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Abstract

Ceramic is a hard and brittle material with little ductility. It has wide applications in di-
verse industries viz. metallurgy, atomic energy, electronics, communication, space, military,
insulation, biomechanical appliances etc. It is preferred material for armour protection due
to its high strength-weight ratio. Its plastic deformation and failure behavior have, therefore,
become a subject of extensive research in the recent past. Consequently, several material
models were formulated in the second half of the nineteenth century by researchers such as
Johnson- Holumquist, Rajendran-Grove, Deshpande-Evans etc. to study ceramic response
under high-velocity impact. But these models are complex and require extensive calibration,
while the Drucker-Prager (DP) Model is easy to implement. It was developed for study in
soil and rock and is chosen to analyze ceramic quasi-plastic and tensile behaviour as part of
research through the current thesis.
Tensile ring and cone cracks, first observed by Hertz, are one of the modes of failure in brittle
materials like ceramic. The prime objective of the thesis is the study of ceramic failure as well
as cone crack initiation and its propagation through the ceramic body under the influence
of varying material parameters such as cohesion, friction angle, dilatancy and softening of
ceramics besides confinement by indentation. The Drucker Prager model is employed to study
indentation by simulation through numerical methods in JEM JIVE FEM library. Verification
of the model was done through simulation of unit cubes subjected to unidirectional stresses at
prescribed displacements. Suitable modification for pressure dependent softening behaviour of
the ceramic is also made into the model and simulations undertaken in order to get insight into
the nonlinear strength degradation of the ceramic post-elastic limit. Since the DP criterion
tends to overestimate material strength, a suitable mechanism to limit the material strength
is integrated with DP yield function and also to facilitate the comparison of results arrived
through DP and modified yield functions.
The results obtained by a simulated indentation in accordance with the DP formulation
suggest that ceramic having high dilatancy, low friction angle and small softening modulus
under confined conditions is more suited for use as armor protection. The pressure dependent
softening behavior of ceramic is favorable for it being a good armor protection material. The
DP Yield function modified to limit the material strength to a finite value, did not have
any significant impact on crack initiation though the zone of compressive plastic strain grew
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in size during indentation. The DP based numerical model suffered from mesh sensitivity.
The introduction of viscoplasticity to the numerical model was observed to have a positive
influence in mitigating mesh sensitivity.
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Chapter 1

Introduction

Besides its application in diverse fields, ceramic is being used increasingly for armour protec-
tion since the 1970s due to its high hardness and toughness. The key to the development of
effective ceramic protective cover lies in understanding its failure mechanism. The cracking
is one of the common modes of failure of ceramic. The crack types are discussed in detail in
section 1-2. A cone of fracture with radial and circumferential cracks occurs, when ceramic
is subjected to the impact by high-velocity projectiles[10], [11]. Cone cracking is chosen for
study via indentation through numerical modelling in the current thesis works. It was first
observed by Hertz a century ago in glass lenses. Hertzian fracture starts as a surface ring,
which develops into a truncated cone as it propagates downward and flares outwards as shown
in Figure 1-1.

Figure 1-1: Cone crack under indentation[1]

Impact and indentation are the common methods to study failure mechanism of ceramic. It is
difficult to measure stress, strain etc. accurately to determine damages in impact experiments
conducted in the laboratory. Indentation is a relatively simple test. It is also less time
consuming and cost-effective. The other major advantage of indentation over impact test
is its flexibility in controlling the test conditions. The failed material can also be easily
recovered in an indentation test [12]. Numerical simulation with the advent of powerful and
high-speed computers has become an important tool to investigate ceramic failure subjected
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2 Introduction

to indentation. It has allowed integration of larger numbers of variables and parameters
into the indentation process for a more insightful study. Simulated indentation by numerical
methods is used in the current studies to get insight into cone cracking and to investigate
the effect of key parameters such as internal friction, dilatancy and softening on the ceramic
failure by cone cracking during indentation.

The current chapter introduces a historical overview of ceramics, molecular structure and
crack types in brief. It is followed by a detailed section on popular computational models
currently used to simulate ceramic failure and discussions on the selection of an appropriate
model for present studies. Lastly, the research objectives of the thesis are laid out.

1-1 Historical Overview

Humans have been using ceramic potteries since Neolithic times. The word ceramic’ has its
origin in Greek word Keramikos’ meaning of pottery’ or for pottery.’ Figurines and potteries,
dating back to 24000 BC made of clay and burnt in kilns, have been found at the sites
of old Eurasian civilizations [13]. The use of ceramic diversified from simple pottery in
ancient times to bricks, tiles, porcelain, refractory lining etc. by medieval times. The heat
resistant ceramic as refractory lining had made possible a quantum jumps for the growth of
metallurgy; one of the key factors which kick-started the industrial revolution. The second half
of the twentieth century saw rapid growth in ceramic technology and ceramic use in diverse
fields such as atomic energy, electronics, communication, space travel, military, electrical and
thermal insulators, semiconductor, superconductivity and biomechanical appliances [14].

Ceramic as an armor protection was discovered in 1918 by Major NM Hopkins [13]. But the
discovery was not put to any practical application till the 1950s. The erstwhile Soviet Union
developed the first armor made of ceramic mixed silicon oxide. Subsequently, the British,
US and Germans developed new ceramic armours during the 1970s and 1980s and these are
used in several modern-day tanks. The interest in advance research for newer ceramic armour
technology has not abated in the present days.

1-1-1 Armour Protection

The armour industry extensively uses ceramics for protection against bullets and projectiles.
Ceramic is a hard and brittle material with little ductility, exhibiting much higher compressive
strength than tensile strength. Its hardness makes it attractive for amour protection. Ceramic
provides effective resistance to penetration by high-speed ammunition warheads by absorbing
substantial projectile energy and thereby acting as a front-line defence to the back plates,
placed behind the ceramic protective layer. Since ceramics are lightweight in comparison
to the traditional armour plates, the ceramic coating facilitates a reduction in back plate
thickness i.e. the weight of armoured vehicles also gets reduced considerably resulting in the
higher manoeuvrability of armoured platforms at less cost. The use of ceramics for armour
started in the 1970’s by the US military. The ceramic is also widely used as a substitute of
steel for the protection of helicopters and armed personal against bullets, mortar etc. [8]. New
generation ceramic armour have curved profiles to provide a snug fit around the body. To
achieve capability against multiple projectiles hits, the designers started moulding ceramics

2



1-2 Cracking 3

into 50 x 50 mm or 100 x 100 mm tiles woven in a matrix of carbon composite and fibres like
Kevlar. During late 1980’s tank armour was made from curved profiles of multiple sheets of
ceramic stacked on the back of steel plate.

1-1-2 Molecular structure

The ceramics used in armour are Boron carbide (B4C), Silicon Carbide (SiC), Silicon Nitride
(SiN), Alumina (AL2O3) and Alumina Nitride (AlN). These have crystalline or amorphous
structure. The bonds in ceramic are of either ionic or covalent in nature. These bonds are very
strong under compression making ceramic very hard and rendering it with large compressive
strength. However, the molecular structure tends to become unstable and fractures rapidly
under tensile load at very low deformation making the material brittle and prone to cracking.

1-2 Cracking

Brittle materials develop cracks in tension inhomogeneities in the form of small and microc-
racks culminating in complete failure of the material. Cracks are classified as inter-granular
and trans-granular. The major factors affecting growth and propagation of cracks are loading
rate, the degree of confinement and the geometry of projectile. Indentation and other impact
tests produce five major types of cracks [15] as shown in the Figure 1-2 and explained below:

1-2-1 Types of cracking

Figure 1-2: Major types of cracking [2]

3



4 Introduction

1. Cone cracks: These were first observed by Hertz in glass on indention by spherical glass
balls in late nineteenth century. They develop in ceramics when indented by spherical
or flat punch type indenter. The deformation in the material forms cone cracks. Ring
cracks are formed in the tension zone near the edge of contact. On further loading, ring
cracks propagate along the line of maximum tensile stress into cone cracks as shown in
Figure 1-2a.

2. Palmquist / Radial cracks: Indentation by sharp or blunt indentors beyond Hertzian
regime tend to produce radial crack (Figure 1-2b) in materials harder than glass like
carbides and Zircona. Indenter forms impression on the ceramic due to the plastic flow
induced by tensile hoop stress. The radial crack propagates parallel to the axis of the
load from the edge of zone of the plastic flow under the indenter.

3. Median cracks: Wedging action of the pyramidal indenter creates plastic deformation
zone. Median cracks (Figure 1-2c) develop below this plastic deformation zone and run
parallel along the axis of loading.

4. Lateral cracks: These cracks mostly occur during unloading, although in some cases
they are found in the loading as well as the cyclic loading cycles. They propagate due
to post indentation residual stresses. They are located beneath the plastic deformation
zone and propagate almost parallel to surface of loading as shown in Figure 1-2d and
are followed by an upward turn, chipping the surface in the process.

5. Half penny cracks: These cracks (Figure 1-2e) start either from a radial crack, moving
downward or from a median crack moving upward or a mixture in between the two.
This type of crack occurs mostly during unloading.

1-3 Material Modelling

A material model incorporates failure mechanism and predicts the response of a body under
external loads. The material response, which is a function of its microstructure and macro-
mechanical properties, is defined by stress-strain constitutive relationships. The magnitude,
direction and distribution of stress and strain tensors within a body are influenced by these
properties and can be determined both analytically and through experiments such as triax-
ial tests. The multiplicity of material properties and heterogeneous nature of real material
due to manufacturing defects make the process of understanding of material response rather
complex [4]. The residual strength post material failure adds another dimension to this prob-
lem [3]. Therefore, the models have been developed on few simplifying assumptions made
on the basis of the specific objectives of problem-solving. Consequently, the predictions of
material response by models need to be in conformity with the experimental results. There
are two types of dynamic constitutive models for ceramic [3] 1. Micro-mechanical model: 2.
Phenomenological damage model.

1-3-1 Micro-Mechanical Model

The mechanical properties such as elasticity, plasticity, brittleness etc. are intricately related
with the molecular structures and lattice arrangement, chemical bond strength and type etc.,

4



1-3 Material Modelling 5

which have a direct bearing on the standard properties such as grain size, toughness and
hardness. The micromechanical models incorporate micro properties for understanding the
elastic and plastic deformation of the material under influence of load. The stress-strain rela-
tionship is indirect output to changes into a deforming material occurring at microstructure
level. They provide insight into the deformation phenomena and are affected little by the
boundary conditions as they are based on the basic natural laws which are universal. They
are not very popular due to their large computational costs [3]. Despande-Evans (DE) Model
described below is a micro-mechanically motivated type.

Deshpande and Evans (DE) Model

The behaviour of ceramic while undergoing plastic deformation is influenced by three sepa-
rate mechanisms at the micro level as shown in Figure 1-3 [3]. These are lattice plasticity,
microcracking and granular plasticity. They happen to occur both simultaneously as well
as one after the other in that order in parts. The damage to the material is considered to
be complete when the material becomes granular under the combined influences of all three.
The physical laws governing these mechanisms plus elasticity are integrated together to form
the constitutive DE model. The results of indentation tests on armour grade alumina, when
compared results of simulation of DE model reveal that the latter predicts larger damage and
surface uplift than the actual obtained by experiments.

