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Electromagnetic scattering beyond the weak regime: Solving the problem
of divergent Born perturbation series by Padé approximants
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Electromagnetic scattering is the main phenomenon behind all optical measurement methods where one aims
to retrieve the shape or physical properties of an unknown object by measuring how it scatters an incident optical
field. Such an inverse problem is often approached by solving, several times, the corresponding direct scattering
problem and trying to find the best estimate of the object which is compatible with a set of measurements. Despite
the existence of numerical methods, a powerful way to solve those direct problems would be to use a perturbation
approach where the field is expressed as a series, known as the Born series. The advantage of a perturbation
approach stems from the fact that each term of the series has a clear physical meaning and can unveil much more
about the scattering process than a purely numerical approach can offer. This method is however unpractical
under so-called strong-scattering conditions because the corresponding Born series strongly diverges. In this
work, we will show how to solve this problem by employing Padé approximants and how to treat electromagnetic
problems well beyond the weak-scattering regime. This approach can represent an important building block to
the application of the Born series to direct and inverse problems, with potential applications in superresolution,
optical metrology, and phase retrieval.

DOI: 10.1103/PhysRevResearch.2.013308

I. INTRODUCTION

Contactless measurement techniques based on light are of
growing relevance due to their noninvasiveness, speed, and
integrability in industrial processes. In very general terms, the
main idea behind these methods is that when a known electro-
magnetic field, typically in the visible range, interacts with an
unknown object, information about the object gets encoded in
the scattered field produced by such interaction. Applications
often require that the scattered field (or its intensity only) is
measured at distances of many wavelengths from the object, a
condition usually referred to as the far-field regime. By mea-
suring this scattered field, and knowing the laws of physics
that govern the interaction, useful information about the object
can be retrieved. The determination of the object from the
measured scattered field requires solving a nonlinear inverse
problem, which can be formally formulated by means of the
Lippmann-Schwinger equation. The nonlinear nature of the
problem stems from the fact that the scattered field inside the
object is unknown and depends strongly on the object itself
(namely, its geometry and/or its permittivity) [1]. Inverse
electromagnetic problems are central in modern technologies,
of which the most important example probably is metrology in
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the semiconductor sector. Those problems are usually difficult
to solve and in many cases methods to approach them rely on
iteratively solving the direct problem starting from some prior
knowledge of the object. At every step, the object guess is
updated and the scattered electromagnetic field is updated by
solving the direct scattering problem for the updated estimate
of the object, until the iteration converges. The advantage of
this approach is that, contrarily to inverse problems, direct
problems are mathematically well-posed and there exist many
different numerical tools—finite element methods, finite dif-
ference time domain, rigorous coupled wave analysis, just to
name a few—to solve them nowadays, even for very complex
geometries [2–5]. Resorting to those numerical solvers has,
however, the downside of losing a comprehensible connection
with the physical mechanisms that lead to the solution. Thus,
in view of their applications to solving inverse problems, an
analytical approach to direct scattering problems is still highly
valuable. A way to achieve that would be to try to solve the
Lippmann-Schwinger equation for the scattered field using a
perturbative approach. In this method, the field is expressed
as a sum of terms which represent the different perturbation
orders. When solving for the total field, the zeroth order
represents the unperturbed solution, while the first order is
denoted as the Born approximation [6–10]. At every step a
new term of the series is computed and added to the sum,
which leads to a possibly more accurate estimate of the actual
solution. As we will recall in Sec. II, breaking down the
solution into different contributions allows for keeping the
connection with the physics of the problem as each term
of the series has a clear physical meaning, which is a clear
advantage of perturbation series over numerical solvers. Like
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all perturbation methods, when the scattering is weak, the first
order solution (the Born approximation) provides already a
good estimate of the solution and all higher order terms of
the series can be safely neglected. On the other hand, when
higher-order terms are large, the scattering is said to be strong
and one must go beyond the Born approximation. The Born
series is just one example of perturbation series which are
encountered in different areas of physics. Applications of per-
turbation series are presented in standard books on quantum
mechanics and classical and quantum electrodynamics as a
way to solve algeabric, integral or differential equations for
which a close-form solution is not available. In the case of
the Born series, most standard books do not stress enough
that when the interaction between the field and the object
is strong, in a sense which will be clarified later on, the
Born series diverges, which frustrates the benefit of the whole
approach [11]. This problem has been originally encountered
in particle physics, where different methods have been investi-
gated to circumvent it, ranging from iterative methods [12], to
transforming the original Lippmann-Schwinger equation from
a Fredholm to a Volterra structure by renormalization [13],
using other transformation-based methods [14] or through
nonlinear resummation techniques [15,16]. More specifically,
in Ref. [15], Tani has theoretically investigated how Padé ap-
proximants are able to reproduce several terms of an original
Born series exactly up to the 2N-th order, where N is the
order of the approximant, but with a well-defined radius of
convergence larger than that of the original Born series. Padé
approximants have also been applied to scattering series in
three-body problems and elastic particle scattering [17,18]. In
this work we will consider one-dimensional (1D) and two-
dimensional (2D) scalar scattering problems in electromag-
netism that lie far beyond the weak-scattering regime. These
cases are usually deemed unapproachable using a perturbative
approach as they typically lead to exponentially diverging
series. Our goal is to show that one can still make use of the
information provided by the terms of the divergent Born series
and obtain accurate results out of perturbative methods, even
in the strong-scattering regime. As explained above, having
a tool available to solve forward scattering problems through
a semianalytical approach is extremely useful in the area of
inverse problems and our interest is to develop a tool that
will allow to integrate multiple-scattering effects into optical
metrology techniques [19–24]. In Sec. II, we start by laying
out the general scalar scattering problem and its perturbative
solution. We also introduce Padé approximants and how they
can be applied to this problem. In Sec. III, we elaborate on
this approach, by applying it to the 1D case of a slab placed in
a vacuum, after which we extend the procedure to the 2D case
of an infinitely long cylinder in Sec. IV. Both cases will allow
us to perform some rigorous quantitative analysis to define the
boundary between the weak- and strong-scattering regimes.
We conclude the paper in Sec. V and discuss the implications
of this new approach.

