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Summary 

Vaccination plays a pivotal role in modern preventive healthcare and 

contributes to a global decline in infectious diseases. Efficient 

production of vaccines is essential to meet the growing demand which 

results from factors like a growing global population and increased 

international travel. Protein subunit vaccines are a vaccine modality 

that contains parts of the infectious pathogen as the active ingredients. 

These subunits are recognized by the immune system, which is trained 

to respond more effectively and reduce symptoms upon actual 

infection. Production of these vaccines is divided into upstream 

processing (USP), which involves fermentation using expression hosts, 

downstream processing (DSP) where the protein subunit is purified, 

and finally formulation where the vaccines are prepared for 

distribution. During the DSP, multiple chromatography modes are often 

used to reach the required purity. Selection of the optimal 

chromatographic resin types, as well as operating conditions can be 

expensive and time consuming. Model-based process development has 

the potential to speed up this selection by using computational 

methods to predict protein behavior. Especially in early phase 

development, models allow in silico screening of resins and conditions 

in tandem to classical experiments, reducing required material. These 

computational models can be divided into knowledge-driven, data-

driven, or a combination thereof.  

The focus of this thesis is the development of a data-driven modeling 

approach where protein behavior is predicted from its atomic structure. 

Specifically, quantitative structure property relationship (QSPR) models 

are used for this purpose. To achieve this, chapter 2 introduces a 

Python tool that is developed to extract relevant information from the 

three-dimensional protein structure. This is done by sampling the 



Summary   

10 

  

protein surface using grid representation that describes the distribution 

of different physicochemical properties. These are translated into 

numerical descriptors. Using literature data, descriptor relevance was 

shown by training two separate QSPR models for the prediction of 

retention times in ion exchange chromatography (IEX), resulting in 

cross validated R2 of 0.87 and 0.95. 

A limitation of the data-driven modeling approach is that these models 

are only valid for the experimental conditions for which they are 

trained. Knowledge-driven models use fundamental knowledge about, 

for example, mass transfer. In chromatography, adsorption isotherms 

are essential to describe the binding of a protein to a chromatographic 

resin. In chapter 3 we developed a multiscale modeling approach by 

integrating QSPR with mechanistic modeling. Adsorption isotherm 

parameters predicted by QSPR were used in a mechanistic model. This 

multiscale model was validated with experimental data and showed 

only 0.2% difference between the retention peak values, relative to the 

salt gradient length. Subsequently, the validated mechanistic model 

was used to optimize a chromatographic capture step.  

Commercially available model proteins provide a great basis for a proof 

of principle, however QSPR modeling becomes more powerful when 

applied to host cell proteins (HCPs). Therefore, we characterized the 

chromatographic behavior of the HCPs present in an Escherichia coli 

(E. coli) lysate in chapter 4 by means of fractionation and subsequent 

analysis by mass spectrometry. Retention times of 816 and 908 HCPs 

were collected for hydrophobic interaction chromatography (HIC) and 

IEX, respectively. By dividing the HCPs into subsets based on cellular 

location, function, and interactions, basic trends were visualized. Next, 

we predicted the structures of each individual HCP which were used to 

train QSPR models. This was successful for IEX data resulting in a QSPR 

model with a cross validated R2 of 0.70 when using the monomer HCP 

subset. 
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Obtaining high resolution HCP retention data still requires substantial 

experimental effort. Therefore, deployment of QSPR models for PD 

would benefit from the formulation of a list of widely available 

(commercial) proteins that can represent a host cell proteome. In 

chapter 5 we analyze the transferability of a model trained on single 

protein solutions for HCP retention prediction. For this, retention times 

of 13 proteins were measured under the same conditions as used in 

chapter 4 and used to train a QSPR model. This model was evaluated 

on 572 E. Coli HCPs and was able to predict retention behavior for 51% 

with sufficient accuracy (error ≤5%). Moreover, we identified the key 

attributes missing in the training dataset, which is important to 

increase model performance in the future. 

Data quality is essential for successful training of QSPR models. 

Therefore, in chapter 6 we compared the accuracy of three isotherm 

parameter determination methods for a HIC isotherm. Specifically, two 

correlation-based methods (Parente and Wetlaufer, and Yamamoto) 

and one simulation error minimization method (inverse method) were 

assessed for two proteins in different conditions. By comparing 

mechanistic modeling accuracies compared to the experimental data, 

the inverse method was found to produce most accurate results, 

followed by the Yamamoto method. Therefore, it provides practical 

guidance for method selection for isotherm determination, thereby 

enabling generation of high-quality data that can facilitate QSPR model 

training.  

Overall, this thesis highlights the potential of QSPR for predicting the 

chromatographic behavior of proteins. Specifically for HCP prediction 

QSPR shows to be a valuable tool when paired with state-of-the-art 

structure prediction. Therefore, it contributes to a significant step 

towards in silico process development.  
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Samenvatting 

Vaccinatie speelt een cruciale rol in de moderne preventieve 

gezondheidszorg en draagt bij aan een wereldwijde afname van 

infectieziekten. Efficiënte productie van deze vaccins is essentieel om 

te voldoen aan de groeiende vraag, die resulteert uit factoren zoals een 

groeiende wereldbevolking en toename in internationaal reisverkeer. 

Eiwit-subunitvaccins zijn een type vaccin dat delen van de infectieuze 

ziekteverwekker bevat als werkzame stof. Deze subunits worden 

herkend door het immuunsysteem, dat hierdoor wordt getraind om 

symptomen bij een daadwerkelijke infectie te verminderen. 

De productie van deze vaccins is onderverdeeld in upstream processing 

(USP), waarbij fermentatie plaatsvindt met behulp van expressiehosts, 

downstream processing (DSP), waarbij het eiwit-subunit wordt 

gezuiverd, en tot slot formulering, waarbij de vaccins worden 

voorbereid voor distributie. Tijdens DSP worden vaak meerdere 

chromatografiemethoden gebruikt om de vereiste zuiverheid te 

bereiken. De selectie van de optimale chromatografische resins en de 

bijbehorende procescondities kan kostbaar en tijdrovend zijn. 

Modelgebaseerde procesontwikkeling heeft het potentieel om deze 

selectie te versnellen door gebruik te maken van computationele 

methoden om het gedrag van eiwitten te voorspellen. Vooral in de 

vroege ontwikkelingsfase maken modellen in silico screening van resin 

en condities mogelijk waardoor minder experimenten en daardoor 

minder materiaal nodig is. Deze computationele modellen kunnen 

worden onderverdeeld in kennisgedreven, datagedreven of een 

combinatie daarvan. 

De focus van dit proefschrift ligt op de ontwikkeling van een 

datagedreven modelleringsaanpak waarbij het gedrag van eiwitten 
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wordt voorspeld op basis van hun atomaire structuur. Hiervoor worden 

kwantitatieve structuur-eigenschaprelatie (QSPR) modellen gebruikt. 

In hoofdstuk 2 wordt een Python tool geïntroduceerd die is ontwikkeld 

om relevante informatie te extraheren uit de driedimensionale 

eiwitstructuur. Dit gebeurt door het oppervlak van het eiwit te 

beschrijven met behulp van een roosterrepresentatie die de verdeling 

van verschillende fysisch-chemische eigenschappen beschrijft. Deze 

worden vertaald naar numerieke descriptoren. Met behulp van 

literatuurdata werd de relevantie van deze descriptoren aangetoond 

door twee afzonderlijke QSPR-modellen te trainen voor de voorspelling 

van retentietijden in ionenuitwisselingschromatografie (IEX), wat 

resulteerde in een gevalideerde R² van 0,87 en 0,95. 

Een beperking van de datagedreven modelleringsaanpak is dat deze 

modellen alleen geldig zijn voor de experimentele condities waarop ze 

zijn getraind. Kennisgedreven modellen maken gebruik van 

fundamentele kennis, bijvoorbeeld over massatransport. In 

chromatografie zijn adsorptie-isothermen essentieel om de binding van 

een eiwit aan een chromatografische resin te beschrijven. In 

hoofdstuk 3 ontwikkelden we een multiscale modelleringsaanpak 

door QSPR te integreren met mechanistische modellering. Adsorptie-

isothermparameters voorspeld door QSPR werden gebruikt in een 

mechanistisch model. Dit multiscale model werd gevalideerd met 

experimentele data en toonde slechts 0,2% verschil tussen de 

retentiepieken, relatief ten opzichte van de zoutgradiëntlengte. 

Vervolgens werd het gevalideerde mechanistische model gebruikt om 

een chromatografische vangststap te optimaliseren. 

Commercieel beschikbare modeleiwitten vormen een goede basis voor 

een proof of principle, maar QSPR-modellering wordt krachtiger 

wanneer toegepast op hostcel-eiwitten (HCPs). Daarom 

karakteriseerden we in hoofdstuk 4 het chromatografisch gedrag van 

de HCPs aanwezig in een Escherichia coli (E. coli) lysaat door middel 
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van fractionering en daaropvolgende analyse met massaspectrometrie. 

Retentietijden van respectievelijk 816 en 908 HCPs werden verzameld 

voor hydrofobe interactiechromatografie (HIC) en IEX. Door de HCPs 

op te splitsen in subsets op basis van cellulaire locatie, functie en 

interacties werden basistrends zichtbaar gemaakt. Vervolgens 

voorspelden we de structuur van elk individueel HCP, die werd gebruikt 

om QSPR-modellen te trainen. Dit was succesvol voor de IEX-data, wat 

resulteerde in een QSPR-model met een gevalideerde R² van 0,70 bij 

gebruik van de monomeer-HCP-subset. 

Het verkrijgen van retentiegegevens met hoge resolutie voor HCPs 

vereist nog steeds aanzienlijke experimentele inspanning. Daarom zou 

de inzet van QSPR-modellen voor procesontwikkeling baat hebben bij 

het opstellen van een lijst van breed beschikbare (commerciële) 

eiwitten die een hostcelproteoom kunnen representeren. In hoofdstuk 

5 analyseren we de overdraagbaarheid van een model dat is getraind 

op oplossingen van enkele eiwitten voor de voorspelling van HCP-

retentie. Hiervoor werden de retentietijden van 13 eiwitten gemeten 

onder dezelfde condities als in hoofdstuk 4 en gebruikt om een QSPR-

model te trainen. Dit model werd geëvalueerd op 572 E. coli HCPs en 

kon het retentiegedrag van 51% met voldoende nauwkeurigheid 

voorspellen (fout ≤5%). Bovendien identificeerden we de belangrijkste 

kenmerken die ontbraken in de trainingsdataset, wat belangrijk is om 

de modelprestaties in de toekomst te verbeteren. 

Datakwaliteit is essentieel voor succesvolle training van QSPR-

modellen. Daarom vergeleken we in hoofdstuk 6 de nauwkeurigheid 

van drie methoden voor het bepalen van isothermparameters voor een 

HIC-isotherm. Specifiek werden twee correlatiegebaseerde methoden 

(Parente en Wetlaufer, en Yamamoto) en een simulatiegebaseerde 

foutminimalisatiemethode (inverse methode) geëvalueerd voor twee 

eiwitten onder verschillende condities. Door de nauwkeurigheid van de 

mechanistische modellering te vergelijken met experimentele data, 
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bleek de inverse methode de meest nauwkeurige resultaten te leveren, 

gevolgd door de Yamamoto-methode. Dit biedt praktische richtlijnen 

voor de keuze van een methode voor isothermbepaling en maakt het 

mogelijk om hoogwaardige data te genereren die QSPR-modeltraining 

kunnen ondersteunen. 

Al met al benadrukt dit proefschrift het potentieel van QSPR voor het 

voorspellen van het chromatografisch gedrag van eiwitten. Vooral voor 

HCP-voorspelling blijkt QSPR een waardevol hulpmiddel te zijn in 

combinatie met geavanceerde structuurvoorspelling. Daarmee levert 

het een belangrijke bijdrage aan in silico procesontwikkeling. 
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Glossary 

Abbreviation Definition 

AEX Anion exchange chromatography 

CEX Cation exchange chromatography 

CHO Chinese hamster ovary 

CV Column volumes 

DoE Design of experiments 

DRT Dimensionless retention time 

DSP Downstream processing 

EP Electrostatic potential 

HCP Host cell protein 

HIC Hydrophobic interaction chromatography 

HTS High throughput screening 

IEX Ion exchange chromatography 

IM Inverse method 

KS Kolmogorov-Smirnov 

LGE Linear gradient experiments 

mAbs Monoclonal antibodies 

MAE Mean absolute error 

MD Molecular dynamics 

MHP Molecular hydrophobicity potential 

MLR Multi linear regression 

MM Mechanistic modelling 

MS Mass spectrometry 

PD Process development 

pI Isoelectric point 

PLR Partial least squares 

PPI Protein-protein interaction 

PW Parente and Wetlaufer 

QbD Quality by design 

QSAR Quantitative structure activity relationship 

QSPR Quantitative structure property relationship 

RMSE Root mean squared error 

SASA Solvent accessible surface area 

SEC Size exclusion chromatography 

SFS Sequential forward selection 

UPLC Ultra performance liquid chromatography 

USP Upstream processing 
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1 

1.1 Background 

Vaccine discovery has been pivotal in improving public health, and has 

contributed to extending the average life expectancy up to 30 years in 

most middle- to high-income countries over the last two centuries.[1] 

By probing the immune system by controlled pathogen exposure, a 

vaccine reduces severe symptoms upon wildtype infection.[2] As part of 

the biopharmaceutical industry, the total marked size for vaccines has 

grown to 77 billion dollars in 2023.[3]  

The most important components of a vaccine are the active 

ingredients, which are the antigens that stimulate the immune 

system.[2] These active ingredients can be whole pathogens, as live 

attenuated or inactivated. Alternatively, specific parts of the pathogen 

that are recognized by the immune system can be used. The first 

SARS-CoV-2 vaccines are recent examples that use mRNA encoding for 

target antigens.[4] Upon vaccination, the mRNA transfects several host 

cells which will start producing the antigens, triggering a subsequent 

immune response.[5] These types of vaccines have proven to be a great 

success during the Covid-19 pandemic, as the established platform 

process allows for relatively fast process development (PD).   

Alternatively, protein subunit vaccines already contain these specific 

antigens, and do therefore not require transfection and translation after 

vaccination. In contrast to mRNA vaccines, which are stable for up to 

6 months when frozen (-20 to -80 °C)[6], protein subunit vaccines have 

been reported to be stable for multiple years when refrigerated (2 to 8 

°C).[7,8] Therefore protein subunit vaccines currently have less 

distribution limitations.  

These vaccines are also known as recombinant vaccines, meaning that 

they are produced during a fermentation process by host cells which 

are transformed/transfected with DNA aimed to express the antigen.[9] 
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Common host cells used for the production include bacteria, yeast, 

insect, and mammalian cells. The process of amplifying host cells and 

expressing the antigens is the upstream processing (USP), 

subsequently, active ingredients require purification from the crude 

mixture, which is important to ensure safety and efficacy.[10] This is 

done during the downstream processing (DSP), which precedes the 

vaccine formulation (Figure 1.1). During the DSP of protein subunits, 

removal of host cell proteins (HCPs) is most challenging, as these 

impurities might show similar behaviors as the antigens. For 

separation, chromatography often has a central role during DSP due to 

its versatility and specificity.[11] 

 

Figure 1.1: General representation of a vaccine production pipeline. 

1.1.1 Chromatography 

Packed bed chromatography is the most commonly used technique to 

achieve high resolution separation of proteins.[12] For this method a 

column is packed with porous beads, the resin, which will bind solutes 

based on their physicochemical properties (stationary phase). Solvent 

passes through the column, dragging along any dissolved proteins 

(mobile phase). The retention of a protein is determined by how 

strongly the protein binds to the chromatographic resin. Ion exchange 

chromatography (IEX) is one of the most used methods and DSP of 

pharmaceutical proteins often have one or more of these steps.[13] This 

type of chromatography separates based on charge; cation exchange 
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1 

(CEX) or anion exchange (AEX) resins bind proteins based on positive 

or negative charge, respectively. Other alternative modes of separation 

include hydrophobic interaction chromatography (HIC), which 

separates based on hydrophobicity, size exclusion chromatography 

(SEC), separation based on size, or mixed mode chromatography, 

which is a combination of multiple modes (e.g., IEX and HIC).[14,15] 

Typical vaccine purification consists of several orthogonal 

chromatography steps performing an initial capture, followed by an 

intermediate purification and final polishing.[11,16] During PD, 

appropriate resins are selected, and operating conditions are optimized 

to ensure a robust process. Optimization can be performed by 

heuristics or by experimental screening methods like design of 

experiments (DoE) or high throughput screening (HTS).[10] 

Alternatively, model-based PD uses data- and/or knowledge-driven 

methods to predict protein behavior in silico.[17] This reduces the 

required wet-lab experiments and thereby materials and has therefore 

the potential to significantly reduce development time and costs. 

1.1.2 Model-based process development  

Mechanistic modeling (MM) is a prime example of a knowledge-driven 

method that simulates the chromatographic behavior of proteins 

(Figure 1.2). In these models, partial differential equations describe 

the transport in the liquid phase, while partitioning between the solid 

and liquid phase is approximated by adsorption isotherms.[18] Process 

parameters such as column dimensions, operating conditions, and 

buffer compositions can be tested and optimized.[16,19,20] Successful 

deployment of MM is highly dependent on the model parameters, 

especially the adsorption parameters.[21] These parameters are 

determined experimentally from sets of dynamic (isocratic or linear 

gradient elution experiments) or static (batch adsorption studies).[22–

24]  
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Figure 1.2: Schematic representation of a mechanistic model. Different levels of a 
chromatography column are depicted left to right showing first the whole column, 
followed by the packed bed and finally a porous bead. The equation shows the general 
formulation of a lumped kinetic model where 𝐶𝑖 and 𝑞𝑖represent the solute concentration 
in the mobile and stationary phase, respectively. 𝑢 represents the superficial velocity, 

𝐷𝐿,𝑖 the axial dispersion, 𝐹 the phase ratio, 𝑥 the position in the column, and 𝑡 represents 

the time. A more detailed description of the mechanistic model used in this thesis is 
documented in Chapter 3. 

Alternatively, chromatographic behavior can be predicted from the 

protein structure. The physicochemical properties of proteins are a 

product of the amino acid sequence and subsequent protein folding. 

Structure models contain the positions of every atom and can therefore 

be used to calculate properties relevant for different chromatographic 

modes (Figure 1.3). Recent breakthroughs in the field of structure 

prediction, primarily by AlphaFold, enable fast obtainment of high 

quality structure models.[25–27] These models can be used in molecular 

dynamics (MD) simulations that calculate the molecular forces and 

movement of each atom at femtosecond time scales.[28,29] For 

chromatography, these simulations have been used to predict the 

binding energies, isotherm parameters, and preferred binding 

orientations.[30–35] While these simulations provide immense detail, 

computational costs are a limiting factor as simulations in the 

nanosecond range can take days to calculate. Therefore, this method 

scales poorly for large molecules, like proteins, and is currently 

unsuitable for screening purposes.  
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Figure 1.3: Use of protein structure models. Top shows a solvated simulation box which 
is used during molecular dynamics simulations. Bottom shows surface charge projections 
that can be used to calculate protein properties for QSPR modeling  

Quantitative structure property relationship (QSPR) modeling is 

another method that uses the molecular structure to predict the 

chromatographic behavior.[11,36–38] This method is data-driven and uses 

fundamental knowledge derived from the structure to train predictive 

models. This method is most mature for the discovery of small 

molecule drugs where it carries the name quantitative structure activity 

relationships (QSAR).[39] Descriptors are calculated from the molecular 

structure which can range from number of double bonds to solvation 

energy.[40] Over 1000 distinct descriptors have been designed mainly 

focusing on one- or two-dimensional molecular representations. 

Proteins contain many more atoms, folded in complex structures. 
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Therefore, the descriptors designed for the small molecules are often 

not relevant. Different types of descriptors have been developed for 

protein chromatography prediction.[37,41–44] Specifically, surface 

descriptors that use the solvent accessible surface area of a protein 

onto which the hydrophobicity or charge can be distributed has shown 

to be effective. For the application of QSPR models, specific descriptors 

are selected and used to train regression or machine learning models 

that can recognize which descriptors are relevant to describe 

chromatographic retention. After training an accurate model, predicting 

the behavior of a new protein can be performed within seconds. QSPR 

is therefore an excellent method to screen different resin types in 

tandem with experimental characterization, limiting experimental 

efforts.  

1.2 Project setting 

The project Molecular Modeling for Protein Chromatography Prediction 

is a collaboration between GlaxoSmithKline Biologicals S.A. (Belgium) 

and Delft University of Technology (The Netherlands) and was partly 

funded by GlaxoSmithKline Biologicals S.A. (Belgium) and ChemistryNL 

(The Netherlands). The aim of this collaboration is to develop a model-

based high throughput development platform for the DSP of protein 

subunit vaccines. This platform allows increased productivity and 

fundamental understanding. As such, two additional PhD projects are 

part of this collaboration. One of the projects focuses on the 

development of experimental methods to characterize HCPs which are 

applied to Escherichia coli (E. coli) lysates.[45] The other project aims 

to use MM to describe and optimize DSP.[46] The focus of this thesis is 

predicting the chromatographic behavior of proteins from their 

molecular structure. To support the goal of developing a high 

throughput development platform QSPR is used as the main modeling 

tool.  
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1.3 Thesis outline 

The main content of this thesis is divided into 5 chapters which all focus 

on specific research questions (Figure 1.4). 

In chapter 2, the feature calculation software that forms the basis of 

this thesis is introduced. It starts with an overview current state-of-

the-art in QSPR modeling for protein chromatography, followed by a 

comprehensive explanation on how the features are calculated from 

protein structures. These features are subsequently used to train 

models capable of predicting IEX retention times obtained from 

literature.  

This software is applied in chapter 3 to predict the chromatographic 

behavior of model proteins in CEX using a multiscale modeling 

approach combining MM and QSPR. In this chapter, retention times as 

well as model parameters are predicted which are used to perform 

model-based optimization. To validate the impact of prediction 

uncertainty to the optimization, the parameters were varied using the 

95% confidence interval. 

In an actual process, an antigen often needs to be removed from a 

host cell lysate. Understanding this complex mixture of host cell 

material provides a great basis to guide PD. Therefore, in chapter 4 

the chromatographic behavior of HCPs from a host cell lysate is 

analyzed. Additionally, by using predicted HCP structures, QSPR 

models are trained to predict chromatographic retention. 

As retention time determination of HCPs is experimentally demanding, 

general QSPR models are trained in chapter 5. Specifically, a set of 

widely available proteins are characterized for the same process 

conditions as used in chapter 4. The dimensionless retention times 

(DRTs) of these proteins are then used to train QSPR models which are 

applied to predict HCP DRTs. By analyzing feature distribution plots of 



Chapter 1  

28 

   

1 

the training and HCP sets, concrete recommendations are made to 

improve training set selection. 

While all previous chapters focus on IEX, chapter 6 compares three 

adsorption isotherm parameter determination methods for HIC. This 

chapter contributes to the overall project as it describes different 

available methods and assesses the accuracy of all parameters. By 

providing practical guidance for method selection reliable HIC modeling 

is enabled, which can be extended to HCPs in the future. 

The final chapter 7 presents the overall conclusion of this thesis and 

summarizes all key findings. Using this information, prospects of the 

field are discussed and suggestions for future research are motivated.  
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Figure 1.4: General overview of the Thesis 
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Abstract 

Protein-based biopharmaceuticals require high purity before final 

formulation to ensure product safety, making process development 

time consuming. Implementation of computational approaches at the 

initial stages of process development offers a significant reduction in 

development efforts. By preselecting process conditions, experimental 

screening can be limited to only a subset. One such computational 

selection approach is the application of Quantitative Structure Property 

Relationship (QSPR) models that describe the properties exploited 

during purification. This work presents a novel open-source Python tool 

capable of extracting a range of features from protein 3D models on a 

local computer allowing total transparency of the calculations. As an 

open-source tool, it also impacts initial investments in constructing a 

QSPR workflow for protein property prediction for third parties, making 

it widely applicable within the field of bioprocess development. The 

focus of current calculated molecular features is projection onto the 

protein surface by constructing surface grid representations. Linear 

regression models were trained with the calculated features to predict 

chromatographic retention times/volumes. Model validation shows a 

high accuracy for anion and cation exchange chromatography data 

(cross-validated R2 of 0.87 and 0.95). Hence, these models 

demonstrate the potential of the use of QSPR to accelerate process 

design.  
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2.1 Introduction 

The market for protein-based biopharmaceuticals, such as protein 

subunit vaccines and therapeutic antibodies, developed rapidly over 

recent years.[1] Opposed to chemical synthesis to manufacture small 

molecule drugs, protein-based biopharmaceuticals are produced by 

living host cells. During downstream processing (DSP) the target 

product is separated from host cell impurities, which is of major 

importance to guarantee patient safety and drug efficacy. To attain 

sufficient purity, chromatography is a method of choice due to its 

specificity and versatility.[2–4] However, the vast variety of commercially 

available resin types (e.g., ion exchange (IEX) or hydrophobic 

interaction chromatography (HIC)) and experimental conditions (e.g., 

salt concentrations, buffers, and pH) results in extensive experimental 

screening to obtain optimal separation conditions, driving both cost and 

development time. In silico preselection of resins and conditions prior 

to experimentation would allow a decrease in costs and development 

time by narrowing the empirical screening space.  

Chromatographic separation is based on the difference in 

physicochemical properties between the product and impurities. For 

proteins, physicochemical properties are determined by the amino acid 

sequence (1D) and the three-dimensional (3D) structure. Quantitative 

Structure Property Relationship (QSPR) aims to relate physicochemical 

properties to specific behavior (e.g., chromatographic retention 

time).[5] For QSPR, physicochemical properties are described as 

numerical features and subsequently used in predictive machine 

learning models as input variables. To build a QSPR workflow, 

experimental data of known proteins is split in a training and test set. 

Numerical features are calculated from the proteins in the training set 

and selected to train a machine learning model (e.g., linear regression, 

partial least squares (PLS), or neural networks) which predicts the 
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behavior of interest. The resulting model is tested using the numerical 

features obtained from the proteins in the test set, to assess the model 

accuracy for new data. When the model provides sufficiently accurate 

predictions, the property of proteins unknown to the model can be 

predicted (Figure 2.1).  

The simplest QSPR approach is to calculate protein features based on 

the amino acid sequence. From the amino acid sequences, one can 

derive properties such as residue counts, hydrophobicity scores, overall 

charge, and the isoelectric point. Although these properties are 

indicative, such features consider the contribution of each residue as 

equal since topological information on whether the residue is buried or 

accessible for resin ligands is lacking. This information can be obtained 

from 3D protein structure models. Developments in protein structure 

prediction allows accurate prediction of protein structures from amino 

acid sequences, the current state-of-the-art being Alphafold2.[6,7] 

PROFEAT[8] and ProtDCal[9] offer webserver interfaces where structure 

files can be analyzed to calculate protein features needed as input for 

QSPR model approaches. Both tools calculate a list of general numerical 

features based on the 1D and 3D protein structure. For feature 

calculations using a local machine, the drug discovery software 

platform Molecular Operating Environment (MOE) is widely applied.[10–

16] An alternative package is Schrödinger’s BioLuminate Suite, which 

has recently been expanded by including features based on the protein 

sequence, 3D structure, and surface patches.[17] A comprehensive 

overview can be found elsewhere.[18] 

Using structural protein features to predict protein retention times was 

first described in 2001 by Mazza et al., who calculated protein features 

using the transferable atom equivalent method[5,19,20] and the 

proprietary software platform MOE. By applying a genetic algorithm for 

feature selection, a PLS model was trained, capable of predicting 

retention times for ion exchange chromatography from protein 
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structure models. Applying the same feature calculation methods, 

support vector machine regressions for both feature selection and the 

final predictive model have also been applied for successful protein 

retention prediction in ion exchange, hydrophobic interaction and 

mixed mode chromatography.[10–16] As the chromatographic resin 

interacts with the amino acid residues on the protein surface, 

Malmquist et al. implemented a grid representation of the protein 

surface to map protein properties.[21] By applying distance functions to 

project charge and hydrophobicity onto the surface grid points, protein 

features were calculated and used in a PLS model to predict retention 

times for anion and cation exchange columns. As charge and 

hydrophobicity are usually not uniformly distributed over the protein 

surface, binding orientations play important roles in protein-resin 

binding affinities.[22,23] To account for such orientations in QSPR 

models, Hanke et al. described a method to sample the surface in 

neighborhoods and uses this for HIC retention time predictions.[24] 

These neighborhoods are defined as the surface within a specific 

distance of a central surface point (7 Å and 14 Å distances were 

described). Alternatively, Kittelmann et al. used property projections 

on a plane, sampling different orientations.[25,26] By projecting the 

properties onto a plane, this method considers steric hindrance on the 

surface. This results in penalizing the area of surface cavities, which 

are located at a greater distance from the projection plane.  
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Figure 2.1: Schematic representation of a Quantitative Structure Property Relationship 
(QSPR) workflow for chromatographic retention prediction. The first step to build a QSPR 
model is data acquisition. Here, a set of known proteins is used to construct a dataset 
containing experimentally determined properties (e.g., retention times). The 
experimental property dataset is split into a train and test set. The training set is used 
for model building. The physicochemical properties for each protein are calculated using 
the corresponding 3D structure. The physicochemical properties are expressed as 
numerical features. The number of features is reduced using dimension reduction 
methods such as principle component analysis or variance filtering, and the most 
descriptive features are selected by feature selection to train a predictive model. The 
resulting model is tested on the test set to assess the accuracy for unseen proteins. 
Predictive models with good accuracy can be applied to predict the properties of 
uncharacterized proteins. 
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Most of the described studies use proprietary or in-house software to 

perform feature calculations and model training. As a result, 

reproducing these studies is near to impossible. Therefore, direct 

comparison between different approaches by minimizing the variables 

cannot be performed, hindering benchmarking opportunities and 

scientific progress. Additionally, the lack of open-source tools limits 

software availability for new users and customizability to solve a wide 

variety of development challenges. We aim to close this gap, and in 

this work, we provide an open-source Python tool that is able to 

calculate 3D protein features. The current implemented operations and 

features aim to consolidate the most often described protein features 

from literature.[13,21,25,26] The validity of the features for 

chromatographic process development was shown by training multiple 

linear regression (MLR) models predicting retention times/volumes for 

cation and anion chromatography resins obtained from literature. To 

promote transparency and scientific reproducibility, the software 

developed for this study is freely available open source at 

https://dx.doi.org/10.5281/zenodo.10369949. 

