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A dynamic utility cycling model for energy and time
expenditure of a population of cyclists

S.S. Soethout

Abstract
In this research a dynamic time and energy model
is constructed to simulate free flow utility cycling.
Using a Monte Carlo simulation and distributions of
rider and bicycle characteristics a population of cy-
clists is modelled to find the difference in time and en-
ergy expenditure on six different bicycle routes. The
riders use realistic like power inputs and braking be-
haviour based on the rider and the route characteris-
tics. While travel times are almost always lower for
all cyclists when comparing routes, there are cyclists
for who a shorter route distance does not equal a
lower energy expenditure. For simpler routes (less el-
evation difference, traffic lights and shorter distance)
the standard deviation of both time and energy de-
creases, showing that slow cyclist have a relative
higher gain. For e-bike users there is even almost
no difference in energy expenditure between the six
evaluated routes that have varying elevation, traffic
signals and routing, while travel times show a similar
trend as for regular bicycles. With this model differ-
ence in routes can be quantified in matters of time
and energy expenditure for a population of cyclists
giving an objective picture of the differences between
routes, which can be a useful tool for city planning
and evaluation of bicycle infrastructure.
Keywords: Bicycle, Energy, Time, Model

1 Introduction
Bicycle highways are bicycle infrastructure in Eu-
rope that connect cities and suburbs to make cy-
cling a more attractive type of transport for com-
muters. There are multiple factors for cyclist that

decide whether a person decides to use the bicycle
as transport mode for utility purposes, or to use an-
other mode of transport. The most important factor
in this decision is the travel time [1], [2], which bicy-
cle highways aim to reduce and therefore increase the
amount people choosing cycling as mode of transport.
However, the travel time of cyclists is depending on
both the infrastructure and cyclists themselves. The
speed, and therefore travel time, depend on the power
the cyclists delivers combined with the resistances
acting on the cyclists. Therefore the travel time can-
not be seen a standalone quantification of the pref-
erence rate of a bicycle route. In cycling there is
a trade-off between travel time and energy expendi-
ture [3]. The energy the rider uses is equivalent to
a measure of effort, higher efforts will make cycling
less attractive as a mode of transport [2]. It is there-
fore important to quantify both the travel time and
energy expenditure of cyclist. For that reason this
research has as goal to develop a dynamic bicycle en-
ergy and time model to be able to compare different
bicycle routes and have the ability to quantify the
differences between routes. This way a comparison
between planned alternatives can be made to choose
the best route for cyclists, or as demonstrated in this
research, a new planned route can be compared to
the existing routes to find out if it is better. And if
it is better, how much better in being attractive to
cyclists in matter of time and energy expenditure.

The focus of the model is not on an individual cy-
clist, but rather on a population of bicycle users.
This way the characteristics of different kind of bi-
cycles and people can be taken into account and give
a more complete view of the time and energy cost
of the people who will actually ride on the bicycle
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routes. These different type of bicycle users include
a spectrum of young adults to elderly users who can
use the bicycle as a way of transport for different pur-
poses, such as work, hobbies, shops or other utilities.
This population of cyclists is made up of a single free
flow cyclist at the time, meaning that each simulation
is of a single cyclist with no interaction with other
road users and for each cyclist a new simulation is
done. A Monte Carlo simulation is then executed to
get simulations with different inputs drawn from in-
put distributions, from each input distribution of an
input parameter a value is drawn to make a combina-
tion of a cyclist and a bicycle that will be simulated.
For every new simulation new parameter values are
drawn to have new cyclist and bicycle characteris-
tics. To summarize, the research goal is to make a
model that can be used to evaluate planned and ex-
isting routes for time and energy expenditure based
on a population of free flow cyclists. To show the
working and possibilities of the model a case study
is performed on six bicycle routes in the city of Den
Haag where a new bicycle highway is planned.

2 Methodology
The core of the model is an integration over time to
solve the initial value problem of Newton’s 2nd law,
it solves for speed and distance over time. The cy-
clist and the bike are represented together as a single
point mass model, therefore all inner forces in the
system of bicycle and rider are disregarded and only
the external forces acting on the body are present.
These forces consist of the propulsion force of the
rider, which will propel the bike, and resistances con-
sisting of air drag, rolling resistance, gravitational
force and internal losses in the drivetrain. E-bikes are
growing in numbers in the Netherlands and are espe-
cially used for medium distances such as commuting
trips [4]. Therefore it is important to include electri-
cal bikes in the model. E-bikes are defined as bicy-
cles with electrical assistance that only provide power
when the rider is pedalling, moreover the maximum
power delivered is 250 W as per European legisla-
tion. No fully motorized or bicycles with a throttle
will be included in this research. A list of all symbols

used that are used in the rest of this paper is given
in Table 1.

2.1 Power and speed choice of cyclists
2.1.1 Comfort speed

The propulsion force of the bicycle rider system is
provided by the cyclist. However, in comparison
to the racing cyclist models, utility cyclists do not
use full power [5], [6]. They use only a portion of
their maximum power to reduce fatigue and to avoid
sweating too much [3]. The power, and therefore
speed, can vary greatly between different people, be-
cause there are differences in the amount of power a
person is willing to give. This human provided power
can increase when terrain changes, people might want
to use more power when climbing a hill than on a flat
road for example. The baseline power produced by
the rider in the model is taken as the critical power
(Pc). This is the power that, without fatigue, a hu-
man could exert indefinitely due to it being purely
aerobic. As described before, utility cyclist do not
use their full power. Therefore this critical power
is multiplied by a percentage pcthuman to simulate
sub critical power levels in the range that represents
power outputs for low effort and low fatigue where
conversations are still possible [6]. Fatigue is ex-
cluded in the model, because the routes are relatively
short distance and fatigue will most likely not play
a large roll on short distances, especially when not
using full power. This base power is used to calcu-
late the comfort speed and represents the power the
cyclist prefers to ride with at all times.

Fr = crmtotgsin(α) (1a)

Fd =
1

2
Acdρav

2 (1b)

Pp = Pcppηd (1c)
Pp − (Fr + Fd)v = 0 (1d)

In Figure 1 an overview of the forces acting on a
system of bicycle and rider is given, where Fr is the
rolling resistance, Fd the air resistance as defined in
Equation 1, Fp the propulsion force, Fg the gravi-
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Symbol Description
Fr Rolling resistance force (N)
cr Rolling resistance coefficient (-)
mtot Mass of rider and bicycle (kg)
g Gravitational constant (m/s2)
α Slope (degrees)
Fd Air resistance force (N)
A Frontal are (m2)
cd Drag force coefficient (-)
ρ Air density (kg/m3)
v Speed [m/s]
Pp Propulsion power (N)
Pc Critical power (W)
pp Percentage of critical power taken (-)
ηd Drivetrain efficiency (-)
db Braking distance (m)
vf Final speed (m/s)
Fb Braking force (N)
ab Braking deceleration (m/s2)
Fg Resistance force due to gravity (N)
ϕmax Maximum desired lean angle while coasting (degrees)
rc Radius of curvature (m)
ϕpedalling Maximum desired lean angle while pedalling (degrees)
vd Desired speed (m/s)
vi Initial speed (m/s)
θs Ratio of current speed over desired and initial speed (-)
acyclist Acceleration of the cyclist (m/s2)
am Maximum acceleration (m/s2)
vc Comfort speed (m/s)
ϵ Uniform noise parameter (-)
Pr Recovery power (W)
Prider Power provided by the cyclist (W)
Frider Force provided by the cyclist (N)
Frequired Total force require for desired acceleration (N)
Pw Walking power (W)
mrider Mass of the rider (kg)
Pmet Metabolic equivalent power per kg bodyweight (W/kg)
mbike Mass of the bicycle (kg)
δh Elevation difference (m)
tahead Look ahead time (s)

Table 1: List of used symbols and units
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tational force, α the angle of the slope and Fn the
normal force.

Figure 1: The forces acting on a bicycle and rider
system on a slope

The propulsion power (Pp) in Equation 1 is defined
by the critical power Pc, the human power percent-
age Ppct and the efficiency of the drivetrain ηd. The
comfort speed is calculated by determining the speed
the rider would reach on a flat straight road using
his base power by solving Equation 1 for the speed v,
where cr is the rolling resistance coefficient, mtot the
combined mass of the rider and bicycle, Acd the com-
bination of frontal area and air resistance coefficient
and ρ the density of the air.

