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Abstract

Spiking Neural Networks (SNN) represent a distinct class of neural network mod-
els that incorporate an additional temporal dimension. Neurons within SNN op-
erate according to the Leaky Integrate-and-Fire principle, governed by ordinary
differential equations. Inter-layer neuronal communication occurs through spike
propagation when membrane potentials reach a specified threshold. This unique
mechanism renders conventional Artificial Neural Network (ANN) design prin-
ciples and learning rules inapplicable to SNN. This study presents a theoretical
investigation into the impact of time discretization on SNN performance in real-
world tasks. We present a network architecture based on the Error Backpropa-
gation Through Spikes model. This approach allows for the transformation of
the original system of differential equations into a system of difference equations
across multiple time steps. We evaluate our model’s performance on the MNIST
dataset and identify several phenomena that influence accuracy. Our analysis pri-
marily focuses on gradient dynamics and spectral properties of the voltage signals.
These findings contribute to a deeper understanding of SNN behavior and poten-
tial optimization strategies.

1 Introduction

Spiking Neural Networks (SNN) have emerged as a compelling biologically-inspired paradigm,
offering a sophisticated alternative to traditional Artificial Neural Networks (ANN). These networks
incorporate a temporal dimension, thereby enhancing their biological fidelity by modeling the time-
dependent dynamics of neuronal activity [21]. In contrast to ANN, where neuronal output is a static
function of aggregated inputs, SNN emulates the complex temporal behavior of biological neurons,
allowing for the evolution of physical quantities over time, as exemplified by the Leaky Integrate-
and-Fire (LIF) model [6].

However, the implementation of SNN in clock-driven simulations necessitates the discretization
of time, a requirement that introduces non-trivial inaccuracies in modeling individual neuron dy-
namics. These inaccuracies stem from numerical approximations, such as the non-differentiable
impulse function, and the inevitable information loss due to temporal down-sampling. While quan-
tization techniques have been extensively studied in the context of ANN [10], the impact of time-
discretization on SNN presents unique challenges that remain insufficiently explored in the litera-
ture. Consequently, the direct application of ANN quantization techniques to discretize timestamps
in SNN appears to be a non-trivial and potentially suboptimal approach.

This research endeavor aims to address the following question: How does the granularity of time
discretization in the Error Backpropagation Through Spikes (BATS) model [1] correlate with
performance accuracy on real-world tasks? Our investigation adopts a dual approach, combining
theoretical analysis and empirical experimentation. From a theoretical perspective, we consider neu-
rons based on the LIF model as distinct mathematical objects, rigorously examining how discretiza-
tion affects their properties. This analysis is motivated by the extensive body of research on the
divergent behaviors of continuous and discrete mathematical constructs. Subsequently, we propose
a network architecture that extends the BATS model to support configurable multi-timestamp op-
erations. This architecture synergistically combines elements from Recurrent Neural Networks and
Spiking Neural Networks. Finally, we conduct a series of experiments using this proposed architec-
ture to empirically verify whether the theoretically predicted mathematical phenomena manifest in
practical implementations.

2 Background

This section presents a comprehensive theoretical analysis of individual neurons and the spiking neu-
ral network as a whole. In Section 2.1, we derive the closed-form solution for the Leaky Integrate-
and-Fire System of Ordinary Differential Equations, providing a foundation for subsequent analyses
and network implementation. Section 2.2 examines the implications of discretizing the original
model from a frequency domain perspective, while Section 2.3 focuses on the impact of discretiza-
tion on numerical accuracy. Finally, Section 2.4 investigates the collective behavior of neurons



within the network, a crucial aspect in the design of hidden layers where neuronal behavior tends
to exhibit convergence. This multi-faceted theoretical approach aims to provide a robust framework
for understanding the intricate dynamics of spiking neural networks under discrete-time conditions.

