
Delft University of Technology
Master of Science Thesis in Embedded Systems

A Priority-Based Real-Time Scheduling
Framework for ROS2

Grzegorz Krukiewicz-Gacek
Supervisor: Dr. Mitra Nasri

Embedded
Networked
Systems

A Priority-Based Real-Time Scheduling

Framework for ROS2

Master of Science Thesis in Embedded Systems

Embedded and Networked Systems Group
Faculty of Electrical Engineering, Mathematics and Computer Science

Delft University of Technology
Mekelweg 4, 2628 CD Delft, The Netherlands

Grzegorz Krukiewicz-Gacek
g.m.krukiewicz-gacek@student.tudelft.nl

gkgacek@gmail.com

31.07.2021

mailto:g.m.krukiewicz-gacek@student.tudelft.nl
mailto:gkgacek@gmail.com

Author
Grzegorz Krukiewicz-Gacek (g.m.krukiewicz-gacek@student.tudelft.nl)
(gkgacek@gmail.com)

Title
A Priority-Based Real-Time Scheduling Framework for ROS2

MSc Presentation Date
05.08.2021

Graduation Committee
Koen Langendoen Delft University of Technology
Arjan van Genderen Delft University of Technology
Mitra Nasri Eindhoven University of Technology

mailto:g.m.krukiewicz-gacek@student.tudelft.nl
mailto:gkgacek@gmail.com

Abstract

Since its introduction in 2007, ROS (Robot Operating System) has become one
of the most popular framework for developing automated solutions in a variety
of applications, ranging from automotive to manufacturing.

Meeting safety-critical timing requirements is a crucial element in many fields
where ROS is present. The ROS community has introduced several improve-
ments to allow developers to create more time-predictable implementations,
with the introduction of ROS2 being the major step forward.

In the following thesis, we examine structure of ROS2 to discover task schedul-
ing and data distribution related challenges that developers will face when trying
to implement latency-sensitive ROS2 applications based on periodic tasks.

We propose a set of improvements that allow to mitigate presented challenges.
A prototype of a new scheduling mechanisms embedded within ROS2 logic is
introduced to combine both callback scheduling and efficient intra-process data
exchange.

Furthermore, by exploring possible new ROS2 extensions, we address scen-
arios where applications have to dynamically adjust to temporary changes in
timing-constraints. We extend the existing ROS2 APIs with an option to easily
create new scheduling policies to handle specifc requirements for each applica-
tion without the need for any kernel level scheduler modifications.

iv

“If we knew what it was we were doing,
it would not be called research, would it?” – ALBERT EINSTEIN

vi

Preface

With the expanding market for advanced robotics applications, ROS (and ROS2)
has become one of the go-to platforms for education, research and industry level
prototyping. Its friendly API interface, a growing developer community and ease
of use has encouraged developers to make it their middleware of choice. Plenty of
robotics applications, such as manufacturing, drones, automotive, etc., require
software that will be able to operate according to real-time software principles.
The community is continously trying to answer the question if ROS (ran on top
of Linux) can be considered a path forward for developing safety critical solu-
tions. The aim of this work is to further expand our understanding and provide
prototype solutions for a set of challenges related to implementing real-time
systems on top of one of the most popular robotic development frameworks in
the world - ROS.

The work presented in this thesis is a direct result of inspiring enthusiasm,
patience and trust of my supervisor Dr. Mitra Nasri. She has been a source
of amazing ideas and provided invaluable guidance for navigating the world of
academic research. I believe I have been trully lucky to be able to work with
her on this project. I would like to also thank my friends from the Embedded
Systems programme who were always supportive throughout the time of writing
this thesis.

Grzegorz Krukiewicz-Gacek

Delft, The Netherlands
31st July 2021

vii

viii

Contents

Preface vii

1 Introduction 1
1.1 ROS framework . 1
1.2 ROS application model . 1
1.3 ROS vs. ROS2 . 2
1.4 Real-time systems and ROS . 3
1.5 Organization and contributions of this work 4
1.6 Research goals . 4

2 Motivation and Problem Definition 5
2.1 Assumptions . 5
2.2 Task scheduling in ROS applications 7

2.2.1 Prioritizing different types of tasks 7
2.3 Possible approaches to task organization 9
2.4 Message transport overhead . 10
2.5 Discovered challenges . 12
2.6 Application aware scheduling . 12

3 Related Work 15
3.1 Analysis of ROS behavior . 15
3.2 Extending ROS capabilities . 16
3.3 Conclusions . 16

4 Proposed Solution 19
4.1 High-level idea . 19
4.2 Extending ROS logic . 20

4.2.1 Supporting different callback priorities 22
4.2.2 Supporting preemption 22
4.2.3 Supporting application-aware scheduling 22

4.3 Ensuring support from the Operating System 23

5 Evaluation 25
5.1 Metrics . 25
5.2 Synthetic application generation 26
5.3 Tracing method . 30
5.4 Performance comparison . 30

5.4.1 Scheduling overhead . 30

ix

5.4.2 Examining utilization and deadline miss correlation . . . 33
5.4.3 Improving data freshness 38

5.5 Application-aware scheduling . 42

6 Conclusion 47
6.1 Future work . 48

A Sample usage of proposed API 51

x

Chapter 1

Introduction

1.1 ROS framework

Robot operating system (ROS) has become one of the most widely spread open-
source software frameworks in the robotics industry [2]. Contrary to what it’s
name might suggest, it is not an operating system in a classical meaning of a
bridge element between computer hardware and the software running on top of
it. It runs on top of a regular operating system (such as Ubuntu) and does not
manage the available hardware resources or the execution of all software in the
system. In fact, ROS is an open-source middleware suite containing a set of
software libraries and tools that help build applications for robot control.

Thanks to a large community, frequent updates (at the time of writing this
document, latest release was published on May 23rd 2021, just a year after
the previous release), and a wide selection of open-source packages, ROS ac-
celerates the initial prototyping phase of development, thus driving down the
research and development cost. Currently, the number of available open-source
ROS packages reaches around 2 thousand and the number of active users is
estimated to be near 20 thousand. Big players, such as Canonical, the company
behind the Ubuntu Linux distribution, officially backs the development of ROS
by collaborating by Open Robotics (the company steering the development of
ROS). All these factors have increased interest in ROS by industries such as
automotive, aerospace, and manufacturing.

1.2 ROS application model

In ROS, applications are constructed of nodes. By definition, each node should
encapsulate a single functionality of the system (e.g parsing sensor data, tele-
metry logging, controlling motors, etc.). Nodes consist of callbacks, which are
functions that implement the actions performed by a node. In this work we will
refer to them either as callbacks or tasks. One node can consist of one or more
callbacks. The callbacks can be executed based on timer (periodically) or as a
way to handle several types of events available in the ROS framework.

This brings us to the main important aspect of ROS which is the publisher-
subscriber mechanism that allows for communication between nodes. Each node
can publish data on a topic, which later can be received by another node that

1

subscribes to that specific topic. A topic (e.g. radar distance measurements
topic), can be understood as an asynchronous message bus. Data is encapsu-
lated in a messages which can consist of one or several instances primitive data
types (such as integers, floats, strings, etc.). Once data is published on a topic,
callbacks assigned specifically to that topic are called in the receiving nodes.

Consequently, ROS can be considered a framework that supports a modular
application architecture approach, with clear separation between different ele-
ments of the application. Understanding this aspect of ROS provides as good
insight into why it encouraged so many developers to create third-party libraries
that can be easily integrated into existing applications.

1.3 ROS vs. ROS2

Figure 1.1: Simplified representation of a ROS application structure

In 2017, a refactored version of ROS, called ROS2 [11] was introduced to meet
growing and varied demands from the developers community. One of the main
driving factors for the creation of ROS2 was enhanced support for time-sensitive
applications.

Similar to its ancestor, ROS2 provides a publish-subscribe mechanism for
communication between nodes. To reduce message transmission overhead and
ensure more predictability ROS2 uses third-party implementations of data dis-
tribution service (DDS) that replaces the TCP based message transport. In ad-
dition to that, the message transport can be fine-tuned using Quality of Service
(QoS) settings specific for each DDS. Furthermore, ROS2 adds an intra-process
message exchange system API that utilises a shared memory space for fast data
sharing between nodes.

Finally, ROS2 replaces the centralized coordination and scheduling approach
of ROS (roscore) with a distributed, multi-layer concept called executor. A
visual representation of a ROS and ROS2 application structures are presented
on Fig. 1.1 and Fig. 1.2.

2

Figure 1.2: Simplified representation of a ROS2 application structure

1.4 Real-time systems and ROS

Meeting safety-critical timing requirements is a crucial element in many fields
where ROS is present [3]. The manufacturing, autonomous cars or unmanned
aircrafts (e.g. recently popular drones) are just one of a lot of examples.

ROS Industrial, a separate distribution of ROS was created to better match
the needs of the manufacturing sector. Companies such as Apex.AI or Autoware
Foundation are using ROS based stack for their autonomous driving solutions.
Recently, Toyota announced it is going to use a system build on top of ROS for
the development of their self-driving systems.

The common factor for all those safety-critical systems is ensuring that the
software stack that operates them is capable of guaranteeing a time predictable
behavior. By guaranteeing time predictable behavior, such system can be used
for hard real-time applications where missing a deadline for a task execution can
impact the safety of the system. An example of what a deadline miss means in
context of tasks in a real-time system is presented on Fig. 1.3.