For e-bike users the comfort speed is calculated in
the same way, thus without taking the power deliv-
ered by the e-bike motor into account. To compen-
sate for the extra power the comfort speed is mul-
tiplied by 1.16, the average speed e-bike riders go
faster than regular bicycle users in urban areas [7].
This driver power model makes the assumption that
the rider is in optimal gear at all times, meaning that
the gear is assumed to be at a optimal cadence to pro-
duce optimal power. The rider can therefore always
deliver optimal power as gear changes are not part of
this model.

The comfort speed is however not the speed the
rider is always aiming for, the actual desired speed
depends on the type of infrastructure the cyclist is
riding on [8]–[12]. Four types of bicycle infrastructure
are categorised: bicycle lanes, bicycle paths, shared
roads and bicycle streets. Lanes are separated from
car traffic by a (dashed) line, paths are completely
separated from car traffic in a way that the bicy-
cle path and car road will not have a common edge.
Roads are defined as shared roads where both cars

and bicycles can ride, usually found in residential ar-
eas. Lastly, bicycle streets are also shared with cars,
the difference being that the cyclists have priority
and cars have to ride at a slow pace. Because the
highest speeds are attained on bicycle lanes [12], this
infrastructure type is chosen as the standard where
the comfort speed is calculated on, due to the comfort
speed representing an unobstructed cyclist. For the
other three infrastructure types a speed reduction is
applied to the cyclist on top of his comfort speed, the
reductions can be found in Table 2. From all found
studies on bicycle speeds on infrastructure, only one
was conducted in the Netherlands, it is assumed this
study will give the most accurate values for Dutch
cycling infrastructure.

Type Speed reduction
[m/s]

Lane -
Path 0.463
Road 0.842
Street 0.049

Table 2: Bicycle infrastructure and speed reductions

2.1.2 Braking

Another reason besides infrastructure type for the de-
sired speed to be lower is due to curves in the road,
traffic lights or necessity to slow down to give way.
These route characteristics can require the driver to
stop pedalling or even brake when necessary. At the
location of give way points a reduction in speed is
used to make the cyclist slow down without stop-
ping. The cyclists will want to reach a slower speed
to overlook the traffic situation before starting to ac-
celerate again. For traffic lights the desired speed is
not set to zero, although the cyclists will come to a
complete stop. This is because cyclist do not slow
down to 0 km/h at traffic lights, but rather step off
their bike while still carrying speed [13]. To include
this behaviour in the model, the final speed a cyclist
reaches at traffic lights by braking is set as a stop
speed above zero with varying possible values per in-
dividual. No stop signs are present on the evaluated
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routes, but they will lead to the same braking be-
haviour as traffic lights with the exception of a time
the rider has to wait before starting to cycle again.
In the model three types of braking are used: braking
for stops, braking for curves, and braking when the
speed exceeds the safety speed of the rider.

When braking for stops is required the initial and
final speed are known. When cyclist brake for stops
they use a constant deceleration, rather than a con-
stant braking force [14]. From a predefined constant
deceleration ab and the current and requested final
speed (v & vf ), the distance to the point ahead where
a lower speed is desired can be calculated. This point
ahead is the point at which the rider has to start
braking (db), it is used to make the cyclist reach the
desired speed at the point of interest, see Equation 2.

db = (v2f − v2)/2ab (2)

With a desired constant deceleration the required
braking force can be calculated if all external forces
are zero. However, the external forces are not zero
and the braking force has to be adapted to compen-
sate for this by subtracting all the external forces
from the braking force calculation. These external
forces are later added to the total force acting on the
points mass to calculate the acceleration. This way
the drag, rolling resistance and gravitational force
have no impact on the deceleration and a constant
deceleration is achieved. This is given in Equation 3,
where Fb is the braking force and ab the constant
braking deceleration.

Fb = ab ∗mtot − (Fd + Fg + Fr) (3)

For curves the braking behaviour is different, be-
cause curves are not a single point on the route, but
a continuous obstacle the rider has to adapt to. Dur-
ing the ride the cyclist looks ahead a certain time to
scout what lies ahead, this is a time rather than a dis-
tance to be applicable and salable to all speeds. The
faster a cyclist goes through a curve, the more they
have to lean into the curve to remain stable. This
leaning in lateral direction relative to the direction
of travel is defined by the lean angle. For all route
points that would be reached in the look ahead time

based on the current speed, the maximum of the cur-
vatures ahead (rc) and current speed (v) are used to
calculate the lean angles that would be reached in the
points ahead. This is done by Equation 4, which gives
the relation between a constant speed and constant
lean angle in a curve [15].

ϕmax = arctan(v2/(grc)) (4)

The lean angles ahead are compared to the maxi-
mum lean angle the rider wishes to achieve while ped-
alling (ϕpedalling) and the maximum while coasting
(ϕmax), to detect when braking and coasting are re-
quired respectively. As soon as the lean angle ahead
is above ϕpedalling, the driver will start to coast, and
when it reached above ϕmax they will start to brake.
The look ahead time and braking and coasting be-
haviour is modelled they way Nee and Herterich de-
scribed, by having a coasting phase between the ped-
alling and braking phase [16]. The amount of braking
force necessary is determined by the speed the rider
wants to have in the curve (vd which is calculated by
Equation 5), the distance to the curve (dc), the to-
tal mass of the rider and bicycle system (mtot) and
the speed at which the driver starts to brake (vi), see
Equation 6. This braking force leads to the driver
reaching the required speed with a constant decel-
eration exactly at the point of curvature where the
lean angle would be exceeded. In case the driver is
already braking for a curve and sees a point ahead
in time that would require him to break harder, for
example when the curvature increases but braking
is already needed before the maximum curvature is
in sight, the required braking force is recalculated to
make sure the maximum lean angle is never exceeded.
An example of the braking force plotted over time to-
gether with the curvature is given in Appendix A.

vd =
√
tan(ϕpedalling)gc (5)

Fbraking = (v2d − v2i )/(2dc)mtot (6)

The last type of braking behaviour is when the
cyclist is going downhill without pedalling and the
speed gets too high, exceeding the safety feeling of
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the cyclist. When this maximum safety speed is ex-
ceeded the rider will brake to maintain the safety
speed and to stop accelerating any further. In this
case the required braking force is the sum of the
other resistance forces: drag, rolling resistance and
gravitational force. The downhill safety speed is es-
timated from previously used valued in literature to
be 1.5 times the comfort speed [17], [18], above this
the driver will start braking.

2.1.3 Acceleration

To reach the desired speed the cyclist will have to ac-
celerate by providing more power than all resistances
combined. Contrary to deceleration, the acceleration
of a cyclist is not constant. The best representation
of the natural acceleration of cyclists in a function
is a two term sinusoidal function based on speed ra-
tio [14] given in Equation 7, where θs is the ratio of
speed over initial and final speed, v the current speed,
vi the initial speed and vd the desired speed. The si-
nusoidal function is then made from the maximum
acceleration (am) and constants (C,B, c, a = −1

1+c ),
see Equation 8.

θs =
v − vi
vd − vi

(7)

acyclist = Cam(sin(πθs)+Bsin(2πθs))+

(
a+

1

θ2s + c

)
(8)

The maximum acceleration is estimated based on
the comfort speed of the cyclist with Equation 9 [19],
where vc is the comfort speed. Because the linear
relationship in the logarithmic space found by Ma
and Luo only has an R2 of 0.64 a layer of uniform
noise in the range of [-0.5,0.5] ϵ is added to better
capture the true spread in values.

log(am) = 0.8248log(vc)− 1.3263 (9a)
am = e(aln)+ϵ (9b)

For every combination of speed and desired speed
the acceleration can be calculated and therefore the
required power to be delivered by the rider to achieve

that acceleration. A required power below the criti-
cal power can be maintained for many hours, there-
fore there are no limits on the power usage in that
range in the model. When the required power is
above Pc the rider will have to use anaerobic power,
which is of limited supply. Anaerobic power is mod-
elled as a energy storage that can either be drained
to use extra power or refilled to regain energy over
time. The maximum anaerobic force that the rider
can provide is a constant percentage of the amount
of energy that is left of the anaerobic work capac-
ity (AWC). To simulate the rider never using full
power, the same as with Pc, a percentage is taken of
the anaerobic power to reduce the maximum avail-
able power. When the provided power by the cyclist
is below Pc, the AWC will regenerate, although at
a different rate than it is drained at. Equation 10
shows the recovery power (Pr) of the AWC, based
on the provided power by the cyclist (Prider) and Pc

based on experimental data [20].

