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Pressure-Leak Duality for Leak Detection and Localization
in Water Distribution Systems

David B. Steffelbauer1; Jochen Deuerlein2; Denis Gilbert3;
Edo Abraham4; and Olivier Piller, Aff.M.ASCE5

Abstract:Water utilities are challenged to reduce their water losses through detecting, localizing, and repairing leaks as quickly as possible
in their aging distribution systems. In this work, we solve this challenging problem by detecting multiple leaks simultaneously in a water
distribution network for the Battle of the Leak Detection and Isolation Methods. The performance of leak detection and localization depends
on how well the system roughness and demand are calibrated. In addition, existing leaks affect the diagnosis performance unless they are
identified and explicitly represented in the model. To circumvent this chicken-and-egg dilemma, we decompose the problem into multiple
levels of decision-making (a hierarchical approach) where we iteratively improve the water distribution network model and so are able to
solve the multileak diagnosis problem. First, a combination of time series and cluster analysis is used on smart meter data to build patterns for
demand models. Second, point and interval estimates of pipe roughnesses are retrieved using least squares to calibrate the hydraulic model,
utilizing the demand models from the first step. Finally, the calibrated primal model is transformed into a dual model that intrinsically
combines sensor data and network hydraulics. This dual model automatically converts small pressure deviations caused by leaks into sharp
and localized signals in the form of virtual leak flows. Analytical derivations of sensitivities with respect to these virtual leak flows are
calculated and used to estimate the leakage impulse responses at candidate nodes. Subsequently, we use the dual network to (1) detect
the start time of the leaks, and (2) compute the Pearson correlation of pressure residuals, which allows further localization of leaks. This
novel dual modeling approach resulted in the highest true-positive rates for leak isolation among all participating teams in the competition.
DOI: 10.1061/(ASCE)WR.1943-5452.0001515. © 2021 American Society of Civil Engineers.

Introduction

The detection, localization, and control of leakage from aging water
distribution networks (WDNs) remains one of the main challenges
for water utilities (WUs) because the direct financial cost of water
loss can be high. By detecting and dealing with leaks and bursts
quickly, utilities can mitigate deterioration of pipes and surround-
ing infrastructure in addition to lost revenues (Gupta and Kulat

2018). The aim to reduce leakage is further motivated by stringent
regulations and financial incentives (OECD 2016).

Conventional techniques for detecting leakage include random
and regular sounding surveys using listening sticks and acoustic log-
gers (Adedeji et al. 2017), and step testing of metered subsystems as
district metered areas (DMAs) through gradual valve closures
(Farley and Trow 2003; Wu 2008). More advanced leakage pinpoint-
ing methods like leak noise correlators, pig-mounted acoustic sens-
ing, and gas-injection techniques (Puust et al. 2010) are the most
precise at locating leaks. However, all these techniques come with
expensive equipment cost and are labor intensive, and so are not scal-
able. In addition, the suppression of leakage sound signatures by re-
duced pressures in active pressure management or increasing use of
plastic pipes in the network has also made these methods less effec-
tive (Wu 2008; Puust et al. 2010).

More recent advanced approaches use model-based analysis of
near-real-time telemetry data from pressure sensors and flowmeters
distributed over the network. Starting with the work of Pudar and
Liggett (1992), model-based leak localization was intensively
studied with a diverse set of methods ranging from sensitivity
matrix–based approaches (Pérez et al. 2011; Perez et al. 2014),
metaheuristic optimization (Wu 2008; Steffelbauer and Fuchs-
Hanusch 2016b), and error-domain model falsification (Goulet
et al. 2013; Moser et al. 2017), to combinations of model-based
and data-driven approaches (Soldevila et al. 2016, 2017). An
extensive review of leak localization techniques including their
limitations can be found in Hu et al. (2021). This paper deals with
a novel model-based approach that leverages time series analysis of
demand models and new hydraulic modeling approaches for both
detecting and localizing potential leaks. One of the main challenges
for model-based leak detection approaches is the sparse number of
pressure sensors compared to the number of candidate leak location
nodes. For methods that solve for multiple leaks by posing inverse
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problems to determine leak parameters in the network model
(Pudar and Liggett 1992) (i.e., leak levels and locations), this cre-
ates an underdetermined and ill-posed problem. Additionally, the
performance of model-based approaches can also be very sensitive
to errors in two important model parameters: the demand at nodes
and pipe roughness coefficients (Hutton et al. 2014). Sanz et al.
(2016) reduce this error by including existing leaks in the calibra-
tion process. This is done by co-optimizing the calibration and de-
tection, and updating the calibrated model through iteration as new
data become available and leaks are discovered and fixed. This is
achieved through an iterative calibration process, where demands at
nodes are composed of geographically distributed demand compo-
nents. Because leaks occur as less geographically spread compo-
nents in this approach, they become easier to find. The method of
Sanz et al. (2016) belongs to a class of methods that relies on first-
order pressure sensitivities to changes in demand at nodes and the
projection of pressure residuals (differences of measured pressures
from leak-free case, usually retrieved from time series or well-
calibrated hydraulic models) onto the sensitivities. However, this
class of methods has the limitation that they assume a single leak
in the system at one time, and are known to be less reliable for small
leak sizes because the leak-induced pressure deviations, and hence
the pressure residuals, are very small in that case.

In this paper, we address these limitations of pressure residual
projection approaches (i.e., the applicability on single as well as
small leaks) by combining multiple methods. As in Sanz et al.
(2016), we utilize an iterative calibration of the system roughness
and demand parameters using multiple measurements, including
automatic meter readings (AMRs). To deal with multiple leaks,
we separate the detection and localization process; time series
analysis (TSA) is used to automatically find deviations in demand
and flow measurements, thus estimating the start and end time of
multiple growing and nongrowing leaks that can coincide. The
detected leaks are then localized by using a residual projection ap-
proach (Steffelbauer et al. 2020), where the model is updated when
leaks are discovered or fixed. A new duality-based approach is then
proposed to improve the sensitivity of the localization process to
smaller leaks. We formulate a dual network model, where, thanks
to a mathematical trick—by transforming the network model with
pressure measurements to an equivalent model with additional vir-
tual reservoirs and valves—we are able to translate pressure heads
directly to virtual leakage outflows at the measurement locations,
which provide a first estimate for the leak’s size and location in the
network.

Subsequently, we use the virtual leak flows of the dual model for
leak detection with anomaly detection algorithms [i.e., the cumu-
lative sum control chart (CUSUM) algorithm and the likelihood
ratio test (Basseville and Nikiforov 1993)] to obtain information
on the leak start time and the residual-based localization to retrieve
the location of the leak. Finally, the information from the detection
and localization methods is combined to get accurate estimates for
the actual size and location of the leaks.