2.2 Methods 

2.2.1 Protein charge 

Protein charge is the key property that governs separation in ion 

exchange chromatography. Protein charge is dependent on the 

protonation state of the titratable groups. Residues Arginine (Arg, R), 

Lysine (Lys, L) and Histidine (His, H) can have positively charged 

sidechains when fully protonated, while Aspartic acid (Asp, D), 

Glutamic acid (Glu, E), Cysteine (Cys, C) and Tyrosine (Tyr, T) can be 

negatively charged when deprotonated. Additionally, the C and N 

termini of the protein can also be negatively or positively charged, 

respectively. The protonation states of these residues can be described 

by the Henderson-Hasselbalch Equation[27]: 
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𝑝𝐻 = 𝑝𝐾𝑎 + log (
[𝐴−]

[𝐴𝐻]
) , (2.1) 

where 𝐴𝐻 is the protonated and 𝐴− is the deprotonated form of the 

titratable group. Therefore, titratable residue sidechains are 

deprotonated when the pH is higher than their pKa and protonated 

when the pH is lower than their pKa resulting in charges of +1, 0 or -

1. Alternatively, the overall charge can be calculated for negative and 

positive charges as follows:  

𝐶ℎ𝑎𝑟𝑔𝑒 =  
−1

1+10𝑝𝐾𝑎−𝑝𝐻   [e], (2.2) 

And 

𝐶ℎ𝑎𝑟𝑔𝑒 =  
1

1+10𝑝𝐻−𝑝𝐾𝑎   [e], (2.3) 

respectively. By default, pKa values are assigned based on a scale 

documented in Leninger Principles of Biochemistry[28] with the 

exception of Arginine, which is set to 14.[29] Alternatively, custom pKa 

values (predicted by e.g. PROPKA[30,31], H++[32,33], WHAT-IF[34]) can be 

assigned to specific residues using a json object, allowing improved 

description of the charge. To describe charge distribution, the dipole 

moment of the protein can be calculated which is defined as the 

magnitude of the dipole vector D, calculated as: 

𝐷 = 4.803 ∗ ∑ (𝑟𝑖 − 𝑟𝑝) ∗ 𝑞𝑖 𝑖   [D], (2.4) 

where rp is the protein center and ri is a vector containing the 3-

dimentional coordinates of the atom.[35,36] 

2.2.2 Surface definition 

Interactions of proteins with their environment often take place at the 

protein surface. To rationalize these interactions using protein models, 

accurate representations of the surfaces are required. The Solvent 

Accessible Surface Area (SASA) is the most common for surface 

estimation that represents the protein surface which can be occupied 

by water molecules and was first described by Lee and Richards[37] 
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(Figure 2B). A number of tools specifically designed for the 

determination of the SASA are available.[38–40] A spherical probe, 

representing a solvent molecule, is rolled over the protein atoms 

tracing the accessible area using the center of the solvent. We adopted 

the method of Shrake and Rupley[41] where each surface sphere is 

represented by a set of sample points. The number of sample points 

are scaled according to the surface sphere radius and are distributed 

by a Fibonacci sphere[42], to obtain a distribution of 2 points per Å2. The 

fraction of each amino acid occupying the surface can be calculated by 

dividing the number of surface points of a residue by the total number 

of surface points.  

2.2.3 Property projection 

Projection of properties onto the surface allows for assessing structural 

attributes where the interactions occur. A surface grid representation 

is composed by constructing grid cells of 1 Å3 containing the surface. 

Using connected component labeling connecting the grid points 

occupied by the surface, a surface grid representation with a 

distribution of 1 point per Å3
 is composed (Figure 2C). Projection of 

charge, resulting in simplified electrostatic potential (EP), is performed 

by: 

𝐸𝑃 = ∑
𝑞𝑖

𝜀𝑑𝑖
𝑖  [v], (2.5) 

where d represents the distance between atom i and the grid point, q 

is the charge of atom i and ε the dielectric constant of a protein, which 

is assumed to be 4.[43]  

To represent a chromatographic resin, charges are mapped onto planes 

(Figure 2D). A total of 120 planes are equally distributed using a 

Fibonacci sphere and scaled to a distance of ≥1 Å to any of the protein 

atoms. Since the charge is now mapped through multiple media, ε is 

defined as: 
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𝜀 =  
𝜀𝑝×𝑑𝑝+ 𝜀𝑤×𝑑𝑤 

𝑑
𝜀0  [-],  (2.6) 

Where subscript p indicates protein, w the solvent and 0 the 

conductivity in a vacuum. The distance through the protein and solvent 

is estimated using the solvent accessible surface.  

Hydrophobicity of proteins is another important factor which governs 

interactions. Many different scales describing the contribution of each 

respective amino acid to hydrophobic phenomena have been 

published.[44] The Cowan–Whittaker[45] and the Miyazawa-Jernigan[46] 

scales have been reported to give highest correlation for hydrophobic 

interaction chromatography retention prediction.[47] In this work, we 

use the Miyazawa-Jernigan[46] scale, which was scaled using a min-

max-scaler to values ranging from -1 to 1. Hydrophobicity values are 

projected onto the surface grid to obtain the molecular hydrophobic 

potential (MHP) using:  

𝑀𝐻𝑃 = ∑ 𝑓𝑖𝑒
−𝑑𝑖

𝑖   [-],  (2.7) 

where fi indicates the hydrophobicity value of the residue, based on the 

work of Fauchére et al.[48] with a cut-off of 10 Å. 

 

Figure 2.2: Protein representation for feature calculation. A) shows all atom 
representation using the coordinates for each atom. B) shows the solvent accessible 
surface area. C) shows the surface grid representation with mapped electrostatic 
potentials. D) shows the plane projection of one orientation 

A list of all current supported features can be found in Supplemental 

Table S2.1. 
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2.2.4 Dataset composition and feature calculation 

Two datasets with known retention behavior for Q Sepharose FF and 

SP Sepharose HP were required from literature, set 1[15] and set 2[13] 

respectively (Tables 2.1 and 2.2). For both datasets, structures were 

extracted from the PDB and used to generate homology models by 

SWISS-MODEL[49,50] to resolve missing atoms. Duplicate chains were 

removed for all protein models to obtain monomer structures which 

were used in the feature calculation. To calculate the protonation 

states, the default pKa values were used for the titratable residues. 

Building the surface grid was performed using a sphere radius of 1.4 Å 

to represent water.  

Table 2.1: Dataset 1, Retention times of specific proteins described by Hou and 
Cramer[15] for Q Sepharose Fast Flow. Superscript 1 indicates the protein models used 
as test set. 

Protein PDB-ID Retention time (min) 

Lectin 2PEL 12.35 
Phosphorylase 1GPB1 12.56 
Conalbumin 1AIV 15.31 
Transferrin 1A8E 15.63 
Trypsin Inhibitor 1AVU 16.19 
a-Lactalbumin 1F6R 18.63 
Glutamic Dehydrogenase 1NR7 21.29 
Ovalbumin 1OVA 21.47 
Lipoxydase 1F8N 23.02 
Human Serum Albumin 1AO6 23.19 
Adenosine Deaminase 1VFL 25.00 
B-Lactoglobulin B 1BSQ1 26.26 
Lipase 3TGL 26.51 
B-Lactoglobulin A 1BSO 29.16 
Cellulase 1EG1 29.71 
Amyloglucosidase 1LF6 36.61 
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Table 2.2: Dataset 2, Retention volumes of specific proteins at different pHs described 
by Yang et al.[13] for sulfopropyl Sepharose high-performance. Superscript 1 indicates 
the pH used as test set (6). 

 

2.2.5 Linear regression modeling 

After splitting the data in train and test sets, a correlation filter was 

applied for the removal of features with a high Pearson correlation 

coefficient (0.99). Deciding which features should remain was based 

on the Pearson correlation with the protein retention times/volumes, 

making this a supervised feature filter. Next the feature list was further 

reduced based on the Pearson correlation with the retention times, 

removing 30% and 10% of the features with lowest correlation for 

dataset 1 and dataset 2 respectively. Sequential forward feature 

selection was used for selecting the features for the linear regression 

model. Selected feature sets were validated using a repeated 2-fold 

cross-validation and leave-one-out cross-validation. Feature 

importance was assessed according to regression coefficients and by 

feature permutation. 

2.3 Results and discussion  

To evaluate the performance of the developed Python tool, two 

datasets were obtained from literature containing protein retention 

  Retention volume (mL) 

Protein  PDB-ID pH 4 pH 5 pH 61 pH 7 pH 8 

Carbonic anhydrase 1V9E  7.86 3.51   
Conalbumin 1OVT  6.18 3.21 1.52  
Pyruvate kinase 1A49  7.48 2.37   
Bovine trypsin 1S81 6.94 3.82 2.37 2.14 1.15 
Bee phospholipase A2 1POC 11.83 8.01 5.64 3.35 1.37 
Elastase 1LVY 5.80 3.81 2.47 2.51 2.29 
Trypsinogen 1TGB 7.17 4.27 3.34 3.34 2.90 
Ribonuclease A 1RBX 13.12 9.23 5.72 4.96 3.66 
α-Chymotrypsin 5CHA 8.93 6.87 5.95 5.87 5.19 
α-Chymotrypsin A 2CGA 8.55 6.64 5.87 5.95 5.34 
Bovine cytochrome C 2B4Z 17.55 10.91 8.39 8.47 7.86 
Horse cytochrome C 1HRC 17.63 10.91 8.39 8.47 7.93 
Lysozyme 1AKI 14.12 10.83 9.54 9.16 8.01 
Avidin 1VYO 19.54 14.96 12.36 10.73 9.77 
Aprotin 1PIT 14.35 11.29 10.68 10.68 10.53 
Lactoferrin  1BKA 26.87 25.34 24.96 24.81 23.89 
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times/volumes for ion-exchange chromatography columns. The first 

dataset contains protein retention for Q Sepharose FF, and the second 

for SP Sepharose HP. For both datasets, predictive models were trained 

relating protein structure to retention time or volume. To determine the 

validity of the selected features, the regression coefficient and cross-

validated R2 of a permutation model, where each feature is scrambled, 

are discussed.  

2.3.1 Protein retention prediction for Q Sepharose FF 

To develop a simple model with high interpretability, a MLR model was 

trained on protein retention times for the anion exchange resin Q 

Sepharose FF (Table 2.3). The dataset that was used (Table 2.1) was 

composed of 16 proteins, of which two were selected for testing while 

the remaining 14 were used for model training.[15] As overfitting can 

be an issue for linear regression models, a ratio of five datapoints per 

feature should be maintained, resulting in three features for this 

dataset [51]. The model’s predictability was considered sufficient, with 

a cross-validated R2 of 0.87, a RMSE of 2.23, and RMSEtest of 2.50 

(Figure 2.3). The two most important features are the median negative 

surface EP (regression coefficient of -31 and permutated CV R2 of -

0.352) and the number of positive electrostatic surface grid points 

(regression coefficient of 18.17 and a permutated CV R2 of 0.563), both 

calculated using the formal charge (Table 2.3). A negative regression 

coefficient indicates an inverse correlation with the retention time of 

the protein and vice versa. In alignment with the mode of action of the 

anion exchange resin, the negative surface potential is the most 

important feature, as it has the highest regression coefficient and 

permutation of this feature yields a model uncapable of predicting 

retention times (Supplemental Figure 2.1A). The second feature, 

number of surface points with a positive EP, shows a positive correlation 

with protein retention time. This is not in line with the mode of action 
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as a positive protein surface should be repelled by the anion exchange 

resin. Permutation of this feature reduces the performance of the 

model to a cross-validated R2 of 0.563 (Supplemental Figure 2.1B). 

The selection of this feature might be due to the current absence of 

local surface descriptors. The affected proteins might still contain areas 

on the surface which are negatively charged that could interact with 

the anion exchange ligands. The final feature, the valine surface 

fraction, is of the lowest importance, with a regression coefficient of -

5.75. The permutation of this feature results in a model with a cross-

validated R2 of 0.733.  

Table 2.3: Overview of features selected for the linear regression model for Q Sepharose 
FF and the corresponding regression coefficient and cross-validated R2 of permutation 
models 

Feature Coefficient CV R2 permutation 

Intercept 36.76 - 
Negative surface EP* median 

(formal)a 

-31 -0.352 

Number of surface points with 
positive EP* (formal)a 

18.17 0.563 

Valine surface fraction -5.75 0.733 
a Charge calculated using formal charge (+1, 0 or -1). * Electrostatic Potential 

 

Figure 2.3: Prediction of Q Sepharose FF retention times. A) shows the leave-one-out 
cross-validation (gray circles) and test set (white triangles) results of the model. B) 

shows the predicted retention times volumes for the external test set (Table 1). 
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2.3.2 pH dependent protein retention prediction for SP 

Sepharose HP 

The applicability of the Python tool for a different chromatography 

mode and varying process conditions was tested using a second set of 

protein retention volumes reported in literature.[13] The second set 

consists of retention volumes of 16 different proteins for the cation 

exchange resin SP Sepharose HP. In contrast to the previous dataset, 

the proteins were measured at a pH range from 4 to 8, yielding a total 

of 72 datapoints. The obtained numerical features were filtered and 

subsequently selected using forward feature selection, shown in Table 

4. The final MLR model is composed of 10 features and has good 

predictability with a cross-validated R2 of 0.95, a RMSE of 1.37, and 

RMSEtest of 1.14 (Figure 2.4).  

Six of the 10 selected features are directly related to the protein charge 

and are inherently interconnected. The feature with the highest 

regression coefficient of 31.24, and therefore deemed most important, 

is the minimum surface EP. The positive coefficient indicates that an 

increase in minimum surface EP leads to a higher retention volume, 

which is in line with the mode of action of the cation exchange resin. 

The total charge is the second most important feature with a regression 

coefficient of -27.77. This indicates that proteins with a higher total 

charge have lower retention volumes. Considering the dataset to be 

retention volumes for the cation exchange resin SP Sepharose HP, a 

negative correlation with the total charge is counter intuitive. This 

correlation might not indicate a direct causation with the retention 

volume, but rather that the total charge might compensate for other 

charge related features, as there is collinearity between the charge 

related features. To directly assess the importance of the feature, the 

permutation model results in a reduced cross-validated R2 of 0.861. 

The permutation model for the minimum surface EP resulted in a 
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greater decrease in performance (cross-validated R2 of 0.822). This 

indicates that the total charge is indeed less important for the final 

model compared to EP.  

The dipole vector length has a regression coefficient of 20.72. The high 

positive regression coefficient indicates the importance of charge 

polarization, and that proteins elute later with more uneven charge 

distribution. The isoelectric point is the next charge-related feature 

with a regression coefficient of 12.02. This feature is unaffected by pH 

as it represents the pH at which the protein is neutrally charged. 

Interestingly, even though the feature has only the fourth highest 

coefficient, permutation of the feature results in a permutation model 

with the lowest R2 of 0.769 (Supplemental Figure 2D). This feature has 

a low cross correlation with the other features, indicating that less 

compensation is possible with the remaining data. The importance of 

the remaining features is significantly lower compared to the first four 

features (Cross-validated R2 of permutation > 0.888), a detailed 

discussion on these features can be found in the supplemental 

material.  
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Table 2.4: Overview of features selected for the linear regression model for SP 
sepharose HP and the corresponding regression coefficient and cross-validated R2 of 
permutation models 

Feature Coefficient CV R2 permutation 

Intercept -3.78 - 
Minimum surface EP* (average)b 31.24 0.822 

Total charge (average)b -27.77 0.861 
Dipole vector length 20.72 0.842 

Isoelectric point 12.02 0.769 
Standard deviation of positive 

EP* shell projections 
11.07 0.934 

Lysine surface fraction -7.42 0.919 
Mean negative surface EP* 

(formal)a -5.48 0.934 

Standard deviation of negative 
surface hydrophobicity  

5.46 0.934 

Cysteine surface fraction 5.12 0.888 
Surface shape max -1.21 0.946 

a Charge represented as formal charge (+1, 0 or -1). b Charge calculated using equations 
2 and 3. * Electrostatic Potential. 

While the QSPR model for the first dataset is trained to predict different 

proteins at similar conditions, the second model is trained to predict 

similar proteins for different pH conditions. The effect of different pH 

values is captured by five of the 10 selected features which are pH 

dependent (Minimum surface EP, Total charge, Dipole vector length, 

Standard deviation of positive shell projections and Mean negative 

surface EP). Thus, the remaining five features are pH independent, and 

therefore similar for different pH conditions. Therefore, a slight bias 

might have been introduced, indicated by clustering of identical 

proteins. The impact of this bias is considered minimal due to the 

greater regression coefficients and effect of permutation of the pH 

dependent features. The increased amount of available data for the 

second model is therefore thought to be the main factor driving greater 

accuracy compared to the first model.  
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Figure 2.4: Prediction of SP Sepharose HP retention volumes. A) shows model results 
of the leave-one-out cross-validation (gray circles) of the proteins at pH 4, 5, 7 and 8 as 
well as the test set (white triangles) which are the proteins at pH 6. B) shows the 
predicted retention volumes for the external test set which are all proteins measured at 
pH 6 (Table 2). 

The two QSPR models are cabable of the retention prediction for Q 

Sepharose FF and SP Sepharose HP. All physical phenomena are 

described implicitly, therefore these models would only be suitable for 

describing retention behavior for these specific resins. Extending these 

models to predict protein retention of other resins would require 

additional data. This data can subsequently be used in a similar model 

building approach as described here, yielding predictive models for the 

new conditions.  

2.4 Conclusion 

Physically relevant protein features are essential to achieve robust 

predictions of protein properties, like chromatographic retention 

behavior. To mature the field of protein QSPR, adaptable and 

transparent open-source software for the calculation of protein features 

is essential to directly benchmark between different tools and improve 

the current state-of-the-art. Using the open-source software presented 

here, we were able to train models that predict the retention 

times/volumes for two different ion-exchange chromatography 

datasets, showing applicability for unknown proteins and differences in 

pH (cross-validated R2 of 0.87 and 0.95, respectively). Most features 
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selected by the forward feature selection method have an 

apprehensible relation to protein retention for specific chromatographic 

conditions. However, collinearity between multiple features was 

observed. Model performance might therefore benefit from feature 

reduction techniques such as principal component analysis or PLS 

regression. Nevertheless, these models show good performance and 

would allow for pre-screening of chromatographic resins. Finally, it was 

shown that the amount of data available for model training is a major 

factor determining model accuracy. By increasing the available input 

data for protein properties like chromatographic retention time, the 

true impact of the 3D protein features and in silico property prediction 

for process design can be unlocked in the future.  
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2.6 Supplemental information 

Supplemental Table S2.1: list of all descriptors calculated  

Name  unit Description  

Molecular weight Da Sum of the weight of each amino acid in the 
protein  

Shape min - Shape of the protein surface, calculated by 
dividing the minimum distance by the average 
distance between the surface points and the 
protein centre of mass (COM)  

Shape max - Shape of the protein surface, calculated by 
dividing the average distance by the maximum 
distance between the surface points and the 
protein COM 

Area Å2 The calculated surface area based on the Shrake 
Rupley algorithm 

Formal charge - The charge calculated based on the pH of the 
solution using binary charges of +1, 0 or -1 

Average charge - The charge calculated based on the pH of the 
solution using charges ranging between 1 and -1 

Isoelectric point - The estimated isoelectric point  
Dipole Å The magnitude of the dipole vector  
NsurfPoints - The number of surface grid points 
AlaSurfFrac - Fraction of alanine on the surface calculated by 

dividing the alanine surface area by the total 
surface area 

ArgSurfFrac - Fraction of arginine on the surface calculated by 
dividing the arginine surface area by the total 
surface area 

AsnSurfFrac - Fraction of asparagine on the surface calculated 
by dividing the asparagine surface area by the 
total surface area 

AspSurfFrac - Fraction of aspartic acid on the surface calculated 
by dividing the aspartic acid surface area by the 
total surface area 

CysSurfFrac - Fraction of cysteine on the surface calculated by 
dividing the cysteine surface area by the total 
surface area 

GlnSurfFrac - Fraction of glutamine on the surface calculated 
by dividing the glutamine surface area by the 
total surface area 

GluSurfFrac - Fraction of glutamic acid on the surface 
calculated by dividing the glutamic acid surface 
area by the total surface area 

GlySurfFrac - Fraction of glycine on the surface calculated by 
dividing the glycine surface area by the total 
surface area 

HisSurfFrac - Fraction of histidine on the surface calculated by 
dividing the histidine surface area by the total 
surface area 

IleSurfFrac - Fraction of isoleucine on the surface calculated 
by dividing the isoleucine surface area by the 
total surface area 

LeuSurfFrac - Fraction of leucine on the surface calculated by 
dividing the leucine surface area by the total 
surface area 
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LysSurfFrac - Fraction of lysine on the surface calculated by 
dividing the lysine surface area by the total 
surface area 

MetSurfFrac - Fraction of methionine on the surface calculated 
by dividing the methionine surface area by the 
total surface area 

PheSurfFrac - Fraction of phenylalanine on the surface 
calculated by dividing the phenylalanine surface 
area by the total surface area 

ProSurfFrac - Fraction of proline on the surface calculated by 
dividing the proline surface area by the total 
surface area 

SerSurfFrac - Fraction of serine on the surface calculated by 
dividing the serine surface area by the total 
surface area 

ThrSurfFrac - Fraction of threonine on the surface calculated by 
dividing the threonine surface area by the total 
surface area 

TrpSurfFrac - Fraction of tryptophane on the surface calculated 
by dividing the tryptophane surface area by the 
total surface area 

TyrSurfFrac - Fraction of tyrosine on the surface calculated by 
dividing the tyrosine surface area by the total 
surface area 

ValSurfFrac - Fraction of valine on the surface calculated by 
dividing the valine surface area by the total 
surface area 

SurfEpMaxFormal v The maximum observed electrostatic potential 
calculated using binary charges of +1, 0 or -1 

SurfEpMeanFormal v The mean of all electrostatic potentials calculated 
using binary charges of +1, 0 or -1 

SurfEpTrimeanFormal v The trimean of all electrostatic potentials 
calculated using binary charges of +1, 0 or -1 

SurfEpminFormal v The minimum observed electrostatic potential 
calculated using binary charges of +1, 0 or -1 

SurfEpMedianFormal v The median of all electrostatic potentials 
calculated using binary charges of +1, 0 or -1 

SurfEpSumFormal v The sum of all electrostatic potentials calculated 
using binary charges of +1, 0 or -1 

SurfEpStdFormal v The standard deviation of the electrostatic 
potentials calculated using binary charges of +1, 
0 or -1 

NSurfPosEpFormal v Number of points with a positive electrostatic 
potential calculated using binary charges of +1, 
0 or -1 

SurfPosEpMeanFormal v The mean of all positive electrostatic potentials 
calculated using binary charges of +1, 0 or -1 

SurfPosEpTrimeanFormal v The trimean of all positive electrostatic potentials 
calculated using binary charges of +1, 0 or -1 

SurfPosEpMedianFormal v The median of all positive electrostatic potentials 
calculated using binary charges of +1, 0 or -1 

SurfPosEpsumFormal v The sum of all positive electrostatic potentials 
calculated using binary charges of +1, 0 or -1 

SurfPosEpFracFormal - The fraction of points with a positive electrostatic 
potential, NsurfPosEp/NsurfPoints calculated 
using binary charges of +1, 0 or -1 
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SurfPosEpStdFormal v The standard deviation of the positive 
electrostatic potentials calculated using binary 
charges of +1, 0 or -1 

NSurfNegEpFormal v Number of points with a negative electrostatic 
potential calculated using binary charges of +1, 
0 or -1 

SurfNegEpMeanFormal v The mean of all negative electrostatic potentials 
calculated using binary charges of +1, 0 or -1 

SurfNegEpTrimeanFormal v The trimean of all negative electrostatic 
potentials calculated using binary charges of +1, 
0 or -1 

SurfNegEpMedianFormal v The median of all negative electrostatic 
potentials calculated using binary charges of +1, 
0 or -1 

SurfNegEpsumFormal v The sum of all negative electrostatic potentials 
calculated using binary charges of +1, 0 or -1 

SurfNegEpFracFormal - The fraction of points with a negative 
electrostatic potential, NsurfNegEp/NsurfPoints 
calculated using binary charges of +1, 0 or -1 

SurfNegEpStdFormal v The standard deviation of the negative 
electrostatic potentials calculated using binary 
charges of +1, 0 or -1 

SurfEpMaxAverage v The maximum observed electrostatic potential 
calculated using charges ranging between 1 and 
-1 

SurfEpMeanAverage v The mean of all electrostatic potentials calculated 
using charges ranging between 1 and -1 

SurfEpTrimeanAverage v The trimean of all electrostatic potentials 
calculated using charges ranging between 1 and 
-1 

SurfEpminAverage v The minimum observed electrostatic potential 
calculated using charges ranging between 1 and 
-1 

SurfEpMedianAverage v The median of all electrostatic potentials 
calculated using charges ranging between 1 and 
-1 

SurfEpSumAverage v The sum of all electrostatic potentials calculated 
using charges ranging between 1 and -1 

SurfEpStdAverage v The standard deviation of the electrostatic 
potentials calculated using charges ranging 
between 1 and -1 

NSurfPosEpAverage v Number of points with a positive electrostatic 
potential calculated using charges ranging 
between 1 and -1 

SurfPosEpMeanAverage v The mean of all positive electrostatic potentials 
calculated using charges ranging between 1 and 
-1 

SurfPosEpTrimeanAverage v The trimean of all positive electrostatic potentials 
calculated using charges ranging between 1 and 
-1 

SurfPosEpMedianAverage v The median of all positive electrostatic potentials 
calculated using charges ranging between 1 and 
-1 

SurfPosEpsumAverage v The sum of all positive electrostatic potentials 
calculated using charges ranging between 1 and 
-1 

SurfPosEpFracAverage - The fraction of points with a positive electrostatic 
potential, NsurfPosEp/NsurfPoints calculated 
using charges ranging between 1 and -1 
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SurfPosEpStdAverage v The standard deviation of the positive 
electrostatic potentials calculated using charges 
ranging between 1 and -1 

NSurfNegEpAverage v Number of points with a negative electrostatic 
potential calculated using charges ranging 
between 1 and -1 

SurfNegEpMeanAverage v The mean of all negative electrostatic potentials 
calculated using charges ranging between 1 and 
-1 

SurfNegEpTrimeanAverage v The trimean of all negative electrostatic 
potentials calculated using charges ranging 
between 1 and -1 

SurfNegEpMedianAverage v The median of all negative electrostatic 
potentials calculated using charges ranging 
between 1 and -1 

SurfNegEpsumAverage v The sum of all negative electrostatic potentials 
calculated using charges ranging between 1 and 
-1 

SurfNegEpFracAverage - The fraction of points with a negative 
electrostatic potential, NsurfNegEp/NsurfPoints 
calculated using charges ranging between 1 and 
-1 

SurfNegEpStdAverage v The standard deviation of the negative 
electrostatic potentials calculated using charges 
ranging between 1 and -1 

SurfMhpMax - The maximum observed hydrophobicity potential 
SurfMhpMean - The mean of all hydrophobicity potentials 
SurfMhpTrimean - The trimean of all hydrophobicity potentials 
SurfMhpmin - The minimum observed hydrophobicity potential 
SurfMhpMedian - The median of all hydrophobicity potentials 
SurfMhpSum - The sum of all hydrophobicity potentials 
SurfMhpStd - The standard deviation of the hydrophobicity 

potentials  
NSurfPosMhp - Number of points with a positive hydrophobicity 

potential 
SurfPosMhpMean - The mean of all positive hydrophobicity 

potentials 
SurfPosMhpTrimean - The trimean of positive hydrophobicity 

electrostatic potentials 
SurfPosMhpsum - The sum of all positive hydrophobicity potentials 
SurfPosMhpFrac - The fraction of points with a positive 

hydrophobicity potential, 
NsurfPosMhp/NsurfPoints 

SurfPosMhpStd - The standard deviation of the positive 
hydrophobicity potentials 

NSurfNegMhp - Number of points with a negative hydrophobicity 
potential 

SurfNegMhpMean - The mean of all negative hydrophobicity 
potentials 

SurfNegMhpTrimean - The trimean of all negative hydrophobicity 
potentials 

SurfNegMhpsum - The sum of all negative hydrophobicity potentials 
SurfNegMhpFrac - The fraction of points with a negative 

hydrophobicity potential, 
NsurfNegMhp/NsurfPoints 

SurfNegMhpStd - The standard deviation of the negative 
hydrophobicity potentials 
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ShellEpMaxFormal v The maximum observed shell electrostatic 
potential calculated using binary charges of +1, 
0 or -1 

ShellEpMeanFormal v The mean of all shell electrostatic potentials 
calculated using binary charges of +1, 0 or -1 

ShellEpTrimeanFormal v The trimean of all shell electrostatic potentials 
calculated using binary charges of +1, 0 or -1 

ShellEpminFormal v The minimum observed shell electrostatic 

potential calculated using binary charges of +1, 
0 or -1 

ShellEpMedianFormal v The median of all shell electrostatic potentials 
calculated using binary charges of +1, 0 or -1 

ShellEpSumFormal v The sum of all shell electrostatic potentials 
calculated using binary charges of +1, 0 or -1 

ShellEpStdFormal v The standard deviation of the shell electrostatic 
potentials calculated using binary charges of +1, 
0 or -1 

NShellPosEpFormal v Number of points with a positive shell 
electrostatic potential calculated using binary 
charges of +1, 0 or -1 

ShellPosEpMeanFormal v The mean of all positive shell electrostatic 
potentials calculated using binary charges of +1, 
0 or -1 

ShellPosEpTrimeanFormal v The trimean of all positive shell electrostatic 
potentials calculated using binary charges of +1, 
0 or -1 

ShellPosEpMedianFormal v The median of all positive shell electrostatic 
potentials calculated using binary charges of +1, 
0 or -1 

ShellPosEpsumFormal v The sum of all positive shell electrostatic 
potentials calculated using binary charges of +1, 
0 or -1 

ShellPosEpFracFormal - The fraction of points with a positive shell 
electrostatic potential, NshellPosEp/120 
calculated using binary charges of +1, 0 or -1 

ShellPosEpStdFormal v The standard deviation of the positive shell 
electrostatic potentials calculated using binary 
charges of +1, 0 or -1 

NShellNegEpFormal v Number of points with a negative shell 
electrostatic potential calculated using binary 
charges of +1, 0 or -1 

ShellNegEpMeanFormal v The mean of all negative shell electrostatic 
potentials calculated using binary charges of +1, 
0 or -1 

ShellNegEpTrimeanFormal v The trimean of all negative shell electrostatic 
potentials calculated using binary charges of +1, 
0 or -1 

ShellNegEpMedianFormal v The median of all negative shell electrostatic 
potentials calculated using binary charges of +1, 
0 or -1 

ShellNegEpsumFormal v The sum of all negative shell electrostatic 
potentials calculated using binary charges of +1, 
0 or -1 

ShellNegEpFracFormal - The fraction of points with a negative 
shellelectrostatic potential, NShellNegEp/120 
calculated using binary charges of +1, 0 or -1 

ShellNegEpStdFormal v The standard deviation of the negative 
electrostatic potentials calculated using binary 
charges of +1, 0 or -1 
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Supplemental Figure S2.1: Model results of model 1 while removing each feature. A) 
contains the model results in absence of the negative surface EP median. B) contains the 
model results in absence of the number of surface points with positive EP. C) contains 
the model results in absence of the valine surface fraction. 
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Supplemental Figure S2.2: Model results of model 2 while removing each feature. A) 
contains the model results in absence of the minimum surface EP. B) contains the model 
results in absence of the total charge. C) contains the model results in absence of the 
dipole vector length. D) contains the model results in absence of the isoelectric point. E) 

contains the model results in absence of the standard deviation of positive shell 
projections. F) contains the model results in absence of the lysine surface fraction. G) 
contains the model results in absence of the mean negative surface EP. H) contains the 
model results in absence of the standard deviation of negative surface hydrophobicity. 
I) contains the model results in absence of the cysteine surface fraction. J) contains the 
model results in absence of the surface shape max. 
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2.6.1 Supplemental discussion 

Due to the increased number of features compared to the previous 

dataset, 10 opposed to three, interpreting the final model is more 

challenging. Six of the 10 selected features are directly related to the 

protein charge and are inherently interconnected. The feature with the 

highest regression coefficient of 31.24, and therefore deemed most 

important, is the minimum surface EP. The positive coefficient indicates 

that an increase in minimum surface EP leads to a higher retention 

volume, which is in line with the mode of action of the cation exchange 

resin. The total charge is the second most important feature with a 

regression coefficient of -27.77. This indicates that proteins with a 

higher total charge have lower retention volumes. Considering the 

dataset to be retention volumes for the cation exchange resin SP 

Sepharose HP, a negative correlation with the total charge is counter 

intuitive. This correlation might not indicate a direct causation with the 

retention volume, but rather that the total charge might compensate 

for other charge related features, as there is collinearity between the 

charge related features. To directly assess the importance of the 

feature, the permutation model results in a reduced cross-validated R2 

of 0.861. The permutation model for the minimum surface EP resulted 

in a greater decrease in performance (cross-validated R2 of 0.822). 