Figure 1-3: The inelastic mechanisms included in the constitutive model for. [3]

1-3-2 Phenomenological damage model

The constitutive relationships governing phenomenological models are empirical but are con-
sistent with the fundamental laws associated with specific phenomena defined by such rela-
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6 Introduction

tionships. These are not derived from first principles of natural science unlike the constitutive
relationships of micromechanical models. The manner in which the variables considered in
such models interact is not explained fully but the model gives outputs consistent with ex-
perimental data. Like the micromechanical models, the constitutive relationships governing
phenomenological models also have several coefficients and constants which are determined
through the painstaking calibration process. Separate boundary condition or protocol requires
separate calibration as the constitutive relationships do not factor material microstructure.
Therefore, the results obtained from phenomenological damage models for one protocol often
fail to predict the results for the other unless recalibrated for the changed scenario. This is its
main drawback. But they are economical for large-scale computation. Models proposed by
Johnson-Holmquist, Wilkins, Walker-Anderson etc. are among the more widely used models
for ceramic study in this class

Wilkins and Anderson Ceramic Model:

Wilikins developed his model with an emphasis to study the development of conoids in thin
sheets of ceramics. According to his tensile failure model, fracture in the computation cell oc-
curs when the maximum principal stress of a cell exceeds the tensile stress criterion(σ > σf )[8].
The fracture propagates at some fraction of the wave speed from the surface (including ma-
terial interface), weakening the cell pressure up to the complete fracture of the cell. Fracture
then propagates to the neighbouring cell on the computational grid like a crack. Ψ denotes
the damage and has a value of 0 (no damage) to 1 (complete damage). In terms of time steps
fracture is complete at:

Φn+1
f ≈ Φn

f + ∆Φf Φn+1
f = 1, (1-1)

where

Ψf ≈ fi
Cshear∆tn

X
0 ≤ f ≤ 1,

and

Cshear =
√
G

ρ
- shear wave speed,

where Cshear is the shear velocity of wave in material, Φ is the damage and t denotes the time.
X is the characteristic length of the cell. The progressive softening of the cell is given by Y
= (1-Φ)Yintact. The Wilkins model does not account for the the strength of the powdered
ceramic. In 1991, Walker and Anderson improved the Wilkins model by incorporating the
Drucker Prager model, characterising a slope β and a cap Y .

Y = (1 − Φf )Yintact + ΦfYfail, (1-2)

where the failed strength is defined as

Yfail =


0 for P < 0
βP for ≤ P ≤ Y /b

Y for P ≤ Y b

The main drawback of the model is that it does not provide good estimate about the residual
projectile length, dwell and residual velocities even for the over matched conditions.
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1-3 Material Modelling 7

Johnson Holumquist Model

The JH model was developed as a part of the heavy armour research initiative at DARPA,
USA. Sice then, it is widely used for ceramic materials in the armour and ballistic research
field [8]. Johnson and Holmquist developed the model by observing the response of ceramic
impacted by high velocity penetrators. Failure is measured in terms of plastic accumulated
plastic strain, represented by a damage variable D.

JH models use multiple curves to depict intact (D < 0.0), failed (D=1.0) and intermedi-
ate (0.0<D<1.0) state of material. The JH2 model gradually softened the strength curves as
damage accumulates.

JH 1 model

Figure 1-4: JH1 model[4]

Intact and failed strength, and the transition between them are quantified by damage ac-
cumulation, and are functions of pressure [16]. The intact strength and failed strength are
shown in red and blue lines in the Figure 1-4. The available strength is defined as

σ = σo (1 + C3 ln ϵ̇∗) (1-3)

where C3 is the strain rate constant. The damage (D) is expressed as

D = Σ∆ϵp

ϵpf
(1-4)

where ϵp is the plastic strain during a cycle of integration and ϵpf is the plastic strain for
fracture under a constant pressure. Figure 1-4 shows the maximum permissible hydrostatic
tension as T. The hydrostatic pressure prior to fracture is

P = K1µ+ k2µ2 + k3µ3 + ∆P (1-5)

7



8 Introduction

where, K1, K2 and K3 are material constants and µ = ρ/ρo − 1 for current density ρ and
initial density ρo. At fracture (D=1) an additional term is added to pressure to account for
the bulking. Bulking increases the volumetric strain and hence pressure. The increase in
pressure is denoted by ∆P

∆P = −K1µf +
√

(K1µf )2 + 2.βK1∆U (1-6)

where β accounts for the effect of bulking, ∆U is the loss of elastic energy and µf is the final
density of the failed material.
Drawbacks: A brittle material like Boron Carbide shows gradual softening during flyer plate
impact tests. However, JH 1 model considers the damage to be invariant with respect to
pressure as shown in Figure 1-4. The material has zero softening until D =1, and then
instantaneously softens. Furthermore, results are very sensitive to constants used in the
model. The constants are also difficult to evaluate. The implementation of the JH model is
tricky due to the jump condition between fractured and intact material. Eventually, JH 1
model was superseded by the JH 2 model to overcome its downsides.

JH2 model

Figure 1-5: JH2 model[4]

The Figure 1-5 shows the available strength in the material with the accumulation of damage.
The material gradually softens with the accumulation of damage [16]. The damage is a
function of the increasing plastic strain. The blue line shows the intact strength (D=0),
while the red line shows the failed strength at (D=1), and the green line shows the available
strength in the material at an intermediate damage (0<D<1). The strength and pressure are
normalised by strength and pressure components of HEL. The parametric variation of the
constants in a systematic fashion is achieved by making the strength and damage analytical
functions of pressure and other state variables. The strength is smoothly varied as a function
of intact strength, fracture strength, strain rate and damage.

σ∗ = σ∗
i −D

(
σ∗

i − σ∗
f

)
(1-7)

8



1-3 Material Modelling 9

where σ∗
i denotes the normalised intact equivalent stress, σ∗

f denotes the normalised fracture
stress and D is the damage varying from 0 to 1. The normalised equivalent stress (σ∗, σ∗

i , σ
∗
f )

have a general form of

σ∗ = σ

σHEL

The normalised intact strength is given by

σ∗
i = A (P ∗ + T ∗)N (1 + C lnϵ∗) (1-8)

and the normalised fracture strength is given by

σ∗
f = B (P ∗)M (1 + C lnϵ∗)

M, N, A, B and C are material constants. The damage (D) is expressed as

D = Σ∆ϵp

ϵpf
(1-9)

where ϵp is the plastic strain during a cycle of integration and ϵpf is the plastic strain for
fracture under a constant pressure P.

ϵpf = D1 (P∗ + T∗)D2 (1-10)

where D1 and D2 are again constants. The normalised pressure (P ∗) and cutoff tension
(T ∗)are defined as,

P ∗ = p

PHEL

T ∗ = T

PHEL

Where PHEL is the pressure at HEL.

JohnsonHolmquistBeissel Model

Figure 1-6: JHB model[4]

9
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Johnson, Holmquist and Beissel developed the model by formulating material strength and
damage as pressure dependent variables, similar to JH -2 model. However the sudden and
abrupt decrease in material strength at complete damage (D = 1) is comon with JH-1 [17].
The intact strength of the material is given by

σintact = σi +
[
σi

max − σi

]
[1.0 − exp (−αi (p− pi))] (1-11)

where

αi = σi

(σi
max − σi) (pi + T )

.

Here σ, σi
max and Pi are material parameters, where the subscript i indicates intact material.

Pressure, p, is defined as p= 1
3 tr(σ). T is the maximum tensile stress of the ceramic.

Equation 1-11 holds for a pressure greater than pi. For smaller pressures, the strength is a
linear function from σ (p = −T ) = 0 to σ (p = pi) = σi. In Figure 1-6 the intact material
strength is shown with blue.
The strength of failed material is represented in a similar way as intact material. For pressures
greater than pf , failed material strength is defined by

σfailed = σf +
[
σf

max − σf

]
[1.0 − exp (−αf (p− pf ))] (1-12)

where

αf = σi

p (σi
max − σi)

.

where σf , σmax and pf are material parameters where, the subscript f denotes the failed
material. For pressures smaller than pf the failed strength is a linear function from σ (p =
0) = 0 to σ (p = pf ) = σf . In Figure 1-6 the failed material strength is shown with red.

1-4 Conclusion and Problem Statement

Ceramic being a brittle material experiences little ductility, and its strength is highly depen-
dent on pressure. Ceramics are much stronger in compression than tension. Cone cracking
among the various failure mechanism discussed above has been chosen to be studied through
indentation via simulations. Material models by Johnson and Holmquist [16], Deshpande
and Evans [3], as well as Walker and Anderson [8], are frequently used for simulating the
ceramic failure. The results obtained from these material models match with one particular
set of experimental results, but often fail to predict the results obtained from a different set
of experiments. These models have features like plasticity, dilation, softening common with
Drucker Prager model. Drucker-Prager (DP) Model is easy to use and implement through
numerical methods. The constitutive relationships in DP formulation are simple.

An Analogy can be taken from the soil and rock mechanics as the characterization of ceramic
under impact is not limited to the intact material but also the comminuted particles which
behave more or less like rocks fragments showing dilatant behaviour. Drucker Prager (DP)
model is most widely used for understanding the rock like behaviour and cone cracks are also
seen in rocks during indentation [18], [19], [20]. In view of this commonality and its simplicity,

10



1-5 Research Objectives 11

the DP model can be employed to analyze cone cracking and tensile failure in ceramic. Based
on the discussions above, the standard Drucker Prager (DP) Model, which also captures the
effect of comminution, is selected as a promising starting point for understanding the ceramic
failure mechanism through simulated indentation by numerical methods in JEM JIVE FEM
library

1-5 Research Objectives

Cone cracking is one of the prominent failure modes of ceramic. Therefore, it is important
to understand the circumstances leading to such failure in order to design superior armour
protection. Keeping this broad aim in view, the following are set as objectives of the present
thesis works.

1. The prime objective is to understand the effects of material parameters such as cohesion,
friction angle, dilatancy and softening of ceramics besides confinement on ceramic failure
by ring and cone cracking through simulated indentation by the DP formulation.

2. The DP model does not consider pressure dependent softening which gets manifested by
the brittle nature of ceramic. It also tends to overestimate the compressive strength of
the material. Hence the second objective is to introduce necessary remedial mechanisms
into the model to overcome these deficiencies.

3. Often it is difficult to obtain objective results out of simulations of material models
due to mesh sensitivity. Viscoplastic integrated elements incorporated into the material
model formulation have been found to be effective in solving mesh sensitivity issues
in past research works. Accordingly, the third objective is to modify the DP model
suitably to examine the possibility of controlling mesh sensitivity.

1-6 Outline of thesis

To achieve the objectives mentioned above, the current study is organized as shown in the
flow chart given in Figure 1-7. In Chapter 2, the effects of material parameters viz - angle
of friction, dilatancy, softening on cone crack formation and propagation is studied. The
consequences of confinement and mesh sensitivity are also covered. Chapter 3 focuses on
modifying the standard DP model to capture the pressure dependent softening. Chapter 4
explores the limiting the yield function in the standard DP model and its effect on the quasi
plastic deformation in the ceramics. Chapter 5 examines viscoplasticity to mitigate the mesh
sensitivity. The DP model is suitably modified by integrating viscoplasticity in this regards.
Perzyna based viscoplasticity. In Chapter 6 the report concludes the findings of the studies
carried out vis a vis research objectives besides listing recommendations for future work.

11



12 Introduction

Figure 1-7: Outline of chapters
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Chapter 2

Standard Drucker Prager
implementation

The DP model was proposed by Drucker and Prager in 1952 [21]. It was developed to study
the failure mechanism of pressure-sensitive materials such as rock, soil and concrete. The
yield function (f) is defined as

f =
√

3J2 − η p− ζ (2-1)

where p is the pressure and J2, the constants η and ζ are defined as

J2 = 1
2
σT Pσ (2-2)

η = 6 sin ϕ

3 − sin ϕ
and ζ = 6 c cos ϕ

3 − sin ϕ
(2-3)

c′ is the cohesion of the materialand P is defined as

P =



2
3 −1

3 −1
3 0 0 0

−1
3

2
3 −1

3 0 0 0
−1

3 −1
3

2
3 0 0 0

0 0 0 −2 0 0
0 0 0 0 −2 0
0 0 0 0 0 −2


, (2-4)

where ϕ is the angle of friction, and the shear strength c of the material is defined as

c = c′
(
1 + h ϵeq

p

)
(2-5)

where h is the material softening and ϵeq
p is the equivalent plastic strain. The plastic potential

function (g) is defined as
g =

√
3J2 − ηp (2-6)
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14 Standard Drucker Prager implementation

where η is defined as,

η = 6 sinψ
3 − sinψ

with ψ as the angle of dilatancy and it determines the flow direction from trial state to the yield
surface as shown in Figure 2-1. The direction of flow is at an angle equal to dilatancy (ψ) from
the vertical as per the postulates of DP Model. Associated flow condition is attained provided
angle of friction equals dilatancy angle. If the angle of dilatancy in the non-associative flow
is zero, the flow reduces to the Prandtl - Reuss regime that predicts volume preserving flow.
The plastic strain rate ϵ̇ is defined by

ϵ̇p = λ̇

(
∂g

∂σ

)
(2-7)

λ is the plastic multiplier.

