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Abstract
This paper presents a comprehensive exploration
of a novel method combining Principal Component
Analysis (PCA) and Neural Networks (NN) to effi-
ciently solve Partial Differential Equations (PDEs),
a fundamental challenge in modeling a wide range
of real-world phenomena. Our research extends the
work of Bhattacharya et al. by focusing on PCA
for effective dimensionality reduction and utilizing
NN for mapping in the reduced dimension. This
approach addresses the significant computational
challenges and inaccuracies often encountered with
classical numerical techniques in solving PDEs.
We specifically investigate the still-water equation,
employing our PCA-NN method to learn a reduced
order mapping of PDE solutions and evaluate its ro-
bustness in diverse noisy environments. Our find-
ings reveal a notable relationship between noise in-
tensity and error, indicating a linear trend for Gaus-
sian and Salt and Pepper noise, and an exponential
trend for Uniform noise. Furthermore, this study
uncovers a critical weakness of the model in pre-
dicting points with a high rate of change.
Overall, our research significantly contributes to
understanding the practical applicability and lim-
itations of PCA-NN methods in real-world, noisy
settings, offering valuable insights for future appli-
cations in this domain.

1 Introduction
Partial Differential Equations (PDEs) play a foundational role
in the mathematical modeling of various natural and engi-
neering systems. Equations like the heat equation, Navier-
Stokes, and Black-Scholes are famous examples of PDEs,
each having extensive use cases in chemistry, physics, and
finance, respectively. For example, shallow-water equations
(SWE) which describe “the conservation of mass and mo-
mentum in a fluid [...] to determine circulation patterns
and the maximum and minimum tides at the interior of the
region”[1]. These equations are instrumental in our under-
standing of dynamic changes within different environments.
However, this understanding comes with certain caveats. Tra-
ditional numerical methods for solving such PDEs exist, but
they often face limitations in terms of computational effi-
ciency and struggle with handling high-dimensional data [2].
The advent of data processing, machine learning, and artifi-
cial intelligence has led to novel perspectives in addressing
this challenge.

This paper particularly focuses on solving PDEs using a
synergy between principal component analysis (PCA) and
neural networks (NN), as an attempt to provide efficient and
accurate solutions in a timely fashion. Foundational work by
Bhattacharya et al. 2021 [3] explored a data-driven approach
to approximating PDEs using the PCA-NN approach. Our
research is anchored in replicating and extending this work.
This step is crucial in potentially gaining additional insights
into their methodology and findings.

The purpose behind this study is two-fold. First, there is the
reproduction of the work from Bhattacharya et al. and second
the exploration of the research question: ”How robust are
the PCA-neural network based approaches against noise
in the data?”. From weather data to wind tunnels, sensors
deal with noisy environments all the time.To this end, we
simulate various types of noisy environments to assess the
strengths and limitations of this technique depending on the
type and intensity of the noise. These findings are signifi-
cant, as noise received limited attention in Bhattacharya et
al’s research. By understanding this techniques’ performance
in noisy conditions, we can better gauge its applicability and
limitations in practice.

2 Methodology
To answer the research question it is essential to first discuss
the key methods used. There are core data techniques used
for processing and predicting data, as well as, noise func-
tions used for ’contaminating’ our data in order to understand
noise-resilience.

2.1 PCA-NN approach
At the core of this study we find a a synergy and heavy re-
liance on Principal Component Analysis (PCA) and Neural
Networks (NNs). These are the core data processing tech-
niques used in increasing computational efficiency and pre-
dictive modelling.

Principal Component Analysis (PCA)
Principal Component Analysis (PCA) is a technique used to
emphasize variation and bring out strong patterns in a dataset.
It has tremendous applications from simplifying data explo-
ration and visualisation to compression and dimensionality
reduction. PCA works by identifying the directions along
which the variation in the data is maximum. These compo-
nents, in decreasing order, essentially capture the most im-
portant parts of the data where more components correlate to
a higher resemblance to the original data space.