This indicates that the total charge is indeed less important for the final 

model compared to EP.  

The dipole vector length has a regression coefficient of 20.72. The high 

positive regression coefficient indicates the importance of charge 

polarization, and that proteins elute later with more uneven charge 

distribution. The isoelectric point is the next charge-related feature 

with a regression coefficient of 12.02. This feature is unaffected by pH 

as it represents the pH at which the protein is neutrally charged. 

Interestingly, even though the feature has only the fourth highest 

coefficient, permutation of the feature results in a permutation model 
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with the lowest R2 of 0.769 (Supplemental Figure S2.2D). This feature 

has a low cross correlation with the other features, indicating that less 

compensation is possible with the remaining data. The fifth highest 

regression coefficient is 11.07 for the standard deviation of the shell 

projections with a positive value. This feature represents the spread of 

the plane projections with an overall positive EP. An increase in 

standard deviation indicates a greater spread of positive values. 

Although the correlation coefficient is similar to that of the isoelectric 

point, permutation of the feature results in only a 0.02 decrease in 

performance, resulting in a R2 of 0.934 (Supplemental Figure S2.2E). 

The minor decrease in performance can be explained by the Pearson 

correlation coefficient of the fifth feature to the minimum surface EP, 

total charge, and the dipole vector length, which are 0.54, 0.76, and 

0.69 respectively (data not shown). As a result of this relatively high 

correlation, the remaining features can compensate for the missing 

feature, minimizing the loss of model performance. Apart from the 

cysteine surface fraction, the permutation of the four remaining 

features with the lower regression coefficients results in a loss of 

predictive capability similar to the standard deviation of positive shell 

projections, resulting in a cross-validated R2 range of 0.948 - 0.922 

(Supplemental Figure S2.2F, G, H, J). These features are therefore 

important to finetune the model but are difficult to interpret due to the 

low level of correlation between the single feature and the protein 

retention volume. Permutation of the cysteine surface fraction feature 

from the model yielded a reduced cross-validated R2 of 0.895 

(Supplemental figure S2.2I). Since cysteine residues can act as a 

hydrogen bond donor, they can potentially interact with the 

sulphopropyl active groups on the resin, however no correlation was 

found for the single feature and retention volume.  

The test set shows that 1V9E is predicted with low accuracy at the 

prediction limit of 0 mL. The inability to predict an accurate retention 
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volume is due to a 2.5 fold decrease in dipole moment for 1V9E when 

moving from pH 5 to pH 6 while the other proteins in the dataset only 

show a maximum decrease of 1.5 fold. Due to the importance of the 

dipole vector length in the model, the reduction in protein resin affinity 

is overestimated. Another feature which greatly affects the estimation 

of the retention volume of 1V9E_6 is the standard deviation of positive 

shell projections. This feature was found to be outside of the value 

range observed in the training set. This highlights the importance of 

outlier identification.  
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Abstract 

Optimizing a biopharmaceutical chromatographic purification process 

is currently the greatest challenge during process development. A lack 

of process understanding calls for extensive experimental efforts in 

pursuit of an optimal process. In silico techniques, such as mechanistic 

or data driven modeling, enhance the understanding, allowing more 

cost-effective and time efficient process optimization. This work 

presents a modeling strategy integrating quantitative structure 

property relationship (QSPR) models and chromatographic mechanistic 

models (MM) to optimize a cation exchange (CEX) capture step limiting 

experiments. In QSPR, structural characteristics obtained from the 

protein structure are used to describe physicochemical behavior. This 

QSPR information can be applied in MM to predict the chromatogram 

and optimize the entire process. To validate this approach, retention 

profiles of six proteins were determined experimentally from mixtures, 

at different pH (3.5, 4.3, 5.0, 7.0). Four proteins at different pH’s were 

used to train QSPR models predicting the retention volumes and 

characteristic charge, subsequently the equilibrium constant was 

determined. For an unseen protein knowing only the protein structure, 

the retention peak difference between the modeled and experimental 

peaks was 0.2% relative to the gradient length (60 column volume). 

Next, the CEX capture step was optimized, demonstrating a consistent 

result in both the experimental and QSPR-based methods. The impact 

of model parameter confidence on the final optimization revealed two 

viable process conditions, one of which is similar to the optimization 

achieved using experimentally obtained parameters. The multiscale 

modeling approach reduces the required experimental effort by 

identification of initial process conditions which can be optimized.  
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3.1 Introduction 

Over the past years, the biopharmaceutical industry has experienced 

substantial growth, with protein-based biopharmaceuticals (e.g., 

monoclonal antibodies (mAbs) and protein subunit vaccines) being a 

significant part of the industry.[1] As a consequence, the 

biopharmaceutical industry endeavors to accelerate process 

development with the primary goal to deliver biopharmaceuticals at the 

earliest possible time, pushing the competitive market.[2] Moreover, the 

competition even intensified more due to the emerging field of 

biosimilars.[3,4] The biopharmaceutical sector requires therefore 

innovative approaches to advance process development, while 

ensuring product quality and stability.[5] Especially the downstream 

process is the major cost driver of the overall manufacturing costs, 

demanding an efficient and cost-effective process. To achieve very high 

product purities, chromatography is currently the most essential but 

also the most costly technique.[6] 

In silico techniques, such as mechanistic or data-driven modeling, can 

be of great merit for process development. These methods allow for 

increased process understanding while reducing experimental effort 

and/or use of critical sample material and decreasing process 

development times.[7,8] Within the next years, modeling techniques will 

become more essential for biopharmaceutical industry. Specifically for 

Industry 4.0 that aims to digitalize the entire manufacturing process.[9–

12] Moreover, increased process understanding and process and product 

quality control are in agreement with the Quality-by-Design (QbD) 

guidelines.[13–16] Identifying the operating window of the critical process 

parameters (CPP) is an essential part to guarantee process’ stability. 

Currently, these operating windows are determined with expensive and 

time-consuming wet-lab Design-of-Experiments (DoE). 

Chromatographic mechanistic models (MM) attempt to describe the 
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chromatographic process in silico and could be an inexpensive and fast 

alternative to determine the CPP operating window. Over the past 

years, the industry has been gradually adopting chromatographic MM, 

with ongoing advancement being made in determining the essential 

input parameters.[17–20] In the future, the ultimate objective is to 

determine adsorption isotherm for complex mixtures more easily.[21,22] 

Progress in utilizing mass spectrometry data could play a crucial role 

in achieving this goal.[23] However, at this moment determining 

adsorption isotherm parameters for the MM remains a bottleneck for 

industrial application, mainly due to time and material limitations 

especially in the early phase of downstream process development.[24] 

Quantitative Structure Property Relationships (QSPR) modeling could 

be an in silico alternative to experimentally determining the adsorption 

isotherm parameters. QSPR aims to correlate physicochemical 

properties with specific behavior, such as chromatographic retention 

time.[25] These physicochemical properties are calculated from protein 

structure models that describe the position of each atom. Combining 

MM with QSPR and optimization tools could pave the way for a holistic 

modeling approach/workflow.  

In 2001, Mazza et al. introduced a QSPR model for predicting protein 

retention times for ion exchange chromatography.[25] Their approach 

involved feature calculation using the proprietary software platform 

MOE a genetic algorithm for feature selection for the training of a 

partial least squares model.[26,27] As a result, several follow-up studies 

applied QSPR models to different modes of chromatography/type of 

chromatography resins, using support vector machine regression 

methods, and including pH effects.[28–33] Malmquist et al. developed an 

additional set of protein descriptors that are pH-dependent and based 

on electrostatic and hydrophobic properties.[34] Moreover, several 

studies considered the crucial binding orientations within protein-resin 

binding affinities in their QSPR models.[35–37] In recent years, QSPR has 
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been applied to more complex proteins, such as Fabs and mAbs, 

showing the growing interest from industry and the added value of 

these models.[24,38,39] Robinson et al. showed the potential of QSPR 

models for in silico resin screening of six chromatographic systems 

applied to Fabs.[38] While Saleh et al. built QSPR models using 21 mAbs 

variants to predict the adsorption isotherm parameters, the equilibrium 

constant and the characteristic charge, which were subsequently 

applied to the MM and able to predict the cation exchange 

chromatography (CEX) step.[24] Their study shows promising 

capabilities of a multiscale model to simulate different process 

conditions without the need for wet-lab experiments. Several software 

packages are available to calculate the protein descriptors that are 

needed for QSPR modeling, an overview of these software packages 

has been provided elsewhere.[40,41] Most software tools are only 

available via webservers or commercially, lacking source code 

availability. Therefore, Neijenhuis et al. have recently published an 

open-source QSPR software tool, which has also been used in this 

work.[42] 

Most research on QSPR modeling either developed protein descriptors 

or applied existing protein descriptors for their QSPR model with the 

aim to increase the protein-behavior understanding via retention 

prediction.[31,34,38,39,43] Additionally, other research also applied the 

predicted QSPR parameters to MM and validated the predicted 

chromatographic process from a protein structure/sequence.[24,30,32] So 

far, no research has shown the ability of QSPR models in combination 

with MM to optimize a chromatographic process step without any need 

for protein material. Moreover, the influence of the accuracy of the 

predicted QSPR-parameters on an optimized process has not yet been 

evaluated.  

This study presents a general multiscale modeling strategy that 

integrates QSPR and chromatographic MM to optimize a CEX capture 
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step. We were able to simulate and validate a CEX step only using the 

protein structure. Subsequently, we compared the uncertainty of the 

experimentally determined and predicted parameters on the final 

optimization outcome. An overview of the experimental-based and 

QSPR-based strategy is shown in Figure 3.1. This strategy can be used 

to determine the operating window of CPPs in early-stage process 

development, showing the potential applicability for industry. 

Combining these modeling techniques together with optimization 

software reduces the experimentally effort overall process 

development time significantly. Previous research mostly used pure 

components to perform the linear gradient experiments (LGE), 

however the availability of pure components is limited in 

biopharmaceutical industry. Therefore, performing LGE with complex 

protein mixtures would offer significant advantages. So far, only Buyel 

et al. applied QSPR modeling to a crude mixture of plant extracts to 

predict elution conditions for ion exchange and mixed mode 

chromatography separations.[33] Here, we performed LGE for five 

different gradient lengths and four pHs applied to two mixtures of each 

three proteins. Performing the experiments with protein mixtures 

instead of each protein individually, reduces the total LGE from 30 to 

10 experiments. We developed QSPR models for predicting the 

retention volumes and characteristic charges. These predicted QSPR 

parameters were used to obtain the equilibrium constants. The 

multiscale model was validated for an unseen protein, which was 

excluded from the QSPR training and testing data. Finally, we compared 

the influence of parameter uncertainties on the optimization outcome 

by using experimental and QSPR predicted parameters.  
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Figure 3.1: Overview of the experimental-based method and the QSPR-based method. 
Both methods can be used to determine the adsorption isotherm parameters that can be 
used in the mechanistic model for process optimization purposes. The equilibrium 

constant is denoted by 𝐾𝑒𝑞 and the stoichiometric coefficient of salt counter ions with 𝑣. 

3.2 Materials & Methods 

3.2.1 Materials & Equipment 

A 1-mL CEX column of HiTrap SP FF (Cytiva Life Sciences, USA) was 

used for the preparative column experiments. For the analytical size 

exclusion chromatography – ultra performance liquid chromatography 

(SEC-UPLC), an ACQUITY UPLC Protein BEH SEC 200 Å column (Waters 
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Corporation, USA) was used, protected with a prior/foregoing ACQUITY 

UPLC Protein BEH SEC guard 200 Å column (Waters Corporation, USA). 

The following proteins were purchased from Sigma-Aldrich, USA: 

bovine serum albumin (BSA), lysozyme, cytochrome c, 

chymotrypsinogen A from bovine pancreas, and conalbumin. 

Ribonuclease pancreatic (RNAse) was purchased from Roche 

Diagnostics GmbH, Germany. Dextran (DXT1740K) (American Polymer 

Standards Corporation, USA) was used for column characterization.  

The buffers were prepared with Milli-Q water and adjusted to the 

desired pH using either 0.5 M sodium hydroxide or 1 M hydrochloric 

acid. The buffers were filtered to remove undissolved salts, 0.2 μm 

pore-size hollow fiber MediaKap (Repligen, USA) filter for UPLC buffers 

and a 0.2 μm Membrane Disc Filter (Pall corporation, USA) for ÄKTA 

buffers. Moreover, all buffers were degassed for 20 minutes using an 

ultrasonic bath (Branson Ultrasonics, USA) to prevent introducing air 

bubbles into the column. The protein mixture was filtered using a 0.2 

μm Whatman Puradisc FP 30 mm (GE Healthcare Life Sciences, USA). 

3.2.2 Linear gradient column experiments 

LGE were conducted at various pH values (pH 3.5, 4.3, 5.0, and 7.0) 

for five gradient lengths: 20, 30, 40, 60, and 80 column volumes (CV). 

For every pH a different running buffer was needed, citric acid 

monohydrate (pH 3.5, 20 mM), sodium acetate trihydrate (pH 4.3 and 

5.0, 50 mM), and sodium phosphate monobasic dihydrate (pH 7.0, 50 

mM). The elution buffer is the same as the running buffer for that 

respective pH with the addition of 1 M sodium chloride. The pH-values 

were selected to theoretically favor a positive net charge for most 

proteins and therefore anticipate their binding to the CEX resin. The 

chromatographic column experiments were performed on an ÄKTA 

pure system (Cytiva Life Sciences, USA) with UNICORN version 7.5 

software, with a flowrate of 1 mL/min, and measuring UV absorbance 
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at 230, 280, and 400 nm wavelength. The column characteristics are 

given in Table 3.1, more information on the characterization methods 

can be found in the Supplemental Methods. During the chromatography 

runs, 1 mL samples were collected using a fraction collector. These 

samples were additionally analyzed with a Dionex UPLC system using 

Chromeleon Chromatography Data System version 7 software, 

measuring UV absorbance at 230, 280, and 400 nm wavelength. The 

UPLC-running buffer was a 100 mM sodium phosphate monobasic 

dihydrate with a pH of 6.8. A flowrate of 0.1 mL/min and analysis time 

of 40 minutes was applied. The SEC-UPLC analysis enabled the 

identification of the peaks obtained during the LGE’s with their 

corresponding proteins. However, the protein mixture was divided into 

two groups, as some proteins with similar characteristics were 

indistinguishable in the SEC-UPLC analysis. Group one consisted of 

RNase, cytochrome c, conalbumin, and group two of 

chymotrypsinogen, lysozyme, and albumin. Both multi-component 

mixtures contained 0.8 mg/mL of each protein.  

First, the column was equilibrated with 5 CV running buffer, followed 

by a 300 μL sample injection using a 10 mL Superloop (Cytiva Life 

Sciences, USA). After the sample injection, unretained proteins were 

removed by washing the column for 5 CV using the running buffer. 

Subsequently, a gradient elution was performed from 0 (running 

buffer) to 1 M sodium chloride (elution buffer). The proteins in the 

collected fractions were identified with the SEC-UPLC analytical 

method. Though, it is expected that the elution order of the proteins 

remains the same and therefore, only the fractions of two gradients for 

each pH were analyzed with SEC-UPLC. For each fraction analysis, 5 μL 

sample was injected. 
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Table 3.1: Column characteristics for HiTrap SP FF column. 

Parameter Value Unit 

Column volume 0.97 mL 
Column diametera 0.70  cm 

Bed heighta 2.50 cm 
Maximum pressurea 2.0 MPa 
Ionic capacityb 800 mM 
Particle sizea 90 μm 
Pore diameterc 54 nm 
Cross sectional area 0.39 cm2 

System dead volume (𝑽𝒅𝒆𝒂𝒅) 0.34 mL 

Total porosity (𝜺𝒕) 0.918 - 

Extraparticle porosity (𝜺𝒃) 0.298 - 

Intraparticle porosity (𝜺𝒑) 0.887 - 

System dwell volume (𝑽𝒅𝒘𝒆𝒍𝒍) 1.09 mL 
aManufacturer, bOsberghaus et al.[44], 3Hagemann et al.[45] 

Table 3.2: Overview of the protein characteristics and the protein data bank (PDB) entry 
used for calculations. 

Protein PDB names Mass (kDa)  Estimated 
Isoelectric 
point* 

Conalbumin 1OVT 75.83 6.62 
Albumin 6QS9 66.43 5.49 
Chymotrypsinogen 2CGA 25.67 8.13 
Lysozyme 1GWD 14.31 9.20 
Ribonuclease  1RNC 13.69 8.29 
Cytochrome C 6FF5 12.33 9.60  

* Estimations were performed using the open-source QSPR tool 

3.2.3 Chromatographic mechanistic model 

The chromatographic MM from previous work was used to describe the 

dynamic adsorption behavior during the chromatographic separation 

process.[46] This employed MM is a combination of the equilibrium 

transport dispersive model combined with the linear driving force 

model as  

𝜕𝐶𝑖

𝜕𝑡
+ 𝐹

𝜕𝑞𝑖

𝜕𝑡
=  −𝑢

𝜕𝐶𝑖

𝜕𝑥
+ 𝐷𝐿,𝑖

𝜕2𝐶𝑖

𝜕𝑥2
, (3.1) 

𝜕𝑞𝑖

𝜕𝑡
= 𝑘𝑜𝑣,𝑖( 𝐶𝑖 −  𝐶𝑒𝑞,𝑖

∗  ) , (3.2) 

𝑘𝑜𝑣,𝑖 =  [
𝑑𝑝

6𝑘𝑓,𝑖

+
𝑑𝑝

2

60𝜀𝑝𝐷𝑝,𝑖

]

−1

, (3.3) 
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where the concentration in the liquid phase is represented by 𝐶𝑖 and in 

the solid phase with 𝑞𝑖, in which subscript 𝑖 denotes the protein 

component. The liquid phase concentration at equilibrium is denoted 

by 𝐶𝑒𝑞,𝑖
∗ . The phase ratio is equal to 𝐹 = (1 − 𝜀𝑏)/𝜀𝑏, where 𝜀𝑏 is the bed 

porosity. Time and space are indicated by 𝑡 and 𝑥 respectively. 𝑢 is the 

mobile phase interstitial velocity and 𝐷𝐿  is the axial dispersion 

coefficient. The overall mass transfer coefficient, 𝑘𝑜𝑣,𝑖 , is defined as the 

combined result of both the separate film mass transfer resistance and 

the mass transfer resistance within the pores.[47] In equation 3.3, the 

particle diameter is denoted by 𝑑𝑝, the intraparticle porosity by 𝜀𝑝, and 

the effective pore diffusivity coefficient by 𝐷𝑝. The effective pore 

diffusivity is described according to Fick’s law and calculated as 

𝐷𝑝 =
𝜀𝑝𝐷𝑓

𝜏
𝜓, (3.4) 

where 𝜏 is the tortuosity and 𝜓 the diffusional hindrance parameter 

determined by Brenner and Gaydos.[48] The free diffusivity (𝐷𝑓) has 

been calculated using the Young correlation for globular proteins.[49] 

The film mass transfer resistance is 𝑘𝑓 =  𝐷𝑓𝑆ℎ 𝑑𝑝⁄ , in which 𝑆ℎ is the 

Sherwood number. The Method of Lines was applied using a fourth-

order central difference scheme for both first and second-order 

derivatives to spatially discretize the partial differential equation into a 

set of ordinary differential equations. The Livermore Solver for 

Ordinary Differential Equations (LSODA) algorithm, part of the 

scipy.integrate package, is employed to solve the Ordinary Differential 

Equations (ODEs), automatically transitioning between the nonstiff 

Adams method and the stiff BDF method.[50] Additional details 

regarding the MM can be found in a prior study.[51] 

We employed the linear multicomponent mixed-mode isotherm, 

developed by Nfor et al., to determine the equilibrium liquid phase 

concentration as[52] 



Chapter 3 

82 

  

3 

𝑞𝑖

𝐶𝑒𝑞,𝑖
∗ =  𝐾𝑒𝑞,𝑖

(𝑣𝑖+𝑛𝑖)(𝑧𝑠𝑐𝑠)−𝑣𝑖𝑐𝑣
−𝑛𝑖𝛾𝑖 , (3.5) 

where the equilibrium constant, 𝐾𝑒𝑞,𝑖 , quantifies the strength of the 

interaction between the protein and the stationary phase.  is the 

ligand density or ionic capacity of the concerned resin, 𝑧𝑠 is the charge 

of the salt counter ion, 𝑐𝑠 is the salt concentration in the liquid phase, 

and 𝑐𝑣 is the molarity of the solution in the pore volume. The 

stoichiometric coefficient of salt counter ions is denoted by 𝑣𝑖 , 

determined by 𝑣𝑖 = 𝑧𝑝 𝑧𝑠⁄ , in which 𝑧𝑝 is the effective binding charge of 

the protein. For monovalent counter-ions, the charge equals one (𝑧𝑠 =

1), for example Na+ in the sodium chloride elution buffer. In this work, 

only the ion-exchange part of the mixed-mode isotherm is used, 

therefore hydrophobic interaction stoichiometric coefficient (𝑛𝑖) will be 

equal to zero. The activity coefficient (𝛾) of the protein solution can be 

calculated as  

𝛾𝑖 = 𝑒𝐾𝑠,𝑖𝑐𝑠+𝐾𝑝,𝑖𝐶𝑖 ,. (3.6) 

where 𝐾𝑠 is the salt-protein interaction constant and 𝐾𝑝 the protein-

protein interaction constant. In the linear range of adsorption, the 

protein concentrations are low and protein-protein interactions are 

expected to be minimal, therefore 𝐾𝑝 becomes insignificant and can be 

neglected.[53,54] Because of the low salting-out effects, the 𝐾𝑠 also 

becomes negligible.[53] Subsequently, incorporating the assumptions 

for this work, the linear multicomponent mixed-mode isotherm is 

reformulated as  

𝑞𝑖

𝐶𝑒𝑞,𝑖
∗ =  𝐾𝑒𝑞,𝑖

𝑣𝑖(𝑧𝑠𝑐𝑠)−𝑣𝑖 . (3.7) 
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3.2.4 Procedure to determine adsorption isotherm 

parameters 

The peak retention volumes were obtained from the LGE’s for each 

gradient length and at each pH. The initial retention volumes (𝑉𝑅,0) were 

corrected to be aligned with the elution gradients as follows: 

𝑉𝑅 = 𝑉𝑅,0 −  𝑉𝑚 − 𝑉𝐷 −
𝑉𝑖𝑛𝑗

2
,  (3.8) 

where 𝑉𝑅 is the peak retention volume, 𝑉𝑚 is the column void volume, 

determined by dextran pulse, and 𝑉𝐷 is the system’s dwell and dead 

volume, details can be found in the Supplemental Methods.[55] The 

injection volume is denoted by 𝑉𝑖𝑛𝑗, half of this volume needs to be 

subtracted.[56] 

The regression formula of Shukla et al.[57], adapted from Parente and 

Wetlaufer[55], was used to obtain the equilibrium constant (𝐾𝑒𝑞) and the 

characteristic charge (𝑣) for each protein as follows:  

𝑉𝑅 =  ((𝐶𝑠,0
𝑣+1 +

𝑉𝑚𝐾𝑒𝑞𝐹𝑣(𝑣 + 1) ∗ (𝐶𝑠,𝑓 − 𝐶𝑠,0) 

𝑉𝐺

)

1
𝑣+1

− 𝐶𝑠,0) ∗
𝑉𝐺

𝐶𝑠,𝑓 − 𝐶𝑠,0

, (3.9) 

where 𝑉𝐺 is the gradient length. 𝐶𝑠,0 and 𝐶𝑠,𝑓 are the initial and final salt 

concentration during the elution respectively. As no separate pore 

balance is considered in the chromatographic MM, the column phase 

ratio is considered the same 𝐹 = (1 − 𝜀𝑏)/𝜀𝑏. To validate the regression 

and accordingly the MM, the experimental data of 60 CV is left out 

during the regression.  

The initial peak retention volumes (𝑉𝑅,0) were determined using the 

function find_peaks of the signal module from the SciPy library. The 

regression was performed using the curve_fit function of the optimize 

module from the SciPy library.  

Specifically at pH 5.0, Cytochrome c and RNase co-eluted. The 

absorbance and respective calibration lines of cytochrome c at 400 and 
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280 nm were used to trace back the RNase peak. Moreover, at pH 4.3, 

albumin and chymotrypsinogen co-eluted. However, from the SEC-

UPLC analysis it was observed that albumin eluted later compared to 

the UV peak detected by the UNICORN software. Therefore, the peak 

retention volumes for albumin at pH 4.3 were determined by analyzing 

the concentrations by SEC-UPLC in the 1 mL fractions obtained from 

the LGE. Albumin peak areas obtained from the SEC-UPLC were used 

to fit a third degree polynomial function representing the retention 

volume as the maximum.  

3.2.5 Structure preparation and descriptor calculation 

For each protein, the respective models, listed in Table 2, were obtained 

from the protein data bank[58], specific entry selection was performed 

based on resolution and coverage. Duplicate chains were removed from 

each structural model using pdb-tools[59] to yield monomer 

representations. The side chain pKa of titratable residues were 

predicted using PROPKA3.0[60] allowing for more accurate charge 

calculations with respect to pH. Protein features at pH 3.5, 4.3, 5.0 and 

7.0 were calculated using our open-source software package prodes, 

available at https://doi.org/10.5281/zenodo.10369949, using the 

default settings, only supplying the pKa estimations.[42] Visualization of 

protein structures was performed using UCSF-Chimera.[61] 

3.2.6 QSPR model training 

For predicting the protein retention volumes and adsorption isotherm 

parameters, Multi Linear Regression (MLR) models were trained. The 

prediction of conalbumin was removed from the dataset prior to train-

test splitting to eliminate all bias. To find an accurate predictive MLR 

model, series of filter thresholds were screened by testing a range of 

feature-feature correlation filters (Pearson correlations of 0.8, 0.9 and 

0.99). Followed by feature-observation correlations filtering, 

maintaining a predefined percentage of features (10% to 100% in 10% 
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increments). Feature selection was performed by sequential forward 

selection. Final models were selected based on the cross-validated R2 

and test set RMSE, which should be close to the cross-validation RMSE 

to ensure model robustness. Feature importance was assessed by 

analysis of the regression coefficient and the influence of feature 

permutation. For the prediction of the unknown conalbumin, the 

confidence interval was calculated as 

𝑦̂ℎ ± 𝑡
(1−

𝛼
2

,𝑛−𝑝) 
× √𝑀𝑆𝐸 (1 + 𝑋ℎ

𝑇(𝑋𝑇𝑋)−1𝑋ℎ), (3.10) 

where 𝑦̂ℎ is the predicted value, 𝑡
(1−

𝛼

2
,𝑛−𝑝)

 is the “t-multiplier”, 𝑋 and 𝑋ℎ 

are the feature matrixes of the training set and the value to be 

predicted. The mean squared error (MSE) is calculated as 

𝑀𝑆𝐸 =
1

𝑛
∑ (𝑦𝑖 − 𝑦̂𝑖)

2𝑛
𝑖 ,  (3.11) 

3.2.7 Optimization  

We evaluated the uncertainty-influence of the regressed and predicted 

QSPR adsorption isotherm parameters on the final optimization 

outcome. The equilibrium constant and characteristic charge values 

were varied between their standard deviation values for 100 samples. 

These samples were used in the optimization. First, the optimization 

was formulated and evaluated to be consistent when performing the 

same optimization multiple times. The global and local objectives were 

formulated as follows: 

𝑚𝑖𝑛𝑓(𝑥) = 2 ∗ (100 − 𝑦𝑖𝑒𝑙𝑑(𝑥)) + 1 ∗ (100 − 𝑝𝑢𝑟𝑖𝑡𝑦(𝑥))  (3.12) 

𝑠. 𝑡.   ℎ(𝑥) = 0 (3.13) 

0 ≤ 𝑥 ≤ 1, (3.14) 

where the objective function, 𝑓(𝑥), is minimized. The equality 

equations, such as the mass balances and equilibrium relations, need 

to be satisfied (Eq. 3.12). Moreover, variables (𝑥) were normalized for 

more efficient optimization purposes (Eq. 3.13). Four variables were 
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chosen namely the initial and final salt concentrations, and the lower 

and upper cut points. The weights of the objective function were 

chosen to reflect a capture step to be optimized, hence removing most 

of the bulk impurities and preventing losing product material.  

For the global optimization, the differential_evolution algorithm from 

the scipy.optimize package was employed, using the Latin hypercube 

sampling to initialize the population and the maximum number of 

iterations was 10 with a population size of 23. For the local optimization 

the Nelder-Mead algorithm was used, with a maximum of 100 

iterations. The relative and function tolerances for both global and local 

optimizations were set to 1e-2. The lower cut point ranges from 1 – 

80% on the left of the peak maximum, and the upper cut point from 

20 – 99% on the right of the peak maximum. The initial salt 

concentration varies between 1 – 150 mM, and the final salt 

concentration between 320 – 800 mM.  

3.3 Results & Discussion 

3.3.1 Determining the retention volume  

LGE’s were conducted for two protein mixtures at four pH values (pH 

3.5, 4.3, 5.0, and 7.0) and various gradient lengths (20, 30, 40, 60, 

and 80 CV), as described in the experimental section 2.1. The elution 

order of the proteins was identified by SEC-UPLC analysis for each pH, 

to determine single peak retention volumes. The results for the 20 CV 

LGE are shown in Figure 3.2. As expected, a downward trend for the 

retention is observed when increasing the pH. No correlation between 

isoelectric point (PI) and retention was observed. Although cytochrome 

c, lysozyme, RNase and chymotrypsinogen elute in the order of 

descending pI (9.60, 9.20, 8.29, and 8.13 respectively) at pH 3.5. No 

retention volume for albumin and conalbumin (pI of 5.49 and 6.62, 

respectively) was determined as these proteins did not elute during the 
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salt gradient, showing greater affinity for the column, which is in 

accordance with Yang et al..[62] 

 

Figure 3.2: Peak retention volumes (mL, y-axis) given for each protein (x-axis) at each 
pH (bars). These retention volumes are from the 20 CV gradient length using a HiTrap 
SP FF column, 1 CV is equal to 0.97 mL.  

3.3.2 Regression of adsorption isotherm parameters 

The corrected retention volumes, according to equation 3.7, were used 

to regress 𝐾𝑒𝑞 and 𝑣 using equation 3.8. The regression parameters for 

each protein at each pH are shown in Table 3.3. The regression plots 

of each protein at each pH are provided in Supplemental Figures S3.2-

S3.5, all fits achieved an R2 close to one and RMSE values varied 

between 0.002 and 0.22.A 
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Figure 3.3: Trendlines between the (a) characteristic charge (y-axis) and (b) the 
equilibrium constant (y-axis) and the pH value (x-axis) for each protein.  