Figure 1.3: A simple example of a deadline miss (marked with red
circles) in a system with two tasks

3

1.5 Organization and contributions of this work

The arguments brought up in Sec. 1.4 prove a high need for providing the de-
veloper community with detailed analysis of the strengths and weaknesses of one
of the most established robot development platforms such as ROS. In Sec. 2 of
this work, we perform a deep dive into the challenges for implementing real-time
applications, posed by limited options of controlling callback execution priority
and how this is further impacted by the message transport overhead. Next, in
Sec. 3, we explore the related challenges and possible solutions already brought
up by the academic community. Based on the challenges and opportunities dis-
covered in Sec. 2, in Sec. 4, we try to propose a set of improvements to the
existing ROS2 implementation that would have a chance of mitigating the dis-
covered ROS2 shortcomings. This is followed by a detailed evaluation described
in Sec. 5, where the proposed changes are compared against the baseline ROS
implementation. Lastly, we conclude the thesis in Sec. 6 by presenting a set of
final remarks.

1.6 Research goals

In this work we will focus on applications based on periodic tasks and the related
challenges that ROS2 developers will face when trying to implement periodic
task sets on top of the ROS2 middleware. We also find potential approaches to
enhanced the ROS2 framework with support for application-aware scheduling.
The summarised goals of this work are as follows:

• Analyze the ROS2 framework in the context of real-time applications con-
sisting of periodic tasks

• Explore possible approaches on how to make execution of such task sets
on ROS2 more predictable

• Attempt to provide means for implementing an application-aware (dy-
namic) preemptive scheduling policy for ROS2

4

Chapter 2

Motivation and Problem
Definition

As described in Sec. 1, ROS2 is rapidly making it’s way to systems with high re-
quirements in terms of time-predictability. In order to ensure applications based
on ROS2 can be commissioned on safety-critical systems, a good understand-
ing of ROS2 implementation characteristics is needed with context of real-time
systems in mind.

2.1 Assumptions

In this work, we focus on analyzing ROS2 from a perspective of specific subset of
ROS2 application architectures. One common approach to building ROS2 based
applications is based on callback chains. In such approach, majority of callbacks
are run as a result of new data being available on a topic. Such approach is
presented on Fig. 2.1. When looking at ROS2 callback chains, one of the most
important metrics is the end to end latency of a callback chain [6]. Therefore,
the analysis for callback-chain based applications would focus on aspects that
can impact how much time passes from the moment the first callback in the
chain starts to the moment the last callback in the chain finishes it’s execution.

5

Figure 2.1: Schematic representation of an application based on call-
back chains. Different arrow colors represent different topics.

Another approach to the ROS2 application design would be solely timer based,
where all callbacks are periodic. In such approach, presented on Fig. 2.2, all
computation happens only in timer based (periodic) callbacks. However, nodes
can still share data between each-other, but the subscription callbacks (that are
called upon data retrieval) do not perform any computation data immediately
but only store the data locally within a node for later use by the periodic
computation tasks.

Figure 2.2: Schematic representation of an application based on peri-
odic callbacks. Different arrow colors represent different topics.

6

In our work, we focus solely on applictions based on periodic callbacks On top
of that, to make the analysis more specific we specify a few more constraints.
First, as mentioned before, computation can only happen in time-triggered call-
backs. Nodes can share data between each other but no processing can happen
upon data retrieval. Secondly, we allow nodes to contain several periodic call-
backs. Lastly, periodic tasks have specific priorities assigned.

With those assumptions in mind we analyze the current capabilities of ROS2
for ensuring such applications can run in a time-predictable manner and can be
analyzed as periodic task based real-time systems.

2.2 Task scheduling in ROS applications

In order to understand the way ROS2 manages the execution and scheduling
of a task the inner workings for the executor mechanism have to be explored.
Executor is the main entity in ROS2 that is responsible for controlling the
execution of callbacks. Fig. 2.3, shows a simplified visualization of a executor
logic flow. In a ROS2 application, nodes are assigned to executors that control
the execution of the callbacks contained in them. A ROS2 application can
consist of a single executor controlling all the nodes or many separate ones
controlling the execution of one or more nodes callbacks.

Once a ROS2 application is started, the executors start spinning, (top element
on Fig. 2.3) which means they start infinitely (until the user or system stops
the application) executing their main logic in a looped manner.

First an executor looks if there is a timer based callback ready to be executed.
If this is true, the callbacks gets executed and the loop starts again.

If there is no pending timer based callback, the executor checks if any of
the subscription based callbacks are ready for execution, if this is the case, the
callback is executed and the executor loop starts again.

If neither periodic nor subscription based callbacks are ready for execution,
other types of callbacks, such as actions or services, are checked. In this work
we focus only on the timer based and subscription based callbacks.

ROS2 offers two main types of executors, namely the single threaded executor
and multi threaded executor. In the single threaded executor, the callback (timer
or subscription based) is ran on the same thread as the executor, thus halting
further execution of the executor logic until the work of the callback is finished.
This also prevents multiple callbacks to be executed at the same time,however
it is the most lightweight implementation.

In contrast to the single threaded executor, the multi threaded executor, del-
egates the callback execution to a separate thread. This allows the executor to
continue running after dispatching the callback execution to a separate thread.
Furthermore, this enables simultaneous execution of multiple callbacks within
the same executor. It is important to notice that the threads run under the
same umbrella executor process.

2.2.1 Prioritizing different types of tasks

By understanding the logic behind the executor mechanism we can begin to
realise the implications it might have on the way callbacks in ROS2 applications
are managed and the constraints it poses. At this point we would like to put

7

Figure 2.3: Simplified visualization of the ROS2 executor logic

the previously described order of executions of different types of callbacks in a
spotlight. We will use a simple set of three tasks to present a problem that will
appear due to the fact that the executor always prioritizes timer based callbacks
over subscription based ones.

Fig. 2.4 presents execution flow of three tasks that would be observed if they
were controlled by a single threaded executor. Task 1 - produces data (e.g.
sensor readings), Task 2 - is an intermediate task (e.g. telemetry), Task 3

- subscribes to the data produced by Task 1 and utilizes it for it’s periodic
computation (e.g. sensor data parsing).

First, we can see that even though Task 2 has lower priority that Task 3 it is
going to run first (assuming that they were registered in the executor in a Task

1, Task 2, Task 3 order, as stated in Sec. 2.3). This is due to the fact that a
ROS2 executor has no notion of callback priority; but this will be discussed in
detail later in Sec. 2.3.

The second issue that can be noticed is that the subscription callback, re-
sponsible for delivering data for Task 3 is executed at the very end. As a result,
even though the data were produced by Task 1 prior to the execution of Task
3, Task 3 still had to run on old data. This is the effect of the executor logic,
that will always prioritize an awaiting timer callback over a subscription call-

8

Figure 2.4: Representation of ROS2 based execution of a three task
application described in Sec. 2.2.1. Blue represents periodic callback
execution, purple represents subscription based callback execution.

back. Fig. 2.5 presents the expected execution flow, that is not achieved using
a single threaded executor.

Figure 2.5: Representation of a desired execution flow for the example
presented on Fig. 2.2.1. Blue represents periodic callback execution,
purple represents subscription based callback execution.

2.3 Possible approaches to task organization

The baseline0 approach. In Sec. 2.2.1 we mentioned that the executor in
ROS2 has no notion of callback priority. This poses a challenge for real-time
system designers where ensuring task prioritization is a crucial element of the
system. One approach to organizing nodes and their callbacks is assigning them
all to one executor. Throughout will this work, we will refer to this approach as
baseline0. In such scenario, the system designer does not have the capacity to
assign different priorities to different nodes or specific callbacks since everything
is ran under one process in the system and the executor does not have internal
scheduling capabilities. In this approach, in case multiple timer based callbacks
are pending for execution, they will be executed in the order the nodes they
belong to were added to the executor.

9

The baseline1 approach. Another approach is presented on Fig. 2.6. In
this approach, referred to throughout this thesis as baseline1, we assign each
nodes to separate executors. Those executors can then be ran in separate pro-
cesses. This allows us to leverage the system level scheduling capabilities to
enable prioritising callbacks from one node over another. The Linux scheduling
APIs are well documented but the developers are limited to what the underlying
system offers in terms of scheduling policies.

Figure 2.6: A visualization of the baseline1 approach with nodes dis-
tributed between multiple executors

2.4 Message transport overhead

One of the biggest changes between ROS1 and ROS2 is the way messages are
transported between nodes [8]. ROS1 utilized a TCP/IP based methodology
governed by centralised roscore. This way of transporting messages was proven
to be one of the elements blocking ROS from becoming a backbone for real-
time systems. This challenge was addressed with the release of ROS2 where
DDS (Data Distribution Service) based message exchange was introduced. With
ROS2, developers can now utilize a set of different DDS’s from different vendors
such as FastRTPS, OpenSplice or Connext. DDS based message exchange offers
a more predictable and controllable way of exchanging data then the ROS1
TCP/IP based system. On top of that, ROS2 added an fast intra-process data
sharing approach which allows for a very low latency message exchange.

We were particularly interested in the difference between the message trans-
port overhead for DDS and intra-process based data exchange. The reason
for that is the promise that intra-process based data exchange should further
reduce the message transport overhead and provide a much more predictable
performance. Those aspects are key to ensuring a predictable and efficient be-
havior of a system overall. We performed additional evaluation of differences
between transport times for different message sizes using FastRTPS DDS and

10

intra-process data exchange.

Figure 2.7: Comparison of message transport times (seconds) between
the FastRTPS DDS and inter-process communication

On Fig. 2.7, which presents the result of our message transport overhead
experiment, it can be observed, that for all tested message sizes (512b, 256Kb,
1Mb, and 8Mb) the intra-process data exchange is significantly faster and more
time-predictable. For example, for medium sized messages of 256Kb, intra-
process was more then 6 times faster. For large message sizes such as 1Mb,
the difference was even more significant with an over 10 times faster message
transport using the intra-process approach.

