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Abstract

Causal machine learning is a relatively new field which tries to find a causal relation between
the treatment and the outcome, rather than a correlation between the features and the
outcome. To achieve this, many different models were proposed, one of which is the causal
forest. Causal forest is made up of a random forest, with a different estimation function in
the leaf node, which means it suffers from the same problems, like being easy to overfit. The
reason why honesty was introduced was to ensure mathematically that forests do not overfit
as easily. This research however, only provided preliminary results and no real testing was
done in terms of causal inference. In this paper three scenarios are tested where a comparison
is made between a causal forest with and without honesty. Based on the results it seems
that honesty does indeed help for trees to not overfit. However in a general setting it hurts
the model as it only trains with half of the available data. This makes honest causal forest
less accurate in general settings where there is not a lot of training data. In a setting where
a large amount of data is provided it seems that honesty does not change the performance,
meaning it creates a theoretical guarantee against overfitting with no repercussions for the
performance.

1 Introduction
Causal effect estimation is a growing field, it tries to assign a causal relationship between
the treatment W, which is one of the features, and the outcome Y rather than finding an
underlying correlation like classical machine learning. This means that the goal of causal
effect estimation, also called causal inference, is to figure out how treatment W affects
outcome Y, rather than predicting Y itself as classical machine learning does. To achieve
this, causal inference is given all data points that received the treatment, called treated, and
the ones that didn’t, called control, meaning for the purposes of this study, the treatment is a
binary variable. Based on that data, a causal model tries to find out what the counterfactual
of each data point is, meaning if it’s treated, what would the outcome be if it wasn’t and vice
versa. If a model manages to get the counterfactual, the treatment effect can be represented
as the difference between the outcome when treated and the outcome when not treated.

Many models were proposed to find the counterfactual of data points. One such model is
the causal forest (CF), proposed by Wager and Athey (2015) and later expanded by Athey
et al. (2019). Causal forest was developed with a purpose in mind to create a model that
works with heterogeneous data. Heterogeneous data means that the values of the features
influence the treatment effect. For example measuring the effect of vaccinations against
a disease might be influenced by the age of the participants, as younger people could be
more resilient to the disease by default, thus the vaccine would be less effective. Causal
forest tries to split the data such that similar data points, based on their outcomes and
feature values, land in the same leaf node. These groups of data points that contain some
similarities between them are called subpopulations. Based on these subpopulations, causal
forest estimates the treatment effect as the difference of the average outcome of the treated
and the average outcome of the control.

When causal forests were introduced by Wager and Athey (2015), honesty was intro-
duced by them as well. Honesty is a property of trees that exists outside of the field of
causal inference. It is a response to a prevailing problem of regression trees, namely that
they easily overfit. Based on Wager and Athey (2015), a tree is honest if it does not use the
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outcome of a data point to create splits and to evaluate leaf nodes. Intuitively, this means
that trees cannot make splits to benefit specific parts of the training dataset, as the evalu-
ation will happen with a different subsample of the dataset. The same study also proposes
two implementations of honesty, double sampled trees and propensity trees, which will be
explained in more detail in Section 2.2.

Causal forests have already been used on real world problems. For example Miller (2020)
focuses on using causal forest to determine the effect of environmental policies on fisheries
and Zhang et al. (2022) studies the relation between speed cameras and road accidents, using
a causal forest. These studies apply causal forest on real world data, however the studies
only take the results from the model, rather than comparing it to different models to see
its performance. Some preliminary results were shown by Wager and Athey (2015) which
show that indeed honesty is capable of performing better on a dataset on which a causal
forest without honesty, called regular causal forest throughout this study, overfits on. Some
further results were created in Denil et al. (2014) which compares honest forests with other
models, however this study was set in classical setting, rather than a causal one. This begs
the question which this paper will try to analyze, which is to study the effect of honesty on
the performance of causal forests in a general setting.

In Section 2 a more in depth explanation of causal forests and honesty will be provided.
Section 3 will describe the experimental setup, the results obtained by these experiments
and the some preliminary theories followed by further experimentation to validate them.
Section 4 will provide further discussion about the results with an evaluation on the trade-
off between honesty in terms of performance. In Section 5 there is a short discussion on
responsible research, what has been done to assure transparency of presented results and
the different ethical complications this research might create with its conclusions. Lastly,
Section 6 will provide a conclusive stance on honesty based on the experiments and some
possible paths where this research can continue.