From Table 3.3 it can observed that the characteristic charge, 𝑣, varied 

between 1% and 6% of the regressed parameter value and the 

standard deviation values of the equilibrium constant, 𝐾𝑒𝑞 , varied 

between 7% and 25%. Figure 3.3a shows that the characteristic charge 

decreases with increasing pH for all proteins with multiple data points. 

This is due to the protonation of amino acids, which results in a higher 

net protein charge at lower pH values. A higher net charge results in 

more available binding sites to interact with the resin. However, no 

general trend can be observed between the equilibrium constant and 

the pH (Figure 3.3b). The equilibrium constant of cytochrome c and 

lysozyme decreases rapidly from pH 3.5 to pH 4.3. However, at pH 7.0 

𝐾𝑒𝑞 increases again for RNAse, chymotrypsinogen, lysozyme, and 

cytochome c (increase of 1.19, 0.26, 0.23, and 0.23 respectively). 

Similar findings were reported by Yang et al.[62], and the regressed 

parameters are in the same order of magnitude as reported in 

literature.[44,62] In general, a higher equilibrium constant indicates a 

stronger binding affinity towards the resin and therefore eluting later 

during the salt gradient. The same trend can be observed for the 

majority of proteins, see Table 3.3 and Figure 3.3. Not all proteins 

follow this trend, such as chymotrypsinogen, cytochrome c, and 

lysozyme relative to RNAse (pH 7.0), and albumin relative to 

chymotrypsinogen (pH 4.3). These proteins elute at a later moment 
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while having a lower equilibrium constant than the proteins eluting at 

an earlier moment. Though, the characteristic charge value is higher 

for these proteins with a lower equilibrium constant. Eventually, it is 

the combination of these two parameter values that determines the 

protein’s elution moment. 

Table 3.3: Regressed adsorption isotherm parameters, the characteristic charge and 
the equilibrium constant, for each protein at each pH. The standard deviation is indicated 
with number after ± sign. 

 pH 3.5 pH 4.3 pH 5.0 pH 7.0 

Characteristic charge (𝒗) 

Conalbumin   2.37 ± 0.12  
Albumin  3.88 ± 0.66 1.46 ± 0.04  
Chymotrypsinogen 4.21 ± 0.22 2.68 ± 0.14 2.36 ± 0.11 1.09 ± 0.003 
RNAse 5.88 ± 0.27 4.20 ± 0.26 3.30 ± 0.15 0.23 ± 0.05 
Cytochrome C 7.16 ± 0.34 4.44 ± 0.21 3.16 ± 0.14 1.78 ± 0.04 
Lysozyme 5.85 ± 0.28 4.09 ± 0.21 3.54 ± 0.15 2.22 ± 0.06 

Equilibrium constant (𝑲𝒆𝒒) 

Conalbumin   0.071 ± 0.02  
Albumin  0.05 ± 0.04 0.051 ± 0.01  
Chymotrypsinogen 0.13 ± 0.03 0.14 ± 0.03 0.14 ± 0.03 0.44 ± 0.003 
RNAse 0.42 ± 0.07 0.16 ± 0.04 0.11 ± 0.02 1.26 ± 0.21 
Cytochrome C 3.68 ± 0.28 0.39 ± 0.07 0.21 ± 0.04 0.37 ± 0.03 
Lysozyme 1.30 ± 0.16 0.36 ± 0.07 0.30 ± 0.05 0.37 ± 0.04 

 

3.3.3 Chromatographic mechanistic model validation  

The chromatographic MM was validated for the gradient length of 60 

CV, for pH 5.0 and 7.0. The results of pH 5.0 are shown in Figure 3.4, 

and of pH 7.0 in the supplemental discussion and Supplemental Figure 

S3.6. The calibration lines convert the UV absorbance to concentration, 

these can be found in Supplemental Figures S3.7 and S3.8. As the 

experiments were performed in two mixtures of each three proteins, 

only parts of the peaks corresponding to a certain protein were used 

to avoid pollution of the peak by another component. In this way, the 

validation of each protein with the MM could be clearly evaluated.  
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Figure 3.4: Chromatographic mechanistic model validation for gradient length of 60 CV, 
equal to 58.2 mL, at a pH of 5.0. The blue line indicates the MM predicted concentration 
of the protein, while the red dotted line indicates the experimental concentration. The 
black dotted line indicates the salt concentration. The initial concentrations are albumin: 
0.24 mg/mL, chymotrypsinogen: 0.80 mg/mL, conalbumin: 0.31 mg/mL, cytochrome C: 
0.41 mg/mL, lysozyme: 0.55 mg/mL, and RNase: 0.56 mg/mL. 

For all proteins at pH 5.0, the maximum retention peak difference is 

1.04 CV and the average retention peak difference is 0.92 CV, which is 

1.73% and 1.53% with respect to the gradient length (60 CV). In all 

cases, except for RNAse, the model predicts the start of the elution and 

the peak maximum earlier than the experimental results. Even though 

it was not feasible to extract the entire experimental peak in all cases, 

it was observed that for conalbumin, cytochrome c, and lysozyme the 

experimental peak seems sharper than the modelled peak. To assess 

the concentration agreement between the modeled and experimental 

results, we compared the difference between the peak width at half of 

the peak maximum and the peak concentration. The maximum peak 

width difference is 1.14 CV, equal to 1.89% relative to the gradient 

length (60 CV). The average peak width difference is 0.81 CV, equal to 

1.35% relative to the gradient length (60 CV). The average difference 

in the peak concentration is 0.04 mg/mL, equal to 7.36% relative to 

the initial concentration. Overall, the mechanistic model, using the 

regressed adsorption isotherm parameters, can predict the 
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experimental data sufficiently accurate with a maximum retention peak 

difference of 1.73%. 

3.3.4 QSPR 

QSPR models relate specific descriptors, calculated from the protein 

structure, to behavior (e.g., retention). Prediction of the MM 

parameters, needed for simulation, starting from the protein structure 

allows for a full in silico optimization framework. From the dataset 

composed of the six different proteins, conalbumin at pH 5.0 was 

removed to be used for model verification. This protein and pH was 

selected because retention volumes for this protein were not obtained 

for any other pH value. This means that conalbumin at pH 5.0 would 

be truly unknown for the final predictive model. The remaining 18 

datapoints were split into a train and test set, where the test set was 

comprised of albumin measured at pH 4.3 and 5.0. As retention 

volumes for albumin were only obtained for pH 4.3 and 5.0, these two 

data points will validate the models’ ability to predict the effect of 

differences in pH and to predict unseen proteins. The features 

considered during the QSPR model training, ranging from protein shape 

to charge and hydrophobicity projections, were calculated using the 

open-source software prodes.  

3.3.4.1 Characteristic charge  

For the prediction of the characteristic charge, a MLR was trained. To 

avoid overfitting, a ratio of five observations to one feature should be 

maintained.[63] Meaning only a maximum of three features should be 

used in the model. To select the specific features, a redundancy filter, 

removing features with a Pearson correlation of >0.99 to other 

features, was applied. A second filter step was performed removing 

40% of the features with lowest correlation to the characteristic 

charge. From the remaining features, sequential forward selection was 

performed to select the best features. A model with high accuracy 
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(cross-validated R2 of 0.86 and RMSE of 0.67) was obtained using only 

two features (Figure 3.5). As would be expected, the most important 

feature was related to the electrostatic potential (EP) of the protein 

surface. More specifically, the maximal found surface EP. The 

regression coefficient of this feature was found to be 8 and permutation 

of the feature would result in a model not capable of predicting 𝜈 

(Figure 3.5B). The second feature that was selected is the trimean of 

the negative hydrophobicity potential. This feature is less important as 

the regression coefficient is 1.5 and permutation results in a model 

with a cross-validated R2 of 0.8. The positive regression coefficient for 

the second feature suggests that increasing the hydrophilicity reduces 

the characteristic charge. There is the possibility however, that this 

feature captures the titratable amino acid content on the surface, as 

amino acids contributing to a negative hydrophobicity are 

predominantly titratable. At this point we have been unable to confirm 

this. 

 A B 

 

Feature Coefficient Permutation 

CV R2 

Intercept -1.26  

Maximum 

surface EP 
8.09 0.52 

Trimean of 

negative 

hydrophobicity 

1.54 0.80 

 

 

Figure 3.5: Prediction of characteristic charge. A: Model validation of the regression 
model trained to predict 𝜈 where the circles represent the leave-one-out cross-validation 

and the triangles the test set. B: Overview of the selected features with the regression 
coefficient and the cross-validated R2 after feature permutation. 

Applying the same approach to build a QSPR model for 𝐾𝑒𝑞 did not yield 

sufficiently accurate models. With the current dataset, the best 

performing models yielded only a R2 of 0.58 (data not shown). While 𝜈 

has direct physical implications, by representing the number of charge 

interactions between the resin and protein, 𝐾𝑒𝑞 is lacking these physical 

implications.[44,64] The equilibrium constant represents all phenomena 
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contributing to adsorption. As observed in Figure 3.3, 𝜈 shows a clear 

negative trend with increasing pH, this trend is lacking for 𝐾𝑒𝑞. It is 

thought that the current dataset size is the main limitation as more 

features might be required to capture the complex relation. To 

overcome this challenge, increasing the dataset-size would result in a 

model trained over a greater range of property values, while also 

allowing an increase of the number of used features without loss of 

robustness.[24,62]  

3.3.4.2 Retention volumes 

Alternatively, the 𝐾𝑒𝑞 can be obtained from the regression as performed 

in 3.3.2 for experimental data. To achieve this, a MLR model for each 

LGE was trained (Figure 3.6). The best performing models were 

obtained using a feature - property correlation filter, removing 40% of 

the features with the lowest correlation, prior to the feature selection. 

The trained MLR models, for each LGE, all achieved a cross-validated 

R2 of at least 0.88. For all models, the most important feature relates 

to the EP. More specifically, the median shell positive EP was most 

important for the four lower gradient lengths (20, 30, 40, and 60 CV). 

This feature describes the positive EP on the exterior of the protein by 

projecting each charge onto a plane that represents the resin. For the 

calculation of the shell, a total of 120 planes surround the protein, in 

this way representing different binding orientations. Opposed to 

mapping the EP onto solvent accessible surface, this method considers 

the distance through the solvent, penalizing protein surface within 

pockets. The surface fraction of alanine was the second feature 

selected. Alanine is a small hydrophobic amino acid, therefore this 

feature implicitly describes the surface hydrophobicity. The positive 

regression coefficient fitted for this feature indicates that a greater 

alanine content, and thus higher surface hydrophobicity, results in a 

higher retention volume. This can be explained by the salting-out effect 
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of the Na+ ions used during the gradient elution, resulting in 

hydrophobic interactions with the resin material.[43] 

A.1 A.2 
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Median of 

shell positive 

EP 
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Alanine 

surface 
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2.68 0.83 
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surface 
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C.1 C.2 

 

Feature Coefficient Permutation 
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E.1 E.2 

 

Feature Coefficient Permutation 

CV R2 

Intercept -1.74  

Mean of 

surface 

positive EP 

37.73 0.85 

Mean of shell 

positive EP 
26.28 0.89 

Serine 

surface 

fraction 

12.76 0.83 

 

 

Figure 3.6: Prediction of protein retention at different salt gradient lengths where the 
circles represent the leave-one-out cross-validation and the triangles the test set. A to E 
show the validation and test of the prediction of the retention volume while applying a 
salt gradient of 20, 30, 40, 60 and 80 column volumes, respectively. One column volume 
equals 0.97 mL (Table 1). The tables right of the plots show the feature coefficients and 
the effect of feature permutation on the cross validated R2. 

For the 80 CV retention MLR model, the following features were 

selected: shell positive EP mean, solvent accessible surface positive EP 

mean, and the serine surface fraction. The feature combination yielded 

an accurate model with a cross-validated R2 of 0.91 and a RMSE of 3.9 

(Figure 3.6E). For the prediction of the test set, it is observed that the 

point at the lower end of the retention data is under predicted, 

compared to being over predicted in all other models. While the EP 

remains the most important in the model, different features were 

selected during the sequential feature selection. This is due to the fact 

that there is no exact linear relationship between gradient length and 

retention, as can be most notably observed at pH 7.0 in Supplemental 

Figure S3.5. While the Mean and Median of the shell EP are similar, the 

slight differences in the features resulted in the selection of the mean. 

Both the mean of surface positive EP and mean of shell positive EP are 

important features, with regression coefficients of 37.73 and 26.28 

respectively. This importance is not reflected by the permutation 

models, as both features describe the positive EP, collinearity allows for 

compensation for a loss of one of the features. However, it is essential 

to maintain both features to accurately predict the test set, as 

removing one of them results in less accurate retention estimates (data 

not shown). Surprisingly, the surface area fraction of serine has a 
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positive regression coefficient, like the alanine surface fraction in the 

other four models. In contrast to alanine, serine is a hydrophilic 

residue. However, the positive regression coefficient indicates 

increasing retention with higher serine content on the surface, which 

contradicts the hypothesis for alanine selection for the previous four 

models. The reason behind the selection of serine in this model is 

currently unknown. While the models show difficulty in predicting the 

change of elution order switch of lysozyme and cytochrome c for pH 

4.3 and 5, a sharper decrease in retention for cytochrome c compared 

to lysozyme is predicted (data not shown). Still all models show good 

accuracy during both cross-validation and model testing, providing high 

confidence in model robustness. 

3.3.4.3 Property prediction of conalbumin at pH 5 

To demonstrate the true predictive capabilities of the trained QSPR 

models for the prediction of retention volumes and isotherm 

parameters, conalbumin was completely removed from the dataset 

prior to the train test splitting. This allowed to minimize the bias applied 

on the model selection. For the prediction of the retention volumes, the 

error of prediction increased with increasing gradient lengths (Table 

3.4). The range of observed retention volumes rises along with the 

gradient lengths, likewise, the 95% confidence interval increases. 

Nevertheless, the effect of increasing the gradient length was captured 

correctly, having a maximal error of about 2 mL in retention volume, 

which falls within the 95% confidence interval. The characteristic 

charge was predicted with an error of 0.5, complying to the 95% 

confidence interval. Unfortunately, as no robust and accurate QSPR 

model for the 𝐾𝑒𝑞  could be trained with the current dataset, no direct 

prediction could be made. Therefore, we applied an alternative method, 

the predicted retention volumes and characteristic charge were used 

to regress the 𝐾𝑒𝑞using the regression formula, similar to the 

experimental data method as shown in 3.3.2. regression of adsorption 
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isotherm parameters. The 𝐾𝑒𝑞 obtained was 0.028 ±0.006 which is 

lower than the 𝐾𝑒𝑞 of 0.078 ±0.012 obtained by regression of the 

experimental data. This is due to the higher predicted 𝜈 by the QSPR 

model. Validation of the predicted parameters showed an accurate 

prediction of the conalbumin elution using a 60 CV gradient length 

(Figure 3.7). Both peak maximum and peak shape are simulated 

accurately. The difference in the peak retention volume is very small, 

0.12 CV, which is 0.2% difference relative to the gradient length (60 

CV). The peak concentration differs by 0.009 g/L, which is 2.85% 

relative to the initial concentration, and the difference in the peak width 

at half of the peak maximum is only 1.0% relative to the gradient 

length (60 CV). Interestingly, the predicted parameters seem to better 

describe the retention profile compared to the parameters obtained 

from the experimental LGE, which was an average peak retention 

difference of 1.53% and an average peak width difference of 1.35% 

with respect to the gradient length (60 CV).  

Table 3.4: Predicted properties for conalbumin at pH 5.0.  

Property  Experimental 
value (mL) 

Predicted 
value (mL) 

95% 
Confidence 
interval 

Retention volume 20 CV 11.66 11.89 2.56 
Retention volume 30 CV 12.89 12.92 3.69 
Retention volume 40 CV 14.02 13.76 4.80 
Retention volume 60 CV 16.20 15.21 7.02 
Retention volume 80 CV 18.19 20.23 8.98 
Characteristic charge (𝜈) 2.36 3.05 1.40 
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Figure 3.7: Chromatographic mechanistic model validation of conalbumin for gradient 
length of 60 CV, equal to 58.2 mL, at a pH of 5.0 using the predicted isotherm 

parameters. Blue line indicates the MM predicted concentration of the protein, while the 
red dotted line indicates the experimental concentration. The black dotted line indicates 
the salt concentration. 

3.3.5 Comparing optimization results between 

experimentally and QSPR-based methods 

For the test protein, conalbumin at pH 5.0, both adsorption isotherm 

parameters, 𝐾𝑒𝑞 and 𝑣, were determined via two methods. The first 

method regressed the adsorption isotherm parameters from the LGE 

data directly, hence LGE are needed to perform this method. While the 

second method involved the QSPR approach, which, after being 

properly trained, requires the protein-structure to determine the 𝑣 and 

the retention volumes. These two QSPR models were then used to 

regress the 𝐾𝑒𝑞 using the regression formula (Eq. 8).  

The capture step was optimized to separate conalbumin from the other 

proteins, prioritizing yield over purity, utilizing the adsorption isotherm 

parameters determined from both methods. This optimization aimed to 

assess the agreement between the optimized capture step and the 

parameters obtained from both methods. The resulting capture steps 

for both methods are depicted in Figure 8. The optimized variables 

(e.g., lower and upper cut points and the initial and final salt 

concentration) show comparability. The differences in both cut points 

are within 3.3%, and the deviation for both initial and final salt 
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concentration is around 10 mM, approximately 3% relative to the final 

salt concentration (330 mM). The obtained purity only differs 0.3% and 

the yield 1.2% between both methods. These results demonstrate that, 

in this case study, it was viable to optimize the CEX capture step based 

solely on knowledge of the protein structure.  

Experimental 

Purity = 74.6% 

Yield = 96.3% 

QSPR-based 

Purity = 74.3% 

Yield = 97.5% 

  

Figure 3.8: Optimized capture step using the mechanistic model, where the optimization 
results of the experimental-based (left) and QSPR-based (right) method are compared. 
Left: experimental-based method, the adsorption isotherm parameters were regressed 
directly from the LGE. 𝐾𝑒𝑞 0.071 and 𝑣 = 2.37, lower and upper cut point are 7.7% and 

91.2% respectively. The initial and final salt concentration are 24.5 mM and 320.6 mM 
respectively. Right: QSPR-based method, the retention volumes and 𝑣 are obtained from 

QSPR models, followed by using these QSPR models to regress the 𝐾𝑒𝑞 parameter. 𝐾𝑒𝑞= 

0.028 and 𝑣 = 3.05, lower and upper cut points are 4.4% and 91.7% respectively. The 

initial and final salt concentration are 14.8 mM and 330.4 mM respectively. 

In the next part, we assessed the effect of the adsorption isotherm 

parameter uncertainties on the optimization outcome. We aimed to 

determine if variations within the standard deviation of the parameters 

would result in different optimal values. For both methods, numerous 

sample points were generated for each isotherm parameter, covering a 

range within their respective standard deviation. Subsequently, these 

sample points were used in the optimization case study. First, the 

consistency of the optimization case study was evaluated by running 

the same optimization five times. These results for both methods can 

be found in Supplemental Tables S1,2. This consistency evaluation 
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aimed to ensure there were no major deviations in results within the 

same optimization using identical parameters. Additionally, the minor 

deviations could be attributed to the optimization process itself. The 

optimized results for various combinations of 𝐾𝑒𝑞 and 𝑣, ranging within 

their respective standard deviation, are shown in Figure 9 for both 

methods. This includes optimized variables, such as the lower and 

upper cut points and the initial and final salt concentrations, as well as 

the purity, and the yield.  

In the experimental-based method, the standard deviations for both 

𝐾𝑒𝑞 (0.071 ±0.012) and 𝑣 (2.37 ±0.12) are relatively small, resulting 

in minimal variance in the optimized variables (Figure 3.9, A.1-F.1 and 

A.2-F.2, for variations in 𝐾𝑒𝑞 and 𝜈 respectively). The lower and upper 

cut points have a maximum difference of 7% (Figure 9A,B). The initial 

salt concentration varies between 15 and 40 mM (Figure 9C.1,2), and 

the final salt concentration is found between 320 and 327 mM (Figure 

9D.1,2). These results suggest that despite variations in the isotherm 

parameters, a consistent optimum is identified, and the optimized 

variables exhibit only minor variations. The impact on the yield is 

minimal, with only a 2% variation (Figure 9F.1,2). On the contrary, the 

effect on purity is more pronounced, fluctuating between 70% and 

81%. The decrease in purity is primarily attributed to an increase in 

the 𝐾𝑒𝑞 (Figure 9E.1), which is due to the greater relative standard 

deviation compared to 𝜈. 

For the QSPR-based method, the standard deviation of 𝐾𝑒𝑞 is small 

(0.028 ±0.006). The randomly spread data indicates that there is no 

clear correlation between 𝐾𝑒𝑞 and the optimized variables (Figure 

3.9A.3-F3). However, the standard deviation of 𝑣 is significantly larger 

(3.05 ±1.4), this standard deviation was defined by the 95% 

confidence interval calculated by Eq. 9. The large variation in 𝑣 resulted 

in two identified optima, which is clearly observed in the shift of the 
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final salt concentration (Figure 3.9D.4). The first solution finds an 

optimal final salt concentration between 320 – 400 mM. The shift to 

the second optimal solution occurs when 𝑣 is greater than 3.6, finding 

the final salt concentration at around 800 mM. Remarkably, both 

optimal final salt concentrations are close to the set boundaries. As the 

characteristic charge increases, the component is expected to elute at 

a higher salt concentration and thus at a later moment during the 

gradient. This results in a greater overlap between conalbumin and the 

other impurities. Such a shift was not observed for the initial salt 

concentration, where most optimal conditions were found between 10 

and 30 mM (Figure 3.9C.4). The effect of 𝑣 is also reflected in the purity 

and the yield (Figure 3.9E.4 and 3.9F.4 respectively). Until 𝑣 is 2.2, the 

purity is around 75% and the yield is almost 100%, while above this 

value of 𝑣, the purity increases rapidly, and the yield drops to about 

95%. From this point, increasing 𝑣 results in a decreasing purity and 

increasing yield. However, the range of the purity is broader, 50 – 85% 

than that of the yield, which only fluctuates between 95% and 99%. 

This broader range in the purity is probably due to a combination of 

the shift in retention volume resulting from variation of 𝜈, and the 

optimization function (11). In the function, the yield is prioritized, 

representing a capture step optimization. Therefore, during challenging 

separation processes, the compromise on the yield is always less 

compared to purity. Changes in the optimization weights would result 

in a shift in priority between purity and yield that would translate to 

the selection of different cut points rather than initial and final salt 

concentrations. Despite the greater uncertainty in the determined 𝑣 in 

the QSPR-method, only two optima were identified, and one of them 

corresponds to the optimum found in the experimental-based method. 
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Figure 3.9: Joint plots of scatter and hist plots between the adsorption isotherm 
parameters (e.g., the characteristic charge and the equilibrium constant) and the 
optimized variables (e.g., lower and upper cut point and the initial and final salt 
concentrations, and the purity and the yield). Left: experimental-based method results. 
Right: QSPR-based method results. 

Furthermore, this optimization approach is applicable for defining the 

operating window of certain variables. The method employed for 

varying the adsorption isotherm parameters can also be used to vary 

other variables and assess the optimized result. In this way, the initial 
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process design space for CPP can be defined, which is part of the QbD 

concept.[65] The mechanistic modeling outcomes provide knowledge on 

the process, therefore the number of wet-lab experiments to define the 

real process design space can be reduced in comparison to performing 

a wet-lab DoE from scratch. For the QSPR-based method, no wet-lab 

experiments are needed to determine the adsorption isotherm 

parameters and therefore the total number of experiments are even 

more reduced compared to the experimental-based method. For a new 

protein, only the protein-structure is needed to perform this 

optimization and make an estimation of the operating window for each 

optimizing variable. To illustrate, using the results from the QSPR-

based method in this study, we can already narrow down the number 

of wet-lab DoE required to define the process design space. The final 

salt concentration only has to be evaluated around two main values 

(e.g., around 320 mM and 800 mM, see Figure 3.9D.4), while only one 

point of the initial salt concentration has to be assessed (e.g., 20 mM). 

Ultimately, the QSPR-based method offers an added advantage by 

allowing the incorporation of additional data over time. This not only 

enhances the model’s accuracy, but also enables the application to 

other process designs, provided that the same conditions are used. 

Currently, only the linear part of the isotherm is considered as only low 

loading conditions are investigated. Prediction of the parameters 

describing the non-linear part of the isotherm as well as competitive 

behavior would make the method more complete. Nevertheless, for the 

purpose of preselection of conditions for early-stage process design, 

considering only linear behavior should be sufficient. Additionally, the 

amount of available training data might pose a bottleneck, like the 

prediction of the 𝐾𝑒𝑞 presented in this work. Even though the 

predictions of the retention volumes and characteristic charge showed 

high accuracy, increasing the variety of proteins would make the 

models more robust. To extend this method to more complex mixtures, 
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such as host cell lysates, several challenges should be overcome. While 

a similar fractionation approach to convolute single peaks can be used 

for a complex mixture, more accurate analytical methods are required 

for protein identification. Potentially, mass spectrometry methods allow 

the required resolution providing relative protein abundances. 

Additionally, protein interactions and complex formation should be 

taken into account during the QSPR modeling. Co-elution has already 

been studied extensively, and recently Panikulam et al., published a 

novel method to describe co-elution mechanisms for protein A 

chromatography.[66] Further maturation and combination of these 

methods would allow better integration and application for complex 

mixtures.  

3.4 Conclusion 

In this work, we demonstrated a holistic modeling approach, where we 

combined QSPR and chromatographic MM to optimize a CEX capture 

step. For an unseen protein, only the protein structure was needed to 

determine the adsorption isotherm parameters and predict the 

chromatographic retention behavior with MM. We assessed that the 

uncertainties in the determined adsorption isotherm parameters have 

a minimal and nearly equal impact for both the experimental-based 

and QSPR-based method.  

For the experimental-based method, we successfully regressed the 

adsorption isotherm parameters with an R2 minimum of 0.95. The 

standard deviation for the characteristic charge is within 1 – 6% of the 

corresponding regressed parameter value, and for the equilibrium 

constant, it ranges between 7 – 25% of the regressed parameter value. 

Moreover, the MM validation showed to be accurate with an average 

retention peak difference of 1.53% with respect to the gradient length.  

We successfully trained MLR-QSPR models with a minimum R2 of 0.88, 

even with a limited dataset composed of only five different proteins 
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measured at four pH values. The MLR-QSPR models for predicting the 

characteristic charge and the retention volumes can be used to regress 

the equilibrium constant using the regression formula. A good 

agreement was obtained for the MM validation for an unseen protein, 

conalbumin, showing only 0.2% retention peak difference with respect 

to the gradient length.  

Both the experimental-based and the QSPR-based methods 

demonstrated a consistent optimized CEX capture step. The same 

optimum was found by both methods, and an additional optimum was 

identified using the QSPR-based method, due to the larger standard 

deviation in 𝑣 (3.05 ±1.4) compared to the experimentally predicted 𝑣 

(2.37 ±0.12). Using in silico optimization results as a guide can 

substantially reduce experimental effort, requiring experimental 

validation only for promising conditions. Moreover, increasing dataset 

sizes enhances the QSPR model accuracy, diminishing uncertainty in 

adsorption isotherm parameters and therefore minimizing the variance 

in the identified operating window.  

This work highlights the value and applicability of multiscale modeling, 

capable of optimizing a CEX capture step with only knowing the protein 

structure. Integrating QSPR, chromatographic MM, and optimization 

tools creates a versatile workflow relevant to industrial case studies. 

The specific case study presented aims to provide a workflow which 

should be expanded using larger datasets to enable more accurate 

predictions. This approach ultimately enables determining initial 

optimal process conditions without preliminary experiments, which is 

especially beneficial for early phase process development when limited 

material and resources are available. Future applications involve 

extending this strategy to complex protein mixtures and broader type 

of chromatographic resins, offering a cost-effective and time-saving 

alternative that enhances overall process understanding and efficiency.  
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3.6 Supplemental material 

3.6.1 Supplemental Methods 

Dead volume and dwell volume 

The volume of the tubing was determined by excluding the column and 

using 1 M sodium chloride with a 100 μL sample loop. A schematic 

overview of the tubing in the Äkta system is shown in Figure S3.1, in 

which the dead volume is indicated from the numbers 2 to 4 and the 

dwell volume from 1 to 3. 

 

Supplemental Figure S3.1: Schematic representation of the Äkta system, the dead 
volume is defined from point 2 to 4 and the dwell volume from point 1 to 3. The injection 
valve is indicated with the dashed line and not considered in the dead volume and dwell 
volume. Created with Biorender.com 

The dead volume (𝑉𝑑𝑒𝑎𝑑), tubing 3 and 4, is calculated according to 

Schmidt-Traub et al. (2012) as follows128:  

𝑉𝑑𝑒𝑎𝑑 = 𝑉𝑅,0 −  
𝑉𝑖𝑛𝑗

2
− 𝑉5,  (S3.1) 
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where 𝑉𝑅,0 is the retention volume measured including the injection 

volume (𝑉𝑖𝑛𝑗), which is therefore subtracted to only obtain the dead 

volume. 𝑉5 is the tubing between the UV-detector and the conductivity 

(indicated with number 5), from the internal diameter, 0.50 mm, and 

the length, 170 mm, it was calculated to be 0.033 mL. 

The dwell volume is needed for the calculations in the regression 

formula and is equal to the volume from point 1 to 3 (Figure S3.1). The 

tubing before point 1 is already filled prior to elution. The dwell volume 

was determined by introducing buffer B, containing 1 M sodium chloride 

as a pulse for 5 CV, followed by subtracting the 𝑉𝑑𝑒𝑎𝑑 and  𝑉5. 

Porosity calculations 

The total porosity (𝜀𝑡) was determined using 1 M sodium chloride, as 

salt can enter the pores, and calculated as follows:  

𝜀𝑡 =
𝑉𝑚+𝑉𝑝𝑜𝑟𝑒

𝑉𝐶
,  (S3.2) 

𝑉𝑚 + 𝑉𝑝𝑜𝑟𝑒 =  𝑉0,𝑟𝑒𝑡 −  𝑉𝑑𝑒𝑎𝑑 , (S3.3) 

where 𝑉𝑚 is the interstitial volume of the fluid phase also known as the 

column void volume, 𝑉𝑝𝑜𝑟𝑒 is the volume of the pore system, and 𝑉𝐶 is 

the total volume of the packed column. 𝑉0,𝑟𝑒𝑡 is the measured retention 

volume from which the dead volume is subtracted to only consider the 

retention volume in the column. The external porosity, 𝜀𝑏 = 𝑉𝑚 𝑉𝐶 ,⁄  was 

determined using a solution of 10 mg/mL Dextran (DXT1740K, 

American Polymer Standards Corporation, USA) with a volume of 250 

μL. 𝑉𝑚 was determined using Eq. 3. Subsequently, the total and 

external porosity are used to determine the internal porosity (𝜀𝑝) as 

𝜀𝑝 =
𝜀𝑡 −  𝜀𝑏

1 − 𝜀𝑏

 . (S3.4) 
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Supplemental Figure S3.2: Fitted regression curves at pH 3.5 (grey line) of the 
experimental data (dark blue dots) and the test data point (light blue dot) at 58.2 mL, 
equal to 60 CV as 1 CV is 0.97 mL. All fits obtained an R2 of 0.999 and an RMSE of 0.08, 
0.11, 0.11, and 0.09 for chymtrypsinogen, cytochrome C, lysozyme, and RNase 
respectively.  