II. RESUMMATION OF THE BORN SERIES
WITH PADÉ APPROXIMANTS

We start by considering one of the scalar components of
the monochromatic electric field in a region of space where

an object of relative electric permittivity εr (r) is present. The
permittivity may be a complex quantity as in the case of an
absorbing medium. We will consider monochromatic fields
which depend on time by the factor exp(−iωt ) where ω > 0.
This factor is omitted from all formulas. The governing equa-
tion for the field is the Helmholtz equation and for simplicity
we apply the scalar approximation and consider the scalar
version of the Helmholtz equation, which reads

∇2U (r) + k2
0εr (r)U (r) = 0, (1)

where k0 = 2π/λ, λ is the wavelength of the monochromatic
field in vacuum, and r = (x, y, z). We can rewrite this equation
in the following way:

∇2U (r) + k2
0U (r) = −k2

0�εr (r)U (r), (2)

where �εr (r) = εr (r) − 1 is the permittivity contrast, namely
the difference in relative permittivity between the object and
the environment (which is supposed to be vacuum/air in this
case). Equation (2) can be written in an integral form

U (r) = Ui(r) + k2
0

∫
r′

G(r, r′)U (r′)�εr (r′) dr′, (3)

with Ui(r) the known incident field and G(r, r′) the free-space
Green’s function satisfying [∇2 + k2

0]G(r, r′) = −δ(r − r′).
We can rewrite Eq. (3) in terms of the scattered field Us(r) =
U (r) − Ui(r) as

Us(r) = k2
0

∫
r′

G(r, r′)[Ui(r′) + Us(r′)]�εr (r′) dr′. (4)

Equation (3), known under the name of Lippmann-Schwinger
equation, is an integral equation for the unknown field U (r).
Two very different types of problems require to solve Eq. (3).
The first one is when the incident field Ui(r) and permittivity
contrast �εr (r) are both known and the total field U (r) has to
be computed. This is called the forward scattering problem. In
that case, Eq. (3) is a linear integral equation for the unknown
U (r). If, on the other hand, the incident field Ui(r) is known
and the scattered field U (r) far from the object is measured,
and one aims to determine the properties of the object, namely
�εr (r), then the problem is an inverse scattering problem
which is nonlinear because the integral in Eq. (4) depends
on the unknown contrast �εr (r) directly as well as through
the unknown scattered field Us(r). In both cases, it can be
very useful to resort to a perturbative approach to find the
expression of the scattered field Us(r) inside the scatterer.
Like all perturbation methods, a generic parameter, say σ , is
introduced in the original equation, which becomes

∇2U (σ )(r) + k2
0U (σ )(r) = −k2

0σ�εr (r)U (σ )(r). (5)

The total field U (σ )(r) is then written as the Born series:

U (σ )(r) =
∞∑

	=0

U	(r)σ 	, (6)

where U	(r) are the different perturbation orders. The solution
to the original problem is obtained by setting σ = 1. The
key idea behind perturbation methods is that one replaces a
problem which is difficult to solve [namely, Eq. (2)] by a
sequence of problems, each of which is easier to solve than
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the original problem. By substituting Eq. (6) into Eq. (3), in
which �εr (r) is replaced by σ�εr (r), we get

∞∑
	=0

U	(r)σ 	 = Ui(r) + σk2
0

∫
r′

�εr (r′)G(r, r′)

×
∞∑

	=0

U	(r′)σ 	 dr′. (7)

Equating the same powers in σ in Eq. (7) gives, for the first
few terms of the expansion in Eq. (6),

U0(r) = Ui(r), (8a)

U1(r) = k2
0

∫
r′

�εr (r′)G(r, r′)U0(r′) dr′, (8b)

U2(r) = k2
0

∫
r′

�εr (r′)G(r, r′)U1(r′) dr′, (8c)

and so on. When terms of the series of order higher than
U1(r) are considered, multiple-scattering effects are taken into
account. The first order of Eq. (8) is obtained by assuming
that the excited secondary source density inside the object
is entirely determined by the incident field. The second- and
higher-order terms are obtained by taking into account that the
source density at a certain point in the object is modified by
the fields radiated by other secondary sources in the object.
Although the perturbative approach to solve problems such
as Eq. (2) seems feasible, its application to actual problems
turns out to be rarely possible, except for all those cases where
the optical contrast is low and the scatterer is weak as, for
instance, in the x-ray range of the electromagnetic spectrum.
In fact, as soon as the scatterer cannot be considered weak, in
a sense that will be quantified below, the Born series diverges
for σ = 1 and the expression in Eq. (6) can not be used to
compute the field directly. The goal of this article is to show
how to recover an accurate solution of Eq. (1) by using the
perturbative expansion even in the case of strong scatterers.
In order to find a solution to the divergence problem, in this
work, we will replace the divergent Born series by a sequence
of Padé approximants derived from the available terms of the
Born series. More specifically, in the Padé method a sequence
of rational functions of the type