2 Honesty in Causal Forests
This section provides basic understanding of the causal forests and honesty. Section 2.1
describes the intuition behind the causal forest model and its main goals in causal effect
estimation. Section 2.2 provides a description of the honesty property and an algorithm to
show how it’s implemented.

2.1 Causal Forests
Causal forest (CF) is an extension of a random forest applied in a causal setting. Firstly,
there are many definitions of random forests, but CF extends from the generalized random
forests (GRF) defined in Athey et al. (2019). As there are different ways to create a forest,
this paper uses the implementation from Microsoft-Research (2022), which implements it via
gradient boosting, as introduced in Athey et al. (2019). The sole difference between a random
forest and a causal forest is the evaluation of the leaf node. While in a classical machine
learning scenario forests try to predict the outcome Y, in a causal machine learning scenario
the goal is to estimate the treatment effect. Thus, the output of a single tree is the conditional
averaged treatment effect (CATE), defined in Equation 1, where {i : Wi = 0, Xi ∈ L}
represents a set of all instances in the leaf node L that were not treated. This differs from
a random forests which outputs the predicted outcome.
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τ(Xi) = E[Y1 − Y0|Xi] (1)

τ̂(x) =
1

|{i : Wi = 1, Xi ∈ L}|
∑

{i:Wi=1,Xi∈L}

Yi −
1

|{i : Wi = 0, Xi ∈ L}|
∑

{i:Wi=0,Xi∈L}

Yi (2)

CATE serves as a metric to represent the effect a treatment has on a specific subpopu-
lation, e.g., getting vaccinated might have a bigger effect on older people as younger people
might be more resilient by default. To determine CATE, a causal forest creates trees based
on different subsamples of the training data. Causal forest uses the exact loss criterion to
compute the splits in a tree, while a generalized random forest uses gradient-boosted loss
criterion, defined by Athey et al. (2019). This study concentrates on causal forests as an
extension of a random forest, thus it is assumed that the difference between the two split
criterions does not influence the overall result. When given a test input X the CATE is
determined by evaluating Equation 2, where Wi represents the treatment of instance i, as
described in Wager and Athey (2015). Intuitively this equation describes the average out-
come of the treated in the leaf node L minus the average outcome of the not treated (control)
in the leaf node L. Given the estimated CATEs for each tree in the forest, the output is the
weighted average between all trees, where weights are dependent on the algorithm used to
grow the forest.

The benefit of causal forest is that it can match data points based on their features
without any additional estimation, which permits it to estimate CATE accurately if enough
samples were provided and if good splits were found. However, there are also some downfalls
from this approach. Forests inherit some of the downfalls of decision trees, such as failure
on an imbalanced dataset as shown in Muchlinski et al. (2016). Imbalanced datasets are
datasets where there is a significant imbalance of outcomes, for example, given a boolean
outcome if only 5% of the data points would have 1 as an outcome, it would create an
imbalance as a tree might group all the 1s each into separate leafs, meaning it would overfit.

2.2 Honesty
Honesty is a property introduced in Wager and Athey (2015) which helps to fight against
bias. The reason why bias is a relevant problem in causal forests, is because CF depends on
making good splits which are assumed to represent some sort of a distinction of a subpopu-
lation within the dataset as well. When a tree overfits, it creates a distinction that does not
serve as a good division into subpopulation from the dataset perspective. In these terms
bias references to the estimator bias, which is the difference between the expected value of
the model estimate of CATE and the actual CATE. All in all, overfitting hurts performance
badly, as it creates narrow subpopulations, specifically made to accustom the training data,
which in return creates significant estimator bias given new unseen data.

With overfitting in mind, Wager and Athey (2015) introduced honesty as "a tree is
honest if, for each training example i, it only uses the response Yi to estimate the within-
leaf treatment effect τ using 2 or to decide where to place the splits, but not both."(p.
8). Meaning that an honest tree will only look at the outcome of a data point to find an
optimal place to split or to evaluate a leaf node, but not both. Honesty is not a unique
property for causal machine learning, it exists in classical regression trees as well, meaning
that most of the literature on honesty in terms of causal machine learning is an extension
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of the classic machine learning honesty for regression trees. However, this study is only
concerned about honesty in the field of causal inference, therefore conclusions will be made
only about honesty in causal forests.