 

   

  

 

Supplemental Figure S3.3: Fitted regression curves at pH 4.3 (grey line) of the 
experimental data (dark blue dots) and the test data point (light blue dot) at 58.2 mL, 
equal to 60 CV as 1 CV is 0.97 mL. All fits obtained an R2 of 0.999 and an RMSE of 0.07, 
0.22, 0.10, 0.10, and 0.09 for albumin, chymtrypsinogen, cytochrome C, lysozyme, and 
RNase respectively.  
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Supplemental Figure S3.4: Fitted regression curves at pH 5.0 (grey line) of the 
experimental data (dark blue dots) and the test data point (light blue dot) at 58.2 mL, 
equal to 60 CV as 1 CV is 0.97 mL. All fits obtained an R2 of 0.999 and an RMSE of 0.01, 
0.05, 0.06, 0.06, 0.07, and 0.08 for albumin, chymotrypsinogen, cytochrome C, 
lysozyme, RNase, and conalbumin respectively.  

 

  

  

Supplemental Figure S3.5: Fitted regression curves at pH 7.0 (grey line) of the 

experimental data (dark blue dots) and the test data point (ligth blue dot) at 58.2 mL, 
equal to 60 CV as 1 CV is 0.97 mL. All fits obtained an R2 of 0.999, except for RNAse that 
has an R2 of 0.95. The RMSE values are 0.03, 0.002, 0.04, and 0.04 for cytochrome C, 
chymtrypsinogen, RNAse, and lysozyme respectively. 
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3.6.2 Supplemental Discussion 

Additional data for the mechanistic model validated at pH 7.0. For all 

proteins at pH 7.0, the maximum retention peak difference is 1.01 CV 

and the average difference is 0.86 CV, which is 1.68% and 1.43% with 

respect to the gradient length (60 CV). To assess the concentration 

agreement between the modeled and experimental results, we 

compared the difference between the peak width at half of the peak 

maximum and the peak concentration. RNAse was left out of this 

comparison for the peak width difference, as determining half of the 

peak maximum is not possible for the experimental data. The 

maximum peak width difference is 2.07 CV, equal to 2.23% relative to 

the gradient length (60 CV). The average peak width difference is 0.81 

CV, equal to 1.35% relative to the gradient length (60 CV). The peak 

concentration differs maximally by 0.04 mg/mL, which deviates about 

7.8% to the initial concentration. The average difference in the peak 

concentration is 0.01 mg/mL, equal to 3.1% relative to the initial 

concentration. 
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supplemental Figure S3.6: Chromatographic mechanistic model validation for gradient 
length of 60 CV, equal to 58.2 mL, at a pH of 7.0. Blue line indicate the MM predicted 
concentration of the protein, while the red dotted line indicates the experimental 
concentration. The black dotted line indicates the salt concentration. The initial 
concentrations are Chymotrypsinogen: 0.46 mg/mL, Cytochrome C: 0.80 mg/mL, 
Lysozyme: 0.55 mg/mL, and RNAse: 0.39 mg/mL. 
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Supplemental Figure S3.7: Calibration lines (blue dotted line) for each protein at pH 
= 5, the blue dots indicate the experimental data. The concentrations are measured at 
an Absorbance of 280 and 400 nm. 400 nm absorbance is specifically needed to quantify 
cytochrome C.  
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Supplemental Figure S3.8: Calibration lines (blue dotted line) for each protein at pH 
= 7.0, the blue dots indicate the experimental data. The concentrations are measured 
at an Absorbance of 280 and 400 nm. 400 nm absorbance is specifically needed to 
quantify cytochrome C. 
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Abstract 

Purification of recombinantly produced biopharmaceuticals involves 

removal of host cell material, such as host cell proteins (HCPs). For 

lysates of the common expression host Escherichia coli (E. coli) over 

1500 unique proteins can be identified. Currently, understanding the 

behavior of individual HCPs for purification operations, such as 

preparative chromatography, is limited. Therefore, we aim to elucidate 

the elution behavior of individual HCPs from E. coli strain BLR(DE3) 

during chromatography. Understanding this complex mixture and 

knowing the chromatographic behavior of each individual HCP 

improves the ability for rational purification process design. 

Specifically, linear gradient experiments were performed using ion 

exchange (IEX) and hydrophobic interaction chromatography, coupled 

with mass spectrometry-based proteomics to map the retention of 

individual HCPs. We combined knowledge on protein location, function 

and interaction available in literature to identify trends in elution 

behavior. Additionally, quantitative structure-property relationship 

models were trained relating the protein 3D structure to elution 

behavior during IEX. For the complete dataset a model with a cross 

validated R2 of 0.55 was constructed, that could be improved to a R2 of 

0.70 by considering only monomeric proteins. Ultimately this study is 

a significant step towards greater process understanding. 
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4.1 Introduction 

To ensure drug safety and efficacy, removal of impurities is essential. 

For protein-based pharmaceuticals (e.g., protein-based vaccines and 

monoclonal antibodies (mAbs)), removal of host cell proteins (HCPs) 

remains a major challenge.[1] Especially for recombinant 

biopharmaceuticals, produced intracellularly or in the periplasm, where 

harvest requires cell lysis, resulting in a complex mixture.[2,3]  

For the purification of protein-based pharmaceuticals, packed bed 

chromatography has been the industry standard due to its high 

versatility and specificity.[4] Multiple orthogonal methods are often 

performed in sequence allowing to separate the target from the 

impurities based on different physicochemical properties. Selection of 

specific chromatographic methods and operation conditions currently 

remain to be primarily done by Trial-and-error, expert knowledge or 

Design of experiments.[5,6] In recent years, tools like high throughput 

experimentation and in silico modeling have shown great potential to 

accelerate the design process.[7–10] These methods allow to not only 

consider the elution behavior of target molecules, but the behavior of 

HCP impurities. This leads to the development of the purification 

process in a rational and systematic manner. 

Alternatively, for prediction of protein behavior at specific 

chromatographic conditions, quantitative structure-property 

relationship (QSPR) models aim to use specific features calculated from 

the protein structures.[11,12] Over the last 20 years, successful models 

have been trained for a variety of globular proteins or antibodies.[13–18] 

Recently, Cai et al. trained predictive models using both resin and 

protein descriptors to predict the adsorption of globular proteins for 

different mixed mode resins.[19] These prediction methods become 

even more powerful in combination with mechanistic modeling, 
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allowing full prediction of the elution profile.[17,20] While these models 

highlight how structural knowledge of proteins can be used to describe 

chromatographic behavior, application for HCP removal process 

development remains challenging. Data available for these models is 

generally obtained for pure solutions containing only one protein. 

Therefore, these models cannot take the full complexity of a lysate into 

account, where often countless of protein-protein interactions (PPIs) 

occur between HCPs.[21,22] Additionally, QSPR requires accurate 

structures of the HCPs, which are not always available. Recent 

advances in protein structure prediction by tools like AlphaFold allow 

for construction of missing HCP structures [23]. While promising, the 

accuracy and confidence of HCPs which are poorly annotated can be 

problematic and should therefore be assessed critically.  

Describing the HCP content of various expression host has been of 

interest in the last two decades.[24–26] Mass spectrometry-based 

proteomics (MS) has gained popularity for analyzing HCPs, enabling 

the sensitive detection of individual HCPs during process 

development.[25,27–30] Advances in the field allow identification of 

specific proteins which are commonly remaining after the downstream 

processing [31]. Currently, most literature describe HCPs from Chinese 

hamster ovary (CHO) cells, more specifically the HCP content after the 

protein A capture step in antibody production.[32–35] From these, high-

risk HCPs have been identified for CHO, that have potential 

immunogenic responses or compromise product quality due to 

degradation.[33] Studies showed that HCP aggregates with mAbs may 

promote the persistence of HCPs during the protein A capture step.[36–

39] A recent correlation analysis of HCPs identified co-elution of HCPs in 

groups that are associated with PPIs.[35]  

Less studies targeting E. coli HCPs have been conducted. To identify 

HCP co-elution in immobilized metal affinity chromatography, Bartlow 
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et al., analysed a range of elution buffer concentrations using SDS-

PAGE in combination with MALDI-TOF-MS finding 26 proteins co-eluting 

during a green fluorescent protein purification.[40] More recently, Lingg 

et al., investigated the effect of metal and chelator type on the HCPs 

found in the eluate of a similar process.[41] For cation- and anion-

exchange chromatography, Swanson et al., studied E. coli HCP elution 

in a 5-step isocratic elution.[42,43] Using the experimentally determined 

molecular weight, isoelectric point (pI) and aqueous two-phase 

partitioning coefficients of the HCPs, random forest regressor models 

were trained to predict protein retention. In a more fundamental study, 

Disela et al., performed MS analysis on E. coli BLR(DE3) and 

HMS174(DE3) HCPs and plotted proteome property maps using the 

physicochemical properties of around 2000 HCPs to showcase the 

selection of suitable purification strategies.[44] 

Despite these efforts, knowledge on chromatographic retention 

behavior of E. coli lysates to aid process design is still lacking. This 

study aims to guide process development by elucidating the 

chromatographic behavior of specific HCPs of the E. coli BLR(DE3) 

strain for ion exchange (IEX) and hydrophobic interaction (HIC) 

chromatography (Figure 4.1). By analyzing fractions collected from 

linear gradient elution (LGE) experiments using MS, the identity and 

elution time of different HCPs were determined. For each HCP the 

cellular location, function and potential interactions were retrieved to 

assess the effect on the elution. For the IEX retention data, predictive 

QSPR models were trained using protein descriptors calculated from 

predicted 3D structures. Finally, model accuracies using different HCP 

subsets were compared. 
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Figure 4.1: Schematic overview of this study. Chromatographic experiments are 

conducted using the lysate containing a mixture of host cell proteins (HCPs). The protein 

mixture is injected to the Äkta chromatography system and linear gradient elution 

experiments on IEX and HIC are conducted. From each of the gradient runs, fractions 

are taken and their proteome is analyzed via mass spectrometry. The obtained retention 

data of all HCPs is analyzed regarding elution trends occurring due to cellular location, 

molecular function and protein-protein interactions. The data is furthermore used to build 

a QSPR model and investigate several variations using filters based on the deviating 

retention trends (Illustration created using BioRender.com.). 

4.2 Materials and methods 

4.2.1 Chromatographic experiments and proteomic 

analysis 

4.2.1.1 E. coli harvest sample and equipment 

The cells in the harvest sample originating from a null plasmid E. coli 

BLR(DE4) strain, used for the LGE experiments, were disrupted by use 

of a French press. Proteins identified in this sample are extensively 

characterized and described elsewhere.[44] Chromatographic 
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experiments were performed on an Äkta pure with a connected fraction 

collector F9-C from Cytiva (Uppsala, Sweden). Prepacked HiTrap Q XL 

(IEX, here: anion exchange chromatography) and Butyl FF (HIC) 5 ml 

columns from Cytiva (Uppsala, Sweden) were used for 

chromatographic experiments. The running buffer for the IEX 

experiment was 0.02 M Tris at pH 7.0 with 0.02 M NaCl added. The 

elution buffer during the IEX experiment consisted of the same buffer 

components with 1 M NaCl added. During the HIC experiment, the 

running buffer was 0.02 M sodium phosphate at pH 7.0 with 3 M NaCl 

added and as an elution buffer ultrapure water (MilliQ) was employed. 

Between experimental runs the chromatography columns were cleaned 

using 1 M NaOH solution. All buffers were filtered with 0.22 µm pore 

size and sonicated before use.  

4.2.1.2 Linear gradient elution experiments 

After injection of 1 ml of the dialyzed clarified harvest sample the 

column was washed with 5 column volumes of running buffer. Then, 

the gradient elution was started by mixing the running buffer with the 

elution buffer over a gradient length of 10 column volumes (50 ml). 

During the gradient elution runs conducted with a flow rate of 5 ml/min, 

fractions were continuously taken and afterwards analyzed using MS. 

During the IEX experiment, 1 ml fractions were taken and every other 

fraction was analyzed, as described in more detail in [40]. For the HIC 

experiment, 2.5 ml fractions were taken and every fraction was 

analyzed. 

4.2.1.3 Proteomic analysis 

Shotgun proteomics to identify individual E. coli proteins in each of the 

analyzed fractions from the LGE experiments was performed using LC-

MS as described in [40]. 
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4.2.1.4 Data processing  

The retention profiles (in peak area) of the proteins eluting during the 

gradient were fitted to a Gaussian function. If the shape could be fitted 

with a R2 above 0.7, the maximum of the fitted Gaussian function was 

used as the retention volume 𝑉𝑅,𝑖 of each protein 𝑖 as exemplified in [45]. 

Since a constant flow rate was used in the experiments, the 

dimensionless retention time (DRT) could be calculated as 

𝐷𝑅𝑇(𝑖) =  
𝑉𝑅,𝑖 − 𝑉𝑔

𝑉𝐺 − 𝑉𝑔

, (4.1) 

where 𝑉𝑔 is the volume in the beginning of the salt gradient and 𝑉𝐺 in 

the end of the salt gradient. This measure has been used in literature 

to describe retention in a dimensionless manner [46]. 

Abundance measures (for the common scatter plot) and theoretical 

physicochemical properties were retrieved from a previous study of the 

harvest sample [44]. The cellular location and functions were retrieved 

from UniProt [47]. Hereby proteins that were exclusively located in the 

cytosol or cytoplasm, not in a membrane, were summarized as 

cytoplasm proteins. Comparable E. coli K-12 proteins were retrieved 

from [19] that show PPIs (Supplemental Table 1 in [19]) and proteins 

without measured interactions (Supplemental Table 2[19]).  

4.2.2 QSPR 

4.2.2.1 Protein model generation 

Using the database presented in[44] the amino acid sequence for each 

identified protein was retrieved. From the sequences, protein 

structures were predicted using AlphaFold2 to ensure full sequence 

coverage in the structure.[50] Of the predicted structures, only the Rank 

0 structures were used throughout the study. For each protein, the E. 

coli K12 homolog was used to identify signal peptides which require 

removal. Protein descriptors were calculated using the open-source 



Experimental characterization and prediction of Escherichia coli host cell 
proteome retention during preparative chromatography 

129 

 

4 

software package Prodes (https://github.com/tneijenhuis/prodes) in 

default settings.[51] Visualization of the protein structures was 

performed using UCSF Chimera [52]. 

4.2.2.2 QSPR model training 

Multi Linear Regression (MLR) models were trained for the retention 

time prediction of the whole dataset and specific subsets of HCPs. The 

selection of proteins for each subset was based on their presence in 

the cytoplasm, their multimeric state, described interactions and 

average per-residue model confidence score (pLDDR). Initially, the 

datasets were randomly split into a train (67%) and a test set (33%). 

To reduce the number of features considered during the feature 

selection, a series of filter thresholds were screened by applying a 

range of feature-feature correlation filters (Pearson correlations of 0.8, 

0.9, 0.99 and 1). Followed by feature-observation correlations filtering, 

maintaining a predefined percentage of features (10% to 100% in 10% 

increments). Features were selected using sequential forward selection 

for all filter thresholds, resulting in 40 models to be considered. Final 

models, and optimal filtering thresholds (Supplemental Table S4.1), 

were selected based on the R2 of a 10-fold cross-validation. 

4.3 Results and discussion 

4.3.1 Retention behavior of individual host cell proteins 

4.3.1.1 Protein retention map 

To identify retention behavior during HIC and IEX chromatography, 

clarified lysate of E. coli was injected, fractions were collected during 

LGE and subsequently analyzed using MS. For the orthogonal 

chromatographic methods, data was collected on specific DRT of 908 

and 816 HCPs for IEX and HIC, respectively. Undetected HCPs elute 

either before or after the salt gradient experiments or are below the 

detection limit.  

https://github.com/tneijenhuis/prodes
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Of the determined HCP DRTs, a total of 569 were found for both 

methods, which allows construction of a 2D retention map (Figure 4.2). 

As determination of protein abundance remains cumbersome using 

shotgun proteomics, relative abundance using peak area and the 

protein abundance index (PAI) were used (Figure 4.2a and Figure 4.2b, 

respectively). For the different abundance measures, a different order 

in abundance is caused by the strong dependence on the protein size 

in the definition of PAI. To estimate absolute protein contents in 

complex mixtures, the PAI is defined as the number of observed 

peptides divided by the number of observable peptides per protein [53]. 

The abundance of the most abundant protein according to the PAI 

value, ARH99394.1, was plotted over the volume during the IEX and 

HIC gradient (Figure 4.2c and Figure 4.2d, respectively. 

During the IEX LGE, proteins eluted between 0.1 and 0.8 DRT whereas 

proteins eluted throughout the whole gradient for HIC. If the retention 

of the new target is known, the experimental HCP retention map can 

help forming an efficient HCP removal strategy using physicochemical 

property maps as discussed in [39]. While the physicochemical 

property maps provide a basis for process development, the 

experimental retention map provides an improved effective tool. The 

retention map reflects the actual retention behavior of the HCPs in the 

lysate including interactions with other proteins limited to the used 

system, resin and buffer conditions. In contrast to the target retention 

behavior, this map can be used to form a general approach to remove 

HCP impurities. This promotes a rational and systematic design of a 

purification process. 
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Figure 4.2: Host cell protein (HCP) retention map of individual HCPs in the E. coli lysate. 
Dimensionless retention times (DRTs) were obtained from MS analysis of fractions 
obtained from linear gradient experiments on Q Sepharose XL (IEX) and Butyl FF (HIC) 
HiTrap 5 ml columns at pH 7 using NaCl as salt in both cases. a) abundance in peak area 
and (b) abundance as protein abundance index (PAI) obtained from (Disela et al., 
2023).c) elution of protein ARH99394.1 during salt gradient on IEX. d ) elution of protein 
ARH99394.1 during salt gradient on HIC. 

4.3.1.2 Influence of cellular location  

To better understand the behavior of specific HCPs, the extensive 

proteome dataset was explored regarding a variety of factors which 

may influence retention. Cellular location was first investigated, where 

proteins were divided according to their cellular localization (as 

obtained from UniProt) in the subgroups cytoplasm, plasma 

membrane, and outer membrane (Figure 4.3a&b).  

For IEX, the histogram with all proteins shows the highest number of 

proteins in the fraction at 0.30 DRT (166 out of 908) and second 
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highest number at 0.46 DRT (123 out of 908). The histogram of all 

proteins eluting on HIC shows an increase with increasing DRT over the 

whole gradient. This spread over the gradient leads to less protein per 

fraction in the HIC histograms compared to the IEX histograms.  

During the IEX, the majority of the HCPs are cytoplasm proteins (total 

572) and the elution follows the general trend of all proteins during 

IEX, with the exception of a lower number of proteins eluting at DRT 

0.46. At this DRT, the histogram of plasma membrane proteins (total 

79) shows the highest abundance (41 out of 79). The histogram of 

outer membrane proteins (total 27) shows a low general abundance 

throughout the gradient with a slightly higher abundance at 0.26 and 

0.46 DRT. In IEX, retention is based on charge, meaning that a protein 

with a lower pI elutes later during the LGE. This trend holds true for 

the overall dataset, except for the plasma membrane HCPs 

(Supplemental Figure S4.1a), suggesting interactions of these proteins 

leads to concurrent elution. This indicates that forces causing these 

interactions are stronger compared to electrostatic forces that are the 

main interaction as shown by the IEX trendline of the majority of the 

proteins. Plasma membrane proteins might interact with each other 

directly forming parts of known (sdhB, secY) or unknown complexes 

(hflC, arnC) [54]. We even observe the co-elution of yidC and secY, that 

are known to form a multi-protein complex for Sec-dependent 

membrane protein integration.[55] However, the joint elution of several 

plasma membrane proteins might indicate that they form liposomes or 

are parts of membrane vesicles [56]. Considering that HCPs are 

impurities, a concurrent elution could simplify the development of the 

chromatography step. However, for a retention prediction model, joint 

elution hampers the prediction for these proteins, when using 

calculated protein features. 
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Figure 4.3: Histograms representing the elution of groups of host cell proteins (HCPs). 
The number of proteins with an elution maximum during a specific dimensionless 
retention time (DRT) is listed for ion exchange (IEX) and hydrophobic interaction 
chromatography (HIC). (a) histogram of cellular location groups during IEX. (b) 
histogram of cellular location groups during HIC. (c) histogram of molecular function 
groups during IEX. (d) histogram of molecular function groups during HIC. (e) histogram 
of protein-interaction groups during IEX. (f) histogram of protein-interaction groups 
during HIC. 

During the HIC gradient, the histogram of cytoplasm proteins (total 

532) shows a similar shape to the histogram of all proteins with a 

slightly lower number of proteins eluting toward the end of the gradient 

(Figure 4.3b). At the end of the HIC gradient, the plasma membrane 

proteins (total 66) show an increased occurrence. Outer membrane 

proteins (total 48) elute continuously throughout the gradient. In HIC, 

a correlation to hydrophobicity, such as the GRAVY value (grand 
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average of hydropathy) is expected. However, none of the 

hydrophobicity measures, calculated from the predicted protein 

structure, showed a high correlation and hence it was not possible to 

identify protein groups that show deviating retention behavior (data 

not shown). This is thought to be due to the highly dynamic behavior 

of the proteins in the high salt conditions. Often complex phenomena 

such as nonspecific PPIs or partial unfolding upon binding occur, 

making the single, static, protein chain representation invalid. 

Additionally, preferred binding orientations might play an important 

role due to the short range interactions governing adsorption.[57] This 

complicates the retention prediction substantially, leaving room for 

future studies to develop new features to describe flexibility and local 

aggregation propensities, influencing protein retention in HIC. 

4.3.1.3 Influence of molecular function  

Molecular function as a discriminator for retention behavior was 

investigated and the results are shown in Figure 3c&d. Proteins that 

bind ions, other proteins, ATP, or DNA were identified using the UniProt 

entry. During the IEX gradient, the ion (302), protein (190) and ATP 

binding proteins (177) follow the trend seen for all proteins. Hence, the 

binding sites of ions, other proteins, and ATP seem to have little effect 

on retention behavior. In contrast, DNA binding proteins (80) show a 

second local maximum at 0.50 DRT. This second maximum is caused 

by polymerases and ribonucleases, while the first peak is caused by 

other translation proteins. In contrast to the plasma membrane 

proteins, the DNA binding proteins follow the trend given by the 

correlation to the pI (Supplemental Figure S1b). 

During the HIC gradient, the ion (272), protein (165), ATP (133), and 

DNA binding proteins (71) are distributed across all elution times with 

no clear elution points (Figure 3d).  
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4.3.1.4 Influence of protein-protein interactions  

In the complex mixture of a host cell lysate proteins can interact, 

forming functional or non-functional complexes. The different PPIs at 

physiological conditions between E. coli proteins were identified by 

Arifuzzaman et al..[49] Out of the interactions identified by Arifuzzaman 

et al., 1270 were found in the IEX dataset and 1225 in the HIC dataset. 

From these interactions, 349 protein pairs (27%) in IEX and 178 

protein pairs (14%) in HIC showed close retention proximity (IEX < 

0.04 DRT; HIC < 0.05 DRT). It is worth noting that close retention 

proximity depends on the chosen threshold, which was the fraction 

size. While conditions in the running buffer of IEX come close to the 

physiological conditions used in the study from Arifuzzaman et al., the 

HIC running buffer has a significant higher salt concentration that 

might dissociate complexes or induce additional PPIs.[58] Nevertheless, 

these interactions pose an interesting effect on the DRTs of involved 

HCPs as indicated in a recent study for CHO cells [35]. 

To identify the effect of PPIs, proteins described to interact from protein 

pairs in proximity were selected (Figure 4.3e&f). Proteins described as 

having no interactions in Arifuzzaman et al. were also plotted as one 

group. Additionally, proteins known to be present as monomers were 

grouped. During the IEX gradient, the proteins with PPIs (319) show a 

high abundance at 0.30 and 0.46 DRT and the surrounding fractions. 

This shape impacts the histogram with all proteins significantly. 

Monomers (104) and non-interacting proteins (89), on the other hand, 

are eluting throughout the IEX gradient with a near Gaussian 

distribution. During the HIC gradient, less proteins with PPIs were 

detected (170). These proteins show an increased abundance at higher 

DRT, which might be related to the large size of the complexes which 

is reported to effect retention in HIC.[59] For the monomers (98) and 
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non-interacting proteins (80) no such trend was observed as these 

elute throughout the gradient.  

In conclusion, the plasma membrane proteins, DNA binding, and 

proteins with PPIs were identified as protein groups that show a deviant 

elution behavior due to their location in the cell, molecular functions or 

PPIs. Not considering these characteristics during feature calculation 

might hinder accurate retention predictions. The proteins in the 

cytoplasm, without known interactions, and monomers seem to be 

more suited to build an improved model. 

4.3.2 Prediction of retention time of individual HCPs in IEX 

4.3.2.1 Descriptive QSPR model using the complete dataset 

Using the DRTs obtained from IEX LGE of all single peak proteins, a 

predictive QSPR model was trained, correlating specific 

physicochemical features to protein retention. A final MLR model 

composed of 27 features was built achieving a 10-fold cross validated 

R2 of 0.55 and a mean absolute error (MAE) of 0.049 (Figure 4.4 and 

Table 4.1 [ALL]). For the test set, data not involved during feature 

selection, a MAE of 0.048 was achieved. Due to the fractionation 

approach, the resolution of 25 fractions introduces an experimental 

error of 0.04 DRT, which requires consideration while assessing the 

final QSPR model. Therefore, the prediction can be considered 

successful, given the data resolution. As observed in the IEX 

histograms, a significant part of the proteins have a DRT around 0.3. 

For the QSPR model, this resulted in a general overprediction for 

proteins with a DRT < 0.3 and underprediction for protein with DRT > 

0.3 (Figure 4.4). Despite this bias, the trend of the HCP elution 

behavior was still captured by the model. 

The model captures the importance of charge in IEX since the majority 

of the selected features, 15 of the 27, directly describe the charge of 
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the protein (Supplemental Table S4.2). Additionally, the surface 

content of the four charged amino acids was found to be important. 

Due to the number of features and the inherent collinearity of the 

charge related features, specific feature importance cannot be 

identified. The remaining eight features describe the surface, 

hydrophobicity and the surface content of specific noncharged amino 

acids. Y-scrambling was performed before training as final validation 

(Supplemental Figure S4.2). The resulting model was not able to 

predict scrambled protein retention (R2 of -0.065) proving physical 

validity.  

 

Figure 4.4: QSPR validation of the regression model trained to predict DRT, where the 

circles represent the 10-fold cross-validation and the triangles the test set. 

A similar approach was performed to train elution prediction model for 

HIC albeit being less successful. No combination of features was found 

resulting in a model with a cross validated R2 >0.2. It is thought to be 

due to the nonspecific protein interactions at high salt conditions and 

partial unfolding upon binding which often occur [60]. As was mentioned 
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in 4.3.1.2, no correlation was found with HIC elution and any of the 

hydrophobicity features for the full dataset nor any subsets. 

4.3.2.2 Influence of HCP subsets on model accuracy  

One of the major challenges in accurately describing the HCPs is the 

countless interactions that can occur between proteins and other host 

cell components. As these interactions have not been taken into 

account for the first elution prediction model, the cross validated R2 of 

0.55 is thought to be a success. Nevertheless, the elution model would 

not be suitable for decision making as the residuals are not spread 

evenly. To increase the prediction accuracy, the dataset was simplified 

by selecting proteins which do not bind the cell membrane (cytoplasm 

proteins), or interact to form complexes (monomers, proteins without 

measured interactions) and combinations thereof (Table 4.1, Figure 

4.5). All models resulting from the different subsets provided a greater 

accuracy for the cross validated training set (MAE from 0.045 to 0.039). 

In contrast to the cross-validation, the accuracy of the test was not 

improved for most models (MAE of 0.058 to 0.043). 

 

For the proteins in the cytoplasm, the overall trend in the model (Table 

4.1 and Figure 4.5a) is similar to the trends observed in the model with 

all proteins. It was expected that removal of the membrane proteins 

would result in a better prediction as these proteins did not adhere to 

the correlation between pI and DRT (Supplemental figure 4.1a). In 

contrast, the test set was predicted less accurately (MAE of 0.055) 

compared to the all HCP dataset (MAE of 0.048). This decrease in 

accuracy can be attributed to an increased bias towards a DRT close to 

0.3 (Figure 2a). 

The subset containing the proteins without PPIs were found to elute 

according to a normal distribution (Figure 4.3e), therefore the bias at 
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0.3 DRT observed for the other datasets should not pose a problem. 

However, the test set accuracy (MAE of 0.058) was found to be lower 

than the all HCP dataset (MAE 0.048) (Figure 4.5b, Table 4.1). Unlike 

the all HCP or cytoplasm datasets, no bias is observed for the 

prediction. While these proteins were described as noninteracting, they 

can still be prone to multimerization. Only nine proteins showed 

overlap between the noninteracting and monomer dataset (data not 

shown). The loss of accuracy is also thought to be due to the smaller 

training dataset, resulting in less general QSPR models. Therefore, 

complex behavior, such as oligomerization or complex formation, 

cannot be captured implicitly. 

 

Figure 4.5: QSPR validation of the regression model trained to predict DRT of protein 
subsets, where the circles represent the 10-fold cross-validation and the triangles the 
test set. The presented subsets are the cytosolic proteins (a), the proteins without 
interactions (b), proteins reported to be present as monomers (c) and proteins which 

are cytosolic and non-interacting (d). 
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For the monomer subset a cross validated R2 of 0.697 was achieved 

and the accuracy of the test set was improved to a MAE of 0.043, 7.5% 

off the experimental error (Table 4.1, Figure 4.5c). Additionally, the 

residuals of the model are spread more evenly compared to the initial 

elution model allowing prediction of parts of the dataset. The main 

reason for the improved accuracy is thought to be the structural 

representation used for the feature calculation, as the structures were 

predicted in a monomeric state. While PPIs were not filtered out, no 

major influence was observed. For this model, the average and sum of 

the negative electrostatic potential were found to be most important, 

as removing either feature resulted in a cross validated R2 of 0.47 

(Supplemental Table S4.5). The increased accuracy of the subset 

highlights the importance of accurate protein structure representation.  

Therefore, improvements in the model can be made by modeling the 

multimeric state of each protein for which it is known. As this 

information is not available for every protein, improving accurate PPI 

prediction is essential.[61] This would allow QSPR application to predict 

the behavior a full lysate rather than only protein subsets. Additionally, 

the structures obtained by AlphaFold are predicted and should 

therefore be used with caution. The per residue confidence score and 

the predicted aligned error provided by AlphaFold has the potential for 

template selection to increase model accuracy. However, current efforts 

in setting confident thresholds for the predicted structures did not yield 

more accurate retention prediction models (Supplemental Figure 

S4.4). 

Nevertheless, this work provides an important step towards holistic in 

silico process design. In contrast to recent literature, the retention data 

used in this work is obtained from a clarified lysate. The increased 

uncertainty pared with the heterogeneity results complicates the 

predictive modeling compared to the use of model proteins. The 
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achieved cross validated R2 of 0.697 for the monomer subset 

approaches recent work on the retention prediction of mAbs (0.780-

0.835) and model proteins for a range of ligands (0.79-0.82).[62–64] It 

can therefore be expected that additional research on the algorithms 

and HCP understanding will allow for robust prediction of HCP retention 

prediction and knowledge transfer between different processes.  