Pr = 0.08Prider + 0.88Pc (10)

2.2 E-bike power
When an e-bike is used, a part of the required power
is delivered by the electric motor. In e-bikes there
are two different kinds of motor control used in
the Netherlands, cadence controlled and torque con-
trolled. The first one only detects whether the cy-
clists is pedalling and provides a constant power
based on the set assistance level, which is a percent-
age of the maximum motor power. In torque con-
trolled e-bikes the motor measures the torque and
cadence and therefore the power delivered by the cy-
clist to provide a percentage of that power. In both
cases the motor assistance forces are only present at
speeds up to 25 km/h due to European legislation,
and have a maximummotor power of 250W. It is pos-
sible that the power provided by cadence controlled
e-bikes is already high enough to reach the required
power, which leads to the rider not having to pedal
and the motor not providing power as a consequence.
To get out of this cycle the assistance level is lowered
until at least a portion of the required power can
be provided by the rider. Every time step the assis-
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tance level is reset to the original value and lowered
if needed to have the original assistance level active
when possible.

For torque controlled e-bike motors the required
force can be exactly split into a motor and a human
part without altering the assistance level. The human
part is given in Equation 11, where λ is the assistance
level.

Frider =
Frequired

1 + λ
(11)

2.3 Walking
On the route with a tunnel, the rider has to walk
down stairs into the tunnel an walk back up the stairs
to exit while guiding their bicycle. To include the
energy usage of walking the stairs a metabolic equiv-
alent is used, one for walking up and another for
walking down. Both walking upstairs and downstairs
require different amounts of energy. The energy us-
age is calculated based on the mass of the rider to
account for the required energy to overcome the po-
tential energy when walking upstairs. An average of
multiple sources for metabolic equivalent is used with
a value of 3.50 for downstairs and 8.73 for upstairs
walking [21]–[23] with constant speed of 0.835 and
0.745 m/s [24] respectively. The metabolic equivalent
describes the energy required to do a task per hour
and dependent on the mass of the human. When
walking upstairs the weight of the bicycle is included
in the form of the difference in potential energy of
the elevation difference, when going downstairs the
impact of the bicycle is neglected. This results in
the formula for walking power given in Equation 12,
where Pw is the walking power in Watts, Pmet the
metabolic equivalent of task for either up or down,
d is the direction of travel; 1 for up and 0 for down,
and δh is the elevation difference in that time step.

Pw = 1.162mrider0.2Pmet + dmbikegδh (12)

A factor of 0.2 is taken as the human efficiency to
make the energy used for walking equivalent to the
energy that the human puts out instead of the energy

representing the calories burnt, this is to make it the
same as for the cycling part of the model.

3 Input data
3.1 Route data
The data for the routes is collected from different
sources for different attributes of the route. There
are also differences between data collection of the ex-
isting routes and the new bicycle highway route that
is yet to be built. For the existing routes the latitude
and longitude of route points are taken from Graph-
hopper [25], an online open source route planner. For
the highway no route planner is possible, the route
is modelled with the help of provided design drawing
from the municipality of Den Haag. The elevation
data from Graphhopper is not used, because eleva-
tion data from GNSS can be very inaccurate [5] and
small differences in elevation can lead to large off-
sets in speed and therefore time. Because of this, a
more accurate elevation data source is used in the
form of LIDAR data. For the Netherlands there is
open data available with classification [26]. This data
is processed and smoothed, see Appendix B for the
full explanation of the elevation data processing. An
example of the elevation smoothed result is shown
in Figure 2. The blue line shows the elevation ob-
tained from the LIDAR data and the red line the fit-
ted spline after filtering out overhead roads and other
obstacles.

The coordinates in the horizontal plane are inter-
polated with a point every 10 m to increase the point
density, as straights returned by route planners con-
tain no intermediate points. Next, with the function
splprep from the Python Scipy.interpolate package a
B-spline is drawn through the points to get a smooth
path with smooth curves, no smoothing factor is used
in the spline to make sure the line goes through all
points and the route does not diverge. Lastly the
spline is interpolated to get a data point ever 0.1 m
of the route, for each point the elevation is found
with the LIDAR elevation map. To prevent sudden
jumps in the elevation data, the data is smoothed
by fitting a spline through the elevation data points.
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Variable µ σ Min Max Unit Type Source
mbike 16.0 2.439 7.8 22.0 kg field data [27]
cr 0.0077 0.0036 0.0012 0.0189 - field data [3]
cdA 0.559 0.170 0.209 1.128 m2 field data [3]
pp 0.655 0.0317 0.560 0.750 - estimation from theoretical data [6]
ab 1.5 0.15 1 2 m/s2 estimation from design guideline [27]
ϕmax 12.5 2.5 5 20 degrees educated guess [27], [28]
tahead 2 0.3 1 3 s estimation from simulation data [16]
ηd - - 0.86 0.97 - experimental data [29], [30]
Mass e-bike - - 6 8 kg manufacturers data [31]

Table 3: Input data distributions for rider and bicycle characteristics
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Figure 2: Elevation data obtained from the LIDAR
height map and the fitted spline that filters the fly-
overs, tunnels and other obstacles.

Then for each data point a curvature is calculated
based on the point itself and the 30 nearest points,
15 in front and 15 behind, to take the curvature over
a total length of 3 m. Some points are close together
in curves due to the route following the bicycle lanes
and roads in a strict way. In reality cyclist will take
wider turns making use of the available space. In
combination with the fact the the interpolated route
points make curves less smooth than the original line,
because points are taken every 0.1 m, the extra cur-
vature smoothing is applied to smooth out unrealistic
sharp turns between data points that are very close

together.

For the location of traffic lights online sources are
available, but those are incomplete for bicycle routes.
The locations of traffic lights are therefore based on
Google Maps [32] satellite and street view images and
later checked by physically riding the route. Loca-
tions where cyclists have to give way are determined
in the same way. Give way points are modelled as
a point where the rider has to slow down to look for
crossing traffic, while coming to a complete stop is
assumed to be unnecessary in most cases. For each
point a random percentage (0-100%) of the cyclists
comfort speed is taken that the cyclist has to slow
down to. This way the cyclist reduces speed based
on their comfort speed, so fast riders slow down to a
relative higher speed than slower cyclists. In the case
of traffic lights, real life data is made available by the
municipality of Den Haag from which distributions of
waiting times and green times can be calculated. This
data is displayed in Appendix B. Only data from day-
time is used, because both the wait time and green
time are very different during night times due to the
reduced amount of traffic. Utility cyclists are most
active during day time, as traversing to work and
shops is done then. Modelling the traffic lights and
give way points with green light and slow down speed
probabilities results in every cyclist having different
behaviour around traffic lights and give way points.
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3.2 Rider data

For the data about the cyclists, multiple sources and
approaches are used. Most used parameters are as-
sumed to be normal distributions with given mean
and standard deviation, along with a maximum and
minimum value to cut of the distribution at both ends
to keep the data within realistic bounds. The excep-
tions are the variables where no normal distribution
is found in literature and a uniform distribution is
assumed between a minimum and maximum. In Ta-
ble 3 the mean, standard deviation and bounds of
each input variable are shown. The bike mass, rolling
resistance, air resistance and drivetrain efficiency pa-
rameter values are based on measurement taken in
other bicycle studies for utility cyclists. The hu-
man power percentage is estimated from training lev-
els that represent low effort training, a limit around
this range is taken. The braking deceleration is the
value reported by the Dutch standards [27] for normal
braking behaviour of utility cyclists, an estimation is
made on the range of values. The maximum desired
lean angle value is an estimation based on reported
maximum speed per curve radius in the dutch design
standards [27] and reported maximum wanted lean
angle for regular cyclists [28]. The maximum lean
angle while pedalling (ϕpedalling) is taken as 70% of
ϕmax as no data source was found in literature that
describes the lean angle at which a cyclists stops ped-
alling. The look ahead time is estimated from a cy-
cling model [16] that implements look ahead time to
make the rider slow down before hitting the curve.
The range of values are similar to those of people
walking on natural terrain [33] giving the idea that
people look ahead the same time in both transport
modes. The e-bike mass is the extra mass of an e-bike
compared to regular bicycles, based on manufactures
data.