In the next section, an exposition of the different methods will
be presented. We will then discuss the results using the L-Town
network model of the Battle of the Leak Detection and Isolation
Methods (BattLeDIM) competition (Vrachimis et al. 2020), which
we won under the team name Under Pressure. The final section
will present the conclusions, limitations, and future directions to
improve the proposed method.

Methods

Overview

We solve the leak detection and isolation problem through utilizing
a hierarchical approach. An overview of the two stages where dif-
ferent methods are combined as well as the order in which they are
applied is illustrated in Fig. 1, depicting how we attempted to find
leaks in the measurement data via model calibration and then sim-
ulation with the dual model. In the first stage, the hydraulic model
is calibrated because a well-calibrated model is essential to reliably
localize leaks (Savic et al. 2009). The model is itself calibrated in
two stages, starting with demand calibration and followed by pipe
roughness parameter estimation. The demand calibration method
makes use of TSA on AMR data d, and infers estimated demands
d̂ to unmeasured nodes with respect to their average demand d̄
stored in the EPANET file. The pipe roughnesses Ĉ are estimated
through solving a differentiable, constrained, weighted least-
squares (WLS) problem, which uses the estimated demands d̂, mea-
sured pressure heads h, and initial roughness values C as found in
the original EPANET file. In the second stage, a dual model is built
based on the calibrated values (d̂ and Ĉ) and used for leak detection
and localization, where pressure measurements are replaced with
virtual reservoirs. The dual model magnifies leak signals by
transforming pressures in virtual leakage outflows qv. Moreover,
dual model leak sensitivities S are computed. Finally, the sensitiv-
ities S and virtual flows qv are used to locate the leaks with a

Fig. 1. Overview of the hierarchical leak detection and isolation approach from left to right: starting with the data analysis (measurements and
EPANET model), then model calibration (nodal demand and pipe roughness), followed by simulations with the dual model approach, to finally
detect and localize leaks.
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correlation-based method similar to Sanz et al. (2016). In cases
with multiple leaks that appear simultaneously, the leaks are local-
ized one by one, eliminated from the dual model, and the remaining
leaks are detected and located subsequently through an iterative
approach.

Calibration

Nodal Demand Calibration
The AMRs data are used to develop a demand model through
TSA for the unmeasured customers within the network. Various
time series models (Shumway and Stoffer 2010) are tested on the
AMRs, aiming to extract weekly seasonalities and yearly trends for
different customer types (e.g., residential, commercial). The best
performance is achieved with a rather simple model, consisting of
a multiplicative superposition of weekly seasonalities (SðtÞ), a
time-varying trend (TðtÞ), and a random component (RðtÞ) account-
ing for stochastic variations and measurement noise

dðtÞ ¼ d̄ · TðtÞ · SðtÞ · RðtÞ ð1Þ
with d̄ = customer’s base demand. For each AMR time series, the
trend component TðtÞ is estimated using a convolution filter and
subsequently removed by dividing the original time series through
TðtÞ, followed by estimation of SðtÞ through periodic averages over
the trend-free series (Seabold and Perktold 2010). After removing
the seasonal component by dividing the trend-free series by SðtÞ,
only the random component RðtÞ remains. Subsequently, similar-
ities in the individual seasonal patterns are identified through time
series clustering (Steffelbauer et al. 2021). Furthermore, cluster
analysis is used to identify the number of distinct patterns nd
and outliers. For each demand node i of the network model, a
time-varying demand time series d̂i is built as a superposition of
the distinct patterns weighted by their individual averages d̄ij as-
sociated with the patterns

d̂iðtÞ ¼
Xnd
j¼1

d̄ij · TjðtÞ · SjðtÞ ð2Þ

The random time series components are neglected when build-
ing the estimates d̂i.

Pipe Roughness Calibration
Pipes with the same material, age, diameter, hydraulic conditions,
and locations are grouped in clusters with the same roughness value
[in this case a Hazen-Williams (HW) coefficient]

CHW ¼ MHWx ð3Þ
whereMHW is the membership matrix of the np pipes to nc clusters
of HW coefficients; x ∈ Rnc is the vector of roughness cluster
values to calibrate; andCHW ∈ Rnp is the vector of HW coefficients
of pipes. Roughness calibration aims to fit the measurements by
adjusting the roughness coefficients of the hydraulic model. The
following nonlinear regression equations need to be considered:

½zj�i ¼ ½Syðtj;xÞ�i þ εij ð4Þ
where yðtj;xÞ = hydraulic state that is implicitly defined by the
extended period simulations at time tj; zj ∈ Rnm is the vector of
measurements at time tj; S is the selection matrix to select state
vectors that correspond to the measurements; and εij ∼N ð0;σ2

ijÞ
are independent and identically distributed Gaussian error terms
with zero expectation and standard deviation σij.

The box-constrained WLS problem for parameter calibration
consists of seeking to minimize the differentiable criterion

min
xL≤x≤xU

fðxÞ ≜ 1

2

Xnt
j¼1

Xnm
i¼1

Hκ

�½Syðtj;xÞ�i − ½zj�i
σij

�
þ α

2
kx − x0k22

ð5Þ
where in place of the traditional least-squares criterion the weighted
Huber function Hκ with parameter κ is used, as in Preis et al.
(2011), to increase the robustness of parameter estimates against
outliers; nt = number of observation times; nm = number of mea-
surements; xL and xU = lower and upper bounds; x0 = prior infor-
mation about x (e.g., initial value in the EPANET file); and α =
Tikhonov regularization coefficient, which penalizes large depar-
tures from x0 for sufficiently large α and increases the robustness
of parameter estimates against outliers. The state-of-the-art algo-
rithm for solving a differentiable WLS problem is the iterative
Levenberg-Marquardt algorithm. At each iteration step, the gra-
dient of f is calculated to estimate the Hessian matrix at the last
estimate xk. The gradient of f at xk is

∇fk ¼
Xnt
j¼1

Jðtj;xkÞTWj
~Rðtj;xkÞ þ αðxk − x0Þ ð6Þ

where Wj is the diagonal weight matrix at time tj; Jðtj;xkÞ ¼
S∂xyðtj;xkÞ is the Jacobian matrix of the prediction function at xk,
with ∂xy using the postmultiplication by P ¼ MHW as in Piller
et al. (2017); and ~Rðtj;xkÞ is the (nm, 1)-vector of truncated un-
reduced residuals