There are two ways proposed by Wager and Athey (2015) to achieve honesty. Double-
sample trees split the training sample into two and find the splits based on one half and then
evaluate based on the other. Propensity trees on the other hand, create splits based on the
treatment of a data point and then evaluate the leaf node with the outcome of all the training
data points that land in the leaf node. However, Athey et al. (2019) uses Double-sample
trees as it is a more general method. This means that available implementations of CF,
like the one by Microsoft-Research (2022), rely on the Double-sample algorithm to achieve
honesty. Throughout the paper it will be assumed that honesty is defined and implemented
using Double-sample trees.

3 Experimental Setup
This section describes the various experiments that took place to compare the performance
of an honest CF and a regular CF. Section 3.1 discusses the different experiments that were
run and the basic parameters used in the models and synthetic datasets. Sections 3.2, 3.3
and 3.4 describe the various experiments that happened in further detail and provide the
obtained results.

3.1 Setup
To answer the research question of the effect honesty has on the performance of causal
forests, three scenarios were created. The first setup is to check whether honesty indeed
helps against estimator bias and how prevalent the bias is in a regular CF, or a CF without
honesty. The second setup is created based on the claims from Wager and Athey (2015)
where it is mentioned that random forests in general perform badly when trying to fit a
treatment function that has sudden spikes, and honesty might make it worse. Thus, the
second experiment is trying to observe this phenomenon and to create a basic reasoning
for a case where honesty hurts the performance. The last experiment is created on three
different datasets that all try to simulate generic real world data. The first dataset is a
purely synthetic dataset that is not created with any specific case in mind. The second and
third dataset are benchmark datasets used throughout the field of causal machine learning,
namely the IHDP dataset, taken from Shalit et al. (2016), and the TWINS dataset, taken
from Yoon et al. (2018). These datasets were picked as they both contain real values for
features. IHDP is a relatively small dataset (only about 700 data points), while TWINS is
a relatively large dataset (with around 22 thousand data points).

Throughout the experiments multiple parameters were adjusted and some required syn-
thetic datasets to be generated. To avoid repetition, the basic parameters will be defined
here, meaning that if there is no mention of what a parameter is equal to in the experiment
it is left as its default value defined here. These values are determined by either the default
values in their EconML implementation (e.g. the number of minimal leaf nodes is set to 10
by default) or by the same values used by Wager and Athey (2015) or Athey et al. (2019).
All experiments consist of comparing the performance of an honest causal forest and a reg-
ular causal forest, both of which had the parameters set to their default values with the sole
exception being the parameter being changed. When testing a model, the experiment is run
on 70 replications and the average is taken as the result. The number 70 was chosen mostly
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because higher values took too long to compute, yet smaller values had too much variance.
Considering that for some scenarios 70 replications might not create a convincing argument,
Appendix A discusses the variance measured throughout the 70 replications.

For the model implementation, the Microsoft-Research (2022) implementation is used,
which provides some extra features outside of an causal forest implementation by expanding
it with Double Machine Learning, introduced by Chernozhukov et al. (2016), which should
only help in the case that the dimensionality is high or parametric functions cannot model
the data in a satisfactory manner. This should not have an effect on the experiments
themselves, but should help with optimization. Most of parameters are left as the default
parameters from the implementation. More concretely, the default min_samples_leaf is
set to 10, max_depth is set to None, meaning each tree can be as deep as it requires, and
n_estimators, also known as number_of_trees, is set to 100.

dimensionality: p = 5
X ∼ U(0, 1)p

noise: n() ∼ N(0, 0.01)

main effect: m(X) =

p∑
i=0

Xi

propensity: e(X) =
1

|X|

p∑
i=0

Xi

treatment: W (e) ∼ Ber(e)

ζ(x) = 1 +
1

1 + e−20∗(x−1/3)

treatment effect: τ(X) = ζ(X0)ζ(X1)

outcome: Y (m,W, τ, n) = m+ (W − 0.5) ∗ τ + n

(3)

Synthetic data is required when trying to test a specific property, as it is the only way to
obtain a valid groundtruth. For experiments requiring synthetic data, the functions defined
in Equation 3 are used. These functions were either taken from Wager and Athey (2015) or
created by the author to mock a general setting. For a visualization of what each function
represents, the causal graph shown in Figure 1 indicates what each function computes.