PN
M (σ, r) =

∑N
n=0 An(r)σ n∑M

m=0 Bm(r)σ m
(9)

is generated, where B0(r) = 1. In Eq. (9), PN
M (σ ) is the Padé

approximant of order M, N . Among the different sequences
of rational functions one can generate, we will, in this work,
focus only on the symmetric case where M = N , simply
referring to the function as a Padé rational of order N . The
coefficients An(r) and Bn(r) in Eq. (9) are determined by
equating Eq. (9) for the given order N to Eq. (6) where the
Born series is truncated after 2N + 1 terms. This allows these
coefficients to be expressed as functions of the perturbation
orders U	(r), 	 = 0, . . . , 2N . The expressions of An(r) and
Bn(r) for some N in terms of the orders U0(r), . . . ,U2N (r),
are given in Appendix A. The approximant can be calculated
for all points inside and outside the scatterer directly. Alter-
natively, once the approximant inside the object is found, it is

possible to calculate U (r) outside using Eq. (3). Considering
computational efficiency, it suffices to solve a rather small
system of equations (for the coefficients of the numerator
and denominator) in every point of the scatterer, contrary
to numerical solvers. Hence, very low amounts of memory
are required compared to numerical methods. The powerful
feature of this approach lies in the fact that the sequence
P0

0 , P1
1 , P2

2 , . . . , PN
N (evaluated at σ = 1) can converge to the

actual solution of the problem even though the original pertur-
bation series does not. The reason that the Born series diverges
for σ = 1 in the case of medium and high contrast, is that the
solution U (σ )(r) has, as a function of σ , at least one pole in the
complex plane with a modulus smaller than 1. In such a case
the Born series, which is the power series of U (σ )(r) around
σ = 0, has a radius of convergence smaller than 1 and hence
the Born series diverges for σ = 1. The Padé approximant
is a rational function which can represent poles and which
therefore can be used to find accurate approximations for
fields where the power series diverges. By equating both (for
σ = 1), one can derive the coefficients of the Padé approx-
imant and generate a sequence of rational functions which
can converge although the original power series does not.
Equating the power series and the Padé approximant implies
that one assumes that both approximations have a region of
convergence in the complex plane in common. Interestingly,
this means that the terms of the original Born series contain
all information about the scattered field, despite the fact that
the series diverges. In a sense, the Born series is analytically
continued by re-representing the series into a sequence of
Padé approximants that converges in a larger domain in the
complex plane. Rigorous mathematical proof on the universal
convergence of Padé approximants is limited to the special
case of Stieltjes functions [11], which is difficult to check and
seems unlikely to be the case.

III. STRONG-SCATTERING REGIME OF A SCALAR
FIELD BY A ONE-DIMENSIONAL OBJECT

Consider an incident field Ui(z) = exp [ik0z] which im-
pinges on an object, consisting of a medium of permittivity
ε0εr (z) and thickness d , immersed in a medium of permittivity
ε0. We remind that εr denotes the relative permittivity of the
object and ε0 is the permittivity of vacuum. See Fig. 1.

We have chosen this specific example because it is possible
to obtain a closed-form expression of the total field U (z) =
Ui(z) + Us(z) by just solving the 1D Helmholtz equation
d2U (z)/dz2 + k2

0εr (z)U (z) = 0 in the three domains z < z1,
z1 � z � z1 + d and z > z1 + d and connecting the solutions
by imposing boundary conditions for the field at the two in-
terfaces. In Appendix B, we provide the complete expression
of the analytical solution. In Fig. 1, we show the absolute
value of the total field for three different cases, where �εr =
4, �εr = 4 + i and �εr = 4 + 4i, and with parameters λ =
800 nm and d = 500 nm. These values of �εr are chosen
for two reasons. First of all, they all correspond to scattering
problems in the strong-scattering regime, leading to a diver-
gent Born series, while representing the different cases of a
pure dielectric and of absorptive media of different absorp-
tion levels. Secondly, those values have been used in some
previous work by different authors and the reader can use
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FIG. 1. (a) Geometry of the 1D electromagnetic problem stud-
ied. The scatterer has relative permittivity εr and thickness d . (b)
Absolute value of the analytic solution of the total field U (z). Each
curve corresponds to a different medium: εr = 4, blue-solid line,
εr = 4 + i, red-dashed line, εr = 4 + 4i black-dot dashed line. Also,
z1 = 1 μm and d = 500 nm.

those works, as well as other independent methods available,
as an independent reference for comparison [25,26]. Because
analytical solutions are rarely available, it is important to find
alternative ways to solve the scattering problem which can be
broadly applied. One method is to resort to the perturbation
series approach as indicated in Eq. (6) and making use of
a known analytical solution is a good way to assess the
success of perturbative methods. While all terms of the series
can be computed by numerical integration, in this work we
have also computed the first few terms of the series analyt-
ically. This is useful because one can validate in this way
the numerical integrations used to compute the terms of the
series. Moreover, the analytical expressions help to identify
the transition between the weak- and strong-scattering regime
and the physical parameters that control that transition.

More specifically, we have computed the analytical ex-
pressions of the first three terms of the Born series,
U0(z),U1(z),U2(z), for the case where the incident field is
a plane wave Ui(z) = exp [ik0z]. The terms are calculated by
means of Eq. (8), in which we use the 1D free-space Green’s
function G(z, z′) = i exp [ik0|z − z′|]/(2k0). The reader inter-
ested in all details can refer to Appendix C, where those
analytical expressions are explicitly given. Although the

TABLE I. Absolute value of perturbation orders, from 0th to 14th
order, for εr = 4, λ = 800 nm at position z = 1.5 μm. The correct
value of the absolute value of the total field is |U (z = 1.5 μm)| =
0.80.