As presented on Fig. 2.8, data exchange overhead can become a more sig-
nificant part of the application execution time, thus increasing the utilization.
Eventually, it may lead to utilization exceeding 100% and leading to missing
task deadlines and starved subscription callbacks. If the time it took to ex-
ecute the subscription callbacks in the example presented on Fig. 2.8, was lower
(smaller purple blocks), eventually deadline miss could have been avoided.

11

Figure 2.8: Message transport time overhead resulting in a deadline
miss and starved subscription callback execution. Blue represents
periodic callback execution, purple represents subscription based call-
back execution.

2.5 Discovered challenges

At first glance, it might seem that the previously presented baseline1 approach
is a good solution for many challenges for real-time applications in ROS2. With
the possibility to distribute the nodes between multiple executors and having
better methods than TCP/IP to share data between nodes we should be able
to cover the needs of applications described in Sec. 2.1. However, baseline1
approach introduces a limitation in terms of the possible approaches to message
transport between nodes. When nodes are separated into different processes,
the only way to exchange data is using a DDS (Data Distribution Service) based
message exchange while the intra-process method is possible only for nodes that
sit within the same executor (baseline0 approach).

Eventually we are left with a choice to either have a way to efficiently ex-
change data between nodes with a single executor but not be able to schedule
them according to desired priorities (baseline0 approach), or have a way to
assign priorities to certain callbacks by distributing nodes between executors in
different processes (baseline1 approach) but have to use DDS which might po-
tentially turn out not good enough for certain types of applications (as presented
earlier on Fig. 2.8).

On top of that, the possible delay of executing subscription based callbacks,
described in Sec. 2.3 might cause further complications when it comes to analyz-
ing and predicting the behavior of ROS2 applications in the context of real-time
systems.

2.6 Application aware scheduling

By distributing nodes into separate processes to allow us to use the system
level scheduling APIs, we make the scheduling taking place in the underlying
OS layer rather than executor level, thus not allowing the executor and the
nodes to adjust the parameters used for scheduling if needed. However, ROS2
applications are inherently exposed to context changes, when they have to adapt

12

to new temporary missions [9].
Let’s imagine that at some point the system has to be much more cautious

about the action it takes (e.g. if a drone detects an increased collision probability
or a rover has to dock into a charging station). In a normal operation scenario,
some tasks might be considered more important, however, in case of a temporary
context change, producing fresh proximity data and processing them should be
given higher priority while the scheduling parameters for the other nodes in the
application have to adjust [7]. At the time of writing, ROS2 does not provide a
clear directive on how to handle such scenarios in an application wide manner.
One possible approach is to create a shared topic where nodes would inform
each other about critical changes in the application requirements. This way,
each node can react and, for example, change its priority or suspend execution.
For such approach, the reaction time can be insufficient and hard to predict,
when each node has to receive a message and then perform appropriate action.

(a) Execution schedule using baseline0 ROS2 approach

(b) Execution schedule with potential application-aware scheduling

Figure 2.9: Comparison between simplified execution schedule repres-
entations for baseline0 ROS2 approach and what could be achieved
with application-aware scheduling

As an example, we can again imagine a three task application such as the
one presented in 2.2.1. In a regular scenario, Task 2 has a higher priority over

13

Task 1. However, in a special temporary scenario, Task 3 could request that
the age of the data produced by Task 1 cannot exceed a certain threshold.
Fig. 2.9 presents a comparison between how an execution of such application
looks like with a baseline0 ROS2 approach and with a potential application-
aware scheduling policy.

14

Chapter 3

Related Work

In this chapter we perform a deep dive into the most relevant recent work
related to real-time support for ROS applications. This section is divided into
two sections, in Sec. 3.1 we look at work that focuses on analytical approach
to the challenge. In Sec. 3.2 we bring up contributions that present practical
propositions that try to improve the state of ROS.

3.1 Analysis of ROS behavior

In Exploring the performance of ROS [8] Shinpei et al. conducts a detailed
analysis of node to node message transport overhead. Not only various possible
DDS configurations are compared, but also the intra-process approach and the
ROS1 TCP/IP based message exchange. It is observed that the overheads vary
significantly between the available DDS configurations and system designers
should carefully consider the selected Quality of Service for their application if
DDS is chosed to handle the message transport in the application.

Response-Time Analysis of ROS 2 Processing Chains Under Re-
servation - Based Scheduling [15] by Casini et al. provides insight into the
end-to-end latencies of processing chains when implemented using ROS2. The
paper focused on analyzing the single threaded executor and flagged potential
concurrency issues that might arrise if multiple executors are ran simultaneously.

The work Towards a distributed and real-time framework for robots:
Evaluation of ROS 2.0 communications for real-time robotic applica-
tions [6] by Gutiérrez et al., similarly to [8], looks into the possible worst case
latencies of message transport in ROS2 in the context of implementing real-time
applications. It is observed that for a system under load, the latency and jitter
of DDS based message transport time noticeably increases.

In Automatic Latency Management for ROS 2: Benefits, Chal-
lenges, and Open Problems [1] Blass et al. introduce a ROS-Llama frame-
work for managing end-to-end latencies for ROS2 callback chains. Furthermore,
they provide detailed feedback on Linux and ROS itself and present a set of
challenges still stading in the way for real-time system designers (such as high
latency I/O operations).

15

3.2 Extending ROS capabilities

ROSCH: Real-Time Scheduling Framework for ROS [13] by Yukihiro
et al. introduces a scheduling framework which guaranties specific end-to-end
latencies by guaranteeing a specific frequency of execution for the last callback
in the chain. Intrestingly, ROSCH also adds a fail-safe system that signals early if
the system is underperforming allowing for earlier reaction (e.g. slowing down
an autonomous robot). Unfortunately, this work focuses solely on ROS1 (the
originall implementation of ROS) which is not the focus of our work.

In mROS: A Lightweight Runtime Environment for Robot Software
Components onto Embedded Devices [14], Takase et al. provide a novel
approach to ROS nodes execution on light-weight embedded systems. It utilizes
a real-time OS instead of the classical approach of running ROS on top of a
Linux based system. In addition, the authors develop a custom TCP/IP based
communication library to allow efficient node to node communication. The
work is however based on the original distribution of ROS (ROS1). Moreover,
differently to our work, it focuses on ommiting the need to use Linux to allow
ROS to be available on even more resource constrained devices.

The work described in Real-time control architecture based on Xenomai
using ROS packages for a service robot [5] by Delgado et al. takes an ap-
proach of utilizing the Xenomai real-time framework to support priority-based
scheduling. The drawback of this approach is the additional complexity related
with the usage of Xenomai which could discourage developers due to the need
of non-trivial additional system configuration.

PiCAS: New Design of Priority-Driven Chain-Aware Scheduling for
ROS2 [4] presented by Choi et al. introduces a new scheduling framework for
ROS2 that again enables to ensure end-to-end latency for processing chains in
ROS2. The concept of critical chains is introduced to better select which
chains should be prioritized and have their latency limited to a predictable
bound.

Work that was recently presented as a Master Thesis at TUDelft by Charles
Randolph, titled Improving the Predictability of Event Chains in ROS
2 [12] tries to solve the issue of callback chain prioritization by automatically
assigning priorities to all callbacks within a task based on the callback chain
they belong to.

3.3 Conclusions

While analyzing available work, we noticed that majority of researchers so far
focus solely on a callback chain based approach to application construction. Up
to a certain extent, some of this work could be applied as well to prioritise
execution of callback chains that consit only of one periodic node, however none
focuses on reducing the message transport latency to enable more time for the
computation thus allowing for higher utilizations.

Moreover, up to our knowledge, none of the published efforts focused on
enabling application state aware scheduling.

Several publications aim to ensure time-predictability by taking the limita-
tions of Linux out of the equation [5], [14]. Due to the fact that majority of
ROS2 documentation, tutorials, courses, etc., focus on a setup based on reg-

16

ular Ubuntu distribution, we decided to focus on applications built with this
most common approach. That is why we aim to not compare our findings with
work that either runs ROS nodes outside of the Linux environment or requires
modifications such as Xenomai.

17

18

Chapter 4

Proposed Solution

4.1 High-level idea

As described in Sec. 2, ROS2 as a framework does not provide developers
with any mechanism that would help ensure a priority-based order of periodic
node callback execution. As discussed in Sec. 2, ROS2 developers can use the
baseline1 approach, but it requires not only the knowledge about the available
ROS2 and operating system APIs but also a good understanding of the inner
workings of the middleware (such as the executor and DDS) in order to be sure
all the application callbacks will be executed in a desired manner.

Introducing the proposed approach. In this work we propose a frame-
work (referred to throughout the rest of this document as proposed approach)
that extends the current ROS2 APIs for periodic callback execution to mitigate
the challenges summarised in Sec. 2.5. With our framework we aim to resolve the
dilemma between fast message exchange (grouping nodes in one executor) and
enabling node prioritization (by separating nodes between multiple executors).
We knew that we could approach the problem from two angles.

1. One option would be to try adding a faster data exchange option for nodes
separated in multiple processes. It would have to be comparable to what
is possible with intra-process data exchange, as discussed in 2.4.

2. Another way would be to keep nodes within one executor and add periodic
callback scheduling capabilities to the executor logic.

In Sec. 2.5, we also highlighted the potential issues that can arise due to the
fact that subscription based callbacks are always executed after timer based
callbacks. This was the deciding factor that directed our work towards enhan-
cing the executor logic (approach 2) rather than focusing solely on improving
the message transport times between multiple processes.