Figure 2-1: Drucker Prager Model - stress vs pressure

A straight line is obtained by plotting the yield surface on the p vs σeq plane, as shown in
Figure 2-1. The point (papex ,0) represents the vertex of the Drucker Prager cone, the minimum
allowed pressure state. The cohesion is the shear strength at pressure (p=0). The angle of
friction (ϕ) is the slope of the yield surface. A singularity exists in the DP yield surface at the
apex. The stress integration is done by Backward Euler algorithm. Two separate mapping
schemes have been used to arrive at the yield surface from trial stress - smooth mapping
scheme for the Zone 1 [6] and apex return for zone 2 [7] in the stress - pressure space. The
stress algorithm and consistent tangent matrix have been discussed in detail in section 3-3.

2-1 Verification

The verification of the Drucker Prager material model is done through unit cube test. It
involves simulated uni-directional compression and tension via prescribed displacements. The
sample is confined in all directions, except one as shown in Figure 2-2a. Displacement of 50
µm is prescribed in 100 load steps with an increment of 0.5 µm, followed by unloading, in

14



2-1 Verification 15

equal numbers of load steps. All simulations are based on values of E = 220 GPa and ν = 0.3.
Plane strain condition has been assumed. Pressure vs equivalent stress plot for the simulations
is obtained to understand the effects of dilatancy, cohesion, angle of friction and softening
under tension and compression. The consistent tangent matrix is checked by splitting the
cube into an unsymmetrical mesh as shown in Figure 2-2b. The results so obtained are
vetted against the ones obtained from original unit cube test. The correct implementation
of Euler Backward return and the apex return formulations are checked through a series of
simulations by varying the parameters. The effects of variations in softening and dilatancy on
the results of unit tests to tension are found to be significant and discussed in further detail.

(a) Unit Cube under displacement - (tension) (b) Un-symmetrical mesh

Figure 2-2: Unit test

2-1-1 Softening

The results of unit cube test under tension corresponding to a range of softening values are
presented in 2-3. The friction angle and dilitancy are both fixed at 10o during the test.
The negative sign assigned to the softening values is to highlight the fact that the material
strength decreases. Therefore, an increase in softening/softening modulus is depicted by the
mod of softening values rather than the negative values themselves in conventional terms.
Since the softening modulus is a measure of the degree of softening, the two are considered
to be synonyms in this study.

The plots between pressure and equivalent stress for different values of softening modulus are
presented in Figure 2-3. The generic path followed by all the plots is OABOC. Point B, O
and C represent sets of points containing apex, the start of unloading and unloaded state
respectively. The plots between pressure and equivalent stress for different values of soften-
ing are the same within the elastic limit represented by point A in Figure 2-3. On further
loading, plastic flow starts and the material begins to lose its strength, as shown in the plots
corresponding to different softening values by the decrease in equivalent stresses. Reduction
in the strength of the material is observed with increase in softening from zero in subsequent
iterations.

The apex return algorithm is applied to find the apex - cutoff pressure during loading, as
depicted by point B in the plot. The pressure - stress state travels along the pressure axis
on further loading until unloading starts. The material loses its complete strength during
the loading cycle for the value of h = -8 or more and the unloading starts from the origin.

15



16 Standard Drucker Prager implementation

The consistent tangent matrix is a null matrix on arriving at the origin. This indicates that
as the stress state arrives at the origin O in the plot, it remains there until unloading or
neutral loading occurs. The apex return mapping is not able to bring the stress-pressure
state to the apex on further increase in softening and directly takes the stress to its final
position which is the origin. The plots for unloading are in plastic domain. The differences
in slopes of plots (Figure 2-3) corresponding to different softening values are very small and
hence they are not parallel although they seem to be so. Unit test results indicate that the
residual strength decreases with increasing softening. Furthermore, for softening h=-8 MPa
or more, the material completely softens i.e it has no residual strength. Tests carried out at
smaller magnitudes of softening (h=-1 and -2 Mpa), results into a gradual strength decrease.
Similar behavior is also noticed in ductile material. Brittleness is exhibited by samples at
larger magnitude of softening.
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Figure 2-3: Unit load test for varying Softening

2-1-2 Diltancy

The angle of dilatancy modifies the direction of return from the trial state to the yield surface
via plastic potential function. As the the model is simulated while introducing dilatancy, the
plastic flow no longer remains volume preserving and the hydrostatic component of stress
continues to increase the pressure further with increase in angle of dilatancy for a given trial
strain. The p vs σeq plots corresponding to varying dilitancy from 5o to 30o at constant
softening of -10 MPa and friction angle of 30o are presented in Figure 2-4. Every simulation
follows the same path till the elastic limit denoted by line OA. However, the peak values are
not the same. This indicates that the selected load step during unit test is large. Selection of
smaller load step during simulation could lead to convergence of peak to a single value which
is ideally expected. Stress is observed to decrease with increase in pressure during plastic flow
represented by AB. Increase in resistance of the material, is also observed with increase in
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2-2 Validation 17

dilatancy at constant softening. This is attributed to the fact that the pressure increases much
faster with increase in dilatancy as explained earlier. It is concluded that larger dilatancy
increases the residual strength at the end of the loading-unloading cycle, thus perform better
in resisting the load.
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Figure 2-4: Unit load test for varying angle of dilatancy

2-2 Validation

The validation of the Drucker Prager model is done with results available in the literature.
Strip footing test is one of the common validation for the Drucker Prager model. The strip
footing as shown in Figure 2-5 from the publication from Hijaj, Fortin and Saxce [22] is used
as the benchmark to validate the material model.

Figure 2-5: FEM mesh for Strip footing

The strip footing is simulated. A soil mass of size 50 m x 100 m is modelled. The Young’s
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18 Standard Drucker Prager implementation

modulus is 2.5 GPa, the Poissons ratio is 1/3 and the cohesion is 2.0 MPa. Displacement
control till 0.05m is prescribed as loading on the left node of the rigid elastic plate shown in
Figure 2-5. The discretisation of the soil mass in the simulation is done via 4 nodded quad
elements. The simulation in the referred literature uses 8 noded elements. The mesh contains
128 elements. Quadrilateral elements with 2x2 integration scheme have been used. The
domain of the footing is taken large enough to avoid any interaction with boundary. Plane
strain formulation is implemented. The boundary has been constrained on the left, right and
bottom edges. The input data for the simulation has been referred from the publication by
B Hijaj, Fortin and Saxce [22].

(a) Reference [22]
(b) Simulation

Figure 2-6: Equivalent plastic strain for angle of friction (ϕ = 30)

Equivalent plastic strain contours developed from the footing load in soil mass in simulation
and literature are shown in Figure 2-6b. Equivalent plastic strain contours have concentric
zones with reducing strain. The use of 8 noded elements in the literature could be a possible
reason for the variation in the contours. The maximum plastic strain develops at the top edge
of soil adjacent to the loaded area. The force-displacement diagrams are shown in Figure 2-7
for the simulation and the reference article are plotted together. The plots corresponding to
simulation and literature are in the firm and dotted lines respectively for various dilatancy
angles. Force attains similar peak values for both the plots from the simulation and literature,
but the simulation curves are much more gradual as adaptive load step is used, while there
are only 8 load steps to achieve 0.05mm displacement in the reference. Associative flow
conditions, which results in maximum force to any given displacement, develops when the
angle of dilatancy becomes equal to the angle of friction. A similar situation occurs when the
input value of ψ is raised to 30o and this causes the force to grow to a maximum as seen in
Figure 2-7.
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Figure 2-7: Load Displacement plot

2-3 Indentation

2-3-1 Material Properties

The indentation simulation comprises of an indentor and a target as shown in Figure 2-8.
The material chosen for the indentor is diamond, while alumina is chosen as the target. The
mechanical properties are listed in Table 2-1.

Table 2-1: Mechanical Properties

Indentor Ceramic Target
Size (mm) 4mm dia 100mm x 100mm
Material Diamond Alumina
Density (gm / cm3) 7.80 3.51
Youngs Modulus (GPa) 1120 370
Poissons ratio 0.07 0.2
Tensile Strength (MPa) - 200
Angle of friction (ϕ) - 70
Angle of dilatancy (ψ) - 15
softening (h) - -30

Past studies and publications have been referred to understand realistic values of parameters
for Alumina. Maijangos and Kelly use parameter values evaluated from triaxial test[23]. The
cohesion evaluated varies from 11-15 MPa, and the angle of friction lies in the range of 43o to
49o. Gamble and Compton consider the angle of friction (ϕ) as 60o, and the angle of dilatancy
(ψ) as one fourth the value of ϕ being 15o for 98% Alumina [24]. Deshpande and Evans (DE)
considers even large value of angle of friction (ϕ = 70o) for 99% Alumina [3]. Keeping these
broad facts in view, the high value of the angle of friction (ϕ) = 70o and dilatancy (ψ) =
15o at about quarter of friction angle, are considered for simulation purposes in the present
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20 Standard Drucker Prager implementation

studies. The max tensile pressure of 0.2 GPa is referred from the Johnson and Holmquist
paper [25].

2-3-2 Mesh and Simulation Parameters

Figure 2-8: Generic mesh for studying Indentation

An assembly of spherical diamond indentor and ceramic tile is shown in Figure 2-8. In order
to reduce the computational effort, segments of ceramic tile and spherical indentor at and
around the contact are considered for modelling. The mesh is generated using GMSH. The
ceramic target is split into two segments shown in blue (1.7 cm x 1.7 cm) and green mesh.
Structured quadrilateral mesh in blue, with 60 divisions is adopted, in the zone of contact
with the indentor, to study crack propagation accurately. The rest of the ceramic target has
a non-structured quadrilateral mesh in green, with the mesh size increasing in the directions
away from the contact zone. A total of 2163 element and 2256 nodes are used. The left and
the bottom boundary of the target mesh has been fixed while the right edge is free. The nodes
on the left edge of the indentor are also constrained. Indentation is performed till indentation
depth of 40 µm is reached in indentation experiments [26]. Axis - symmetric formulation
is used for the simulation. The value of Coulomb friction is taken as 0.5. Penalty stiffness
contact model is used. Penalty Stiffness of the order of 104 in the normal direction prohibits
penetration without creating convergence complications. Penalty stiffness of 100 is assigned
in the tangential direction. The penalty stiffness is much larger in the normal direction as it
is the direction of prescribed displacement. Adaptive load step and contact model used for
the indentation are explained in detail.
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Adaptive step size

The adaptive step size code developed by Erik Simons is used to decrease computation time
and obtaining convergence with ease. It helps in getting convergence at critical points of crack
closing and opening. The algorithm checks for the number of iterations required for obtaining
convergence in the current load step. The algorithm has an inbuilt mechanism for increasing
or decreasing the change in prescribed displacement by the adaptive load multiplier depending
upon the no. of iteration is smaller or greater than its limiting value. In cases, where the no.
of iteration is exactly equal to the limiting value, the load step from the previous iteration is
carried for the next load step.

Contact Model

Penalty stiffness method is used to treat contact between the ceramic target and indentor.
Penalty stiffness algorithm adds a very large number to the stiffness matrix and restoring
force vector to impose a prescribed displacement. The algorithm develops node to surface
contact as shown in Figure 2-9.

Figure 2-9: Node to surface contact.[5].

The contact model finds nodes with minimum distance from the surface to search for a possible
contact ( 1% of element length). Contact force by increasing the stiffness is applied as shown
in Figure 2-10 for violated segment / nodes.

Figure 2-10: Contact - Force application[5].

The usual norm is to set the rigid surface as master and the curved surface as the slave as
shown in Figure 2-10, hence the ceramic target is set as slave and the indentor as master.
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Figure 2-11: Contact - penetration[5].

Figure 2-11 shows the penetration of the indentor node in the target surface. Large contact
stiffness reduces penetration but causes problems in convergence. The stiffness multiplier in
the normal direction is set at a much larger value (104 to 108) in comparison to the tangential
direction (100). The residual penetration is shown as g. Initial gap between the indentor and
the target is avoided as it has the potential to render the stiffness matrix singular.

2-3-3 Result

During indentation, plastic damage occurs below the indentor. A drop shaped zone of plastic
strain under the combined action of compressive and shear stresses is developed under the
indentor. Outside this zone, there is tensile stress. The maximum tensile stress develops at
the free edge near the point of contact, and it falls gradually with increasing radial distance.
The decrease in tensile stress is rapid with a decrease in depth below the ceramic surface.