Perturb. order Absolute value

0 1.0
1 5.9
2 1.8 × 101

3 3.7 × 101

4 4.3 × 101

5 4.3 × 102

6 2.4 × 103

8 2.4 × 104

10 1.3 × 105

12 4.8 × 106

14 3.3 × 107

analytical expressions of the higher orders become lengthy
and complex, if one focuses on the expression for the trans-
mitted field only, it is found that the amplitude of the field in-
creases with the product �εr d . The ratio between the second
and first perturbation orders is of the order of |�εrdπ/(2λ)|,
which can be taken as an indication of the transition between
the weak- and strong-scattering regime: if |�εrdπ/(2λ)| > 1
the series diverges. It is easy to check that for the wavelength
and thickness d and all the chosen permittivity contrasts �εr

in this work the series in Eq. (6) indeed diverges. For instance,
for the case εr = 4, the absolute value of the fifteenth term of
the series reaches the value of order 1 × 107, which clearly
indicates strong divergence. To be more specific, in Table I,
we report the absolute value of the field at the interface at
z = 1.5 μm of most of the first fifteen perturbation terms of
the series in Eq. (6). Some of the perturbation terms are shown
in Fig. 2, where the divergence of the series is evident. It
is clear that, because of the strong divergence of the series,
simply adding up all terms as suggested by Eq. (6) cannot
lead to any meaningful estimate of the total field U (z). The
divergent behavior of a perturbation series is surely disap-
pointing, especially considering the effort required to compute
even only a few of the perturbation terms. On the other hand,
no convergence issues are encountered for a Born series that
operates within the weak-scattering regime, which are how-
ever much less interesting from the perspective of applications
in imaging and superresolution due to the fact that multiple-
scattering phenomena are negligible in that case [22–24]. By
following the approach using the Padé approximant described
in Sec. II, we were able to provide an accurate approximation
of the field. Fig. 3(a) shows (the absolute value of) the Padé
approximant P6

6 (z) for all three cases included in Fig. 1.
As evident from the figure, a very accurate approximation

of the analytical solution is obtained. Fig. 3(b) shows how the
convergence to the solution is reached by the Padé rational
polynomials. Finally, in Table II, we show the values of the
Padé approximants P0

0 (z) to P6
6 (z) at z = 1.5 μm.

As evident from the table, an accuracy of 0.0030% and
0.16% is reached for the real and imaginary part of the field,
respectively. Which order of Padé approximants should be
used to obtain an accurate estimate of the field depends on
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FIG. 2. Some perturbation orders of Eq. (6), for the case where εr = 4 + i, d = 500 nm and λ = 800 nm. The series clearly diverges for
any value of z.

different factors, such as the permittivity contrast �εr and how
important multiple scattering is in the problem under study.
For the cases discussed here, the solution saturates at P6

6 (z)
since the relative difference between P5

5 (z) and P6
6 (z) is of

the same order as between P6
6 (z) and the (in this case known)

analytical solution. This makes approximants of higher orders
ineffective and unnecessary.

IV. STRONG ELECTROMAGNETIC SCATTERING
REGIME: TWO-DIMENSIONAL CASE

In this section, we turn our attention to two-dimensional
problems. We will consider the scattering of an incident field
by an infinitely long cylinder of radius R because, also for

TABLE II. Value of Padé approximants from 0th to 6th order, for
εr = 4, λ = 800 nm at position z = 1.5 μm. The correct value of the
total field is U (z = 1.5 μm) = −0.800000000 + 0i.

Padé order N Value Padé

0 0.707106781− i 0.707106781
1 0.225282626+ i 0.924861295
2 −0.209472028+ i 0.746123727
3 −0.506689994− i 4.29529490 × 10−2

4 −0.834428691+ i 3.89980981 × 10−3

5 −0.799387484+ i 1.61243988 × 10−3

6 −0.799975820+ i 1.67074306 × 10−3

this case, an analytical solution exists. The incident field
consists of a plane wave, with the direction of propagation
perpendicular to the axis of the cylinder. The background
permittivity is again that of vacuum ε0, while the cylinder
is homogeneous and made of an isotropic material with
(possibly complex) relative electric permittivity εr . Hence,
the permittivity contrast �εr = εr − 1 is constant within the
cylinder and zero outside. We choose a Cartesian coordinate
system such that the z axis coincides with the axis of the
cylinder. If the electric and magnetic fields, E and H, do not
depend on z, i.e., if the incident field is two-dimensional, it
can be shown from the source-free Maxwell’s equations that
two uncoupled Helmholtz equations can be obtained, one for
Ez and one for Hz. The boundary conditions for the fields are
then uncoupled as well. Therefore, two polarizations states,
TM and TE, can be distinguished, where Ez and Hz are parallel
to the z axis, respectively. Here, we will consider TM polar-
ization and we choose the incident field to be a plane wave
with Ez(x, y) = Ui(x, y) = exp [ik0x], which propagates in the
positive x direction, as shown in Fig. 4. In TM polarization,
Ez satisfies the equation

∇2Ez(x, y) + k2
0εr (x, y)Ez(x, y) = 0, (10)

both inside and outside of the cylinder and Ez and the normal
derivative ∂Ez/∂r are both continuous at the boundary r = R

013308-5
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FIG. 3. Approximation of the total field as obtained through Padé
rational functions. (a) shows the approximation of the solution of
the scattering problem by using the Padé approximants. The figure
shows the absolute value of the P6

6 (z) rational polynomial for the
three different cases given in Fig. 1. Comparing the plots to Fig. 1,
it is evident that the Padé approximants provide an accurate estimate
of the solution. (b) shows the convergence to the analytical solution
as reached by Padé rational functions for a medium with εr = 4. The
Padé approximants P1

1 (z), P3
3 (z) and P6

6 (z) are shown.

of the cylinder. Here, εr (x, y) is a scalar field

εr (x, y) =
{
εr, x2 + y2 < R
1, x2 + y2 > R

. (11)

The terms in the Born series and the Padé approximants are
computed as explained in Sec. II, but now with G(r, r′) given
by the 2D free-space Green’s function:

G(r, r′) = i

4
H (1)

0 (k0|r − r′|). (12)

FIG. 4. Geometry of the 2D problem. The incident plane wave
Ui represents either the z component of the electric field, Ez, or the
z component of the magnetic field Hz. In this work, we will only
consider the TM polarization case (namely the Ez case).

