountain Water
Colour 0.65, 0.80, 0.00 0.00, 0.50, 0.00 0.00, 0.80, 0.00 0.50, 0.50, 0.50 0.00, 0.00, 1.00
Wood production - 0.50 - - -
Water production - - - - 1.00
Shape - - - - Wave

Table D.5: The specific parameter values per natural patch type. A dash indicates no change compared
to the values of the default patch.

Parameters Value Explanation
Building type RowHouse The name of the building type used in SketchaWorld.
Colour 1.00, 0.20, 0.40 The colour of the patch (RGB values between 0 and 1).
Influence range 20 The multiplier for calculating the range of influence.
Shape Triangle The shape displayed at the centre of the patch.

Table D.6: The changed properties for the residential patches.

Parameter Hut Woodcutters hut Simple house House Good house Mini flat
Building type Shed Woodcutters hut Village House - - MiniFlat
Influence range 30 25 - - - 24
Width 8 16 20 20 24 40
Height 8 16 16 16 20 32
Food weight 0.50 0.20 0.40 0.40 0.30 0.25
Manpower weight 0.20 - 0.35 0.40 0.50 0.50
Stone weight - - - - - -
Water weight 0.30 0.10 0.25 0.20 0.20 0.25
Wood weight - 0.70 - - - -
Food costs - - - - - -
Manpower costs 1.00 2.00 3.00 4.00 5.00 8.00
Stone costs - - - 1.00 2.00 10.00
Water costs - - - - - -
Wood costs 1.00 2.00 2.00 2.00 1.00 3.00
Food production -1.00 -2.00 -2.00 -2.50 -3.00 -14.0
Manpower production 1.00 2.00 2.00 3.00 4.00 20.0
Stone production - - - - - -
Water production -1.00 -2.00 -2.00 -2.50 -3.00 -14.0
Wood Production - 2.00 - - - -

Table D.7: The specific parameter values per patch type. A dash indicates no change compared to the
values of the default patch.

Parameters Value Explanation
Building Type Factory The name of the building type used in SketchaWorld.
Colour 1.00, 0.65, 0.00 The colour of the patch (RGB values between 0 and 1).
Shape Pentagon The shape displayed at the centre of the patch.

Table D.8: The changed properties for the industrial patches.

79

Parameter Clay Quarry Stone Quarry
Influence range 14 12
Width 50 50
Height 60 50
Food weight - -
Manpower weight 0.50 0.60
Stone weight 0.30 0.30
Water weight 0.20 0.10
Wood weight - -
Food costs - -
Manpower costs 3.00 3.00
Stone costs - -
Water costs 3.00 2.00
Wood costs 2.00 3.00
Food production - -
Manpower production -11.0 -10.0
Stone production 6.00 8.00
Water production -1.00 -1.00
Wood Production - -

Table D.9: The specific parameter values per patch type. A dash indicates no change compared to the
values of the default patch.

Parameters Value Explanation
Building Type Factory The name of the building type used in SketchaWorld.
Colour 1.00, 0.50, 1.00 The colour of the patch (RGB values between 0 and 1).
Shape X The shape displayed at the centre of the patch.

Table D.10: The changed properties for the water supplies.

Parameter Well Water Pump
Influence range 50 25
Width 6 20
Height 6 20
Food weight - -
Manpower weight 0.75 0.85
Stone weight - -
Water weight -0.25 -0.15
Wood weight - -
Food costs - -
Manpower costs 1.50 4.00
Stone costs 1.00 4.00
Water costs - -
Wood costs 1.00 -
Food production - -
Manpower production -1.00 -5.00
Stone production - -
Water production 4.00 10.00
Wood Production - -

Table D.11: The specific parameter values per patch type. A dash indicates no change compared to the
values of the default patch.

80

Parameters Value Explanation
Building type Farm The name of the building type used in SketchaWorld.
Colour 0.90, 1.00, 0.00 The colour of the patch (RGB values between 0 and 1).
Influence range 12 The multiplier for calculating the range of influence.
Shape Square The shape displayed at the centre of the patch.

Table D.12: The changed properties for the agricultural patch types.

