
Circuits and Systems
Mekelweg 4,

2628 CD Delft
The Netherlands

http://ens.ewi.tudelft.nl/

CAS-2016-02

M.Sc. Thesis

Integrating a Neuron Network application
into a ZYBO Zynq-7000 development board

with an AXI-Bus interface

Mohammad Ahmadinia, B.Sc.

Abstract

In order to verify an application with a simulation, increasing the
simulation speed is important. An Inferior Olivary Nucleus (ION)
network has been implemented in a SystemC language and its simu-
lation verified by a SystemC testbench. The goal of this thesis is to
integrate the ION application into an FPGA in order to increase its
simulation speed by using the hardware. In addition, to verify the
integrated ION in the FPGA, an ARM processor is used for com-
munication between a PC and the ION. A Zybo development board
combines the capability of software programming in an ARM-based
processor with the ability of the hardware programming in an FPGA,
on a single device. To communicate between the ARM processor and
the FPGA, AXI-Bus interface is implemented. The ARM processor
executes software in order to send inputs from the PC to the ION
and receive results from the ION and show them on the screen on the
PC. To verify the ION in the FPGA, software is implemented and the
software outputs are compared with the result of SystemC testbench
reference model.

Integrating a Neuron Network application into a
ZYBO Zynq-7000 development board with an

AXI-Bus interface

Thesis

submitted in partial fulfillment of the
requirements for the degree of

Master of Science

in

Computer Engineering

by

Mohammad Ahmadinia, B.Sc.
born in Malayer, Iran

This work was performed in:

Circuits and Systems Group
Department of Microelectronics
Faculty of Electrical Engineering, Mathematics and Computer Science
Delft University of Technology

Copyright © 2016 Circuits and Systems Group
All rights reserved.

Delft University of Technology
Department of

Microelectronics

The undersigned hereby certify that they have read and recommend to the Faculty
of Electrical Engineering, Mathematics and Computer Science for acceptance a thesis
entitled “Integrating a Neuron Network application into a ZYBO Zynq-7000
development board with an AXI-Bus interface ” by Mohammad Ahmadinia,
B.Sc. in partial fulfillment of the requirements for the degree of Master of Science.

Dated: November 29th, 2016

Chairman:
prof.dr.ir. Alle-Jan van der Veen

Advisor:
dr. ir. René van Leuken

Committee Members:
dr. Carlo Galuzzi

dr. Amir Zjajo

dr. Arjan van Genderen

iv

Abstract

In order to verify an application with a simulation, increasing the simulation speed
is important. An Inferior Olivary Nucleus (ION) network has been implemented in a
SystemC language and its simulation verified by a SystemC testbench. The goal of
this thesis is to integrate the ION application into an FPGA in order to increase its
simulation speed by using the hardware. In addition, to verify the integrated ION in
the FPGA, an ARM processor is used for communication between a PC and the ION.
A Zybo development board combines the capability of software programming in an
ARM-based processor with the ability of the hardware programming in an FPGA, on a
single device. To communicate between the ARM processor and the FPGA, AXI-Bus
interface is implemented. The ARM processor executes software in order to send inputs
from the PC to the ION and receive results from the ION and show them on the screen
on the PC. To verify the ION in the FPGA, software is implemented and the software
outputs are compared with the result of SystemC testbench reference model.

v

vi

Acknowledgments

I would like to thank my adviser dr. ir. René van Leuken for his assistance during
this thesis. He always helped me whenever I ran into a trouble spot or had a question
about my research or writing. He consistently allowed this thesis to be my own work,
but steered me in the right direction whenever he thought I needed it. My special
gratitude goes to the members of my MSc committee for accepting their role, reading
my dissertation, and providing useful feedback and I would like to thank dr. Arian van
Genderen for his support and trust for starting my Master study at TUDelft. On a
personal note, I would like to thank all of my friends. My special thanks goes to my
close friends, Saleh, Samira, Soran and Debarshi.

Last but not least, I am very grateful to dedicate this work to my wife, Somi, whose
love and support gave me the motivation I needed to complete this work. I am also
thankful to my parents for instilling in me a love for education, and providing me with
countless opportunities to learn and grow throughout my lifetime.

Mohammad Ahmadinia, B.Sc.
Delft, The Netherlands
November 29th, 2016

vii

viii

Contents

Abstract v

Acknowledgments vii

1 Introduction 1
1.1 Goals . 1
1.2 Approach . 2
1.3 Contributions . 2
1.4 Thesis Outline . 2

2 State of the Art 5
2.1 Brain And Neurons . 5

2.1.1 The Brain . 5
2.1.2 The Cerebellum . 5
2.1.3 Neural networks . 6

2.2 Neuron Network Application (NNA) 8
2.2.1 Introduction . 8
2.2.2 Problem Definition . 8
2.2.3 Approach . 9

2.3 Software Tools . 9
2.3.1 Modelsim . 9
2.3.2 Vivado Design suite . 10
2.3.3 Xilinx Software Development Kit (SDK) 10

2.4 Zynq-7000 Development board . 11
2.4.1 Zynq SoC . 11
2.4.2 Zybo Board . 12

2.5 Introduction of an Axi-Bus for the Xilinx System Development 13
2.5.1 AXI4-full and AXI4-lite Protocols 13

3 System Design 17
3.1 System Design Overview . 17
3.2 PL architecture . 18
3.3 PL/PS architecture . 20

4 System Implementation 23
4.1 Neuron Network Application (NNA) 23

4.1.1 NNA Overview . 23
4.1.2 Testbench description of the NNA 24

4.2 PL Implementation and Simulation . 28
4.2.1 Simulation and implementing overview 28
4.2.2 Generate VHDL from NNA . 28
4.2.3 PL Implementation (NNIP Implementation) 29

ix

x

4.2.4 Packaging Neuron Network IP-core (NNIP) 31
4.2.5 PL Simulation (NNIP simulation) 31

4.3 PL and PS Implementation on Hardware 36
4.4 Software . 37
4.5 Evaluation the Results . 39

5 Conclusion and Future Work 43
5.1 Conclusion . 43
5.2 Future work . 43

A Appendix 45

B Appendix 47

C Appendix 49

D Appendix 51

E Appendix 53

List of Figures

2.1 Human Brain . 6
2.2 Simplified image of a neuron[1] . 7
2.3 Zynq-7000 AP SoC Overview. 11
2.4 The ZYBO Zynq-7000 development board 12
2.5 AXI-Bus Interconnect [2] . 14
2.6 AXI-Lite Interface [2] . 15
2.7 AXI-Full Interface [2] . 15

3.1 System design overview . 18
3.2 PL architecture overview . 19
3.3 Registers addressing . 20
3.4 PS/PL architecture overview . 20

4.1 General overview of the NNA implementation on an FPGA [3]. 24
4.2 Neuron Network Application (NNA) System Control [3] 24
4.3 Init_data Handshaking [3] . 25
4.4 Initialization steps for the NNA . 26
4.5 Waveform of initialization steps in SystemC testbench 27
4.6 Waveform of Start simulation in the SystemC testbench 27
4.7 PL implementation and simulation overview 28
4.8 Generate VHDL from C and SystemC files 29
4.9 Design source overview of Package IP (NNIP) 31
4.10 Neuron Network IP-core (myip_cell_top_v1_0_0) 32
4.11 Simulation diagram overview of NNIP 32
4.12 Simulation Source Files overview of NNIP 32
4.13 Test-Bench overview . 33
4.14 Waveform of initialization steps in the VHDL testbench 34
4.15 Waveform of Start simulation in VHDL testbench 34
4.16 Hardware implementation flow . 36
4.17 Block diagram including myip_cell_top_v1_0 (PS and PL) 37
4.18 Base address and range of the Custom Slave IP Address 37
4.19 Summary for the proposed, implemented and tested projects[4] 38
4.20 Software implementation overview . 39
4.21 Software result . 40

xi

xii

List of Tables

4.1 Init type table [3] . 25
4.2 Cluster_out_data output of the SYSTEMC simulation vs. the VHDL

simulation . 35
4.3 Hardware resource usage for the NNIP core for the Virtex 7 ZyBo-

xc7z010clg4 device . 41

xiii

xiv

Introduction 1
This thesis describes an application developed on a Zybo Zynq-7000(xc7z010clg40) [5]
development board device which integrates the software programmability of an ARM-
based processor with the hardware programmability of an FPGA, on a single device. An
Inferior Olivary Nucleus (ION) network has been implemented in a SystemC language
and its simulation verified by a SystemC testbench [3]. This implementation is called a
Neuron Network Application (NNA). The goal of this thesis is to integrate the NNA into
an FPGA in order to increase its simulation speed by using the hardware. In addition, to
verify the integrated NNA in the FPGA, an ARM processor is used for communication
between a PC and the NNA. Using the Zybo board and using different software such as
the Vivado Design Suite [6], the ModelSim [7] and the Xilinx System Development Kit
(SDK) helped us to create the customized slave IP from integrated NNA with an AXI-
bus interface which is called Neuron Network IP-core (NNIP). The NNIP verification
is done with writing a VHDL testbench and compare it with a reference SystemC
testbench model. After verification of NNIP, a block design is created to connect ARM
processor to the NNIP in the FPGA through the AXI interconnect. To verify the block
design, writing a software is needed. The software is executed on the ARM processor
to send input parameters to the NNIP in the FPGA and return result outputs from
the FPGA and show it on the desktop screen.

1.1 Goals

The first goal of this thesis is to increase the simulation speed of ION by integrating
ION implementation in the FPGA. To achieve this goal, a customized slave IP (called
the Neural Network IP-core (NNIP)) is created to be utilized to integrate the Neuron
Network Application (NNA) with the AXI-Bus interface architectures. The NNA model
has to be understood, and the AXI-Bus interface architecture and its protocols are
crucial concepts to be studied.

The second goal of this thesis is to verify and evaluate the NNIP within a VHDL
testbench with the ModelSim tool and also creating a hardware block design in the
Xilinx Vivado (2015.1). In order to create a block design, the Zynq-7000 processors
should be used as a master to connect with the NNIP and then the block design should
be synthesized and the bit-stream will be generated. To evaluate the block design,
the Xilinx Software Development Kit (SDK) should be used to write a software driver
based on the hardware specification and implementation.

Finally, the software result will be compared with the NNA SystemC testbench
result [3] based on the same input parameters and the same conditions.

