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Abstract. Segmentation of 3D medical images is useful for various medical
tasks. However, fully automated segmentation lacks the accuracy required for
medical purposes while manual segmentation is too time-consuming. Therefore,
an active learning method can be used to generate an accurate segmentation using
less user input. The active learning pipeline consists of automatic 3D segmenta-
tion, generation of a 3D uncertainty field and an optimization algorithm finding
the optimal plane in the uncertainty field. This plane can then be shown to a user
to be labeled so that the segmentation can be improved. This process is repeated
until the user is satisfied with the output. If the plane is chosen so that it contains
more errors, then less user input will be needed. This paper focusses on evalu-
ating different optimization algorithms in the context of this pipeline. The three
algorithms that are evaluated are particle swarm optimization, gradient descent
and L-BFGS-B. The results of the evaluation show that particle swarm optimiza-
tion converges the quickest, but to lower values than gradient descent. Gradient
descent converges slowly, but to high values. L-BFGS-B converges quickly to val-
ues that are as high as those from gradient descent. Therefore, using L-BFGS-B in
the pipeline instead of gradient descent will decrease the runtime of the pipeline.
Using particle swarm optimization will decrease the runtime even further, but
at the cost of requiring more user input to obtain a segmentation of acceptable
quality.

1 Introduction

Segmentation of medical 3D images is useful for various tasks, such as computer as-
sisted diagnosis and visual augmentation. Segmentation of medical 3D images means
labeling voxels within a volume, indicating whether they are or are not part of an organ.
However, manually annotating 3D images is a time-consuming task and is often deemed
infeasible for many purposes. [3] In addition, fully automated systems are usually not
deemed accurate enough for medical purposes.

A way to segment the images interactively is described in [5]. An image is first
segmented automatically. After that an uncertainty field is generated, which estimates
which parts of the segmentation are likely to contain an error. Then, the plane which is
most likely to contain errors is shown to the user, so that they can label it manually. Us-
ing this information, the 3D image is then segmented automatically again. This process
repeats until the user is satisfied with the segmentation.

This paper focuses on finding the plane that is most likely to contain errors. This is
done by running an optimization algorithm to find a plane in the uncertainty field so that
the sum of the uncertainty values is maximized. The idea behind this is that because of
this, slices that contain more errors will be presented to the user, resulting in a decrease
in required amount of user input. While [5] finds that using gradient descent results in a
significant improvement when compared to random slice selection, other optimization
algorithms are not considered.

The goal of this paper is to find out which optimization algorithm is best suited
for finding the optimal slice to show to the user. To do this, different optimization algo-
rithms are implemented and compared to each other in terms of iterations needed. These
algorithms are particle swarm optimization, gradient descent as described in [5] and L-
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BFGS-B. The three algorithms use zeroth order, first order and second order derivatives
respectively, with zeroth order derivatives meaning it only uses the function value.

2 Problem Description

The problem this paper tries to solve is finding an optimal plane in an uncertainty field.
Section 2.1 explains the context behind this problem and what an uncertainty field is,
then section 2.2 explains the problem itself.

2.1 General Pipeline

The pipeline consists of four parts: segmentation, uncertainty field calculation, slice
selection and user input. This is based on the pipeline described in [5] and is illustrated
in figure 1.

Fig. 1. Diagram showing the active learning pipeline, with its four steps as well as its input and
output.

The first part of the pipeline is the automatic image segmentation. The segmentation
takes as input a three-dimensional array representing an image, such as a CT scan. In
addition, it can take seed points as input, which are points where the user has manually
labeled the image. These seed points are represented as a three-dimensional binary array
of the same dimensions as the input image. A segmentation is then generated, which is
1 at points that are part of the organ and 0 at points which are not part of the organ.

The uncertainty field is a three-dimensional array with the same dimensions as the
input image and values between 0 and 1. The higher the uncertainty value at a certain
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point, the less certain the pipeline is about the segmentation at that point. The uncer-
tainty field is calculated as a weighted sum of different terms.

After that, the plane most likely to contain errors is found in the plane optimization
step. This plane is shown to the user to be labelled manually. The data from the manual
labeling is then used to run the automatic image segmentation again. By running this
pipeline multiple times, the resulting segmentation is improved iteratively. This process
repeats until the user is satisfied with the segmentation.

2.2 Plane Optimization

The goal of the plane optimization is to find the plane of highest uncertainty. That is,
the plane whose points contain the highest uncertainty when summed up is found. This
plane can be positioned anywhere in the uncertainty field and be rotated in any way.

The plane is parameterized by one three-dimensional point within the uncertainty
field and a normal vector. It is then defined as

fp(u, v) = pP + ua+ vb, (1)

where pP is the reference point, u and v are scalars, and a and b are orthonormal vectors
perpendicular to nP , the normal vector of the plane.