½ ~Rðtj;xkÞ�i

¼
(
½Syðtj;xkÞ − z�i if j½Syðtj;xkÞ − z�ij ≤ κσij

κσijsignð½Syðtj;xkÞ − z�iÞ else

ð7Þ
The estimate of the Hessian matrix is the following symmetric,

positive definite matrix:

Hk ¼
Xnt
j¼1

Jðtj;xkÞTWj
~Jðtj;xkÞ þ αInc

¼
Xnt
j¼1

~J ðtj;xkÞTWj
~Jðtj;xkÞ þ αInc ð8Þ

where ~J is given by

½ ~Jðtj;xkÞ�mn ¼
(
½Jðtj;xkÞ�mn if j½Syðtj;xkÞ − z�mj ≤ κσmj

0 else
ð9Þ

The constraints are taken into account through a saturation/
desaturation process by checking the Karush-Kuhn-Tucker opti-
mality conditions to identify the optimal Lagrange multipliers.

The projected Levenberg-Marquardt algorithm consists of
solving following linear system:

xkþ1 ¼ xk − CT
k ðCkHkCT

k Þ−1Ck∇fk ð10Þ
whereCk is the selection matrix for the unsaturated components xk.
To cope with ill-conditioned Hessians matrix, a damping factor
with a regularization parameter is introduced to scale the gradient
according to the curvature

HkðλÞ ¼ Hk þ λ½diagðHkÞ þ ϕInc � ð11Þ
where ϕ = positive parameter; and λ = damping parameter. Further-
more, we make use of following relation to calculate confidence
intervals for the roughness estimates (Piller 2019):

© ASCE 04021106-3 J. Water Resour. Plann. Manage.
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−½Δx�i ≤ δxi ≤ ½Δx�i; with M ¼ ðW0.5JÞþ;

½Δx�i ¼ 3
Xnm
k¼1

jMikj; i ¼ 1; : : : ; nc ð12Þ

with J is the block matrix J ¼ ðJðt1;xÞT : : : Jðtnt ;xÞTÞT ; and
W0.5 is the diagonal matrix W0.5 ¼ ðW0.5

j Þ ¼ ðσijÞ.

Dual Model

We introduce a so-called dual approach (DA) for detecting and
localizing leaks, which is depicted in Fig. 2(b). In the DA, the
model is augmented with ns virtual reservoirs that are connected
with pressure measurement nodes by valves. The origin of the name
dual stems from the fact that, instead of using the fixed-demand
boundary condition at the sensor nodes (i.e., the original or primal
hydraulic model), the measured pressure heads are used as fixed-
head boundary conditions at the corresponding virtual reservoirs.
Consequently, the heads at the measurement nodes become free
variables and imbalances in the system compared to a leak-free
model lead to flows to the virtual reservoirs. If there are no leaks,
and if we set the minor loss of each virtual reservoir’s valve to
zero, the two networks are equivalent. In the hydraulic model, we
normally set these valves’ minor loss to a sufficiently low but
nonzero value, and so the primal and dual networks are numerically
equivalent but not mathematically equivalent.

If a new leak appears in the primal model, the residuals between
measured and calculated pressures change. The pressure drops

caused by higher flow velocities toward the leak in the real system
are not observed in the model that is still based on the leak-free
system. In the dual approach, the measured pressure drop is applied
to the fixed-head reservoirs and, as a consequence, an additional
outflow is generated. This outflow can be understood as an outflow
residual or virtual leak flow. The advantage of the DA is that the
calculated outflows act as amplifiers that deliver significant and
localized signals even for small pressure drops. In addition, the out-
flows at the virtual reservoirs serve a good first estimate for the
leak’s size and location.

Dual Model Sensitivities

We consider the dual WDN with np pipes, ns virtual links, and nj
junction nodes at which the heads are unknown. We also denote
the vector of unknown flows in the pipes and virtual links by
q ∈ Rnpþns , and the unknown heads and demands at the (free) no-
des by h ∈ Rnj and d ∈ Rnj , respectively. The sensitivities of heads
and pipe flow rates with respect to nodal outflows are derived
among other sensitivities in Piller et al. (2017). The local sensitiv-
ities ∇dh and ∇dq can be calculated in demand-driven analysis as
follows:

∇dh ¼ −ðATF−1AÞ−1
∇dq ¼ −F−1AðATF−1AÞ−1 ð13Þ

where A is the link-node-incidence matrix of the dual network
graph reduced to junction nodes (all links, including pipes and

Cluster
1
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6

(b) (c) (d)

90
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160

0 2 4 6 8 10 12 14 16
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Cluster 1 Cluster 2 Cluster 3
Cluster 4 Cluster 5 Cluster 6

(a)

Fig. 2.Network colored by calibration clusters of Hazen-Williams roughness coefficients. Pressure measurements are shown as circles. (a) Roughness
iterations; (b) the principle of the dual model, where the pressure measurements are replaced by the combination of a valve and a virtual reservoir
whose head is equal to the measured head hi, and the dual model transforms hi into virtual leakage flows qvi ; (c) pressure residuals for the first week of
2018; and (d) the minimum, maximum, and root-mean-square errors (RMSEs) in increasing RMSE order.
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virtual links, are taken); and F is the diagonal matrix of head loss
derivatives with respect to q.

Let Af ∈ RðnpþnsÞ×ðnfþnsÞ be the link-node-incidence matrix of
the dual network graph reduced to fixed-head nodes (the nf initial
tanks and reservoirs, and the ns virtual reservoirs), and let qin ¼
AT

fq represent the unknown flow rate entering in the system
(leaving the fixed-head nodes if positive). Then the sensitivity
of the qin can be written as using Eq. (13)

∇dqin ¼ −AT
fF

−1AðATF−1AÞ−1 ð14Þ

The Jacobian matrix in Eq. (14) is the matrix of first-order deriv-
atives of the inflows calculated at virtual pressure nodes at meas-
urement locations and real pressure boundary conditions such as
reservoirs. The ði; jÞ element of ∇dqin represents the first-order
change rate of the calculated in- or outflow at a fixed-head node
i as a consequence of a change in demand at node j.

In the dual model, the in- and outflows at the virtual reservoir are
an indicator for a real existing leak or model errors. In a perfect
model, where all the parameters are known, the calculated pres-
sures of the dual model would be exactly the same as the measure-
ments from a primal model. In the corresponding dual model,
the calculated in- and outflows at junctions would be zero and
the primal and dual models would give approximately the same
results (i.e., except for small numerical differences due to the minor
losses across the virtual reservoir valves).