1

2

1.2 Approach

The approach of this thesis for reaching the goals in the previous section begins with
the literature studies about the current state-of-the-art of a brain and a neural network.
The previous work about designing the Inferior Olivary Nucleus (ION) network on an
FPGA device [3] as an initial work for this thesis is investigated. In addition, good
understanding about the Advanced Extensible Interface (AXI) bus protocol and the
different software and hardware platform are essential.

1.3 Contributions

The contributions of the work presented in this thesis are the following:

• Integrating a Neuron Network Application (NNA) with a new customized slave IP-
core (it is called the Neuron Network IP, NNIP) which has the AXI-Bus interface
and then creating a package IP.

• Verification and evaluation the NNIP with a VHDL testbench and comparing the
result with the reference model(SystemC testbench).

• Using the Vivado to create a block design and adding the Zynq-7000 processors
as a master to connect with the NNIP, and finally, creating an HDL wrapper, and
then synthesizing, implementing, and creating a bit-stream for the design.

• Exporting the hardware design specification and launching the Xilinx Software
Development Kit (SDK) to write a software. This software will be written for
Verification and comparing the results of the hardware design with the reference
SystemC testbench model.

1.4 Thesis Outline

The rest of this thesis is organized as follows.

Chapter 2 Describes the state of the art of the brain, the neural and the Neuron
Network Application (NNA). In addition, it presents a brief introduction to the
software and the hardware which are used in this study and the introduction of
the AXI-Bus for the Xilinx System Development.

Chapter 3 Introduces how the system is designed to integrate the NNA with a new IP-
core and communicate through the AXI-Bus interface with the ARM Cortex-A9
processor.

Chapter 4 Shows the system design implementation. It will start with the simulation
then the synthesizing, the optimization, the Bit generation and the hardware
and the software verification and finally comparing the result with the reference
SystemC testbench model.

3

Chapter 5 The conclusion and the future Work will be discussed and presents how
our design can be further improved.

4

State of the Art 2
This chapter introduces the concept of the Neurul Network(NN) in the brain. In
addition, the different software and hardware which are used are summarized and their
limitation and capability are explained. In response to the software, the Vivado Design
Suite [6], the ModelSim [7], the Xilinx System Development Kit (SDK) and the picocom
terminal program are used and their contribution is highlighted. Regarding to the
hardware, the ZYBO Zynq-7000(xc7z010clg40) [5] development board is explained.
Further, the concept of the AXI interface is discussed in this chapter.

2.1 Brain And Neurons

In this section a short introduction to the Neurul Network(NN) is given. A top-down
method is used: First, the brain itself is discussed. Second, the place of the cerebellum
in the brain is covered. Third, the physical structure of the cerebellum is included,
also illustrating the underlying cell connections in this section. Subsequently, the cell
structure of the Inferior Olivary Nucleus (ION) is presented.

2.1.1 The Brain

The brain consists of three main parts, the Cerebrum, the Cerebellum and the Brain-
stem (see Figure 2.1 for their location in the human brain). The Cerebrum is the outer
layer of the biggest part, and it is called the cerebral cortex, it contains about half of
all the neurons in the brain[8]. This part is responsible for three main brain functions;
specifically (1) perception: the ability to see, feel, taste, hear and smell the environment
to maintain a reaction (2) the cognitive functions: thinking, feeling, and intuition and
(3) motor control: planning and control of all intentional movements is done by the
motor cortex which is in the cerebral cortex [[9], p. 322].

The second part of the brain is the brainstem. It has vital life functions such as
maintaining, breathing, heartbeat, and the controlling the blood pressure. Neverthe-
less, the IONs are located in the brainstem and, take an important role in the motor
control[10].

The cerebellum is the third part of the brain which occupies around nine times
less volume compared to the Cerebrum, but it contains a roughly the same amount
of neurons. Its functionality is well known because it includes only two neuron types:
Purkinje cells and Granule cells[11].

2.1.2 The Cerebellum

The cerebellum is a sectors of the brain that takes an important function in the motor
control as well as attention and language, pleasure responses [12], and movement related

5

6

Figure 2.1: Human Brain

functions. The cerebellum does not start the movement but provides the coordination,
the precision, and the accurate timing. It collects input from sensory systems of the
spinal cord and other parts of the brain and integrates these inputs to the fine-tune
motor activity [13].

To control these different motor systems, the cerebellum, receives many input signals
such as (1) the somatosensory input from different systems in the body that are sensitive
to touch, (2) the spinal cord and (3) the cerebral cortex [14].

2.1.3 Neural networks

The Cells inside the brain consist of the neurons which are used to process and transmit
signals. Every neuron mainly consists of three parts (Figure 2.2, A): dendrites,soma,
and axon.

The electrochemical stimuli are received by the dendrite as an input from other
neurons. This information is given to the soma and after processing and storing as a
membrane potential, if this potential reaches a certain threshold, a spike goes via the
axon to other neurons (Figure2.2, B).

As a biological function, the Inferior Olive (IO) performs within the brainstem. The
IO is the part of the Olive Body located in the brainstem and works closely together
with the Cerebellum to provide the correct motor control. There are two Olive Bodies
in the brainstem, each having their own IO. Both IOs consists of neural cells that will
be introduced as an Inferior Olive Neurons (ION).

The location of the neurons is defined in the cerebellum and the Inferior Olivary

7

Figure 2.2: Simplified image of a neuron[1]

Nucleus (ION) and, it is essential for the coordination of the body’s activities [15].

Each ION is interconnected within synapses, and receives the stimuli through its den-
drites although there is a difference between the connected synapse and its dendrite.
Together, they transfer the input to the cell body (soma) via the axon and the axon tra-
verses via the ION or towards the Cerebellum ending at the axon terminal, and towards
several Synapses (see Figure 2.2, A). The IO works in a close cooperation together with
the Cerebellum to provide an accurate motor control. When a person wants to move
part of his/her body a request is sent from the Cerebrum. This request is also copied to
the cerebellum through the Pons. At the same time, the sensory information received
from the body will be fed up via the IO. After receiving this input, the IO reply to the
cerebellum, via the output axons (so called Climbing Fibers). Then, the cerebellum
compares the command and response, and if it is necessary, the requested movement is
adjusted to fit the command. This affects on the brains function to perform reflexes,
and quickly generate accurately [16].
The neural networks have been investigated by researchers for several decades. The
experiments performed by Hodgkin and Huxley in 1952 [17], gave a way to a clearer
understanding and precise modeling of the action potential generation by the neurons
and also understanding the importance of bio-potentials in the transmission of infor-

8

mation in the Central Nervous System (CNS).
Over the years, several NN models have been proposed in [18] and implemented in

hardware to verify their accuracy [19]. Due to the high level of parallelism in the neuron
networks, reconfigurable hardware, such as a Field Programmable Gate Array (FPGA),
can provide the means to properly simulate these intricate and highly parallel networks.
However, modern multi-core designs have also proved to be capable of simulating large
NN’s within a given time. The previous work gave a brief description of how the
biochemical neuron was translated into the a logical model that can be implemented
on an Integrated Circuit (IC).

2.2 Neuron Network Application (NNA)

In this section Master thesis of three students as the initial work are described.

2.2.1 Introduction

In a work done by [20], by using an extended version of the HH, a neuron can be split in
3 different compartments. Each compartment, models the behaviour of a certain area
of the ION (dendrite, some and axon Hillock). The extended HH was first described in
a SystemC and then translated to a Synthesizable-SystemC (SSC) [21] model.

A SystemC [22] is a modern derivative of the general purpose C++ programming
language, built for the simulating event-driven processes. By designing the model on
a special subset of the SystemC, modern tools [6] can create a synthesizable hardware.
This in turn made it possible to translate the complex and high level HH calculations
into parallel operations that could be implemented on an Field Programmable Gate
Array (FPGA).

In the SSC model, by designing a system, all the ION HH calculations were put
into a single piece of hardware called a Physical Cell (PhyC), multiple HH calculations
could run in parallel. Then, as the time it took for 1 PhyC to finish calculating a single
HH response was shorter than the real-time timing constraint (50µs), several iterations
of HH calculations could be calculated over a single PhyC. Each iteration represents a
single simulated neuron that is referred to as a Simulated Cell (SimC).

To confer the coupling effect between the SimC, and to give an output to the simu-
lated neuron’s axon (by the axon hillock), each PhyC is connected to a Wishbone bus
[23]. As only 1 PhyC can send information at a time through the bus, a Wishbone
arbiter decides which PhyC has access.

2.2.2 Problem Definition

By using the SSC, and by connecting eight PhyCs to the Wishbone bus, up to 48
neurons could be implemented on a Virtex7 FPGA, and simulated within the 50µs
time limit. The larger numbers of SimC are not possible due to the limitations of the
Wishbone bus.

In the follow up work by [17] the new method has been identified to interconnect
the simulated neuron cells in a way that allows for “massive” numbers of cells compared

9

to the previous approaches. An increase of the number of the cells in the system
should not increase the communication time required by the system to handle all the
communication between the cells. Furthermore, the system should be expandable to
more than one chip as every chip has a certain limit in size. To overcome this limitation,
it should be able to connect multiple chips in order to build a larger system.

To accurately simulate the behaviour of a highly parallel cognitive system such as
the IO, a bio-physically meaningful model is chosen that closely resembles the biological
responses in the human brain. The extended Hodgkin-Huxley model (HH) describes the
relation between the electric current to a single neuron membrane, and its capacitance.
This relation is translated into nonlinear differential gap functions that describe the
responses of three main parts of a neuron (dendrite, soma and axon)[3]. These functions
rely a great deal on accurate floating point operations, and in particular the exponent
operation, as ionic currents in biological neurons follow a exponent trend. Within the
HH the exponent operation is only used 30 times per neuron calculation. Compared
to other more often used operations, the exponent operations requires relatively more
resources and cycles to complete. Within the NN there exists a high level of connectivity
between separate cells. For increasing the complexity, the communication load can
increase exponentially the resulting in non-real-time simulation times.

2.2.3 Approach

The Neuron Network (NN) is implemented on a Field Programmable Gate Array
(FPGA) with the help of modern tools and, a mix of open and closed source IP. This im-
plementation is called a Neuron Network Application (NNA). Each calculation instance
implemented on the FPGA represents a single neuron within the NN. By scheduling
the calculation elements around the exponential operation, resources are spared while
the required amount of cycles are kept to a minimum. Two approaches are taken to
communicate between the neurons. First on a local level the elements are connected
to a bus. Secondly these locally connected neurons (cluster) are interfaced in a binary
tree network with routers. To verify how accurate the model is, a reference model is
used to generate neuron responses for a comparative system.