In our study, we apply PCA to reduce the rank of the
dataset while preserving as much information as possible. For
example, it could allow us to reduce a 128×128 vector space
into say 150 components, while still retaining 99% of the in-
put data. While it is not a PDE, Figure 1 aims to help visualize
how PCA works.

Figure 1: Visualisation of PCA on an image of a hot air balloon

Note that the original image requires 3729 × 5593 pixels.
By using PCA, we can reduce the image to fewer components



while still retaining much of the image’s variance. In fact, in
Figure 1 our reduction to 20 and 50 components allows us
to retain around 65.16% and 79.49% of the variance, respec-
tively, while compressing the size by approximately 99.46%
and 98.66%, respectively. Figure 1 visualizes the surprising
efficiency PCA has in data retention.

It is important to note that the example given in Figure 1 is
a simplification of PCA, and that its application on PDE data
is a little more complicated, though the underlying idea is
very similar. We are applying PCA to reduce the complexity
of our data and, hopefully, make solving PDEs simpler and
quicker through this data-driven technique.

Neural Networks (NNs)
Neural Networks are a cornerstone of machine learning, due
to their incredible ability to learn patterns or classify data.
NNs consists of layers of interconnected nodes or ’neurons’.
Each neuron in a layer is connected to every neuron in the
next layer, serving the purpose of applying a function on
passed data and feeding it to the next set of neurons. When
data is fed into the network, it undergoes transformations
through these layers, enabling the network to learn complex
patterns and relationships in the data.

There is extensive theory on NNs and their applications
[4], which unfortunately can not covered in full in this paper.
What is most important to note is that our study utilizes NNs
for predictive modeling. Given that we are trying to ’learn’
how a vector space changes from one state to another, we are
using NNs to find this mapping.

PCA-NN Method
Central to Bhattacharya et al.’s paper is the combining of PCA
and NN techniques. It involves a two-phase approach: di-
mensionality reduction through PCA and function mapping
through a NN. PCA is key given the potentially highly di-
mensional PDE data, allowing reduction to a manageable and
efficient level. We can apply PCA in a way that allows us to
retain a percentage of the variance (say 99%) to keep. Ap-
plying PCA to the start of the mapping (input) and end of the
mapping (output) separately, allows us to reduce the dimen-
sionality of each of these spaces.

Subsequently, we define a function mapping between the
PCA reduced spaces through a neural network. The input and
output to this NN are the principal components of the input
and output of PCA processed data, respectively. By feeding
this neural network our PCA processed data we ”teach” it this
very mapping.

In the context of PDEs, you could of think of Bhat-
tacharya’s technique as an aim to map one function space
onto another. For example, the heights of waves at initial
interaction and their heights after one second.

Using the shallow-water equation as an example, we can
look at Figure 2 to try and fully grasp the PCA-NN tech-
nique. The task is to find a direct mapping between initial
function space, in this example time at t0 , and the final func-
tion space, at t1. Applying the PCA method brings the high
resolution input and output functions into lower representa-
tions with dimension of n and m. Following this, there is a
mapping between these to low dimension data is learned with
a neural network. This means that an input function at t0 is

Input Function

PCAn

Order n Sample NN Order m Sample

PCA−1
m

Output Functiont = t0 t = t1

Figure 2: Flow Diagram of the PCA-NN Prediction Process for a
Time Dependant PDE

reduced to dimension n through PCA, where it is mapped to
a dimension m reduced function at t1, and finally brought
back to its original non-reduced state. It is important to note
that Figure 2 is showing the prediction process for time-based
PDEs. Certain PDEs, like Darcy Flow, which do not have a
time component can still be learned using the PCA-NN tech-
nique [3].