The values for Pc and AWC are based on the sex of
the cyclists, to implement this two different distribu-
tions are used, see Table 4. For the AWC values the
bounds are set based on the maximum and minimum
reported data [34], while for the mass and Pc param-
eters the bounds are set as: µ ± 2σ to stay within
realistic values and get close to the reported bounds
on Pc. The bounds on the age are set to represent

adults for which weight data is available.

Variable Sex Mean Std Min Max Unit

Pc
Male 204.77 37.76 129.25 280.29 WFemale 152.25 23.58 105.09 199.41

AWC Male 16150 5460 4880 25550 JFemale 8340 2200 3250 12680

mrider
Male 84.80 19.53 45.35 123.45 kgFemale 72.50 19.53 33.45 111.55

Age Male 49.91 18.15 20 80 yearsFemale 51.22 18.82 20 80

Table 4: Input data sex dependent

When taking values from the input distributions
to make a combination of cyclist and bicycle, cor-
relations between parameters can be used to draw
samples that represent more realistic combinations.
For example, a cyclist with a high Pc and a very low
weight will be unlikely as the low weight will indicate
a lower muscle mass. To get more realistic combina-
tions correlations where looked up in literature about
utility cyclists. When no correlation is found the pa-
rameters are assumed independent, this is the case
for most model parameters.

For four parameters correlations are found in liter-
ature: Pc, mass of the rider, age of the rider and the
AWC [3], [35]–[38]. The correlation matrix is given
in Table 5, which has a negative eigenvalues of -0.31
showing the matrix is not positive (semi-) definite
which is a requirement for the matrix to be usable as
a correlation matrix since a correlation matrix is pos-
itive (semi-) definite by definition [39]. This problem
is solved by finding the closest matrix that is posi-
tive (semi-) definite [39], this will change the corre-
lations without changing the standard deviations of
the variables. The real standard deviations are then
used to create a usable covariance matrix. All four
of these correlated parameters are also dependent on
the sex of the cyclist, which is either male or female.
When the sex of the rider is determined the mean
and standard deviation of the age of the cyclist is set
based on the population data of the Netherlands [40]
with a lower limit of 20 and upper limit of 80 years.
In similar way the mass distributions are made, with
bounds defined as the mean plus and minus two times
the standard deviation [41]. Lastly the AWC values
are also set based on the sex, followed by the Pc. For
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CP AWC Age Mass rider
CP 1 -0.546 0.377 0.745
AWC -0.546 1 -0.477 0.645
Age 0.377 -0.477 1 0.15
Mass rider 0.745 0.645 0.15 1

Table 5: Correlation matrix

both male and females a different distribution of age,
mass, AWC and Pc is used that results in two differ-
ent covariance matrices build from the same correla-
tion matrix. With all means and standard deviations
defined a correlated sample can be drawn.

The third category of input variables are those
linked to the e-bike, based on Dutch demographic
data [4] the share of owning an e-bike per age are
used to randomly assign an e-bike to the simulated
cyclist. In addition, the type of e-bike is randomly
picked between torque and cadence controlled with
equal weight. Lastly, the assistance level is chosen at
random, for torque controlled this is between 0 and
2.5 and for cadence controlled between 0 and 1, with
increments of 0.5 and 0.2 respectively.

4 Case study
4.1 Route descriptions
A case study in the Dutch city of Den Haag is used
to show the utility of the model. In Den Haag a
new part of a bicycle highway is planned for con-
struction between the train stations Holland Spoor
(A) and Laan van Noi (B). Six routes are evaluated
and compared, the first one is the fastest current cy-
cling route between the two stations, which will be
referred to as flyover due to the route making use of
a flyover to the north to cross the train track per-
pendicular to the route. The flyover makes the cy-
clists climb, increasing the required energy compared
to a flat route. A part of this energy is recovered
by going down the slope again, but the presence of
traffic lights and give way points after the descend
results in the cyclists having to brake and losing the
regained energy again. This route is the longest as ist
makes a detour to be able to cross the train tracks.

The second route, the tunnel route, makes use of a
tunnel under the train tracks instead of the flyover.
Cyclists have to walk down and up stairs with their
bicycle to enter and exit the tunnel, while cycling is
allowed in the tunnel. This tunnel shortens the dis-
tance and removes the climb on the flyover, but in-
troduces stairs where the cyclists is slowed down due
to having to brake for the stairs and walking them up
and down with their bicycle in hand. The amount of
traffic lights is lower compared to the flyover route,
although the difference is small. The third and last
route is a new planned bicycle highway which takes a
more direct path parallel to the train tracks between
the two train stations, this route is called called high-
way. From the three routes the highway is the most
direct, resulting in the lowest distance. The amount
of traffic lights is brought to a minimum by avoid-
ing crossings as much as possible. To cross the train
tracks this route uses an elevated road with relatively
short ramps, meaning that the cyclists have to over-
come a steep hill. Moreover all routes are evaluated
in both directions, east and west, due to differences
in road elements such as traffic lights as well as dif-
ferences in route layout. Only for the highway route
the layout in both directions follows the same road,
being on the opposite side. An overview of all routes
is given in Figure 3.

4.2 Simulation parameters
The system of equations is solved for speed and time
using using the function solveivp from the scipy li-
brary in Python. The 5th order Runge-Kutta method
is used to solve the differential equation that results
from the sum of all forces, default values of 1e-3 for
the relative tolerance and 1e-6 for the absolute toler-
ance are used.

4.3 Number of simulations
For all six routes a standard error of the mean of
1% for the travel time is used as desired accuracy,
with a used confidence of 95%. Per route 400 simu-
lations were conducted after which the desired value
was reached for every route. A standard error of the
mean of 1% means that the final mean of the output
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Figure 3: The six routes in Den Haag with the direction of travel indicated with an arrow. The crossings
with the train tracks are shown, for the flyover and highway route the path goes over the railway. The tunnel
routes goes under the railway with a tunnel.

will be within a range of 1% of the estimated real
mean. Because the true mean is unknown, the esti-
mated mean is used to calculate the required amount
of runs with Equation 13, where n is the number of
runs required, z the z value of 1.96 for 95% certainty,
e the standard error of the estimated mean and s the
standard deviation of the output data [42].

n = ((zs)/e)2 (13)

5 Results
To get a general overview of the output for different
routes the mean travel time and energy expenditure
can be compared. The standard deviation in the re-
sults can give an indication of the complexity of the
routes, a simpler route with relatively fewer obsta-
cles such as traffic lights and sharp curves could give
a smaller spread in values. This could mean that
not everyone profits the same from better routes, a
narrower distribution would mean that slower cyclist
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gain more time on the bicycle highway than faster
cyclists. Moreover, a more coherent groups of cyclist
may have a higher average speed than a group with
a large spread in speeds, possible increasing the av-
erage speed of all cyclists. In Table 6 the means and
standard deviations are given. In both directions the
standard deviation of both the time and energy of the
bicycle highway are lower than the ones for the tun-
nel routes, which are in turn lower than the flyover
routes. This indicates that a shorter and/or simpler
route will reduce the spread in both time and energy
values.

Direction Route Travel time Energy
µ [s] σ [s] µ [kJ] σ [kJ]

East
Flyover 832.12 75.50 74.49 22.80
Tunnel 608.67 52.99 54.90 15.41
Highway 417.01 41.83 42.09 11.88

West
Flyover 910.97 81.66 82.06 24.50
Tunnel 734.45 62.98 59.78 18.62
Highway 404.15 39.94 44.10 13.29

Table 6: Mean and standard deviation of travel time
and energy expenditure

Direction Route Time Energy

East
Flyover .269 .132
Tunnel .614 .507
Highway .072 .446

West
Flyover .289 .099
Tunnel .714 .600
Highway .096 .170

Table 7: P-values of fitted Gaussian and skewed
Gaussian for the energy and time distributions re-
spectively per route
* p < .05
** p < .01
*** p < .001

On all combinations of the six routes for both time
and energy a Kruskal-Wallis test is performed. Every
combination results in p<.000, except for the com-
parison of the highway east with highway west, which
gives p=.010. Therefore, all are significant on a level
of 95 %, while all but the highway comparison are sig-

nificant on the 99.9 % level showing that all routes
are different in time and energy outcomes and that
using the routes in two different directions gives dif-
ferent results.