2.3 Software Tools

In this section, software tools which are used in this thesis will be described. In the
chapters 3 and 4, more explanation is given to show how these software help to reach
the goal of this thesis.

2.3.1 Modelsim

ModelSim [7] is a multi-language HDL simulation environment by Mentor Graphics,
for the simulation of the hardware description languages such as VHDL, Verilog and
SystemC [24], and includes a built-in C debugger. ModelSim can be used independently,
or in conjunction with the Xilinx ISE [25].

10

There are multiple editions of ModelSim, such as ModelSim PE, ModelSim SE, and
ModelSim XE.

To compare ModelSim SE and PE, ModelSim SE offers high-performance and ad-
vanced debugging capabilities, while ModelSim PE is the entry-level simulator for hob-
byists and students. ModelSim SE is used in large multi-million gate designs, and it is
supported on the Microsoft Windows and Linux, in 32-bit and 64-bit architectures. In
this thesis, ModelSim SE is used for the simulation and Verification of the hardware
design.

2.3.2 Vivado Design suite

Xilinx [25] provides a software suite called Vivado Design Suite [6] which is for syn-
thesising and analysing of HDL designs. In addition, it is used for superseding Xilinx
ISE [25] with additional features for system on a chip [26] development and high-level
synthesis.

Vivado give the possibility to developers to synthesize (compile) their designs and
perform the timing analysis and do examine RTL diagrams. Vivado simulates a design’s
reaction to different stimuli, and configure the target device with the programmer. This
is a design environment for FPGA [27] products from Xilinx and cannot be used with
FPGA products from other vendors.

Xilinx is leading provider of Electronic System Level Design tools for all pro-
grammable solutions. The Vivado Design Suite System Edition provides Vivado High-
Level Synthesis (HLS) [28] for the C, C++ and SystemC and automatically converts it
into the Verilog or the VHDL for further synthesis. In addition, HLS has some interface
and optimization settings, which can be configured by TCL scripts. These feature give
the ability to high-level IP specifications to be directly synthesized into the VHDL and
the Verilog accelerating IP verification. The C function is synthesized into a IP clock
with the Xilinx Vivado HLS which is integrated into a hardware system.

2.3.3 Xilinx Software Development Kit (SDK)

The Xilinx Software Development Kit (XSDK)[29] is the Integrated Design Environ-
ment (IDE) for creating embedded applications on any of Xilinx microprocessors such
as the Zynq-7000 All Programmable SoCs, and the industry-leading MicroBlaze™. The
SDK is the first application IDE to deliver true homogeneous and heterogeneous multi-
processor design and debug. In addition, SDK is based on the Eclipse open source
platform which is used as a compilation environment and C code editor. This software
has been managed as a application build configuration, automatic Makefile generation
and error navigation.

In addition to the above native Eclipse provided features, the SDK also provides the
following tools for use in the Xilinx embedded software development. It provides Xilinx
Microprocessor Debugger (XMD) [30] as a debugging agent to communicate with the
Xilinx embedded processors. In addition, it is used to program the Xilinx FPGA with
the bitstream.

The XMD facilitates debugging programs and provides a Tool Command Language
(TCL) interface. This interface can be used for running complex verification test scripts

11

to test a complete system as well as command line control and debugging of the tar-
get. The XMD console is used as a standard TCL console, where any available TCL
commands could be run. Additionally, the XMD console provides command editing
convenience, such as a file and a command name auto-fill and a command history.

2.4 Zynq-7000 Development board

2.4.1 Zynq SoC

The Zynq-7000 [5] family is based on the Xilinx All Programmable SoC architecture. It
provides a very fast interaction during accelerating programs. Every Zynq SoC included
a processing system on PS and a programmable logic on PL. There are feature-rich dual-
core or single-core ARM Cortex-A9 on PS and 28 nm Xilinx programmable logic on
PL in a single device [31]. There are ARM Cortex-A9 CPUs in the heart of the PS also
on-chip memory is included, in addition there are external memory interfaces, and a
rich set of peripheral connectivity interfaces.

Figure 2.3: Zynq-7000 AP SoC Overview.

The Xilinx Zynq-7000 family offers the flexibility and scalability of an FPGA and

12

it provides performance, power, and ease of use for the designers. Designers have the
choice to use the different range of the Zynq 7000 families which contain the same PS,
the PL and I/O resources and on the other hand the Xilinx provides a large number of
soft IP for the Zynq 7000 family.

The main functional blocks of the Zynq 7000 Soc are illustrated in the Figure 2.3.
As it is mentioned before, the PL and the PS are the main blocks. The PL Consist of
an Application Processor unit (APU), Memory interfaces, I/O peripherals (IOP) and
Interconnect.

In the section 3.3, the IP integration with the combination of the PS and the PL
blocks is described.

2.4.2 Zybo Board

In this study, the Zybo Board is chosen as the development board for our imple-
mentation of our accelerator prototype (Figure 2.4). It contains a Xilinx Zynq-7000
All Programmable System on Chip (c7z010-1clg400c), which consists of a dual-core
ARM Cortex-A9 MPCore based Processing System (PS) and an Artix-7 FPGA as
programmable logic (PL) [5]. The PS includes on-chip memory, external memory in-
terfaces, some of I/O peripherals. The system offers the flexibility and scalability of
an FPGA, also will provide performance, power, and ease of use typically associated
with ASIC and application specific standard product (ASSP) [31]. The PL makes use
of the second version of the Advanced Extensible Interface (AXI4) bus protocol, which
is part of the ARM Advanced Microcontroller Bus Architecture (AMBA) [2], [32].

Figure 2.4: The ZYBO Zynq-7000 development board

The Zynq PS and the PL are interconnected via the different interfaces. There are
two 32-bit Master AXI ports (PS master) and two 32-bit Slave AXI ports (PL Master),

13

plus four 32/64-bit Slave High-Performance ports (PL Master). From the PS to the Pl,
four clocks are provided, and there are different interrupts between the PS to the PL
and vice versa.

The Cortex-A9 processor uses 32-bit addressing and all the PS, and the Pl pe-
ripherals are memory mapped to the processor core. In this regards, all the slave PL
peripherals are located between 40000000 and 7FFFFFFF (if they are connected to
GP0) and 80000000 and BFFFFFFF (if they are connected to GP1).

2.5 Introduction of an Axi-Bus for the Xilinx System Develop-
ment

The feature that makes the Zybo Board especially well-fitted for hardware acceleration
applications is the tight coupling between the PS and the PL. The ARM processors
can be connected directly to any component in the PL area through the set of general
purpose AXI ports and an Extended Multiplexed I/O (EMIO) port (see Figure 2.3).
Besides, there are four high performance (HP) AXI4 ports that PL components can
use to access external memory directly. At max capacity, the HP AXI4 ports have a
bandwidth of 1200 MB/s.

The second version of the Advanced eXtensible Interface(AXI4) bus protocol is used
to make the PL, which is part of the ARM Advanced Microcontroller Bus Architec-
ture (AMBA)[2]. The AXI4 is available in the Xilinx ISE Design Suite which can be
applied in the projects. It is suitable for low latency and high bandwidth designs. Dif-
ferently, the AMBA provides high-frequency operation without the use of bridges. It
fits the interface requirements of wide range of components and is suitable for memory
controllers.

There are three kinds of AXI4 interfaces:

• AXI4-Full: For high-performance memory-mapped requirements.

• AXI4-Lite: For simple, low-throughput memory mapped communication.

• AXI4-Stream: For high-speed streaming data.

The AXI specification describes an interface between an AXI Master and an AXI
Slave. They are connected and using a structure called Interconnect block (Figure 2.5),
and in the case of the AXI4-Full and the AXI4-Lite, it is called an AXI Interconnect.
It is used for the memory mapped interfaces only while the AXI4-stream interconnect
can be utilized for the AXI-4 stream bus implementation.

Any of those interfaces are implementable in the PL. Therefore they can be con-
nected directly to the PS through a set of AXI4 bus ports. In the rest of this section,
the AXI specification and the protocols explained in the details.

2.5.1 AXI4-full and AXI4-lite Protocols

The AXI-Full specification proposes a different range of important features such as
variable data and address bus widths with high bandwidth burst operations. Also, it

14

Figure 2.5: AXI-Bus Interconnect [2]

offers advanced caching support and several transaction assurances and access permis-
sions. While these features offer the user flexibility and control, it is often useful to
be provided with a much simpler peripheral which consists of only a subset of these
functions. For that reason, a reduced feature variant of the AXI4-Full specification
exists in the form of the “AXI4-lite”.

The AXI4-Lite interconnect provides only necessary interconnect transactions
which are required, and high-level capabilities of the interconnect such as burst
support, cache support, and variable bit widths for the address and data buses has
been removed. The AX4-lite interconnect is suitable for applications where simple
control and status monitoring capabilities are required for a custom built IP block.

Both the AXI-Full and the AXI-Lite have five different channels between the Master
and the Slave (See Figure 2.6 and 2.7).

Data between the master and the slave can move in both directions simultaneously,
and data transfer sizes can be different. The AXI4-Full consists of single address with
multiple data with a burst transaction up to 256 data beats, but AXI4-Lite provides
only 1 data transfer per transaction with 32 bits data width.

15

Figure 2.6: AXI-Lite Interface [2]

Figure 2.7: AXI-Full Interface [2]

16

System Design 3
This chapter describes an application developed on the Zynq-7000 All Programmable
SoC devices. The capability of the ARM-based processor in the software programming
and the FPGA in the hardware programming is considered and integrated into a single
device.

The Zynq-7000 All Programmable SoCs (System On Chip) introduce a customizable
intelligence into today’s embedded systems to suit our application requirements. This
family of the FPGA is suitable for high-end application because it has large resources on
the single chip. In this regard, it allows the designers to create their custom hardware
IP. Therefore, this ability was a driving force of this thesis to create a customized IP
based on the previous work [3]. The Zybo board (xc7z010clg4) [33] is chosen as the
development board for the implementation of our accelerator prototype which contains
a Xilinx Zynq-7000 All Programmable System on Chip (SoC).

The main goal of the current work is to create a Custom Slave IP which can be
utilized to integrate the NNA with an AXI-Bus interface architectures, and it is called
a Neural Network IP-core (NNIP). Later this NNIP will be verified and evaluated in
simulation tool trough a testbench and a writing software.