2.1 Leaky Integrate-And-Fire Model

The Leaky Integrate-and-Fire (LIF) model, as its name suggests, reflects the integration process of
neuronal dynamics in a network [8]. This model is defined by a first-order linear differential equation
over time, which describes the evolution of the membrane potential, denoted as u. The membrane
potential dynamics are influenced by the input current, ¢, and are parameterized by the membrane
resistance, R, and the membrane capacitance, C. These parameters collectively determine the mem-

brane time constant, 7,,,, which is the product of resistance and capacitance (7,,, := R C)
du(t
) = R m

The neuronal dynamics can be accurately modeled as a linear time-invariant (LTI) system, whose
transfer function, G(s), can be analytically derived by employing the Laplace transform, a pow-
erful mathematical tool for analyzing LTI systems in the complex frequency domain, commonly
referred to as the s-domain. By defining the Laplace transforms of the input and output variables as
I(s) = L{i(t)} and U(s) = L {u(t)}, respectively, the original differential equation governing the
neuronal dynamics can be transformed into an algebraic equation in the s-domain. This transforma-
tion facilitates the analytical derivation of the transfer function, G(s), which is defined as the ratio

of the output transform, U (s), to the input transform, I(s), i.e., G(s) = g((j))

R
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If the current ¢ is constant over time, i.e., i = 19, the differential equation describing the membrane
voltage dynamics possesses a closed-form solution. This solution illustrates that the membrane
voltage u(t) converges exponentially to a steady-state value ., which is determined by the input

current io and the membrane resistance R, such that u., := 49 R. The convergence of u(t) to U
occurs at an exponential rate governed by the membrane time constant 7,,
t
(u(t) - Uoo) = (UO - uoo) eXp | —— 3)
Tm
Where vy := u(0) is the initial membrane voltage at time ¢ = 0. The term exp ( —TL) decays

exponentially with time, and the rate of decay is determined by the membrane time constant 7,,.

This implies that the convergence of u(t) to us occurs in O (exp (f%)) time.

In the context of spiking neural networks, the dynamics of the incoming synaptic current for a neuron
with indices (I, k) are governed by the weighted sum of the presynaptic spike trains impinging upon

. .. . . . i (k) . . .
its dendritic tree. Specifically, the change in the synaptic current dldit(t) at time ¢ is determined by

the dot product between the vector of learnable synaptic weights w(/*) and the vector of presynaptic

spike trains s(‘~1) (), which encapsulates the spiking activity of all neurons projecting onto the
neuron ([, k) [16]

dibF) (1)

s iR (1) = wlbh) . s(=D () (4)

Ts

When we decompose the dot product w(-F) . s () = S~ w5 (t — t,) and apply the
Laplace transform, it becomes apparent that the learned synaptic weights, w(**)_ exert an influence
on the phase distribution. This influence can be attributed to the characteristic of the delayed Laplace
transform of the impulse function, which is expressed as L{d (¢ — t,)} = exp(—t, s). Conse-
quently, for the neuron with index (I, k), under the assumption that the neurons at the preceding
layers have been activated, we can derive the closed-form solution of the current in the s-domain



2 (0) + 3, Wi exp (—t, 5)

16R (s) = 5
(5 = ®)
Substituting the input signal I(s) into U(s) = TR i(j_)l , which characterizes the neuron’s dynam-
ics, yields:
Tm u (0) 75 1 (0) >on wik) exp(—ty $)
Uis) = — + R
Tm s + 1 (Tms + 1) (1ss + 1) (Tms + 1) (1ss + 1)

Subsequently, applying the inverse Laplace transform facilitates the analysis of the neuron’s tempo-
ral response u(t) to the incoming spike train

u"P (1) = u (0) exp (—t) (6)
+ Ri(0) T <exp (—t) — exp (—t)> @)
Tm — Ts Tm Ts
wil) t— ty t— ty
+ R Z [T7TL — Ts (exp (_ Tm ) T <_ Ts >) (8)

2.2 Time Discretization: Signal Processing Perspective

In SNN, each neuron can be modeled as a second-order continuous-time system. The input to this
system is the spike train generated by all presynaptic neurons, denoted as b (t), while the output
is the membrane potential, represented as w (t). This relationship is governed by a second-order
differential equation, which characterizes the dynamic behavior of the neuron’s membrane potential
in response to incoming spikes