Parameter Garden Small Farm Medium Farm Big Farm Giant Farm
Influence range 6 10 - - -
Width 8 20 32 50 100
Height 4 20 32 50 100
Food weight - 0.20 0.25 0.20 0.15
Manpower weight 0.80 0.50 0.10 0.10 0.05
Stone weight - - - - -
Water weight 0.20 0.30 0.65 0.70 0.80
Wood weight - - - - -
Food costs - - - - -
Manpower costs 0.50 1.00 3.00 6.00 10.00
Stone costs - - - 1.00 3.00
Water costs 1.00 1.00 1.00 2.00 3.00
Wood costs - 1.00 2.00 4.00 6.00
Food production 1.00 2.00 4.00 10.0 25.00
Manpower production -1.00 -2.00 -4.00 -8.00 -13.00
Stone production - - - - -
Water production - -1.00 -3.00 -6.00 -10.00
Wood Production - - - - -0.50

Table D.13: The specific parameter values per patch type. A dash indicates no change compared to the
values of the default patch.

81

Appendix E

Small Database

The small database contains just three artificial patch types and two resources. The government
instance has the same properties as the one used in the default database (see Appendix D). Also the
default patch type and the natural patch types have not been changed, except for the river patch
type. The database is designed to cluster factories together and houses together. Commercial
patches (stores) are attracted by both, but mostly by houses.

E.1 Abstract Entities

Resource Stock Goal Degradation
Urbanity 10.0 10.0 0.10
Pollution 10.0 10.0 0.10

Table E.1: The resources of the government at the start of the simulation.

E.2 Patch Types

Houses can be built on grass and mountainous areas. Factories can be built on forests, grass and
desert patches. Stores can be built on both grass and desert areas. All patch types are available
from the start of the simulation. They are described in Table E.2.

Parameter House Factory Store
Building type RowHouse Factory Automatic
Colour 1.00, 0.20, 0.40 1.00, 0.65, 0.00 0.00, 0.00, 0.00
Shape Triangle Diamond Diamond
Influence range 4 4 4
Width 40 50 40
Height 32 40 40
Urbanity weight 0.80 -0.20 0.80
Pollution weight -0.20 0.80 0.20
Urbanity costs - 1.00 1.00
Pollution costs 1.00 - 1.00
Urbanity production 2.00 -0.50 -3.00
Pollution production -0.50 2.00 -1.00

Table E.2: The specific parameter values per patch type. A dash indicates no change compared to the
values of the default patch.

82

Appendix F

Default Database Examples

F.1 Visuals

The default database can be used to generate a great variation in urban areas. The output of
the program depends on the random numbers from the pseudo-random number generator. The
project defines a seed used for the generator. To see how the simulator performs with the default
database, it is ran for 200 cycles with different seeds. Figure F.1 shows that great differences can
exist between results.

(a) (b)

Figure F.1: Two examples of urban areas that developed for 200 cycles.

On the left, a clustering near the river is shown with a centre at the top left of the terrain. The
yellow patches are farms, the red patches represent houses, the blue squares are water supplies
and the industrial patches are orange. The farms and quarries seem to be closer to the river than
the water supplies and houses. This is a result of the water supplies being hydrophobic which
also causes them to scatter more, rather than clustering together. The smaller houses are also
scattered, especially the bigger patches. This is caused by a low value of attraction by water
for bigger residential patches. The black text at the top left shows the current stock values and
indicate a tremendous shortage of water and a huge surplus of manpower. In this scenario the
clustering is going well but the surpluses and shortages are only getting bigger, indicating that
the database is not very balanced yet.

83

The figure on the right, Figure F.1(b), shows a different pattern, resulting from a slightly
different database and a different seed as the previous example. The parameters are explained in
Appendix D. The water supplies are only scattered under the river causing a surplus of water
on below the river, while water consuming patches far from the river have a shortage of water.
This placement of water supplies can be explained by the repelling force that acts on the water
supplying patches. Therefore water supplies are preferably not build near each other and not near
the river. Since the water supplies cannot be built in the mountain areas, only the area under
the river is a possible location for water supplies. Most water consuming patches grow in between
the water supplies and along the river, but less clustered. Small clusters do exist near the river.
Again a few bigger residential lots are placed on the mountain ridge on the left. The stock values
are still big but seem to fluctuate rather than grow endlessly.