The analytical solution to the Helmholtz equation for Ez can
be found by writing the Helmholtz equation in polar coordi-
nates (r, ϕ) and expanding Ez in a Fourier series as a function
of ϕ. For more details, the reader can refer to Appendix D.
Also for the 2D case, in order to assess the performance of the
method, we consider the scattering from different cylinders,
namely a metal and a semiconductor cylinder with relative
permittivities of silver and silicon, which at the wavelength
λ = 400 nm are given by εr,Ag = −4.42 + 0.201i [27] and
εr,Si = 30.8 + 4.30i [28], respectively. For each material, we
perform the calculations for two cylinder radii, 100 nm and
400 nm, so four different configurations are investigated, one
for each combination of size and permittivity. The cases are
listed in Table III. In the same table, we also show the values
of two parameters, �

(a)
Born and �

(n)
Born which are introduced to

have a useful metric to indicate when a Born series starts to
diverge. We define:

�
(a)
Born = πR|�εr |

λ
. (13)

Like in the 1D case, it is found by taking the absolute value of
the ratio between the second and first perturbation orders and
serves as an indication of the transition between the weak-
and strong-scattering regime. The Born series converges or
diverges when �

(a)
Born < 1 or �

(a)
Born > 1, respectively. This cri-

terion turns out to be in good agreement with that derived
for the 1D case, if one considers that now R is half the
diameter of the scatterer. Next to this, the parameter �

(n)
Born is

given by

�
(n)
Born =

(
A	max

A0

) 1
	max

, (14)

TABLE III. Specifications of the four simulated configurations
in the 2D case.

Case Material εr R (nm) �
(a)
Born �

(n)
Born

I Ag −4.42 + i0.201 100 4.26 5.67
II Si 30.8 + i4.30 100 23.7 31.5
III Ag −4.42 + i0.201 400 17.0 14.9
IV Si 30.8 + i4.30 400 94.7 83.0
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FIG. 5. Amplitude of the 	-th term of the Born series, from 0th to
17th order, for cylinders of different sizes and materials. In all cases,
the terms show an exponential growth.

where 	max is the highest order of the calculated Born terms,
A	 = maxr∈
 |U	(r)| is the maximum of the absolute value
of the Born term of order 	 and 
 is the domain of the
cylinder. A0 = 1 for all cases since the incident plane wave
has amplitude 1. The parameter �

(n)
Born is determined from

the numerical calculations of the Born terms and therefore
gives a more realistic indication of the divergence of the
series compared to Eq. (13). The values of �

(a)
Born and �

(n)
Born

are listed in Table III for each configuration considered. It
is readily seen that all considered configurations are far into
the strong-scattering regime. Numerical calculations of the
Born terms indeed confirm that in all four cases the series
diverges strongly. In Fig. 5, we show the maximum (over
all points inside the scatterer) of the absolute value of the
field per Born term. Since we also calculate the analytical
solution, the quality of the solution obtained through Padé
approximants can be assessed by determining the relative
error of the Padé approximants, using the total electric energy
inside the cylinder as norm,

eN =
∫∫



Re(εr )

∣∣Ez,analytical − PN
N

∣∣2
dxdy∫∫



Re(εr )|Ez,analytical|2dxdy

. (15)

Also, we define the absolute error of a Padé approximant per
point, as compared to the analytical solution, as follows:

eabs,N (r) = ∣∣Ez,analytical(r) − PN
N (r)

∣∣. (16)

With the relative error eN , we selected the best Padé approxi-
mant of Ez for each of the analyzed cases. In Fig. 6, the ana-
lytical solution is shown together with the Padé approximant
for which error (15) is minimum, together with the absolute
error (16). Also, a plot of eN as a function of the order N of
the approximant is included. For all cases, we observe that the
best Padé approximant approximates the analytical solution
very well, though the error increases for higher values of �

(a)
Born

as expected. For instance, the best approximant for case I
is P5

5 . Nevertheless, P5
5 approximates the analytical solution

also in this case quite accurately although �
(a)
Born = 4.26 and

hence this is well inside the strong-scattering regime. The
maximum of the absolute error eabs,5(r) is 1.3 × 10−4. Even

for the configuration with the highest �
(n)
Born, case IV, the Padé

approximant P11
11 is still able to retrieve Ez from the diverging

Born series. In order to compute P11
11 , 	max = 22 terms of

the Born series are needed. Remarkably, there is a difference
between the magnitude of the lowest and the highest order
Born term, A0 and A22, of order 1 × 1042. In the majority
of cases, the largest pointwise errors [Eq. (16)] are found
near or within the scattering cylinder. From the plots of eN ,
we observe that for increasing order N of the approximant,
the error decreases monotonically initially. However, from
a certain order, the approximants start to show numerical
instabilities and artifacts start to dominate, which have noisy
features. The order N at which this happens, appears to
depend mostly on the radius of the cylinder relative to the
wavelength. A larger permittivity worsens the amplitude of
the noisy features. In stable Padé approximants, often linelike
artifacts arising from the cylinder can be observed, as in panel
(f) of Fig. 6 for instance. In this 2D case (as well as in the
1D case), the analytical solution can be used to determine
which Padé approximant is the most accurate. However, for
complex geometries where no analytical solution is available,
the best approximant has to be found differently. For instance,
one could calculate the difference between two approximants
of consecutive order N − 1 and N and determine where the
difference is at a minimum. That would point to a stagnation in
improvement of the approximations, since at a certain order N
the approximants start to destabilize and the approximations
deteriorate quickly. Quantifying this, it would correspond to
finding the Nbest for which econsec,N = ∫∫ |PN

N − PN−1
N−1 |2dxdy

is minimal. This approach actually returns the same N for
cases I, II, and III as when comparing it to the analytical
solution. For case IV, this approach gives Nbest = 12 instead
of N = 11.