Throughout all experiments, many metrics from Cheng et al. (2022) were considered.
However in the end the mean squared error (MSE), as it seemed to be the most widely used.
This permits an easier comparison with other studies. Therefore, all comparisons between
models will be done with MSE, although in the codebase other metrics can be found and
tested as well.

3.2 Imbalanced Dataset Experiment
In this experiment, the goal was to test whether honesty does indeed help to fight imbalance
and the bias it creates. The expected outcome of this experiment is that honesty indeed helps
trees to not overfit, which provides a significant boost to the performance when compared
to regular CF. To create such an experiment, an imbalanced dataset was created, and then
both models were run on it to observe the different behaviour.
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Figure 1: Causal graph indicating the different naming definitions used across the experi-
ments. An arrow in a causal graph indicates what has influences on what. For example,
in this graph, the features X influence the treatment and the strength of this influence is
determined by the propensity function.

e(X) = 0.5

τ(X) ∼ Ber(0.05)

Y (m,W, τ, n) = m+ 2 ∗W ∗ τ + n

(4)

Although such data was already generated by Wager and Athey (2015), only treat-
ment_effect function was defined and all other influences on the outcome were set to zero.
To further expand this experiment, the default functions from Equations 3 are used to gen-
eralize the experiment more. The only changes, based on the original experiment, are the
functions in Figure 4. The CATE should be equal to 0.1 for all data points as the data is
homogeneous. This is due to the fact that each instance has 50% chance of being treated
and 5% to output 2 if its treated, meaning CATE should be equal to the expected value of
2 ∗ 1 ∗Ber(0.05)− 2 ∗ 0 ∗Ber(0.05) which is 0.1.

Figure 2 shows the different results obtained from testing different parameters on this
synthetic dataset. As can be seen in Figure 2a, honesty seems to improve the overall ability
to not overfit and thus achieve better performance. What seems to happen to the regular
CF, as similarly described by Wager and Athey (2015), is that it pushes each extreme value
into a separate leaf, which creates splits that hide the homogeneity of the data.Figure 2b
illustrates a case where the forests are evaluated based on a feature vector containing only
zeros. This forms an edge case, it such a feature vector will always end up in the left most
node of any tree. It can be seen from the graph, that as more samples are introduced, the
difference in performance seem to be getting larger.A possible explanation would be that as
more data is provided, it is more likely that there will be a extreme value near zero, thus it is
more likely that the zero vector will be divided into the left most leaf node with an extreme
value. Figure 2c displays that, while indeed the regular CF overfits, it becomes harder to
overfit as leaf nodes become larger, thus the regular CF converges towards the performance
of the honest CF.

This experiment shows that in the case where a dataset is imbalanced and seems to be
simple to overfit, honesty significantly helps as evaluation happens on unseen data and on
edge cases. However, this effect can be countered in regular CF by increasing the sample size
of the leaf nodes, if one has enough data and the knowledge that the dataset is imbalanced.
It is important to take into account that honesty was designed with this goal in mind and
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(a) General performance (b) Edge case performance (c) Minimal leaf size

Figure 2: Performance of honest causal forest (yellow) against regular causal forest (blue)
on the synthetic sudden spike dataset. Graph in 2a depicts the performance when the
sample_size parameter was changed, graph 2b shows the same, but tested with the point
(0, 0, 0, 0, 0) which is found on the edge of the feature space. This test helps to find out
how the model handles edge cases. In this instance, it tests how well the model handles
cases that always end up in the left-most node. Graph 2c illustrates the general performance
when min_leaf_size is changed.

similar results can also be obtained by increasing the value of the min_leaf_size parameter,
even as it may lead to worse results due to limited depth.