F.2 Statistics

During the simulation the government can only control the resources by building new patches,
replacing patches and removing patches. These procedures are guided by patch type values (Figure
F.2(a)) and patch values (Figure F.2(b)). At the start of the simulation the patch type values
rapidly change since there is not much difference between the stock values (see Figure F.3(a)).
Eventually a shortage in manpower pushes the residential value to rise. Also the water supplies
are promoted due to a small shortage of water, and a surplus of both wood and stone. This short
period of 15 cycles is followed by a period with a surplus of water causing the value of water
supplies to drop. The value restores when there is a shortage again. After 50 cycles there is no
shortage of manpower any more because of the promotion of housing. During the remaining part
of the simulation the value of houses is therefore only bound by the surplus and shortage of food.
Since the food stock value fluctuates, the value of houses also fluctuates. The short transitions
are caused by a rapid change in both stock and goal value on which the patch type value is based.
The same counts for the producer of food and consumer of manpower: agriculture. The value
of quarries is for long periods constant and only rises when there is enough manpower (after 50
cycles) and when enough water is available (130-140 cycles, 160-170 cycles, and after 180 cycles).
Compared to the other patch types, water supplies are by far the most wanted patch types due to
long periods of water shortage.

0 50 100 150 200
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

Cycle

P
a
tc

h
 t
y
p
e
 v

a
lu

e

water supplies

agricultural

residential

industrial

(a) The values of patch types over time.

0 50 100 150 200
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

Cycle

A
v
e
ra

g
e
 p

a
tc

h
 v

a
lu

e
/d

a
m

a
g
e

Average patch value

Average damage

(b) The average patch values and damage levels over
time.

Figure F.2: The development of patch type values, patch values and damage levels over time.

The graph in Figure F.2(b) shows the development of the average patch values and damage
levels over time. The first generation of patches starts without any damage but the damage level
rapidly increases do to lack of clustering and therefore a lack of resources in their neighbourhood.
As the number of patches and the clustering increases, the average patch value increases, although

84

the damage level increases during that same period. The first big dip in the damage value is
caused by the removal of badly placed water supplies and quarries. Just after 50 cycles, when the
manpower stock is positive, both the damage levels and the patch values decrease. The decrease
in average patch value can be explained by changing goal values, since the goal values are also
used to calculate the value of patches. The average patch value however recovers quickly from it,
probably because of the placement of many new patches, and grows to a higher and stable value
around 0.4. This while the average damage level slowly increases over time.

The changes seen in the previously described graphs are based on the goals of the government
which are in turn influenced by the stock values. Figure F.3 shows how the changes in stock values
cause the goals to alternate. The goals are limited which causes them to change when a new patch
types becomes available. For example, the wood stock first drops to -2.5, but after 24 cycles it
drops further to -4. After 50 cycles it drops to -6. This is all because new buildings became
available which cost 2.5, 4, and 6 units of wood. The smoothing factor applied to the goals causes
the goals to converge to the new value in a few cycles rather than switching to it directly. This
smoothing directly affects the patch type values as can be seen in Figure F.2(a), which in turn
smooths the decision making over time.

At the start of the simulation, all resources start at a value of ten as well as the goals (see
Figure F.3(b)). Since the goals aim at an equilibrium of resource production and consumption,
the goals rapidly drop below zero to pull the stock values down to zero. A few cycles later, after
cycle number 5, some goal values however increase due to a shortage of food, water and manpower.
Especially the latter resource causes problems. Due to a lack of houses being build, a shortage in
manpower is created. Also due to the low food and water stock values, two resources consumed
by households, the residential patch type value stays low for some time. The removal of quarries
and creation of new houses (around cycle 40) helps to turn the shortage of manpower in a surplus,
although this causes a shortage of food and water since all new people have to be fed. As a result,
the food goal rises and the manpower goal drops to a negative value and stays there since from
then on the manpower stock does plunge to a negative value any more.

The water stock has an even bigger effect since it is related to most patch types. It also shows
a shortage up to the point when a new water resource (water pump) is introduced (cycle 50). The
patch type value peaks and the shortage decreases while new water pumps are installed. However
due to the increasing number of houses and farms, the water shortage grows after cycle 70. The
goal stays high until the water stock turns into surplus, near cycle 130, which heavily affects the
patch type values. At that point the goal drops to -15 and recovers as soon as there is not enough
water produced around the near patches. This is repeated a few times (at cycle 165 and at cycle
180). The last time the goal does not recover to a positive value. The food goal and stock also
alternate during the simulation, but not as severe as the value for water does. The stone and wood
stock seem to stabilise around a surplus of 500 which helps the simulation to keep on building new
patches for which these resources are needed.