With the time and energy distribution for each
route the probability that one route is faster or re-
quires more energy than another route can be calcu-
lated. Instead of comparing the means of the routes,
comparing the full distribution can show if certain
routes are better suited for a certain type of cyclist
and give a measure of how much better a route is
in factors of time and energy expenditure. First the
shape of the output distributions is examined in Fig-
ure 4, where the distribution for time and energy out-
put of the flyover route in east direction can be found
together with the estimated Gaussian distributions
based on the output’s mean and standard deviation.
While the time output shows a distribution closely
resembling the Gaussian, the energy output shows
a larger spread of data points and is therefore ap-
proximated by a skewed normal distribution. With
a Kolmogorov-Smirnov test the fit of the (skewed-)
Gaussian can be evaluated. The null hypothesis is
that the distribution is the same as the reference for
all data points, meaning that a higher p-value will
show a better approximation of the reference distri-
bution. The resulting p-values are given in Table 7,
where it can be seen that up to a significance level of
99.9 % the null hypothesis can not be rejected and the
approximations for the Gaussian and skewed Gaus-
sian for the time and energy distributions respectively
are significantly good approximations. For the time
the probability of the travel time for one route A
being lower than the values of another route B can
directly be calculated by subtracting the means and
forming a new distributions from the two normal dis-
tributions and finding the probability that the Z of
the new distribution is above zero, as described in
Equation 14.

P (A > B) = P (A−B > 0) = P (Z > 0) (14)

For the comparison on energy values the same cal-
culation is not directly possible due to skewed normal
distributions being used. Therefore the probability is
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Figure 4: Results in energy and time expenditure for the whole population of the flyover east route, with
fitted Gaussian and skewed Gaussian for the time and energy distribution respectively

calculated by drawing one million samples from both
distributions and counting the mean amount of times
the energy value from distribution A is higher than
B. The probabilities of one route being faster than
another or requiring more energy are shown in Ta-
ble 8.

Direction Route A Route B P(At > Bt) P(Ae > Be)

East
Flyover Tunnel 0.992 0.773
Tunnel Highway 0.998 0.752
Flyover Highway 1.000 0.890

West
Flyover Tunnel 0.956 0.774
Tunnel Highway 1.000 0.762
Flyover Highway 1.000 0.907

Table 8: Comparison of time and energy requirement
in different routes

The probability in terms of time is either one or
close to one in all cases meaning that the bicycle high-
way is almost always faster than the tunnel route,
which is in turn almost always faster than the nor-
mal route. When comparing the energy requirement
the outcome is less unanimous, there is a probabil-
ity around 75 % that the flyover route requires more
energy than the tunnel route or the tunnel route re-
quires more than the highway route. For the com-
parison between the flyover and highway route the
difference is smaller with a probability of 90% that
the first has a higher energy requirement. A possible

explanation for this is that e-bikes have a large im-
pact on the energy while having a relatively small im-
pact on the travel time. When only regular bikes are
compared, see Table 9, the probabilities for energy
requirement are higher but still not as close to one
as the values for travel time showing that there are
more factors at play than only e-bikes. Other pos-
sible factors are the amount of elevation in a route
and the amount of necessary slow downs for either
traffic lights or sharp curves, the characteristics of
all routes are given in Appendix C.When looking at
e-bikes only, the time probabilities are once again
close to 1, while the energy probabilities average to
54 % indicating that for e-bike users the difference
in energy between two routes is of no importance as
neither route requires more energy than the other.
These results of e-bikes are based on the modelled
behaviour of assistance level choice and will therefore
not fully represent real human behaviour.

Direction Route A Route B P(At > Bt) P(Ae > Be)

East
Flyover Tunnel 0.995 0.918
Tunnel Highway 0.999 0.882
Flyover Highway 1.000 0.990

West
Flyover Tunnel 0.971 0.899
Tunnel Highway 1.000 0.881
Flyover Highway 1.000 0.997

Table 9: Comparison of time and energy requirement
in different routes for regular bikes
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Figure 5: Results of the flyover east route split between e-bike and regular bike users
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Figure 6: Results of the flyover east route split between male and female riders

The larger spread in energy usage compared to the
time distribution can be explained when the data is
split into e-bike an regular bike users, see Figure 5,
where the regular bike users show a more as expected
normal like distribution with a skewness close to one
and the e-bike users a more flattened and less normal
like distribution. Note that the energy in the figure is
the human component of the energy, the energy pro-
vided by the e-bike motor is not included. Due to the
e-bike users energy expenditure heavily depending on
the chosen assist level, which is randomly picked and
uniformly distributed, the energy output is more in
line with a combination of the expected normal dis-
tribution similar to regular bicycles and the uniform
distribution of the assist level. When the output is
split into a regular and an e-bike category it becomes
visible how much less energy e-bike users consume in
comparison. The difference between the two groups

is evaluated with a Kruskal-Wallis test, with null hy-
pothesis that the population means are equal. This
test results in a p-value of <.000, showing that the
null hypothesis can be rejected up to a significance
level of 99.9 %, see Table 10. These results might
give an indication that although e-bikes can lead to
faster travel times, the energy usage of riders is dras-
tically lower leading to the major reason to get more
people to use the bicycle, namely fitness and health
benefits, becoming less present when comparing the
same route for regular bicycles and e-bikes. The way
e-bikes are modelled in this research the average en-
ergy usage is more than five times lower than that of
regular bicycle users. However, the amount of energy
used is highly dependant on the chosen assist level,
therefore no accurate comparison between energy us-
age on regular and e-bikes can be made.

The data can also be split between male and female
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Time Energy

Sex Male
Female <.000*** <.000***

Age
20-40
40-60
60-80

.366 .323

Bicycle type E-bike
Regular <.000*** <.000***

E-bike control Torque
Cadence .430 .185

Table 10: Kruskal-Wallis test results for the flyover
route east
* p < .05
** p < .01
*** p < .001

cyclists, as can be seen in Figure 6. Noticeable differ-
ences are the significant lower mean travel time and
higher mean energy expenditure for males, although
both distributions show a similar shape. This differ-
ence in time and energy is as expected as there are
different inputs for either male or female for the dis-
tributions for both Pc and AWC, although males do
have a higher mean mass, which will slow them down
relatively to females. The extra power greatly out-
weighs the higher mass, a higher base energy output
therefore clearly results in more energy usages and
lower travel times. It might be possible that people
with a higher mean power will tend to use a lower
percentage of their power in reality. With more re-
liable power output percentage data more accurate
conclusions can be drawn from male and female dis-
tributions. The distributions with time and energy
for all routes can be found in Appendix D, all with
similar results.

If the data is split between the two types of e-bike
control in Figure 7, no significant differences in either
travel time nor energy expenditure are observed, see
Table 10. The main difference between the control
types impacting time is the delivery of power when
accelerating from standstill, which has a small impact
on the overall behaviour of the model. Due to rel-
atively low power demands on the evaluated routes,
cadence controlled e-bikes can provide all power even

at sub maximum assistance levels. Because of this the
power provided by the cyclists can become extremely
low leading to low energy expenditures. For torque
controlled e-bikes the power provided by the motor
is a percentage of the input power of the human rider
and will therefore not drastically reduce the human
energy expenditure on relatively low power demand-
ing routes. When the control types are modelled in
a more detailed way concerning power and torque
delivery the differences between the two types may
change. For now no significant distinction can be
made between the two control types.

Lastly the time and energy distributions can be
split between different age groups, see Figure 8. In
this comparison the differences in time are small and
not significant. A post hoc evaluation is done with
the Kruskal-Wallis test, to compensate for the com-
parison of three groups in the data an adjustment
method in the form of Holm’s method is used, see
Table 11. Due to a positive correlation between age
and Pc older riders are expected to have higher en-
ergy outputs and therefore faster travel times. This
correlation is made from test data on fit young par-
ticipants and will therefore not give an accurate view
when extrapolated to people outside the scope such
as older people. The increase in Pc is compensated
by the negative correlation of age with AWC and a
positive one for rider mass. On top of this the chance
of owning an e-bike is much higher for older people.
When looking at the results all distributions of time
and energy are close together, but people between 60
and 80 are on average a bit faster. No significant dif-
ferences are found between cyclists of different ages,
indicating that age does not play a large part in the
travel time and energy expenditure of a population
of cyclists.