3.3 Sudden Spike Experiment
The sudden spike experiment tries to test a case where forests are known to have problematic
behaviour with or without honesty. However, because honesty only takes into account half
of the training data when building a tree and the other half to evaluate leaf nodes, honest
trees are inherently smaller than regular trees. This can be problematic if the heterogeneous
data has sudden spikes in the treatment effect. In Wager and Athey (2015) this problem
is briefly mentioned in the results section, where the authors acknowledge that "It [Causal
Forest] suffers from bias not only at the boundary where the treatment effect is largest, but
also where the slope of the treatment effect is high in the interior."(p. 23-24). To generate
such a dataset, the functions defined in Equation 5 were used to create a spike around the
point (0.5, 0.5) in the plane of the first two dimensions. f(x, y) represent a 2-dimensional
Gaussian distribution with 0 covariance and 0.01 standard deviation in both dimensions.

e(X) = 1−
√
(X[0]− 0.5)2 + (X[1]− 0.5)2

τ(X) = f(X0, X1)
(5)

In Figure 3 different coverage can be seen on an example of the used synthetic dataset.
These figures depict the first two features plotted along the X and Y axes, where each point
is a data point from the dataset. The greener a point is, the larger its treatment effect is,
where blue indicates that there is no treatment effect. As can be seen in Figure 3a, the true
coverage was generated such that it peaks around the point (0.5, 0.5) in terms of the first
two features, and quickly dissipates into no treatment effect at all. Figure 3b shows the
same depiction, but the treatment effect is estimated by a regular causal forest. The first
thing to notice is that the oval shape of the original treatment effect gets transformed into
a more rectangular shape. This is due to forest making orthogonal splits to one of the axes,
meaning it is impossible to create a perfect circle, rather it creates an approximation by
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creating many smaller squares. Secondly, the colour of the peak is darker than the original,
showing the weakness when it comes to sudden spikes in random forests. Figure 3c shows
the same, but with estimation done by an honest CF. The problem of estimating the peak
seems to become even worse, as the center is even darker than before. This indicates that
the performance is heavily influenced by honesty, as honesty has influence on the depth of
trees within the forest.

(a) True Coverage (b) Regular Coverage

(c) Honest Coverage

Figure 3: This figure depicts the different treatment effect estimated by the models. X and
Y axes are the first two features and each point represents one data point of the dataset. The
greener a point gets the higher the estimated treatment effect is. In Figure 3a a depiction
of the true treatment effect of the synthetic dataset can be found. Figure 3b shows the
estimated treatment effect predicted by a regular CF, and Figure 3c depicts the treatment
effect estimated by an honest CF.

The results of the forests ran on this dataset can be found in Figure 4. Based on Figure
4a, it seems that as more samples are provided both honest and regular CF seem to get
better and better, which most likely ties to the fact that with more samples both forests
are allowed to create larger trees. When testing the general case, it seems that the honest
CF needs twice as many samples to produce as good of a result as a regular CF, which
suggests that the hypothesis that honest trees are bounded by their lack of tree depth holds.
To further support this it can be observed in Figure 4c that, as the minimum sizes of the
leaf nodes increases, the performances converge to one another as both implementations
are forced to stop sooner and grow smaller trees. Furthermore Figure 4b shows that when
the max depth is set to a specific number, both models start with similar performance,
but as they get the room to expand, honesty lacks behind the regular CF due to a smaller
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evaluation sample size or smaller trees. With 100 minimum leaf size it can be argued that
both forests are forced to create only root node trees and thus have a similar performance.

(a) General performance (b) Maximal depth (c) Minimal leaf size

Figure 4: Performance of honest CF (yellow) against regular CF (blue) on the synthetic
sudden spike dataset. Graph in 4a depicts the performance when sample_size parameter
was changed, graph 4b shows the performance when the depth of the trees are set to a specific
number. Graph 4c illustrates the general performance when min_leaf_size is changed.

This experiment depicts the underlying problem of honesty, which is its limited depth
in creating trees. It shows that, while a regular CF is already sensitive to sudden spikes,
honesty intensifies this effect. This can also be viewed as a desired effect, as it prevents the
trees from overfitting on the spike by creating a larger tree. Based on the experiment, the
resulting data suggests that in this scenario it is more beneficial to rely on a regular CF
rather than an honest one.

3.4 General Dataset Experiment
To answer the overall question of how honesty affects the performance of CF, it is crucial
to investigate the effect honesty has in a general scenario. To perform this analysis, three
datasets were chosen. The first general dataset is comprised of the synthetic data that
follows the default functions described in Equation 3. This provides an overview on the
general comparison between the two approaches in a synthetic and predictable state. The
second scenario is the IHDP database, more specifically the iteration used by Shalit et al.
(2016). This dataset was chosen as it is a benchmark dataset in the field of causal machine
learning, and because it consists of only about 700 datapoints, providing an estimate of the
performance on a smaller dataset. The last scenario chosen is the TWINS dataset taken
from Yoon et al. (2018). A small change was created on the data from Yoon et al. (2018),
where for each pair of twins both twins were split into its own separate row, one as treated
and one as untreated, depending on their weight. Another change was to have the output
represent whether the infant died during the timeframe or not, instead of representing the
amount of minutes survived. This provides the experiment with a larger sample size where
further hypotheses can be tested.