The integrating and communication of the NNA to the AXI Bus interface is ex-
plained in this section as follow. First, the overall view of the design is illustrated to
give a wider perspective about this thesis. Second, how structurally the NNA is inte-
grated into a new custom IP design, and finally, the combination of the PS and the PL
is covered.

3.1 System Design Overview

In the Figure 3.1, the Zybo board (xc7z010) [33] is shown by dotted lines which consist of
many interfaces but it is highlighted only those which is used in this design. Seven main
blocks in the figure are shown, and they are covered in this part. There is a Zynq IC
(xc7z010-1clg400c) which is mainly divided into the two sections, a Processing System
(PS) and a Programmable Logic (PL) [5] which is an FPGA. These two components are
connected based on the AXI Bus interconnect. The PS consist of the processor unit,
on-chip memory, external memory interfaces, and peripheral connectivity interfaces.
The ARM Cortex-A9 and the AXI-Bus interconnect are located in the PS. The AXI
specification gives a structure that describes protocols for transferring data between
the IPs with using a defined signaling standard. This standard secures that IP can
exchange data with each other and that data can be moved across a system. The AXI
protocol defines how data is exchanged, transferred, and transformed. It also ensures
an efficient, flexible, and predictable means for transferring data.

The PL includes the programmable logic, the configuration logic, and associated

17

18

Figure 3.1: System design overview

embedded devices. The main goal of this thesis is integrating the NNA into the custom
slave IP in the PL which is called the Neuron Network IP-core (NNIP). The architecture
of the NNIP is described in detail in the next subsection. Another component is a UART
[33]. When we are using a Xilinx Development Board with a USB-UART port, it uses
a mini-B USB cable to connect the USB-UART port on the board to a PC which
is equipped by a Picocom terminal emulators. There are various kinds of terminal
emulators [34], but the Picocom terminal is used, due to availability on the PC in the
lab.

3.2 PL architecture

In order to design and implement the interface for the NNA to communicate with the
ARM processor via AXI-bus. The NNIP (see Figure 3.2) is designed and implemented.
The NNIP consists of an AXI-Lite slave and an AXI-Full slave which are interfaced by
the AXI-Bus interconnect. In below, the characterization of both AXI-Bus interface is
discussed.

• AXI-Full salve

An AXI-Full slave (see Figure 3.2) consists of different parts as follow, a Neuron
Network Application (NNA) called a Cell-top.vhd, a Clk Generator and a Memory
block (BRAM).

The NNA has been made based on the different inputs and outputs which are
sketched in the figure 3.2. The specification about the inputs and the outputs will
be discussed in chapter 4. All the input signals except S_start, Clk and Reset
are connected to the the related and allocated registers in the AXI-Lite. The Clk
and the Reset are connected with a system Clk and a system reset. The last

19

Figure 3.2: PL architecture overview

important input signal is S_start which is connected to the output of the Clk
generator block. The Clk generator block is responsible for delivering 50µs Clk
period to the output based on the signal Out_rdy.

All the outputs of the NNA except the Out_data vector are stored in allocated
AXI-Lite registers. In this regard, all the output signals are accessible through the
AXI-Bus interface and the designer can monitor them easier with defined address
of the registers.

The memory block with a size of 64k byte (see Figure 3.3) is implemented to
be used for storing the out_data vector data. This alignment of the data in the
memory is based on the out_adr signal and control signals such as out_new and
out_type. This memory block is accessible by allocated and configured addresses
in the range of 0#7AA00000 to 0#7AA0FFFF through the AXI-Bus interconnect
with the 32 bits data word.

• AXI-Lite slave

20

Figure 3.3: Registers addressing

The AXI-Lite slave block (see the Figure 3.2) consists of local registers with the
length of 32 bits. Those local registers are defined and used for storing the input
data which are required for the AXI-Full inputs, and storing some outputs from
the AXI-Full. Those local registers are accessible by allocated and configured
addresses in the range of 0#43C00000 to 0#43C0FFFF through the AXI-Bus
interconnect (see Figure 3.3). Through the accessing to the registers, it is possible
to monitor the inputs signal and some important control outputs signals which
are used to verify and proof the correctness of the NNA outputs.

The hardware implementation of AXI-Lite slave and the AXI-Full slave are discussed
in a details in chapter 4.

3.3 PL/PS architecture

The Zynq PS and the PL are interconnected via the different interfaces. There are a
32-bit Master AXI port and a 32-bit Slave AXI port, and also some clocks and reset
signal from the PS to the Pl are provided.

Figure 3.4: PS/PL architecture overview

Figure 3.4 shows how the Neuron Network IP-core (NNIP) is designed to be con-
nected to an embedded processor in Processing System (PS) with an AXI-Lite and an
AXI-Full interface. The processor acts as a Master, and the Custom Slave IP acts as a
Slave. By accessing the allocated registers via the AXI-Lite interface and the Memory

21

block via the AXI-Full interface, the processor can control, and read and write the data
from and to the NNIP.

For example, to access to the data ports of the NNA, the PS should read from
the memory block in the AXI-Full and write to the associated local registers in the
AXI-Lite.

The ARM Cortex-A9 processor uses 32-bit addressing, and all the PS and the Pl
peripherals are memory mapped to the processor core. In this regards, all slave PL
peripherals are located between 0#40000000 and 0#7FFFFFFF (In this study, it is
connected to the GP0) and 0#80000000 and 0#BFFFFFFF (if it was connected to the
GP1).

22

System Implementation 4
In this chapter, an integration of the Neuron Network Application (NNA) within a
Custom Slave IP (NNIP) and its communication through the AXI-Bus interface are
introduced. This chapter mainly is divided into five main sections. Firstly, in order to
start with the NNA as an initial application, its SystemC testbench implementation
and specification is explained. Secondly, converting the NNA (the SystemC and C
implementation) to the VHDL code is shown. Thirdly, simulation of the integrated
NNA within the Custom Slave IP (NNIP) block and the AXI-Bus interface (the PL
implementation) is illustrated. Fourthly, the synthesizing, optimization and bitstream
generation of the block deign (the PS and the PL integrated block) are described and
finally, the software implementation is explained.

4.1 Neuron Network Application (NNA)

The aim of this section is to give an overview about the NNA and its testbench.

4.1.1 NNA Overview

Before the testbench explanation, it is necessary to have an overview about the Neuron
Network Application (NNA) which has been written in the file called Cell_top.vhd.
This application model has been tuned based on 4 parameters (1x1x25x1) such as
number of Physical Cell Clusters (PCCs), the amount of shared Exponent Coprocessor
(ExpC) within each PCC, the number of Physical Cell (PhyC) in each PCC, and
the Time Sharing Factor(TSF) for each PhyC. Those parameters and definitions are
described in [3], and the reader is strongly advised to understand them before starting
this chapter.

To understand better the I/O signals of the NNA, Appendix A and Figure 4.1 are
illustrated to show the linked PCCs by Routers and I/O ports of the FPGA. When a
PhyC has calculated a new axon voltage or neuron response for a given Simulated Cell
(SimC), it is sent through the tree network. The axon voltages are only directed to
the I/O of the FPGA, while the responses are sent to all of the other PCC’s. Finally,
if a response needs to be overwritten or a SimC needs to be released from/receive
an impulse, a signal can be injected into the tree network. When all responses have
been streamed to the I/O of the FPGA and received by the clusters, respectively, the
model is ready to start calculating the new SimC states [3]. It is important to mention
the timing of computational cycles within a PCC and implementable hardware design
timings, which are 50µs for a single PCC.

23

24

Figure 4.1: General overview of the NNA implementation on an FPGA [3].

4.1.2 Testbench description of the NNA

A SystemC testbench has been done in previous result [3]. In that result, running
the hardware simulation model and initialization is briefly described. There is a Clus-
ter_rdy signal in each PCC, which has been controlled by 3 input signals such as the
Clock, the Reset and the Start.

In the Figure 4.2, there are two operating modes such as an initialization and a
normal operation. In the NNA, operationally, the SimCs within the design needs to
calculate and communicate simulated ION responses to their neighbors and the axon.
To simulate the real-time behavior of the complete Neuron Network (NN), all imple-
mented SimCs must have been carried out these two operations within 50µs [3].

Figure 4.2: Neuron Network Application (NNA) System Control [3]

Every PCC sends one output and receives two inputs data vector besides the status
signal and control which are connected to FIFO’s. One input vector has been connected
to the initialization port and the other input and output vector have been connected to
the main communication port. Every port vector has been made with multiple smaller
bit vectors which are dependent on the accuracy of the simulation model either 32 bit
or 64 bit model, the maximum number of connected SimCs a SimC can have, and the
configuration that used to build the system.

Two bridges have been placed to make handshaking between the data ports of the
PCC, and the input and the output pins of the FPGA. One bridge has been connected
to the main communication port and other to the initialization port [3].

25

4.1.2.1 Initialise PCCs

Each SimC needs to be initialised, before a simulation is started. When a reset is given
(Figure 4.2), the PCC will pull up the Cluster_rdy signal to show that the PCC is ready
to receive new initialization data (Init Op). Now it is possible to sent the initialization
data.

Figure 4.3: Init_data Handshaking [3]

The simple bridge has been designed to promote handshaking between the
initialization-port-connected FIFO’s and the I/O of the FPGA to initialise the system.
In Figure 4.3 the handshaking protocol of the init-data is illustrated. The handshaking
has been defined in two steps, Firstly, valid data is located on the Init data input pins,
and the strobe signal is inverted. Secondly, when the data is received, it acknowledges
this by making the acknowledgment equal to the strobe.

In this thesis, the signals for the handshaking between the FIFOs and the I/O of
the FPGA are replaced by the AXI-Bus interface signals. In the next sections, the
AXI-Bus interface is explained in detail.

Five different types have been defined for the initialization data. For an accurate
system initialization, each type has to be sent. Table 4.1 and Figure 4.4 show the
different init vectors and it is not important in which sequence type (0 through 3) is
sent, but as soon as a PCC gets a type 4 init data vector, the initialization mode for
that PCC will be locked [3].

Table 4.1: Init type table [3]
Number name

0 Init cluster number
1 Init cell dendrite voltage
2 Init cell parameters
3 Init connectivity matrix
4 Init done
5-7 Not used

A brief description about 5 initialization steps (Table 4.1) are listed as below [3]:

Init cluster number (init_type = 0): Every PCC is initialized with a specific in-
dex number (PCC nr) by sending a type 0 init data vector. Based on this number,
the PCC calculates the global address (SimC adr) of each SimC.