2.2 Noise and Intensity
This paper will predominantly focus on the injection of 3 dif-
ferent types of noise; Gaussian noise, uniform noise, and salt
and pepper noise. Each noise type brings a unique set of
characteristics and challenges to the PCA-NN methodology,
thereby providing a comprehensive understanding of how dif-
ferent noise models impact the process. For each of these
noise types, we define a γ which generally scales the inten-
sity or frequency of the noise. There are many different ways
of implementing noise and noise-intensity and that for that
reason we will be explaining our methodology on noise injec-
tion. Additionally we will briefly touch upon known strate-
gies employed to mitigate the impact of noise.

Gaussian Noise
Gaussian noise, a common byproduct of sensor noise, is gen-
erally applied when specific information about the noise in
data is unknown [5]. It is generated from a normal distribu-
tion with a mean of zero and a variance scaled by the square
of the intensity factor γ. γ can be any non-negative value,
where 0 indicates no noise and values like γ = 1 indicate
a variance directly proportional to the variance of the data.
Equation 1 highlights the process of inserting Gaussian noise
into the PDE data.

Noisy Data = Original Data +N (0, γ2 · σ2) (1)

Where N (0, σ2) represents a normal distribution taking
parameters with mean 0 and variance σ2.

Figure 3 visualizes the effects of Gaussian noise injection.
We can see that, for the most part, the general shape of the
data is preserved but appears cluttered. This noise seems to
vary in intensity but is stable, containing only a few noise
spikes.

Uniform Noise
Uniform noise introduces an even distribution of random fluc-
tuations within a specified range. We again use a scaling fac-
tor (γ) which dictates the boundaries of the uniform distribu-
tion. γ scales proportionally to half the data range meaning



Figure 3: Impact of Injecting Gaussian Noise at 0.5 Intensity on a
Shallow-Water Sample

γ = 0 will add no noise and γ = 1 will uniformly inject noise
between the maximum and minimum points in the data. The
addition of uniform noise to PDE data can be represented us-
ing Equation 2.

Noisy Data = Original Data + U(−γ · r
2
, γ · r

2
) (2)

In Equation 2, U(a, b) represents a Uniform distribution
taking parameters with lower-bound a and upper bound b. We
use r as the range of the data and γ · r

2 is used so that a value
is picked within the range of [−γ, γ], which is proportional to
the range of the data.

Figure 4: Impact of Injecting Uniform Noise at 0.4 Intensity on a
Shallow-Water Sample

While subtle, the uniform noise observed in Figure 4 tells
a different story than the Gaussian noise results seen in Fig-
ure 3. While having a lower intensity measure, 0.4 rather
than 0.5, the noise tends to have more variance, often pre-
senting higher noise values and rendering the original sample
less clear.

Salt and Pepper Noise
Salt and Pepper noise introduces sharp, sparse disturbances in
the data by randomly setting certain points to either the max-
imum or minimum value in the data. This noise type is char-
acterized by its abrupt and unpredictable nature, where points
may read as the maximum (salt) or minimum (pepper) value
of the data. To apply Salt and Pepper noise to data we assign a
maximum or minimum noise with probability γ to each data-
point, meaning at γ = 0 the original data is not altered and

that at probability γ = 1 all data points become noisy render-
ing the sample unrecognizable. Equation 3 demonstrates this
process, the effects of which can be seen in Figure 5

Noisy Data =


max(Data) with probability γ

2 (salt)
min(Data) with probability γ

2 (pepper)
Original Data with probability 1− γ

(3)
Where max(Xs) and min(Xs) represent the maximum

and minimum value of a data-set Xs, respectively.

Figure 5: Impact of injecting Salt and Pepper Noise at 0.05 intensity
on a Shallow-Water sample

The salt and pepper noise observed in Figure 5 shows a
stark contrast from the behaviors seen in Gaussian and Uni-
form noise. The unique high salt points and low pepper points
will present a different type of challenge for the PDE solving
PCA-NNs, as opposed to the Gaussian and uniform noise.

2.3 Gaussian Noise PCA Optimal Hard Threshold
Prior research has been done on mitigating the effects of
Gaussian noise [6], with claims that there is a “optimal hard
threshold τ for singular value truncation under the assump-
tion that a matrix has a low-rank structure contaminated with
Gaussian white noise” [6].

