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Abstract

Behavior-agnostic reinforcement learning is a rapidly expanding research area focusing
on developing algorithms capable of learning effective policies without explicit knowl-
edge of the environment’s dynamics or specific behavior policies. It proposes robust
techniques to perform off-policy evaluation, namely Distribution Correction Estimation
(DICE) methods, in the context of infinite horizon Markov Decision Processes (MDPs).
This research paper investigates the impact of the initial start distribution mismatch
on the accuracy of DICE estimators in behavior-agnostic reinforcement learning. To
achieve this, seven systematic initial start distributions were created and utilized to
calculate the initial start distribution mismatch via Kullback–Leibler (KL) divergence.
Furthermore, off-policy evaluation performance was assessed using DICE estimators,
with Mean Squared Error (MSE) comparisons against ground truth values. The study
reveals that, based on the conducted experiments, the initial start distribution mis-
match does not have a clear influence on the performance of the DICE estimators.
Therefore, future research is required to increase the scope of the experiments and
address some of the limitations of this study to accurately assess the impact of the
initial start distribution mismatch on off-policy evaluation using DICE methods. This
paper underscores the complexity of the initial start distribution choice in behavior-
agnostic reinforcement learning, calling for further research to effectively evaluate its
impact across diverse environments and measures. Additionally, exploring the relation
between the initial start distribution and policies could provide deeper insights and
further refine the understanding of their influence on DICE estimators.

1 Introduction
Reinforcement learning (RL) algorithms have received significant attention recently for
demonstrating important successes in various real-life domains such as robotics [1], and
games [2], among others. Off-policy learning represents one of the diverse approaches within
RL, distinguished by its capacity to learn from past experiences, even when they were gen-
erated by potentially unknown behavior policies [3]. By separating the policy used for
exploration from the one being optimized, these algorithms can leverage valuable experi-
ence from diverse sources. This has inspired significant interest in behavior-agnostic RL,
a rapidly expanding area of research aimed at developing algorithms capable of learning
effective policies without explicit knowledge of, or reliance on, the underlying dynamics of
the environment or specific behavior policies [4].

Despite the challenges of behavior-agnostic off-policy reinforcement learning, several es-
timators have been developed over time for this scenario. Those estimators are part of
Distribution Correction Estimation (DICE) and are designed to address these challenges
by quantifying and correcting the mismatch between the state-action distributions of the
behavior policy and the target policy. These estimators aim to improve the efficiency and
effectiveness of learning algorithms in behavior-agnostic RL scenarios [5]. These methods
operate within an infinite horizon Markov Decision Process (MDP), which consists of a state
space, action space, reward function, transition probability function, initial state distribu-
tion, and discount factor [6].

The impact of the initial state distribution on the learning objective has been investigated
in prior studies [7]. Leveraging experience memory to facilitate exploration by adapting
the restart distribution, these approaches have shown promise in improving learning perfor-
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mance. Additionally, earlier works have explored the use of reset capacity and initial start
distributions to enhance learning outcomes [8]. However, the extent to which the initial start
distribution mismatch impacts the policy evaluation and state-action visitation mismatch,
particularly in the context of DICE methods is yet to be assessed.

Within this research paper, the main question that is being answered is How does the mis-
match in initial start distribution affect the performance of the DICE estimators in off-policy
evaluation?. The main findings of this research can be used to understand the correlation
between the state-action visitation distribution and the initial start distribution and, what
is the impact of the initial start distribution on the accuracy of estimating the target policy.
Specifically, the methods considered for this research are the DICE estimators, as showcased
in [4].

This research paper is structured as follows. Section 2 provides a background into this field
of study, with an emphasis on behavior-agnostic off-policy reinforcement learning, while
reiterating the key concepts of existing research. Section 3 outlines the research method-
ology, detailing the selection of measures used in the experiment. Section 4 describes the
experiments used to answer the (sub)questions. This involves showcasing the environment,
different approaches to generate different initial start distributions, and providing context
on how the measures described in the methodology were used. Section 4 also outlines the
results following the experimentation. Section 5 places the results in a broader context and
includes a reflection on the performed research, including limitations and future work. Sec-
tion 6 delves into the application of responsible research throughout the experimenting and
documentation process. Section 7 brings the report to a close by summarizing the main
findings of the study.