First, in order to allow the executor to execute the periodic callbacks accord-
ing to their priority, we had to ensure that information about the priority of
each node can be accessible by the executor. It should be also possible to add
more properties such as deadline (to enable Earliest Deadline First policies) can
be added to the timer. In order to utilize those new information available for
the timer based callbacks, execution of a new scheduling function has to be
incorporated within the executor.

19

It is important to note at this point that the priorities etc., are assigned on
callback, not node level. This means that a node will be able to contain sev-
eral callbacks with different parameters potentially simplifying the application
structure, as separating callbacks into different nodes just to achieve different
execution priority will not be needed any more. A priority property needs to be
added to the ROS2 timer description. To make things resemble Linux schedul-
ing APIs, the available priorities for periodic callbacks should range from 1 to 98
(just as the available real-time priorities in many Linux systems). The extended
information about timer based callbacks is not only priority, deadline, etc., but
also the topics that are used to deliver data that are later used in the periodic
computation.

Figure 4.1: Simplified representation of the proposed updated ROS2
executor flow

Fig. 4.1 presents the main executor logic flow for the proposed approach. It
can be compared with the baseline logic presented on Fig. 2.3. Except of the
additional scheduling logic (that implements the scheduling policy of choice), the
logic also ensures that the effect, described in Sec. 2.2.1, caused by deprioritizing
subscription callbacks is mitigated. When a timer based callback is chosen for
execution, first we utilize the extended periodic callback parameters to do a
check on all assigned topic dependencies. By doing this, we ensure that in case
that for any of assigned topics a related subscription callback is pending for
execution we first execute the subscription callback to allow data to be delivered
to the node prior to periodic callback execution.

4.2 Extending ROS logic

In order to be able to extend the ROS2 executor logic, a detailed analysis
of it’s implementation structure was needed. Fig. 4.2 presents the analysis
of the inner workings of the executor and how this relates to the high level

20

commands taken on the application layer. We can see that eventually it’s the
get next executable() and get next timer() functions (surprisingly located
in a file called alocator memory strategy.hpp) are the places where selection
of the next callback to execute happens. Therefore, we decided to target those
functions with the improvements described in Sec. 4.1.

Figure 4.2: Detailed analysis of the baseline executor implementation

21

4.2.1 Supporting different callback priorities

As noted on Fig. 4.2, the get next timer() function, in baseline executor is
simply a dummy iterator over timers which selects first one that is ready for
execution. In our proposed approach, we enhance the dummy selection of ex-
ecuted callback with sorting the pending timers using a comparator function.
The comparator function execution is represented on Fig. 4.1 as ”Selecting timer
based on scheduling policy”. The comparator function takes two awaiting peri-
odic callback parameters as input and outputs them in an order of desired
execution priority. This allows the executor to sort the awaiting callbacks. As
a part of this work we developed several basic comparator functions that al-
low to execute callbacks according to Fixed Priority i.e FP and Earliest

Deadline First i.e EDF schedules.

4.2.2 Supporting preemption

By using the baseline1 approach and distributing nodes in executors that
reside in separate processes, we are capable of utilizing the operating system
level preemption mechanisms, where processes with higher priority parameter
will be able to pause the lower priority ones. In order to not deprive developers
from that capability and be able to compete with the baseline1 approach we
had to ensure that our task execution logic supported preemption as well.

In order to do that we made the executor manage a pool of 98 threads and
ensured that the executor itself is running on the highest available real-time
system level priority of 99. In the executor logic, we simply dispatch callbacks
onto threads with appropriate system level priorities. The subscription call-
backs, that do not have an explicit priority assigned, are ran with the priority
of the highest callback within a node that depends on data from related topic.

Additionaly, not only we support preemption, but also we can configure the
executor to disable preemption and do not dispatch new work untill all previ-
ously started callbacks finish. Surprisingly, such option is not available in the
Linux kernel without complex low-level modifications. With the option to dis-
able preemption, we can explore non-preemptive scheduling policies if needed
and explore the possibilities of non-preemptive work-conserving an non-work-
conserving algorithms [10].

Required operating sytem configuration

It is important to notice, that for now, in order to support preemption, our
solution, requires the application to be given two dedicated cores, one for the
executor and the other one for the managed callbacks. This is achieved using
the isolcpus= kernel configuration and later on, the taskset -p command
to assign processes to a specific CPU. This is to ensure no other process will
interrupt the execution of our application. Actually, the same approach can be
used to isolate CPU’s for applications ran using the baseline0 and baseline1

approach.

4.2.3 Supporting application-aware scheduling

In order to support the functionality of application-aware scheduling, brought
up in Sec. 2.6, we needed a way of communicating the application state to the

22

executors scheduling function. During the execution of the application, it is
a resposibility of a logic placed withing a callback to realise that the state of
the application should change. For example a proximity data processing node
can identify that a robot is approaching a docking station scenario. In order to
enable each callback to request a change in the scheduling policy, there needs to
be a way of communicating with the executor. This is achieved with a shared
scheduling strategy object which is passed to each node during initialization.
This object is also accessible for the executor and accessible to the scheduling
function. Earlier we mentioned that in our proposed approach we implemented
two basic scheduling policies of FP and EDF. Those implementations actually do
not reside within the executor code but are rather passed as a function to the
executor. Similarly any other custom scheduling policy function can be passed
to the executor, thus allowing for implementation of logic that adjusts to the
changes in scheduling strategies in a way designed specifically for a certain
application.

4.3 Ensuring support from the Operating Sys-
tem

We can work very hard on ensuring that any part of the ROS2 stack ensures a
latency-bounded execution, can be mathematically proven and become as close
to a hard real-time software as possible, but until the underlying OS (Linux
in most cases) will fall short to deliver those requirements all our efforts are
in vain. In majority of cases, Linux will be just fine for real-time applications
but the more strict the requirements become and we enter the realm of hard
real-time system use cases from soft real-time use cases the bigger the need
for ensuring that as many operations in the system overall (not only in the
higher level middleware such as ROS2) are latency bounded. That is where
the PREEMPT RT kernel patch comes into play. We will not provide a detailed
description on how PREEMPT RT modifies the Linux kernel, however, we believe
it was crucial to note that such modification the system is highly recommended
to achieve higher confidence in the performance of the ROS2 applications that
aim to achieve real-time performance.

23

24

Chapter 5

Evaluation

In this chapter, we evaluate the proposed framework to provide answers on the
following questions: 1) what is the cost of utilizing a more complex executor
logic compared to baseline approaches 2) what is the potential performance im-
provement between the proposed implementation and the baseline approaches?
3) what are the potential benefits of utilizing an application-aware scheduling
policy compared to baseline approaches and proposed framework without such
functionality enabled?

This chapter explains how we generate fair and representative ROS applica-
tions to evaluate the proposed framework under various parameters and setups.
The aim is to select appropriate criteria to achieve best understanding of gains
and losses related to our framework by comparing the proposed solution against
existing baseline approaches. This section also includes a qualitative discussion
about the benefits and the convenience of the APIs introduced in our framework.

5.1 Metrics

In this section we introduce the metrics used for evaluating the before-mentioned
aspects.

Executor overhead is measured as the time it takes to execute the
get next executable() function described in detail in Sec. 4. This data al-
lows us to calculate detailed metrics such as mean or standard deviation of
the executor overhead that is later used for comparison between all presented
approaches.

The Deadline miss metric is obtained by counting the number of deadline
miss events flagged by the callbacks. This required additional instrumentation
in the callback code. The same logging functions were used for all approaches
to ensure fair comparison. The number of deadline misses are then divided by
the total count of execution for each callback respectively. This allows us to
later see the correlation between the calculated deadline miss numbers and the
utilization of a task set.

Data freshness is measured by counting the number of times that a periodic
callback was executed while fresher data was already produced. This is calcu-
lated by checking if there is a pending subscription callback that would deliver
more recently produced data for the computation used in the periodic callback.

25

To allow for comparison between the proposed and baseline approaches, addi-
tional logging was added to the callbacks rather than executor. The periodic
callbacks were pritining out incremented identifiers for data that they use for the
computation simmilarly to the nodes that produce the data. In case a producer
callback has already generated data with identifier 2 while the periodic callback
will print out information that data with identifier 1, such event is calculated
as an execution on old data.

Data age metric, used for evaluating the application-aware scheduling is
calculated as a time it took between data was produced, by the callback that
generates that data, and utilized by the computation in the periodic callback.
Simmilarly as for the data freshness metric, the producer callbacks print out
timestamps and identifiers for the data that they generate and the periodic
nodes print out timestamps of when data with certain identifier was utilized. It
allows us, in later log postprocessing, to calculate the data age. An example of
log produced during test runs for capturing this metric is presented on List. 5.1.

Listing 5.1: Example of logs used to calculate the data age metric

[1626023628 .982256552] : p r o d u c i n g d a t a t o p i c i d sensor1 452
[1626023629 . 52480321] : p r o d u c i n g d a t a t o p i c i d sensor3 321
[1626023629 .883291035] : p r o d u c i n g d a t a t o p i c i d sensor4 520
[1626023630 . 12144923] : u s i n g d a t a t o p i c i d sensor1 452

5.2 Synthetic application generation

A fair evaluation is only possible once the proposed approach is tested on a
large and varying set of ROS applications. Simply because there are not enough
accessible open-source ROS2 applications that could be used for the evaluation
of our solution, we decided to create a small tool-set for generating synthetic
ROS2 applications. The tool set allows to create ROS2 applications by taking a
set of controllable parameters as an input. The presence and type of controllable
parameters is directly linked to the type of metrics that need to be obtained.
Under the constraints given by the input parameters, the other aspects of the
application are randomised. For example, in order to assess how utilization
impacts the occurrence of deadline misses, we need to be able to control the
utilization of the task set in the generated application. On the other hand, the
exact period for each task should be randomizable (or randomly selected from
a given list of available ones). The full list of controllable parameters and their
descriptions are show in Tab.5.1. and Tab.5.2. The utilization of a task set is
calculated as 5.1 where Ci is the worst-case computation time for task and Ti

is the period for a task.