This implies that, for Gaussian noise, we can know exactly
how many PCA components are needed for the lowest Mean
Squared Error (MSE). This approach argues that there is an
optimal trade-off between meaningful data and noise where
higher values would represent noise rather than meaningful
data and lower values would fail to capture meaningful data.
The calculation for the optimal threshold τ can be seen in
Equation 4 and Equation 5 where we assume our data to be a
2D matrix X ∈ Rn×m and define β = n

m when m ≪ n and
γ is our Gaussian noise variance intensity factor.

τ = λ(β)
√
n · γ (4)

where

λ(β) =

(
2(β + 1) +

8β

(β + 1) + (β2 + 14β + 1)
1
2

) 1
2

(5)

However, it is important to note that this optimal hard
threshold only reduces the MSE when comparing a dataset to



a PCA-reduced dataset. This method does not make claims
on the ideal number of components for the function mapping,
this is something that needs to be explored.

3 Experimental Setup
In attempting to reproduce part of Bhattacharya et al.’s work
and evaluating their method’s resilience against noise, cer-
tain implementation decisions were made. This was either
because certain decisions were not explicitly expressed in the
paper, or because a more promising alternative was found.
This section will highlight our own process in creating PDE
approximating PCA-NN, as well as our unique approach to
tackling noisy data.

3.1 Data Collection
The data used in training and evaluating the PCA-NN comes
from PDE Bench [7], which was created for the very purpose
of machine learning techniques. While data generation tech-
niques do exist, these were not deemed necessary for the aims
of the study. This paper almost exclusively uses data from the
2 Dimensional shallow-water Equation, though the PCA-NN
methodology is not exclusive to this PDEs.

PDE Bench claims the array dimensions are organized

according to the convention [b, t, x1, ..., xd, v],
where b is the batch size (i.e. number of samples),
t is the time dimension, x1, ..., xd are the spatial
dimensions, and v is the number of channels (i.e.
number of variables of interest)[7]

Due to this data shape, and the intention to find a direct
mapping over time, it is recommended to reduce the data
down to just two time points, t0 and t1, where mapping needs
to be learned.

3.2 Shallow Water Equation (SWE)
The shallow-water equation (SWE) is the focal point of this
research. SWE are a set of hyperbolic partial differential
equations (PDEs) that describe the flow below a pressure sur-
face in a fluid (often, but not exclusively, water). The SWE
are typically used to model geophysical flows such as ocean
currents, weather fronts, and tsunamis, as they efficiently de-
scribe the flow dynamics of fluids with a free surface [1]. In
the context of this research, SWE data offers a rich field to
apply PCA-NN, due to the complex dynamics and non-linear
characteristics of fluid motion. These dynamics make the
SWE a challenging and relevant test case for evaluating the
resilience of the PCA-NN method against noise.

To aid in understanding SWE, please refer to Figure 6
which demonstrates an example of SWE. We notice that it
is mapped in a 2 dimensional space through the X and Y co-
ordinates and has a values that ranges from 0 to 2. The color
bar the height of of the liquid in the SWE equation, with blue
colors indicating above average liquid heights and red col-
ors indicating below average liquid heights. In this example,
the SWE input function space essentially models placing ele-
vated water on perfectly still water, while the output looks at
the physical consequences of the added water. You can think
of this as a raindrop in a pond, and SWE attempting to model
the tides following the drop.

Figure 6: Example of Input and Output Function Spaces for SWE

It is important to note however, that the aims of this re-
search is not based on legitimizing its specific use for SWE,
but rather aims to explore the legitimacy the PCA-NN tech-
nique as a means of solving PDEs, particularly in noisy envi-
ronments.

3.3 PCA-NN Implementation

In creating our own PCA-NN we largely followed Bhat-
tacharya et al.’s implementation [3] alongside Kovachki et
al.’s implementation [8], which are both papers that focused
on reduced order function mappings. The following experi-
mental setup defines the decisions made in the process.