The main hypothesis before running the experiment is that both honest and regular CF
should have similar performances. While an honest CF would create smaller trees, it should
trade off the imperfection of smaller trees with its resilience against bias.

Figure 5 contains the result of the experiment run with general synthetic data. As can
be observed, honesty seems to worsen the performance when compared to the regular CF.
Once again, this seems to be due to the lack of depth in honest trees as there is less data
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to train with. This can be verified when looking at the performance when max_depth is
changed, as both models will have similar performance whilst both have enough data to
completely fill up a tree, but a difference occurs once the training sample size is limited.

(a) General performance (b) Minimal leaf size (c) Maximal depth

Figure 5: Performance of honest causal forest (yellow) against regular causal forest (blue)
on the general synthetic dataset. Graph 5a depicts the performance when the sample_size
parameter was changed, while graphs 5b and 5c do the same but with min_leaf_size and
max_depth parameters.

As can be seen in Figure 6, similar event occurs when working with the IHDP dataset.
The IHDP dataset contains only 747 data points, thus the forests do not receive a lot of
training data to begin with. This is reflected on the performance, as honest CF struggles to
perform as good as a regular forest. As the depth of the tree increases, the difference becomes
more visible as the regular forest is allowed to fully grow. Interestingly, the performances
do not approach one another when the minimal leaf size is set, considering that splitting the
training data in half might also have a major influence on not being able to correctly fit a
function based on the limited data.

(a) Maximal depth (b) Minimal leaf size

Figure 6: Performance of honest causal forest (yellow) against regular causal forest (blue)
on the IHDP dataset. Graph 6a depicts the performance when the max_depth parameter
was changed, and graph 6b shows the same when min_leaf_size was changed.

Last but not least, the twins dataset results depicted in Figure 7 also show a difference
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in performance when honesty is applied. The twins dataset contains around 22 thousand
data points, thus even with a depth of 10 both trees seem to perform similarly, as the
difference between their scores is small. However, a more significant change can be seen
when changing the min_leaf_size parameter as the regular CF starts out stronger and
both slowly converge to a worse version of themselves. This result is particularly interesting,
as based on the experiment in Section 3.2 the regular CF should improve as the leaf size
increases, but the opposite happens.

(a) Maximal depth (b) Minimal leaf size

Figure 7: Performance of honest causal forest (yellow) against regular causal forest (blue)
on the TWINS dataset. Graph 7a depicts the performance when the max_depth parameter
was changed, and graph 7b shows the same when min_leaf_size was changed.

Based on the three experiments it seems that honest CF struggles to catch up to the
regular CF in terms of MSE when there is limited amount of data. A possible explanation
can be that the lack of training data strains the depth of the tree to such a level that it
affects the outcome of the forest as a whole. This is supported by the fact that in TWINS,
which contains enough data points for both CF, the performance is similar, while in IHDP
where the sample size is limited, honest CF performs noticeably worse.

4 Discussion
Honesty was developed with one precise task in mind, which is to create a safer forest that
is able to avoid overfitting. While there are many different implementations of honesty, the
one used by most libraries that include causal forests is the Double-sample trees proposed
by Wager and Athey (2015). While some comparisons between honesty and regular trees
were already made, these comparisons were made in the terms of predictive power and
classification performance, rather than causal machine learning. Denil et al. (2014) compares
regular forests described by Biau et al. (2008) with similar forests that implement honesty
introduced by Biau (2012). In these tests honesty seemed to have a positive effect on datasets
with a lot of data, only one out of four tests showed that honesty had a negative effect, which
was a dataset with around 6500 data points. It is important to mention that one test also
included a dataset of 442 datapoints where honesty did improve the performance.