2 Background

2.1 Problem Setting
An infinite horizon Markov Decision Process (MDP) can formally be described as a tuple
M = (S,A,R, T, µ0, γ) [6]. The main components are the state space S, representing all
possible states in the environment, an action space A, representing all possible actions
the agent can take, a reward function R(si, ai), which provides a reward for each action
taken in a given state, a transition probability function T (si+1 | si, ai), which specifies the
probability of transitioning to state si+1 from state si after taking action ai, an initial state
distribution µ0, which defines the probability distribution over initial states, and a discount
factor γ ∈ [0, 1], which represents the importance of future rewards compared to immediate
rewards. A policy π controls the agent’s behavior, by defining the probability of taking each
action in each state. The interaction with the environment begins by sampling an initial
state s0 from the initial state distribution µ0. At each step i ≥ 0, the agent selects an action
according to the policy π, receives a corresponding reward ri, and transitions to a new state
based on the transition probability function [4]. This process continues for a fixed number
of steps, generating a sequence of states, actions, and rewards. Such a process is called an
episode or trajectory.
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2.2 Policy Evaluation
The value of a policy π is defined as the expected average reward it generates per step [4],
also known as normalized expected cumulative reward [5], which can be expressed as follows:

ρ(π) := (1− γ)E

[ ∞∑
t=0

γtR(st, at) | s0 ∼ µ0,∀t, at ∼ π(st), st+1 ∼ T (st, at)

]
. (1)

In the context of policy evaluation, the policy under assessment is known as the target
policy. The value of a policy can be expressed in two equivalent ways, according to [4]:

ρ(π) = (1− γ) · Ea0∼π(s0), s0∼µ0
[Qπ(s0, a0)] = E(s,a)∼dπ [R(s, a)], (2)

where Qπ(s, a) is the state-action value function, which represents the expected return when
starting from state s0, taking action a0, and then following policy π thereafter. It satisfies
the equation:

Qπ(s, a) = R(s, a) + γPπQπ(s, a). (3)

In this case, Pπ is the policy transition operator [4], that is:

PπQ(s, a) = Es′∼T (s,a),a′∼π(s′)[Q(s′, a′)] =
∑

s′∈S,a′∈A

π(a′|s′)T (s′|s, a)Q(s′, a′). (4)

The function dπ corresponds to the distribution of state-action pairs (s, a) within policy π.
It measures the probability that, given a policy π and a state si and action ai, the agent
will take action ai, when in state si. It satisfies the equation:

dπ(s, a) = (1− γ)µ0(s)π(a|s) + γPπ
∗ d

π(s, a), (5)

where Pπ
∗ is the transpose policy transition operator [4], given by:

Pπ
∗ d(s, a) := π(a | s)

∑
s̃,ã

T (s | s̃, ã)d(s̃, ã). (6)

2.3 Off-policy Evaluation Using DICE Estimators
Off-policy evaluation (OPE) aims to estimate ρ(π) using only a fixed dataset of experiences.
For instance, such a dataset would be D = {(s(i)0 , s(i), a(i), r(i), s′(i))}Ni=1, where the starting
states s

(i)
0 ∼ µ′

0 are samples from some initial start distribution µ′
0, (s(i), a(i)) ∼ dπ

b

are
samples from some distribution dπ

b

, r(i) = R(s(i), a(i)), and s′(i) ∼ T (s(i), a(i)) [4]. In other
words, OPE focuses on estimating the performance of a target policy using data collected
under a different policy, known as the behavior policy [9]. The behavior policy used to create
dataset D is denoted as πb.