4.4 Conclusion and outlook 

The observed host cell proteome after lysis of the E. coli BLR(DE3) host 

covers the retention times of around 900 unique proteins on IEX and 

HIC. By selecting protein subsets based on location, function, and 

interactions, trends in retention behavior were examined. For IEX, it 

was observed that proteins present in the plasma membrane would 

primarily co-elute, disregarding the general trend of the lower pI 

resulting in later retention. For HIC, an almost linear trend was 

observed for the number of proteins throughout the gradient. Only 

proteins located in the plasma membrane or that are known to engage 

in PPIs were found to deviate from this trend, primarily eluting at the 

end of the HIC gradient. Despite the complexity of the mixture, 

structure models predicted by AlphaFold2 were used to train a 

descriptive QSPR model (R2 of 0.55) for IEX retention, approaching the 

experimental error. By selecting proteins annotated as monomer in 

UniProt, the accuracy of the QSPR model improved significantly (R2 of 

0.70). This work is the initial step towards understanding the HCP 

elution of the E. coli BLR(DE3) host cell proteome. 

To further improve the understanding and implementation of QSPR in 

process development, future research should focus on the in-depth 

characterization of lysate compositions. Currently, extensivelots of 

knowledge is available via databases such as UniProt, however many 

proteins remain underdetermined especially regarding PPIs. More 
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experiments are needed to identify complex formation of proteins 

under different buffer conditions. Additionally, despite the 

improvements in structure prediction, automated protocols for 

assessing the plausibility of a structure to allow processing of large 

datasets are required. Ultimately, this research represents a significant 

step towards in silico driven process development, increasing process 

understanding and reducing development times. 
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4.6 Supplemental material 

Supplemental Table S4.1: Selected filtering thresholds selected for the different 
protein subsets. Protein subsets were generated based on all proteins (ALL), proteins 
present in the cytoplasm (CYT), proteins without PPIs (NI), proteins annotated as 
monomers (MONO) or combinations thereof. The feature – feature filter removes 
features with a Pearson correlation above the given threshold to other features. The 
feature – observation filter maintains a percentage of features with the highest Pearson 
correlation to the elution time. 

Model Feature – feature filter  Feature – observation filter (%) 

ALL 0.99 100 

CYT 1 100 

NI 1 100 

MONO 1 50 

CYT_NI 0.9 100 
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Supplemental Figure S4.1: Correlation of the IEX DRT and the estimated isoelectric 
point. All plots contain all proteins identified for the IEX colored according to subsets 
based on the cellular location, function and interactions, for a, b and c respectively. The 
observed R2: 0.1554, Pearson Correlation: -0.3942 
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Supplemental Table S4.2: Regression coefficient and permutation performances for 
the linear regression model predicting DRT for all HCPs. 

Descriptor Coefficient Permutation R2 

SurfNegEpMeanAverage 0.0190 0.5602 

SurfMhpMean 0.5221 0.5383 

SurfNegEpStdFormal 0.1961 0.5270 

SurfNegEpSumFormal 0.4755 0.5430 

NSurfPosEpAverage -0.2208 0.5610 

Charge  -0.0277 0.5632 

TYR surface fraction 0.0959 0.5344 

SurfPosMhpTrimean 0.0917 0.5508 

GLU surface fraction 0.1897 0.5299 

LYS surface fraction -0.1200 0.5488 

SurfNegMhpMean -0.2287 0.5450 

GLY surface fraction 0.0707 0.5412 

ShellEpPosSumFormal 0.5769 0.5135 

ASP surface fraction 0.0852 0.5455 

ARG surface fraction -0.0561 0.5489 

ShellEpPosMedianFormal -0.1565 0.5519 

ShellEpMaxFormal 0.2441 0.5524 

ShellEpMedianFormal -0.5183 0.5429 

ShellEpNegMedianFormal 0.2582 0.5499 

SurfPosEpSumFormal -0.3920 0.5448 

SurfMhpStd -0.2029 0.5523 

Isoelectric point -0.1506 0.5536 

NSurfPosEpAverage 0.6613 0.5554 

Formal_Charge -0.5314 0.5571 

ShellEpPosStdFormal -0.0680 0.5561 

GLN surface fraction 0.0444 0.5525 

Surface shape min 0.0233 0.5556 

intercept 0.0552  
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Supplemental Figure S4.2: Y-scrambled cross-validation and test of the QSPR model 
containing all protein retention times. The circles represent the 10-fold cross-validation 
and the triangles the test set. 
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Supplemental Table S4.3: Regression coefficient and permutation performances for 
the linear regression model predicting DRT for the CYS subset. 

Descriptor Coefficient Permutation R2 

SurfNegEpMeanAverage -0.4008 0.4959 

SurfMhpMean 0.1467 0.5926 

SurfNegEpStdAverage 0.7528 0.6084 

Avg. Mass -0.3032 0.5969 

LYS surface fraction -0.1179 0.5838 

SurfNegMhpMedian -0.1301 0.6021 

TYR surface fraction 0.0853 0.6049 

NSurfNegMhp 0.1932 0.6122 

SurfNegEpStdFormal -0.5879 0.6134 

GLY surface fraction 0.0494 0.6157 

intercept 0.6464 
 

 

Supplemental Table S4.4: Regression coefficient and permutation performances for 
the linear regression model predicting DRT for the NI subset. 

Descriptor Coefficient Permutation R2 

SurfEpMinAverage -0.2562 0.5351 

SurfPosMhpsum 0.0747 0.6152 

PRO surface fraction -0.1570 0.4696 

SurfMhpMax 0.0904 0.5024 

SurfPosEpStdFormal -0.1244 0.5940 

TYR surface fraction 0.0969 0.5765 

CYS surface fraction 0.0793 0.5528 

Surface shape max -0.0670 0.5700 

LYS surface fraction -0.0885 0.5658 

SurfEpStdAverage 0.0730 0.5984 

intercept 0.5735 
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Supplemental Table S4.5: Regression coefficient and permutation performances for 
the linear regression model predicting DRT for the MONO subset. 

Descriptor Coefficient Permutation R2 

SurfNegEpMeanAverage -0.6702 0.4642 

SurfEpStdAverage 0.2387 0.6068 

SurfNegEpsumAverage 0.3120 0.4672 

SurfPosMhpsum 0.1692 0.6139 

Dipole -0.1435 0.6709 

LYS surface fraction -0.0600 0.6612 

TYR surface fraction 0.0685 0.6585 

ShellEpNegMedianFormal 0.1884 0.6728 

CYS surface fraction -0.0785 0.6836 

SurfEpminFormal 0.0783 0.6959 

intercept 0.3201 
 

 

Supplemental Table S4.6: Regression coefficient and permutation performances for 
the linear regression model predicting DRT for the CYS_NI subset. 

Descriptor Coefficient Permutation R2 

ShellEpNegMedianFormal -0.1617 0.4965 

NSurfPosEpFormal -0.2318 0.1871 

NSurfPosMhp 0.3078 0.4745 

SurfMhpSum 0.2956 0.4208 

SurfPosEpsumFormal 0.3028 0.5008 

SurfNegEpStdFormal 0.1692 0.6861 

CYS surface fraction 0.0365 0.6567 

GLU surface fraction 0.1032 0.7012 

intercept 0.0276 
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Supplemental Figure S4.3: QSPR model results for the different protein subsets. 
Protein subsets were generated based on all proteins (ALL), proteins present in the 
cytoplasm (CYT), proteins without PPIs (NI), proteins annotated as monomers (MONO) 
and proteins with an average pLDDR > 0.95 (HC) or combinations thereof. The circles 
represent the 10-fold cross-validation and the triangles the test set. 
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Supplemental Table S4.7: Regression coefficient and permutation performances for 
the linear regression model predicting DRT for the ALL_HC subset. 

Descriptor Coefficient Permutation R2 

SurfNegEpMeanAverage -0.8810 0.5936 

SurfMhpMean 0.5402 0.5738 

SurfNegEpsumAverage 0.7996 0.5648 

THR surface fraction -0.0444 0.6111 

Average charge -1.2899 0.5717 

SurfEpMaxFormal 0.3437 0.5965 

ALA surface fraction -0.0069 0.6140 

SurfNegEpMedianAverage 0.8888 0.5902 

ShellEpminFormal -0.1162 0.6033 

SurfEpStdFormal -0.1678 0.6066 

ShellEpPosSumFormal 0.2742 0.6035 

Isoelectric point -0.2400 0.5983 

ShellEpPosTrimeanFormal -0.1224 0.5959 

ShellEpPosStdFormal 0.0797 0.6047 

NShellPosEpFormal -0.0774 0.6125 

SurfMhpMedian -0.5114 0.5891 

SurfMhpMax -0.0574 0.6086 

TYR surface fraction 0.0617 0.6056 

LYS surface fraction -0.0754 0.6078 

VAL surface fraction 0.0702 0.6032 

NSurfPosEpFormal 0.1408 0.6104 

HIS surface fraction 0.0557 0.6086 

SurfMhpmin -0.0126 0.6127 

intercept 0.4896 
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Supplemental Table S4.8: Regression coefficient and permutation performances for 
the linear regression model predicting DRT for the CYS_HC subset. 

Descriptor Coefficient Permutation R2 

SurfNegEpMeanAverage -0.3961 0.4525 

SurfMhpMean 0.0696 0.5786 

SurfEpSumFormal 0.4994 0.4904 

THR surface fraction -0.0219 0.5905 

ShellEpminFormal -0.2181 0.5746 

SurfPosMhpMedian 0.0752 0.5743 

LYS surface fraction -0.0679 0.5846 

ShellEpNegStdFormal -0.1299 0.5783 

SurfEpStdFormal 0.0975 0.5795 

NSurfPosEpAverage -0.1575 0.5317 

intercept 0.4659 
 

 

Supplemental Table S4.9: Regression coefficient and permutation performances for 
the linear regression model predicting DRT for the NI_HC subset. 

Descriptor Coefficient Permutation R2 

ShellEpminFormal -0.3764 0.1779 

NSurfPosEpFormal -0.0998 0.7549 

SurfNegMhpMean 0.0722 0.7612 

GLY surface fraction 0.0914 0.6853 

SER surface fraction 0.0792 0.7727 

SurfMhpmin -0.0786 0.7753 

intercept 0.6147 
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Supplemental Table S4.10: Regression coefficient and permutation performances for 
the linear regression model predicting DRT for the MONO_HC subset. 

Descriptor Coefficient Permutation R2 

SurfNegEpMedianFormal -0.5677 0.0910 

SurfNegEpsumFormal 0.3621 0.3506 

SurfNegMhpStd -0.0714 0.6964 

SurfNegEpStdAverage 0.0754 0.6861 

GLN surface fraction 0.0444 0.7040 

CYS surface fraction 0.0388 0.7400 

SurfEpminFormal 0.1389 0.7231 

intercept 0.3339 
 

 

Supplemental Table S4.11: Regression coefficient and permutation performances for 
the linear regression model predicting DRT for the CYS_NI_HC subset. 

Descriptor Coefficient Permutation R2 

SurfEpminFormal -0.3609 0.1434 

SurfPosEpMedianAverage -0.1125 0.3420 

ALA surface fraction -0.0785 0.3290 

GLN surface fraction -0.0142 0.3588 

intercept 0.6665 
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Abstract 

Selecting the optimal chromatography resin during biopharmaceutical 

downstream process development is a great challenge. Especially for 

recombinant sub-unit vaccines, where product properties vary greatly 

and recovery often involves cell lysis, which yields a complex mixture 

of different host cell materials. Host cell protein (HCP) impurities may 

remain similar for platform processes, but their critical impact on 

separation efficiency is relative to specific product properties. 

Therefore, every process needs to be designed per product. Prior 

knowledge on the elution behavior of HCPs would support the 

identification of critical compounds. However, determining 

chromatographic behavior of HCPs experimentally is a time-consuming 

approach. In this work, we leverage quantitative structure property 

relationship (QSPR) models calibrated with retention data of 13 

commercial proteins, collected at pH 7, 8, 9, and 10 to predict the anion 

exchange (AEX) retention of Escherichia coli HCPs. These models use 

features calculated from the molecular structure to describe protein 

behavior, like chromatographic retention. A multi linear regression 

model containing two features (Isoelectric point and sum of negative 

surface electrostatics) was able to predict the retention times of 288 

HCPs accurately (error ≤5%). Moreover, we identified the key 

attributes missing in the training dataset, which is important to 

increase model performance in the future. This work showcases how 

chromatographic data obtained using commercial proteins can be 

translated to a clarified E. coli lysate to accelerate chromatography 

resin selection for new products. 
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5.1 Introduction 

Recombinant proteins constitute approximately 80% of the global sales 

in pharmaceutical industry.[1] To ensure safety and efficacy of these 

pharmaceuticals, sufficient product purity (reviewed case-by-case) is 

required.[2] This is achieved by the downstream processing (DSP) that 

often involves a sequence of chromatographic steps separating the 

target protein from process and host cell impurities.[3–5] While product 

related impurities are often most difficult to remove, host cell proteins 

(HCPs) are a class of impurities that are also challenging to eliminate 

sufficiently. The main reason for this is that conventionally, HCP 

impurities are treated as one entity, while these are actually individual 

entities with a wide variety in physicochemical properties. Therefore 

knowledge on persistent HCPs is valuable to guide the DSP design.[6] 

As co-purification is a risk, highly sensitive biochemical methods for 

detection of persistent HCPs have been developed [7,8], including 

identification and quantification by LC-MS/MS proteomics.[9] The 

relevance of these techniques is reflected by a comprehensive list of 

high-risk HCPs for monoclonal antibody (mAb) production in Chinese 

hamster ovary cells.[10] This information can accelerate DSP design in 

platform processes as different mAbs products have relatively similar 

properties that affect purification.[11] This means the criticality of HCPs 

does not change for new products. Unfortunately, DSP design is less 

straightforward for other recombinant proteins, such as subunit 

vaccines.[12] Unlike for mAbs, affinity chromatography is rarely 

available for subunit vaccines, as their properties vary widely. 

Additionally, formulation of standardized sets of HCPs that are likely to 

coelute during a chromatography step is impossible. To increase 

process understanding, Disela et al. analyzed the HCP content of 

Escherichia coli lysates from different strains and expression vectors 

[13]. The HCP content was found to be 80% to 90% similar between 

lysates, leading to the use of HCP property maps to guide DSP design. 
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These property maps allow for the identification of potential critical 

HCPs by comparing their properties to the properties of the subunit 

vaccine.  

An alternative to the property maps are quantitative structure property 

relationship (QSPR) models that correlate protein properties to 

behavior under specific conditions. These models use features 

calculated from the molecular structure in regression or classification 

algorithms [14]. In In the last 25 years, a wide range of regression 

methods have been applied to predict the chromatographic behavior of 

proteins, including multi linear regression (MLR)[15–20], partial least 

squares[21,22], support vector machines[23–26], random forests[27,28], and 

Gaussian process regressions[29–31]. While traditional QSPR models 

predict chromatographic behavior of proteins for a specific resin, Cai et 

al. demonstrated a QSPR analysis combining both protein and ligand 

features to predict the protein adsorption on different mixed-mode 

resins reaching a cross validated R2 of 0.8.[27] More recently, Hartmann 

et al. trained QSPR models for predicting the partition coefficient by 

including protein, resin (ion-exchange, hydrophobic interaction, and 

mixed-mode), and mobile phase features.[32] Their models were trained 

for therapeutic proteins in their native and high molecular weight form, 

and were able to predict low, medium, and high binding conditions with 

93-95% accuracy.  

Unfortunately, most QSPR models trained to predict protein 

chromatographic behavior have only been validated for purified 

proteins. This makes it challenging to assess their accuracy for complex 

mixtures, such as host cell lysates, where many interactions occur that 

potentially change protein retention behavior. An example of more 

complex mixtures is the study by Keulen et al., where QSPR models 

were successfully trained for the prediction of ion exchange 

chromatography (IEX) retention of proteins in three component 

mixtures.[19] However, the total protein concentration of 2.5 g/L used 
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in this study is considered insufficient for notable protein interactions. 

A more representative complex mixture was used by Buyel et al..[28] 

Here, QSPR models were trained on protein elution salt concentrations 

reported in literature to predict the retention of tobacco HCPs in IEX 

and mixed mode chromatography. Estimated elution profiles of 67 

HCPs were combined and compared to an experimental chromatogram 

of a clarified extract, where a good agreement for SP Sepharose FF was 

found. Unfortunately, accuracy of specific HCPs could not be quantified 

as the experimental data does not provide elution behavior of specific 

proteins. Disela et al. performed a more quantitative study on a 

clarified lysate of the E. coli expression host, where fractions were 

collected from linear gradient experiments and analyzed by LC-

MS/MS.[20,33] Such detailed experimental characterization provides 

valuable data, but the studies are time and resource intensive. These 

efforts could be minimized by training QSPR models with data obtained 

for readily available (commercial) proteins and subsequently transfer 

the model for the prediction chromatographic behavior of HCPs in 

complex mixtures.  

To this end, there is limited knowledge on translating models trained 

on purified proteins towards complex host cell lysates. Therefore, we 

explored the transferability of a QSPR model trained on commercial 

proteins for the prediction of HCPs retention in anion exchange 

chromatography (AEX). A QSPR model was trained using linear 

gradient elution data for 13 proteins on a Q Sepharose XL column as 

used by Disela et. al..[20] We defined the performance of these models 

by testing different subsets of HCPs (including all or only monomeric 

HCPs) to identify the current limits of this approach. The work 

described in this study is a significant step towards generalizability in 

QSPR model application, thereby contributing to faster model 

deployment and cost-effective process development. 
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5.2 Methods 

5.2.1 Materials and Equipment 

The retention experiments were performed on two separate Äkta pure 

systems (Cytiva, Marlborough, USA). Both systems were equipped with 

a prepacked HiTrap Q Sepharose XL 1 mL column (Cytiva, Marlborough, 

USA) (Supplemental Table S1). All substances were purchased from 

Sigma-Aldrich (Saint Louis, USA) and buffers were prepared using 

ultrapure water filtered with the Milli-Q Advantage A10 (Merck 

Millipore, Burlington, USA). Buffer solutions at pH 7, 8, 9, and 10 were 

prepared with 20 mM NaCl (Buffer A) and 1000 mM NaCl (Buffer B) for 

running and elution. For pH 7 and 8, a 20 mM Tris-HCl solution was 

made, while for pH 9 and 10, 20 mM Ethanolamine was used. pH was 

adjusted by titration with 1 M sodium hydroxide or 1 M hydrochloric 

acid. All buffers were filtered using a 0.2 μm Membrane Disc Filter (Pall 

corporation, New York, USA) followed by 20 minutes of sonication.  

Albumin (Bovine), albumin (Human), pepsin, trypsin inhibitor A, lipase, 

α-lactalbumin, β-lactoglubulin a, glucose oxidase, lipoxygenase, 

ovotransferrin, amyloglucosidase, urease and catalase were purchased 

from Sigma-Aldrich (Saint Louis, USA). Each protein was dissolved in 

buffer A to reach a concentration of 2 g/L, after which the solutions 

were filtered using a 0.22 μm Whatman Puradisc FP 30 mm (Cytiva, 

Marlborough, USA). 

5.2.2 Linear gradient elution experiments and data 

processing 

The retention times of the selected proteins were determined for a 10 

column volume linear gradient elution from buffer A to buffer B. Each 

LGE was performed at a flowrate of 1 mL/min by injecting 200 µL 

protein solution followed by a 5 column volume wash with buffer A and 

10 column volume gradient to 100% buffer B. Columns were 
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regenerated with 0.5 M NaOH and stored in 20% Ethanol. To normalize 

the protein retention for the two systems, the normalized retention 

times (𝑉𝑅) were calculated as  

𝑉𝑅 = 𝑉𝑅,0 − 0.5𝑉𝑖𝑛𝑗 − 𝑉𝑑 − 𝑉𝑚 − 𝑉𝑤𝑎𝑠ℎ, (5.1) 

Where 𝑉𝑅,0 is the initial retention time, 𝑉𝑖𝑛𝑗 is the injection volume , 𝑉𝑑 

is the dwell volume, 𝑉𝑚 is the column void volume and 𝑉𝑤𝑎𝑠ℎ is the 

volume of buffer A used between injection and start of the gradient 

[19,33]. Finally, to make the data column independent, and allowing the 

comparison of retention times obtained for 5 mL HiTrap Q Sepharose 

XL column, the dimensionless retention time (DRT) was calculated as 

𝐷𝑅𝑇 =
𝑉𝑅

𝑉𝐺
, (5.2) 

Where 𝑉𝐺 is the gradient length, which is 10 column volumes for these 

experiments. 

5.2.3 Quantitative structure property relationship 

modeling 

Molecular structures of the commercial proteins were retrieved from 

the protein data bank [34] with the exception of trypsin inhibitor A. The 

structure for this protein was retrieved from the AlphaFold database[35] 

as the experimental structures available missed the positions of some 

atoms. The full list of the structures used can be found in Table 5.1. 

For each protein the feature sets were calculated at pH 7, 8, 9, and 10 

using the default settings of Prodes.[18] Feature redundancy was 

reduced by removing features with a Pearson correlation ≥0.9 to other 

features. Selection of which feature to remove was based on the 

cumulative cross-correlation to all other features, keeping the feature 

with the lowest score. The final feature set used for the multilinear 

regression (MLR) model was selected by sequential forward selection 

(SFS). Model accuracy was evaluated by k-fold cross validation, leaving 

out all datapoints representing one protein at a time. This was done to 
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reduce the risk of overfitting as pH independent features would be 

constant for the same protein at different pH values. The final model 

was tested using a dataset of E. coli HCP DRTs described in a previous 

article.[20] To make sure that the test data is similar to the training data, 

HCPs with any features selected for the model that were outside the 

range (below the minimum or above the maximum) of observed in the 

training data were removed from the test set.  

For the purpose of identifying areas of improvement for the QSPR 

model, feature value distributions were compared using the 

Kolmogorov Smirnov test for proteins that were over predicted, under 

predicted, or accurately predicted.[36] These HCP groups were made 

depending on the residuals, calculated by: 

𝑟𝑖 = 𝑦𝑖  − 𝑦𝑖̂, (5.3) 

where 𝑟 is the residual value, 𝑦 and 𝑦̂ are the experimental and 

predicted value respectively. Over predicted proteins are defined as 𝑟𝑖 

<-0.1 DRT, under prediction as 𝑟𝑖 >0.1 DRT and all other HCPs are 

accurately predicted. Visualization of the surface electrostatics was 

performed using Prodes.[18]  

For the purpose of training a transferable QSPR model, 13 proteins 

were selected with a pI ranging from 3 to 6.8, thereby ensuring 

chromatographic retention in AEX. From the surface electrostatic 

potentials (EP), it can be observed that the surface is predominantly 

negatively charged, except for lipoxygenase and ovotransferrin which 

also show positive patches (Figure 5.1).  
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Table 5.1: commercial proteins and the respective system used for LGE experiments 

Name PDB/AF 
model 

Molecular 
mass (kDa) 

pI 
(theoretical)* 

System 

Bovine albumin 4F5S 66.4 5.5 2 
Human albumin 1AO6 66.5 5.6 2 
Pepsin 4PEP 34.5 3.0 1 
Trypsin inhibitor A AF-P01070-

F1-model_v4 
20.1 4.4 1 

Lipase 1TRH 57.1 4.5 2 
α-lactalbumin 1F6R 14.2 4.6 2 
β-lactoglubulin a 1BSQ 18.3 4.6 1 
Glucose oxidase 1CF3 64.1 4.9 1 
Lipoxygenase 1F8N 94.4 5.9 1 
Ovotransferrin 1OVT 75.8 6.6 2 
Amyloglucosidase 6FRV 65.8 4.0 1 
Urease 3LA4 90.7 6.0 1 
Catalase 6PO0 59.8 6.8 2 

*pI was calculated using Prodes 

5.3 Results and Discussion 

Retention times for these proteins were determined for a 10 CV 

gradient length (Table 5.2, Supplemental figure S5.1), similar to the 

experimental conditions of the HCPs published elsewhere [20]. To 

maximize the value of this set of proteins, the retention time was 

measured at pH 7, 8, 9, and 10. Two datapoints are not reported, 

namely lipase at pH 10 (insufficient UV signal) and catalase at pH 8 

(technical error). The results show a longer retention time for higher 

pH values, as would be expected due to deprotonation of titratable 

amino acids. However, this trend was not observed for urease and 

lipase, where chromatographic retention remained constant while 

varying the pH value. In other work is reported that lysozyme displayed 

constant chromatographic retention for SP Sepharose resins at pH 7 

and pH 9, which was attributed to a constant global charge.[37] 

However, in the case of urease and lipase, the global charge varies in 

the pH range of 7 to 10 when calculated from the molecular structure 

by Prodes (-15 to -28 and -18 to -24, respectively). Therefore, we 

hypothesize that these proteins have preferred binding orientations 

where the local charge does remain constant. 
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Figure 5.1: Surface electrostatic potential maps at pH 7 of 13 commercial proteins. The 
blue and red color indicate positive and negative electrostatic potential (in volts), 

respectively.  

Table 5.2: Experimental retention volumes (in mL) of 13 commercial proteins at pH 7, 
8, 9, and 10 on a HiTrap Q Sepharose XL 1 mL column with a 10 column volume gradient 
from 20 to 1000 mM NaCl.  

 Retention volume [mL] 

Protein pH 7 pH 8 pH 9 pH 10 

Bovine albumin 3.42 3.95 4.34 4.51 
Human albumin 3.27 3.80 4.27 4.43 
Pepsin 6.53 6.50 6.77 6.83 
Trypsin inhibitor A 4.38 4.53 4.75 4.83 
Lipase 4.80 4.81 4.72  
α-lactalbumin 3.38 3.59 4.23 4.41 
β-lactoglobulin a 4.08 4.38 4.62 4.70 
Glucose oxidase 3.43 3.67 4.12 4.57 
Lipoxygenase 2.69 2.99 3.39 3.63 
Ovotransferrin 1.89 2.26 2.75 3.08 
Amyloglucosidase 4.58 4.75 4.98 5.12 
Urease 2.65 2.66 2.60 2.68 
Catalase 2.39  3.26 3.93 

 

5.3.1 Host cell protein retention prediction 

Cross validation was performed by iteratively removing the retention 

times of each protein at all pH values from the training set to ensure 

that prior knowledge about the specific protein was absent during 

model validation. The SFS selection method resulted in a model with 

four features and a cross-validated R2 of 0.927 (Supplemental figure 

S5.2). Of the four selected features, the protein’s isoelectric point (pI) 
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is most important for predicting the retention time. Permutating this 

feature has the greatest impact on cross validation accuracy, 

diminishing all predictive capabilities (Supplemental Table S5.2). 

However, this feature is not pH dependent cannot describe any charge 

specific behaviors. The second most important feature, the sum of all 

negative surface points does capture retention changes by varying the 

pH. Permutation of this feature results in a significant accuracy 

reduction to a cross validated R2 of 0.76. The remaining two features, 

the proline surface fraction and median negative surface 

hydrophobicity potential, have similar permutation scores of 0.88 and 

0.87, respectively. 

To explore the transferability of the model trained with commercially 

available proteins, E. coli HCPs were used as a test set. This data set 

consists of features for 836 HCPs, from which 481 HCPs (approximately 

58%) have features that are within range of the training set. Since 

QSPR models are only valid for the trained conditions, 481 HCPs were 

used for testing. With this approach, the retention time could be 

predicted with a root mean squared error (RMSE) of 0.085 using HCP 

structures predicted by AlphaFold2 (Figure 5.2A). To identifying HCPs 

that might coelute with a target protein, we believe an error of ≤5% 

to be sufficient considering a DRT between 0 and 1. This takes into 

account that the DRT describes the retention as a single value, which 

in reality is a distribution. In practice, when a target protein has a DRT 

of 0.3, the HCPs with a DRT between 0.2 and 0.4 can be considered as 

potentially coeluting. For the test set predictions, 207 (~43%) HCPs 

have an error of ≤5%.  



Chapter 5 

170 

  

5 

 

Figure 5.2: Measured (x-axis) versus predicted (y-axis) dimensionless retention time 
(DRT) of A) four features and B-D) two features. Models were validated with kfold-cross 
validation (circles) and tested on HCP DRTs (triangles), The dotted line represents a 
perfect prediction and the gray area a 5% error. A and B show the HCPs test set filtered 
for the 4 features model while C and D show the HCPs filtered on the two features. The 
test set in D is reduced to only include monomeric HCPs. 

To assess the model’s ability to generalize for new proteins, the ratio 

between the RMSE of the test and cross validation should be analyzed. 

For the current model, the test set RMSE is 3 times the cross validated 

RMSE. While this might indicate that the training set misses features 

which are essential to describe HCP retention, the model might also be 

overfitted. Therefore, a new model was trained using only the two most 

important features (isoelectric point and the sum of the negative 

surface electrostatics). For this model, the cross validated R2 was 

reduced to 0.840 (Supplemental figure S5.2) while the test set was 
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predicted with a RMSE of 0.07 (Figure 2B). By eliminating the two least 

important features, overfitting was significantly reduced (test RMSE is 

1.5 times the cross validated RMSE). This also increased the number 

of accurately predicted HCPs to 246 (~51%) HCPs, which is a 11 

percent point improvement. For this test set, the filtering criteria were 

based on the four feature ranges meaning that the same 481 HCPs 

were used despite the feature adjustment. Filtering based on the range 

of two features increases the test set size to 572 HCPs, of which 288 

(~50%) can be predicted with an error of ≤5% (Figure 5.2C). 

5.3.2 HCP structural representation 

It should be noted that DRTs of HCPs are predicted using monomer 

representations obtained from AlphaFold2. Therefore, the QSPR model 

does not take into account the complex dynamics of a lysate mixture, 

in which many interactions may occur. Still, the model is capable of 

predicting the DRT of 288 HCPs. The structural representations of 

proteins that are actually monomeric are expected be more 

representative. Therefore, the model with two features was also tested 

on 77 of the 572 HCPs that are annotated as monomer in Uniprot. 

Surprisingly, the subset performed similar to the complete HCP test set 

with a test RMSE of 0.073 and ~43% predictions with ≤5% error 

(Figure 5.2D). This suggests that the lack of interaction information 

about the HCPs does not limit the current model’s accuracy. The two 

features used in the model describe the protein globally and might 

therefore not capture the required intricacies. A similar phenomenon 

was observed for the proteins presumed to be homodimers 

(Supplemental Figure S5.3, Supplemental Table S5.3). For this subset 

of HCPs, predictions using monomer structures (RMSE: 0.071) 

performed similar to homodimer representations (RMSE: 0.068).  
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5.3.3 Model improvement strategies  

We have shown that a QSPR model trained with 50 retention times 

obtained for 13 proteins at various pH values predicted 288 HCPs with 

an error ≤5% using only two features. While this is a significant part 

of the available HCP retention times, application of QSPR modeling for 

in silico process design would require accurate prediction of all 

detectable HCPs. To identify possibilities to enhance model 

performance, the test set predictions were divided into overpredicted 

(181 HCPs), underpredicted (103 HCPs), and accurately predicted (288 

HCPs). For these categories, feature value distributions were analyzed 

to identify potential biases in the model towards features that were not 

selected for the QSPR model (Supplemental Table S5.4). For a feature 

that does not contribute to any bias, it can be expected that the 

distribution over the three sets is similar, which can be observed for 

the molecular weight (Figure 5.3A). A feature that shows great 

differences in distribution is the standard deviation of the surface 

electrostatics (Figure 5.3B), with Kolmogorov-Smirnov (KS) test values 

of 0.23 and 0.22 for under- and overpredicted HCPs, respectively. For 

underpredicted HCPs, a generally higher standard deviation is observed 

compared to the accurately predicted HCPs, while for overpredicted 

HCPs this feature tends to be lower. This indicates that the model is 

lacking information on deviations in surface electrostatics. For the 

training set, the feature range (0.6 to 1.2) is much smaller compared 

to the range in the test set (0.4 to 1.6) (Supplemental Figure S5.4). 