In the presence of an unknown leak, the measured pressure
heads and the values calculated by the leak-free primal model di-
verge. In the dual model, the pressures at the measurement nodes
become free and the measurements are set as virtual fixed heads
[Fig. 2(b)]. The imbalance caused by the unknown leak is then
expressed as in- and outflows calculated at pressure measurement
nodes. However, as shown in the BattLeDIM (Steffelbauer et al.
2020), the sensitivity is much higher in the dual model. Inverting
the problem acts as an amplifier of leaks. Another advantage is that
the imbalances and the value in question (leaks) have the same unit
of flow. The sum of all the imbalances normally gives a good first
estimate of the size of the leak. For explanation of the amplifying
effect, a deeper investigation of Eq. (14) may be useful: from the
balance of inflows and outflows, it is possible to deduce each
column of ∇dqin including the fraction of in- and outflows as a
response to the change in outflow at the corresponding demand
node equation

1Tnfþnsqin ¼ 1Tnjd ⇒ 1Tnfþns∇dqin ¼ 1Tnj ð15Þ

The sum of the column vector must be 1. Naturally, the response
should be an inflow for all fixed-head nodes.

Leak Detection and Localization

Leak Detection with the Dual Model
Whereas in the past, human operators were in charge of small
single-supply areas, modern WU employees are responsible for
multiple DMAs simultaneously (Bakker et al. 2014). That is why
automatic anomaly detection algorithms are of particular interest
for providing a rapid response to leaks and burst pipes (Romano
et al. 2013). However, a correct estimation of the total leakage out-
flow over their time of existence (from the start tS until the end tE
when they are repaired) is of utmost importance to assess water
losses (Hamilton and McKenzie 2014). The correct identification
of tS is also one of the objectives in the BattLeDIM (Vrachimis
et al. 2020). We developed a two-stage approach to tackle both
tasks: (1) using anomaly detection algorithms to detect leaks as

quickly as possible, and (2) using regression analysis to retrieve
good leak start time tS estimates. For both approaches the virtual
leak flows ½qv�i ¼ −½qin�iþnf (the dual model’s outflows to the
virtual reservoirs) are used (Fig. 4, for example).

Two algorithms were used to detect leaks in the qv: (1) the
CUSUM algorithm, where a a leak is detected when the cumulative
sum of positive and negative differences in the signal exceeds a
certain threshold τ 1, and (2) the likelihood ratio test (Basseville
and Nikiforov 1993), where a leak is detected if the ratio between
the likelihood of the leak versus the leak-free case exceeds a certain
threshold τ2. The ideal thresholds for both methods are obtained
through calibration on leak-free data.

Visual inspection of the virtual leakage outflows qv of detected
leaks revealed two different types of leaks. The first leak type TI is
a sudden pipe burst that happens instantaneously at tS

qLðtÞ ¼
�

0 for t < tS

qS for t ≥ tS
ð16Þ

where qLðtÞ = leakage outflow over time; and qS = saturated (maxi-
mum) leak flow (e.g., Leak 3 in Fig. 4). Leaks are not modeled as
pressure-dependent demands in contrast to the leaks generated in
the BattLeDIM. The second leak type TII is a slowly growing leak
starting at tS and saturating at a certain time tSA, modeled as a piece-
wise function with a quadratic growth rate before the saturation
(e.g., Leaks 1, 2, and 4 in Fig. 4)

qLðtÞ ¼

8>><
>>:

0 for t < tS

a · t2 þ b · tþ c for tS ≤ t ≤ tSA

qS for t > tSA

ð17Þ

The coefficients of the quadratic outflow model connect the
curves through following relationships a ¼ ðqS − bðtSA − tSÞ=
ðt2SA − t2SÞ and c ¼ −at2S − btS. Additionally, it was found that
leaks are evolving simultaneously in the system, which makes de-
tection more difficult. If a single leak evolves over time, a Bayesian
inference approach based on Hamiltonian Monte Carlo algorithm
(Hoffman and Gelman 2014) is used (e.g., in Area C) to identify the
parameters tS; tSA; qS; a; b, and c plus the confidence intervals of
the leak model parameters. In the case of multiple evolving leaks
(Area A&B), differential evolution is used to identify the best com-
bination of leak outflows over time plus the leak parameters of each
single leak (Storn and Price 1997). The identified leak outflows
were compared against the outcomes of the DA and subsequently
used for the leak localization.

Leak Localization with the Dual Model
The Pearson correlation for flow and pressure residuals and the
first-order estimates using sensitivities are calculated for the locali-
zation (Perez et al. 2014). It is more convenient for implementation
purposes to work with the pressure residuals and sensitivities of the
original measurement nodes instead of using the inflow sensitivities
in Eq. (14) (e.g., no need for calculating Af and changing the set of
variable pressure nodes). This does not affect the main idea because
the sensitivity of the head is equivalent to the head loss of the virtual
valve and hence proportional to the flow sensitivity in the linearized
system.

The vector of the sensitivities of measured head is deter-
mined by

∇dhm ¼ −SðATF−1AÞ−1 ð18Þ

The term S is the same selection matrix for the measurement
nodes as in Eq. (4).
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The difference between Eqs. (18) and (14) consists in the multi-
plication by the derivative of the valve head loss: (½Sh�i − hfnfþi ¼
Kij½qv�ij½qv�i ⇒ ∂djð½Sh�iÞ ¼ −2Kij½qv�ij∂djð½qin�nfþiÞ). If the
sensitivities following Eq. (18) are used, the pressure residuals
are used for the calculation of the correlation, whereas the simu-
lated external flows at the virtual reservoirs are considered in
the case of Eq. (14).

It proved to be beneficial to calculate the correlations only for
measurement nodes where the leak flow (calculated by the dual
model) exceeds a certain threshold (e.g., 0.5 L=s). This adjustment
eliminates the noise from the pressure measurements and stabilizes
the calculated set of candidates for the unknown leak. The Pearson
correlation ρr;Sð·;iÞ is calculated as

ρr;Sð·;iÞ ¼
covðr;Sð·;iÞÞ
σr · σSð·;iÞ

ð19Þ

where r is the vector of residuals; Sð·;iÞ is the sensitivity vector of
node i; covð·Þ is the covariance; and σr and σSð·;iÞ = standard devia-
tions of the residual vector and the sensitivity vector, respectively.
The residuals and the sensitivity coefficients are very small. How-
ever, this did not show any negative impact in the allocation in our
tests. In contrast, the system is stabilized by the additional pressure
boundary conditions, which makes the correlation more stable
compared to the conventional primal model approach. One impor-
tant limitation of the correlation method is that it does not work for
two or more leaks appearing at the same time. Therefore, a single
leak must first be isolated in time from other leaks in order to be
localized. The leakage curves that have been calculated for detec-
tion serve as a basis for choosing the best time for allocation, and
we use a step-by-step procedure for localizing simultaneously
growing leaks:
1. Identify the time interval that starts briefly before the new un-

known leak starts and ends before the next leak starts. The time
intervals from tS to tSA are found by a combination of CUSUM
or likelihood ratio tests with Hamilton Monte Carlo or differ-
ential evolution (depending on the single- or multiple-leak case)
as described in the leak detection paragraph in the “Methods”
section.