Figure 2-12: Plastic strain for indentation in Alumina

The radial stress creates the cone cracks in the brittle material. Poisson’s effect produces a
compression strain field within the entire ceramic mass, thus neutralizing a part of tensile
strain outside the drop-shaped compressive strain zone and diminishing the chances of the
tensile crack formation to some extent. In the Figure 2-12, well developed cone crack can be
seen for ϕ = 70o and ψ = 15o.
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Crack Propagation

Figure 2-13: Indentation depth - Crack Propagation

The material parameters viz. angle of friction - 70o, the angle of dilatancy - 15o, softening -30,
have been used with a mesh size of 60 elements in the zone of fine mesh for the simulation.
The ring crack starts to form at an indentation depth of 26 µm. It transforms into a cone
crack while growing in size at an indentation depth of 30 µm and becomes pronounced and
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24 Standard Drucker Prager implementation

distinct from its earlier version of ring type. The cone crack size continues to increase for
larger indentation depths. The zone of larger strain represented in pink colour is surrounded
by zones of smaller strains in red, yellow and green colours. The entire sequence of crack
propagation vis a vis indentation depth is shown in Figure 2-13.

Figure 2-14: Converged State: Load Displacement Curve

The cone crack half apex angle is about 63 degrees from vertical. Another phenomenon which
occurs simultaneously with the ring/cone crack formation is the gradual but continuous in-
crease in the zone of plastic strain below the indenter.

The Force-displacement diagram of the indentation process is presented in Figure 2-14. The
slope of the curve is gradually increasing with increasing indentation depth implying that the
rate of increase in force with respect to indentation depth is increasing, which is understand-
able. The red dots in the diagram denote indentation depths considered in the unit test. The
plastic strain contours corresponding to the respective indentation depths are also shown in
the diagram. It can be seen that cracks development is non linear and starts at a depth of 30
µm. This is in accordance with the brittle nature of ceramic.

2-3-4 Parameter study

The effects of angle of friction, the angle of dilatancy, softening, mesh size and confinement
are determined through parametric studies. The parameter, the effect of which is to be
determined, is varied during simulation process while keeping the rest of parameters fixed. The
indentation depth of 40 µm is considered for parametric study unless otherwise mentioned.

1. Angle of Friction
The equivalent plastic strain contours developed during indentation is presented in Fig-
ure 2-16. Iteration has been done for ϕ = 45o, 50o, 60o, 65o, 70o, 75o and 80o. During
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Figure 2-15: Uni- Axial Strength for varying angle of friction (ϕ)

the simulation, the apex pressure is also updated with changing the angle of friction.
For large values of ϕ ( nearing 80o), the strength is much larger in compression than in
tension for a given value of pressure as shown in Figure 2-15. The simulation studies
with regards to the varying angle of friction (ϕ) throw some very interesting results.
The bulbous zone of compressive plastic strain underneath the indentor (refer to Figure
2-16) is seen to decrease in size while the angle of friction of target material is increased.
There is a significant reduction in bulb size corresponding to ϕ =80o when compared
to ϕ = 50o.

The first glimpse of ring crack representing plastic tensile strain is observed at ϕ = 50o

degrees. The area under plastic tensile strain grows in size with the increase in angle of
friction and consequently, the ring crack tends to develop into cone crack distinct from
the neighbouring zone of bulbous compressive strain beneath the indenter. Distinctly
elongated cone cracks are noticed at angles of friction equal to or more than 60o degrees.
The cone crack gains in size with increase in angle of friction and the half apex angle is
63o degree. The is very close to 68o observed in quasi-static ball indentation in literature
[27].

The location of initiation of cracks at indentor - target interface is observed to be
gradually shifting away from the point of contact between indenter and target, as ϕ
increases. This results in an increase in the volume of the material resisting the load
increases and thus better performance. The development of larger forces in the target
for a particular value of prescribed displacement as seen in Figure 2-17 also validates
the same. Cusps are formed in the load displacement diagram due to the representation
of circular surface with elements in discrete finite element formulations. The most
important outcome of the study is that angle of cohesion greater than 60o produce cone
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crack and its increase produces larger cracks.

Figure 2-16: Equivalent Plastic Strain with variation in ϕ
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Figure 2-17: Force v/s Displacement plots for varying angle of friction

2. Dilatancy

The return path from the trial stress to the yield surface after Prandtl -Reuss plasticity
[20] is modified in the DP Model via the plastic potential function (Figure 2-1). While
the Prandtl -Reuss return path is vertical, the path as per DP Model is at an angle equal
to ψ from the vertical. Therefore the DP model exhibits larger pressure increase while
returning from trial stress to yield surface. Larger dilatancy results in a larger pressure
increase. Therefore, the compressive bulbous zone of plastic strain grows with increas-
ing dilatancy. Simulation results of indentation presented in Figure 2-18 prove this
contention as correct. The growing zone of plastic compressive strain has a detrimen-
tal impact on the growth of tensile strain in its vicinity. Hence, the possibility of cone
crack formation requiring large tensile strains diminishes with increasing dilatancy. The
simulation results also show that the cone cracks size decrease gradually with increase
in dilatancy. In fact, cone crack formation stops all together at ψ = 20o corresponding
to indentation depth of 40 µm (Figure 2-18) and at ψ = 16o corresponding to inden-
tation depth of 25 µm (Figure 2-20). These results indicate conclusively that dilitancy
suppresses cone cracks. similar to the findings of LaSalvia and McCauley [11]. The ∆
in the Figure 2-20 shows the depth of penetration at which the strain contour has been
plotted. The orientations of cone cracks corresponding to different dilatancy angles and
indentation depths are nearly the same. Another interesting result of the simulation is
the decrease in size of plastic tensile strain zone with decreasing indentation depth for
the same dilatancy.
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Figure 2-18: Equivalent Plastic Strain for variation in dilatancy (ψ)

Convergence becomes difficult as ψ approaches zero till an indentation depth of 40 µm
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(Figure 2-18 a and b) is reached. Convergence is achieved till an indentation depth of
32 µm for ψ = 0o and 4o. But the cone cracks are comparatively longer than those cor-
responding to larger dilatancy (Figure 2-18 and 2-20). Well developed cone cracks for
ψ ∼= 0 is explained by the fact that the return from the trial state never attains the apex
for very small angles of dilatancy (Figure-2-1), resulting in very low material strength
close to zero. Besides this, the bulbous zone of plastic strain is also comparatively
smaller, thus exerting less influence on the growth of tensile strain in the surrounding
volume. An aberration is observed as the compression failure zone is observed to remain
almost the same in (Figure 2-18 : a, b and c) although the indentation depth increased
from 32 µm to 40 µm. This can be due to the adaptive load step, which allows varia-
tion in indentation depth and the exact depth of 40 µm might not be achieved during
simulated indentation. No such aberration is noticed at indentation depth of 25 µm as
observed in Figure 2-20.

The force-displacement plot has been shown in Figure 2-19. The plots for all values
are similar and smooth. The discrepancy shown in the box can be attributed to the
variation in load steps imposed by the adaptive loading algorithm in the simulations
and the numerical approximations in solving for equilibrium.
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Figure 2-19: Force v/s Displacement plots for varying angle of dilatancy (ψ)
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Figure 2-20: Equivalent Plastic Strain for variation in ψ indentation depth of 25 µm
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3. Softening

Figure 2-21: Equivalent Plastic Strain for variation in Softening at indentation depth of 25 µm
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Softening controls, the rate of degradation of the material strength. The requirement
of indentation depths for cone crack formation decreases as the softening increases.
A linearly decreasing relationship is found between the indentation depth required for
initiation of the major crack and the softening modulus. Convergence gets more difficult
as softening increases for a constant indentation depth of 40 µm. For values of softening
larger than -50, local convergence is not achieved due to oscillating residual for the
sub-increments of the stress integration at critical integration points. If the increment
in load step is large, local divergence with anomalies in the L-∆ graph is observed and
the simulation terminates.

Figure 2-22: Maximum Equivalent Plastic Strain for variation in Softening at indentation depth
of 40 µm
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Figure 2-23: Force v/s Displacement plots for varying softening (h)
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Figure 2-21, shows the contours of plastic strain for an indentation depth of 25 µm.
Well - developed cracks can be seen for h=-50 and larger values. Larger plastic strains
are observed corresponding to higher values of softening. The quasi-plastic failure zone
also increases as softening is increased. Figure 2-22 shows the plastic strains at an
indentation depth of 40 µm. The quasi-plastic zone in compression also increases with
increase in indentation depth. From Figure 2-23, it is clear that the load-displacement
response of all the simulations are similar.

4. Confinement
Confinement influences failure mechanism in ceramic. To study the effect of confinement
on cone crack formation the ceramic target is restricted on the right edge as the most
basic case. A compressive displacement of 0.5 µm to 0.8 µm in increments of 0.1 µm
is applied on the right edge to increase the degree of confinement. The increase in
confinement eases convergence. Cone crack formation is hindered by confinement and
is not observed altogether as the applied compressive displacement is increased to 0.8
µm, as shown in Figure 2-24. The zones of compressive plastic strain corresponding to
variable confinement do not show a change in size.

‘
Figure 2-24: Equivalent Plastic Strain with variation in confinement
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Figure 2-25: Force v/s Displacement plots for varying degree of confinement

Force vs displacement plot is shown in Figure 2-25 projects an increase in force with an
increase in the degree of confinement for any given depth of indentation.

5. Mesh Sensitivity
Mesh sensitivity study is conducted by meshing the structured mesh of the block with
30, 40, 50, 60, 70 and 80 elements respectively. As the mesh size is decreased, achieving
convergence becomes difficult. In order to achieve convergence during simulations, the
contact stiffness multiplier needs to be increased to the orders of 104 for 40 element
block and that of 108 for 70 element block, to avoid chances of large penetration in
comparison to the size of elements. As the size of the element decreases, its becomes
stiff and thus the penalty stiffness has to be increased. The position, orientation and
growth of cone cracks depend on mesh size. As the mesh size is decreased the ma-
jor cracks are formed further away from the origin, while the half apex angle of crack
remains same as shown in Figure 2-26. Decreasing the mesh size has an insignificant ef-
fect on the load-displacement characteristics of the material as shown in the Figure 2-27.

Table 2-2: Computation time variation with mesh size

No. of
Elements

No. of
divisions Computation time (s) No. of

Load Steps Indentation depth

1367 30 49.5 14 0.0397
2163 40 108 17 0.0384
3200 50 725 32 0.04
4399 60 1061 111 0.036
5798 70 7873 160 0.037
7398 80 8688 299 0.033
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‘
Figure 2-26: Equivalent Plastic Strain with variation in Mesh Size

There is also the issue of load sensitivity, as changing the mesh size warrants fine-tuning
the adaptive load inputs to obtain convergence. Smaller mesh size requires smaller load
increments for convergence, and therefore, computation time increases significantly to
obtain an increase in indentation depth as seen in the summary given in table 2-2. The
no. of load steps required for reaching the indentation depth of 40 µm increases to
nearly 300 for mesh with 70 and 80 elements. Mesh size with 50 divisions is found
to be adequate for obtaining well-developed cracks. Reduction of mesh size does not
necessarily result in easier cone crack development corresponding to an indentation
depth of 40 µm.
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Figure 2-27: Force v/s Displacement plots for varying mesh size

2-4 Conclusion

A Mesh size with 60 divisions in the finely meshed zone has been found to be reasonable for
simulation vis a vis computation time which increases by more than seven times with respect
mesh size with 70 divisions. The variations in angles of friction and angle of dilatancy seem
to affect the cone crack most. Large values of ϕ > 60o accompanied by low values of ψ < 15o

are observed to be favourable for crack development and propagation. As the indentation
depth is increased, the distance of the point of crack initiation from the point of contact
between indenter and ceramic target increases. But the cone crack undergoes little change in
their shape or size at softening higher than that corresponding to the first appearance of cone
crack. However, it influences the rate at which crack formation takes place. Confinement is
observed to decrease the probability of crack formation. Mesh sensitivity is also encountered
with the strain fields varying significantly with mesh size. It is concluded that alumina having
low friction angle, high dilatant behavior and low softening modulus in confined conditions
will be less prone to cone cracking.
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Chapter 3

Pressure dependent softening

Softening is integrated with standard DP formulation vide equation 2-5, which states that the
rate of decrease in material strength with respect to plastic strain is a constant i.e. softening is
pressure independent. The parametric study discussed in chapter-2 is based on this postulate
of Standard DP Model. Contrary to it, ceramic exhibiting brittleness undergoes non linear
rapid degradation of strength post-elastic limit during indentation [28], [29], [30]. Evidently,
softening of ceramic is pressure dependent rather than pressure independent. Hence appro-
priate modification to constitutive equations of standard DP model to account for pressure
dependent softening is essential to evaluate the strength degradation and to understand plas-
tic deformation of ceramic in a proper way. This objective is achieved in the following steps.