2 1 1 1
du +( +>d“+ w= Ty ©)

a2 Ts Tm ) dt T Ts T Ts

From the equation presented, the corresponding damping ratio ¢ and the undamped natural fre-
quency wy, of the system can be calculated [18]

¢ = ot
{w T (10)
R o

When 7,,, # 7, it can be observed that ( > 1. Th1s indicates that the system is overdamped
with two distinct real negative poles at ——— and ——=. Furthermore, as the value of ( increases, the

system’s decay to zero is prolonged. The frequency response H (j©2) can be subsequently evaluated,
revealing that the system functions as a low-pass filter

H(jQ) =

=y

(Tm jQ + 1) (75JQ + 1) (I

An alternative approach to discretizing the original ODE involves sampling and scaling the original
voltage signal: u[n] := At u(n At), where the scahng factor preserves the signal’s energy. This
process employs a sampling frequency €, := A 7- Under the assumption that aliasing effects from
high frequencies are negligible, this sampling procedure can be represented as a mapping from the
s-domain to the z-domain via the transformation z := exp (s At) [17]

R At 1 1
Tm — Ts |1 — exp( At) z~1 1 — exp( At) z~1

Tm

Hq(z) = (12)

The region of convergence for this transformation is defined by |z| > exp (—%). This formu-
lation facilitates the derivation of the Discrete-Time Fourier Transform of the discrete time signal



u [n], noting that z = exp (s At) = exp (jQ At) = exp (jw). Forw € [—m, ], the correspond-
ing sampled continuous time frequency range is €2 € [—ﬁ, ﬁ] Frequencies beyond this range
induce aliasing effects. To map the entire j{2-axis onto the unit circle in the z-plane, the Bilinear
Transformation can be employed. This transformation introduces a non-linear warping of the fre-
quency axis, expressed asw = 2 arctan (%) (in contrast to the linear relationship w = Q At),
while preserving the system’s causality [17].

2.3 Time Discretization: Numerical Methods Perspective

The process of time discretization involves the sampling of the original equations, specifically equa-
tions (1) and (4), at discrete time instances denoted by {¢;}. This is achieved by employing differ-
ence equations to approximate the original differential equations, which are integral to our neuron
models in the spiking neural network. In this study, we introduce a range of widely-used discretiza-
tion techniques.

Forward Euler Method is a first-order explicit integration scheme with a local truncation error of
O (A2¢); ) Fle+ ADZJ)  The corresponding z-transform is 2L, Considering the

state of an arbitrary neuron in the network as a vector comprising voltage and current, the application
of the Forward Euler Method yields the following state transition function

w2 ] o

To ensure the stability of the numerical integration scheme as the time step t;, approaches infinity,
the step size At must adhere to the following condition: At < 2 min {7, 7s}.

Backward Euler Method is a first-order implicit integration scheme with the same truncation error of
@) (A2t): df(ﬁk) ~ f(t’“)ffA(tt’“fAt) (corresponding z-transform is Zz*Atl ). but inherently numerical
stable. For the neuron system, it could be derived that

[;L((f:))} = F e 1%1%]1 (mf,f:ﬁfﬂ + 2 [W .i(tk)}) (14)

Ts

Before calculating the global truncation error of the Euler method for this system of ODEs, we first
calculate the Lipschitz constant L that satisfies the following condition for any two states ny (t) :=

[ua (B) @ (t)]T andng (t) = [ug () 2 (t)]T [2] (define Aw :=u; — ug and At 1= i1 — i2)

) . 1 . 1 )
||I'11 — n2||2 = \/7_2 [AU — RA’L]2 + *QAQ’L (15)
1 R R2 R 1
g\/ Az 4 (;L + 2) AZi (16)
Tm Tm/ S
1+ R R+ R 1
< \/max{ o = + 7_2} [n — noll2 a7n

Moreover, the exponential function exp (—t) is bounded over the domain ¢ € [0, +00). Given
that the sum of multiple bounded functions remains bounded, it follows that there exists a finite real
number M such that |u”’(¢t)] < M. This property has significant implications for the numerical
analysis of the system. Specifically, the global truncation error of Euler’s method at time ¢, is
constrained by an upper bound of 222 (exp (L t;) — 1), where At denotes the step size, and L
represents the Lipschitz constant of the derivative v’ (¢).