U =

n∑
i

Ci

Ti
(5.1)

26

parameter name values / units
nodes int (min. 1)
utilization float (min. 0.01, max. 1.0)
periods milliseconds
pubsub tuple of floats (min. 0, max.1)
deadlines ”period” or ”wcet”
deadlines wcet float (min. 1)
priorities ”rate-monotonic” or ”random”
message size ”256Kb”, ”512Kb”, ”1Mb”, ”2Mb”, ”8Mb”

Table 5.1: Automatic application generation values and units

parameter name description
nodes Number of nodes the application should consist of
utilization The CPU utilization of the task set
periods Period values that should be spread out equally across the task set
pubsub Percentage of publishers and subscribers in the application

deadlines
The deadline for each task can be equal to it’s period or
based on it’s worst case execution time

deadlines wcet
The multiplier for calculating deadline based on wcet
(only applies if ”wcet” is selected as deadlines)

priorities he method for assigning priorities in the application
message size Size of the messages produced by published

Table 5.2: Automatic application generation parameters description

Those parameters together form an input for the application generation script.
Since performance was not an important factor for the application generation
framework, for the purpose of quick prototyping and ease of debugging, the
script was implemented in Python3.

The generation script can be started using the Linux command line by spe-
cifying the python version, the main script file name and the before-mentioned
parameters (an example is presented on List. 5.2). The script takes a JSON
file as an input parameter. An optional repeat parameter can be passed to
run the generation algorithm a specified number of times to achieve a set of
different synthetic applications that meet the passed criteria. A sample JSON
file containing all necessary parameters can look as presented on List. 5.3. The
output are 3 ROS2 applications using 3 different approaches to control callback
execution priority control described in this document (baseline 0, baseline 1,
proposed approach respectively). Those approaches were described in detail in
Sec.2 and Sec.4.

Listing 5.2: Running the application generation script

$ python3 eva l gen . py −−params parameters . j s on −−repeat 10

Listing 5.3: Sample JSON file with selected synthetic application para-
meters

{

27

” parameters ” : {
” nodes ” : 3 ,
” u t i l i z a t i o n ” : 0 . 7 ,
” pe r i od s ” : [1 0 , 2 0] ,
”pubsub ” [0 . 5 , 0 . 5] ,
” d e a d l i n e s ” :” per iod ” ,
” dead l i n e s wce t ” : [1 . 0 , 2 . 0] ,
” p r i o r i t i e s ” : ” rate−monotonic ” ,
”message−s i z e ” :”512kB”

}
}

In order to obtain representative data, a large set of varying applications had
to be generated. With the application generation tool at hand, the missing part
was to create the JSONs containing input parameters. One approach here would
be to manually create a lot of JSON files with definitions of the applications that
we want to obtain. However, to speed up the process even further, a second
smaller script was developed to automatically generate the input parameter
JSON files. The format of the input file is the same as for the application
generation script with the difference that each parameter is not a single value
but an array of values that can be selected from.

Of course, if each combination was to be generated, the number of out-
put files could easily reach tens of thousands without ensuring that all ne-
cessary parameter variations were generated. Hence, an additional compulsory
force all combinations parameter was added. It that defines, which para-
meters should have all available options exhausted. For example if we define
nodes, let’s assume 2 and 4, and message-size, let’s assume 512Kb and 2Mb,
in the force all combinations, it forces the JSON generation script to ex-
haust all combinations of those two parameters (at least 4 applications will be
created). This way we ensure that the generated applications will cover the
most important range of combinations for certain tests. An example input to
the parameter-generation script is presented on List. 5.4.

Listing 5.4: Sample JSON file with range of available synthetic applic-
ation parameters

{
” parameters ” : {

” f o r c e a l l c o m b i n a t i o n s ” : [” nodes ” , ” u t i l i z a t i o n ”]
” nodes ” : [3 , 5 , 1 0 , 5 0] ,
” u t i l i z a t i o n ” : [0 . 5 , 0 . 6 , 0 . 7 , 0 . 8 , 0 . 9 , 1 . 0] ,
” pe r i od s ” : [[5 , 1 0] , [1 0 , 2 0] , [1 0 , 2 0 , 5 0] , [1 0 , 2 0 , 5 0 , 1 0 0]] ,
”pubsub ” : [[0 . 1 , 0 . 1] , [0 . 2 , 0 . 8] , [0 . 6 , 0 . 4]] ,
” d e a d l i n e s ” : [” per iod ” , ”wcet ”] ,
” dead l i n e s wce t ” : [[1 . 1] , [1 . 0 , 2 . 0] , [1 . 1 , 1 . 5]] ,
” p r i o r i t i e s ” : [” rate−monotonic ” , ” rand ”] ,
”message−s i z e ” : [” 5 1 2kB” , ”2Mb”]

}
}

Assumptions of the synthetic application-generation tool. It is im-
portant to note that the worst-case execution time for each task is generated

28

based on the utilization selected for the task set. Furthermore, there are certain
limitations to the available configurations. They also apply to the generation
algorithm, as it is not allowed to create a task set that violates the restrictions.
They restrictions are as follows:

1. Number of nodes has to be greater than 1

2. Utilization cannot be greater than 1

3. Number of publishers cannot exceed the number of nodes

4. Number of subscribers cannot exceed the number of nodes

5. A task can both be a publisher and a subscriber but not on the same topic

6. deadline cannot be greater than period

7. worst-case execution time cannot be greater than period

During each test, each application was ran 5 times for a strict period of 30
seconds. Same application configurations were not ran one after another, instead
the execution order was chosen randomly. This was done to reduce the potential
impact of system level behavior related to throttling down CPU, memory and
other components after a prolonged period of running the tests.

Given the number of test runs that have to be performed to obtain measure-
ments for so many sample generated applications, running them all manually
would consume an unacceptable amount of time. An example way to start looks
as on List.5.5. Running one test takes about 30 seconds. For some tests, it was
planned to run around 50 different applications. This would mean that every
minute for almost 3 hours a new application would have to be started manu-
ally. To avoid such burden for each test, a simple automated batch runner was
developed.

Listing 5.5: Running a ROS2 application

$ ros2 run sample package sample app

Generation of a single application. Based on the input passed in the
parameters JSON file the implemented tool generates an application in the fol-
lowing manner. First, a new empty ros package is created. Later, based on the
nodes parameter, appropriate amount of new node classes is created (named
simply node1, node2, etc.) with every node containing one timer based call-
backs. Later, the periods are randomly assigned and added as timer periods
for the before-mentioned callbacks. Each period value should be used for the
same amount of nodes (if possible). Based on the pubsub parameter, the call-
backs are modified accordingly. Once periods are assigned, priorities can be
assigned as well (the detailed differences between generated code depend on
the approach the application is generated for). Deadlines is simply a timing
parameter, checked and loggd. the end of each callback execution. Last but
not least, utilization is calculated for each node based on Fig. . 5.1. At the
end, messages of correct size are assigned to specific publisher and subscriber
callbacks.

29

5.3 Tracing method

In order to extract necessary timing parameters, correct logging and log-parsing
system had to be selected or developed. To stay close to native ROS implement-
ations, we performed all logging using an RCUTILS logging functionality. A
sample log instrumentation of the unmodified ROS2executor looked as presented
on List.5.6.

Listing 5.6: Example of code instrumentation using RCUTILS

RCUTILS LOG INFO(” g e t n e x t t i m e r s t a r t ”) ;
memory strategy −>g e t n e x t t i m e r (any executable , weak nodes) ;
RCUTILS LOG INFO(” g e t n e x t t i m e r f i n i s h ”) ;

With this approach it was possible to either output the combination of timestamp
and event name to the console or directly to a file (by adding a > log.txt to
the launch command from List.5.5). Another benefit of using RCUTILS was
that the timestamp is recorded at the time RCUTILS is ran not at the time of
saving to the file (ensures precise measurements).

Because RCUTILS LOG INFO outputs the event name together with a UNIX
timestamp, it was fairly straightforward later on to combine and parse all output
from a single 30 second application run.

A separate log-parsing tool was developed in order to transform raw logs into
understandable and ready to plot results. For example, for the measurement
presented on List. 5.6, we have a measurement of get next timer duration in-
strumented with two logs, one starting with start, the other one with finish.
The log parser can extract the duration of each get next timer by comparing
the start and finish times, which later on can be averaged out or plotted as a
histogram if needed.

Lastly, to ensure that RCUTILS LOG INFO is the right logging solution,
an overhead measurement was taken by measuring the execution time of 100
executions. The measurement was repeated a 100 times. As presented on Fig.??,
it clearly showed that the overhead is within acceptable range and should not
impact the quality of the evaluation.

5.4 Performance comparison

5.4.1 Scheduling overhead

Hypothesis

In this thesis, we have expanded the executor implementation with an additional
scheduling logic. As described in detail in Sec. 4, the scheduler extension adds
looped iterations over awaiting timers and subscriptions. Our hypothesis is that
for a small number of callbacks in the system, it is not expected to observe any
significant difference in the executor’s overhead. However, when there are a
larger number of callbacks in the system, the difference might become more
apparent (the more callbacks in the system, the bigger the difference, especially
if the application is laid out in a way that will cause multiple timers to be ready
for execution at the same time). Also, for more callbacks in the system, there
might be more data exchange on several topics. We also expect the executor

30

overhead to increase with the number of subscriptions in the system (as they
have to be iterated over prior to periodic callback execution).