Step 1- Estimation of softening range applicable to the ceramic material: The range of soft-
ening applicable to ceramic is not directly available from the literature on experimental tests
or standard material models developed in the past. However, Johnson and Holumnquist (JH)
model deals with the pressure dependent strength degradation. Therefore, JH model has been
utilized to derive an approximate range of softening applicable to alumina.

Step 2- Simulation through modified Drucker Prager Model: The standard Drucker Prager
(DP) model is calibrated and modified suitably to incorporate pressure dependent softening.
The sets of pressure range and softening values obtained from step 1 above is fed to the mod-
ified DP model and simulation is carried out to determine the pressure dependent softening.
The complete set of mathematical expressions describing the DP model on above lines and
the results so obtained are presented in subsequent sections of this chapter.

3-1 Estimation of pressure - softening range

The range of softening applicable for ceramics is not directly available in the literature on
experimental tests on ceramics, except models like Johnson Holmquist (JH2) model which
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38 Pressure dependent softening

considers gradual pressure dependent strength degradation. The JH2 model is explained in
detail in section 1-3-2. It is used to derive an approximate range of softening applicable for
Alumina.

The yield function for the JH2 model

f = σeq − σc (3-1)

where σeq is the equivalent stress. Strength of the material σc as defined in the JH2 model is

σc = σi −D (σi − σf ) (3-2)

where σi is the intact strength of the material and σf is the failed strength of the material.
Both intact and failed strength are functions of pressure alone. D is damage variable and it
is a measure of the level of fracture and has values ranging from 0 when the material is intact
and 1 when the complete fracture has occurred. D is defined as

D = Σ∆ϵp

ϵpf
(3-3)

where ∆ϵp and ϵpf stands for the change in plastic strain and the final plastic strain respectively.
The softening modulus is defined as the derivative of yield function with respect to the plastic
multiplier lambda (λ).

h = −∂f

∂λ
= ∂σc

∂λ
= −

[
∂D

∂λ
(σi − σf )

]
(3-4)

Substituting D from equation 3-3

h = − ∂

∂λ
Σ∆ϵp

ϵpf
(σi − σf ) (3-5)

Substituting the value of final plastic strain (ϵpf )

ϵpf = D1 (p∗ + T ∗)D2 (3-6)

in the equation 3-5, softening modulus is evaluated as

h = − 1
D1 (P ∗ + T ∗)D2 .

(σi − σf ) (3-7)

The P* and T* in equation 3-7 denote the normalized pressure and maximum tensile stress
and have similar meanings as defined in equation 1-10. Substituting the values of σi and σf

and assuming the value of constant C in σi and σf to be zero.

h = − 1

D1
(

p
PHEL

+ T
PHEL

)D2

[
A

(
p

PHEL
+ T

PHEL

)N

−B

(
p

PHEL

)M
]

(3-8)

where D1, D2, M, N, A and B are material constants for the JH2 model. p is the pressure,
T is the maximum tensile hydrostatic pressure that the material can withstand and PHEL is
the pressure at the HEL (Hugoniot Elastic limit).
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Figure 3-1: Softening modulus variation with pressure
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Figure 3-2: Softening modulus variation with pressure - zoomed
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Figure 3-1 are the plots for the softening values found from equation 3-8 with D1 = 0.005,
D2 = 1.0, T = 0.2, C = 0, B = 0.310,M = 0.6, A = 0.930, N = 0.6 and PHEL = 1.460 for
Alumina [31].The evaluation of equation 3-8 with above constants gives the magnitude of
softening corresponding to pressure range of 0 to 1.2 GPa to be in range of 50 to 2000 MPa
for JH2 model. The magnified plot corresponding to pressure range of 0 to 1.2 MPa is shown
in Figure 3-2. It is observed that most of the softening occurs when the pressure is tensile,
represented by negative values. The rate of increase in softening is steep till the pressure is
negative, thereafter it is gradual within the pressure range of 0 to 0.2 GPA (Refer to 3-2).
The rate of increase decreases further to low to very low for pressures larger than 0.2 GPa.

3-2 DP Model modified for pressure dependent softening

This section is about modification of standard DP model to incorporate the effects of pressure
dependent softening. The governing equation for such a model is derived herein. Also, the
associated numerical methods for the integration of the constitutive equations are described
in detail.

3-2-1 Yield function

The shear strength of the material as considered in standard DP Model varies linearly with
softening and plastic strain (Refer to equation 2-5). Hence, shear strength reduces by a
constant rate (h) with respect to the increase in plastic strain and is invariant on the stress
state. In the modified DP model, the rate of degradation of shear strength is controlled via
polynomial function h (σ) representing softening. The yield function for the modified DP
yield formulation is

f =
√

3J2 − ηp− σo (1 − Σh (σ) ∆ϵps) , (3-9)

where σo is shear strength of intact material defined as

σo = 6 c’ cos ϕ
3 − sin ϕ

(3-10)

The gradual softening is accounted for by the summation of plastic strain 0 <= Σh (σ) ∆ϵps <=
1. J2 invariant of stress is defined as,

J2 = 1
2
σTPσ

p = −1
3
ITσ

where, P and I are defined as

P =



2
3 −1

3 −1
3 0 0 0

−1
3

2
3 −1

3 0 0 0
−1

3 −1
3

2
3 0 0 0

0 0 0 −2 0 0
0 0 0 0 −2 0
0 0 0 0 0 −2


, I =



1
1
1
0
0
0


(3-11)

40



3-2 DP Model modified for pressure dependent softening 41

The rate of change of yield function is

ḟ = ∂f

∂σ
σ̇ + ∂f

∂ϵps

∂ϵps

∂λ
λ̇ (3-12)

ḟ = aT σ̇ + ∂f

∂ϵps
λ̇ (3-13)

where λ is the plastic multiplier and a is the normal to the yield surface

aT = 3
2

Pσ√
3J2

− 1
3
ηI + ∂h (σ)

∂σ
σ0∆ϵps

3-2-2 Plastic potential function

The plastic potential function is assumed similar to the one used in the standard DP model.
The potential function for standard DP model is

g =
√

3J2 + ηp (3-14)
(3-15)

The plastic strain is governed by the flow rule

ϵ̇p = λ̇
g

∂σ
= λ̇b. (3-16)

Where b is a vector normal to the potential function as given by,

bT = ∂g

∂σ
= 3

2
Pσ√
3J2

− 1
3
ηI

3-2-3 Stress Integration

In numerical modelling, the solution is computed incrementally, and the constitutive equations
are integrated at each integration point for known stress, strain, plastic and trial strain. The
first step is to use an elastic relationship to update the stress. If this updated stress is
found to be within the yield surface, the material at the integration point is assumed to have
either remained elastic or unloaded elastically from the yield surface, and there is no need
to integrate the rate equation. However, if the calculated elastic stress lies outside the yield
surface backward Euler algorithm or Apex return is used for stress integration to bring back
the stress to the yield surface as shown in Figure 3-3. The resulting plastic strain is recorded.

3-2-4 Smooth return mapping formulation

The method is based on a one-step backward Euler integration of the evolution problem. Euler
backward algorithm is unconditionally stable and provides very accurate results. However, it
sometimes suffers from mesh sensitivity.
Figure 3-3 shows the trial stress and the return to current stress for the initial state either on
the yield surface or inside the yield surface for Euler backward return. Previously converged
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Figure 3-3: Euler backward return[6]

state is denoted by point A. The trial state is denoted by subscript B, while C stands for the
current state. The current state of stress is calculated by subtracting the product of plastic
multiplier (λ), stiffness matrix C and flow vector b from the stress at trial state

σ = σB − ∆λCb (3-17)

The residual stress is calculated as

r = σ − (σB − ∆λCb) (3-18)

From the truncated Taylor series for residual r

⇒ rn = r0 + σ̇ + λ̇Cb + ∆λCḃ (3-19)

where,
ḃ = ∂b

∂σ
σ̇ (3-20)

Substituting ḃ in previous equation

r0 + λ̇Cb = −
(
I + ∆λC∂b

∂σ

)
σ̇ (3-21)

⇒ σ̇ = −
(
I + ∆λC∂b

∂σ

)(
r0 + λ̇Cb

)
(3-22)

⇒ σ̇ = −Q−1
(
r0 + λ̇Cb

)
(3-23)

where,

Q−1 =
(
I + ∆λC∂b

∂σ

)
Evaluating the derivative of the yield function

ḟ = fcn − fco = aT σ̇ + ∂f

∂ϵps
λ̇ = 0 (3-24)

⇒ fcn = fco+ aT σ̇ + ∂f

∂ϵps
λ̇ (3-25)
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σ̇ is substituted.
⇒ fco + aT

(
−Q−1r0 − Q−1λ̇Cb

)
+ ∂f

∂ϵps
λ̇ = 0 (3-26)

Rearranging and simplifying plastic multiplier (λ) is evaluated

λ̇ = fco − aT Q−1r0

aT Q−1Cb − ∂f
∂Σ∆ϵps

(3-27)

3-2-5 Consistent tangent matrix for smooth mapping return

The current stress is evaluated

σ = σB − ∆λCb (3-28)

⇒ σ̇ = Cϵ̇− ∆λC∂b
∂σ

, σ̇ − λ̇Cb (3-29)

⇒ σ̇

(
I + ∆λC∂b

∂σ

)
= C

(
ϵ̇− λ̇b

)
(3-30)

⇒ σ̇ = R
(
ϵ̇− λ̇b

)
(3-31)

Setting R as,

R =
(
I + ∆λC∂b

∂σ

)−1
C (3-32)

Now the yield function s differentiated

ḟ = aT σ̇ + ∂f

∂ϵps
λ̇ = 0 (3-33)

Again substituting σ̇

⇒ aT
(
R
(
ϵ̇− λ̇b

))
+ ∂f

∂ϵps
λ̇ = 0 (3-34)

Rearranging to evaluate λ̇ and substituting in equation 3-31

⇒ λ̇ =

 baT R
aT Rb − ∂f

∂ϵps

 ϵ̇ (3-35)

⇒ σ̇ =

R − RbaT R−1

aT Rb − ∂f
∂ϵps

 ϵ̇ = 0 (3-36)

Hence the Consistent Tangent Matrix is

Cct =

R − RbaT R
aT Rb − ∂f

∂ϵps

 (3-37)
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3-2-6 Apex return formulation

When the trial stress is within Zone 2 as shown in Figure 3-4, the differentiation of the yield
surface does not have a unique direction. Apex return scheme is adopted from section 8.3
of the textbook by de Souza and Owens [7]. The selection of Apex return is done when
the residual pressure is found negative. Residual pressure is found by summing up the trial
pressure and the projection of the current cohesion on the pressure axis. The current state
of pressure is brought to the apex of the DP cone by bringing the residual pressure to zero
inside a Newton Raphson scheme as shown in Figure 3-4. The Newton Raphson scheme also
updates the strain and pressure. Pressure is defined in terms of cohesion

Figure 3-4: Apex return for Drucker Prager model [7]

p = c (ϵ)
η
. (3-38)

pAP EX = −c (ϵps + ∆ϵps) (3-39)

where cohesion c
c = σo (1 − Σh (σ) ∆ϵps) (3-40)

Hence, Apex Pressure
pAP EX = −σo (1 − Σh (σ) ∆ϵps) 1

η
(3-41)

Substituting the plastic strain with the volumetric plastic strain using the relation

ϵ̇ps =
ϵ̇vp
η

Apex pressure is defined as

pAP EX = −σo (1 − Σh (σ) ∆ϵps) 1
η

(3-42)

The residual pressure is computed,

r = pn+1 − pAP EX (3-43)

Substituting the current pressure

pn+1 = ptrial +K∆ϵpv (3-44)

44



3-2 DP Model modified for pressure dependent softening 45

The residual pressure is evaluated as

r = ptrial

n+1 − pAP EX +K∆ϵpv (3-45)

r = ptrial

n+1 + σo
(

1 − h (σ)
ϵvp
η

) 1
η

+K∆ϵpv (3-46)

Derivative of residual pressure with respect to plastic strain

d = dr

d∆ϵpv
d∆ϵpv
dϵ

(3-47)

⇒ d =
(

1
ηη

∂h (σ)
∂∆ϵvp

)
+K (3-48)

The change in the volumetric plastic strain

∆ϵvp = ∆ϵvp − r

d
(3-49)

The current plastic strain

ϵpn+1 = ϵpn (0) + ∆ϵnp = ϵpn (0) +
∆ϵvp
η

(3-50)

The updated current pressure
pn+1 = ptrial

n+1 +K∆ϵpv (3-51)

The updated residual pressure

r = pn+1 + σo

(
1 − h (σ)

Σ∆ϵvp
η

)
1
η

(3-52)

The residual pressure is brought down within the tolerance and the current stress

σ = pn+1I (3-53)

For non-dilatant flow (ψ = 0), the return to apex does not make sense in the present formu-
lation.