2. Initialize calculation for the selected time interval (load all
measurements as well as the estimated demands).

3. Run extended-period simulations for selected time interval; for
each time step,
a. Update boundary conditions via toolkit functions including

demand patterns, heads at virtual reservoirs, pump flow;
and

b. Update all known leaks with their calculated leak flows as
fixed demands and define the start time of the unknown leak
based on the results of the detection.

4. Simulate the time step (here the EPANET toolkit is used)
and after each time step with active new unknown leak, cal-
culate correlation in Eq. (19) for all nodes based on the
sensitivities.

5. Consider only the nodes with a correlation score higher than
a given minimum threshold (e.g., 0.95) and add those eligible
correlations to the sum of correlation taken over all calculated
time steps.

6. Identify the node with the highest correlation sum as the can-
didate for the new leak within this time interval.

7. Add the new leak to the list of known leaks and the leakage flow
is considered as a known demand for the localization of the next
leak and the procedure is repeated from Step 1 until all leaks
have been identified in the given period.

L-Town Case Study and Measurement Data

The case study network L-Town was provided by the organizers of
the BattLeDIM (Vrachimis et al. 2020). L-Town is a small hypo-
thetical town based on a real WDN in Cyprus with approximately
10,000 inhabitants, who receive water from two reservoirs. The
WDN consists of pipes with diameters ranging from 63 to 225 mm
and a total pipe length of 43 km. L-Town consists of three distinct
hydraulic areas: (1) Area A is the main part of the network, (2) Area
B is a low-lying part that is supplied through a pressure reduction
valve, and (3) Area C is an area with higher elevation that is sup-
plied by an elevated tank fed from Area A through a pumping sta-
tion. An overview of the network and the location of the three
measurement zones can be found in Fig. 2.

To enhance the water loss monitoring capabilities, the WU of
L-Town installed three flowmeters (two at the reservoirs and one
at the pumping station), a tank-level sensor, and 33 pressure sensors
(depicted as circles in Fig. 2). All sensors measure and transmit data
every 5 min to the utility’s supervisory control and data acquisition
(SCADA) system. Additionally, the WU installed 82 smart water
meters or AMRs in Area C, measuring three different customer
types: residential, commercial, and industrial. There is no flow-
meter installed at the tank that feeds Area C. Therefore, a virtual
inflow measurement to Area C has to be reconstructed from the
tank-level measurements and the inflow measurement measured at
the pump that supplies the tank.

The data set of the BattLeDIM contains 2 years of sensor data
for 2018 (historical data set) and 2019 (validation data set), an
EPANET model of the water distribution network, plus the time
and repair location of 10 pipe bursts that were fixed in 2018. Three
types of leaks exist: (1) small background leaks with 1%–5% of the
average inflow, (2) medium pipe breaks with 5%–10%, and
(3) large pipe bursts with leakage flows of more than 10% of
the average system inflow (≈180 m3=h). Large leakages with out-
flows over 15 m3=h are fixed by the water utility after a reasonable
amount of time within 2 months. The leakages have two different
time profiles: either (1) abrupt pipe bursts with constant leak flow
rates, or (2) background leakages with growing leak rates that
evolve over time until large outflow rates at which they remain con-
stant. In total, 14 leakages occurred in 2018 with outflow rates be-
tween 5 and 35 m3=h, of which 10 leaks have been repaired. The
remaining four leaks are not repaired and continue into the 2019
validation data set. The BattLeDIM challenge is to find the 19 leaks
that happened in 2019 plus the four remaining leaks. The outflows
and locations of the 33 leaks can be found in Figs. 6–9 (dashed lines
in the outflow time series plots and circles in the location overview
plots). More details on the data set can be found in Vrachimis
et al. (2020).

Results and Discussion

Demand Calibration

Each AMR time series is decomposed into its trend, seasonal (with
a period length of a week), and random components using the
multiplicative time series model described in Eq. (1). Subsequently,
cluster analysis is used to identify similarities in the trend and
seasonal patterns. Two distinct demand patterns emerge in the trend
TðtÞ and in the seasonal components SðtÞ, residential (TRðtÞ;
SRðtÞ) and commercial (TCðtÞ; SCðtÞ). The seasonal and trend com-
ponents are shown in Fig. 3 for each AMR measurement. Further-
more, some patterns are found to be a superposition of both pattern
types. These patterns belong to houses with mixed user groups
(e.g., commercial space in the ground floor and apartments in
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the floors above). Subsequently, these patterns are calledmixed pat-
terns. Generally, all demand patterns can be described through the
superposition [Eq. (2)] of the residential and commercial pattern.
During workdays (Monday to Friday), water consumption follows
a similar behavior, whereas during the weekend (Saturday and
Sunday) higher consumption during late hours occurs as the result
of night life [Fig. 3(a)]. Furthermore, cluster analysis revealed four
outlier patterns in the AMR measurements. After closer examina-
tion, these outlier patterns were explained as industrial users with a
periodicity differing from a week (i.e., 9, 11, or 13 days). Hence,
those industrial users do not follow the same pattern of consump-
tion as described in Eq. (2) and are not further used in the demand
modeling. The trend components in Fig. 3(b) show higher water
usage during July and August, and lower usage in December
and January.

The demand model is used to model the unmeasured cus-
tomers within the L-Town network. Additionally, a virtual inflow

measurement of Area C was constructed from the pump flow mea-
surements and the tank’s water level. This virtual inflow is used to
(1) validate the demand model; and (2) estimate the leak outflow in
Area C. Fig. 4(a) shows the estimated leakage outflow, which is
constructed as the difference between the virtual inflow measure-
ment and the total estimated demand for Area C. Three different
strategies for the demand estimation are used in Area C. First,
only the measured demand at the AMRs is subtracted [just AMR
in Fig. 4(a)], which leads to an overestimation or an offset of
the leak flow because of the unmeasured customers. Second, the
demand for the whole zone is estimated based on the model as
described in Eq. (2) using the base demands from the BattLeDIM
EPANET model (Inferred), which leads to high noise in the leak
outflow estimates. Third, the AMR measurements are combined
with demand estimates for the unmeasured customers (Combined).
The last approach leads to the best leak outflow estimates with low
levels of noise as well as no offset. Clearly, four different leaks can

Fig. 3. (a) Weekly seasonality; and (b) yearly trend extracted from the AMR measurements for the different customer types (residential and
commercial) and nodes consisting of a mix (mixed).