V. CONCLUSIONS

In this paper, an accurate approximation of the electromag-
netic field was derived from the Born series which can be
used even under strong-scattering conditions. The divergence
of the Born series under these conditions can be cured using
the Padé method and very accurate results can be obtained in
this way. We have explicitly analyzed 1D and 2D cases, where
analytical solutions are available. In this way, it was possible
to quantify the accuracy of the approximations found. It is
important to point out that the dimensionality of the problem
only affects the way the term of the Born series are computed,
not the way Padé approximants are derived from the terms of
the Born series. In this sense, the areas of applicability of the
methods described here are broad and expected to have impact
on different areas of theoretical and applied electromagnetic
problems. One main advantage of the approach is that the
various terms of the original series are used as they are.
In fact, the physical meaning of the higher-orders scattering
processes is preserved, which is an advantage of using the
Born series to solve a scattering problem. We expect that the
physical insights provided by the terms of the Born series can
result in a powerful tool for inverse scattering problems as
well. We will report on some of these applications in a future
work.
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FIG. 6. Analytical solution, the best Padé approximant, the error eabs,N of that approximant and the relative error per Padé order for four
different configurations. (a)–(d) concern a silver cylinder with R = 100 nm. (a) shows the analytical solution, (b) the Padé approximant P5

5 ,
(c) the absolute error eabs,5(r), and (d) the relative energy error per Padé order. (e)–(h) concern a silicon cylinder with R = 100 nm. (e) shows
the analytical solution, (f) the Padé approximant P4

4 , (g) the absolute error eabs,4(r), (h) the relative energy error per Padé order. (i)–(l) concern
a silver cylinder with R = 400 nm. (i) shows the analytical solution, (j) the Padé approximant P12

12 , (k) the absolute error eabs,12(r), and (l)
the relative energy error per Padé order. (m)–(p) concern a silicon cylinder with R = 400 nm. (m) shows the analytical solution, (n) the Padé
approximant P11

11 , (o) the absolute error eabs,11(r), and (p) the relative energy error per Padé order. The black dashed circle shows the boundary
of the cylinder.
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APPENDIX A: COMPUTING PADÉ APPROXIMANTS

In this Appendix, we will show how to compute the sym-
metric Padé approximant

PN
N (σ, r) =

∑N
n=0 A(N )

n (r)σ n

1 + ∑N
m=1 B(N )

m (r)σ m
. (A1)

The approximant of order N has 2N + 1 unknowns that can
be determined by equating PN

N to the first 2N + 1 terms of
the Born series. We will explicitly show how to do this for
N = 0, 1, 2 and we will also provide the general formula for
higher N . Throughout this Appendix the dependence on r in
the equations will be omitted for brevity.

Case N = 0. For the case of N = 0, we only need the first
term in the Born series, which is just the incident field.

P0
0 (σ ) = A(0)

0 = U0 = Ui, (A2)

Case N = 1. Now we have three unknowns A(1)
0 , A(1)

1 , and
B(1)

1 in the approximant

P1
1 (σ ) = A(1)

0 + A(1)
1 σ

1 + B(1)
1 σ

. (A3)

Equating this to the first three terms of the Born series and
rewriting the equation by collecting the terms with equal
powers of σ gives an equation for each power of σ , resulting
in a system of three equations

A(1)
0 = U0, (A4a)

A(1)
1 = U1 + U0B(1)

1 , (A4b)

0 = U2 + U1B(1)
1 . (A4c)

First we can solve for B(1)
1 and with the result we calculate

A(1)
1 , yielding

B(1)
1 = −U2

U1
, (A5a)

A(1)
0 = U0, (A5b)

A(1)
1 = U1 − U0

U2

U1
. (A5c)

The Padé approximant therefore becomes

P1
1 (σ = 1) = U0 + U1 − U0

U2
U1

1 − U2
U1

(A6a)

= U0 + U1
U1

U1 − U2
. (A6b)

Case N = 2. Similarly, for N = 2, we have a system of
equations

A(2)
0 = U0, (A7a)

A(2)
1 = U1 + U0B(2)

1 , (A7b)

A(2)
2 = U2 + U1B(2)

1 + U0B(2)
2 (A7c)

0 = U3 + U2B(2)
1 + U1B(2)

2 , (A7d)

0 = U4 + U3B(2)
1 + U2B(2)

2 , (A7e)

of which we first solve Eqs. (A7d) and (A7e) for B(2)
m . We can

use Cramer’s rule for the system T x = b, where

T =
(

U2 U1

U3 U2

)
, b =

(−U3

−U4

)
x =

(
B(2)

1

B(2)
2

)
. (A8)

According to the rule, B(2)
m = det (Tm)/ det (T ), where Tm is

obtained by replacing the mth column of T with b. We define
� ≡ det (T ) and �m ≡ det (Tm). We get

B(2)
1 = �1

�
= −U3U2 + U4U1

U2
2 − U3U1

, (A9a)

B(2)
2 = �2

�
= −U2U4 + U3

2

U2
2 − U3U1

, (A9b)

which we can then plug in Eqs. (A7a)–(A7c) to find A(2)
n . For

P2
2 we obtain, rewriting the terms

P2
2 (σ = 1) = A(2)

0 + A(2)
1 + A(2)

2

1 + B(2)
1 + B(2)

2

(A10a)

= U0 + U1
� + �1

� + �1 + �2
+ U2

�

� + �1 + �2
.