3-2-7 Consistent tangent matrix for apex return

The consistent tangent matrix defines the relation between the rate of stress and strain

Cct = ∂σn+1
∂ϵen+1

= I ⊗ ∂pn+1

∂ϵe trial
n+1

(3-54)

The current pressure is

pn+1 = ptrial
n+1 +K∆ϵpv (3-55)

dpn+1 = K I : dϵe trial
n+1 +K∆ϵpv. (3-56)
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The residual pressure is evaluated

dr =

 ∂f
∂ϵ ps

ηη
+K

 d∆ϵpv −K I : dϵe trial
n+1 = 0 (3-57)

⇒ K(
∂f

∂ϵps

ηη +K

)I : ϵe trial
n+1 = d∆ϵpv (3-58)

Substituting the expression for residual pressure in change in pressure

⇒ dpn+1 = K I dϵe trial
n+1 −K

K(
σo ∂f

∂ϵps

η η +K

)I : dϵe trial
n+1 (3-59)

Hence, the consistent tangent matrix for the Apex return is ,

Cct = K

1 − K(
∂f

∂ϵps

ηη +K

)
 I ⊗ I (3-60)

In the absence of hardening (h = 0) the above tangent operator vanishes.

3-3 Verification

The verification of modified DP material formulation is done through unit cube test. The
tensile force is induced via prescribed displacements. Values of material parameters except
softening modulus is kept same as those for the standard DP material model. Pressure vs
equivalent stress plot for the simulations is obtained to understand the effect of pressure
dependent softening modulus. The softening of the material is defined as a cubic polynomial
function of the pressure as shown in Figure 3-5.

h (σ) = a+ bp+ cp2 + dp3 (3-61)

Figure 3-5: Cubic Polynomial function for pressure dependent strength
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where the a, b, c and d are coefficients given as

a = 3h1p1p
2
2 − h1p

3
2 + h2p

3
1 − 3h2p

2
1p2

(p1 − p2)
(
r2 − 2p1p2 + p2

2
)

b = 6p1p2 (h1 − h2)
(p1 − p2)

(
p2

1 − 2p1p2 + p2
2
)

c = 3 (h1 − h2) (p1 + p2)
(p1 − p2)

(
p2

1 − 2p1p2 + p2
2
)

d = 2 (h1 − h2)
p3

1 − 3p2p2 + 3p1pp2
2 − p3

2

where p1 and p2 are pressures corresponding to the maximum (h1) and minimum (h2) values
of softening modulus as shown in Figure 3-5.

Figure 3-6: Cubic Polynomial function for pressure dependent strength

Based on the position of occurrence of maximum softening modulus with respect to pel and
papex, three distinct scenarios as presented in Figure 3-6, can be broadly thought of. These
are as under:

1. Case-1 (pel>p1>0): The maximum softening modulus is reached corresponding to a
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48 Pressure dependent softening

tensile pressure value (p1) which is smaller than pel. The material is yet to undergo
plastic deformation at the time of occurrence of maximum softening. The output is
nearly replicated to that of standard DP Model.

2. Case-2 (papex > p1 > pel): The softening modulus attains its maximum within the
pressure range of pel to papex. At p1 = papex, the softening curve approximates to the
curve arrived through JH2 Model vide Figure 3-1.

3. Case-3 (papex > p1): Softening modulus reaches maximum value at pressures beyond
papex. Since the pressure exceeds its limit papex, this case is physically improbable.

Table 3-1: Co-efficient for cubic polynomial

CASE 1.2 CASE 2.2 CASE 2.3 CASE 3.2 CASE 3.2a CASE 3.3
p2 -0.5 -2.0 -2.0 -5.0 -5.0 -5.0
p1 1.0 1.0 1.0 1.0 1.0 1.0
h1 -6.0 -6.0 -40.0 -6.0 -40.0 -60.0
h2 -0.5 -0.5 -0.5 -0.5 -0.5 -0.5
a -4.6 -1.9 -10.7 -0.9 -3.4 -4.9
b 4.9 2.4 17.6 0.8 5.5 8.3
c 2.4 -0.6 -4.4 -0.3 -2.2 -3.3
d -3.3 -0.4 -2.9 -0.1 -0.4 -0.6

The aforesaid scenarios are further subdivided into three subcases with respect to no softening,
intermediate softening and large softening. Since all coefficients mentioned in equation 3-61
are zero for h1 = h2 = 0, therefore, sub-cases pertaining to intermediate and large softening,
leaving the subcase related to no softening, are taken up for further studies. The computed
values of coefficients a, b, c and d in polynomial function (equation 3-61) corresponding to
intermediate and large softening for each of three cases mentioned earlier are presented in the
Table 3-1.
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Figure 3-7: softening modulus vs pressure for Case 2

The equation 3-61 is depicted exactly by the softening versus pressure plot presented in Figure
3-5 and it is termed as ’original’ hereinafter. The Figure 3-6 shows modified plots in which the
original plots are tweaked to the extent that softening modulus is made constant for pressures
larger than p2 and p1 in the domains of compression and tension respectively. The remaining
part of the plot between pressure range p1 − p2 is in accordance with equation 3-61. This
modification in the plot is necessary to simulate the real behaviour of brittle material like
ceramics which show large softening in tension.

−7 −6 −5 −4 −3 −2 −1 0 1 2 3 4 5 6
−120

−100

−80

−60

−40

−20

0

Pressure(GPa)

So
ft

en
in

g
m

od
ul

us
(M

Pa
)

Case 3.2 original
Case 3.2 modified
Case 3.2a original
Case 3.2a modified
Case 3.3 original
Case 3.3 modified

Figure 3-8: softening modulus vs pressure for Case 3

The original and modified plots corresponding to case-2 and 3 are presented in Figures 3-7 and
3-8 respectively with regards to intermediate and large softening. The values of coefficients a,
b, c and d in respect of various subcases as presented in Table 3-1 are utilized to generate the
respective plots. Subcases 2.2, 3.2 and 3.2a represent intermediate softening while subcases
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50 Pressure dependent softening

2.3 and 3.3 represent large softening. Large softening is noticed at h1 = −40 for situation
under case-2 but a similar value of softening is found to be in intermediate range for case-3.
A larger value of h1 = −60 is observed to satisfy the conditions for large softening in respect
of case-3.
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Figure 3-9: Equivalent stress vs pressure

The pressure dependent DP model is verified by plotting the limiting case pertaining to h = 0
and −4. The plots so obtained is compared with the plots obtained from unit test explained
in section 2-1 for Standard DP model keeping the values of softening (h) same. The plots are
shown in Figure 3-9. The plots are exact match and thus the pressure dependent DP model
is verified.
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Figure 3-10: Equivalent stress vs pressure

Furthermore, to understand the effects of pressure dependent softening, unit cube tests corre-
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sponding to a range of softening described by the pressure versus softening plots presented in
Figure 3-7 and 3-8 are carried out. The pressure versus equivalent stress plots as outputs of
unit cube tests corresponding to varying softening regimes are presented in Figure 3-10. The
dashed lines show plots with respect to pressure independent softening represented by h1=
-6, -40 and -60 in the legend. The plots pertaining to pressure dependent softening case-2 and
3 are in dotted and firm lines respectively. The plots within the elastic range OA remains the
same for all. However, they start deviating beyond point A in the zone of plastic deformation.
Reverse loading at the origin starts corresponding to large softening (h1= -60 and case 2.3
and 3.3a) signaling complete degradation of the material. The apex pressure increases from
case-2 to case-3.
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Figure 3-11: Load v/s Displacement

The Figure 3-11 shows load v/s displacement diagram for only the loading cycle under pre-
scribed tensile displacement. The material starts to show strength degradation for small and
intermediate softening (h1= -6, case-2-2 and 3-2) at very large displacements as shown in
the load-displacement diagrams (Figure 3-11). However, complete strength loss occurs at
comparatively much smaller displacements for large softening irrespective of it being pres-
sure dependent or not. But the displacement corresponding to complete strength loss under
pressure dependent softening having its maximum value h1 is larger than that for pressure
independent softening of magnitude equaling h. During the yielding process, the plot for case
3.2a shows the gradual decrease in the rate of softening unlike pressure independent softening
plots, represented by h1= -8, -40 and -60, which have constant slopes. The cases pertaining
to very large softening show a sudden dip in the force implying that material has lost its en-
tire strength. The effect of pressure dependent softening is more pronounced at intermediate
magnitude of softening.
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3-4 Indentation

Figure 3-12: Equivalent Plastic Strain to variable softening - Indentation depth 25 µm
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The indentation studies are carried out while keeping softening to be pressure dependent.
The mesh, material properties, loading and boundary conditions etc. are similar to those
considered for indentation under constant softening discussed in Chapter-2. The indentation
depths of 25 and 40 micrometers are taken up for present studies. Indentation is done for
each of the maximum softening (h1) values starting from -10 MPa to -90 MPa at intervals of
-10 MPa while minimum softening (h2) is fixed at -0.5 MPa for all values of h1. The meaning
of h1 and h2 is the same as that explained in Figure 3-6. The pressure range papex = p1
(Case-2, Figure 3-6) is considered during indentation. The results of indentation so obtained
are presented in Figures 3-12 and 3-13 for depths of 25 and 40 micrometers respectively.

Figure 3-13: Equivalent Plastic Strain to variable softening - Indentation depth 40 µm
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Figure 3-14: Force v/s Displacement plots for varying softening (h)
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The half apex angle of cone crack is 64o for h1 = −50 and onwards for indentation depth of
25 µm. However, The cracks form at lower softening of h1 = −40 for indentation depth of 40
µm. The inclination of cracks decreases marginally to 63o. The distance of crack initiation
point increases from 0.374 mm at h1 = −50 to 0.476 mm at h1 = −90 for indentation depth
of 25 µm. The increase in distance is more pronounced for indentation depth of 40 µm and it
occurs from 0.374mm at h1 = −40 to 0.510 mm at h1 = −60. The convergence is not achieved
for softening values beyond h1 = −90 and the simulation terminates. The force displacement
plots shown in Figure 3-14 are similar to that for standard DP model.

The results obtained for pressure independent softening (Figure 2-22) and pressure dependent
softening (Figure 3-12) corresponding to indentation depth of 25 µm are presented in the Table
3-2. Some interesting facts emerge out of the comparison of the two results. These are as
follows:

Table 3-2: Comparative details of cone cracks for constant and pressure dependent softening

Label h No. of Mesh Mesh Size Distance Angle

SDP MDP SDP MDP SDP MDP SDP MDP

a - 10 - - - - - - - -

b -20 - - - - - - - -

c -30 - - - - - - - -

d -40 18 - 0.034 - 0.612 - - -

E -50 17 11 0.034 0.034 0.578 0.374 - -

F -60 16 11 0.034 0.034 0.544 0.374 62 64

G -70 13 11 0.034 0.034 0.442 0.374 62 64

H -80 13 11 0.034 0.034 0.442 0.374 62 64

I -90 13 14 0.034 0.034 0.442 0.476 62 64

1. The crack initiation and propagation is hindered by pressure dependent softening. The
cone crack size decreases during indentation associated with pressure dependent soft-
ening when compared with constant softening. This contention is further supported by
the indention results obtained by simulation of standard DP Model based on pressure
independent softening at h = −20 and DP model modified to account for pressure de-
pendent softening at h1= -20 presented in Figure 3-15. The indentation depths during
both simulations is 40 µ meter.
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Figure 3-15: Equivalent Plastic Strain at Indentation depth 40 µm

2. The crack development is noticed at h1 = −50 for pressure dependent softening. This
occurs at h = −40 for constant softening

3. The distance of crack from the contact point decreased. The half cone apex angle
increases marginally from 62o for pressure independent softening to 64o for pressure
dependent softening.