Fig. 4. Leakage outflow in Area C: (a) estimated by comparing the virtual inflow measurement and the demand model; and (b) as provided by the dual
model.
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be seen in the data: three that grow over time until they are saturated
(Leaks 1, 2, and 4), and a sudden pipe burst (Leak 3). This infor-
mation proved to be useful for the leakage modeling [Eqs. (16)
and (17)].

Roughness Calibration

The internal diameters of pipes are nominal diameters defined by a
discrete number of values that depend on the manufacturer and the
material. In the L-Town INP file, it is assumed that the outside
diameters of plastic pipes are entered instead of the inside diame-
ters, which is first corrected with the most usual inside diameter for
PVC and polyethylene (PE) pipes (Table 1).

After inspection and several tests, the pipes are divided into six
different roughness clusters according to their diameter, material,
initial roughness values, and managing zones in which they are lo-
cated. Because of the small number of observations and pipes, one
cluster with CHW ¼ x5 is assigned for Zone B and one to Zone C
(x6). Cluster 1 with the same x1 roughness value consists of the
plastic pipes in Zone A; pipes in Cluster 2 are in Zone Awith diam-
eters 100 or 150 mm, and original INP roughness x2 ¼ 120. Sim-
ilarly, pipes in Zone Awith diameters 100 or 150 mm and original
CHW ¼ 140 define Cluster 3: x3 ¼ 140. Finally, Cluster 4 is made
of pipes with internal diameter 200 mm in Zone A. Fig. 2 shows an
overview of the roughness groups.

Through visual inspection of the measurements from the first
week of 2018, it is assumed that no leaks are present in the data
set during that time. Consequently, measurements for this week are
used for the roughness calibration. The roughness calibration is
performed for the six clusters, nc ¼ 6, and by solving the WLS
problem in Eq. (5) with κ ¼ 3, α ¼ 0, and box constraints xL ¼
60 and xU ¼ 160with the Levenberg-Marquardt method [Eq. (10)].
The ns ¼ 33 pressure measurements in Fig. 2 are used (nm ¼ 33).
They repeat every 5 min for 7 days (nt ¼ 2,016). All measurements
are chosen to be of the same accuracy σij ¼ 1.

The algorithm converges after 11 iterations. The results are
given in terms of estimates in Table 2. For the first cluster, plastic
pipes in Zone A, the initial estimate x01 ¼ 146 belongs to the 99%
confidence interval [141.9, 163.7]. Consequently, the final estimate
152.8 is not significantly different from the initial value. However,
the initial estimates for the other five clusters differ significantly
from the point estimates at iteration k ¼ 11 (they do not belong

to the five 99% confidence intervals). Based on the confidence in-
tervals and the initial estimates, the bold values are selected. The
pressure residuals are represented in Fig. 2(c). It can be seen that the
mean-squared error (MSE) is about 6 cm H2O.

Virtual Leak Flows with the Dual Model

A dual model is constructed from the EPANET model containing
the calibrated pipe roughnesses and demand patterns from the de-
mand calibration. The heads of the virtual reservoirs are set to the
corresponding pressure measurements. If leaks appear in the net-
work, the dual model reacts with virtual leak outflows caused by
the pressure differences of the hydraulic model and the lower res-
ervoir heads. The virtual leak flows for each sensor location within
Area C are depicted in Fig. 4(b). Furthermore, the total sum of all
virtual leak flows is shown. This sum gives a good first approxi-
mation of the leak size. The second leak in Area C was repaired and
hence its end time and its location (Pipe p31) are known. The leak is
closest to Sensor Node n31, which shows the strongest reaction to
the leak by producing the biggest virtual outflow. The same reason-
ing leads to the conclusion that Leak 1 is close to Sensor n1, Leak 3
is in proximity of n31, and Leak 4 is somewhere in the middle of all
three sensors.

Comparison of Fig. 4(a) with the total virtual leak outflow in
Fig. 4(b) shows that the real leakage outflows have similar magni-
tudes as the virtual outflows. However, the dual model seems to
underestimate the real outflows in Area C slightly.

Fig. 5 compares the effect of leakages on the measured pressure
signals versus the virtual leak flows in the dual model for the first
two leakages in 2019 that appear in Area A (Pipes p523 and p810).
In this figure, solid lines are 4-h moving averages, whereas the
shaded lines are the original 5-min signal. The dual model amplifies
the leak signal compared to the pressures [compare Figs. 5(a
and b)]. Furthermore, the leaks have a more local effect on the
virtual leak flows than in the pressures, which allows a rough es-
timation of the leak’s location. The sum of all virtual leak outflows
in Fig. 5(c) gives a good estimate of the leak sizes, which are
approximately 27 m3=h for each leak.

Leak Detection

Two different signals are used for leak detection: (1) the flow
residual between the measured inflow and total demand plus al-
ready known leaks in an area, and (2) the dual model’s outflows to
the virtual reservoirs (Figs. 4 or 5). Two different types of leaks are
found in the data—instant bursts and leaks that are growing over
time. Growing leakage flows are modeled with the quadratic func-
tion in Eq. (17). Data from the dual model are used to identify the
leak start times and their shapes (i.e., instant or growing). For that
reason, thresholds are extracted from the DA flows at each sensor

Table 1. Original pipe characteristics in the INP file and corresponding
cluster membership

Diameter (mm) CHW Zone
Cluster No.
in Eq. (3) No. pipes Length (m)

53.6 (63) 146 A 1 3 71.40
53.6 (63) 146 B 5 1 9.21
64 (75) 146 A 1 1 60.08
100 120 A 2 76 3,639.10
100 120 B 5 25 1,190.11
100 140 A 3 500 24,069.65
100 140 C 6 104 5,201.60
150 120 A 2 7 313.62
150 140 A 3 90 4,102.87
150 120 B 5 6 226.56
141 (160) 146 A 1 16 713.73
200 90 A 4 59 2,749.71
200 90 C 6 5 195.90
198.2 (225) 146 A 1 12 558.58

Note: Bold indicates the original external parameters that were corrected for
PVC and PE pipes.