(A10b)

General case. For any order N, the coefficients A(N )
n and B(N )

m
in PN

N can be found by equating PN
N to the first 2N + 1 terms of

the Born series. This results in a system of 2N + 1 equations,
of which a system of N equations can be solved with Cramer’s
rule (where � and �m are the determinants) to find the B(N )

m
coefficients. Then the other N + 1 equations are used to find
the A(N )

m coefficients. As a result

B(N )
m = �m

�
, (A11)

A(N )
n = Un +

n−1∑
	=0

U	Bn−	 = Un +
n−1∑
	=0

U	

�	

�
, (A12)

such that

PN
N (σ ) =

∑N
n=0 A(N )

n σ n

1 + ∑N
m=1 B(N )

m σ m
(A13a)

=
N∑

	=0

U	σ
	 � + ∑N−	

m=1 �mσ m

� + ∑N
m=1 �mσ m

. (A13b)

Setting σ = 1, we arrive at

PN
N (σ = 1) =

N∑
	=0

U	

� + ∑N−	
m=1 �m

� + ∑N
m=1 �m

. (A14)

APPENDIX B: ANALYTICAL SOLUTION
TO THE 1D PROBLEM

In this Appendix, we will provide some more details on the
expressions of the analytical solutions to the 1D problem used
to assess the performances of the methods presented in this
work. The reader can refer to Fig. 1 for the geometry. We start
by expressing the total field as U (z) = Ui(z) + Us(z) and we
know that it must satisfy the 1D Helmholtz equation ∂2

z U (z) +
k2

0U (z) = 0 in the three domains z < z1, z1 � z � z1 + d and
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z > z1 + d . The solutions are found by imposing the boundary
conditions for the field at the two interfaces. If we denote the
amplitude of the permittivity contrast by �εr , the refractive
index by n = √

�εr and plane waves by ψ± = exp [±ik0z],
the analytical solution of this problem reads

U (z) =
⎧⎨
⎩

ψ+ + a−
1 ψ−, for z < z1

a+
2 ψ+ + a−

2 ψ−, for z1 � z � z1 + d
a+

3 ψ+, for z > z1 + d
(B1)

with the coefficients a−
1 , a+

2 , a−
2 and a+

3 being defined as

a−
1 = 1

D
[−C+ik0 exp [ik0(n + 1)z1](n − 1)

+C−ik0 exp [−ik0(n − 1)z1](n + 1), (B2)

a±
2 = a+

3 C±, (B3)

a+
3 = 2ik0

D
, (B4)

where the coefficients C+,C− and D have expressions

C± = exp [ik0(1 ∓ n)(z1 + d )](n ± 1)

2n
(B5)

D = C+ik0(n + 1) exp [+ik0(n − 1)z1]

−C−ik0(n − 1) exp [−ik0(n + 1)z1]. (B6)

APPENDIX C: PERTURBATION ORDERS
OF THE 1D PROBLEM

As explained in the main manuscript, because analytical
solutions are rarely available, it is important to find ways
to solve the same problem through the perturbation series
approach. This means expressing the solution in the following
way:

U (σ )(r) =
∞∑

	=0

U	(r)σ 	. (C1)

While all terms of such series can be computed numerically,
in this work we are also providing the analytical expression
of the first three terms of the series. This is useful because
one can validate the numerical calculations used to compute
all terms of the series by comparing numerical results with
those analytical expressions. In addition to that, an analytical
expression of a few orders of the perturbation series helps
to identify the transition between the weak- and strong-
scattering regime and which physical parameters control such
transition. For the specific case studied in this work, we
provide the expressions of the first three terms of the Born
series, U0(z), U1(z), and U2(z), in Eqs. (C2)–(C4) in the case
the incident field is a plane wave Ui(z) = exp (ik0z). We use
the notation ψ± = exp (±ik0z) to denote plane waves.

U0(z) = exp (ik0z) for all z. (C2)

U1(z) = �εr

4

⎧⎪⎨
⎪⎩

ψ− exp (2ik0z1)[ exp (2ik0d ) − 1] for z < z1,

ψ+[2ik0(z − z1) − 1] + ψ− exp [2ik0(d + z1)] for z1 � z � z1 + d,

ψ+2ik0d for z > z1 + d,

(C3)

U2(z) = �ε2
r

16

⎧⎪⎪⎪⎨
⎪⎪⎪⎩

ψ− exp (2ik0z1){2ik0d exp (2ik0d ) − [exp (2ik0d ) − 1]} for z < z1,

ψ+
{[

1 + 1
2 exp (2ik0d )

] − 2ik0(z − z1) − k2
0 (z − z1)2

}
+ψ− exp [2ik0(z1 + d )]

[− 3
2 + ik0(z1 + 2d − z)

]
for z1 � z � z1 + d ,

ψ+
{− 1

2 [1 − exp (2ik0d )] − ik0d − k2
0d2

}
for z > z1 + d.