Another possible angle is to look at the impact
of traffic lights in a route, in Figure 9 the results
of the flyover in east direction are given. The data
is split between the amount of green traffic lights
where the total amount of traffic lights on the route
is nine. There are no simulations where there are 8 or
9 green lights for the cyclists. The mean travel time
and energy expenditure for each group of an amount
of green lights are compared to the mean time and
energy of the whole population on the flyover east
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Figure 7: Results of the flyover east route split between torque and cadence controlled e-bikes.
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Figure 8: Results of the flyover east route split into 3 age groups.

[20-40) [40-60) [60-80]

Time
[20-40) - .635 .529
[40-60) .635 - .548
[60-80] .529 .548 -

Energy
[20-40) - .862 .862
[40-60) .862 - .398
[60-80] .862 .398 -

Table 11: Dunn’s test results for the flyover route
east for different age groups with Holm’s adjustment
method
* p < .05
** p < .01
*** p < .001

route. It can be seen that the mean travel time will
not always decrease with more green lights, and the
required energy can even increase. Apart from the
amount of green traffic lights, it is also important

which lights are green. A stop right after a down-
hill section will require the cyclist to brake more and
therefore lose more energy and time compared to a
traffic light on a flat road or just after a sharp curve.
The amount of data points is low for the extreme
cases, zero green lights occurs eight times while seven
green lights occurs only once. To get a better view
at the impact of traffic lights on a route more simu-
lations are needed to obtain sufficient numbers. The
energy requirement fluctuates and goes both up and
down for more green lights. This can be explained
by the limited sample size, where one group has cy-
clists that have a higher power output than another
group while having less green lights. An alternative
to increasing the sample size is using the same cy-
clists and bicycles combinations for different amount
of traffic lights to limit the variability. An overview
of the traffic light data for other routes is given in
Appendix E.
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Figure 9: Energy and time reductions for number of
green lights relative to the route mean

6 Discussion

6.1 Discussion of results
With the model presented in this research bicycle
routes can be compared in matters of energy and time
expenditure, which can lead to new insights. It has
become evident that rider and bicycle characteristics
can have a large impact on travel time and energy ex-
penditure, although not all parameters lead to signif-
icant differences. The model can give an overview if
a routes benefits certain cyclist types and even more
important: how much it benefits them. By being
able to quantify travel time and energy expenditure
differences, route comparisons can be evaluated at a
higher level. When a new route is planned, alter-
native designs can be compared to see how much it
would benefit the expected type of users. This can
also be adapted to different demographics, cities with
a large share of e-bikes might not want the same bi-
cycle infrastructure as cities with a low share of e-
bikes. The same can be said for other demographic
differences such as age or sex. In combination with
studies about cyclist route choice the model can sim-
ulate routes and find if a route design is attractive
for cyclists, or if alternative routes will lead to more
people choosing the bicycle as type of transport.

The biggest shortcoming of the current model is
the realistic modelling of human behaviour. There is
little known about the power utility cyclists choose to
ride with or when they decide to start coasting and
braking. This behaviour aspects can have a large im-
pact on the results and should therefore be modelled
as close to reality as possible.

From the analyzed routes in the case study is has
become clear that bicycle routes have to be evaluated
in both directions, because even if the route follows
the same road in both directions, the infrastructure
elements such as traffic lights can still differ. The case
study also shows that large elevation gains in bicycle
routes will have a large impact on both the time and
energy expenditure of utility cyclists, although a note
has to be made that the routes that where compared
where not of the same length. Another observation
is that simpler routes, shorter and with less route
elements, will lead to a more uniform flow of cyclists
as the standard deviation in travel time reduces.

6.2 Sensitivity analysis
The model has many input variables, the accuracy of
the used values can be very important to get accurate
results. To find out which parameters have to most
impact on the travel time and energy expenditure,
and therefore need the most attention when defin-
ing values, a sensitivity analysis is performed on the
tunnel west route. To be able to make comparisons
between two simulations the traffic light and give way
point behaviour has to be kept constant, therefore all
traffic lights are modelled to be red and have waiting
times of two seconds. All give way points have the
rider reduce speed by 50 %. A baseline simulation
is done, together with a simulation for every param-
eter with an increase of 5 % which is compared to
the baseline. An increase of 5 % in rider mass results
in a 2.22 % increase in energy usage, showing that
mass together with elevation plays a large roll in en-
ergy requirements. Other parameters that have large
impact are the drivetrain efficiency and the percent-
age of maximum human power used with energy re-
quirements being -2.41 and 1.99 % respectively. The
human power percentage leads to a almost 2 % in-
crease in energy, while the time gain is only 0.9 %.
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More power input will not give the same percentage
of time gain as air resistance does not scale linear
with speed. When e-bike motors are turned on in the
model the time gain for both control types is 4.33 %
with assist levels of both 0.6 and 0.8. This is due to
the limitation of e-bikes that the motor can only ap-
ply power when the speed is not over 25 km/h. The
energy requirements for these e-bike simulations are
all as expected lower than the baseline, ranging from
25 to 68 % lower energy requirement. A full table of
the sensitivity analysis results is given in Appendix
F.

6.3 Simulation limitations of the
model

In order to have enough time to perform all simu-
lations the tolerances in the solver were not strict
enough to make the cyclist stop at the desired speed
at traffic lights. This results in overshooting the
speed at which a rider arrives at a traffic light, a
more detailed explanation is given in Appendix G.

A second limitation is the absence of an in field val-
idation of the model. The outputs for travel time and
energy expenditure are within realistic bounds, this
is checked by calculating the time for the route dis-
tance with mean cycling speeds and using that time
with average power. However, a validation with in
field measurements is not present. A comparison with
real life data could first of all give an indication of the
true travel time and energy expenditure with a real-
istic power profile. The power profile will most likely
have a high variability due to human behaviour, but
general aspects such as places where extra power is
provided can be better identified and validated.

6.4 Future applications
There are many possible use cases thinkable for the
cycling model described in this research, one example
is the impact of traffic lights. By taking out or adding
traffic lights the impact on time and energy usage can
be calculate for a population of cyclists leading to new
insights for city planners. This can be extended to
making green waves, in which cyclist will have a green
light multiple times in a row by making the lights go

green based on the time it will take a cyclists to go
from one traffic light to the next. For a population
of cyclist it can be found how much time is needed in
between lights, as well as the required duration of the
green time. Other possible applications include the
possibility to help city planners quantify differences
between planned routes and existing infrastructure.

6.5 Recommendations
In this paper the most important features for an en-
ergy and time cycling model are implemented, a fea-
ture that is often named but not used is wind. Wind
can have a large effect on the cyclists based on both
the wind speed and direction, but is highly unpre-
dictable especially in urban areas with high buildings.
Possible implementations are either using a constant
wind speed or a distribution of possible region specific
speeds and directions. While on average the wind
might equal out as the route is traversed in both
directions, it is possible that cyclist prefer to take
another route based on wind speed and direction.

Another possible addition to the model is the way
traffic lights are implemented, there is no dynamic
behaviour of the cyclist as the color of the light is
predetermined. In reality a cyclist may give extra
power to make a yellow or green light or make a hard
stop if the light suddenly changes to red. Using this
dynamic behaviour in the model would require the
rider to make a choice leading to a new layer of pos-
sibilities lying outside the scope of this research. In
addition, implementing red light running could lead
to more realistic behaviour, especially at traffic lights
where cyclists often do not stop for red lights.

Regarding the used features, some variables are not
well documented in literature such as the look ahead
time, maximum desired lean angle and the percentage
of human power. These are often described in mod-
els that minimize time and maximize power, which
is not applicable to utility cycling. The same is true
for constants used in the AWC deployment and re-
generation. Moreover, power values are taken from
experiments that are conducted on mostly fit young
people, while little is known about older and less fit
people. The maximum desired lean angle is estimated
on a flat road, while in reality cyclists may desire a
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lower angle for downhill curves due to reduced grip.
For all of these inputs further research is needed to
get realistic values for utility cyclist.