Table 2. Calibration of HW coefficients

Cluster No. xL x0 xU x11 − Δx x11 x11 þ Δx

1 60 146 160 141.9 152.8 163.7
2 60 120 160 108.1 109.7 111.3
3 60 140 160 141.1 141.6 142.1
4 60 90 160 126.5 126.8 127.1
5 60 136 160 100.4 111.2 122.0
6 60 133 160 133.1 134.0 134.9

Note: The first three columns are the lower-bound, initial estimate, and
upper-bound values for the six clusters; the last three columns are the 99%
confidence intervals centered on the value at convergence; in bold are the
final point estimate.
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using the leak-free case in the first week of 2018. If the DA signal
exceeds the threshold, a leak is detected in the system. The detec-
tion time is used as the start time of the leak for our BattLeDIM
solution. To estimate the leakage outflow, the start times and the
shapes of the leaks are used to fit the leak shape on the flow
residuals. If a single leak evolves over time, Bayesian inference
is used; for multiple simultaneously appearing leaks, a faster differ-
ential evolution is used to identify the best combination of leak out-
flows over time. The detected leaks are double-checked against the
DA and subsequently used for the leak localization.

The results for leak detection and localization for 2019 are
summarized in Table 3. Additionally, the leak detection and locali-
zation results are broken down by the different areas are shown in
Figs. 6–9, where shaded lines are daily moving averages of the real
leakages and solid dashed lines are the estimated leakages. Circles in
the network maps are the real leak locations, while crosses show
our estimates. The leak detection results for Area C are shown in
Fig. 6(a). The shapes of the leaks are resembled very well by our
method for all three leaks, and the differences in the final leak out-
flows are negligible for Area C. The sudden pipe burst (Leak C3 at
Pipe p280) is detected instantaneously, while the detection of the
growing leaks takes a bit longer. Nevertheless, leakages are detected
on average within less than 9 days. A less conservative detection
threshold potentially decreases the detection time.

The leak detection results for Area B are shown in Fig. 7(a),
where the instant pipe burst is perfectly detected, although the
leakage outflow is slightly overestimated.

The leak detection results for Area A are shown in Fig. 8. For a
better visibility of the simultaneously appearing leaks, the figure
is split into the two half-years of 2019, with Fig. 8(a) for the first
half until July, and Fig. 8(b) showing the second half of the year.
Additionally, the leaks from the first half are depicted as gray

Fig. 5. Dual model signals for first two leaks in Area A in 2019
(location at Pipes p827 and p523 with magnitudes of approximately
27 m3=h each): (a) pressure measurements p over time; (b) sharp
and localized signal of the virtual leak outflows qv over time calculated
by the dual model at the same measurement locations; and (c) the sum
over all virtual leak flows in the dual model serves as good estimates for
leak size.

Table 3. Results of leak detection and localization

True
location Start time Max (QL) (m3=h)

Estimated
location tD (h) Distance (m) Zone

p427 February 13, 2018, 08:25 5.11 — — — A
p654 July 5, 2018, 03:40 5.49 p654 956.33 0 A
p810 July 28, 2018, 03:05 6.91 p810 668.92 0 A
p523 January 15, 2019, 23:00 28.39 p500 0.00 205 A
p827 January 24, 2019, 18:30 26.46 p827 −0.08 0 A
p653 March 3, 2019, 13:10 18.28 p655 273.42 106 A
p710 March 24, 2019, 14:15 5.58 p702 0.00 222 A
p514 April 2, 2019, 20:40 15.58 p226 0.00 90 A
p331(*) April 20, 2019, 10:10 10.93 p905 0.00 355 A
p193(*) May 5, 2019, 10:40 10.36 p185 417.33 398 A
p142 June 12, 2019, 19:55 27.04 p623 0.00 2 A
p586 July 26, 2019, 14:40 20.52 p586 215.50 0 A
p721(*) August 2, 2019, 03:00 13.18 p703 222.92 354 A
p800 August 16, 2019, 14:00 21.95 p820 110.50 196 A
p123 September 13, 2019, 20:05 9.19 p201 588.33 133 A
p455 October 3, 2019, 14:00 11.05 p109 584.92 142 A
p762 October 9, 2019, 10:15 15.71 p745 301.00 179 A
p426(*) October 25, 2019, 13:25 13.56 p42 0.00 779 A
p879 November 20, 2019, 11:55 10.93 p884 342.50 256 A
p680 July 10, 2019, 08:45 5.37 p680 0.00 0 B
p257 January 8, 2018, 13:30 6.87 p257 104.50 0 C
p280 February 10, 2019, 13:05 5.26 p251 0.00 49 C
p277(*) May 30, 2019, 21:55 7.36 p8 541.83 358 C

Note: The true location, the start time, and the maximum leakage outflow (QL) are taken from the BattLeDIM solutions. The estimated location is found with
the leak localization algorithm. tD is the detection time measured in hours since the true start time of the leak. The distance between the true and the estimated
leak locations is the shortest topological distance over the pipes in meters. Zone shows in which area of the network the leak is located. Perfectly located leaks
are shown in bold (�10 m), while leaks with a distance greater than 300 m (missed leaks according to the BattLeDIM rules) are highlighted with an asterisk.
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shaded lines in Fig. 8(b) because they are still present in the net-
work. Sudden pipe bursts are again detected instantaneously, while
the thresholds for growing leaks seemed a bit too conservative.
However, the shapes of all leaks are very well described through

the coefficients that our model found. One leak that started in Feb-
ruary 2018 at Pipe p427 with a magnitude of 5 m3=h is not detected
at all. All leak shapes are identified correctly until August, when
Leak A17 at Pipe p721 appears [Fig. 8(b)]. However, this leak is

Fig. 6. Results of leak detection and localization for the unknown leaks in Area C in 2019: (a) identified leakage outflows over time; and (b) estimated
locations of the leaks. Crosses are the estimated leak locations, circles indicate the real locations.

Fig. 7. Results of leak detection and localization for the unknown leaks in Area B in 2019: (a) identified leakage outflows over time; and (b) estimated
locations of the leaks. The cross is the estimated leak location, the circle indicates the real locations.

Fig. 8. Results of leak detection for the unknown leaks in Area A in 2019: leakage outflows for the (a) first half of the year; and (b) second
half of the year. The second half also includes the ongoing leaks from (a) as shaded lines. Additionally, the missed detected leak at Pipe p427
is shown in (a).
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detected very late and its size is underestimated by almost 5 m3=h.
This influences the detection of subsequent leaks, which results in a
decrease in the detection as well as the localization performance.
Nevertheless, leakages in Zone Awere detected within 10 days on
average.