Figure F.4(a) shows how the number of patches per patch type category evolves over time.
At the start of the simulation a shortage of manpower causes the number of patches that require
manpower to stay low, allowing residential patches to be placed. The number of water supplies
slightly drops during a period of surplus on water. Though as soon as the number of residential
patches increases even more, the water and food stock drop and the manpower stock increases,
triggering the creation of more water supplies and farms. This continues for a long period. A
small dip can be seen at cycle number 70 which is caused by a destruction event. Since not many
patches were located at the north-west of the terrain where the destruction occurred, not many
patches were damaged by the destruction event at cycle number 70, though still a few houses
were removed. This moment can also be seen in Figure F.4(b) and F.4(c) as a spike around cycle
number 70. Afterwards, the water shortage increases rapidly. Once the water shortage is resolved
(around cycle 130), the pace at which the number of water supplies grow slows down. It even
drops a few time during periods of surplus, which is also visible in Figure F.2(b). After 150 cycles
there is a big dip in the number of patches. Many patches are removed during that period. Mainly
houses are removed due to a lack of resources near the patches.

The removals of patches are more apparent in the second graph, Figure F.4(b). The highest

85

0 50 100 150 200
−3000

−2000

−1000

0

1000

2000

3000

Cycle

S
to

c
k
 v

a
lu

e

wood

water

food

stone

manPower

(a) The changes of stock over time showing shortages
and surpluses.

0 50 100 150 200
−15

−10

−5

0

5

10

15

20

25

Cycle

G
o
a
l
v
a
lu

e

wood

water

food

stone

manPower

(b) The goals over time.

Figure F.3: The calculation of the patch type values is based on the goals (b) which in turn are based
on the stock (a).

spikes can be found at cycle 70 and cycle 160. As noted before, the former is caused by a destruction
event and the latter by plain removal of bad patches, albeit in a higher rate than normal. The
number of added patches is constant and equal to the number of patches that the government
should produce per time unit according to the database. It can occasionally occur that no suitable
allocation can be found in which case the number of added patches for that cycle drops. The
number of replacements differs more over time. Just after cycle 50 it is high during a shortage
of both water and food, creating new wells to help restore the stock values. It also replaces the
water supplies around cycle 140 to create small farms.

20 40 60 80 100 120 140 160 180 200
0

50

100

150

200

250

300

350

Cycle

C
o
u
n
t

water supplies

agricultural

industrial

residential

(a) The number of patches of each
patch type category.

0 50 100 150 200
0

1

2

3

4

5

6

7

8

9

Cycle

C
o
u
n
t

Added

Replaced

Removed

(b) The number of mutations done
each cycle.

20 40 60 80 100 120 140 160 180 200
0

500

1000

1500

Cycle

D
u
ra

ti
o
n

Creating new patches

Patch update

(c) The duration of each cycle.

Figure F.4: The patch type counts, the number of mutations and the duration of the updates per cycle.

86

Appendix G

Class Diagram

UrbSim is constructed out of four major parts: one for loading the project settings (see Figure
G.1), a simulation part that contains the government and its patches (shown in Figure G.2), the
allocation manager and all of its required elements (Figure G.3) for allocating new patches, and
finally the graphical user interface to display the results (see Figure G.4). The presented class
diagram does not contain all classes present in the code. It lacks the class for data recording (used
for exporting results) and a few redundant classes used for testing purposes. These classes are not
necessary for the simulation to work.

Figure G.1: Loading the database, the terrain and other project settings is done by the ContentLoader.

87

Figure G.2: The Simulator calls the Government and Display each cycle for an update. The Government
relies on its stock (private), its patch type (Solutions) and patches (PatchCircles).

88

Figure G.3: The allocation of a new patch is done by the AllocationManager, which grows traces
(TraceVec2d) to form new polygons (PolygonLE) with linked edges (LineVec2d). Basic mathematical
functions are carried out by the GeoMath class.

89

Figure G.4: To give the user feedback on the state of the simulation, the Display shows the Timeline
through the TimelinePanel and draws the patches on the View. The Artist is responsible for linking
semantic information and how features are drawn on the View.

90