When it comes to evaluating the results of this paper based on the experiment described
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in Section 3.2, it seems that indeed honesty ensures that forests do not overfit on an im-
balanced set of data. However, as was shown in Sections 3.3 and 3.4 there are cases where
honesty damages the overall performance. However, this change for the worse seems to
disappear with more data, as there is enough data to grow the tree substantially in either
implementation. Surprisingly, the results shown in Figure 7 indicate that honest and regular
causal forests perform similarly on a large data sample, but the regular CF seems to be a
better choice when leaf nodes only hold one sample. This, however, might be attributed to
the TWINS dataset, rather than an underlying property of honesty.

It can be seen that honesty has specific cases where it provides significant help, but it
might be a dangerous tool to use on smaller datasets. As discussed throughout Section
3, this seems to be caused by honesty creating trees with only half of the training data,
resulting in smaller, shallower trees. The experiment in Section 3.4, which tests honest
CF on IHDP data, also seems to show an error which might be caused by the lack of
data in the leaf nodes, as only half of the training data is used to evaluate the leaf node.
Considering that the evaluation depends on estimating the mean of two values, a lack of
data would introduce a lot of variation and bias. This leads to the conclusion that based on
the general performances on general datasets, shown in Section 3.4, honesty seems to have
worse performance when there isn’t a lot of data to train on. This seems to be due to its
inability to create deeper trees, as when a max_depth parameter is set, the differences tend
to disappear until the depth permits the honest trees to use all sample data to create a tree.
From that point honest trees start stagnating in performance while regular trees are still
improving, as they can still grow further. If there is enough data to create in-depth trees by
both implementations, their performances seem to become similar.

To establish a general approach when deciding whether honesty should be implemented
or not, a lot of questions have to be answered first. Most importantly, as is discussed later in
Section 5, when the experiment contains ethically sensitive data, honesty is an ideal way to
ensure fairness and avoid creating ethical mishaps. Secondly, some preliminary tests can be
run on the dataset to determine whether forests might overfit. For example, a basic count of
treated and not treated samples already provides some basic information, even as it might
not provide further information about subpopulations. Finally, as later discussed in future
work, either a different definition of honesty can be applied, or one can implement a forest
that isn’t purely honest, meaning that only a certain percentage of trees is honest. This way
there should be a percentage of trees that won’t suffer from the downfalls of honesty shown
in this study, but it will also contain trees that will indicate that a forest is overfitting by
providing a very different result from the non-honest trees.

5 Responsible Research
To ensure the credibility of this research, many steps were taken to make sure that all results
shown in this paper are reproducible. The entire codebase used to obtain these results can be
found on the GitHub repository of the author1. In this codebase, multiple experiments can
be run and all experiments that were used to obtain these results can be found in main.py
file. If the save_data and save_graphs parameters are set to true, all data and intermediate
results, as well as the final results will be generated and stored in local directories, which
is further explained in the codebase itself. This permits the reader to recreate the same
experiments and validate the results.

1https://github.com/MatejHav/causal-methods-evaluation
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During the development of this research, certain ethical standards had to be considered.
Mainly when one considers the possible conclusions of this research, it becomes apparent
that there are ethical dangers that need to be avoided. The entire field of causal machine
learning is developed around treatment and outcome, which perfectly fits medical studies
about drugs and other treatments. This study is trying to find out whether honesty, a
property meant to fight bias, is worth adding to causal forests for evaluation. Therefore,
it is important to consider that a conclusion of this research might impact choices made in
a possible medical study, which might bring bias to medical studies. To counter this, it is
important to mention that these results are empirical and in no way a mathematical proof,
thus one should not decide whether to use honesty purely on this paper, rather it should
inspire further research into honesty in causal forests.

6 Conclusions and Future Work
The main question of this paper was to empirically show the effect of honesty on the per-
formance of causal forests. Based on the results of Section 3.2, it seems that honesty indeed
helps to fight bias and performs better against a regular CF on an imbalanced dataset. Sec-
tion 3.3 establishes the first instance where one can observe that the halved sample size used
to grow the trees when honesty is present, has a negative effect on the performance of CF.
This also reflects on the fact that the curves of the performance for both honest and regular
CF seem to be the same, however honest CF requires twice as many samples to achieve
the same result as a regular CF. All of this led to the general dataset setting, described in
Section 3.4, where it is further shown that on smaller datasets honesty seems to struggle
with its halved sample size to grow and evaluate trees. However with enough samples, the
differences tend to disappear. Thus, as discussed in Section 4, when deciding whether to
use honesty or not, many variables have to be taken into account. If the results could have
real life consequences, then honesty is a benefit for its strength against bias. If there is
only a limited amount of data, honesty might bring unnecessary drop of performance. In
such cases it would be encouraged to include honesty in parameter optimization and decide
based on results specific to the given problem. As a last mention, honesty was also built
as an improvement for confidence intervals of estimates, which is also an important fact to
take into account when building a model, as sometimes an interval could be better than one
exact estimate.