Leak Localization

For the localization of the leaks, the network is divided into two
separate parts (Aþ B and C) and the pump is replaced by the flow
measurement for Zone A and B. All calculations are executed by
use of EPANET 2.00.12 and the EPANET toolkit integrated in an
application for data management and visualization that is exclu-
sively developed for the performance of the project.

Fig. 10 visualizes the graphical user interfcae (GUI) output at a
certain time step. The circles indicate the locations of the pressure
measurement nodes and the numbers show the calculated in- and
outflows calculated by the dual model. The two biggest virtual res-
ervoir outflows are marked by a bigger circle as expected in the
neighborhood of these two nodes. The diamonds show the nodes
with highest correlation scores at the current time and the bigger
diamonds show the nodes with highest correlation sum. Their size
is scaled by the sum value, which means that they are growing
over time.

Fig. 6(b) shows the localization results for Area C. Leak C1 is
perfectly isolated at the real location (p257). Leak C3 is found
within 50 m of the real leak. However, if the closed valve in
Area C is added to the hydraulic model, the isolation of this leak
might improve further. Leak C4 is not localized correctly, since the
distance exceeds 300 m as stated in the BattLeDIM rules. Reasons
for that might be that the closed valve is not taken into account, or
the fact that we are using demand-driven models, while the BattLe-
DIM organizers used a pressure-driven model. The more leakages
that occur in the network, the greater the difference between a
demand-driven and a pressure-driven demand model become,
and the more inexact our localization gets since the localization
errors accumulate. On average, all leaks are found within 130 m
of the real leak in Area C. For Area B, the leak is perfectly isolated
in time as well as in space (Fig. 7).

The results for Area A can be found in Fig. 9, and are split again
into half-years. Fig. 9(a) also contains the leak that was not detected
by our method (white cross). Early leaks are isolated almost per-
fectly, while the localization gets worse during later simulations.
This might be a consequence of the demand-driven model that
is used. For the leaks in Fig. 9(a), the average distance of the real
leaks to the estimated leak position is around 150 m. During later
simulations, this distance increases to 250 m [Fig. 9(b); Table 3].

Fig. 9. Results of leak localization for the unknown leaks in Area A in 2019: (a) first half of the year from January to June; and (b) second half of the
year from July to December. The not detected leak at Pipe 427 is shown as a white cross in (a). Crosses are the estimated leak locations, circles indicate
the real locations.

Fig. 10. Snapshot of the leakage isolation tool: calculated outflows at virtual reservoirs of sensor nodes and correlation results; small diamonds for
current time step and large diamonds for sum of all time steps (the size represents the score).
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A typo occurred while submitting the results for the BattLeDIM.
Leak p654 was inserted as p645. Taking this into account, the final
score of the Team Under Pressure would even further increase from
the already highest rate of true positives of 65% of all participating
teams.

Conclusion

In this article, we presented a novel solution to detect and isolate
multiple leaks in WDNs that we developed while participating in
the BattLeDIM competition. Our method consists of calibrating the
nodal demand and pipe roughness and introducing a dual model for
the calibrated primal problem to detect and locate leaks.

The calibration uses time series analysis and cluster analysis to
build a multiplicative predictive model for ultimately two network-
wide demand models, a residential and a commercial model. This is
used for both modeling unknown demands over time in the hy-
draulic model as well as distinguishing leakages and consumption
in the measurements. Subsequently, six roughness clusters were
calibrated using 33 pressure loggers for the first week of 2018.
Confidence intervals are given for the least-squares estimates.
The pressure residuals are very well reproduced for the entire week
with a small root-mean-square error of 6 cm.

The core of our method is a dual model that transforms a pres-
sure measurement node into a free junction node plus a link to
a virtual reservoir, whose head is equal to the measured values.
Significant inflows or outflows, either sudden or gradual, to these
virtual reservoirs are indications of leaks. In the dual model, the
pressure signal is transformed into a virtual leakage outflow signal
that is easier to analyze because it amplifies and localizes the effects
of leaks in the network. Sensitivities of nodal pressures to virtual
outflows are also derived. They are essential to understand the
behavior of the model at first order.

For leak detection, the CUSUM algorithm and likelihood ratio
tests are used jointly on the virtual leak flows, where the parameters
are tuned to limit the global false positive rate under normal oper-
ation conditions. When multiple leaks are present, differential evo-
lution is used to identify the best combination of leak modeling
parameters over time (i.e., start times and shapes of leaks over
time). These detection methods were employed for both the primal
and the dual data. The localization is achieved by analyzing the
correlation between the calibrated pressure (or virtual inlet-outlet
model predictions) and the corresponding first-order leakage im-
pulse response predictions at the candidate nodes. This solution
recovered 65% of true leaks with only four false positives in all
of 2019, which is a notable result (shared No. 1 ranking).

Using a pressure-driven model instead of a demand-driven one,
improving the calibration by reliably detecting closed valves as
well as using less conservative threshold parameters for the detec-
tion of the growing leaks might increase the already notable result
further. Certainly, a lot of potential lies in a deeper understanding of
the dual model to further improve the detection and isolation of
multiple simultaneously occurring leaks.

With 33 pressure sensors, the BattLeDIM data set contains an
unrealistically high number of sensors in a WDN of that size. In-
deed, the leak detection and localization performance will decrease
with a lower number of sensors. However, optimal sensor place-
ment algorithms might recover similar leak detection and localiza-
tion performances with fewer sensors. Furthermore, the BattLeDIM
organizers constructed the nodal demand patterns through a super-
position of residential and commercial demands multiplied with
noise. That is why we were able to almost precisely reconstruct
the demands on the unmeasured locations through the information

contained in the AMR data with our demand calibration approach.
In reality, demand patterns are more variable (Steffelbauer et al.
2021). Consequently, the dual model might perform worse in
systems with limited demand information and hence less accurate
demand models.

That is why, for future work, we want to focus on optimal sensor
placement (Steffelbauer and Fuchs-Hanusch 2016a) with the dual
model and on applying the dual model to challenging real data
sets, with model errors, outliers, uncertainty, and more variable
and realistic water demands. Furthermore, we are planning to in-
vestigate the importance of each step for the final classification,
enhancing the method to reduce the false positive rate, and study
the effect of the dual model on fitness landscapes of WDN optimi-
zation problems (Steffelbauer and Fuchs-Hanusch 2016b).
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