2.4 Population Activity of Identical Neurons in Layer

The population dynamics and state statistics of neurons within a single layer of a spiking neu-
ral network, where neurons share identical parameters (7,,, 75, and R), can be rigorously evalu-
ated [8]. A key aspect of this analysis is the evolution equation governing the probability den-
sity function of the neurons’ internal states, specifically voltage and current. Given an input



spike train following a Poisson Process, the probability density function p (¢, u, ¢) can be mod-
eled using the Fokker-Planck equation [4]. To derive the corresponding Delayed Partial Differ-
ential Equation, we begin by expressing the probability density function in terms of expectation:
p(t,v,4) = E[6(u—U(t))o (i —1I(t))], where (U, I) represents the two-dimensional random
variable describing a neuron’s internal state. We then evaluate p (t + At, w, ) using conditional
expectation at time ¢. Given that the incoming spike train follows a Poisson Distribution, the prob-
ability of a spike arriving within the time interval [¢, t + At) is A (t) A¢ [7]. This probabilistic
framework allows us to formulate the conditional expectation as follows

E[6(u—U(t+At)§(i—I(t+At)|U®), 1) (18)
_ 1 . 1 B i _1
= (1 A(t)At)tS( {U(t)ju( TmU(t)+TmI(t)) AtDzS( [I(t) TSI(t)Atjlz)
+)\(t)At5(uU(t))5<i [I(t)+:]> (20)

We perform first-order Taylor expansion the resetting state transition with regards to » and ¢ at point
U (t) and I (¢)

(o= [ (-Lvos Ziw)al) @

=0(u—U(t) + (% {6 (u—"U (t)) <T}nU(t) — :;I(t)) At} (22)

5 <z - [I () — Tif(t) AtD — Si—T(1)+ % {5 (i — I(t)) Tif(t) At} (23)

By using the fact on Dirac Delta function = 6 (z —a) = a ¢ (z — a), and omitting the terms with
O (A%t), we have

Ed(u—U@+A))0GE—-1(t+At)]| Ut),I(t)] (24)

=0(u—=U(#)d(—1(t) (25)

+(% {6(u—U(t))5(i—I(t)) (%-f’) At] (26)

-l-% [J(U—U(t))é(i—l(t)) :At] 27)

+ A(t) At |:5(U—U(t))(5(i— TE —I(t)) - 6(u—U(t))5(z’—I(t))} (28)

Taking the unconditional expectation on both sides yields the probability density function at various
states in discretised form with step size At

p(t+ At,u,i) = p(t,u,i) (29)
0 ~f(u Ri
0 N
+ % [p(t,u,z) TSAt} (31)
+ A (t) At <p (t,u,i — ;_U) —pl(t, u,i)) (32)

Diving At by both sides and taking the limit lima;,q which brings about %p (t,u,i) =
p(t+At,u,Z) — p(t,uy0)
t

0 L0 [ u Ri 0 N
e ] e | A T 63)

+ A1) (p (tuz - “’) —p(tu,i)) (34)

limag—s0



Diffusion Approximation [9] could be used to eliminate the delayed term and obtain the final Fokker-
Planck equation. We first perform second-order Taylor expansion on (34)

w 0 1 w? 92

A(t) <p (tuz - ;") —p(t,u,i)) = A() (—aip (t0,0)+ 5 5 5P (t,u,i)) (35)

S

Let p := p (¢, u,?) denote the probability density function of the system’s state. We derive the cor-
responding Fokker-Planck equation, which characterizes the temporal evolution of this probability
density. Through this analysis, we identify the drift coefficient A(¢)w and the diffusion coefficient

)‘(2’21”2 associated with the stochastic current variable I (¢) [3]. This formulation leads to the conclu-

sion that the membrane potential U (¢) and the synaptic current I (¢) jointly form a bivariate Markov
process [20]

TTH, 7’8
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3 Methods and Model Architecture

The architecture of our model builds upon the foundational BATS algorithm, incorporating two
significant enhancements:

1. The integration of a time-discretization feature facilitates the temporal modeling of spiking
neural networks.

2. The inherent constraints of the BATS algorithm are relaxed, allowing for more flexible and
biologically accurate depictions of neural dynamics.