Generally it is highly recommended to apply PCA indepen-
dently to the input and output of the function mapping. This is
because, depending on the PDE, one of these reduced-order
function spaces may have a much higher variance than the
other. This depends on the specific use-case but in order to
capture a higher data variance more components are needed.

We are training our network on the rank-reduced function
spaces. While the network is training on this reduced data, it
should still be evaluated against the actual output. Doing in-
verse PCA on the prediction is an essential step when testing
and comparing different reductions.

We defined our network according to convention and prior
implementations [3] [8]. We used a 7 layer fully connected
neural network initialized with following neurons per layer:
n, 500, 1000, 2000, 1000, 500, m. Where n is the number of
input components and m is the number of output components.
The network used a SELU activation function on all layers
and an Adam optimizer. After some hyper-parameter tuning
through a grid search on SWE, we use 8 input and output
components, a learning rate of 0.0006, batch size of 32, step
size of 5, and gamma of 0.1. Figure 7 shows the model’s
rapid ability to learn the data given the above configuration,
converging on a test MSE of approximately 0.00228.

While this was our implementation, ideal network archi-
tecture and decisions may vary across PDEs and this is by
no means a ”Gold Standard”. Optimisations and Different
networks exist depending on chosen PDE, number of compo-
nents, network architecture, and hyper-parameters. The focus
of this research is not on finding the best possible way of do-
ing PCA-NN, but rather more exploratory in nature.



Figure 7: Loss Over 120 Epochs of 5 Runs using found Hyper-
Parameters

4 Responsible Research
Conducting research responsibly necessitates a rigorous re-
flection on its ethical implications, integrity, and reproducibil-
ity. This section elucidates the potential ethical issues iden-
tified in our research and the measures adopted to mitigate
their impact.

4.1 Data and Machine Learning
The use of predictive modeling and artificial intelligence
raises concerns about data bias and the potential harm caused
by model predictions [9]. Our research exclusively utilized
physics-based data, specifically the SWD and Burger’s equa-
tion, ensuring no involvement of personal or identifying data.
The nature of our data limits its application to physics simula-
tions, thereby reducing ethical risks typically associated with
more sensitive datasets.

4.2 Ethical Concerns
Recognizing the broad applications of technologies devel-
oped in science and engineering is important. Partial Differ-
ential Equations (PDEs), such as the diffusion equations or
Navier-Stokes, find uses in diverse fields, including sensitive
areas like nuclear science and weapons manufacturing.

While acknowledging these concerns, we believes the di-
rect implications of our work on such areas are minimal. Our
research is exploratory in nature, focusing on the efficacy and
resilience of PCA-NN methodologies in handling noisy data.
We contend that applications in contentious fields are more
likely to rely on traditional PDE solving methods rather than
our proposed PCA-NN approach due to its approximate na-
ture.

Nevertheless, it is important to note that the optimization
of the PCA-NN algorithm for PDEs has broader implications
beyond engineering. This methodology could be effectively
applied in various domains where prediction and approxima-
tion are valuable. However, it is imperative to recognize that
the application of this method in different contexts, particu-
larly with varying datasets, could lead to unethical outcomes
or biased predictions. Future practitioners and researchers
utilizing this PCA-NN approach must remain vigilant regard-

ing its ethical implications and potential biases inherent in
their specific use-case scenarios.

4.3 Reproducibility and Research Integrity
Ensuring the reproducibility and integrity of our research has
been a cornerstone of our methodology. To this end, we
have included the data used, algorithms developed, and the
steps involved in our experiments. This transparency allows
other researchers to replicate our study, verify our findings,
and build upon our work, thereby contributing to the scien-
tific community’s collective knowledge. We aim to provide
a comprehensive and honest account of our findings, thereby
upholding the principles of research integrity.