In the context of DICE methods, the following expression is used for the value of the target
policy:

ρ(π) = E
(s,a,r)∼dπb [ζ∗(s, a) · r], (7)

where ζ∗(s, a) can be written as:

ζ∗(s, a) =
dπ(s, a)

dπb(s, a)
, (8)
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which is the distribution correction ratio [4]. The ratio can be formally described as the
state-action visitation distribution under the target policy over the state-action visitation
distribution under the behavior policy. The DICE estimators work towards approximating
this ratio, without knowledge of dπ or dπ

b

, then estimate ρ(π) by applying (7) [4].

Considering (5), the function dπ
b

, which represents the state-action visitation distribution
by following the behavior policy can be written as:

dπ
b

(s, a) = (1− γ)µ′
0(s)π

b(a|s) + γPπb

∗ dπ
b

(s, a), (9)

In the research conducted by [4], the initial start distribution of D is denoted as µ0, indicat-
ing that both dπ and dπ

b

, are generated under the same initial start distribution. However,
since this study focuses on the mismatch between initial start distributions, the initial start
distribution of D is denoted as µ′

0 instead. This notation highlights that, in this research,
these two initial start distributions, µ0 and µ′

0 are not necessarily the same.

To observe the impact of the initial start distributions (µ0 and µ′
0) on the distribution

correction ratio, equations (5) and (9) can be used in equation (8), by substituting dπ(s, a)

and dπ
b

(s, a) as follows:

ζ∗(s, a) =
(1− γ)µ0(s)π(a | s) + γPπ

∗ d
π(s, a)

(1− γ)µ′
0(s)π

b(a | s) + γPπb

∗ dπb(s, a)
. (10)

2.4 Initial Start Distribution Mismatch
In the context of initial start distributions, the concept of state visitation mismatch high-
lights the disparity between the starting states observed by an agent in a dataset created
using the behavior policy, and the starting states it would encounter in a dataset created
using the target policy. In other words, it quantifies how the agent’s initial state experiences
diverge between these two datasets.

Given a finite number of reinforcement learning episodes, the initial start distribution of
the dataset created under the target policy, µ0, can be defined empirically as follows:

µ̂0(s) =
1

N

N∑
i=1

f(i, s, π, µ0), (11)

where N is the total number of episodes or trajectories and f is a function defined as:

f(i, s, π, µ0) =

{
1, if episode i of the dataset created under π using µ0 starts in state s
0, otherwise

Similarly, for the initial start distribution of the dataset created under the behavior pol-
icy, µ′

0, the empirical start distribution µ̂′
0 can be defined as follows:

µ̂′
0(s) =

1

N

N∑
i=1

f(i, s, πb, µ′
0), (12)

The initial start distribution mismatch revolves around the divergence between µ̂0 and µ̂′
0.

This study is concerned with the impact of this mismatch on the accuracy of the DICE
methods when estimating the value of the target policy.
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3 Methodology

3.1 Choice of Measure for Initial Start Distribution Mismatch
To verify whether the initial start distribution mismatch has an impact on the accuracy of
the DICE estimators in estimating the target policy, it is necessary to compute the disparity
in state visitation between µ̂′

0 and µ̂0. For this, several measures are available that can be
used to estimate the distance between the state visitation distributions.

For computing the similarity between two probability distributions, a widely used mea-
sure is the Kullback-Leibler (KL) divergence. It aims to quantify how similar a probability
distribution is to a candidate or model distribution [10]. It is not a distance metric due to
its asymmetry [11]. The KL divergence between two probability distributions P and Q is
given by:

DKL(P ∥ Q) =
∑
x∈X

P (x) log
P (x)

Q(x)
. (13)

The value of the KL divergence ranges from 0 to infinity, where the value 0 is obtained when
the two probability distributions P and Q are identical.

Using equation (13), the state visitation mismatch between µ̂′
0 and µ̂0 can be expressed

as follows:

DKL(µ̂
′
0 ∥ µ̂0) =

∑
s∈S

µ̂′
0(s) log

µ̂′
0(s)

µ̂0(s)
, (14)

where s represents the states from the state space S of an MDP.