The total uncertainty UP in a plane is then defined as

UP =

∫
∞

∫
∞

U(fP (u, v))dudv, (2)

where U(fP (u, v)) is the uncertainty at a point in the plane.

3 Method

Three optimization algorithms are considered. First of all, particle swarm optimization
uses only the uncertainty values itself, without using any derivatives. Then, gradient
descent is considered, which uses the first derivative. Finally, L-BFGS-B is used, which
approximates the second derivative.

3.1 Particle Swarm Optimization

Particle swarm optimization starts with a number of particles scattered randomly around
the solution space. Every iteration, each particle’s velocity is calculated using the fol-
lowing formula:

vt+1
i = ωvti + c1r1(p

t
besti − xt

i) + c2r2(g
t
best − xt

i) (3)

and its position is then updated using:

xt+1
i = xt

i + vt+1
i (4)

In these equations, r1 and r2 are random variables between 0 and 1, while ω, c1 and c2
are constants. ptbest is the best position the particle itself has been in, while gtbest is the
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Fig. 2. Diagram showing rotation of unit vector in 3D space using xy Euler angles. Here i =
(1, 0, 0), j = (0, 1, 0) and k = (0, 0, 1) are the three standard basis vectors, while x and y are
the rotation values.

global best, which is the best position any particle has been in. Both of these values are
updated after each iteration. [2]

For finding an optimal plane, we consider xi to be a five-dimensional vector. Its
first three elements are the point in 3D space. The last two elements are the normal’s
xy Euler angle rotations in degrees. This rotation is applied to the vector (1, 0, 0) to
calculate the 3D normal, which allows it to cover any point on the unit sphere, as shown
in 2. Since it is a 3D normal, equation 2 can be used to calculate the uncertainty.

3.2 Gradient Descent

The implementation of gradient descent is based on [5], which describes the gradients
of the reference point and the normal of the plane in the following two formulas. Here,
a plane is defined as fp(u, v) = pP + ua+ vb, as described in equation 1. The gradient
of the reference point is:

∇pP
UP =

∫
∞

∫
∞

∇xU(fP (u, v))dudv (5)

and the gradient of the plane’s normal is

∇nP
UP =

∫
∞

∫
∞
(uJT

a,nP
+ vJT

b,nP
)∇xU(fP (u, v))dudv (6)

where Ja,nP
is used to denote the Jacobian of a with respect to nP :

JT
a,nP

=

[
−nx −ny −nz

0 0 0

]
(7)

and
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JT
b,nP

=

[
0 0 0

−nx −ny −nz

]
, (8)

where nx, ny and nz are the x, y and z components of the normal vector, respec-
tively.

After each iteration, the normal vector is normalized to make sure it has a length of
1 after adding the gradient to it.

Since gradient descent is likely to converge to a local minimum, it is randomly
initialized multiple times. This means gradient descent is started at a random point
multiple times and the overall result is the maximum of the results of the initializations.

3.3 L-BFGS-B

L-BFGS-B uses an approximation of the inverted Hessian matrix to find roots of a
function [1]. This approximation is improved every iteration. This helps it approximate
Newton’s Method, which iteratively improves a solution using the second derivative.
Like gradient descent, this function tends to converge to local optima. Therefore, it is
randomly initialized multiple times.

The search space is defined as being five-dimensional, identical to the search space
of particle swarm optimization.

In this paper, the L-BFGS-B implementation from scipy’s optimize module is used1,
which is based on [6].

4 Experimental Setup and Results

We verify the effectiveness of all three optimization algorithms experimentally and
compare their performance. Section 4.1 describes the implementation details of the
algorithms, then section 4.2 evaluates the algorithms qualitatively and section 4.3 eval-
uates the algorithms quantitatively.

4.1 Implementation Details

The step sizes of gradient descent and L-BFGS-B, as well as the ω, c1 and c2 of the
particle swarm optimization were chosen empirically by running the algorithms for
different values and comparing the results. The chosen step sizes for gradient descent
are 0.05 for the point gradient and 0.00001 for the normal gradient. The values chosen
for particle swarm optimization are ω = 0.8, c1 = 0.2 and c2 = 0.2.

4.2 Qualitative Analysis

To evaluate the different optimization algorithms qualitatively, a simple uncertainty
field is generated artificially. The three different optimization algorithms are then run
on this artificial uncertainty fields, allowing us to confirm whether the algorithms tend
to converge to a maximum.