There are still many possible options that need to be explored. Firstly, this paper does
not provide an exhaustive test of honesty, but rather hand-picked tests that are supposed to
reflect performance under specific conditions. Further research should run it in more general
cases to test out whether conclusions made here based on initial samples truly hold in the
general world. Secondly, at the beginning, one specific definition of honesty was assumed
and tested. This was because the Double-sample tree definition is the one implemented by
Athey et al. (2019), which is the baseline for modern random forests. However, it would be
interesting to observe how honesty holds up in different settings with a different definition.
Based on the conclusion, if one manages to train on the same amount of training data as a
regular causal forest, the disadvantages of honesty should disappear. One possible definition
to test would be one that uses a full sample to grow a tree and then a new sample to evaluate
the tree, either a newly generated one or one from a different tree in the forest. In that case,
the honest trees will use the same size of the training samples as their regular counterparts.
Lastly, given the limited computing power of the author, all experiments were run on 70
replications. Whilst it is not expected that more replications would lead to different results,
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it is always encouraged to decrease variance further for even stronger results.
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A Analysis of variance in results
Throughout the paper many results are shown and all of these results were obtained over
70 replications, meaning there is still some amount of variance. It is worth analyzing this
variance as it can show how certain can one be about the given results. Overall, the approach
was the same for each experiment. As a rule of thumb if the results are within one standard
deviation from one another, they are understood as being similar.

In this Section a brief overview of the variance for each experiment will be provided with
generated boxplots from the same runs as the used figures. Section A.1 shows the results
of the Imbalanced dataset experiment described in Section 3.2. Section A.2 contains the
variance of the Sudden spike experiment from Section 3.3. Lastly, Section A.3 describes the
variance of the general results discussed in Section 3.4.

A.1 Variance of Imbalanced dataset experiment
The variance of results from Section 3.2 can be found in Figure 8.

A.2 Variance of Spiked dataset experiment
The variance of results from Section 3.3 can be found in Figure 9.

A.3 Variance of General dataset experiment
The variance of results from Section 3.4 can be found in in the following figures. Figure
10 depicts the variance of results of the General synthetic. Figure 11 shows the variance
of the results obtained from the IHDP dataset and Figure 12 illustrates the variance of the
measured performance on the TWINS dataset.
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(a) Honest CF (b) Regular CF

(c) Honest CF (d) Regular CF

(e) Honest CF (f) Regular CF

Figure 8: Figures 8a and 8b show the variance of results shown in Figure 2a. Figures 8c
and 8d depict the variance of results from Figure 2b. Figures 8e and 8f illustrate the varied
results depicted in Figure 2c
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(a) Honest CF (b) Regular CF

(c) Honest CF (d) Regular CF

(e) Honest CF (f) Regular CF

Figure 9: Figures 9a and 9b show the variance of results shown in Figure 4a. Figures 9c
and 9d depict the variance of results from Figure 4b. Figures 9e and 9f illustrate the varied
results depicted in Figure 4c
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(a) Honest CF (b) Regular CF

(c) Honest CF (d) Regular CF

(e) Honest CF (f) Regular CF

Figure 10: Figures 10a and 10b show the variance of results shown in Figure 5a. Figures
10c and 10d depict the variance of results from Figure 5b. Figures 10e and 10f illustrate the
varied results depicted in Figure 5c
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(a) Honest CF (b) Regular CF

(c) Honest CF (d) Regular CF

Figure 11: Figures 11a and 11b show the variance of results shown in Figure 6a. Figures
11c and 11d depict the variance of results from Figure 6b.
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(a) Honest CF (b) Regular CF

(c) Honest CF (d) Regular CF

Figure 12: Figures 12a and 12b show the variance of results shown in Figure 7a. Figures
12c and 12d depict the variance of results from Figure 7b.
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