3.2 Choice of Measure for Target Policy Estimation
This research aims to assess the impact of the initial start distribution mismatch on off-
policy evaluation. Specifically, the policy evaluation was conducted using behavior-agnostic
methods, particularly the DICE methods used in [4]. As previously stated, the goal of
these methods is to approximate the distribution correction ratio, defined in equation (8),
and then use it to estimate the value of the target policy, also known as the normalized
expected cumulative reward by applying equation (7). This estimator, which is called the
dual estimator, is proposed by [4], and can be expressed as follows:

ρ̂ζ(π) := E
(s,a,r)∼dπb

[
ζ̂(s, a) · r

]
. (15)

The dual estimator is highly effective based on the findings of [4]. Therefore it was the chosen
estimator for this research paper to estimate the normalized expected cumulative reward, for
evaluating the target policy. This estimator is unbiased across multiple configurations and
consistently outperforms other estimators. Furthermore, it demonstrates robustness to both
scaling and shifting of MDP rewards, making it a reliable choice for various applications [4].

3.3 Choice of Measure for Assessing Performance
After determining the measures for evaluating the state visitation mismatch and target
policy estimation, the final important step was to find a measure that can assess the quality of
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the policy evaluation estimation (ρ̂ζ(π)), by measuring how closely it aligns with the ground
truth. A widely used metric for assessing performance is Mean Squared Error (MSE), which
aims to determine the average squared distance between the actual and predicted values
[12]. Generally, MSE can be expressed as follows:

MSE =
1

n

n∑
i=1

(yi − ŷi)
2, (16)

where n represents the total number of dataset samples.

In the context of this research, to assess the accuracy of the DICE methods in estimat-
ing the normalized expected cumulative reward of the target policy, the following equation
is used for MSE:

MSE =
1

n

n∑
i=1

(ρ(π)i − ρ̂ζ(π)i)
2, (17)

where ρ(π)i and ρ̂ζ(π)i represent the ground truth and estimated normalized cumulative
reward, respectively, for dataset i.

The MSE is calculated over multiple datasets to obtain a more robust and reliable error
value. This approach ensures that the MSE provides a comprehensive assessment of the
influence that initial start distribution mismatch has on the accuracy of DICE methods.

3.4 Integration of Steps
To systematically assess the impact of initial start distribution mismatch on the accuracy of
DICE methods, a structured approach was followed involving the generation and compari-
son of various initial start distributions.

Initially, multiple different initial start distributions µ1
0, µ

2
0, µ

3
0, . . . , µ

k
0 were generated. These

distributions were carefully selected to ensure a reasonable variance in KL divergence values
relative to the target initial start distribution µ0. For each initial start distribution µi

0, a
fixed number of datasets were created using the behavior policy πb. Let n denote the num-
ber of datasets for each µi

0. For each dataset, the empirical initial start distribution µ̂i
0 was

recorded. This empirical distribution remained constant for all datasets generated under µi
0.

Similarly, n datasets were created using the target policy π with the initial start distri-
bution µ0. The empirical initial start distribution µ̂0 was also recorded and remained con-
stant across all target policy datasets. By fixing the empirical initial start distributions
(µ̂i

0, µ̂0), the KL divergence values between each pair (µ̂i
0, µ̂0) would remain constant be-

tween datasets. Then, the KL divergence values were computed, between each pair (µ̂i
0, µ̂0),

using equation (14). Each initial start distribution, µ̂i
0 is associated with a specific KL di-

vergence value, relative to µ̂0.

Despite fixed policies and initial start distributions, the actions taken in each dataset varied
due to the stochastic nature of the policies. This variability ensured that each dataset pro-
duced a unique ground truth value and normalized cumulative expected reward. Creating
multiple datasets helps mitigate biases that may arise from the interaction between specific
initial start distributions and the policies.
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At fixed intervals, the normalized expected cumulative reward was computed using equation
(15), and averaged across the n datasets for each start distribution. This average was then
compared to the ground truth value to monitor the convergence of the estimated values.
For each initial start distribution µi

0, the MSE was calculated across the n datasets using
(17). This calculation incorporated the ground truth value and the normalized cumulative
expected reward, computed using equation (15), for each dataset, created under πb, using µi

0.