Setup

In order to compare the scheduling overhead, we need to compare the differences
in the executor execution times between the baseline ROS2 implementation and
the proposed solution. In order to do so, we have to ensure that the synthetic
ROS2 applications that are used for this test will stress the executor. In other
words, the new scheduling logic has to be forced to process larger sets of callbacks
and related subscriptions. This way, it should be possible to understand to what
extent can the overhead change. The parameters for creating applications for
this tests are presented in Tab. 5.3.

Secondly, we measured the impact of the number of subscriptions in the sys-
tem on the overhead. To achieve that, the aforementioned large callback count
application has been prepared in two flavors, one with zero subscriptions and
another one where eighty percent of the nodes are subscribed to at least one
topic. The parameters for creating applications for this tests are presented in
Tab .5.4.

A set of smaller applications is also used for the evaluation to see the average
impact of the changes in the scheduling overhead (not only for edge-cases). The
parameters for creating applications for this test are presented in Tab. 5.5.

It is important to notice that in this test, only baseline0 is compared with the
new proposed approach. The reason for that is the fact, that in the baseline1
approach, the executor takes care only of a single callback and the scheduling
happens on the operating system level.

parameter name selected values
nodes 50
utilization 0.5
periods 10, 20, 40
pubsub 0, 0
deadlines period
deadlines wcet -
priorities rate-monotonic
message size -

Table 5.3: Synthetic application parameters - executor test with high
number of nodes

Min Q1 Median Q3 Max Mean SD
baseline0 21 22 24.5 27 58 26.77 8.04
proposed 23 26 28 31 78 30.8 10.53

Table 5.6: Executor overhead for small set of callbacks

31

parameter name selected values
nodes 50
utilization 0.5
periods 10, 20, 40
pubsub 0.2, 0.8
deadlines period
deadlines wcet -
priorities rate-monotonic
message size 16b

Table 5.4: Synthetic application parameters - executor test with high
number of nodes and subscriptions

parameter name selected values
nodes 50
utilization 0.5
periods 10, 20
pubsub 0.4, 0.6
deadlines period
deadlines wcet -
priorities rate-monotonic
message size 16b

Table 5.5: Synthetic application parameters - executor test for a small
application

Min Q1 Median Q3 Max Mean SD
baseline0 23 25 27 30 65 29.43 8.3
proposed 29 32.5 43.5 51 91 45.37 15.1

Table 5.7: Executor overhead for large set of callbacks (no data ex-
change)

Min Q1 Median Q3 Max Mean SD
baseline0 23 24.25 27 30.75 60 29.73 9.16
proposed 39 49.5 62.5 68 120 63.67 19.49

Table 5.8: Executor overhead for large set of callbacks

32

Figure 5.1: Executor overhead for large set of callbacks

Discussion of results Figure 5.1 represents the results obtained during the
evaluation of the updated executor mechanism. Detailed information on the
obtained measurements are presented in tables 5.6, 5.7 and 5.8.

As expected, the enhancements to the executor logic developed as a part
of this thesis are resulting in a higher execution overhead. A quick look at
the results shows that when the number of nodes increase, the overhead of our
executor increases. For small applications (between 1 to 10 nodes), the pro-
posed executor causes around 15% increase on average overhead as demonstrated
in Tab. 5.6 and Fig. ??.

For the new proposed executor logic, more nodes in an application means
more complex scheduling computation (sorting). As a result, a bigger differ-
ence between the baseline and proposed executor overhead can be observed, as
presented in Tab. 5.7 and Fig. ??. For larger applications (consisting of around
50 nodes), it was noticed that the proposed executor causes around 54% in-
crease in mean overhead time. Further more, the standard deviation increases
significantly (from 8.1 microseconds to 15.1 microseconds). This can be ap-
pointed towards significant differences between executor logic execution times
depending on the count of pending periodic executions.

The results also point towards another aspect that impacts the overhead,
which is the number of nodes that also contain a subscription callback as presen-
ted in Tab. 5.8 and Fig. ??. . For each of those, prior to execution, the executor
needs to check for pending subscription data and allow it’s execution if neces-
sary. In such cases we see a 114% increase in the mean overhead and greater
standard deviation (up to 19.49 microseconds).

5.4.2 Examining utilization and deadline miss correlation

Hypothesis

One of the main goals of our work is to ensure that all task sets can be ran
without or with less deadline miss, no matter the utilization. By enhancing the

33

executor with preemptive callback scheduling capabilities, this work allowed to
utilize the efficient intra-process data exchange while still being able to prioritize
periodic callback execution in a desired manner.

The baseline0 approach allows for intra-process data sharing as well, how-
ever with the baseline0 approach, we are deprived of the callback scheduling
capabilities hence we expect to see a significant number of deadline misses not
directly dependent on the number of nodes, data sharing or utilization. When it
comes to comparison between the baseline1 and the proposed approach our
hypothesis is that differences should not be visible for applications with zero or
little data exchange between nodes. There are two factors that are expected to
differentiate the results between the baseline1 and the proposed approach.
The more nodes share the data and the bigger the shared data, the more chances
for the baseline1 approach to show the drawbacks of using the inter-process
data sharing. However, the more callbacks in the system, the higher the impact
of the additional overhead induced by the enhanced executor implementation.

Setup

In total, with the help of the parameter generation script, we created 48 para-
meter combinations for synthetic application generation from the parameters
presented in Tab. 5.9. The most important variable for this test is utilization.
Utilization of 0.5, 0.75 and 1.0 were selected for this test. We created, sixteen
different configurations with varying message size, node count and subscribers
count for all of the three selected utilization options, giving together 48 synthetic
applications.

parameter name selected values
force all combinations nodes, utilization, message-size, pubsub
nodes 4 or 20 or 50
utilization 0.5 or 0.75 or 1.0
periods 10, 20
pubsub [0, 0] or [0.2, 0.8]
deadlines period
deadlines wcet -
priorities rate-monotonic
message size 256kB or 512kB or 2Mb or 8Mb

Table 5.9: Synthetic application parameters - utilization and deadline
miss correlation

To enable good understanding of possible gains from using the proposed im-
plementation, the generated configurations contain applications with 4, 20 or
50 nodes. The configurations also contain varying message size which can be
representative of cases where simple small data arrays are exchanged between
nodes (256kB) up to big data chunks (e.g. images, video clips - 8Mb). These
are obviously two extremes, however it should give a good view of how an in-
creasing node count or message size will impact the behavior of the baseline and
proposed implementations. Finally, the deadline for each periodic callback is
set to be equal to it’s period.

34

Figure 5.2

Figure 5.3

35

Figure 5.4

Figure 5.5

36

Figure 5.6

Figure 5.7

Discussion of the results

The discussion of the results will be split into 3 parts, where results will be
reviewed for applications with 4, 20 and 50 nodes respectively.

Small applications with 4 nodes. As expected, with low utilization and
small message sizes being shared between nodes neither the baseline nor the pro-
posed approach suffer from any deadline miss, as presented on 5.2 and 5.3. How-
ever, for bigger message sizes, such as 2Mb or 8Mb, even for a very small node

37

count, if the utilization is at 75%, the baseline1 approach already starts suf-
fering from deadline misses. This is a direct result of the significantly increased
overhead of message transport compared to intra-process message transport al-
lowed by the proposed approach. This becomes even more visible when running
an application with a 100% utilization, where sending messages of small sizes
(256Kb) already adds enough overhead to significantly disrupt the execution
schedule (around 15% of callbacks miss their deadlines). On the other hand,
the little increase in overall executor overhead causes some deadline misses for
scenarios without any message exchange when utilizing the proposed executor,
while the baseline1 approach was able to stay below 2% of deadline misses.

Applications with 20 nodes. A very similar effect, to the one described
for applications with 4 nodes, can be observed, as presented on 5.4 and 5.5.
The impact on low utilization applications (50%) still remains negligible for
both proposed executor and the baseline1 approach. For 75% utilization, the
baseline1 approach already starts suffering from deadline misses for message
sizes of 512Kb. For the baseline1 approach and message sizes of 8Mb, the
deadline miss percentage is 50% higher then for an application with 4 nodes.
It should be also noticed that for applications without message exchange, with
100% utilization and ran using proposed executor, the deadline miss jumps
from 4% to 7%.

Large applications with 50 nodes. The evaluations for such large applica-
tions show even more extreme differences between the baseline1 and proposed
approach, as presented on 5.6 and 5.7. It is worth noticing that, at this point,
this would be a very rare setup in reality. Applications most often contain less
then 50 nodes, exchange data much smaller than 8Mb and the callback periods
are rarely lower than 50ms. However, presenting such examples demonstrates
the growing returns of using the approach proposed in this thesis. Similarly to
the previously discussed examples for applications with 4 nodes and 20 nodes,
the baseline1 approach suffers an increasing percentage of deadline miss with
as the message size increases. Even for 50% utilization and message size of
512Kb, the number of deadline misses averages around 26%. The effect of the
increased executor overhead is more visible for the proposed approach in this
scenario as well. As presented in Sec.5.4.1, the proposed executor overhead in-
creases with the number of subscribers in the application. Hence, as expected,
for the test scenario with 50 nodes the proposed approach suffers from dead-
line misses for applications with utilization of 75% and 100%. The additional
executor overhead is does not cause deadline misses for applications with 50%
utilization.

5.4.3 Improving data freshness

Hypothesis

As described in Sec.2, the baseline ROS2 implementation always prioritizes peri-
odic callback execution (timers) over subscription callbacks (delivering data).
In case a periodic callback depends on data that is received in a subscription
callback within same node, it may happen that the periodic callback (executed
first) will use old data, while fresher data is already waiting to be delivered.