3-5 Conclusion

The unit test results of modified DP model show that there is an increase in plasticity before
strength degradation. This is based on the fact that displacement corresponding to complete
strength loss under pressure dependent softening is more than that for pressure independent
softening. Crack formation during indentation is delayed in the pressure-dependent regime of
softening. Besides this, cracks initiation and propagation require larger pressure dependent
softening in comparison to pressure independent softening. Both the increase in softening and
indentation depth required for crack formation indicates towards the brittle behaviour of the
material. Pressure dependent nature of ceramic has thus positive influence on its ability to
become good armor protection. The addition of pressure dependent softening in the standard
DP model is a step forward in numerically implementing the failure in ceramics. At very
large softening (h1 > −90) convergence is not achieved.
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Chapter 4

Modified Yield Function

The yield functions within the positive pressure range are linear for both Standard and Mod-
ified DP Models discussed in Chapters 2 and 3 respectively. This implies that the material
strength keeps on increasing without any limit with the rise in pressure. But this is not
true for real materials including ceramics [32], [9]. The material models developed by Walker
and Anderson as well as Johnson, Holmquist and Biessel (JHB) impose a limit on the com-
pressive strength of the material to overcome the problem of infinite strength. The Walker
and Anderson model utilizes different functions for different pressure ranges to attain this
objective. But the use of multiple yield functions results in the multiplicity of normals to the
yield functions at the points of discontinuities of the derivatives of the yield function. The
JHB model limits the strength through a continuous exponential function of intact and failed
material strengths. This allows the JHB model to avoid the difficulties encountered in Walker
and Anderson Model. The JHB model is discussed at length in Section 1-4. In view of the
obvious advantage of JHB approach, an attempt is made in the present study to develop a
continuous yield function on basic principles suggested by Drucker Prager (DP) but equipped
to deal with the issue of infinite strength by developing and incorporating a suitable limiting
mechanism to it.

4-1 Yield function

A typical yield surface considered for further studies is shown in Figure 4-1. It has three
segments which are as follows:

(a) A straight line from its point of intercept (papex, 0) with pressure axis to the point (p1,
σ1): This part of yield surface is similar to the one adopted in standard DP model. (b) A
parallel line to pressure axis at equivalent stress equal to limiting stress σlim: This line starts
from point (p2, σlim). (c) The transition between points (p1, σ1) and (p2, σlim) is achieved
through an exponential function.

An attempt is made to develop a single equation to describe all three segments of yield surface
with the objective that the three segments are parts of a continuous curve. In this backdrop,
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a typical continuous yield function is presented in Equation 4-1. It has been derived by
modifying DP yield function suitably by introducing new variables to account for the lim on
compressive strength. Subsequently, the modified yield function is put to tests for validation.

Figure 4-1: Modified Yield function

Figure 4-2: Original JHC model with Walker and Anderson failure surface [8]

The yield function modified as above is defined as a function of the limiting stress (σlim),
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limiting minimum value of pressure (papex), stress and pressure at the point of deviation from
linearity (σ1, p1).

fmod = σ1 + (σlim − σ1) exp [1.0 − α (p− p1)] (4-1)

where alpha is
α = σ1

(σlim − σ1) (p1 − papex)
(4-2)

and σ1 is defined as,
σ1 = −η p1 − ζ, (4-3)

with η and ξ defined the same as in chapter 2.

η = 6 sin ϕ

3 − sin ϕ
and ζ = 6 c cos ϕ

3 − sin ϕ
. (4-4)

The yield surface adopted in Walker and Anderson model [8] presented in Figure 4-2 provides
a rough indication of the range of values for the p1 and σlim for silicon carbide. Similar
values can also be assumed for alumina as a starting point as both have similar mechanical
properties and failure mechanism and relevant data are not available in the literature for
Alumina. The value of limiting stress is taken as 5.4 GPa for all the simulation in the next
section on verification unless otherwise mentioned.

4-2 Verification

4-2-1 Cohesion
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Figure 4-3: Unit load test on single cell (1 integration point) for varying cohesion and zero
softening
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The verification of modified yield function represented by Equation 4-1 is done through the
unit test. The mesh, material properties, boundary condition (BC) and loading remains
same as adopted in chapter 2. Since cohesion and angle of friction influence the yield surface
primarily, compressive loading while varying these two parameters, is used for simulation as
a tool for verification of yield function proposed vide Equation 4-1.

The analytical (vide equation 4-1) and simulated yield surfaces corresponding to different
cohesion are presented in Figure 4-3. The softening is assumed to be absent for simplicity.
The value of both angle of friction and dilatancy are taken as 10o. The analytical yield
surfaces are in dashed lines and the simulated types are in firm lines for different cohesion
values. Cohesion is directly proportional to limiting pressure (papex) as per Equation 2-7,
which governs the relationship between the two.

The analytical yield surfaces presented in Figure 4-3 are observed to follow this relationship as
the points of intercepts of analytical yield surfaces on pressure axis are different for different
cohesion values. These points of intercepts denote the limiting pressures (papex). The inter-
cepts corresponding to larger cohesions are farther from the origin i.e. papex increases with
increase in cohesion. The intercepts of yield surfaces with the axis representing equivalent
stress reflect the respective cohesions. Point A in Figure 4-3 represents the elastic limit on
the yield surface. The analytical yield surfaces beyond elastic limit and within the plastic
domain are curvilinear and deviate from the linear yield surface adopted in Standard DP
Model shown in Figure 2-1. While equivalent stress (material strength) approaches σlim, the
yield surfaces become near parallel to the pressure axis at high values of pressure. Thus the
first objective of determining a function defining the continuous yield surface with limiting
mechanism is achieved through Equation 4-1.

Beyond elastic limit and within the plastic domain, the simulated yield surfaces shown in
firm lines are near match with analytical yield surfaces for respective cohesion. A small devi-
ation between the two surfaces is observed between the pressure range corresponding to the
elastic limit and σlim. This can be attributed to the snowball effect of the different degrees of
precision considered for the analytical and simulation approaches. Nevertheless, the second
objective of verification of Equation 4-1 is achieved.

4-2-2 Angle of friction

The cohesion of the set of simulations to understand the effect of ϕ is taken as 0.5 MPa. ϕ
is varied from 0o to 30o with an increment of 10o. Material strength increases as ϕ increases,
as a result, elasticity is prolonged and finally for ϕ = 30o plastic flow ceases completely as
shown in black in Figure 4-4. The material yields completely at ϕ = 0o shown in blue and
continues to deform with very little increase in stress.
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Figure 4-4: Unit load test for varying angle of friction(ϕ)

4-3 Yield Surface Comparison

The yield surfaces pertaining to models after Standard DP, JH, Walker and Anderson and
Fent et. al besides the modified surfaces as per Equation 4-1 are presented in the Figure 4-5
[9]. The straight line in green represents the yield surface after Standard DP model. Yield
surfaces corresponding to all models except Standard DP model have similar profiles. The two
yield surfaces namely modified DP (1) and (2) are manifestation of Equation 4-1 pertaining
to mimic failed and intact states respectively. The modified DP (1) and (2) surfaces follow
Walker and Anderson surfaces for failed and intact states closely.
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Figure 4-5: Yield function comparison between Literature and simulation[9]
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4-4 Indentation

Figure 4-6: Indentation with varying softening for the modified yield surface DP(2)

In the present indentation study based on DP(2) yield function, the material properties,
loading, boundary conditions etc. are kept the same as in the simulation for cone crack prop-
agation by way of standard DP model presented in Chapter-2. The simulated plastic strain
contours generated for an indentation depth of 40 µm are presented in Figure 4-6. Softening
is varied from 0 to -60 MPa at intervals of -20 MPa. The bulbous compressive plastic strain
zone is seen to grow in size with increase in softening. This is a direct consequence of limit
imposed on the material compressive strength through σlim.
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The results of the present study are compared with those obtained through standard DP
yield function presented in Figure 2-21. It is observed that there is little change in the extent
of cone cracks or magnitude of the zone of plastic tensile strain. Convergence for h = -80 could
not be achieved. Same was the case with standard DP yield function discussed in Chapter-2
at an indentation depth of 40 µm. To further understand the effect the current modification,
simulation with same variations in softening is done with modified DP(1) yield function. The
plastic strain contours are shown in Figure 4-7. The limiting value for the second yield func-
tion is much lower than the first one. Traces of ring crack are observed and cone cracks are
completely absent. Since the there is a significant reduction in strength, material yields in
compression before tension. The failure is rather of ductile nature than Brittle.

Figure 4-7: Indentation with varying softening for the modified yield surface DP(1)

4-5 Conclusion

The yield function vide equation 4-1 limiting the compressive strength to a finite value in
conformity with the strength of real materials. It also gives results comparable to analytical
formulas. The simulation results indicate that the modified DP(2) yield function does not
affect the crack initiation and propagation in any different manner while compared with yield
function of standard DP model. The major impact of the yield function DP(2) is observed
on the size of the compressive plastic zone which grows bigger. However, upon using the
modified DP(1) yield surface, which is essentially the yield surface for failed material, no crack
is observed. This happens because the comparatively bigger volume of material is subjected
to compressive stresses larger than material strength σlim vide equation 4-1, and thus the
material yields in compression before failing in tension. Modifications to the yield surface
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of the standard DP model allows the numerical model to be more accurate at simulating
material behaviour.

64



Chapter 5

Mesh Sensitivity

The results obtained so far through DP based material model in the parametric study (section
2-3) are found to be mesh sensitive. Large variation in the sizes of zones of plastic strains
pertaining to mesh divisions ranging from 30 to 80 at intervals of 10 is noticed in Figure 2-26.
The cone crack sizes are also variable. Inconsistency of similar nature is most likely to occur in
the results obtained from simulations of DP models modified for pressure dependent softening
and modified yield function. Larger mesh sizes require less computation time but the accuracy
of the results may be compromised. Smaller mesh size sometimes do not allow convergence
during the simulation. Hence judging the results pertaining to a particular mesh size or
division becomes a tricky affair. The selection of appropriate mesh size/division becomes
too important. Studies done by Wang, Sluys and Borst [33], [34] predict that incorporation
of viscoplasticity parameters in the material model can solve mesh sensitivity and provide a
uniform and consistent solution across the mesh size.

5-1 Viscoplasticity

Materials undergo permanent deformation during plastic state under the influence of exter-
nal loads. Plastic deformation coupled with creep flow on application of load is defined as
viscoplasticity. The rate of change of plastic strain with respect to time is a key parameter to
understand viscoplasticity. In other words, it is a concept based on rate dependent plastic be-
haviour of solids. A combination of sliding frictional element and non linear dashpot describes
viscoplasticity well. The former represent plasticity while the rate dependent characteristics
are attributed to the later.

5-2 Integration of Viscoplasticity in DP Model

Time dependent viscosity coefficient introduced by Perzyna, has been integrated with the
basic formulation of standard DP Model in the present study. The algorithm based on the
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works of Sluys and Wang [33] is utilized for integration of viscosity coefficient with standard
DP material model. The response of ceramics is evaluated by the techniques of rate inde-
pendent plasticity after adding strain rate dependence to the yield stress. The constitutive
equations are derived as follows:

Rate of change of total strain with respect to time is the sum of rates of change in elastic and
viscoplastic strains.

ϵ̇ = ϵ̇e + ϵ̇vp (5-1)

ϵvp denotes the viscoplastic component of strain and ˙ϵvp is the rate of change viscoplastic
strain. Subsequently, rate of change of stress is calculated as

σ̇ = De (ϵ̇− ϵ̇vp) (5-2)

The rate of change of plastic strain ϵ̇vpis defined as

ϵ̇vp = λ̇m (5-3)

where the rate of change of plastic multiplier λ̇ is defined as

λ̇ = µ < ϕ (f) > (5-4)

where λ is the plastic multiplier and m is defined as the derivative of viscoplastic potential
function (g).

m = ∂gvp

∂σ
(5-5)

Furthermore, ϕ determines the regularizing effect of the viscoplastic model. ϕ is defined as

ϕ (σ) =
[
< f >

σo

]N

(5-6)

<> represents the ramp function. The value of constant N is taken 1 for simplicity. The
change in stress is calculated by the product of the elastic stiffness matrix and the change in
elastic strain.