After calculating the MSE for all k initial start distributions, k MSE values were obtained,
each computed from n samples. In other words, each initial start distribution µ̂i

0 is associ-
ated with an MSE value and a KL divergence value. These MSE values were then compared
for each KL divergence value to assess the impact of initial start distribution mismatch on
the accuracy of the DICE methods.

This structured approach ensured that the analysis covered a range of initial start dis-
tributions with varying KL divergence values, providing a comprehensive assessment of how
initial start distribution mismatch affects DICE method performance.

4 Experiments

4.1 Environment
The experiments were conducted using a 10x10 grid-world environment, similar to the
one used for the experiments of [4], where the agent can move up/down/left/right. The
states/observations are given by the x, y coordinates of the agent’s location. The reward
function for this environment is the following:

exp

(
−2

|x− tx|+ |y − ty|
length

)
, (18)

where tx and ty are the coordinates of the goal or target. In these experiments, the target
was fixed at the bottom-right corner of the grid, specifically at coordinates (tx, ty) = (9, 9)
on a 0-indexed grid. The length value corresponds to the length of the grid which is 10. This
reward function implies that the reward decreases exponentially as the distance between the
agent and the target increases. When the agent is very close to the target, the distance
between the agent’s current location and the target is small, leading to a high reward close
to 1. As the distance grows, the reward rapidly decreases towards 0. This environment is
depicted in Figure 1.

The optimal policy for this task involves moving all the way to the right, followed by moving
all the way down. The target policy π is taken to be the optimal policy plus 0.1 weight on
uniform exploration, allowing for some degree of random actions to encourage exploration
of the state space. The behavior policy πb is taken to be the optimal policy plus 0.3 weight
on uniform exploration, allowing for a greater degree of random action compared to π. The
datasets generated using policies π and πb, each consist of 400 trajectories. Every trajectory
contains 100 time steps.

It is important to note that discrete environments were required for the experiments due to
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the chosen metric for computing the state visitation distribution mismatch, as well as for
reduced complexity.

Figure 1: 10x10 Grid Environment

4.2 Initial Distributions
For the experiments, 7 different initial start distributions have been used. For each of those
distributions, 5 datasets were created using πb. Each different start distribution was fixed, to
ensure the same distribution is used across the 5 datasets. These distributions were selected
systematically, to be able to generate a reasonable variance in the KL-divergence values,
without having a large sample size. The initial start distributions that were used were the
following:

• Uniform Distribution: Each state in the grid has an equal probability.

• Edge Bias Distribution: The states around the edges of the grid were assigned a higher
probability than others.

• Distance-Based Distribution: The states have a probability inversely proportional to
their distance to the goal/target state.

• Target-Centric Distribution: This distribution prioritizes points closest to the target.
Specifically, it focuses on points with (x, y) coordinates where both x and y are sampled
from the interval [8, 9], with equal probability.

• Remote Distribution: This distribution prioritizes points that are in the proximity
of the furthest possible point from the target. Specifically, it focuses on points with
(x, y) coordinates where both x and y are sampled from the interval [0, 2], with equal
probability.

• Fixed Point Distribution: This assigns probability 1 to the grid cell (8, 9), thus always
starting one cell away from the target state.

• Mixed Mode Distribution: This distribution averages the probabilities from the first
three distributions with equal weights and then normalizes the resulting values.
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Furthermore, 5 datasets were created using a fixed uniform initial start distribution under
the target policy π, to generate 5 different ground truth values. After every dataset was
created, the empirical initial start distributions were calculated using equations (11) and
(12), respectively. Then, the KL divergence was computed between each of the 7 empirical
initial start distributions (µ̂0

1, µ̂0
2, ..., µ̂0

7) used in datasets created under πb, and the em-
pirical initial start distribution (µ̂0) used in datasets created under π. As such, 7 different
KL divergence values were created, by applying equation (14). It is important to note that
for some states s ∈ S, the empirical initial start distribution (µ̂0(s)) can be 0. In such cases,
a very small arbitrary constant value is used instead, 10−10, to avoid issues in calculating
the KL divergence.