1 docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html

https://docs.scipy.org/doc/scipy/reference/generated/scipy.optimize.fmin_l_bfgs_b.html
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Experimental Setup The artificial uncertainty field is generated by placing three-
dimensional Gaussians at three different points. These points can be chosen arbitrarily.
The final uncertainty field is the sum of these three Gaussians.

The optimal plane in this uncertainty field is the plane that intersects all three centers
of the Gaussians. To verify that the plane tends to converge to the optimum, all three op-
timization algorithms are run on the artificial uncertainty field, and the resulting planes
are visually compared with the optimum.

Fig. 3. Planes generated by running different optimization algorithms on an artificial uncertainty
field. The top left figure shows the exact optimum, which passes through the three centers of the
Gaussians that make up the uncertainty field. These three points are also visible in the other three
graphs.

Results Figure 3 shows examples of resulting planes from this experiment, together
with the centers of the three Gaussians. The planes usually tend towards the same nor-
mal, but can sometimes diverge. In addition, it is possible to see that the planes are not
exactly at the same position as the optimal plane.

This shows that while the solutions tend to converge to maxima, none of the algo-
rithms are guaranteed to find the global optimum. It also shows that the solutions are
not exact, meaning they tend to vary.
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4.3 Quantitative Analysis

To evaluate the different optimization algorithms quantitatively, the uncertainty found
by the algorithms is measured against the iteration number. This allows us to compare
their uncertainty values, as well as observe how quickly and where the algorithms con-
verge.

Experimental Setup All three algorithms have a parameter that increases the amount
of function calls linearly. In the case of particle swarm optimization, this is the number
of particles N . In the case of gradient descent and L-BFGS-B, this is the number of
random instantiations. Since both the runtime and the quality of the solutions is highly
dependent on these parameters, we run the experiment for three different values, namely
N = 5, N = 12 and N = 30.

For our test data, we use uncertainty fields generated after running the pipeline for
one iteration, meaning without selecting any plane beforehand. This involves running
the random walker algorithm on only initial seed points, without additional user input.
The input images to the pipeline come from the data of the Head and Neck Auto Seg-
mentation MICCAI Challenge (2015)[4]. This is an open dataset containing CT images
from 48 different patients with labels for different organs. In our evaluation, we use 24
different images for evaluation. The rest were used for initial testing, setting parameter
values or remain unused. We only use the labels for the mandible to generate initial
seed points for the segmentation.

Fig. 4. The average uncertainty score (which is the cost function value) from running the three
optimization algorithms, with the mean being calculated over the 24 generated uncertainty fields.
These uncertainty fields were generated by running the pipeline for one iteration. The error bars
show the top and bottom 25% amongst the uncertainty fields. For all three algorithms N = 30
was used.
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In our results, we show the mean uncertainty value the algorithm found over these
24 different images. We also show error bars showing the top and bottom 25%.

Results Figures 4 and 5 show the results of the evaluation. Figure 4 compares the
different algorithms for one value of N , while figure 5 compares different values of
N per algorithm. Next to that, table 1 shows the average runtime of the algorithms for
N = 30. There are a few things to note about these results.

First of all, figure 4 shows that gradient descent takes a lot more iterations to con-
verge to an optimum than particle swarm optimization and L-BFGS-B. While increas-
ing the step size might seem like a solution, this causes the position to diverge.

In addition, the results in figure 5 imply that for N = 30 and a large number of
iterations, gradient descent and L-BFGS-B perform similarly. This is different from
particle swarm optimization, which tends to converge to lower values than the other
two algorithms.

Fig. 5. The average uncertainty score (which is the cost function value) with different values of N
for the different optimization algorithms, with the mean being calculated over the 24 generated
uncertainty fields. These uncertainty fields were generated by running the pipeline for one itera-
tion. The error bars show the top and bottom 25% amongst the uncertainty fields. Note that the
horizontal axis only shows 20 iterations for particle swarm optimization and L-BFGS-B, but 250
iterations are shown for gradient descent.
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Moreover, figure 5 shows increasing the value of N improves the result for all algo-
rithms, both for large and small numbers of iterations. This shows that gradient descent
and L-BFGS-B tend to converge to local optima. It also shows that particle swarm op-
timization experiences premature convergence. In addition, it shows that increasing N
is a possible way to alleviate these problems, at the cost of a significant increase in
runtime.

Figure 4 shows that gradient descent takes more iterations to converge than particle
swarm optimization and L-BFGS-B, while table 1 shows that this difference in number
of iterations also means a practical difference in runtime. While the runtime of gradi-
ent descent per iteration is lower than that of L-BFGS-B, the fact that it takes more
iterations to converge means that it takes a longer time to converge. Particle swarm
optimization is the fastest algorithm out of the three, both per iteration and in total.