7 Conclusion
The goal of this research was to develop a bicycle
model that simulates utility cyclists on a route and
gives distributions of travel time and energy expendi-
ture for a population of cyclists. This model can be
a new way to compare different bicycle routes in the
planning phase with both alternative plans and ex-
isting routes based on a population of different kind
cyclists and bicycles. A case study was performed
where the differences in time and energy expenditure
for a population of cyclists on three different routes
all in two direcrtions were evaluated. The first route
makes a detour to cross a train track and makes use
of a flyover to cross it. The second route is shorter
and uses a tunnel to cross the tracks, the tunnel is
accessible by stairs that the cyclists has to traverse.
The third route is a newly planned bicycle highway
that crosses the train tracks with a new bridge, mak-
ing this route the shortest and most direct. A Monte
Carlo simulation was conducted with ranges of input
parameters about the rider and bicycle characteris-
tics as well as dynamic route characteristics in the
form of traffic lights. A significant gain in time is
found for almost the whole populations for the high-
way route over the tunnel route and for the tunnel
route over the flyover route showing that the routes
results in significant differences in travel time. Next
to the time gain the energy requirement follows the
same trend, with the key difference that the energy
requirement has a lower probability of being lower in
said route comparisons. This is mostly due to the
use of e-bikes, for them there is close to no difference
in energy requirement between routes. Future model
extensions could implement wind as most important
new factor, while better input data is needed to ob-
tain more accurate results.
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A
Power and braking behaviour

In this section a part of a simulation is given in Figure A.1 to illustrate the braking behaviour of a cyclist
in curves and at stops. Close to the red line, a red traffic light, the riders stops pedalling resulting in
the driving power going down to zero. This is the phase between pedalling and braking. The braking
force is not constant, because the speed of the cyclist and the environment change during braking. The
cyclists adapts the braking force to keep a constant deceleration. In the bottom graph the curvature is
plotted together with the curvature the rider looks ahead in time to, illustrated with a black dashed line.
When this look ahead curvature would make the rider go over their preferred maximum lean angle the
driving power drops to zero and the cyclists starts to brake. This braking continues until the point of
maximum curvature is reached, at which point the look ahead curvature drops too. The driving power
stays at zero for a short time after the braking has ceased, this is because the lean angle of the cyclist
is at that time still above the maximum desired pedalling lean angle.
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Figure A.1: Example of braking behaviour at red traffic lights, displayed as a red line, and sharp curves. The dashed black line
in the curvature plot is the maximum curvature the rider looks at with the look ahead time.



B
Input data

B.1. Traffic lights data
For traffic lights, only daytime data is used, from 07:00 to 22:00 h to represent the time utility cyclist
are on the road. If the model is used for a specific group, for example commuting cyclists, the rush
hour times can be used to give results that reflect conditions during the time of interest. For the new
traffic light on the bicycle highway there exist a bicycle traffic light in the opposite direction, this data is
therefore used for the new traffic light. An overview of the chance the traffic lights is green upon arrival
and the mean waiting time when it is red are given in Table B.1, the corresponding locations can be
seen in Figure B.1.
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Figure B.1: Locations of all used traffic lights
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B.2. Correlations 26

Green chance Mean waiting time [s]
0 0.18 20.70
1 0.12 24.75
2 0.07 22.65
3 0.21 17.66
4 0.10 49.45
5 0.38 10.62
6 0.25 12.24
7 0.87 7.63
8 0.14 21.51
9 0.40 20.13
10 0.15 15.29
11 0.13 9.31
12 0.06 12.25
13 0.09 25.90
14 0.22 14.82
15 0.25 30.10
16 0.14 24.10
17 0.17 15.25
18 0.08 10.40
19 0.14 6.83
20 0.30 10.65
21 0.31 24.00
22 0.50 12.87
23 0.15 34.77
24 0.16 19.03
25 0.82 0.00
26 0.27 14.63
27 0.06 30.67
28 0.62 13.49
29 0.21 51.04
30 0.38 0.00
31 0.06 14.68
32 0.18 20.70
33 0.04 16.46

Table B.1: Chance at green light and mean waiting time at a red light for all used traffic lights

B.2. Correlations
Between many parameters used in this model a correlation can be present. To keep the amount of
assumptions with a possible large effect on the model low, it is assumed that if no correlation is found
between two parameters in literature they are completely independent while in reality this might not be
entirely true. The only correlations found are between Pc, AWC, the age of the rider and the mass of
the rider. For some parameters there is evidence that no correlation is present, while for others different
sources come to different conclusions.

B.3. Elevation data
Below the elevation map made from the LIDAR data is given in Figure B.2, the flyover east route is
shown as a blue line. By using the LIDAR data and removing the points classified as trees and buildings,
the roads, bridges and other infrastructure remain. This LIDAR data is then converted to a coordinate
based grid with a interpolation size of 0.5x0.5m that can return the elevation of any coordinate provided
by obtaining the pixel elevation value at the wanted location. The elevation data obtained from the map
is then further processed by removing overhead roads and other obstacles and smoothing the elevation
using a b-spline of the Python scipy.interpolate library with a smoothing coefficient of nine.
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Figure B.2: The LIDAR grid with elevations on a color scale, sampled at 0.5 m by 0.5 m squares. Buildings and vegetation are
set to an elevation of 0. The blue line is the flyover east route.



C
Route characteristics

Below the characteristics of all used routes are given: the type of bicycle infrastructure, position of
traffic lights and give way points,and the position of the stairs in and out of the tunnel. And overview of
the amount of traffic lights and give way signs together with other route data can be found in Table C.1.

Route Length [km] # Traffic lights # Give way points Elevation gain [m] Elevation loss [m]
1 3.40 9 2 15.3 15.4
2 3.63 12 2 16.0 15.9
3 2.27 7 2 10.1 10.3
4 2.44 9 1 11.3 11.3
5 1.91 2 1 10.9 11.0
6 1.91 2 1 10.5 10.4

Table C.1: Route data overview

For the bicycle highway the length of the route and the amount of traffic lights is greatly reduced, which
should have a positive impact on both the travel time and the required energy. The elevation difference
however is not a clear improvement. The elevation gain and loss is significantly less than the flyover
route, but very similar to that of the tunnel route with the key difference that in the tunnel route most
elevation difference is covered by walking instead of cycling.

C.1. Bicycle facility types
In this section the types of bicycle infrastructure are given for each route. Most of the distance is
covered by bicycle paths, and very little is shared road with cars. Still there is improvement possible
as shown in Figure C.1e and Figure C.1f where no shared road or bicycle lanes are present and the
bicycle is the priority vehicle on the whole route.
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Figure C.1: Bicycle infrastructure types for all routes
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C.2. Road elements
In this section an overview is given of the road elements on the routes, these include traffic lights,
give way points and tunnel stairs. While the flyover routes have the most traffic lights, they are mostly
present in the first and last part of the route while the lights in the tunnel routes are more spread out
over the whole route.
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Figure C.2: Bicycle road elements for all routes



D
Results of time and energy

expenditure in all routes

D.1. Time and energy distributions
Both energy and time distributions from all six routes show similar shapes. For the flyover route there
is a large difference in the means of the travel time between different directions of travel, while for the
highway the means are fairly close to each other. Between the results in time and energy of all routes
there is a statistical significant difference, showing that all six routes give significantly different results.
The highway has by far the least traffic lights the shortest distance and therefore less variability, but
critically it has the same amount of traffic lights in both directions. For a complete overview of the route
characteristics see Appendix C. Moreover the the distances are the exact same as the route traverses
the same road, just on different sides of the bicycle path. Since there are no parts of the route around
existing car infrastructure both directions of travel use the same route layout only on opposite sides of
the bicycle path.
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Figure D.1: Time and energy distributions of all routes with fitted Gaussian and Skewed Gaussian
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D.2. Time and energy distributions split by sex
In this section all data is split into male and female categories.
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Figure D.2: Time and energy distributions of all routes split by sex with fitted Gaussian and Skewed Gaussian

D.3. Time and energy distributions split by bicycle type
In this section all data is split into e-bike and regular bicycle users.
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Figure D.3: Time and energy distributions of all routes split by bicycle type with fitted Gaussian and Skewed Gaussian

D.4. Time and energy distributions of e-bikes split by control type
In this section the e-bike data is split between the torque and cadence control type.
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Figure D.4: Time and energy distributions of all routes split by e-bike type with fitted Gaussian and Skewed Gaussian
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D.5. Time and energy distributions split by age
In this section all data is split into three age categories.
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Figure D.5: Time and energy distributions of all routes split by age with fitted Gaussian and Skewed Gaussian

D.5.1. Significance tests
In Table D.1 the results of Kruskal-Wallis tests are shown. For the age split data a post hoc test is
performed, see Table D.2.