The next step in the experiment involves using the DICE estimators. The estimator is
trained using a feed-forward neural network, as described in [4]. The network has two hid-
den layers, each with 64 neurons and ReLU activation functions. The learning rate is set to
0.00003, and the total number of training steps is 25,000, with a batch size of 512.

The estimator takes as input a dataset created under πb and a dataset created under π.
Every 250 training steps, the normalized cumulative expected reward is computed using
equation (15), which is compared to the ground truth, to observe the convergence of the
DICE estimator. The reward value at the final training step is then used as the estimate of
the target policy, ρ̂ζ(π), for the dataset created under πb. This process is repeated for each
of the 5 datasets created under πb, using µ̂i

0 for i from 1 to 7, corresponding to each of the 7
initial start distributions. Subsequently, the MSE is computed for the 5 dataset samples for
each µ̂i

0, with i from 1 to 7, following equation (17). Here, ρ̂ζ(π)k represents the normalized
expected cumulative reward or the estimation value of π from dataset k and ρ(π)k is the
ground truth value from dataset k for π, with k from 1 to 5. As such, 7 MSE values are
computed, which correspond to the 7 KL divergence values.

4.3 Results
After conducting the experiment outlined in the previous subsections, a set of results was
obtained. Initially, for each of the 7 initial start distributions utilized in datasets created un-
der πb, the normalized cumulative reward values were averaged across the 5 datasets. These
averages were then plotted alongside the ground truth value, which was averaged over the 5
datasets created under π, spanning a total of 25,000 steps, to observe the convergence of the
DICE estimators. Additionally, the legend of the plot includes the KL divergence values for
each initial start distribution. These values represent the state visitation mismatch between
each distribution compared to µ0.

As depicted in Figure 2, systematically creating the 7 initial start distributions leads to
a reasonable variance in KL divergence values. The normalized expected cumulative reward
is higher than the ground truth value for all distributions, except the remote distribu-
tion, which converges around 0.87. The two highest values are obtained by the fixed and
target-centric distributions, both converging around 0.99, which also have the highest KL
divergence values of 4.89 and 8.64, respectively. The values for the remaining distributions
are converging closer to the true value, around 0.93, with the closest being the uniform
distribution, which also has the lowest KL divergence value of 0.34.
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Overall, no clear trend can be observed from this graph regarding the impact of the ini-
tial start distribution mismatch on the performance of the DICE estimators. In some cases,
a lower KL divergence value leads to a more accurate estimation, while in others, specifically
for higher KL divergence values, there is no clear trend. For instance, for the remote ini-
tial start distribution, which is furthest from the goal, the estimation is lower compared to
the ground truth value. Conversely, the two closest start distributions to the goal, namely
target-centric and fixed point, with higher KL divergence values, yield estimations higher
than the ground truth value.

Figure 2: Normalized Cumulative Reward Over Time Steps

The MSE for each KL divergence value is depicted in Figure 3. The x-axis shows the ascend-
ing sorted KL divergence values corresponding to each initial start distribution. Each box
plot displays the cumulative expected reward values for each of the five dataset samples after
convergence. Above each box plot, the MSE values are indicated. To enhance observability,
the MSE values were multiplied by 1000. The dashed line represents the average ground
truth value across the five datasets.

From the graph, no clear trend is identifiable. While smaller KL divergence values seem
to lead to more accurate estimations and lower MSE, higher KL divergence values do not
follow a consistent pattern. The highest MSE corresponds to the third-highest KL diver-
gence value and is also the only box plot below the ground truth. The second and third
highest MSE values correspond to the two highest KL divergence values. Overall, the re-
sults do not indicate any particular trend that would suggest the KL divergence value has
a significant influence on the MSE.
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Figure 3: Box Plot of Mean Squared Error for Each KL Divergence Value

5 Discussion

5.1 Limitations
Based on the experiments conducted in this research, the initial start distribution mismatch
does not have a clear influence on the performance of the DICE estimators. There are sev-
eral limitations to consider, which influenced the results of the experiments. Firstly, it is
important to note that the experiment was run on relatively few datasets. For each initial
start distribution, of the 7 selected, only 5 datasets were generated. That is because, creat-
ing each dataset using a reasonable amount of trajectories, which is 400 in this case, each
being of length 100, takes a significant amount of time to run. This is partly a limitation
of Python itself not being regarded as a particularly fast programming language relative to
others, but also due to the specifications of the machine used to conduct the experiments,
as highlighted in section 6.