3.1 Time Discretization and Forward Pass

Consider a neuron, denoted as (I, k), within a spiking neural network (SNN). The state of this neu-
ron comprises its membrane potential (voltage) and current, represented by the vector n(hF) =

[u(l*k) i(lvk)] T. Given a time step size of At and a time range [tpre, tpost), the number of steps to

tpust — tpre
At

be simulated is { J . Instead of continuously solving quadratic equations until numerical

errors accumulate or the solution falls outside the range [tpre, tpost), as the BATS algorithm does,
spike times are enumerated for each discrete time step in SNN. A spike is emitted when the neu-
ron’s membrane potential reaches a predefined threshold value. The Backward Euler Discretization
method is employed in the implementation, as it can be interpreted as a multi-layer Recurrent Neural
Network (RNN), a dynamic system that maps input sequences to output sequences, with current and
voltage serving as the two hidden layers. SNN can be interpreted as a specialization of RNN, where
the input and output sequences consist solely of binary values (0 and 1) . However, there are two
key distinctions that further differentiate SNN from RNN:

1. Parameter Complexity: SNN typically requires fewer trainable parameters compared to
RNN. In RNN, three types of parameters are trainable: how the input sequence affects the
hidden states, how the state transitions from the current timestamp to the next, and how
the hidden states generate the output sequence [23]. However, in SNN, only the influence
of incoming spiking trains on the hidden states needs to be trained. The state transition
is captured by the Leaky Integrate-and-Fire (LIF) ordinary differential equation (ODE),
and the output is generated based on the rule that the membrane potential surpasses the
threshold.

2. Temporal Dynamics: RNN typically models states in a time-discretized manner, or in cases
of extremely large step numbers, can be viewed as sampling from a learned ODE [5]. In
contrast, SNN represents a sampling of the original LIF dynamical system. This sampling
process inherently accounts for the effects of the chosen time step. Consequently, different
step sizes yield distinct representations of the original equation, each capturing the system’s
dynamics with varying fidelity (see Figure 1).
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Figure 1: Network Architecture

3.2 Backward Pass
3.2.1 Backpropagation Methods

Training Spiking Neural Network with Backpropagation rules suffer the non-differentiation of the
Dirac Delta function, which prevents the estimate of the gradient on how change of membrane poten-

tial affects the spikes: W. The common approach to tackle the problem is to use the surrogate
gradient [16], for instance, the SLAYER model claims the similarity between the derivative of spike
function and probability density function for firing the spike [22]. In this project, we adopt an event-
driven learning approach, propagating gradient information to previous layers through spike time.
We utilize a time-based gradient method to estimate how changes in spiking times affect the neuron’s
state . Specifically, let z:(¢;) be a state variable at time ¢; and ¢ be a spike time. The time-based

gradient method requires accurate estimations of ax(tl) and Bfff - This establishes the broader

impact chain, indicating how separate state Variables x (tl) and y (¢2) influence each other, denoted

as gzglg , and how the spike times influence each other, denoted as % In the BATS algorithm,

the closed-form solution for spike time can be explicitly calculated, renderlng the inclusion of state
variables in the chain rule unnecessary . Thus, only atl is needed to propagate errors. However,

after time discretization, the explicit solution for spike time is no longer calculable, necessitating the
estimation of how spike time affects different state variables.

The recurrence formula between error functions differs within each layer of neurons and between
different layers. For the current layer /, assume the errors on a (,) [tr] are already evaluated. Our

task is to evaluate the errors on current in the same layer -2 Bi(l> [tx] and the errors on voltage in the

previous layer % [tr]. The recurrent dynamics within a layer of a Spiking Neural Network can
be explicitly formulated using the Backpropagation Through Time (BPTT) algorithm [26]
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= 37
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The error backpropagation between different layers is nontrivial to compute. The term 3%1)7%

denotes the partial derivative of the current at time ¢,, in layer [ + 1 with respect to the membrane
potential at time ¢, in layer [. To maintain causality, it is imperative that ¢,,, > t;. This derivative can
be accurately estimated and computed using dynamic programming techniques [27], which account
for both inter-neuron and intra-neuron dependencies. Here, ¢; is defined as the immediate spike time
following ¢,

iV [t,,] 01U [t,,)] Aty N 010 [t oul=D[t] Oty
ouTDt] — 0ty ou@ D[] 0wl D[] Oty 0ul D [t]