Our hypothesis is that the proposed improvements presented in this work
should improve the following aspect by reducing such events to zero (allow the

38

periodic callbacks to always use the latest available data). Furthermore, we
expect to see that for applications with harmonic periods the data freshness is
dramatically reduced. As described in detail in Sec. 2, the producer and con-
sumer will always want to run at the same point in time, hence when producer
finishes execution and publishes the data, the data will not be delivered to the
consumer first as the execution of it’s timer based callback will be prioritized,
causing execution using old data.

Furthermore, in a vanilla ROS and for applications with high utilization
(where majority of time is spent on executing the periodic callbacks), some-
times the data delivery (i.e., execution of the subscription callback of a node)
can be starved for prolonged periods of times. Forcing execution of subscription
callbacks prior to periodic ones might cause a slight increase in deadline miss,
however, given the fact that efficient intra-process data exchange is used, the
overhead should be negligible.

Setup

In this test we try to measure the impact of two effects (described in detail in
Sec. 2), namely subscription callback starvation and prioritization of timer over
subscription callbacks, on the data freshness. In total 36 synthetic application
parameters were generated to cover all possible combinations of node count,
utilization, periods and message size. Applications with higher utilization should
be more prone to subscription callback starvation. Applications with higher
node counts (such as 50) should stress test the new proposed executor logic.
By comparing different message size we should be able to observe if increased
message transport time also has a negative on the data freshness. Lastly, by
comparing two different possible period sets, we should be able to observe that
applications with harmonic periods suffer from the effect of prioritizing timer
callback over subscriptions causing decreased data freshness. The detailed input
for the application generation script is presented in Tab. 5.10. The metric for
this test is calculated using the following method. First, for each node, the
number of executions using old data is divided by the total number of executions
for that node; next, the obtained values (ranging from 0 to 1) are averaged out,
giving us an average percentage of executions on old data. For the setup used
in this test, where 50% of the nodes were subscribers, the worst case scenario is
50% executions on old data (all callback executions that use data produced by
nodes that are publishers).

39

parameter name selected values
force all combinations nodes, utilization, periods, message-size
nodes 4 or 20 or 50
utilization 0.5 or 0.75 or 1.0
periods [10, 20, 40] or [10,22,47]
pubsub 0.5, 0.5
deadlines period
deadlines wcet -
priorities rate-monotonic
message size 512kB or 8Mb

Table 5.10: Synthetic application parameters for measuring the im-
provements in data freshness

Figure 5.8: Percentage of periodic computations using old data for 4
node applications

40

Figure 5.9: Percentage of periodic computations using old data for 20
node applications

Figure 5.10: Percentage of periodic computations using old data for 50
node applications

Discussion of the results

Applications with harmonic periods. First thing that should be noted to
understand correctly the presented data is the clarification for lack of values for
the proposed approach on Fig. 5.8, Fig. 5.9 and Fig. 5.10. The presented values
represent the statistics for the baseline1 approach only due for the following
reasons. First, it was observed, that thanks to the additional logic described in
Sec.4, the number of executions on old data was reduced to zero for all tested
scenarios! Secondly, to speed up the evaluation procedure and narrow down the
comparison to cover only the approaches that allow for callback prioritization,
we did not include baseline0 in this test.

41

Secondly, the measurements confirmed the hypothesis that for applications
with harmonic periods all periodic callbacks that depend on subscribed data will
run on old data (potentially except of the first execution prior to the first time
data is published). For our scenario, where 50% of the nodes were subscribers,
the effect of prioritizing timer based callbacks over subscription callbacks caused
50% of periodic callbacks to execute on old data.

Applications with non-harmonic periods. For applications with 4 nodes
only utilization of 100% caused the subscription callbacks to be starved for long
enough to not allow data delivery prior to periodic callback execution. The
problem became more visible for applications with 20 nodes or 50 nodes where
the chance of subscription callback starvation increase.

On Fig. 5.9, it can be seen that even for a utilization of 50% and 20 nodes
in an application, when messages of 512Kb size are shared, 5% of the callbacks
were ran on old data due to subscription callback starvation. Once again, for
extreme cases of 100% utilization, message size of 8Mb and 50 nodes in an
application, the subscription callback is deprived of execution time almost all
the time, resulting in average 42% of periodic callbacks running on old data.

5.5 Application-aware scheduling

Hypothesis

In Sec. 5.4.3 we checked if a callback was ran on old data (newer data was already
produced but not delivered to the node). In this test, we extend the data fresh-
ness metric to exact data age which is the time that passed since data was
produced to the moment data was used for computation. The application aware
scheduling (a part of the improvements included in the enhanced executor im-
plementation described in Sec. 4), allows for creating custom scheduling policies,
including ones that control the execution of nodes that produce data for other
nodes to ensure meeting data age constraints that might arise depending on the
situation that the application is in (examples can be found in Sec. 2). In the
case of the test apps, this data constraint will take effect for the whole duration
of the app. But you can easily imagine that such constrain can appear only
in certain moments during the application run time. Our hypothesis is that
our the additional logic from the proposed approach, enhanced with custom
scheduling logic that should ensure that the data age does not exceed 40ms,
will allow always ensure that the data used for computation is not older than
the established limit. This should apply in all scenarios, no matter the number
of other nodes in the application. We expect the data age to significantly grow
for the baseline1 approach with the increased number of nodes. Furthermore,
we expect that solely the addition of the logic that helps to prevent the negat-
ive effects of prioritizing timer over subscription based callbacks (as evaluated
in Sec. 5.4.3), will also improve the data age metric. This is why, in the res-
ults we compare the baseline1 approach together with our proposed solution
with data age constraint monitoring enabled and disabled (disabled means only
preventing the prioritization of timer based callbacks).

42

Setup

This test required significantly simpler setup, compared with the previously de-
scribed ones with only 3 application configurations. Each configuration was ran
using baseline1 approach , proposed approach and proposed approach with
data age constraint monitoring enabled. The only difference between configura-
tions was the number of nodes which was either 4, 20 or 50. On top of that, two
other nodes were added to each application. Those nodes were the ones that
we used to measure the data freshness. One node was a subscriber (listener)
node running on highest priority in the application with a period of 100ms, the
second node was a publisher (data producer) running on lowest priority in the
application with a period of 50ms. The remaining parametrs for the generated
application can be found in Tab. 5.11.

parameter name selected values
force all combinations nodes
nodes 4 or 20 or 50
utilization 0.75
periods 10, 20, 40
pubsub 0, 0
deadlines period
deadlines wcet -
priorities rate-monotonic
message size 512kB

Table 5.11: Synthetic application parameters for measuring the im-
provements in data freshness for application aware scheduling

Min Q1 Median Q3 Max Mean SD
baseline1 4 23 40 45 83 36.76 18.80
proposed 2 15 33 38 74 28.51 17.46
proposed (data age constraint) 4 14 17 36 39 22.86 11.64

Table 5.12: Data age for the critical node (application with 6 nodes)

Min Q1 Median Q3 Max Mean SD
baseline1 7 40.25 48 53 92 48.18 16.16
proposed 5 33.25 40.5 47.5 51 37.61 11.82
proposed (data age constraint) 5 12 13 35 40 18.86 11.86

Table 5.13: Data age for the critical node (application with 22 nodes)

Discussion of results

By looking at Fig.5.11, Fig.5.12, Fig.5.13, we can see that for all the conducted
tests, the baseline1 approach did not allow to ensure the desired low (40ms)
data age. The same also applies for the proposed approach with a standard
fixed priority polity. However, due to the additional logic ensuring that the

43

Figure 5.11: Data age for the critical node (application with 4 nodes)

Figure 5.12: Data age for the critical node (application with 22 nodes)

relevand subscription callback is called prior to the timer callback, the average
data age was 22% lower than for the baseline1 approach for an application
with 6 nodes. By looking at Fig.5.11, Fig.5.12, Fig.5.13, we can see that the
difference between the baseline1 and the proposed approach does not change
with the increasing size of the application.

44

Min Q1 Median Q3 Max Mean SD
baseline1 22 45.5 63 70 101 60.05 18.03
proposed 29 58 60.5 63 92 58.63 10.57
proposed (data age constraint) 5 12 13 35 38 19.3 11.8

Table 5.14: Data age for the critical node (application with 52 nodes)

Figure 5.13: Data age for the critical node (application with 52 nodes)

By looking at the results for the proposed approach with data age constraint
enabled we can see that, as expected, no matter the size of the application,
the data age never exceeded the 40ms limit. With the increasing node count,
the data age for both baseline1 and proposed approach was growing. As a
result, for the biggest tested application (52 nodes) the data age achieved by
the proposed approach with data age constrain enabled was on average 67%
lower.

45

46

Chapter 6

Conclusion

In this chapter we summarize the results of the presented work. We revisit each
described aspect and look into potential next steps as we talk about the future
work.

We started by doing a deep dive into the details of callback scheduling in the
current ROS2 implementation. We investigated the flow of the ROS2 executor
mechanism to discover potential challenges for implementing latency sensitive
applications based on periodic tasks. We presented a dillema that ROS2 de-
velopers might face when aiming to achieve efficient data exchange between
nodes together with callback prioritization capabilities. We discovered that
those two aspects can not be combined and choosing just can cause unpredict-
able system behavior in terms of order of task execution or significant overhead
caused by message transport. Furthermore, we present the need for application-
aware scheduling and describe the limitations of ROS2 that so far did not allow
to easily implement such functionality.

We followed up with a short test presenting noticeable differences between
DDS based and intra-process based data exchange. This allowed us to confirm
the hypothesis that with the growing number of callbacks in the system and
increasing message size the message transport time might cause more constraints
in terms of possible utilization.