As such, the box plots showcased in Figure 3, would have benefited greatly from addi-
tional samples to provide additional support for the results since the MSE would have been
more accurate. Furthermore, the same observation can be made about the number of initial
start distributions and the respective KL divergence values, as well as the number of train-
ing steps. Due to time constraints, generating a large number of start distributions and KL
divergence values respectively, along with a longer training process, was not feasible. To
combat this, the distributions were chosen systematically, such that a reasonable variance
between the KL divergence was present.

Moreover, another aspect that has to be considered is the type of environment in which
the experiment is conducted. Due to the chosen metric, the KL divergence, the experiments
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had to be run in discrete environments, to be able to calculate the initial start distribution
mismatch. As such, only grid-world-like environments were used to conduct the experiments.
Analyzing the impact of the initial start distribution mismatch on continuous environments
is beyond the scope of this research. It is also important to note that the experiments were
conducted in a single environment. Other discrete environments could have been explored
to enhance the study. Other similar limitations include the choice of metrics. Though some
research was conducted to motivate the choice for each measure, it is hard to say whether
results would hold under different measures for state visitation mismatch, or performance
assessment, without a thorough comparison of those measures on the performed experiments.

Furthermore, a possible limitation of the experiment is the relation between the initial start
distribution and the policies. As described in subsection 4.2, the policies utilized weights for
uniform exploration to enhance overall state space exploration and mitigate biases between
the initial start distributions and the optimal policy. Given the nature of the environment,
with the goal always positioned at coordinates (9, 9), and the nature of the optimal policy,
certain initial start distributions had an advantage by reaching the reward more consistently.
The added weights for uniform exploration helped mitigate these biases.

However, the risk of using excessively high exploration weights is that it could lead to
extensive state space exploration, regardless of the start distribution. This would diminish
the impact of the start distributions. To address this, the target policy used a weight of
0.1, and the behavior policy used a weight of 0.3, aiming for a balance that mitigates the
bias between the optimal policy and start distributions while avoiding over-exploration. The
exploration weights used in this research are the same as those employed in the experiments
conducted by [4]. Although fine-tuning these parameters could further optimize the balance,
it is beyond the scope of this research.

Lastly, one more limitation to consider is the reproducibility of the results. Due to time con-
straints, it was not possible to perform multiple runs of the DICE estimators with the same
seed. Consequently, running the DICE estimators on the same dataset would yield slightly
different results in terms of the normalized cumulative expected reward. This implies that
the plots highlighted in subsection 4.3 cannot be exactly replicated. However, it is important
to note that the datasets used in the research can be replicated, as they have been saved
and seeded successfully. Therefore, the initial start distributions and Kl divergence values
are reproducible. Given the relatively large number of training steps and the fact that each
estimation averages results from 5 fixed datasets, the differences between multiple separate
runs on the same dataset would be minimal. Thus, while the exact values may differ slightly,
the overall convergence of the plots and the normalized cumulative expected reward values
will be very close to those presented in the paper. Therefore, the main conclusions drawn
from the plots would remain unchanged.

5.2 Future Work
Looking ahead, several adjustments can be made to the experiments to further validate and
enhance the results. With fewer time constraints and access to higher-performing machines,
a greater number of experiments could be conducted to ensure the research is as robust as
possible. This would include exploring a wider range of initial distributions, which means
a more accurate representation of the variance in KL divergence. Then, each initial distri-
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bution can be run on a much larger number of datasets to increase the sample size of each
initial start distribution. After that, the training process can be adjusted, by increasing
the number of steps to improve convergence, to get a more accurate representation of the
reward values for each initial start distribution.