In conclusion, our commitment to responsible research ex-
tends beyond mere compliance with ethical standards. It
involves a proactive approach to anticipate potential ethical
dilemmas, mitigate risks, and ensure that our research con-
tributes positively to the scientific community and society at
large.

5 Findings
The aim of our research was to reproduce Bhattacharya et
al’s research and to answer the question how robust PCA-NN
based approaches are against noise in the data. Here we will
highlight significant results as part of our research process.

5.1 PCA-NN Methodology
This section will highlight some of the key takeaways and
insights found when applying the PCA-NN technique to the
2D SWE.

Selecting Number of Components
We found that it is hard to make a legitimate claim as to the
ideal number of components in lowering MSE. One would
think that, in more components, and therefore better capturing
the data, would lead to a more accurate predictions.

Figure 8: Plot of number of components against test MSE

Figure 8 plots the number of components against the Test
MSE and shows an unlikely relationship between the two,
with higher number of components having limited impact on
the accuracy of the model. While this may seem surprising,



this actually aligns with what Bhattacharya et al. found in
their paper on the linear elliptic PDE:

we observe a slight amount of overfitting when
more training samples are used and the reduced di-
mension is sufficiently large [...] While this sug-
gests that simpler neural networks might perform
better on this problem, we do not carry out such ex-
periments as our goal is simply to show that build-
ing in a priori information about the problem (here
linearity) can be beneficial [3]

Their goal aligns with that of this study; exploring and de-
veloping an understanding of this method. While we intu-
itively believe that this trade-off could exist, There are many
variables that could effect this efficiency such as network ar-
chitecture, hyper-parameters, or limited data size.

Predictive Efficiency
The efficacy of our PCA-NN implementation can be under-
stood almost immediately by looking at Figure 9 which high-
lights the key strengths and limitations of this technique.

Figure 9: Diffusion-Reaction PDE example following PCA-NN

Figure 9 showcases the entire PCA-NN mapping process
on a Reaction-Diffusion input function. Here we see PCA re-
duction down to 8 components, for both input and output,
and its strong ability to capture the like-hood of the data.
Please note that a PCA inverse has been applied to the PCA-
processed input and output for a clearer visualisation in the
original dimensionality.

The NN is trained to learn the mapping from the PCA re-
duced input to the PCA reduced output. Figure 9 shows us

the models prediction on this test case, proving a strong un-
derstanding of the output shape. This is highlighted in the
error which shows very little error with exception of points
with a sharp rate of change.

This is one of the first things we can notice about the PCA-
NN technique. While it does have a very strong ability to
predict general mapping, it really seems to struggle at points
with a high first-order derivative. We believe that this is partly
due to PCA and partly due to the complex nature of PDEs.

PCA might struggle with this because it inherently approx-
imates data by focusing on maximizing variance along its
principal components. This approach can sometimes over-
simplify the data, especially in areas with rapid changes or
non-linearities, as it tends to smooth out these sharp features.
In the context of PDEs, which often exhibit complex, non-
linear behaviors and sharp gradients, this characteristic of
PCA might lead to a loss of critical information during the
dimensionality reduction process.

The model’s difficulty at these sharp points might also be
due to the difficulty of predicting the values themselves. Take
for example the center point which in SWE is the one that
undergoes the largest fluctuations in height. Due to the al-
most instability at this point, predicting this frequency might
be difficult for the NN to learn and require more rigorous net-
work tuning or more data.

5.2 Robustness against Noise

We elaborate on the outcomes of experiments aimed
at evaluating the robustness of the Principal Component
Analysis-Neural Network (PCA-NN) method for solving
two-dimensional shallow water PDEs amidst various noisy
conditions. Through rigorous testing, we have investigated
the influence of three distinct types of noise—Gaussian, Uni-
form, and Salt and Pepper—on the PCA-NN model’s accu-
racy and reliability. Our experimental protocol adhered to a
fixed network architecture and hyperparameter set, as detailed
in Section 3.3, utilizing 78 input and 22 output components
to account for 99.99% of data variance.