In order to gain better insight into all the aspects of scheduling tasks in ROS2
we performed a review of a set of published work, both analytical and practical.
We discovered that researchers so far focused mostly on analyzing and improving
the end-to-end latency of callback chains while less atention was drawn towards
purely periodic callback sets.

After establishing the areas of potential improvements we set out to imple-
ment a prototype of changes for the ROS2 executor that would allow to both
utilize efficient intra-process data exchange and maintain the ability to schedule
callbacks according to desired priorities. We implemented our changes into the
heard of the executor logic to allow for executing callbacks based on a set of
policies that we implemented as well. At the same time, we created an API for
implementing any custom scheduling policy. This allowed us to also tackle the
topic of application-aware scheduling and address scenarios where applications
have to adjust to momentary changes in timing-constraints.

We concluded our work by performing a detailed analysis of all the aspects
that we aimed to improve with our proposed solution. We find that even though

47

the proposed solution causes a 54% increase for medium sized applications (20
nodes), the overhead is still neglegible in the context of the whole application and
the benefits of allowing for reduced message transport time overhead overweight
the drawbacks of increased overhead. We find that with the proposed solution,
for applications with utilization of 75% we were able to reduce the number of
deadline misses from around 26% to 3%. Furthermore, we were able to improve
the data freshness aspect by ensuring that no cases of execution on old data
happen during the whole time of the application execution, compared to up to
42% for baseline approaches.

In order to efficiently perform the evaluation, a tool-set for creating artificial
ROS2 applications was created together with script for executing the tests in
larger batches.

6.1 Future work

It is important to notice that we realise that the proposed solution is soely a
prototype and detailed checks would have to be executed prior to potentially
submiting a pull-request to the main ROS2 repository. However it is one of
our main goals to bring more visibility to the presented problems and make
sure that the framework can be published. Allowing other members of the
ROS2 community to experiment with the proposed approach would surely bring
further insight and allow for fine tuning the solution. We would like to take a
look into a set of existing industrial ROS2 based projects and investigate the
potential gains of porting them over to the solution proposed in this thesis.

Our framework currently requires 2 isolated cores to allow uniterrupted exe-
cution. This is definitely a significant limitation and would potentially limit the
number of platforms that can be targeted with our solution.

Despite dispatching work into multiple threads, our executor does not support
concurrency and cannot make full use of multicore platforms.

48

Bibliography

[1] Tobias Blass, Arne Hamann, Ralph Lange, Dirk Ziegenbein, and Björn B.
Brandenburg. Automatic latency management for ros 2: Benefits, chal-
lenges, and open problems. In 2021 IEEE 27th Real-Time and Embedded
Technology and Applications Symposium (RTAS), pages 264–277, 2021.

[2] Brian Gerkey. Ros2. https://spectrum.ieee.org/

ros-robot-operating-system-celebrates-8-years, 2015.

[3] Alan Burns and Chris Dale. Scheduling and timing analysis for safety-
critical real-time systems. ELECTRONICS WORLD, 116:18–20, 02 2010.

[4] Hyunjong Choi, Yecheng Xiang, and Hyoseung Kim. Picas: New design of
priority-driven chain-aware scheduling for ros2. In 2021 IEEE 27th Real-
Time and Embedded Technology and Applications Symposium (RTAS),
pages 251–263, 2021.

[5] Raimarius Delgado, Bum-Jae You, and Byoungwook Choi. Real-time con-
trol architecture based on xenomai using ros packages for a service robot.
Journal of Systems and Software, 151, 05 2019.

[6] Carlos Gutiérrez, Lander Juan, Irati Ugarte, and Vı́ctor Vilches. Towards
a distributed and real-time framework for robots: Evaluation of ros 2.0
communications for real-time robotic applications, 09 2018.

[7] Ramyad Hadidi, Nima Ghalehshahi, Bahar Asgari, and Hyesoon Kim.
Context-aware task handling in resource-constrained robots with virtualiz-
ation, 04 2021.

[8] Yuya Maruyama, Shinpei Kato, and Takuya Azumi. Exploring the per-
formance of ros2. pages 1–10, 10 2016.

[9] Fulvio Mastrogiovanni, Ali Paikan, and Antonio Sgorbissa. Semantic-aware
real-time scheduling in robotics. Robotics, IEEE Transactions on, 29:118–
135, 02 2013.

[10] Mitra Nasri and Gerhard Fohler. Non-work-conserving non-preemptive
scheduling: Motivations, challenges, and potential solutions. In 2016 28th
Euromicro Conference on Real-Time Systems (ECRTS), pages 165–175,
2016.

[11] Open Robotics. Ros2. https://docs.ros.org/en/foxy/#, 2021.

49

https://spectrum.ieee.org/ros-robot-operating-system-celebrates-8-years
https://spectrum.ieee.org/ros-robot-operating-system-celebrates-8-years
https://docs.ros.org/en/foxy/#

[12] Charles Randolph. Improving the predictability of event chains in ros 2.
Master thesis, Delft University of Technology, Delft, The Netherlands, 2021.

[13] Yukihiro Saito, Futoshi Sato, Takuya Azumi, Shinpei Kato, and Nobuhiko
Nishio. Rosch:real-time scheduling framework for ros. pages 52–58, 08 2018.

[14] Hideki Takase, Tomoya Mori, Kazuyoshi Takagi, and Naofumi Takagi.
mros: A lightweight runtime environment for robot software components
onto embedded devices. pages 1–6, 06 2019.

[15] Yue Tang, Zhiwei Feng, Nan Guan, Xu Jiang, Mingsong Lv, Qingxu Deng,
and Wang Yi. Response time analysis and priority assignment of processing
chains on ros2 executors. In 2020 IEEE Real-Time Systems Symposium
(RTSS), pages 231–243, 2020.

50

Appendix A

Sample usage of proposed
API

Listing A.1: Example usage of one of the prototyped APIs with ac-
cess to scheduling strategies that allow to dynamically change the
scheduling behavior at run-time

auto s c h e d u l i n g s c e n a r i o d e f a u l t = std : : make shared<
Schedul ingScenar io >(” d e f a u l t s c e n a r i o ”) ;
s c h e d u l i n g s c e n a r i o d e f a u l t −>add timer (”

s c h e d u l i n g i d t i m e r 3 ” , 98 , 50 , {” s u b s c r i b e s ” : ”
top i c1 ” }) ;

s c h e d u l i n g s c e n a r i o d e f a u l t −>add timer (”
s c h e d u l i n g i d t i m e r 4 ” , 97 , 20 , {” p u b l i s h e s ” : ”
top i c1 ” }) ;

s c h e d u l i n g s c e n a r i o d e f a u l t −>
s e t s c h e d u l i n g p o l i c y (& n p e d f p o l i c y) ;

auto s c h e d u l i n g s c e n a r i o s p e c i a l = std : :
make shared<Schedul ingScenar io >(”
s p e c i a l s c e n a r i o ”) ;

s c h e d u l i n g s c e n a r i o s p e c i a l −>add timer (”
s c h e d u l i n g i d t i m e r 3 ” , 98 , 40 , {” s u b s c r i b e s ” : ”
top i c1 ” }) ;

s c h e d u l i n g s c e n a r i o s p e c i a l −>add timer (”
s c h e d u l i n g i d t i m e r 4 ” , 97 , 20 , {” p u b l i s h e s ” : ”
top i c1 ” }) ;

s c h e d u l i n g s c e n a r i o s p e c i a l −>
s e t s c h e d u l i n g p o l i c y f u n c t i o n (&
cus tom schedu l i ng po l i cy) ;

auto s c h e d u l i n g s t r a t e g y = std : : make shared<
Schedul ingStrategy >() ;

s c h e d u l i n g s t r a t e g y −>add scenar i o (
s c h e d u l i n g s c e n a r i o d e f a u l t) ;

s c h e d u l i n g s t r a t e g y −>add scenar i o (

51

s c h e d u l i n g s c e n a r i o s p e c i a l) ;
s c h e d u l i n g s t r a t e g y −>s e t d e f a u l t s c e n a r i o (”

d e f a u l t s c e n a r i o ”) ;

auto node handle node3 = std : : make shared<node3
>() ;

auto node handle node4 = std : : make shared<node4
>() ;

node handle node3−>s e t s c h e d u l i n g s t r a t e g y (
s c h e d u l i n g s t r a t e g y) ;

node handle node4−>s e t s c h e d u l i n g s t r a t e g y (
s c h e d u l i n g s t r a t e g y) ;

r c l cpp : : executo r s : : Schedul ingExecutor executor ;
executor . add node (node handle node3) ;
executor . add node (node handle node4) ;
executor . s e t s c h e d u l i n g s t r a t e g y (

s c h e d u l i n g s t r a t e g y) ;
executor . sp in () ;

52

	Preface
	Introduction
	ROS framework
	ROS application model
	ROS vs. ROS2
	Real-time systems and ROS
	Organization and contributions of this work
	Research goals

	Motivation and Problem Definition
	Assumptions
	Task scheduling in ROS applications
	Prioritizing different types of tasks

	Possible approaches to task organization
	Message transport overhead
	Discovered challenges
	Application aware scheduling

	Related Work
	Analysis of ROS behavior
	Extending ROS capabilities
	Conclusions

	Proposed Solution
	High-level idea
	Extending ROS logic
	Supporting different callback priorities
	Supporting preemption
	Supporting application-aware scheduling

	Ensuring support from the Operating System

	Evaluation
	Metrics
	Synthetic application generation
	Tracing method
	Performance comparison
	Scheduling overhead
	Examining utilization and deadline miss correlation
	Improving data freshness

	Application-aware scheduling

	Conclusion
	Future work

	Sample usage of proposed API