(C4)

APPENDIX D: ANALYTICAL SOLUTION
TO THE 2D PROBLEM

The analytical solution of Ez in the 2D case, which satisfies
Eq. (10), is presented in this Appendix. The derivation can be
found in electromagnetic theory textbooks such as [29–31],
although the notations might differ. Also [32] provides a
general solution for incoming plane waves under any angle.
The solution is given as a Fourier series of Ez(r, ϕ) as a
function of ϕ:

Ez(r, ϕ) =
+∞∑

m=−∞
Êz(r, m) exp (imϕ), (D1)

where Êz(r, m) are the Fourier coefficients. The analytical
solution is:

Êz(r, m) =
{

AmJm(k0r) + BmH (1)
m (k0r) for r > R,

CmJm(k1r) for r < R,
(D2)

where Jm and H (1)
m are the Bessel and the Hankel function

of the first kind and k1 = k0
√

εr . The coefficients Am are

determined by the incident field, which for a plane wave are
Am = im. The coefficients Bm and Cm (corresponding to the
scattered field and field inside the cylinder, respectively) are
then given in terms of Am by Eq. (D3).

Bm = − Jm(k1R)Jm+1(k0R) − √
εrJm+1(k1R)Jm(k0R)

Jm(k1R)H (1)
m+1(k0R) − √

εrJm+1(k1R)H (1)
m (k0R)

Am,

(D3a)

Cm = −2i

πk0R

1

Jm(k1R)H (1)
m+1(k0R) −√

εrJm+1(k1R)H (1)
m (k0R)

Am.

(D3b)

APPENDIX E: PERTURBATION ORDERS
OF THE 2D PROBLEM

Any term in the Born series can be calculated in a recurrent
manner with Eq. (8) using numerical integration, starting with
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U0(r) = Ui(r). The term of order 	 + 1 can be calculated from term 	 according to Eq. (E1).

U	+1(r) = k2
0

∫



G(r, r′)U	(r′)�εrdr (E1a)

= ik2
0�εr

4

∫ R

0

∫ 2π

0
H (1)

0 (k0|r − r′|)U	(r′)r′dϕ′dr′. (E1b)

To proceed we employ the Hankel addition theorem

H (1)
0 (k0|r − r′|) =

{∑+∞
n=−∞ Jn(k0r)H (1)

n (k0r′) exp [in(ϕ − ϕ′)], r � r′,∑+∞
n=−∞ Jn(k0r′)H (1)

n (k0r) exp [in(ϕ − ϕ′)], r � r′,
(E2)

in which for r we can distinguish between points inside and outside the cylinder.
Outside the cylinder. For all points r outside the cylinder r � r′ holds, such that applying the Hankel addition theorem results

in one integral. See Eq. (E3a).
Inside the cylinder. Now both regimes of the Hankel addition theorem apply, such that the integral over r is split into two

integrals; one for 0 to r and one for r to R. See Eq. (E3b). We choose n = m so that the same number of Bessel modes are used
in the calculation.

U	+1(r, ϕ) = ik2
0�εr

4

+∞∑
n=−∞

exp [inϕ]H (1)
n (k0r)

∫ R

0

∫ 2π

0
Jn(k0r′) exp [−inϕ′]U	(r′, ϕ′)r′dϕ′dr′, (E3a)

U	+1(r, ϕ) = ik2
0�εr

4

+∞∑
n=−∞

exp [inϕ]

[
H (1)

n (k0r)
∫ r

0

∫ 2π

0
Jn(k0r′) exp [−inϕ′]U	(r′, ϕ′)r′dϕ′dr′

+ Jn(k0r)
∫ R

r

∫ 2π

0
H (1)

n (k0r′) exp [−inϕ′]U	(r′, ϕ′)r′dϕ′dr′
]
. (E3b)

We can use the Fourier decomposition of U	(r, ϕ),

U	(r, ϕ) =
+∞∑

m=−∞
Û	(r, m) exp (imϕ), (E4)

to calculate U	+1(r, ϕ) more conveniently. Substituting this in Eqs. (E3b) and (E3a), we get a double summation over n and m
and the double integrals over r′ and ϕ′ become separable in both cases. The integral over ϕ′ evaluates to∫ 2π

0
exp [−inϕ′] exp [imϕ′]dϕ′ = 2πδnm, (E5)

with δnm a Kronecker delta, reducing the double summation to one over m which is again of the same form as Eq. (E4). Therefore
we find for Û	(r, m) the relations in Eqs. (E6a) and (E6b) for points outside and inside the cylinder respectively. We see that we
can calculate all terms in the Born series by only computing integrals over the radial component in Fourier domain because of
the orthogonality of the complex exponentials in this geometry. Given the expansion of U0(r, ϕ), which in our case is Û0(r, m) =
imJm(k0r), we can calculate Û	(r, m) up to any 	, which then is transformed back to U	(r, ϕ) using Eq. (E4). This can all be
performed numerically, but we do provide the analytical expressions for the first term Û1(r, m) for points inside and outside the
cylinder in Eqs. (E7a) and (E7b), respectively, since the integrals in Eqs. (E6a) and (E6b) can be evaluated analytically for 	 = 0
[33].

Û	+1(r, m) = iπk2
0�εr

2
H (1)

m (k0r)
∫ R

0
Jm(k0r′)Û	(r′, m)r′dr′, (E6a)

Û	+1(r, m) = iπk2
0�εr

2

[
H (1)

m (k0r)
∫ r

0
Jm(k0r′)Û	(r′, m)r′dr′ + Jm(k0r)

∫ R

r
H (1)

m (k0r′)Û	(r′, m)r′dr′
]
, (E6b)

Û1(r, m) = iπk2
0�εr

2
im R2

2

[
J2

m(k0R) − Jm−1(k0R)Jm+1(k0R)
)
H (1)

m (k0r), (E7a)

Û1(r, m) = iπk2
0�εr

2
im

{−ir

πk0
J ′

m(k0r) + R2

2
Jm(k0r)

[
Jm−1(k0R)H (1)′

m (k0R) − Jm(k0R)H (1)′
m−1(k0R)

]}
. (E7b)
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