Figure 10: Test MSE for Different Noise Intensities



Analysis of Noise Impacts
An examination of the Mean Squared Error (MSE) across
noise intensities, as presented in Figure 10, reveals distinct
trends in error amplification attributable to each noise type.
Gaussian and Salt and Pepper noises exhibit a linear increase
in MSE with rising noise levels, indicating a proportional
decline in model performance. Conversely, uniform noise
demonstrates a non-linear growth in error, potentially expo-
nential, which suggests a more severe degradation in model
accuracy as noise intensity escalates.

The linear deterioration in model performance due to
Gaussian and salt and pepper noises underscores the PCA-
NN method’s predictable loss in precision with increased
noise levels. In stark contrast, uniform noise imparts an ap-
parently exponential increment in MSE, indicating a drastic
and rapid decline in the PCA-NN model’s accuracy. This
steep increase in error, particularly at higher noise intensities,
necessitates a more robust noise-handling strategy.

Our comprehensive analysis across noise types has re-
vealed that while the PCA-NN model maintains a degree of
robustness against Gaussian and salt and pepper noise, it is
significantly more vulnerable to uniform noise. This varia-
tion in noise impact necessitates tailored adjustments to the
PCA components and neural network settings for optimal
noise mitigation. It also highlights the importance of develop-
ing adaptive noise-handling mechanisms for PCA-NN frame-
works to enhance the resilience of PDE solutions in noisy
environments.

6 Discussion
The exploration of PCA-NN approaches in solving PDEs,
particularly in noisy environments, opens up a multitude of
avenues for further research and improvement. The poten-
tial advancements in this area are not only limited to refining
PCA-NN models but also extend to their broader application
in noisy data contexts.

The current study was able to simulate noisy environments
and evaluate the PCA-NN technique in these environments.
However, this study took a very general and broad look at
noise and highlights the need for more specific noise types.
This study would greatly value further research into noise
types with specific real-world use-cases. Extending the appli-
cation of PCA-NN models to real-world noisy datasets, like
financial data or biological signals, could provide practical
insights and improvements in model robustness and general-
izability.

The study demonstrates the impact of PCA components on
model performance. Further research could focus on dynamic
selection of PCA components. This would allow for perhaps
a targeting and segmented approach at applying PCA. Addi-
tionally, PCA could be adaptive to noise intensity and type,
possibly through the use of machine learning algorithms.

The importance of these further research areas is under-
scored by the findings of this study, which reveal both the
strengths and limitations of PCA-NN models in handling
noise. This research thus acts as a springboard for more in-
depth and applied studies in the field.

7 Conclusion
The objective of this paper was two-fold: to build upon
and understand Bhat et al.’s research and to develop an un-
derstanding of “how robust PCA-neural network-based ap-
proaches are against noise in the data.” This understanding
has been nuanced and developed throughout the paper. Our
replication of Bhat et al.’s research not only confirmed their
findings but also provided additional insights into the behav-
ior of PCA-NN models. This replication served as both a
validation of their work and a foundation for our exploration
into noise resilience. Our investigations revealed that while
PCA-NN models show a degree of robustness to Gaussian
noise, their performance is significantly challenged by Uni-
form and Salt and Pepper noise. This finding is crucial for
understanding and improving the application of PCA-NN in
real-world noisy environments. The research undertaken pro-
vides a clearer picture of the strengths and vulnerabilities of
PCA-NN models in noisy conditions, emphasizing the need
for continued innovation in this area, particularly in enhanc-
ing noise resilience. The findings from this study contribute
to the academic understanding of PCA-NN models and have
practical implications for their application in various fields
where noise is an inherent part of the data. In conclusion,
this study successfully extends the work of Bhat et al. by
providing a deeper understanding of the robustness of PCA-
NN approaches against noise, opening up new possibilities
for improvement and application, and marking a significant
step forward in the field of neural network research and its
practical applications.
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