(38)

Because changing u(!~Y [t;] would affect {i() [t,,,] }1: .- Therefore, we find the recurrence rela-

oL
9D [tn]

tion between L n and

9
a1t

Z oL 9 [t,) N oL oul=Y [ty + At] 39)
au(l 1) [tx] 010 [ty] Oul=D [t,]  Oul=D [ty + At]  Oul=D [t;]

There are two primary approaches to estimating the gradients with respect to weights ( ) Con-
tinuous Estimator yields data-dependent gradient estimates. The gradient values are 1nﬂuenced by
the specific input data and the continuous dynamics of the network. On the other hand, Discrete
Estimator produces fixed gradient estimates for a given discretization scheme

oL ouV .
oL _ ) 3.0 sud—to (continuous)
owl-1D L iV : (40)
w i dwl—1.0 (discrete)

4 Experimental Setup and Results

This section outlines our experimental setup and delineates the methodologies employed in our
investigation. We focus on two key experiments that significantly impact the accuracy and training
dynamics of our Spiking Neural Network model. First, we evaluate various optimization methods
to elucidate the properties of gradients in our SNN. Second, we conduct a comprehensive spectral
analysis of the output signals from each layer of the network. This examination reveals the frequency
domain characteristics of signal propagation through the SNN.

4.1 Dataset and Setup

The dataset employed for evaluating the algorithm is the MNIST handwritten digit dataset [13],
which includes 60,000 training samples and 10,000 testing samples. Each sample is a single-
channel image with dimensions of 28 x 28 pixels. The experimental setup utilizes a batch size of 50
samples to address space complexity, and the training process spans 4 epochs. This configuration
reveals that our algorithm is less competitive compared to ANN with an equivalent number of layers
and weights shape. To discretize the ODE, the simulation is performed over 50 time steps, again
due to space complexity constraints. Consequently, each test simulates the ODE over various time
ranges. The Poisson input spikes are generated using a rate encoding scheme, with the encoding
parameter determined by pixel intensity. Due to implementation time constraints, we exclusively
constructed Fully Connected Layers, forming all layers from previous to current ones, without in-
corporating a traditional ANN model as seen in [27]. Kaiming Initialization [11] was used for
parameter initialization in each layer, given that the ReLU component in ANNs shares similarities
and can be bidirectionally mapped with the IF neuron in SNN [14]. The shared hyper-parameters
are (T, 7s, B) = (0.8, 0.6, 1.2) and (Vthres, Vreset) = (1.5, 1). Hyperparameter optimization
was deliberately excluded from the scope of this study. The results are shown in figure 4
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Figure 2: Accuracy and Losses for different step sizes

4.2 Practical Issues: Gradient and Optimization

Due to the similarity between SNN and RNN, analogous difficulties in training RNN has emerged
when training SNN, primarily concerning the issues of exploding and vanishing gradients [23, 19].

In SNN, gradient explosion is caused by the term (d—“) _1, which tends towards infinity when both

dt
. L 10!
voltage and current approach zero. This phenomenon further affects the estimation of o0 tnl
oull 1)[tk]

impacting the derivative with respect to state variables in earlier timestamps and deeper layers from
the output layer, by inducing greater outliers in the gradient density. This issue can be mitigated
through gradient clipping [19], a technique also employed in the original implementation [27]: we
clamp the intermediate gradient absolute value to 1 x 10%.