Therefore, expanding the training set with commercial proteins that 

have a wider range of this feature could improve model performance. 

For the features that were selected for the model, the pI showed a 

notable difference in the distributions (Figure 5.3C). Especially for pI 

>4.5 the feature distribution starts to differ, which indicates that there 

is a bias for proteins in this pI range. It is therefore not only important 
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to extend the training set based on the surface electrostatics deviation, 

but also selecting proteins with a pI >4.5. 

 

Figure 5.3: Cumulative distribution plots of the 572 HCPs for A) molecular weight, B) 
standard deviation of the surface electrostatics, and C) the isoelectric point. The 
accurate, over and under predicted HCPs are represented by blue, orange and green 
respectively.  

While extending the training set is essential to improve model quality 

and robustness, design of novel features is considered equally 

important. Plotting the surface electrostatics of the three monomeric 

HCPs with the lowest and highest error reveals positively charged 

surface areas for the under predicted HCPs (Figure 5.4). Such positive 

patches are not found on the surface of the three accurately predicted 

HCPs. The presence of these patches contribute to an increase in the 

surface electrostatic potential standard distribution feature, as can be 

observed in Figure 4. Additionally, favorable binding orientations might 

be more prevalent in the underpredicted HCPs, and these phenomena 

cannot be captured by the global features used in this study.[38,39] 

Therefore, designing specific local features representing binding 

orientations would be essential to improve model performance. For 

chromatography specifically, local surface features have been designed 

as either defining patches or projecting properties on a plane.[15,17,40] 

However, the contribution of preferred binding orientations on 

adsorption differs between proteins and pH.[37,41,42] This means each 

protein requires an individual assessment to identify possible binding 

orientations. This can be done with state-of-the-art molecular 

dynamics simulations coupled to advanced sampling methods.[39] 
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Unfortunately, these methods are too computationally expensive to 

perform on the scale of a host cell proteome. As such, future research 

should focus on identifying computationally efficient methods to score 

surface patches based on interaction likelihood. This may also include 

combining information from patches distant from each other, as ligands 

with flexible linkers (e.g., XL resin used in this study) probably reach 

multiple binding sides of the protein.[37] 

 

Figure 5.4: Surface electrostatics at pH 7 of monomer HCPS that are predicted most 
accurate (top), greatest over prediction (middle) and greatest under prediction (bottom). 
The blue and red color indicate positive and negative electrostatic potential (in volt).  

Finally, the choice of regression method could also influence the 

accuracy. Even though the validation on the training data was 

satisfactory with a cross validated R2 of 0.84, assumptions associated 

with a MLR model might limit the accuracy.[43] Especially the 

assumption that protein retention has a linear dependency on the 

features. Alternative non-linear regression methods might be a solution 

to capture non-linear dependencies between protein properties and 

retention behavior. In recent literature, algorithms such as random 

forest regression, support vector regression, or Gaussian process 

regression, have been applied for accurate prediction (R2 > 0.85) of 
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different attributes corresponding to chromatographic behavior.[25,27–

30,32] Unfortunately, increasing model complexity comes with a risk of 

overfitting, especially when using small training datasets.[44]  

5.4  Conclusion and outlook 

In this work, we showcased a workflow to predict retention behavior of 

572 E. coli HCPs for a Q Sepharose XL column using experimental data 

obtained for 13 commercial proteins under similar experimental 

conditions. The described QSPR model with two molecular features 

(isoelectric point and standard deviation of the surface electrostatics) 

can predict a total of 288 (~50% of the total test set) HCPs with an 

error of ≤5% DTR. Interestingly, predictions of the monomer HCP 

subset did not yield greater accuracy than the complete dataset, which 

includes proteins that may form multimers. This suggests that the 

model handles 3D structural inaccuracies regarding multimerization 

well.  

We identified significant differences for the features representing 

electrostatic deviations on the surface by comparing the feature value 

distributions for HCPs with an error of ≤5% and >5%. Additionally, it 

was observed that for proteins with a pI higher than 4.5, HCP retention 

time is more likely to be underpredicted. Therefore, it is suggested to 

extend the current training set with proteins that have a pI >4.5 and 

that contribute to a wider range of surface electrostatic deviations. 

Additionally, novel features representing preferred binding orientations 

are required to better describe charge distributions and further 

increase model accuracy. Despite these proposed improvements, this 

work provides insight into the use of a small dataset for the prediction 

of HCP retention behavior, thereby accelerating chromatography resin 

selection for new products. 
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5.6 Supporting Information 

Supplemental Table S5.1: System properties 

 

 

Supplemental Table S5.2: Model parameters for the QSPR model with four features.  

 
Coefficient Permutation R2 

Isoelectric point -0.539 -0.27 
SurfEpNegSumAverage -0.231 0.76 
PROSurfFrac 0.089 0.88 
SurfNegMhpMean -0.123 0.87 
intercept 0.813 

 

 

System 1 2 

Dead volume [mL] 0.246 0.239 
Dwell volume [mL] 1.109 1.109 
Void volume [mL] 0.253 0.249 
Column length [mm] 7 
Column diameter [mm] 25 
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Supplemental Figure S5.1: Chromatograms of all 
proteins at pH 7 (20 mM to 1000 mM NaCl in 10 column 
volumes, flowrate = 1 mL/min). The blue line shows the 
absorbance, and the red line shows the conductivity. The 
red dots indicate the peak maxima above which the 
specific retention volume is noted 
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Supplemental figure S5.2: QSPR model cross validation results of the training set. 
Measured (x-axis) versus predicted (y-axis) dimensionless retention time (DRT) of a 
QSPR model trained on four (A) or two (B) features. The model was validated with kfold-
cross validation. 

 

Supplemental figure S5.3: Homodimer HCP predictions using A) monomer structure 
and B) predicted homodimer structure. Measured (x-axis) versus predicted (y-axis) 
dimensionless retention time (DRT) of a QSPR model trained on two features. The model 
was validated with kfold-cross validation (circles) and tested on HCP DRTs (triangles). 
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Supplemental Table S5.3: model features for homodimer HCPs calculated from a 
monomer or homodimer structure. 

 Monomer structure Homodimer structure 

ID pI SurfEpNegSumAverage pI SurfEpNegSumAverage 

ARH97593 5.03 -19378.1 5.363 -54988.1 
ARH96837 5.215 -19917.7 5.738 -52527.1 
ARH96219 5.251 -29950.9 5.403 -87292.2 
ARH96022 5.024 -20139.4 5.279 -55287.8 
ARH98242 6.133 -14919.8 6.218 -43961.7 
ARH98543 4.504 -11312.7 5.057 -31176.7 
ARH99203 4.906 -22561.4 5.569 -49525.7 
ARH97151 3.859 -12130.3 4.882 -25314.9 
ARH98083 5.312 -12210.7 5.926 -27508.5 
ARH97695 4.756 -19305.6 4.815 -45812.2 
ARH96704 4.769 -15453.2 5.419 -34216.3 
ARH99670 4.345 -30868.3 4.875 -88303.6 
ARH98250 5.324 -18458.5 5.405 -49684.4 
ARH97968 5.05 -21129.7 5.818 -54097.8 
ARH97818 4.476 -17344.4 5.325 -41168.1 
ARH97190 5.117 -21365.5 5.419 -47288.2 
ARH99778 5.228 -10979.7 5.596 -24431.9 
ARH97386 4.965 -12408.7 5.039 -43649.2 
ARH95908 5.711 -11634.3 6.177 -21775.1 

ARH98111 5.327 -19589.1 5.174 -74270.2 
ARH97701 4.547 -20670 5.268 -43418.9 
ARH95833 5.534 -13658.4 5.851 -39497.5 
ARH96141 5.817 -14686.5 5.943 -29570 
ARH97716 5.702 -11011.5 5.445 -33338.1 
ARH97717 4.463 -31109.7 5.378 -75546 
ARH98656 4.572 -24523.5 4.8 -63261.4 
ARH98155 5.576 -17202 5.545 -46233 
ARH97457 4.779 -17535.9 5.086 -46810.2 
ARH97452 5.258 -47150 5.749 -132326 
ARH97703 4.315 -39709.6 4.854 -87131.2 
ARH95854 4.969 -37135.4 5.363 -117947 
ARH96954 3.943 -95116.2 4.418 -297729 
ARH99014 4.281 -16082.2 4.651 -42222.3 
ARH99185 4.951 -28103.8 5.415 -71048.4 
ARH98432 4.825 -18669.4 5.571 -41188.3 
ARH95944 4.583 -16556.3 4.928 -44904.7 
ARH98173 5.034 -12588.2 5.604 -29113.7 
ARH99034 3.884 -27690.8 4.326 -85279.6 
ARH95789 4.832 -15249.3 4.915 -46949.2 
ARH95876 4.031 -53997.7 4.439 -140268 
ARH96669 4.739 -32529.6 5.188 -93616.6 
ARH95939 4.079 -47555.9 4.541 -112189 
ARH96404 4.866 -46565.5 5.463 -124958 
ARH98978 5.723 -17631.3 5.767 -53215.5 
ARH97914 4.571 -22863.8 5.051 -82901.9 
ARH97435 4.366 -108507 4.747 -307185 
ARH99054 4.754 -16038 5.219 -37074.7 
ARH99823 4.807 -29248.7 4.904 -87391.2 
ARH99236 5.592 -27242.8 6.029 -60161.9 
ARH97789 4.898 -43657.1 5.465 -134692 
ARH98367 4.602 -13063.4 5.38 -29087.4 
ARH97611 5.065 -35322.2 5.329 -93082.4 
ARH96870 5.429 -18006.2 5.659 -41534.4 
ARH99681 5.35 -31069.8 5.825 -71970.3 
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ARH99115 4.395 -14894.1 4.921 -35612.9 
ARH96780 5.432 -15651 5.236 -59268.5 
ARH96098 4.876 -21853.3 5.82 -40398.2 
ARH97261 5.058 -19510.8 5.305 -59681.8 
ARH98634 5.426 -16596.5 5.675 -52380.6 
ARI00054 4.568 -23742.5 5.024 -68950.9 
ARH95959 5.301 -13205.1 5.6 -46407 
ARH98295 4.479 -15914.7 5.032 -34093.8 

ARH97371 4.815 -17410.2 5.465 -44325.3 
ARH97928 5.583 -11288.2 6.42 -19109.5 
ARH96965 4.394 -18618.2 4.954 -55026.2 
ARH98514 4.968 -23414.1 5.447 -67909.5 
ARH97394 6.339 -11407.5 6.286 -26101.6 
ARH99841 4.774 -24142.1 5.151 -55434.2 
ARH99712 4.802 -21576.2 5.16 -49661.3 
ARH99585 5.18 -12451.1 5.567 -30734.5 
ARH99442 5.05 -36027.7 5.067 -95771.2 
ARH97497 5.479 -15038.5 5.14 -51817.7 
ARH99358 4.674 -16572.2 4.935 -53669.9 
ARH98673 4.61 -28557.7 5.12 -79624.2 
ARH97996 5.213 -25358.9 5.203 -61874.6 
ARH99658 5.332 -11282.8 5.849 -29860.3 
ARH96706 4.826 -39849.9 4.997 -107115 
ARH98524 4.833 -50854.5 5.309 -140219 
ARH99426 5.737 -22505.1 5.486 -69686.4 
ARH99592 5.244 -12799.5 5.158 -38905.6 
ARH98103 5.392 -43513.7 5.836 -116498 
ARH97557 5.271 -11849.7 5.643 -27593 
ARH98612 4.552 -87285 4.967 -236979 
ARH98399 5.463 -12813.3 5.677 -33845.8 
ARH99828 4.663 -12813.9 4.779 -41634.1 
ARH99628 5.548 -15148.5 5.943 -41601.1 
ARH99392 5.017 -57800.4 5.478 -146690 
ARH98148 4.706 -56375.4 5.073 -156174 
ARH96683 4.814 -16366.8 5.224 -41373.5 
ARH97345 4.352 -47627.7 4.821 -145974 
ARH99626 4.803 -11576.2 5.253 -29441.6 
ARH96265 4.79 -16881.2 5.524 -44887.5 
ARH95810 4.604 -24506.5 5.009 -68341.8 
ARH99655 5.555 -37215.3 5.637 -131533 
ARH97615 5.115 -16519 5.237 -51034.6 
ARH96215 4.428 -84757.1 4.907 -257712 
ARH98664 4.316 -14932.3 4.71 -48865.2 
ARH98193 5.18 -17889.8 6.016 -31891.2 
ARH96414 5.461 -14774 5.652 -40725.6 
ARH99407 4.774 -29559.8 5.356 -69585.5 
ARH95981 4.358 -65018.7 4.941 -153146 
ARH99258 5.171 -14991.2 5.561 -46578.1 
ARH99121 5.175 -28339.8 5.573 -77386.4 
ARH96866 4.491 -21356.9 4.91 -59684.8 
ARH96902 5.277 -29660.4 5.235 -107112 
ARH99877 4.239 -18056.2 4.656 -53798.7 
ARH99441 5.208 -21168.5 5.899 -45069.7 

ARH99624 5.532 -25967 5.473 -93404.3 
ARH96155 5.846 -24498.1 6.158 -60816 
ARH98443 5.808 -16133.1 5.807 -48766.6 
ARH96911 4.91 -27304.9 4.968 -81314.4 
ARH96956 4.137 -36967.3 4.63 -95611.4 
ARH98479 4.815 -50718.9 4.93 -168448 



Using generalized quantitative structure property relationship (QSPR) models to 
predict host cell protein retention in ion-exchange chromatography 

185 

 

5 

ARH99443 4.943 -23290.8 5.567 -66256.8 
ARH96347 4.981 -31162.6 5.338 -90789.8 
ARH97343 5.761 -16723.6 6.094 -33816.2 
ARH96664 4.762 -27572.8 5.161 -69301.9 
ARH98064 4.114 -98919.9 4.581 -302197 
ARH97694 4.815 -24038.7 4.872 -72766.9 
ARH98256 4.094 -26668.3 4.484 -69073.5 
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Supplemental Table S5.4: Kolmogorov-Smirnov (KS) test results for under and over 
predicted HCPs against accurately predicted HCPs. 

 Under predicted Over predicted 

feature KS value p value KS value p value 

Molecular weight 0.061 0.921 0.072 0.582 
Isoelectric point 0.262 0 0.155 0.008 
Dipole 0.212 0.002 0.156 0.008 
Formal charge 0.201 0.004 0.188 0.001 
Average charge 0.205 0.003 0.185 0.001 
Area 0.086 0.591 0.123 0.062 
ALASurfFrac 0.09 0.535 0.19 0.001 
ARGSurfFrac 0.121 0.199 0.151 0.011 
ASNSurfFrac 0.112 0.269 0.137 0.027 
ASPSurfFrac 0.125 0.169 0.043 0.977 
CYSSurfFrac 0.054 0.97 0.15 0.012 
GLNSurfFrac 0.073 0.784 0.046 0.963 
GLUSurfFrac 0.201 0.004 0.181 0.001 
GLYSurfFrac 0.08 0.685 0.157 0.007 
HISSurfFrac 0.149 0.061 0.164 0.004 
ILESurfFrac 0.12 0.204 0.067 0.668 
LEUSurfFrac 0.123 0.182 0.046 0.964 
LYSSurfFrac 0.109 0.304 0.234 0 
METSurfFrac 0.06 0.932 0.228 0 

PHESurfFrac 0.162 0.033 0.103 0.174 
PROSurfFrac 0.071 0.802 0.111 0.118 
SERSurfFrac 0.107 0.319 0.051 0.912 
THRSurfFrac 0.066 0.865 0.068 0.654 
TRPSurfFrac 0.11 0.294 0.101 0.188 
TYRSurfFrac 0.141 0.087 0.133 0.035 
VALSurfFrac 0.126 0.163 0.068 0.651 
NSurfPoints 0.093 0.493 0.118 0.081 
Shape max 0.052 0.978 0.166 0.004 
Shape min 0.06 0.927 0.058 0.824 
SurfEpMaxFormal 0.275 0 0.112 0.114 
SurfEpMinFormal 0.108 0.311 0.208 0 
SurfEpMeanFormal 0.241 0 0.194 0 
SurfEpTrimeanFormal 0.251 0 0.194 0 
SurfEpMedianFormal 0.238 0 0.193 0 
SurfEpSumFormal 0.137 0.103 0.149 0.013 
SurfEpStdFormal 0.183 0.011 0.218 0 
NSurfPosEpFormal 0.278 0 0.133 0.035 
SurfEpPosMeanFormal 0.284 0 0.11 0.124 
SurfEpPosTrimeanFormal 0.273 0 0.124 0.06 
SurfEpPosMedianFormal 0.268 0 0.103 0.171 
SurfEpPosSumFormal 0.28 0 0.12 0.074 
SurfEpPosStdFormal 0.269 0 0.104 0.163 
NSurfNegEpFormal 0.061 0.923 0.116 0.092 
SurfEpNegMeanFormal 0.208 0.002 0.196 0 
SurfEpNegTrimeanFormal 0.222 0.001 0.192 0 
SurfEpNegMedianFormal 0.226 0.001 0.193 0 
SurfEpNegSumFormal 0.138 0.1 0.156 0.008 
SurfEpNegStdFormal 0.115 0.244 0.242 0 
SurfMhpMax 0.126 0.162 0.117 0.088 
SurfMhpMin 0.076 0.742 0.055 0.864 
SurfMhpMean 0.189 0.007 0.116 0.093 
SurfMhpTrimean 0.192 0.006 0.1 0.196 
SurfMhpMedian 0.187 0.008 0.099 0.208 
SurfMhpSum 0.064 0.886 0.081 0.435 
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SurfMhpStd 0.145 0.074 0.16 0.006 
NSurfPosMhp 0.13 0.138 0.145 0.016 
SurfPosMhpMean 0.156 0.043 0.139 0.025 
SurfPosMhpTrimean 0.137 0.103 0.167 0.003 
SurfPosMhpMedian 0.156 0.044 0.179 0.001 
SurfPosMhpSum 0.119 0.213 0.189 0.001 
SurfPosMhpStd 0.099 0.411 0.112 0.112 
NSurfNegMhp 0.057 0.948 0.104 0.163 

SurfNegMhpMean 0.153 0.051 0.139 0.024 
SurfNegMhpTrimean 0.185 0.01 0.112 0.113 
SurfNegMhpMedian 0.156 0.044 0.101 0.194 
SurfNegMhpSum 0.045 0.995 0.084 0.39 
SurfNegMhpStd 0.117 0.225 0.047 0.958 
SurfEpMaxAverage 0.26 0 0.104 0.163 
SurfEpMinAverage 0.098 0.431 0.192 0 
SurfEpMeanAverage 0.232 0 0.179 0.001 
SurfEpTrimeanAverage 0.216 0.001 0.185 0.001 
SurfEpMedianAverage 0.226 0.001 0.182 0.001 
SurfEpSumAverage 0.138 0.099 0.128 0.046 
SurfEpStdAverage 0.208 0.002 0.225 0 
NSurfPosEpAverage 0.257 0 0.123 0.063 
SurfEpPosMeanAverage 0.274 0 0.107 0.14 
SurfEpPosTrimeanAverage 0.261 0 0.102 0.182 
SurfEpPosMedianAverage 0.266 0 0.103 0.172 
SurfEpPosSumAverage 0.276 0 0.129 0.044 
SurfEpPosStdAverage 0.266 0 0.105 0.156 
NSurfNegEpAverage 0.073 0.778 0.107 0.141 
SurfEpNegMeanAverage 0.188 0.008 0.189 0.001 
SurfEpNegTrimeanAverage 0.194 0.006 0.189 0.001 
SurfEpNegMedianAverage 0.184 0.01 0.191 0 
SurfEpNegSumAverage 0.118 0.222 0.127 0.05 
SurfEpNegStdAverage 0.112 0.269 0.219 0 
ShellEpMaxFormal 0.201 0.004 0.065 0.703 
ShellEpminFormal 0.091 0.515 0.213 0 
ShellEpMeanFormal 0.206 0.003 0.18 0.001 
ShellEpTrimeanFormal 0.224 0.001 0.179 0.001 
ShellEpMedianFormal 0.212 0.002 0.184 0.001 
ShellEpSumFormal 0.212 0.002 0.18 0.001 
ShellEpStdFormal 0.121 0.196 0.183 0.001 
NShellPosEpFormal 0.251 0 0.06 0.79 
ShellEpPosMeanFormal 0.146 0.069 0.093 0.271 
ShellEpPosTrimeanFormal 0.111 0.282 0.071 0.592 
ShellEpPosMedianFormal 0.134 0.115 0.073 0.556 
ShellEpPosSumFormal 0.233 0 0.062 0.764 
ShellEpPosStdFormal 0.203 0.003 0.084 0.384 
NShellNegEpFormal 0.242 0 0.083 0.405 
ShellEpNegMeanFormal 0.178 0.014 0.202 0 
ShellEpNegTrimeanFormal 0.176 0.015 0.19 0.001 
ShellEpNegMedianFormal 0.183 0.011 0.182 0.001 
ShellEpNegSumFormal 0.191 0.007 0.177 0.002 
ShellEpNegStdFormal 0.091 0.514 0.176 0.002 
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Supplemental figure S5.4: Cumulative distribution plot of the SurfEpStdAverage for 
the training (Blue) and test (Orange) sets. 
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Abstract 

Hydrophobic interaction chromatography (HIC) is a widely used 

separation method in biopharmaceutical downstream processing. For 

process development (PD), silico mechanistic modeling can be used to 

reduce timelines by simulating protein transport and adsorption during 

chromatography. Accuracy of the parameters used in the model is 

essential for successful deployment. This work compares three 

isotherm parameter determination methods for a simplified linear HIC 

isotherm. Specifically, the Parente and Wetlaufer method, the 

Yamamoto method, and the inverse method. These methods were 

tested for two proteins, using the same linear gradient elution (LGE) 

experiments. Accuracy of the obtained parameters was determined via 

cross-validation using three LGEs. Finally, the obtained parameters 

were tested for alternative linear gradients with varying initial and final 

salt concentrations. While all results were comparable, parameters 

obtained by the inverse method showed the greatest accuracy. This 

method does require high quality chromatograms, while the other 

methods only need retention volumes. Therefore, it is less suitable 

when signal quality is compromised. The Yamamoto method showed 

similar robustness as the inverse method outperforming the Parente 

and Wetlaufer method. Therefore, the Yamamoto method is a good 

alternative for parameter determination. This comparison offers 

practical guidance for method selection for isotherm determination, 

thereby enabling reliable mechanistic modeling of HIC processes.  
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6.1 Introduction 

Hydrophobic interaction chromatography (HIC) is a separation method 

widely used at different stages biopharmaceutical downstream 

processing (DSP).[1,2] It is specifically applied as an orthogonal method 

for ion exchange chromatography (IEX), as HIC separates based on 

surface hydrophobicity rather than surface charge.[2] Protein affinity is 

driven by solvophobic effects, which can be enhanced by anti-

chaotropic ions or reduced by chaotropic ions. These effects need to be 

optimized to establish a robust separation process. Therefore, process 

development involves an elaborate screening of operation conditions.  

To accelerate the design of a chromatographic purification step, in silico 

tools, in combination with high throughput experimentation can be 

deployed.[3–5] Recently, mechanistic models (MMs) have proven to be 

valuable by increasing process understanding.[6–13] These models can 

describe the flow and mass transfer of proteins through a 

chromatography column. The dynamic adsorption of proteins is 

captured by adsorption isotherms that describe the equilibrium 

between the protein concentration in the solid and liquid phase.[14] For 

HIC, the isotherm developed by Mollerup[15–17] is commonly applied to 

simulate protein adsorption under varying salt concentrations.[18–20] 

This isotherm is based on the stochiometric displacement model and 

uses an activity coefficient to incorporate salt dependency.[17] To apply 

this isotherm, several parameters require to be determined, which can 

be done using a set of linear gradient elution (LGE) experiments or 

batch adsorption experiments. The accuracy of these parameters is 

essential to ensure successful protein adsorption modeling.  

The inverse method (IM) is a common method to estimate isotherm 

parameters and has been proven to provide accurate simulations for 

different chromatographic modes.[12,21–25] IM fits the result of the 

mechanistic model to experimental chromatograms and updates the 
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isotherm parameters to minimize the difference between model and 

experiment. Therefore, high quality chromatograms of pure 

components are required for accurate parameter estimation. 

Alternatively, isotherm parameters can be estimated from protein 

retention volumes. The Parente and Wetlaufer (PW) method (non-

linear) and the Yamamoto method (linear) are correlations that relate 

LGE conditions to retention volumes.[26,27] While both methods are 

developed for IEX, they have been adapted for HIC in recent 

literature.[20,28] As no iterative simulations are required, using the 

correlations is more computational efficient which is beneficial when 

large datasets are analyzed.[29] However, the correlations only allow 

determination of the linear part of the isotherm, therefore it can only 

be used under low loading conditions. 

In this work we compare the accuracy of isotherms obtained using IM, 

PW, and Yamamoto using the same LGE experiments. For this we apply 

the transport dispersive model and the linear part of the isotherm 

developed by Mullerup to model the adsorption behavior of two 

proteins under dilute conditions. The model parameters are 

subsequently validated via cross validation and compared to 

experimental chromatograms. Quantitative analysis is performed 

based on differences in peak maxima and peak widths. Finaly, the 

robustness of the estimated isotherm parameters are tested under 

alternative salt gradient conditions. Consequently, this work enables 

informed method selection, enhancing reliability of mechanistic 

modeling of HIC processes. 

6.2 Methods 

6.2.1  Materials and Equipment 

The retention experiments were performed on an Äkta pure system 

(Cytiva, Marlborough, USA), equipped with a prepacked HiTrap Butyl 

FF 1 mL column (Cytiva, Marlborough, USA) (Appendix A1). All 
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substances were purchased from Sigma-Aldrich (Saint Louis, USA) and 

buffers were prepared using ultrapure water filtered with the Milli-Q 

Advantage A10 (Merck Millipore, Burlington, USA). Buffer solutions 

were prepared using 50 mM sodium phosphate and a range of 

ammonium sulfate concentrations (2.0 M, 1.5 M, 1.3 M, 1.1 M, 0.8 M 

and 0M) to be adjusted to pH 7 using 1 M sodium hydroxide. All buffers 

were filtered using a 0.2 μm Membrane Disc Filter (Pall corporation, 

New York, USA) followed by 20 minutes of sonication.  

Chymotrypsinogen A and glucoamylase were purchased from Sigma-

Aldrich (Saint Louis, USA). For each experiment, proteins were 

dissolved in the respective high salt buffer to reach a concentration of 

2 mg/mL, after which the solutions were filtered using a 0.22 μm 

Whatman Puradisc FP 30 mm (Cytiva, Marlborough, USA).  

6.2.2 System and column characterization 

To determine relevant system and column properties, a set of pulse 

experiments with a flowrate of 1 mL/min were performed using a set 

of nonbinding tracers as described by Schmidt-Traub et al..[30] Dextran 

DXT180 (Agilent, Santa Clara, USA) and dextran DXT2000k (Toronto 

Research Chemicals, Toronto, Canada) were used as penetrating and 

non-penetrating tracers, respectively. The system dwell volume, 

describing the volume between the mixing chamber and the column 

inlet was determined as described by Keulen et. al..[11] A complete list 

of the determined properties can be found in Supplemental Table S1. 

6.2.3 Linear gradient elution experiments 

A set of LGE experiments were performed with 10, 15, 20, 30 and 40 

column volume (CV) gradient lengths with a flowrate of 1 mL/min. After 

equilibration with the high salt buffer, 200 µL protein solution was 

injected followed by a 5 CV wash and the start of the salt gradient. 

Upon reaching the end of the gradient, the column was washed with 

10 CV low salt buffer. During the experiments, UV absorbance was 
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measured at 280 nm and the system was operated using UNICORN 

version 7.5 software. For the chymotrypsinogen LGEs from 1.5 M to 0 

M ammonium sulfate, the chromatograms were deconvoluted in python 

using two gaussians that were parameterized by scipy.minimize.  

6.2.4 Mechanistic model 

Simulation of the adsorption behavior of the proteins during the 

chromatographic experiments was performed using equilibrium 

transport dispersive model combined with the linear driving force 

(Equation 6.1), as described in chapter 3.[31]  

𝜕𝐶𝑖

𝜕𝑡
+ 𝐹

𝜕𝑞𝑖

𝜕𝑡
= −𝑢

𝜕𝐶𝑖

𝜕𝑥
+ 𝐷𝐿,𝑖

𝜕2𝐶𝑖

𝜕𝑥2
 (6.1) 

𝜕𝑞𝑖

𝜕𝑡
= 𝐾𝑜𝑣,𝑖(𝐶𝑖 − 𝐶𝑒𝑞,𝑖

∗ ), (6.2) 

𝐾𝑜𝑣,𝑖 = [
𝑑𝑝

6𝑘𝑓,𝑖

+
𝑑𝑝

2

60𝜀𝑝𝐷𝑝,𝑖

]

−1

 (6.3) 

Here, the protein concentration in the liquid and solid phase are 

denoted as 𝐶 and 𝑞, respectively, while 𝐶𝑒𝑞
∗  is the liquid phase 

concentration at equilibrium. The phase ratio is defined as 𝐹 = (1 −

𝜀𝑏)/𝜀𝑏, where 𝜀𝑏 is the bed porosity, 𝑢 is the interstitial velocity of the 

mobile phase and 𝐷𝐿 is the axial dispersion coefficient. Time and space 

are represented by 𝑡 and 𝑥, respectively. The overall mass transfer 

coefficient (𝐾𝑜𝑣) is defined as the summation of the mass transfer 

resistance in the film and within the pores. Here, 𝑑𝑝 is the particle 

diameter, 𝐷𝑝 is the effective pore diffusivity and 𝜀𝑝 is the intraparticle 

porosity. The film mass transfer coefficient is defined as 𝑘𝑓 = 𝐷𝑓𝑆ℎ/𝑑𝑝 

where 𝑆ℎ is the Sherwood number and 𝐷𝑓 is the free diffusivity which 

is calculated using empirical correlation (equation 6.4) based on the 

molecular mass (𝑀𝑊). [32] 

𝐷𝑓 = 260 ∗ 10−11(𝑀𝑊−1/3). (6.4) 
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6.2.5 Hydrophobic interaction isotherm 

In this work, the commonly used HIC isotherm developed by 

Mullerup[15–17] is used. This isotherm is defined as: 

𝑞

𝑐𝑝
= 𝐾𝑒𝑞 (

Λ

𝑐
)

𝑛

(1 −
𝑞

𝑞𝑚𝑎𝑥
)

𝑛

exp (𝐾𝑠𝑐𝑠 + 𝐾𝑝𝑐𝑃),  (6.5) 

where Λ is the ligand concentration, 𝑛 is the stochiometric coefficient, 

𝑐 is the molar concentration in the pores. 𝐾𝑒𝑞, 𝐾𝑠 and 𝐾𝑝 are the 

equilibrium constant, salt and protein interaction parameters, 

respectively. Finally, 𝑞 and 𝑞𝑚𝑎𝑥 are the current and maximum 

concentration in the solid phase. 