26

Figure 4.4: Initialization steps for the NNA

Init cell dendrite voltage (init_type = 1): A local copy of all the dendrite volt-
ages is stored through every PCC. To initialize the dendrite voltages stored within
each PCC controller, each PCC needs to get every dendrite voltage for all SimCs
in the design. A single dendrite voltage within a single PCC is initialized after
sending a type 1 init data vector to the design. Looping this data vector for each
SimC adr on each cluster will setup all dendrite voltages within the design.

Init cell parameters (init_type = 2): Every SimC has its individual set of locally
stored initial parameters. These are 16 cell properties and three initial cell states
(Vsoma and Vaxon, Vdend). A single initial parameter for a single SimC is set
with giving a type 2 init data vector to the design. Looping this data vector
within every parameter on a SimC with int-adr within a PCC will setup the given
SimC. With doing this for all SimCs, each SimC in the design will be setup.

Init connectivity matrix (init_type = 3): Every SimC gets many responses from
other SimCs about where it is placed in the neuron network. It is initialized with
giving a type 3 init data vector to the PCC.

Init done (init_type = 4): After a type 4 init data vector is given, the PCC is init
locked.

Figure 4.5 shows a waveform of five mentioned initialization steps in the SystemC
testbench and, all the inputs and setup parameters are illustrated.

4.1.2.2 Start Simulation

After locking the PCC (see Figure 4.6), the signal cluster_rdy is asserted and a sim-
ulation can be started. s_start is a single control signal to control the simulation.
It is the timing of computational cycles within a PCC and implementable hardware

27

Figure 4.5: Waveform of initialization steps in SystemC testbench

design schedules, which are 50µs for a single PCC. The PCCs will calculate the output
dendrite and axon responses during the simulation [3].

Figure 4.6: Waveform of Start simulation in the SystemC testbench

4.1.2.3 Receive Result

The axon and dendrite voltage responses made by the system will automatically get
out of the main communication output port and streamed to the output pins of the
FPGA with the bridge. In order to understand the new valid data is presented the
bridge will assert the cluster_out_new signal. If the new value (cluster_out_data) is
of type 1, it means axon voltage, it is stored in an array at address cluster_out_adr
for later comparison with the reference model [3].

The next step is using mentioned information about the NNA and its SystemC
testbench, in order to implement the PL with integrating the NNA with the AXI-Bus
interface, and later, simulating the PL and comparing the VHDL testbench with the
SystemC testbench.

28

4.2 PL Implementation and Simulation

4.2.1 Simulation and implementing overview

In this Section the PL implementation and its simulation are described as below. Firstly,
the Vivado_HLS tool has been used to generate the VHDL code and related TCL files
from the NNA implementation (see Figure 4.8). Secondly, the Vivado Suite is used to
integrate the generated VHDL code from the NNA within the Neuron Network IP-core
(NNIP) and the AXI-Bus interface which is implemented in this study. Thirdly, it is
exported as a Package Ip-core and finally, the Modelsim internally in the Vivado is used
to run a simulation for the NNIP. The PL Implementation will be verified by a VHDL
testbench. The steps are shown in Figure 4.7 by order and it is discussed in detail in
this section.

Figure 4.7: PL implementation and simulation overview

4.2.2 Generate VHDL from NNA

The NNA implementation in the previous work [3] models an Inferior Olivary Nucleus
(ION) network on an FPGA devices designed with the SystemC and called as a cell-
top.c. As it is explained in section 2.3.2 about functionality of Vivado HLS, this tool
has been used to convert NNA implementation automatically into VHDL for further
synthesis (see Figure 4.8).

29

Figure 4.8: Generate VHDL from C and SystemC files

4.2.3 PL Implementation (NNIP Implementation)

The Pl architecture is explained in Chapter 3 and shown in Figure 3.2. In this section,
integrating the Neuron Network Application (NNA) into the Neuron Network IP-core
(NNIP) with an AXI-Bus interface is explained in detail.

In the section 3.2 is mentioned that there are two AXI-Bus interfaces in the design
of NNIP such as the AXI-Lite salve and the AXI-Full slave interface. Their signal
names are completely flexible from the point of view of the VHDL design. During the
creation of a Xilinx IP block, the Vivado tools are used to map each AXI signal onto
the signal name that it is used when creating the IP. However, in order to make the
life of the designer much easier, the signal names used here are recommended when
designing a custom AXI slave in the VHDL. Using these signal names have allowed the
Vivado design tools to automatically detect the signal names during the “create and
package IP” step (described later on).

The AXI-Lite salve and the AXi-Full slave channels are described in detail in
section 2.5.1. The next important aspect of those AXIs is the handshaking signals
which is really important, and it is done in this study. These signals are consistent
amongst the five channels and give a powerful way to control all read and write
transactions.

Slave AXI-Lite implementation

To implement read and write transaction in the AXI-Lite slave, The signals are
defined (signals are listed in the Appendix B) based on a simple “Ready” and “Valid”

30

principle. Signal “Ready” is used by the recipient to indicate that it is ready to accept
a transfer of a data or address value, and “Valid” is used to clarify that the data (or
address) provided on that channel by the sender is valid so that the recipient can then
sample it.

In AXI-Lite Slave, the memory mapped register selection and write logic generation
are implemented. The write data is accepted and written to memory mapped registers
when slv_reg_wren is asserted. It happens when axi_awready, S_AXI_WVALID,
axi_wready and S_AXI_WVALID are asserted.

Write strobes are used to select byte enables of the slave registers while writing.
These registers are cleared when reset (active low) is applied. In Slave register write
enable is asserted when the valid address and data are available and the slave is ready
to accept the write address and write data.

There is simplified implemented code in Appendix C that shows how the write
transaction to a local register is implemented in the AXI-Lite slave.

The reading data is accepted and reading from the memory mapped registers hap-
pens when the axi_arready, the S_AXI_ARVALID and the axi_rvalid are asserted.
It means, the slave register read enable is asserted when the valid address is available
and the slave is ready to accept the read address. An implemented code in Appendix
D shows how the write transaction to a local register is implemented in the AXI-Lite
slave.
Salve AXI-Full Implementation

In this thesis, a handshaking signals for the AXI-Full slave are implemented in the
five channels. They give a powerful way to control all read and write transactions from
the memory block in the AXI-Full slave (see figure 3.2). As it is mentioned before the
goal of defining this Memory block is storing the output of the NNA (the Axon and
the Dendrite voltage) after one iteration based on another NNA output signals such as
the Cluster_out_adr, the Cluster_out_Type and the Cluster_out_new.

The example implemented code to access defined logic memory region is shown in
Appendix E. The NNA produces the data output (the Axon and the Dendrite Voltage)
via the Cluster_out_data signal and for every output data, the Clutser_out_new
will be asserted. The writing data is accepted and writing to the memory mapped
registers happens when the Clutser_out_new is asserted. In order to organize the
Axon and Dendrite voltage data in the the memory block, the Clutser_out_type
and the Clutser_out_adr have the important role. The address location of the
output voltage in the memory is given by the Clutser_out_adr and the type of
the output voltage data is distinguished based on the Clutser_out_type (if it is
"00", it means the Dendrite Voltage and if it is "01" means the Axon Voltage).
It is mentioned in the beginning of this chapter that the NNA has been tuned
based on one PCC and 25 PhyCs in a PCC (configured setup 1x1x25x1). With
this configuration, 25 Axons voltage and 25 Dendrites voltage as the 32bit output
data are expected to be written in the memory with the size of 1.6 KB in every iteration.

A reading data from the Memory block will happened when the mem_rden signal is
asserted. It means that the axi_arready , the S_AXI_ARVALID and the axi_rvalid

31

should be asserted. The handshaking implementation code to access and read from the
memory region in AXI-Full slave is provided in Appendix E.

4.2.4 Packaging Neuron Network IP-core (NNIP)

The next step of the design process is to package the IP to put it into a format that
can be understood by the Xilinx Vivado block diagram GUI. The Vivado Tool is used
to create an IP based on the imported NNIP source code. Then “Create and Package
IP” menu item is chosen from the “Tools” menu at Vivado. Through this menu option,
a tool is started within the Vivado suite called the “IP Packager”, which took all of
the design sources within that project, and started a design wizard which is provide
access to all of the configuration settings needed for the IP to be created. To create an
IP, existing source files is used, and all the source files are added in the design sources
in the vivado project (see Figure 4.9). There are different configuration wizards that
should be followed before create the package IP such as the IP naming and family in
the library, the IP customization parameter, the IP ports, the IP interfaces and the IP
addressing and memory.

Figure 4.9: Design source overview of Package IP (NNIP)

After setting up all the parameters and creating the package IP, the Neuron
Network IP-core (NNIP) is accessible via the Vivado IP catalog with the name of
myip_cell_top_v1_0_1. It is ready to be used for creating block design (see Figure
4.10), but before using the NNIP to create a hardware block design, it should be verified
by a simulation (e.g. Modelsim) by writing a VHDL testbench.

4.2.5 PL Simulation (NNIP simulation)

The next step is to verify the correctness of the packaged IP (NNIP) by writing a
VHDL testbench. The ModelSim is well suited to simulate digital components based
on the hardware description language VHDL. Generally, a VHDL model consists of sev-
eral blocks, each defined by an interface (entity) and dedicated architectures. Entities
are described by unidirectional and bidirectional ports, architectures can be imple-
mented by a behavioral or a structural description. The behavioral description on an

32

Figure 4.10: Neuron Network IP-core (myip_cell_top_v1_0_0)

abstract VHDL modeling level allows using data types and programming techniques
known from other programming languages. On a structural level, a VHDL model
mostly consists of basic logic blocks. Both description types can be merged. The NNIP
(myip_cell_top_v1_0) is simulated by the VHDL testbench which behaves as a Pro-
cessing System (PS) to sent and received the data through the AXI-Bus interconnect.
The simulation overview and its source files overview are shown in Figures 4.11 and
4.12 respectively.

Figure 4.11: Simulation diagram overview of NNIP

Figure 4.12: Simulation Source Files overview of NNIP

33

4.2.5.1 Initialise PCCs

Before writing the VHDL testbench, it is essential to understand the SystemC testbench
which is explained above in section 4.1.2. All the initialization steps before starting the
simulation are illustrated in Figure 4.13. As it is mentioned, the initialization data has
five different types, and for the correct system initialization, each type has to be sent
(these five steps are shown by a signal waveform in Figure 4.14). As soon as a PCC
receives a type 4 init data vector, the initialization mode for that PCC will be locked,
and the simulation will be started.