Layer 0 Weight Gradient

Heatmap of Gradiet o syer 0

(b) Step size 0.01

Layer 1 Weight Gradient

(d) Step size 0.001 (e) Step size 0.01 (f) Step size 0.1

Figure 3: Weight Gradients of the Initial Backpropagation



The Adam (Adaptive Moment Estimation) optimizer [12] is employed for training the neural net-
work, leveraging a combination of first-order gradient-based optimization and second-moment es-
timation. Moment methods accelerate convergence by utilizing an autoregressive approach, which
combines the accumulated velocity direction with the current calculated gradient direction to up-
date parameters [25]. Motivated by research suggesting that second-order (curvature) information
may enhance RNN training [15], we explored the use of the Limited-memory Broyden-Fletcher-
Goldfarb-Shanno (L-BFGS) algorithm as an alternative optimizer. However, this approach exhibited
unstable behavior, manifesting undefined outcomes even when repeatedly fitting a single batch.

Losses and Accuracies on Using L-BFGS Algorithm

losses. accuracies

+ losses r e « accuracies
16000 -

14000

12000

F15.0
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Losses
e
5]
n
Number of Correct Predictions

F10.0

6000 1

2000 4 B i W\ peeeereeverrrverrerrerrereeerireerervees

2000 1 T /

Iterations

Figure 4: Accuracy and Loss Trajectories Using the L-BFGS Optimizer. The plot shows the evo-
lution of accuracy and loss over training iterations. Note that iterations differ from epochs; the
L-BFGS algorithm requires multiple iterations per epoch to approximate Hessian matrix and update
parameters.

4.3 Spectral Analysis of Hidden Layer

We apply Wavelet transformation to the batch-averaged voltage signals of the hidden layer to con-
duct spectral analysis. This technique enables the decomposition of the signal into distinct frequency
components while preserving temporal information. The abscissa represents individual neuron in-
dices, while the ordinate depicts voltage values averaged across a single batch.

10
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(b) Step size 0.01 (c) Step size 0.5

Detailed Coefficients

(d) Step size 0.001 (e) Step size 0.01 (f) Step size 0.5
Figure 5: Spectral Analysis of the Hidden Layer Current Output

5 Discussion

The network architecture we have designed, based on the BATS model but incorporating RNN
principles to account for time discretization, presents several notable limitations:

1. Inter-layer error backpropagation exhibits a non-monotonic relationship with respect to

it e] _ 9iTV[t,]
Du ] < D] for t,, < tn,

temporal proximity. Specifically, it does not hold that

. ® -1 o .
due to the influence of the term (&‘T[t"]) . The implications of this property are am-

biguous: while intuitively a temporally proximate spike change should have a greater im-
pact on the current, this characteristic may mitigate the vanishing gradient problem com-
monly observed in RNN as training progresses through time [24]. In the original imple-
mentation, with only 5 simulated steps, it may be feasible to implement a temporal cutoff,
A 129
setting 9aD ]
2. The algorithm exhibits substantial memory complexity: O(BT?N?), where T' denotes the
number of time steps and N represents the number of neurons. This constrains the model’s
applicability to scenarios requiring extensive temporal simulation or involving consecutive
layers with high neuronal density.

= 0 when ¢, — t,,, exceeds a predetermined threshold.

Based on our experimental observations, we can draw the following conclusions:

1. Time step size significantly influences the training process of Spiking Neural Networks.
Smaller step sizes generally yield superior training and testing accuracies, particularly in
the early stages of training where they facilitate rapid loss reduction across batches. How-
ever, this relationship is not monotonic, as other factors come into play when the step size
becomes excessively small: 1) When the step size is very small, only a narrow range of
the original ordinary differential equation is simulated, potentially discarding broader dy-
namical behaviors crucial to the network’s function. 2) As the temporal discretization step
size approaches zero, numerical issues become increasingly pronounced in the simulation
of Spiking Neural Networks. A key manifestation of this phenomenon is observed in the

behavior of the partial derivative lima—,¢ %ﬂ]&] = 1.
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2. The SNN presents significant challenges compared to traditional RNN. Two key issues
stand out: 1) The exploding gradient phenomenon, which becomes more pronounced with
increased time step sizes. This issue can lead to unstable training and poor convergence.
2) The potential for second-order information to provide misleading optimization direc-
tions. This problem is partly exacerbated by the exploding gradients issue, as large gradi-
ent values can distort the curvature information used in second-order optimization methods.
Momentum-based autoregression techniques, such as those employed in adaptive optimiza-
tion algorithms like Adam [12], may offer a partial solution to these challenges. These
methods implicitly penalize large variances in gradients across different training iterations.