Furthermore, another way of validating the experiments and enhancing the research in-
cludes, using different performance metrics, as well as different measures for computing the
initial start distribution mismatch, to assess whether the results hold under different configu-
rations. Lastly, the experiments can be conducted on multiple discrete environments, or even
in more complex continuous environments, to be able to accurately assess to what extent
the initial start distribution mismatch impacts off-policy evaluation using DICE methods.

Lastly, as mentioned previously in subsection 5.1, certain initial start distributions benefit
more from specific policies depending on the environment. This is shown in equation (10),
as the distribution correction ratio depends on both the policy and the initial start distri-
bution. Future research could explore this relation further by employing various policies for
each initial start distribution and assessing their interactions across multiple environments.
This approach would provide a clearer understanding of how the initial start distribution
mismatch influences policy performance and vice versa, in the context of DICE estimators.

6 Responsible Research
It is very important to understand that conducting research requires adhering to certain eth-
ical considerations. It is part of the researcher’s responsibility to ensure that the research
was conducted ethically and that results are reproducible. Throughout this study, ethical
considerations were of utmost importance and upheld at every stage of the process.

To ensure transparency, the results of the performed experiments are publicly available
in a GitHub repository1. This repository is an extension of the original repository2, used
in [4], which can be reproduced and modified free of charge under the Apache-2.0 license.
That repository serves as a foundation for this research, as it contains the implementation
for the environments, dataset creation for behavior and target policies respectively, and the
training process of the DICE estimators. Any modifications made to files from the original
repository are documented in the header of those files.

Finally, the experiments should be reproducible by following the described methodology and
experiment setup. Running the experiments from the repository will yield similar results to
those described in subsection 4.3, though not identical, as explained in subsection 5.1. It is
important to note that the main takeaways from the results will remain unchanged. All ex-
periments were conducted locally on an HP Laptop 15s-fq1xxx with an Intel(R) Core(TM)
i5-1035G1 CPU and Windows 11 PRO.

1https://github.com/tibisabau/dice_rl
2https://github.com/google-research/dice_rl
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7 Conclusion
To conclude, this research paper aims to assess the impact of the initial start distribution
mismatch on the accuracy of DICE estimators. The DICE estimators presented in [4] served
as the foundation for this study. To address the research question, seven initial start distri-
butions were systematically created and assigned to the behavior policy. The initial start
distribution mismatch between each behavior policy start distribution and the target policy
start distribution was then computed using the Kullback–Leibler (KL) divergence. This
approach ensured a reasonable variance in KL divergence values, allowing for an analysis of
whether it influences the performance of DICE estimators.

For each start distribution, the performance of off-policy evaluation was assessed by running
the DICE estimators for 5 dataset samples. The normalized expected cumulative reward
values obtained from these estimators were compared to the ground truth value of the tar-
get policy using Mean Squared Error (MSE). The initial start distribution mismatch value,
given by the KL divergence, was then compared to the MSE for each distribution to deter-
mine if the initial start distribution mismatch impacted the MSE values. The results from
the conducted experiments did not reveal a clear trend, indicating that further research is
required. Expanding the scope of the experiments is necessary to accurately assess whether
the initial start distribution mismatch can influence the performance of DICE estimators.

Overall, this research aimed to test the significance of the choice of initial start distribution
in behavior-agnostic reinforcement learning by evaluating its impact on the performance of
DICE methods. However, further research is needed to accurately assess the overall impact
of the start distribution on off-policy evaluation. Future studies should include experiments
on multiple types of environments, a larger number of datasets and start distribution sam-
ples, and different measures to compute the initial start distribution mismatch and assess
performance. Additionally, exploring the relation between the initial start distribution and
policies could be an interesting direction for future research. This could provide deeper in-
sights into how different start distributions interact with various policies and further refine
the understanding of their influence on DICE estimators.
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