Figure 4.13: Test-Bench overview

4.2.5.2 Start Simulation

Figure 4.15 shows the waveform simulation after the PCCs receive type 4 init data
vector and the status signal cluster_rdy is pulled up and a simulation can be run.
The simulation is controlled by single control signals s_start which is the timing of the
computational cycles within a PCC and implementable hardware design timings, which
are 50µs for a single PCC. During the simulation, the system will output dendrite and
the axon responses calculated by the PCCs.

Responses generated by the NNA will automatically be taken out of the main com-
munication output port, and streamed to the output pins of the FPGA by the bridge,

34

Figure 4.14: Waveform of initialization steps in the VHDL testbench

Figure 4.15: Waveform of Start simulation in VHDL testbench

which is internally is connected to the defined memory block and registers. To signify
that a new valid data is provided, the bridge will pull up the cluster_out_new signal.
The system will check if the desired response type is provided. If the new value (clus-
ter_out_data) is type 1 (axon) or type 0 (dendrite), they are stored in an memory
at a address of cluster_out_adr for the later comparison with the reference SystemC
testbench model.

4.2.5.3 Simulation Evaluation

In order to validate the correctness of the simulation, the waveform of the VHDL
simulation of the NNIP is compared with the reference waveform of the SystemC sim-
ulation done by [3] (they are shown above (4.1.2.2) in Figure 4.5 and 4.6). The goal of
this simulation is to verify five main capabilities of the NNIP (myip_cell_top_v1_0)
implementation.

35

Table 4.2: Cluster_out_data output of the SYSTEMC simulation vs. the VHDL simulation
SystemC testbench VHDL testbench

Axon Voltage Dendrite Voltage Axon Voltage Dendrite Voltage
out_adr Hex Float Hex Float out_adr Hex Float Hex Float

0 0xC26FE764 -59.976 0xC270422A -60.0646 0 0xC270EB32 -60.2297 0xC270421C -60.0646
1 0xC26FE764 -59.976 0xC270422A -60.0646 1 0xC27B96FA -62.8974 0xC270421C -60.0646
2 0xC26FE764 -59.976 0xC270422A -60.0646 2 0xC27B96FA -62.8974 0xC270421C -60.0646
3 0xC26FE764 -59.976 0xC270422A -60.0646 3 0xC27B96FA -62.8974 0xC270421C -60.0646
4 0xC26FE764 -59.976 0xC270422A -60.0646 4 0xC27B96FA -62.8974 0xC270421C -60.0646
5 0xC26FE764 -59.976 0xC270422A -60.0646 5 0xC27B96FA -62.8974 0xC270421C -60.0646
6 0xC26FE764 -59.976 0xC270422A -60.0646 6 0xC27B96FA -62.8974 0xC270421C -60.0646
7 0xC26FE764 -59.976 0xC270422A -60.0646 7 0xC27B96FA -62.8974 0xC270421C -60.0646
8 0xC26FE764 -59.976 0xC270422A -60.0646 8 0xC27B96FA -62.8974 0xC270421C -60.0646
9 0xC26FE764 -59.976 0xC270422A -60.0646 9 0xC27B96FA -62.8974 0xC270421C -60.0646
10 0xC26FE764 -59.976 0xC270422A -60.0646 10 0xC27B96FA -62.8974 0xC270421C -60.0646
11 0xC26FE764 -59.976 0xC270422A -60.0646 11 0xC27B96FA -62.8974 0xC270421C -60.0646
12 0xC26FE764 -59.976 0xC270422A -60.0646 12 0xC27B96FA -62.8974 0xC270421C -60.0646
13 0xC26FE764 -59.976 0xC270422A -60.0646 13 0xC27B96FA -62.8974 0xC270421C -60.0646
14 0xC26FE764 -59.976 0xC270422A -60.0646 14 0xC27B96FA -62.8974 0xC270421C -60.0646
15 0xC26FE764 -59.976 0xC270422A -60.0646 15 0xC27B96FA -62.8974 0xC270421C -60.0646
16 0xC26FE764 -59.976 0xC270422A -60.0646 16 0xC27B96FA -62.8974 0xC270421C -60.0646
17 0xC26FE764 -59.976 0xC270422A -60.0646 17 0xC27B96FA -62.8974 0xC270421C -60.0646
18 0xC26FE764 -59.976 0xC270422A -60.0646 18 0xC27B96FA -62.8974 0xC270421C -60.0646
19 0xC26FE764 -59.976 0xC270422A -60.0646 19 0xC27B96FA -62.8974 0xC270421C -60.0646
20 0xC26FE764 -59.976 0xC270422A -60.0646 20 0xC27B96FA -62.8974 0xC270421C -60.0646
21 0xC26FE764 -59.976 0xC270422A -60.0646 21 0xC27B96FA -62.8974 0xC270421C -60.0646
22 0xC26FE764 -59.976 0xC270422A -60.0646 22 0xC27B96FA -62.8974 0xC270421C -60.0646
23 0xC26FE764 -59.976 0xC270422A -60.0646 23 0xC27B96FA -62.8974 0xC270421C -60.0646
24 0xC26FE764 -59.976 0xC270422A -60.0646 24 0xC27B96FA -62.8974 0xC270421C -60.0646

1. Verification of the AXI-Bus interface implementation.

2. Verification of reading and writing from/to registers in the AXI-Lite slave
(myip_cell_top_v1_0_S00_AXI_lite).

3. Verification of the NNA integration with the AXI-Full slave
(myip_cell_top_v1_0_S01_AXI_full) and the AXI-Bus interface.

4. Testing the memory bock implementation in the AXI-Full slave
(myip_cell_top_v1_0_S01_AXI_full).

5. Comparing the Clutser_out_data (the NNA outputs data) with the reference
model (the SystemC NNA and simulation). In Table 4.2, the Clutser_out_data
in integrated NNA in the Neuron Network IP-core (NNIP) and the reference model
SystemC NNA simulation are compared. The table shows, the axon voltages in
the both simulation (the VHDL and the SystemC) are nearly similar and the
dendrite voltage is exactly the same.

36

4.3 PL and PS Implementation on Hardware

Once the VHDL testbench is passed, the packaged IP is completed, and it is acces-
sible in the IP catalog in the Vivado. Figure 4.17 shows the hardware implementa-
tion flow as follow. A new Vivado project for target device or a Xilinx target board
(a device architecture that was included in the list of supported architectures in IP
which is the Zybo Zynq Evaluation board in this thesis) is created, and the new IP
core (myip_cell_top_v1_0) is added to the IP Catalog. The next step is creating a
block design by adding the Zynq-7000 processor as a master and connect it with the
myip_cell_top_v1_0. Another IP including Processor System Reset and the AXI In-
terconnect is added to the system design by connection automation via the Vivado. In
order to PS accesses to the PL local registers and the allocated memory block, the base
and offset addresses of the AXI-Full Slave and the AXI-Lite slave are well defined in
the block design (see Figure 4.18).

To be continued the steps in figure 4.17, the block diagram is ready, and the next
step in the Vivado is to create an HDL wrapper, and then synthesize, implement, and
create a bitstream for the design. Then the hardware specification and implementation
is exported to the Software Development Kit (SDK) for preparation to start writing
software for the hardware design.

Figure 4.16: Hardware implementation flow

37

Figure 4.17: Block diagram including myip_cell_top_v1_0 (PS and PL)

Figure 4.18: Base address and range of the Custom Slave IP Address

4.4 Software

The Xilinx Software Development Kit (XSDK) [29] is the Integrated Design Environ-
ment (IDE) for creating embedded applications on any of Xilinx microprocessors such
as the Zynq-7000 All Programmable SoCs. The SDK is an Eclipse-based software de-
sign environment which enables the integration of hardware and software components
through the link inside the Vivado.

Figure 4.19 shows the summary for the proposed, implemented and tested projects in
this thesis. In order to write, debug, and deploy software applications for the hardware,
the Hardware Platform Specification files are required which are all the information and
files from a hardware design. After exporting the hardware and launching the SDK,
Vivado creates the Hardware Platform Specification in a directory which is used in the
SDK. The main components of this specification are a hardware description, an FPGA
Bitstream corresponding to the hardware description, a Block RAM Memory Map
(BMM) file corresponding to the Bitstream and the Zynq-7000 APSoC Initialization
Files.

The Zynq-7000 AP SoC Initialization Files consist of a ps7_init.tcl file, which is
the pre-initialization file that is to be sourced and executed before any application is

38

Figure 4.19: Summary for the proposed, implemented and tested projects[4]

downloaded onto the target. This TCL file contains the clock, pll and ddr initialization
code. The other required files are a ps7_init.c and ps7_init.h. These files are the
C-equivalent files for the ps7_init.tcl file. The SDK is used the Hardware Description
file to detect the processor(s) and memory-mapped peripherals present in the hardware
[35].

Another Required step before writing the software is creating a Board Support
Package (BSP). The SDK creates the BSP when a new software project is created. The
BSP is the collective term referring to all of the software components required to match
a given operating system (and its environment) to a given hardware design (board).
The BSPs commonly contain a low-level operating system and device driver code that
is dependent on the hardware and upon which the rest of the operating system layers.
In addition, the BSP might also contain other files containing directives, compilation
parameters, and hardware parameters that are used to configure the operating system.
Since a given Xilinx hardware platform is configurable, the fixed board support packages
are not possible. Therefore, the custom board support package must be generated for
each hardware design that is created [35].

Figure 4.20 gives an overview about the software implementation files and its struc-
ture. In order to understand the software architecture, it is essential to briefly explain
related .c and .h files in this Figure.

When the BSP is created, some compilation and the hardware parameters that are
used to configure the operating system will be generated. The main important one are
listed below:

• xparameters.h: This file contains the address definitions for the peripherals at-
tached to the ARM Cortex A9 core.

• xil_io.h: This file contains the interface for the general IO component, which

39

encapsulates the Input/Output functions for processors that do not require any
special I/O handling. The most commonly used functions calls are Xil_Out32()
and Xil_In32(), but similar functions exist for 16 bit and 8 bit data transfers.

• xbasic_types.h: This file contains the standard type definition of integer and float
numbers with signed and unsigned 8,16 and 32 bit.