3. Spectral analysis of voltage signals reveals a significant correlation between discretization
step size and the magnitude of frequency components. Smaller step sizes result in higher
magnitudes of high-frequency components in the voltage signals, while larger step sizes
lead to increased magnitudes in low-frequency components. This empirical observation
aligns with theoretical predictions that increasing the step size attenuates amplitudes in the
high-frequency region of the discrete signal spectrum. The findings suggest that temporal
discretization granularity directly influences the spectral characteristics of signals propa-
gating through the network. However, the relationship between the frequency composition
of signals generated in the hidden layers of the network and overall model performance
(such as accuracy) or other behaviors remains understudied in the machine learning com-
munity. This knowledge gap presents a challenge in directly relating our spectral analysis
results to the broader conclusions about network performance and behavior.

4. The comparative behavior between the Discrete Time Markov process (U [tx], I [tx]) and
its theoretical continuous-time counterpart remains unexplored in this study due to time
constraints.

6 Conclusions and Future Work

This study presents a theoretical and empirical analysis of the impact of time discretization on Spik-
ing Neural Network accuracy. Our investigation encompasses multiple perspectives, revealing that
the choice of time step size significantly influences various aspects of model training and, conse-
quently, model accuracy. Key factors affected include signal propagation dynamics and numerical
precision of computations. The following items outline directions for future research

1. Enhancement of the network architecture and its evaluation on a broader range of datasets
to establish robust performance benchmarks. Our current model has been tested exclusively
on the MNIST dataset, and its performance does not yet rival that of traditional Artificial
Neural Networks.

2. Optimization of computational efficiency, addressing both time and memory complexity.
The current quadratic scaling with respect to time steps and neuron count imposes signifi-
cant constraints on the implementation of popular network architectures. For instance, even
for the relatively small-scale MNIST dataset, training requires approximately 2 hours per
epoch, rendering more extensive tasks computationally prohibitive.

3. Development of advanced analytical tools for characterizing the statistical properties of
generated signals: While our current study employs spectral analysis, there remains a vast
array of unexplored statistical features, particularly those related to the properties discussed
in Section 2.4. These warrant further investigation to deepen our understanding of Spiking
Neural Network dynamics. However, due to time constraints and the limited number of
discrete timestamps available, we have not yet devised a methodology to measure these
statistics comprehensively in both continuous and discrete settings.

12



7 Responsible Research

The responsible research aspects of our study are manifested in the following three dimensions:

1. Ethical Considerations: Our research primarily involves mathematical derivations, network
implementation, and experimental procedures. As such, it does not directly implicate sig-
nificant ethical concerns typically associated with human or animal subjects, data privacy,
or environmental impact. Nevertheless, we remain cognizant of the broader ethical impli-
cations of advancing Al technologies and their potential societal impacts.

2. Methodological Rigor and Reproducibility: We have taken substantial measures to ensure
the correctness and verifiability of our work:

* Formula Derivation: Key steps in our mathematical derivations are explicitly delin-
eated in the paper, facilitating independent verification by the examiners.

* Code Implementation: Due to the performance requirements necessitating the use of
PyTorch’s parallel execution capabilities, much of our production code is vectorized.
This approach, while efficient, deviates from conventional programming paradigms
and may obscure readability. To mitigate potential implementation errors and en-
hance reproducibility, we have developed parallel serial implementations of critical
components. These serve as a basis for random testing against the vectorized code,
substantially reducing the likelihood of implementation errors in the original, opti-
mized codebase.

3. Natural Language Processing (NLP) models, specifically those based on the Generative
Pre-trained Transformer (GPT) architecture, are primarily utilized to enhance the grammat-
ical accuracy and linguistic authenticity of academic papers. The core ideas and substantive
content are conceived and composed entirely by the author without reliance on artificial in-
telligence systems. However, Al-powered tools may occasionally be consulted to verify
specific technical details, ensuring precision in the presentation of complex concepts.
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