∆σ = De (∆ϵ− ∆ϵvp) (5-7)

The viscoplastic flow is determined by the gradient of the yield surface at time t + ∆t. The
incremental viscoplastic strain is defined as,

∆ϵvp = ∆λmt+∆t (5-8)

Substituting the incremental viscoplatic strain in incremental stress

∆σ = De [∆ϵ− ∆λmt+∆t] (5-9)

The Newton Raphson scheme is controlled by the residual r calculated as

r = ϕ− ∆λ
µ∆t

(5-10)
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Diffrentiating the equation 5-9 and getting rid of the subscripts

δσ = Pδϵ− P
[
m + ∆λ∂m

∂λ

]
δλ (5-11)

The incremental strain δϵ is zero in the local iteration. P is defined as

P =
[
(De)−1 + ∆λ∂m

∂σ

]−1
(5-12)

Differentiating the residual of Newton Rapshon control loop

δr =
[
∂ϕ

∂σ

]T

δσ +
[
∂ϕ

∂λ
− 1
η∆t

]
δλ (5-13)

Substituting the incremental stress δσ from equation 5-11 and rearranging to evaluate λ

δλ = 1
α

[(
∂ϕ

∂σ

)T

Pδϵ− δr

]
(5-14)

Where α is defined as

α =
[
∂ϕ

∂σ

]T

P
[
∂m + ∆λ∂m

∂λ

]
+ 1
µ∆t

− ∂ϕ

∂λ
(5-15)

where,

∂ϕ

∂λ
= h

σ0
∂ϕ

∂σ
= n

∂m

∂λ
= 0

with m a function of only stress. Substituting values,

α = nT Pm + 1
µ∆t

− h

σ0
(5-16)

The tangent stiffness matrix is evaluated by substituting δλ in equation 5-11

Dvp = P − 1
α

PmnT P (5-17)
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5-3 Verification

Figure 5-1: Mesh for bar in tension

The performance of viscoplasticity integrated DP model is examined by comparison of its
results with those of standard DP model for a tapered bar in tension. The basic material
properties of the tapered bar are the same as considered in previous chapters. The dimension
l shown in Figure 5-1 is 1 mm. Top edge width of the tapered bar is 1.05 times the bottom
edge. The bar is meshed in four different ways as shown in Figure 5-1. Bar-1 has five divisions
which,

Figure 5-2: plastic strain for tension bar with standard DP model

are doubled in every next bar. The no. of divisions in bar-4 thus reaches to 40 following this

68



5-3 Verification 69

rule. The comparison is made for associative plasticity at ϕ = ψ = 10o and softening h =-2
GPa. The viscosity coefficient µ is taken as 10 MPa.s and ∆t as 0.09s.
Figure 5-2 shows the plots of plastic strain for bar-1 to bar-4. The variations in plastic strain
undergone by the bar no. 1 to 4 are very high. Bar with smaller mesh size develops a larger
plastic strain for a given loading history. There are also large variations in the magnitudes of
maximum strain. The strain in bar-4 is four higher times than that in bar-1 indicating lack of
uniformity in deformation patterns of bars-1 to 4. Above all, convergence is not achieved for
bar-4 during simulation for entire 100 load steps and the plastic strain contour with a local
failure shown in Figure 5-2 is at load step 91.
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Figure 5-3: Plastic strain variation along the length of tension bar

The plots showing variation of plastic strain as arrived through standard DP and viscoplastic
DP models, over the bar length are presented in Figure 5-3 for comparative study. The firm
and dashed lines represent the outputs of standard and viscoplastic DP models respectively.
The deformation profiles of the tapered bars in tension through viscoplasticity integrated
DP model are shown in Figure 5-4. Though the properties and load conditions are the
same for all the bars, the strains developed in each bar as determined through standard
DP Model have very large variations particularly in the bottom half of bar lengths. The
standard DP plot pertaining to bar-4, which has largest no. of division, indicates local failure
slightly above the bottom. The bar-1 with least divisions seems to undergo gradual strain
change along its length. These outcomes highlight the limitations of standard DP model
with regards to mesh sensitivity. On the other hand, the simulated plastic strain profiles as
arrived through viscoplasticity integrated DP model as shown in Figure 5-4 almost overlap
each other, exhibiting uniformity in the magnitudes of strains and deformations (Figure 5-3)
undergone by each of the four bars irrespective of mesh size or division.

69



70 Mesh Sensitivity

Figure 5-4: plastic strain for tension bar with standard DP model
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Figure 5-5: Max plastic strain along the height of bar.

The outputs presented in Figures 5-2 to 5-4, are based on a constant viscosity of 10 MPa.s.
Therefore, it is important to understand the effect of varying viscosity on mesh sensitivity.
Accordingly, simulations are carried out corresponding to viscosity coefficients ranging from
0 to 20 MPa.s at intervals of 5 MPa.s for bar-2, which has 10 divisions. The bottom-most
element in contact with the support is designated as element number 1. Other elements are
assigned numbers in increasing order going up to 10 for the uppermost element. The plastic
strain plotted is average of plastic strains across the 4 nodes constituting the element. Figure
5-5 shows the profiles of plastic strain and respective element number. Viscosity coefficient
equaling to zero corresponds to the standard DP model. The profile corresponding to standard
DP model (µ =0) show largest of plastic strains in all elements, while the profile of µ = 20
MPa.s shows the smallest strain. The explanation lies in the fact that viscosity coefficient
controls the dissipation and its increase causes a decrease in the plastic strain. The plots
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pertaining to µ = 0 and 5 MPa.s reveals that the strain change along the elements is large.
But it is somewhat gradual for µ = 10 MPa.s or more, exhibiting gradual strain change.
Among gradually changing profiles, it is the closest to the standard DP profile.

5-4 Indentation

The focus of this section is to ascertain the performance of the viscoplasticity based model in
solving mesh sensitivity. Simulation of indentation of the target with mesh structures of 40,
50, 60 and 70 divisions is performed. The inputs are softening h= -30 MPa, friction angle =
700, dilatancy =15o and viscosity coefficient µ=10 MPa.s. The loading and boundary condi-
tions are kept the same as in the section 2-3-4. Among the simulated results corresponding to
µ=5, 10, 15 MPa.s, those related with µ=10 MPa.s was found to be most promising during
preliminary studies. Therefore, it was chosen for taking up further works in the current stud-
ies. The outputs of indentation tests simulated through viscoplastic DP model are presented
in respect of mesh divisions from 40 to 70 at intervals of 10 in Figure 5-6. All simulations
reach the approximately same indentation depth close to 40 µm, and the compressive strain
zones below indenter are fairly consistent in size. The variation in crack sizes corresponding
to different mesh divisions is also marginal, if compared with outputs presented in Figure 2-26
(Standard DP model). However, there is variation in crack shape. The crack for mesh with
70 divisions is narrow compared to the rest. No clear pattern could be identified in respect of
crack orientation. Figure 5-7 shows the plastic strain contours for mesh with 40 divisions for
standard DP model and viscoplastic DP model. The cone crack is observed to form through
the later but is missing through the former. The plastic strain in the bulbous zone is also
significantly larger for the viscoplastic DP model.

Figure 5-6: plastic strain for variation in mesh size
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Figure 5-7: plastic strain for variation in mesh size with 40 divisions

5-5 Conclusion

The integration of viscoplasticity with standard DP model overcomes the mesh sensitivity
to a large extent, and produces acceptable results for the tension bar. There is consistency
in the cone crack size during intention at variable mesh divisions but crack shapes vary. It
is concluded that integration of viscoplasticity to the standard DP model is a positive step
in mitigating mesh sensitivity. Further study is needed in order to manage mesh sensitivity
within acceptable limits especially for the indentation.
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Chapter 6

Conclusion and Recommendation

6-1 Conclusion

The failure behavior of ceramics with special emphasis on cone cracking is the subject of the
thesis. Simulated indentation by a suitable numerical model using JEM JIVE FEM library is
proposed to be employed to understand failure by cone cracks. A numerical model provides
insight into cone cracking and facilitates to investigate the effects of key parameters such as
internal friction, dilatancy and softening. A number of material models are available to study
ceramic failure. The Drucker Prager (DP) model, which was developed for the study of failure
behavior of rock and soil, is employed in present work on two considerations. One, it is easy
to use and implement in FEM framework and two, ceramic is also a brittle material like rock
and soil. It also considers the effect of plasticity flow and the strength of the comminuted
particles, which are relevant to ceramic also. Verification of model is carried out through sim-
ulation of unit cubes subjected to unidirectional loads subjected prescribed displacements.

The DP model formulation is based on the assumption that softening is pressure independent
unlike pressure dependent softening observed in ceramics. Furthermore, material strength
keeps on increasing without limit with the rise in pressure as per DP yield function. But
ceramic has finite strength like any other real material. In order to overcome these limitations
of the DP model, suitable modifications are required to be incorporated in its formulation.
It was also observed during the studies that the results are mesh sensitive. Viscoplasticity,
which was found to overcome mesh sensitivity by scholars working on numerical modeling in
the past, is integrated to the standards DP model in order to find a solution. The following
is summary of the major conclusions of the present thesis

1. Parametric Study: The effects of material parameters e.g. friction angle, dilatancy
and softening were extensively studied by simulating indentation through Standard DP
Model. The indentation depth is 40 µm unless specified otherwise. The major findings
are as under:
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(a) Well developed cone cracks were observed at friction angles greater than or equal
to 600. Cone crack grows with increase in the angle of friction,

(b) Cone crack formation stops at dilatancy angles greater than 200. It decreases to
160 corresponding to lower indentation depth of 25 µm. Cracks grew in size at
smaller dilatancies. The cracks were found to be large at zero dilatancy indicating
instantaneous failure.

(c) Increase in softening stimulates the crack formation and its propagation,
(d) The increase in confinement reduced crack formation,
(e) Convergence could not be achieved for very small mesh sizes as well as for large

values of softening and
(f) The simulations were also found to be mesh sensitive.

Ceramic having low friction angle and softening modulus coupled with high dilatancy
under confined conditions is less prone to cone cracking and suitable for armor protec-
tion.

2. Pressure Dependent Softening: Ceramic undergoes non linear rapid degradation of
strength post-elastic limit. This is suggestive of softening behavior of ceramic being
pressure dependent. The prescribed displacement corresponding to complete strength
loss under pressure dependent softening is more than that for pressure independent soft-
ening. Crack formation during indentation is delayed in the pressure-dependent regime
of softening. Thus the pressure dependent softening nature of ceramic has positive
influence on its ability to become good material for armor protection.

3. Yield Function with procedure to limit material strength: A limiting feature was applied
to the yield function adopted in Standard DP model to restrict compressive strength
to a finite value in conformity with the strength of real materials. Limiting the yield
function to the value of failed material (DP1) completely stopped crack initiation and
propagation. However, the zone of compressive plastic strain below indenter grew in
size and is indicative of compressive failure of material.

4. Mesh Sensitivity: The integration of viscoplasticity with standard DP model overcomes
the mesh sensitivity to a large extent, and produces acceptable results for the tension
bar. There is consistency in the cone crack size during indentation at variable mesh
divisions but crack shapes vary. It is concluded that integration of viscoplasticity to the
standard DP model is a positive step in mitigating mesh sensitivity. Further study is
needed in order to manage mesh sensitivity within acceptable limits especially for the
indentation.

6-2 Recommendation

1. Development of a DP formulation as a single integrated model capturing the effects of
pressure dependent softening, finite material strength and viscoplasticity to study cone
cracks.
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2. Explore DP model for dynamic indentation of ceramics to study complex failure pa-
rameters like dwell, strain energy absorption, erosion of material, etc.

3. The integration of viscoplasticity was found to be promising for solving the mess sen-
sitivity. This aspect needs to be investigated in more detail to minimize the effect of
mesh sensitivity within manageable limits.

4. An alternate stress driven formulation based on works by Aliguer, Carol and Ignasi [35]
can be probed to improve the robustness of the model.
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