Figure 4.20: Software implementation overview

In the beginning of this chapter (section 4.2.5, Figure 4.13) the initialization steps
for the testbench was illustrated. A software is implemented with the same path in
the main() file called a cell_top.c, and all the needed functions are made in the file
called myip_cell_top.c and they will be defined in file called myip_cell_top.h . Two
functions are defined for reading and writing from/to the AXI-Lite slave local registers
based on the defended register address and offset. In order to access to the memory
block inside the AXI-Full slave, a function is implemented for reading from the memory
block based on the address and offset.

And finally all the functions for five steps initialization are implemented to be used
in the main() function (cell_top.c) for initializing the NNA hardware implementation
in the Zynq-7000 APSoC family (ZyBo-xc7z010clg400) with the embedded dual-core
ARM-Cortex-A9.

In the main() (cell_top.c) function, all the initialization will be started and some
control signals are used to check whether the initialization is done and also the simula-
tion is completed. Then all the generated axon and dendrite output data will be read
from the memory block and they will be shown through the Picocom emulator terminal
on the screen.

4.5 Evaluation the Results

The Hardware Platform Specification file (the Bitstream and the other required files
ps7_init.c/.h) are ready and the software is compiled, and a .elf file is generated within

40

the SDK. In order to verify the software and the hardware, the Xilinx Development
Board (In this thesis, the ZyBo-xc7z010clg40) is connected with a PC through a USB
UART port (with a mini-B USB cable). The board is programmed with the Bitstream
file and initialized with other required files (ps7_init.c/.h). Then the software can
be run in the SDK. The PC is equipped by the Picocom terminal emulators [36], in
order to communicate with the hardware and print the software result in terminal.
Figure 4.21 shows the different processes in the software from the initialization to end
of the simulation and finally, print the axon and dendrite voltage for 25 PCCs from the
memory storage.

Figure 4.21: Software result

In this Figure, five initialization steps are specified. In addition, to verify and
check the simulation, three counters are defined to record and track the process in the
hardware.

41

• number_clutser_rdy
Counting the rising age of the cluster_rdy

• number_s_start
Counting the rising age of the s_start

• number_out_new
Counting the rising age of the number_out_new

As it is mentioned before about the relation between the Cluster_rdy and the S_start
control signals (section4.2.5.2), it is expected to see value 2 as a counter value for
both signals in one iteration. To signify that new valid data is provided by the clus-
ter_out_data vector signal, the number_out_new is used to count the pulling up of
the cluster_out_new signal. After running the software, a Hexadecimal value 32 (50
decimal value) is expected to be shown, because the software provides 25 axons and 25
dendrites output voltage data through the cluster_out_data vector signal and these
data are read from the memory storage and listed on the screen. The printed axon and
dendrite voltages in screen are compared with the ModelSim VHDL simulation result
in Table 4.2 and the reference SystemC testbench model, and it shows the similarity
between them.

Table 4.3, shows the hardware source usage in different cases. The number 1 is dedicated
for hardware source usage of the complete block design. The number 2 is for Neuron
Nerwork IP-core (NNIP) with integrated Neuron Network Application (NNA). The
number 3 shows the IP design (NNIP) without integrated NNA which is the block with
the AXI-Lite Slave and the AXI-Full slave.

Number Design name BRAM (60) DSP48EE (80) FF (35200) LUT (17600)
1 Complete block design 7.5 (12.5%) 28 (35%) 8674(24.64%) 10696 (60.77%)
2 NNIP Core with integrated NNA 7.5 (12.5%) 28 (35%) 8254 (23.45%) 10027 (56.97%)
3 NNIP Core without integrated NNA 2 (3.33%) 0 (0%) 1054 (2.99%) 696 (3.95%)

Table 4.3: Hardware resource usage for the NNIP core for the Virtex 7 ZyBo-xc7z010clg4
device

42

Conclusion and Future Work 5
5.1 Conclusion

The proposed system meets all the goals of the thesis presented in Section 1.3. In this
thesis, customized slave IP core is designed and implemented which is called the Neuron
Network IP-cor (NNIP). The NNIP is compatible with the AXI-Bus interface and it is
verified and evaluated based on the reference SystemC testbench model [3].

The main contributions of the proposed system are summarized below:

• I had been provided with a VHDL source code of a Neuron Network Application
(NNA). I integrated the NNA into a new customized slave IP-core (it is called the
Neuron Network IP-core (NNIP)) with the AXI-Bus interface and then a package
IP is created.

• The NNIP in the package IP is verified and evaluated within a VHDL testbench
by the Modelsim tool and the results are compared with the reference model(the
systemC testbench).

• The Vivado is used to create a block design, and the Zynq-7000 processors as a
master is added to connect with the NNIP. Finlay, the HDL wrapper is created,
and then synthesize, implement, and bit-stream are generated for the design.

• The hardware design specification and configuration are exported into the Xilinx
Software Development Kit (SDK) to write software. This software is written to
verify and compare the result of the hardware design with the reference SystemC
testbench model and the ModelSim VHDL simulation.

• The software result is compared with the reference SystemC testbench model and
the VHDL testbench. It shows that the axon voltages are nearly similar in both
simulation (the VHDL and the SystemC) and the dendrite voltages are exactly
the same.

This section concludes the work on this thesis. In the next section, possible exten-
sions to the work proposed in this thesis is explained.

5.2 Future work

This section provides ideas for further research interests following from the work on this
thesis. These are possibilities to improve the system and furthermore ways to extend
the system to increase the functionality.

43

44

1. As the NNA application is run just for an iteration, more iterations on the hard-
ware and compare the result with the reference SystemC testbench model are
required.

2. The axon and the dendrite voltage after running more iteration need to be stored.
Every iteration needs 1.6 KB memory to be stored. Reprogrammable logic equiv-
alent to Artix-7 FPGA in the Zybo board consist of 240KB Block RAM [33].
Then it is possible to store the outputs, just for 150 iteration. But of course
more iterations are needed, therefore finding a solution to store the axon and the
dendrite voltage after more iteration is needed.

3. Creating a boot image for an application that runs under the standalone from the
SD card on the Zybo board.

Appendix A
Neuron Network Application (NNA) ports

1
clk
reset
--Control signals
s_start

6 cluster_rdy

--Initialization signals
cluster_init_type
cluster_init_clus

11 cluster_init_adr
cluster_init_adr2
cluster_init_data
cluster_init_str
cluster_init_ack

16
--Injected signals
cluster_in_adr
cluster_in_type
cluster_in_data

21 cluster_in_str
cluster_in_ack

--Axon and Dendrite Voltage
cluster_out_adr

26 cluster_out_type
cluster_out_data
cluster_out_new

45

46

Appendix B
1 -- ---

-- -- Read and write transaction signals of AXI-Lite Slave
-- ---
--AXI-Lite signals Name
--Clock and Reset

6 S_AXI_ACLK : in std_logic ;
S_AXI_ARESETN : in std_logic ;

--Write Address Channel
S_AXI_AWADDR : in std_logic_vector (31 downto 0) ;
S_AXI_AWVALID : in std_logic ;

11 S_AXI_AWREADY : out std_logic ;
-- Write Data Channel

S_AXI_WDATA : in std_logic_vector (31 downto 0) ;
S_AXI_WSTRB : in std_logic_vector (3 downto 0) ;
S_AXI_WVALID : in std_logic ;

16 S_AXI_WREADY : out std_logic ;
--Read Address Channel

S_AXI_ARADDR : in std_logic_vector (31 downto 0) ;
S_AXI_ARVALID : in std_logic ;
S_AXI_ARREADY : out std_logic ;

21 --Read Data Channel
S_AXI_RDATA : out std_logic_vector (31 downto 0) ;
S_AXI_RRESP : out std_logic_vector (1 downto 0) ;
S_AXI_RVALID : out std_logic ;
S_AXI_RREADY : in std_logic ;

26 --Write Response Channel
S_AXI_BRESP : out std_logic_vector (1 downto 0) ;
S_AXI_BVALID : out std_logic ;
S_AXI_BREADY : in std_logic ;

47

48

Appendix C
1 -- --

-- -- Example code for writing into the local registers on AXI-Lite Slave
-- --
slv_reg_wren <= axi_wready and S_AXI_WVALID and axi_awready and

S_AXI_AWVALID ;

6 process (S_AXI_ACLK)
variable loc_addr : std_logic_vector (OPT_MEM_ADDR_BITS downto 0) ;
begin

if rising_edge (S_AXI_ACLK) then
if S_AXI_ARESETN = ’0 ’ then

11
slv_reg0 <= (others => ’0 ’) ;

else
loc_addr := axi_awaddr (ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB

) ;
if (slv_reg_wren = ’1 ’) then

16 case loc_addr is

when b"000000" =>
for byte_index in 0 to (C_S_AXI_DATA_WIDTH/8−1) loop

if (S_AXI_WSTRB (byte_index) = ’1 ’) then
21 -- Respective byte enables are asserted as per write

strobes
-- slave registor 0
slv_reg0 (byte_index∗8+7 downto byte_index ∗8) <=

S_AXI_WDATA (byte_index∗8+7 downto byte_index ∗8) ;
end if ;

end loop ;
26 when others =>

slv_reg0 <= slv_reg0 ;
end case ;

end if ;
end if ;

31 end if ;
end process ;

49

50

Appendix D
-- --

3 -- -- Example code to access registers on AXI-Lite Slave
-- --
slv_reg_rden <= axi_arready and S_AXI_ARVALID and (not axi_rvalid) ;

process (slv_reg0 , axi_araddr)
8 variable loc_addr : std_logic_vector (OPT_MEM_ADDR_BITS downto 0) ;

begin
-- Address decoding for reading registers
loc_addr := axi_araddr (ADDR_LSB + OPT_MEM_ADDR_BITS downto ADDR_LSB) ;
case loc_addr is

13 when b"000000" =>
reg_data_out <= slv_reg0 ;

when others =>
reg_data_out <= (others => ’0 ’) ;
end case ;

18 end process ;

process (S_AXI_ACLK) is
begin

if (rising_edge (S_AXI_ACLK)) then
23 if (S_AXI_ARESETN = ’0 ’) then

axi_rdata <= (others => ’0 ’) ;
else

if (slv_reg_rden = ’1 ’) then
-- When there is a valid read address (S_AXI_ARVALID) with

28 -- acceptance of read address by the slave (axi_arready),
-- output the read data
-- Read address mux

axi_rdata <= reg_data_out ; -- register read data
end if ;