This isotherm allows for some simplifications, since 𝐾𝑝 has been proven 

to have minor impact, this parameter can be assumed to be 

zero.[20,33,34] Additionally, assuming that 𝑐 remains constant[19,28,35] 

allows for an alternative definition of the equilibrium constant as 𝐾𝑒𝑞
′ ≈

𝐾𝑒𝑞(Λ/c)𝑛 resulting in the following: 

𝑞

𝑐𝑝
= 𝐾𝑒𝑞

′ (1 −
𝑞

𝑞𝑚𝑎𝑥
 )

𝑛

exp (𝐾𝑠𝑐𝑠).  (6.6) 

Finally, for low loading conditions, it can be assumed that 𝑞 ≪ 𝑞𝑚𝑎𝑥, 

resulting in (1 − 𝑞/𝑞𝑚𝑎𝑥)𝑛 ≈ 1. Applying this to equation 6.6 yields the 

final form of the linear isotherm used in this study, which is defined as: 

𝑞

𝑐𝑝
= 𝐾𝑒𝑞

′ exp (𝐾𝑠𝑐𝑠)..  (6.7) 

6.2.6 Isotherm parameter determination  

To apply isotherm equation 6.7, accurate determination of 𝐾𝑒𝑞
′  and 𝐾𝑠 

are essential. In this work, we will compare three methods which 

require a set of linear gradient elution (LGE) experiments. 

6.2.6.1 Parente and Wetlaufer 

The first approach is based on the Parente and Wetlaufer regression 

formula, originally developed for ion-exchange chromatography.[26] 

Chen et al.[36] adapted this formula for HIC: 
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𝑉𝑅,𝑔 =
𝑉𝐺

−𝛽∙(𝑐𝑠,𝑓−𝑐𝑠,𝑖)
𝑙𝑛 (1 + 𝑉𝑚

−𝛽∙(𝐶𝑠,𝑓−𝐶𝑠,𝑖)

𝑉𝐺
𝑒𝑎+𝛽∙𝑐𝑠,𝑖), (6.8) 

where 𝑉𝑅,𝑔 is the corrected retention volume (𝑉𝑅,𝑔 = 𝑉𝑅 − 𝑉𝑚 − 0.5𝑉𝑖𝑛𝑗 −

𝑉𝑑𝑤𝑒𝑙𝑙), 𝑉𝐺 is the gradient length and 𝑉𝑚 is the void volume. 𝛼 and 𝛽 are 

fitted using the retention volumes at different gradient lengths. The 

fitted parameters relate to the retention factor by: 

ln(𝑘′) = 𝛼 + 𝛽𝑐𝑠, (6.9) 

As 

𝑘′ =
𝑡𝑅−𝑡0

𝑡0
= 𝐹𝐴𝑖, (6.10) 

where 𝑡𝑅 and 𝑡0 are the time of retention and start of the gradient, 

respectively. 𝐴𝑖 is the initial slope of the isotherm, which is equal to 

equation 6.7. As such, equation 8 can be rewritten as follows: 

𝑉𝑅,𝑔 =
𝑉𝐺

−𝐾𝑠(𝑐𝑠,𝑓−𝑐𝑠,𝑖)
∗ ln(1 + 𝑉𝑚𝐹

−𝐾𝑠(𝑐𝑠,𝑓−𝑐𝑠,𝑖)

𝑉𝐺
𝐾𝑒𝑞

′ 𝑒𝐾𝑠𝑐𝑠,𝑖  ), (6.11) 

6.2.6.2 Yamamoto 

The second method is based on the Yamamoto approach, which is like 

the previous method originally developed for ion-exchange[10,27,37]. 

Recently, Hess et al. adapted this method for the regression of HIC 

isotherm parameters.[37] It relates the normalized gradient slope (𝐺𝐻) 

to the salt concentration at which the peak maximum is observed (𝑐𝑠,𝑅) 

using a linear formula. The normalized gradient slope is defined as 

follows: 

𝐺𝐻 = 𝑔(1 − 𝜖𝑏)𝑉𝑐𝑜𝑙,  (6.12) 

 

where 𝑔 is the gradient slope, defined as: 

𝑔 =
𝑐𝑠,𝑓−𝑐𝑠,𝑖 

𝑉𝐺
  (6.13) 

and 𝑉𝑐𝑜𝑙 is the total volume of the column. When size exclusion effects 

are neglected, the normalized gradient length can be related to 𝑐𝑠,𝑅  by 

the following linear equation[20]: 
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ln(−𝐺𝐻) =  −𝐾𝑠𝑐𝑠,𝑅 − ln (−𝐾𝑠𝐾𝑒𝑞
′ ) (6.14) 

The salt concentration at which the peak maximum is determined by 

c𝑠,𝑅 = c𝑠,𝑖 + 𝑔𝑉𝑅,𝑔. The isotherm parameters are obtained from fitting a 

linear regression model (sklearn.linear_model.LinearRegression) using 

ln(−𝐺𝐻) and 𝑐𝑠,𝑅 as y and x variables respectively. By combining the 

regression model and equation 6.14, 𝐾𝑠 can be identified as the 

negative slope of the linear fit, while 𝐾𝑒𝑞
′ = exp(−𝑖𝑛𝑡𝑒𝑟𝑐𝑒𝑝𝑡) 𝐾𝑠

−1. 

6.2.6.3 Inverse method 

The final approach tested in this study is the inverse method, where 

the parameters are tuned by running simulations and fitting the results 

to the experimental data. This is performed by minimizing the sum of 

squared errors (SSR) calculated by: 

𝑆𝑆𝑅 = ∑ ∑(𝑐̂𝑖(𝑡) − 𝑐𝑖(𝑡))
2

𝑡𝑒𝑛𝑑

𝑡0𝑖

 (6.15) 

where 𝑐(𝑡) and 𝑐̂(𝑡) are protein concentrations at the outlet of the 

columns at time 𝑡 determined experimentally and computationally, 

respectively. This function is minimized using Scipy.minimize with the 

Nelder-Mead method and initial guesses of 0.01 and 10 for 𝐾𝑒𝑞
′  and 𝐾𝑠 

respectively. Both the experimental and simulated chromatograms are 

scaled using a minmax scaler to normalised values between 0 and 1. 

6.2.7 Error calculation 

Comparing the accuracy of the isotherm parameters is performed 

based on retention volume and peak width at 50% intensity using the 

scaled chromatograms that results from mechanistic model. The 

simulations are performed using a near identical protocol as the 

experimental. As the system dwell volume is not modeled explicitly, 

the wash prior the gradient start is extended with this volume to a total 

of 6.025 mL (4.85 mL wash + 1.175 mL dwell volume). The retention 

volume was determined from the peak maximum and the absolute 
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error was calculated by subtracting the experimental retention volume, 

normalized errors are calculated by dividing the absolute error with the 

gradient length. Relative peak width is calculated by dividing the 

modeled peak width by the experimental peak width, both determined 

at 50% intensity. 

6.3 Results and discussion 

6.3.1 Linear gradient elution experiments 

Linear gradient elution (LGE) experiments are required for all three HIC 

parameter estimation methods. The chromatographic retention of 

chymotrypsinogen and glucoamylase were measured for 5 gradient 

lengths (Figure 6.1). For both proteins it is observed that the retention 

shifts towards the beginning of the gradient. In the chromatogram of 

chymotrypsinogen at gradient lengths 15 to 40 CV, a shoulder is 

observed prior to the main peak. This is considered to be a result of a 

conformational shift, as the high salt concentrations during HIC can 

cause conformational changes, leading to more than one peak.[2,38,39] 

When the initial ammonium sulfate concentration was lowered from 1.3 

M to 1.1M, this shoulder was not observed (Supplemental figure 

S6.1A). By increasing the initial concentration to 1.5 M, the shoulder 

moves towards the back of the main peak (Supplemental Figure 

S6.1B). This suggests that the dominant conformation shifts to the 

weaker binding orientation for an increasing salt concentration. While 

glucoamylase eluted as a symmetrical peak for all gradient lengths, an 

initial isocratic elution is observed during the wash. This is most notable 

for the 40 CV gradient length where glucoamylase elutes over the 

greatest volume, resulting in lower peak intensity. For both proteins 

the corrected retention volume is reported in table 6.1.  
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Figure 6.1: Superimposed normalized LGE chromatograms for chymotrypsinogen (dark 
blue) and glucoamylase (light blue) (Hitrap Butyl FF 1 mL, flowrate 1 ml/min) with 

varying gradient lengths (black).  

Table 6.1: Corrected experimental retention volumes in mL of chymotrypsinogen and 
glucoamylase for LGEs with five gradient lengths. 

 𝑉𝑅 [mL] 
gradient length chymotrypsinogen glucoamylase 

10 CV 6.25 3.24 
15 CV 8.25 4.03 
20 CV 10.32 4.66 

30 CV 13.91 5.7 
40 CV 17.34 6.71 

 

6.3.2 Parente and Wetlaufer method 

The PW method fits isotherm parameters 𝐾𝑒𝑞
′  and 𝐾𝑠 simultaneously to 

the experimental data. Cross-validation by leaving out individual 

gradient lengths provided an accurate representation of regression 

accuracy for data not used in the fit (Figure 6.2A, Supplemental Figure 

S6.2). The cross-validation shows that the retention times of gradient 

lengths 15, 20 and 30 CV are predicted with high accuracy (errors <0.1 

mL). For 10 and 40 CV a greater error is observed (errors >0.15 mL 

and >0.35 mL respectively). The difference in accuracy highlights that 

the PW method is less accurate when extrapolation is required. For the 

three intermediate gradient lengths, 𝐾𝑒𝑞
′  values of 0.134 and 0.013 and 

𝐾𝑠 values of 5.681 and 5.682 chymotrypsinogen and glucoamylase 

were obtained, respectively. 
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6.3.3 Yamamoto method 

When using the Yamamoto method the parameters are obtained using 

linear regression. Isotherm parameter 𝐾𝑠 is directly obtained from the 

intercept while 𝐾𝑒𝑞
′  is derived from the slope (Figure 6.2B). As observed 

for the PW method, the Yamamoto method estimates the retention at 

gradient lengths 15, 20 and 30 CV more accurately compared (errors 

<0.21 mL ) to the gradient lengths at the bounds, especially for the 40 

CV LGE, resulting in absolute errors >0.66 mL (Supplemental Figure 

S3). For the 15, 20 and 30 CV gradient lengths, fits with R2 >0.97 were 

achieved, providing 𝐾𝑒𝑞
′  values of 0.181 and 0.006 and 𝐾𝑠 values of 

5.350 and 6.488 chymotrypsinogen and glucoamylase, respectively.  

 

Figure 6.2: Isotherm parameter fitting results of chymotrypsinogen (dark) and 
glucoamylase (light) for the 20 CV gradient length as test (triangle) and the remaining 
gradient lengths as fitting data (circles). A) shows the Parente and Wetlaufer method 
results with gradient length on the x-axis and retention volume on the y-axis. B) shows 
the Yamamoto method results with salt concentration of the peak maximum on the x-
axis and the natural log of the normalized gradient slope on the y-axis  

6.3.4 Inverse method 

While the previous two methods only require the retention volume, the 

inverse method uses the full chromatograms as presented in Figure 

6.3. Because of this, the inverse method does not only optimize for 

retention volume, but also for peak shape, which comes at the cost of 

increased computational time (minutes compared to seconds). This 
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method provides average 𝐾𝑒𝑞
′  values of 0.094 and 0.003 and 𝐾𝑠 values 

of 6.137 and 7.331 chymotrypsinogen and glucoamylase, respectively. 

As observed for the PW and Yamamoto method, the cross validation 

shows difficulty to extrapolate gradient lengths, especially for the 

shorter gradient lengths (Supplemental Figure S6.4).  

 

Figure 6.3: Superimposed normalized inverse method results of chymotrypsinogen 
(dark) and glucoamylase (light) for the 20 CV gradient length test. The dashed line 
depicts the model results while the continuous line shows the experimental 
chromatogram.  

6.3.5 Comparing predictive accuracy 

Given the reduced accuracy observed at the shortest (10 CV) and 

longest (40 CV) gradient lengths, comparisons between methods focus 

exclusively on the intermediate gradients of 15, 20, and 30 CV. Table 

6.2 presents an overview of the isotherm parameters estimated using 

the three methods. 

For both proteins, IM determines a lower 𝐾𝑒𝑞
′  and a higher 𝐾𝑠 compared 

to the other two methods. A higher 𝐾𝑠 indicates a greater salt 

dependence, resulting in sharper peaks. In contrast to the standard 

deviation of 𝐾𝑒𝑞
′  which is similar for all methods, the standard deviation 

for 𝐾𝑠 is highest for IM (0.158 and 1.127), while the other two methods 

provide more similar deviations (0.054 to 0.073). The high standard 
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deviation is considered to be a result of the extensive fitting effort by 

IM which might amplify differences in the data being used. 

 

Table 6.2: Isotherm parameters obtained from cross-validation excluding 15, 20 and 30 
CV gradient lengths iteratively.  

 
𝐾𝑒𝑞

′  [-] 𝐾𝑠 [M
-1] 

Chymotrypsinogen 
  

Parente and Wetlaufer 0.134±0.006 5.681±0.054 
Yamamoto 0.181±0.010 5.35±0.058 
Inverse method 0.094±0.011 6.137±0.158 
Glucoamylase 

  

Parente and Wetlaufer 0.013±0.001 5.682±0.073 
Yamamoto 0.006±0.001 6.488±0.063 
Inverse method 0.003±0.000 7.331±1.127 

 

To determine the actual accuracy of the different parameter 

combinations, simulations were performed for the 15, 20 and 30 CV 

gradient length experiments comparing the results to the experimental 

data (Figure 6.4, Supplemental Figure S6.5). Table 6.3 shows the 

average absolute and normalized peak maximum errors as well as the 

relative peak width for the different parameters. For 

chymotrypsinogen, peak maxima were predicted with an average error 

of close to 0.1 mL by all methods. For peak width, parameters obtained 

with IM resulted in the best agreement with the experimental data 

(relative peak width of 1.018). This is to be expected since this method 

considers chromatogram shape during the fitting. Simulations using 

the parameters obtained from the PW and Yamamoto method resulted 

in broader peaks (relative width of 1.095 and 1.164, respectively), 

which can be attributed to the lower 𝐾𝑠 and higher 𝐾𝑒𝑞
′  compared to the 

IM. 
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Figure 6.4: Normalized modeled and experimental chromatogram of chymotrypsinogen 
(A) and glucoamylase (B) with a 20 CV linear gradient starting at 1.3 M ammonium 
sulfate.  

Simulations of glucoamylase retention showed to be more challenging, 

resulting in higher absolute errors compared to chymotrypsinogen. 

Especially parameters estimated using PW let to an average retention 

offset of 1.1 mL, while the Yamamoto method and IM achieved offsets 

below 0.4 mL. This might be attributed to the fact that glucoamylase 

elutes early in the gradient, even displaying minor isocratic elution. 

Interestingly, while IM yielded the most accurate retention times 

overall, it produced the largest deviations in peak width. As shown in 

Figure 4B, the simulations capture the initial slope of the 

chromatogram accurately but predict a too steep decent after reaching 

the peak maximum.  

To verify whether the early elution of glucoamylase limits the accuracy 

of the different methods, gradients starting at 1.5 M ammonium sulfate 

were used for parameter determination (Supplemental Table S6.2). 

These parameters were subsequently used to predict the behavior of 

glucoamylase at a gradient running from 1.3 M to 0 M ammonium 

sulfate (Table 6.3). For the PW parameters, the simulation accuracy 

was significantly improved to an average retention error of 0.54 mL. 

For the Yamamoto and inverse method, accuracy was slightly reduced 

to an average error of 0.44 mL, while the normalized error remained 

constant. 
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Table 6.3: Average quantitative modeling accuracy measures for the different 
parameter sets. *Parameters determined using the 1.5 M to 0 M ammonium sulfate 
LGEs.  

 chymotrypsinogen glucoamylase glucoamylase* 

Absolute retention error [mL] 

PW 0.119 1.096 0.539 
Yamamoto 0.095 0.389 0.440 
IM 0.119 0.273 0.440 
Normalized retention error [-] 

PW 0.0056 0.0525 0.0267 
Yamamoto 0.0043 0.0192 0.0211 
IM 0.0057 0.0154 0.0143 
Relative peak width [-] 

PW 1.095 1.084 0.946 
Yamamoto 1.164 0.917 1.023 
IM 1.018 0.803 0.938 

 

6.3.6 Predicting alternative salt gradients. 

To assess the quality of the isotherm and the parameters, obtained 

parameter sets were tested for other salt concentrations. For 

chymotrypsinogen, two additional gradients were measured starting at 

1.1 M and 1.5 M ammonium sulfate, both reaching a final concentration 

of 0 M. The additional salt gradients for glucoamylase were measured 

at 1.5 M to 0 M and 2.0 to 0.8 M ammonium sulfate (Figure 6.5, Table 

6.4). Simulations were performed using the parameters determined 

based on the 1.3 M to 0 M gradients for chymotrypsinogen, while for 

glucoamylase the gradients starting at 1.5 M were used. 
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Figure 6.5: normalized predicted (dashed, dash-doted, and dotted) and experimental 
(continuous) chromatograms of chymotrypsinogen (dark) and glucoamylase (light) for 
the 20 CV LGE at alternative buffer compositions. A) and B) show chymotrypsinogen 
ammonium sulfate LGEs 1.1 M to 0 M and 1.5 M to 0 M, respectively. C) and D) show 
glucoamylase LGEs from 1.5 M to 0 M and 2.0 M to 0.8 M, respectively. 

For all three methods, retention could be predicted with high accuracy, 

resulting in an average retention offset <0.44 mL. While the 

parameters obtained from the Yamamoto method resulted in simulated 

chromatograms with the smallest error in peak maxima (0.03 to 0.33 

mL), the relative widths are highest (1.16 to 1.28). Simulations using 

the parameters obtained from the inverse method result in 

chromatograms with peak widths closest to the experimental peaks 

(1.03 to 1.12 relative widths). Peak widths for chymotrypsinogen 

starting at 1.5 M ammonium sulfate were estimated with the greatest 

deviation from the experimental data (1.12 to 1.28 relative widths). 

For these conditions, the chymotrypsinogen peak was deconvoluted 

from experimental data using two gaussians (Supplemental Figure 

S6.6). Therefore, the chromatogram (Figure 5B) is an estimation of the 

elution which might occur less symmetrically, like observed for 

chymotrypsinogen starting the LGE at 1.1 M ammonium sulfate (Figure 

6.5A).  
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Table 6.4: Average quantitative modeling accuracies for the alternative LGEs. 

 chymotrypsinogen glucoamylase 

Ammonium sulfate [M] 1.1 – 0  1.5 - 0 1.5 - 0 2.0 – 0.8 

Absolute retention error [mL] 

PW 0.357 0.431 0.070 0.143 
Yamamoto 0.206 0.328 0.031 0.077 
IM 0.311 0.431 0.206 0.288 
Normalized retention error [-] 

PW 0.0163 0.0216 0.0039 0.0070 
Yamamoto 0.0103 0.0156 0.0014 0.0028 
IM 0.0162 0.0216 0.0080 0.0128 
Relative peak width [-] 

PW 1.111 1.207 1.066 1.074 
Yamamoto 1.179 1.283 1.164 1.171 
IM 1.027 1.116 1.055 1.070 

 

Overall, all three methods provided parameters to model the retention 

of both proteins accurately. Even though both correlation methods only 

use peak maxima information, peak shape can be predicted with a 

maximum over estimation of 30%. Therefore, for the simplified 

Mullerup isotherm, the correlations are good alternatives to the more 

computationally expensive inverse method. This is useful when data 

quality is compromised, as was seen for the LGE starting at 1.5 M 

ammonium sulfate for the elution of chymotrypsinogen. Comparing the 

two correlations, the Yamamoto method provides the most accurate 

peak maxima for the two proteins, while the PW method results in more 

accurate peak widths. Additionally, the linear representation of the 

Yamamoto method showed to be more robust compared to the PW 

method for the early eluting glucoamylase for the 1.3 M to 0 M 

ammonium sulfate LGE.  

6.4 Conclusion 

In this study, we have compared the Parente and Wetlaufer method, 

the Yamamoto method, and the inverse method to obtain isotherm 

parameters for a simplified Mullerup isotherm for HIC. The different 

methods applied on five LGE experiments (10, 15, 20, 30, and 40 CV 

gradient lengths) for chymotrypsinogen and glucoamylase. While the 
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different methods estimated parameters within the same order of 

magnitudes, the early elution of glucoamylase resulted in systemic 

under prediction using the parameters estimated by the PW method, 

which was not observed for the other methods. Overall the inverse 

method performed best, but it is most computationally expensive and 

requires high quality chromatograms. Therefore, the Yamamoto 

method is a good alternative for the inverse method when data quality 

is compromised, or computational resources are limited. This 

comparison offers practical guidance for isotherm determination 

method selection, thereby enabling reliable mechanistic modeling of 

HIC processes.  
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6.6 Supplemental information 

Supplemental Table S6.1: system and column parameters 

Parameter Value Unit 

Column diameter 0.70 cm 
Column height 2.50 cm 
Particle size 90 µm 
Total porosity (𝜀𝑡) 0.914 - 

Extraparticle porosity (𝜀𝑏) 0.336 - 

Intraparticle porosity (𝜀𝑝) 0.870 - 

System dead volume 0.281 mL 
System dwell volume 1.175 mL 

 

 

Supplemental Figure S6.1: Linear gradient elution chromatograms of 
chymotrypsinogen with a 20 CV gradient length starting at 1.1 M (A) and 1.5 M (B) 
(NH4)2SO4 



Chapter 6   

214 

  

6 

Supplemental Figure S6.2: Parente and Wetlaufer Isotherm parameter fitting results 
of chymotrypsinogen (dark) and glucoamylase (light) for the 10, 15, 30 and 40 CV 
gradient length tests (triangle) and the remaining gradient lengths as fitting data 
(circles) with gradient length on the x-axis and retention volume on the y-axis.  
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Supplemental Figure S6.3: Yamamoto isotherm parameter fitting results of 
chymotrypsinogen (dark) and glucoamylase (light) for the 10, 15, 30 and 40 CV gradient 
length as test (triangle) and the remaining gradient lengths as fitting data (circles), with 
salt concentration of the peak maximum on the x-axis and the natural log of the 
normalized gradient slope on the y-axis  
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Supplemental Figure S6.4: Superimposed normalized inverse method results of 
chymotrypsinogen (dark) and glucoamylase (light) for the 10, 15, 30 and 40 CV gradient 
length tests. The dashed line depicts the model results while the continuous line shows 
the experimental chromatogram. 
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Supplemental Figure S6.5: Normalized modeled and experimental chromatograms of 
chymotrypsinogen and glucoamylase at 10, 15, 30, and 40 CV elution gradient lengths.  
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Supplemental Table S6.2: Isotherm parameters for glucoamylase determined using 
1.5 to 0 M ammonium sulfate LGEs 

 
Keq [-] Ks [M-1] 

Parente and Wetlaufer 0.007±0.000 6.34±0.088 

Yamamoto 0.014±0.001 5.819±0.069 

Inverse method 0.008±0.003 6.365±0.417 

 

 

Supplemental Figure S6.6: Deconvolution of the chymotrypsinogen chromatogram of 
a 20 CV LGE from 1.5 M to 0 M ammonium sulfate.  
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7.1 Conclusion 

Model-based process development (PD) of biopharmaceuticals can 

significantly increase productivity and thereby shorten the lab to 

market timelines. Understanding fundamental phenomena allows a 

reduction in experimental effort and costs. For protein chromatography 

modeling, predicting the interaction behavior between the protein and 

resin is the most challenging. These interactions are governed by 

physicochemical properties which are a result of the protein amino acid 

sequence and subsequent 3D structure. Structure models contain the 

coordinates of every atom. Therefore, they have the potential to 

provide all information. 

This thesis shows how protein structures can be used for prediction of 

their chromatographic behavior. Specifically, a comprehensive 

quantitative structure property relationship (QSPR) workflow is 

presented. For this, an open-source software package was developed 

(chapter 2) that was validated for literature data on ion exchange 

chromatography (IEX). This package allows wide deployment of QSPR 

using the Python programming language that is available for the whole 

scientific community. This contributes to general progress in the field 

by providing transparency, thereby lowering the initial investment for 

beginners. Additionally, the distribution of the source code allows for 

customizability by experts. 

This software package was successfully used in a multiscale modeling 

approach (chapter 3). For a total of six model proteins, QSPR models 

were trained that accurately predict retention times for different salt 

gradient conditions, which were subsequently used in a regression 

formula to obtain isotherm parameters. These parameters were used 

for process optimization resulting in similar optimal operation 

conditions when using experimentally determined parameters. 

Additionally, it was observed that the estimation uncertainties have a 



Chapter 7   

224 

  

7 

minimal effect on the operation condition selection. This highlights the 

potential of QSPR for PD.  

Extensive knowledge of crude mixture is essential to be able to apply 

QSPR for the development of a capture step. Therefore, in chapter 4 

retention profiles of Escherichia coli BLR(DE3) lysates were determined 

for hydrophobic interaction chromatography (HIC) and IEX 

chromatography. Retention times of around 900 unique host cell 

proteins (HCPs) could be determined. By analyzing protein subsets 

based on location, function, and interactions, it was observed that 

proteins located in the plasma membrane or that are participating in 

protein-protein interactions deviate from general elution trends. Using 

predicted protein structures, QSPR models could be trained to predict 

HCP retention times, which was most successful for monomeric 

proteins. 

As experimental characterization remains expensive and time 

consuming, the ability of a set of widely available proteins to represent 

the HCPs was assessed in chapter 5. For IEX, a QSPR model could be 

trained that predicts part of the HCP data also presented in chapter 4. 

No difference in accuracy was observed when predicting HCP subsets. 

This shows that pure protein data can be used for predicting HCP 

behavior in a mixture. Key differences in feature distributions were 

found in the training and testing data, indicating areas of 

improvements. 

Finally, a study of different isotherm parameter determination methods 

for HIC was performed in chapter 6. This study showed that both 

correlation methods and inverse fitting methods results in mechanistic 

model simulations with similar accuracies. Additionally, the robustness 

and computational complexity of the different methods are discussed. 

As such, it provides practical guidance for method selection, thereby 

enabling reliable mechanistic modeling of HIC processes. 
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These findings are a significant step towards more accessible model-

based PD. They provide evidence that protein structures can be used 

to predict chromatographic behavior, specifically for IEX. The recent 

advances in protein structure prediction methods, like AlphaFold, have 

shown to be highly valuable for partly elucidating the chromatographic 

behavior of the host cell proteome. Still, there remain some challenges 

that need to be overcome in order to fully implement these workflows 

for a broad range of resin types. 

7.2 Outlook  

7.2.1 Surface hydrophobics 

While this thesis shows successful QSPR modeling of IEX, it does not 

present any models for HIC or mixed mode chromatography. While 

hydrophobicity features can be calculated by the software in chapter 

2, attempts in training models to predict HIC retention were 

unsuccessful. These prediction challenges are thought to be the result 

of the complex adsorption mechanism, which is driven by the entropy 

of water.[1] Extending the calculated protein features might enable 

prediction of HIC processes and improve prediction of other modes. 

Spatial aggregation propensity maps are an alternative method to map 

local hydrophobicity by describing regions which are likely to 

aggregate. Therefore, these maps might be better at capturing the 

forces that drive HIC adsorption.[2–4]  

7.2.2 Protein binding conformations 

Another challenge that needs to be tackled for HIC is alternative 

binding conformations resulting from the high salt conditions, as 

observed in chapter 6. Implementation of local features, like surface 

patches, might partially solve this issue. As preferred binding 

orientations are not only present for HIC, local features could also 

greatly improve predictions for other chromatography modes. 
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Additionally, proteins might be susceptible to aggregation or unfolding 

upon binding, which is currently not described by the static structures 

used for the QSPR. Calculating local flexibility scores can potentially 

provide indications of surface areas that might undergo conformational 

changes.[5] These additional features may indicate which proteins will 

present alternative binding conformations. Alternative protein 

structures can be generated by constrained molecular dynamics (MD) 

introducing additional rigidity in inflexible regions coupled with 

advanced sampling methods like simulated annealing.[6] Unfortunately, 

these methods are often paired with high computational costs and 

should therefore be reserved for high interest targets.  

7.2.3 Protein docking 

Protein docking is another method that can provide detailed 

information of the interactions.[7–9] This method uses the molecular 

structure representing the protein and resin to minimize the binding 

energies. Accurate description of the chromatographic resin is currently 

a limiting factor. Often the resin is modeled as a plane of ligand 

molecules, which lacks the three-dimensional pore structure.[10] 

Ballweg et al. proposed a method to simulate polymerization reactions 

that form the resin beads, resulting in a complex resin structure.[9] 

They revealed that not only the ligand, but also the backbone of the 

resin is essential to accurately estimate affinity of peptide. While this 

is very relevant, application on larger scales like complete proteins is 

limited due to the high associated computational costs. Recent 

developments in graphical processing unit (GPU) acceleration and 

advances in hardware allowed for a reduction in computational times 

for protein docking and MD simulations.[11] These advances are mainly 

attributable to the increased power budgets and improved thermal 

regulation.[12,13] Therefore, advancement might be limited due to 

foreseeable issues regarding sustainability.  
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7.2.4 Hybrid QSPR-MM models 

Considering model-based PD, accurate description of protein 

adsorption behavior remains challenging. Hybrid modeling provides a 

solution by using black box models to predict phenomena that are ill 

understood.[14,15] Currently, these hybrid models have been limited to 

the use of machine learning models trained on experimental data. 

Therefore, they provide no knowledge that can be transferred to other 

targets. Implementation of QSPR into the hybrid modeling framework 

could bring new possibilities. Specifically, by training QSPR models that 

predict the ratio between bound and unbound proteins as a function of 

protein and salt concentration, the dynamic binding behavior can be 

predicted directly from the protein structure. This approach would solve 

limitations with the adsorption isotherms that require multiple 

parameters to be fit and only describe a single isotherm shape.  

7.2.5 Model proteomes 

In chapter 5, we attempt to describe the E. coli proteome using a set 

of 13 model proteins, which was successful for over 200 HCPs. 

Additionally, a set of improvement strategies are described in this 

chapter. Specifically, extending the model protein dataset to capture 

most relevant protein features is relevant for straight-forward QSPR 

deployment. For initial screening, a general proteome would be suitable 

to provide retention predictions to support early phase resin selections. 

For more accurate predictions, model proteomes could be tuned to 

represent specific hosts as post-translational modifications might vary. 

Currently, pure protein solutions provide the highest quality retention 

data and have been shown to represent close to 25% of the observer 

E. coli proteins accurately. 

While there have been major breakthroughs in the field of 

chromatography modeling as well as protein structure prediction, 

significant investments are required before the field reaches maturity. 
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The suggestions for follow-up research as well as an increased effort in 

data collection and curation will enable further advancements. 

Ultimately, progress in model-based PD will allow for faster and more 

cost-effective processing.  
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