Average runtime Number of iterations Average runtime per iteration
Particle swarm optimization 7.5 s 20 0.38 s
Gradient descent 432 s 250 1.73 s
L-BFGS-B 70 s 20 3.5 s

Table 1. Average runtimes of the optimization algorithms for N=30. It should be noted that these
runtimes are dependant on the actual implementations of the algorithms.

5 Responsible Research

During the research, significant emphasis is placed on its reproducibility. This is done
in a number of ways. First of all, we make sure to mention implementation details like
parameter values. The method of evaluation is also explained in depth. In addition, a
publicly available dataset was used. Finally, the code is also available in a public Github
repository2.

6 Discussion

The main metric used to evaluate the different algorithms is the amount of iterations.
However, the runtime per iteration is different for different algorithms. Theoretically
speaking, particle swarm optimization should take the least amount of runtime, followed
by gradient descent, then L-BFGS-B taking the most runtime. This is due to the fact
that particle swarm optimization only has to evaluate the cost function itself, while
gradient descent has to calculate the point and normal gradients and L-BFGS-B has to
approximate the inverse Hessian.

The reason runtime was not plotted instead of number of iterations is because run-
time is very dependant on the actual implementation. However, the measured runtimes

2 github.com/avilakathara/Medical-Image-Processing

https://github.com/avilakathara/Medical-Image-Processing
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show that there is a very significant difference in runtimes caused by the number of iter-
ations gradient has to run to converge. Therefore, it is safe to say that there is a practical
difference in runtime.

The evaluation was only done on a limited dataset. It contains only CT images of
the neck and head and the uncertainty images were only generated for one organ after
one initialization. This is not representative of all possible uncertainty fields generated
from 3D medical images. However, the results still make a strong case for L-BFGS-B
as the best optimization algorithm out of the three.

The evaluation only measures the found uncertainty value, but the way this value
influences the quality of the automatic image segmentation is not measured. This paper
assumes that planes with more uncertainty are more important to label than planes with
lower uncertainty values, because this assumption is also made in [5]. However, this
paper does not evaluate this assumption.

7 Conclusions

The goal of this paper is to find out which optimization algorithm is best suited for
finding the optimal plane in an uncertainty field. Particle swarm optimization, gradient
descent and L-BFGS-B are evaluated and their convergence behaviour is observed.

Particle swarm optimization converges the fastest out of the three, but at lower un-
certainty values than gradient descent. Gradient descent converges to high values, but
does so over a very large number of iterations. L-BFGS-B generally converges to sim-
ilar values as gradient descent and does so in a much smaller number of iterations.
Therefore, L-BFGS-B seems most suited for solving this problem.

Compared to gradient descent, using L-BFGS-B in a full pipeline will decrease the
amount of runtime needed. This means a user will have to wait for a shorter amount of
time between annotating slices and the system will be quicker to use. Combined with
finding high uncertainty values, the results imply that L-BFGS-B is the best algorithm to
use in many situations. Particle swarm optimization decreases the runtime even further,
but does so at the cost of reducing the found uncertainty. Therefore, more user input will
be needed when using particle swarm optimization. However, the decreased runtime
might still be useful if low runtime is of very high importance, such as in real-time
systems.

Future work includes quantitatively evaluating how higher found uncertainty im-
pacts the quality of the segmentation in a complete pipeline and evaluating more opti-
mization algorithms than the three evaluated in this paper.

References

1. Byrd, R.H., Lu, P., Nocedal, J., Zhu, C.: A limited memory algorithm for bound constrained
optimization. SIAM Journal on Scientific Computing 16(5), 1190–1208 (1995)

2. Gad, A.: Particle swarm optimization algorithm and its applications: A systematic review.
Archives of Computational Methods in Engineering 29(5), 2531–2561 (2022)

3. Milletari, F., Navab, N., Ahmadi, S.A.: V-net: Fully convolutional neural networks for volu-
metric medical image segmentation. 2016 fourth international conference on 3D vision (3DV)
pp. 565–571 (2016)



12 J. van Marrewijk

4. Raudaschl, P.F., Zaffino, P., Sharp, G.C., et al.: Evaluation of segmentation methods on head
and neck ct: Auto-segmentation challenge 2015. Medical physics 44(5), 2020–2036 (2017)

5. Top, A., Hamarneh, G., Abugharbieh, R.: Active learning for interactive 3d image segmen-
tation. International Conference on Medical Image Computing and Computer-Assisted Inter-
vention pp. 603–610 (2011)

6. Zhu, C., Byrd, R.H., Lu, P., Nocedal, J.: Algorithm 778: L-bfgs-b: Fortran subroutines for
large-scale bound-constrained optimization. ACM Transactions on Mathematical Software
23(4), 550–560 (1997)