33 end if ;
end if ;

end process ;

51

52

Appendix E
-- ---
-- -- Example code to access defined logic memory region
-- ---

5 gen_mem_sel : if (USER_NUM_MEM >= 1) generate
begin

mem_select <= "1" ;
mem_address <= axi_araddr (ADDR_LSB+OPT_MEM_ADDR_BITS downto ADDR_LSB)

when axi_arv_arr_flag = ’1 ’ else
axi_awaddr (ADDR_LSB+OPT_MEM_ADDR_BITS downto ADDR_LSB)

when axi_awv_awr_flag = ’1 ’ else
10 (others => ’0 ’) ;

end generate gen_mem_sel ;

-- implement Block RAM(s)
BRAM_GEN : for i in 0 to USER_NUM_MEM−1 generate

15 signal mem_rden : std_logic ;
signal mem_wren : std_logic ;

begin

mem_wren <= pm_cluster_out_new ;
20 mem_rden <= axi_arv_arr_flag ;

BYTE_BRAM_GEN : for mem_byte_index in 0 to (C_S_AXI_DATA_WIDTH/8−1)
generate

signal byte_ram : BYTE_RAM_TYPE ;
signal data_in : std_logic_vector(8−1 downto 0) ;

25 signal data_out : std_logic_vector(8−1 downto 0) ;
begin

cluster_data_out_send_toMemory_PROC : process (S_AXI_ACLK) is
begin

30 if (rising_edge (S_AXI_ACLK)) then
if (mem_wren = ’1 ’ and S_AXI_WSTRB (mem_byte_index) = ’1 ’) then

data_in <= pm_cluster_out_data ((mem_byte_index∗8+7) downto
mem_byte_index ∗8) ;

end if ;
end if ;

35
end process cluster_data_out_send_toMemory_PROC ;

data_out <= byte_ram (to_integer (unsigned (mem_address))) ;
40

53

54

BYTE_RAM_PROC : process (S_AXI_ACLK) is
begin

if (rising_edge (S_AXI_ACLK)) then
if (mem_wren = ’1 ’ and S_AXI_WSTRB (mem_byte_index) = ’1 ’) then

45
if (pm_cluster_out_type = "00") then

byte_ram (to_integer (unsigned (pm_cluster_out_adr))) <=
data_in ;

else
byte_ram (to_integer (unsigned (pm_cluster_out_adr))+100) <=

data_in ;
50 end if ;

end if ;
end if ;

end process BYTE_RAM_PROC ;
55 process (S_AXI_ACLK) is

begin
if (rising_edge (S_AXI_ACLK)) then

if (mem_rden = ’1 ’) then
mem_data_out (i) ((mem_byte_index∗8+7) downto mem_byte_index ∗8)

<= data_out ;
60

end if ;
end if ;

end process ;

65 end generate BYTE_BRAM_GEN ;

end generate BRAM_GEN ;
--Output register or memory read data

70 process (axi_rvalid , axi_araddr) is
begin

if (axi_rvalid = ’1 ’) then
-- When there is a valid read address (S_AXI_ARVALID) with
-- acceptance of read address by the slave (axi_arready),

75 -- output the read dada
axi_rdata <= mem_data_out (0) ; -- memory range 0 read data
-- memory range 0 read data

else
axi_rdata <= (others => ’0 ’) ;

80 end if ;
end process ;

Bibliography

[1] Liebgott B: Anatomical basis of dentistry, ed 2, St Louis, 2001, Mosby.

[2] Xilinx, Axi Reference Guide , http://www.xilinx.com/support/documentation/
ip_documentation/ug761_axi_reference_guide.pdf.

[3] Christiaanse, Gerrit Jan, et al. "A real-time hybrid neuron network for highly
parallel cognitive systems." engineering in medicine and biology society (EMBC),
2016 IEEE 38th Annual International Conference of the. IEEE, 2016.

[4] Sklyarov, Valery and Skliarova, Iouliia and Silva, João and Sudnitson, Alexander,
Design space exploration in multi-level computing systems, Proceedings of the 15th
International Conference on Computer Systems and technologies, 2014.

[5] Xilinx, zynq-7000 product table, http://www.xilinx.com/support/documentation/selection-
guides/ zynq-7000-product-selection-guide.pdf.

[6] Vivado Design Suite HLx Editions - Accelerating high level design.

[7] Modelsim Advanced Simulation and debugging , http://model.com/.

[8] Cerebral Hemisperes , http://www.indiana.edu/p1013447/dictionary/cer_hemi.htm,
accessed:2013-12-19.

[9] E. J. Fine, C. C. Ionita, and L. Lohr, “The history of the development of the
cerebellar examination,” Semin Neurol, vol. 22, pp. 375–384, 2002.

[10] D. McDougal, D. van Lieshout, and J. Harting, “Medical Neurosciences.”
http://www.neuroanatomy.wisc.edu/virtualbrain/brainstem/06olive.html. Ac-
cessed: 2014-01-13.

[11] R. Llinas, K. Walton, and E. Lang, The Synaptic Organization of the brain. Ox-
ford: Oxford University Press, 1990.

[12] Wolf U, Rapoport MJ, Schweizer TA (2009). "Evaluating the affective component
of the cerebellar cognitive affective syndrome". J. Neuropsychiatry Clin. Neurosci.

[13] Fine EJ, Ionita CC, Lohr L (2002). "The history of the development of the cere-
bellar examination". Semin. Neurol.

[14] Wisegeek, “What is the somatosensory Cortex.” http://www.wisegeek.org/ what-
is-the-somatosensory-cortex.htm. Accessed: 2014-01-14.

[15] Dward J. Fine1, Catalina C. Ionita1, and Linda Lohr. “The History of the Devel-
opment of the Cerebellar Examination”. In: Seminars in Neurology (2002), pp. 375
- 384. D O I : 10.1055/s-2002-36759.

[16] J. P. Welsh and R. Llinas, “Some organizing principles for the control of movement
based on olivocerebellar physiology,” Progress in Brain Research, vol. 114, pp.
449461, 1997.

55

56

[17] J. Hofmann, C. Galuzzi, A. Zjajo, and R. van Leuken, “Multi-chip dataflow archi-
tecture for massive scale biophysically accurate neuron simulation,” ISCAS, 2016 .

[18] E. Izhikevich, “Which model to use for cortical spiking neurons?” Neural Networks,
IEEE Transactions on, vol. 15, no. 5, pp. 1063–1070, sept 2004.

[19] G. Smaragdos, S. Isaza, M. F. van Eijk, I. Sourdis, and C. Strydis, “Fpga-based
biophysically-meaningful modeling of olivocerebellar neurons,” in proceedings of
the 2014 ACM/SIGDA International Symposium on Field-programmable Gate
Arrays, ser. FPGA ’14. New York, NY, USA: ACM, 2014, pp. 89–98. [online].
Available: http://doi.acm.org/10.1145/2554688.2554790.

[20] M.F. van Eijk. “Modeling of Olivocerebellar Neurons using Systemc and High-Level
Synthesis”. MA thesis. Delft, The Netherlands: Delft University of Technology,
2014.

[21] O. S. Initiative et al., “Systemc synthesizable subset draft 1.3,” 2009.

[22] IEEE standard for standard Systemc language reference manual, IEEE Std 1666-
2011 (Revision of IEEE Std 1666-2005), pp. 1–638, Jan 2012.

[23] Opencores, “Wishbone b3, wishbone system-on-chip (soc)interconnection architec-
ture for portable ip cores.”.

[24] System-C ,http://accellera.org/downloads/standards/systemc.

[25] Xilinx-ISE design suite ,https://www.xilinx.com/products/design-tools/ise-
designsuite.html.

[26] System on a chip, https://en.wikipedia.org/wiki/system_on_a_chip.

[27] Field Programmable Gate Arrays (FPGAs) ,http://www.xilinx.com/training/fpga/fpga-
field-programmablegatearray.htm.

[28] Vivado High-Level Synthesis ,http://www.xilinx.com/products/design-
tools/vivado/integration/esldesign.html.

[29] Xilinx software development kit (xsdk) , https://www.xilinx.com/products/design-
tools/embeddedsoftware/sdk.html.

[30] Xilinx microprocessor debugger (xmd) , http://www.xilinx.com/support/ docu-
mentation/sw_manuals/xilinx11/est_rm.pdf.

[31] Xilinx, Xilinx. Zyng-7000 overvie, http://www.xilinx.com/support/
documentation/data_sheets/ds190-zynq-7000-overview.pdf.

[32] D. Dhanalaxmi , V. Roopa Reddy, Sdk and Hardware Platform Specification,
Implementation of Secured data Transmission System on Customized Zynq SoC,
International Journal of Science and Research (IJSR) ISSN (Online): 2319-7064.

[33] http://www.xilinx.com/support/documentation/university/xup20boards/ xupzy-
bo/documentation/zybo_rm_b_v6.pdf.

57

[34] https://en.wikipedia.org/wiki/list_of_terminal_emulators.

[35] Sdk and Hardware Platform Specification, https://www.xilinx.com/support /doc-
umentation/sw_manuals/xilinx2015_3/sdk_doc/index.html.

[36] Picocom terminal program , https://linux.die.net/man/8/picocom.

	Abstract
	Acknowledgments
	Introduction
	Goals
	Approach
	Contributions
	Thesis Outline

	State of the Art
	Brain And Neurons
	The Brain
	The Cerebellum
	Neural networks

	Neuron Network Application (NNA)
	Introduction
	Problem Definition
	Approach

	Software Tools
	Modelsim
	Vivado Design suite
	Xilinx Software Development Kit (SDK)

	Zynq-7000 Development board
	Zynq SoC
	Zybo Board

	Introduction of an Axi-Bus for the Xilinx System Development
	 AXI4-full and AXI4-lite Protocols

	System Design
	System Design Overview
	PL architecture
	PL/PS architecture

	System Implementation
	Neuron Network Application (NNA)
	NNA Overview
	Testbench description of the NNA

	PL Implementation and Simulation
	Simulation and implementing overview
	Generate VHDL from NNA
	PL Implementation (NNIP Implementation)
	Packaging Neuron Network IP-core (NNIP)
	PL Simulation (NNIP simulation)

	PL and PS Implementation on Hardware
	Software
	Evaluation the Results

	Conclusion and Future Work
	Conclusion
	Future work

	Appendix
	Appendix
	Appendix
	Appendix
	Appendix