Category Sex Age Bicycle type E-bike control

Groups compared Male
Female

20-40
40-60
60-80

E-bike
Regular

Torque
CadenceDirection Route

East

Flyover Time <.000*** .366 <.000*** .430
Energy <.000*** .323 <.000*** .185

Tunnel Time <.000*** ..076 <.000*** .752
Energy <.000*** .124 <.000*** .690

Highway Time <.000*** .043* <.000*** .156
Energy <.000*** .086 <.000*** .207

West

Flyover Time <.000*** .005** <.000*** .384
Energy <.000*** .075 <.000*** .180

Tunnel Time .009** .458 <.000*** .194
Energy <.000*** .174 <.000*** .479

Highway Time <.000*** .021* <.000*** .078
Energy <.000*** .056 <.000*** .125

Table D.1: The p-values for different input parameters in the model with given significance levels.
* p < .05
** p < .01

*** p < .001



D.5. Time and energy distributions split by age 42

[20-40) [40-60) [60-80]
[20-40) - .635 .529
[40-60) .635 - .548Time
[60-80] .529 .548 -
[20-40) - .862 .862
[40-60) .862 - .398

Flyover

Energy
[60-80] .862 .398 -
[20-40) - .082 .146
[40-60) .082 - .862Time
[60-80] .146 .862 -
[20-40) - .154 .179
[40-60) .154 - .991

Tunnnel

Energy
[60-80] .179 .991 -
[20-40) - .727 .076
[40-60) .727 - .076Time
[60-80] .076 .076 -
[20-40) - .088 .496
[40-60) .088 - .496

East

Highway

Energy
[60-80] .496 .496 -
[20-40) - .499 .009**
[40-60) .499 - .013*Time
[60-80] .009** .013* -
[20-40) - .727 .209
[40-60) .727 - .078

Flyover

Energy
[60-80] .209 .078 -
[20-40) - .897 .636
[40-60) .897 - .897Time
[60-80] .636 .897 -
[20-40) - .371 .194
[40-60) .371 - .420

Tunnnel

Energy
[60-80] .194 .420 -
[20-40) - .639 .095
[40-60) .639 - .019*Time
[60-80] .095 .019* -
[20-40) - .666 .183
[40-60) .666 - .055

West

Highway

Energy
[60-80] .183 .055 -

Table D.2: The p-values for different age groups with given significance levels based on a post hoc analysis
* p < .05
** p < .01

*** p < .001



E
Traffic lights

E.1. Impact on time and energy
In this section the impact of traffic lights for all routes is displayed by the difference in mean energy and
time compared to the mean of the whole sample. In all cases the time gained increases as the amount
of green lights increases, while the time fluctuates. Due to the limited amount of samples per green light
category the results show no clear relation between the amount of green lights and the travel energy
cost. With more simulations it is expected that the energy will reduce with more green lights in the
same manner as the travel time, because it will matter less which light is turned green when a higher
amount of samples is used. On the new highway route only two traffic lights are present resulting in
larger sample rates per category as the data points are divided over less categories. In both directions
a clear reduction in both travel time and energy expenditure can be observed. With more data samples
the average time and energy saved by removing a traffic light can be found, when going even further
and splitting the data per individual traffic light the impact of a single light can be observed.
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(a) Flyover east
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(b) Tunnel east
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(d) Flyover west
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(f) Highway west

Figure E.1: The effect of traffic lights on energy and time
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Sensitivity analysis

There are many inputs in the model that can make a difference in the output of time and energy, to
see how much of a impact each parameter has a sensitivity analysis is performed on the tunnel route
in west direction by increasing each variable by 5% one at a time, see Table F.1. These values can
give an indication of what variables are most important to get realistic values of, for example a 5%
increase int the mass of the rider will result in 2.22% more energy that is required, showing that rider
mass is an important factor. Another major factor is the drivetrain efficiency resulting in a decrease in
required energy of 2.41 % while the original efficiency was already well over 90 %. The possible gains
in drivetrain efficiency are relatively low as it can’t go over 100 % and is usually above 90 %, but even
small improvements can lead to big differences in energy requirement. Another interesting result is
that an increase in critical power will, as expected, lead to a time gain. The percentage of extra energy
requirement however, is more than twice as high as the air resistance will increase with the speed
squared. The AWC has no impact on either of the outputs, this is likely due to all cyclist starting with
a full capacity and the routes not being long enough to drain much energy resulting in lower possible
power outputs. With lower AWC values or less than full starting capacities the results could be very
different. When the AWC is set to zero, the route time is 1.61 % slower showing that AWC does have
an impact, but only at lower values for the tested routes.

For e-bikes it is noticeable that the total energy usage goes down drastically, while the time gain is
much lower. This is likely due to the way the comfort speed is calculated in the model, it takes the
e-bike power into account but doesn’t go over 25 km/h unless the cyclist would have a comfort speed
over 25 km/h without the e-bike power. This is done to ensure a smooth power output, if the cyclist
would try to reach a speed where the e-bike motor would turn off he would slow down above this speed
and the motor would turn on again after the speed has dropped below the activation speed leading to
the speed going over the activation speed again. This would result in fluctuations in the motor power as
the e-bike motor would turn on and off consistently while the speed is fluctuating around the activation
speed. The same reasoning about comfort speed would explain the fact that all e-bike simulations
result in the same relative time difference.

The only variable change leading to no differences in energy and time is the downhill speed, because
the maximum speed reached on this route is below the safety speed. There are no downhill sections in
the tunnel route, and because of the lack of mountains in the Netherlands this would likely be a sparely
used feature in Dutch cycling models.
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Variable Base value New value
(+5%) Unit Route Time

[min:sec]
Energy Usage

[kJ]
Route Time

Difference [%]
Energy Usage
Difference [%]

Baseline - - - 10:13 72.15 0.00 0.00
mass bike 16.00 16.80 kg 10:13 72.33 -0.01 0.25
mass rider 84.40 88.62 kg 10:15 73.75 0.21 2.22
cr 0.0077 0.0088 - 10:16 72.35 0.37 0.28
cdA 0.559 0.587 m2 10:16 72.29 0.50 0.20
ρ 1.20 1.26 kg/m3 10:16 72.29 0.50 0.20
vdownhill 9.72 10.21 m/s 10:13 72.15 0.00 0.00
ηdrivetrain 0.915 0.961 - 10:08 70.41 -0.90 -2.41
Pc 0.655 0.688 - 10:08 73.59 -0.90 1.99
abraking 1.5 1.575 m/s2 10:12 72.30 -0.19 0.20
ϕmax 12.5 13.125 Degrees 10:11 72.13 -0.42 -0.03
amax 0.7 0.735 m/s2 10:11 72.47 -0.42 0.45
tahead 2.0 2.10 s 10:15 71.77 0.19 -0.53
AWC 16150 16957.50 J 10:13 72.15 0.00 0.00
vstop 0.594 0.624 m/s 10:13 72.13 -0.02 -0.03
e-bike mode None Cadence - 09:47 30.99 -4.33 -57.05
e-bike mode None Torque - 09:47 53.84 -4.33 -25.38
assist level (torque) 0.60 0.80 - 09:47 48.62 -4.33 -32.61
assist level (cadence) 0.60 0.80 - 09:47 22.83 -4.33 -68.36

Table F.1: Sensitivity analysis of route 4



G
Stop speed

If the braking detection point with a time step of 0.1 s is taken one step to late with a speed of 20 km/h,
the braking distance offset is 0.56 m. Together with a constant deceleration of 1.5 m/s2 the speed
offset at the stop point is 4.67 km/h. Because the solver uses an iterative time step the error is not
deterministic. To solve this problem the stop speed of all cyclists is set at 0 km/h and the stopping
speeds are compared with the true speeds in Figure G.1, where it can be seen that the distributions
have similar range and shape. The main resulting difference in the model is that with the true speeds
a cyclist will always stop at the same speed, while with the adaptation the stopping speed is different
for different points and the same cyclist. This doesn’t necessarily reduce the validity of the model
as cyclists will likely not step off their bike at the same speed every time. Also when looking at the
sensitivity analysis in Appendix D , the stop speed has little to no impact on either the total travel time
or energy expenditure. The error can be avoided by setting stricter integration tolerances, in that case
the true distribution of stopping speeds can be used.
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Figure G.1: Comparison of model stop speeds and true stop speed distribution
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