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Structure-Based Prediction of Protein Behavior in Preparative Chromatography

Summary

Vaccination plays a pivotal role in modern preventive healthcare and
contributes to a global decline in infectious diseases. Efficient
production of vaccines is essential to meet the growing demand which
results from factors like a growing global population and increased
international travel. Protein subunit vaccines are a vaccine modality
that contains parts of the infectious pathogen as the active ingredients.
These subunits are recognized by the immune system, which is trained
to respond more effectively and reduce symptoms upon actual
infection. Production of these vaccines is divided into upstream
processing (USP), which involves fermentation using expression hosts,
downstream processing (DSP) where the protein subunit is purified,
and finally formulation where the vaccines are prepared for
distribution. During the DSP, multiple chromatography modes are often
used to reach the required purity. Selection of the optimal
chromatographic resin types, as well as operating conditions can be
expensive and time consuming. Model-based process development has
the potential to speed up this selection by using computational
methods to predict protein behavior. Especially in early phase
development, models allow in silico screening of resins and conditions
in tandem to classical experiments, reducing required material. These
computational models can be divided into knowledge-driven, data-

driven, or a combination thereof.

The focus of this thesis is the development of a data-driven modeling
approach where protein behavior is predicted from its atomic structure.
Specifically, quantitative structure property relationship (QSPR) models
are used for this purpose. To achieve this, chapter 2 introduces a
Python tool that is developed to extract relevant information from the
three-dimensional protein structure. This is done by sampling the
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Summary

protein surface using grid representation that describes the distribution
of different physicochemical properties. These are translated into
numerical descriptors. Using literature data, descriptor relevance was
shown by training two separate QSPR models for the prediction of
retention times in ion exchange chromatography (IEX), resulting in
cross validated R? of 0.87 and 0.95.

A limitation of the data-driven modeling approach is that these models
are only valid for the experimental conditions for which they are
trained. Knowledge-driven models use fundamental knowledge about,
for example, mass transfer. In chromatography, adsorption isotherms
are essential to describe the binding of a protein to a chromatographic
resin. In chapter 3 we developed a multiscale modeling approach by
integrating QSPR with mechanistic modeling. Adsorption isotherm
parameters predicted by QSPR were used in a mechanistic model. This
multiscale model was validated with experimental data and showed
only 0.2% difference between the retention peak values, relative to the
salt gradient length. Subsequently, the validated mechanistic model

was used to optimize a chromatographic capture step.

Commercially available model proteins provide a great basis for a proof
of principle, however QSPR modeling becomes more powerful when
applied to host cell proteins (HCPs). Therefore, we characterized the
chromatographic behavior of the HCPs present in an Escherichia coli
(E. coli) lysate in chapter 4 by means of fractionation and subsequent
analysis by mass spectrometry. Retention times of 816 and 908 HCPs
were collected for hydrophobic interaction chromatography (HIC) and
IEX, respectively. By dividing the HCPs into subsets based on cellular
location, function, and interactions, basic trends were visualized. Next,
we predicted the structures of each individual HCP which were used to
train QSPR models. This was successful for IEX data resulting in a QSPR
model with a cross validated R? of 0.70 when using the monomer HCP

subset.
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Obtaining high resolution HCP retention data still requires substantial
experimental effort. Therefore, deployment of QSPR models for PD
would benefit from the formulation of a list of widely available
(commercial) proteins that can represent a host cell proteome. In
chapter 5 we analyze the transferability of a model trained on single
protein solutions for HCP retention prediction. For this, retention times
of 13 proteins were measured under the same conditions as used in
chapter 4 and used to train a QSPR model. This model was evaluated
on 572 E. Coli HCPs and was able to predict retention behavior for 51%
with sufficient accuracy (error £5%). Moreover, we identified the key
attributes missing in the training dataset, which is important to

increase model performance in the future.

Data quality is essential for successful training of QSPR models.
Therefore, in chapter 6 we compared the accuracy of three isotherm
parameter determination methods for a HIC isotherm. Specifically, two
correlation-based methods (Parente and Wetlaufer, and Yamamoto)
and one simulation error minimization method (inverse method) were
assessed for two proteins in different conditions. By comparing
mechanistic modeling accuracies compared to the experimental data,
the inverse method was found to produce most accurate results,
followed by the Yamamoto method. Therefore, it provides practical
guidance for method selection for isotherm determination, thereby
enabling generation of high-quality data that can facilitate QSPR model

training.

Overall, this thesis highlights the potential of QSPR for predicting the
chromatographic behavior of proteins. Specifically for HCP prediction
QSPR shows to be a valuable tool when paired with state-of-the-art
structure prediction. Therefore, it contributes to a significant step

towards in silico process development.
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Samenvatting

Samenvatting

Vaccinatie speelt een cruciale rol in de moderne preventieve
gezondheidszorg en draagt bij aan een wereldwijde afname van
infectieziekten. Efficiénte productie van deze vaccins is essentieel om
te voldoen aan de groeiende vraag, die resulteert uit factoren zoals een
groeiende wereldbevolking en toename in internationaal reisverkeer.
Eiwit-subunitvaccins zijn een type vaccin dat delen van de infectieuze
ziekteverwekker bevat als werkzame stof. Deze subunits worden
herkend door het immuunsysteem, dat hierdoor wordt getraind om

symptomen bij een daadwerkelijke infectie te verminderen.

De productie van deze vaccins is onderverdeeld in upstream processing
(USP), waarbij fermentatie plaatsvindt met behulp van expressiehosts,
downstream processing (DSP), waarbij het eiwit-subunit wordt
gezuiverd, en tot slot formulering, waarbij de vaccins worden
voorbereid voor distributie. Tijdens DSP worden vaak meerdere
chromatografiemethoden gebruikt om de vereiste zuiverheid te
bereiken. De selectie van de optimale chromatografische resins en de
bijbehorende procescondities kan kostbaar en tijdrovend zijn.
Modelgebaseerde procesontwikkeling heeft het potentieel om deze
selectie te versnellen door gebruik te maken van computationele
methoden om het gedrag van eiwitten te voorspellen. Vooral in de
vroege ontwikkelingsfase maken modellen in silico screening van resin
en condities mogelijk waardoor minder experimenten en daardoor
minder materiaal nodig is. Deze computationele modellen kunnen
worden onderverdeeld in kennisgedreven, datagedreven of een

combinatie daarvan.

De focus van dit proefschrift ligt op de ontwikkeling van een

datagedreven modelleringsaanpak waarbij het gedrag van eiwitten
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wordt voorspeld op basis van hun atomaire structuur. Hiervoor worden
kwantitatieve structuur-eigenschaprelatie (QSPR) modellen gebruikt.
In hoofdstuk 2 wordt een Python tool geintroduceerd die is ontwikkeld
om relevante informatie te extraheren uit de driedimensionale
eiwitstructuur. Dit gebeurt door het oppervlak van het eiwit te
beschrijven met behulp van een roosterrepresentatie die de verdeling
van verschillende fysisch-chemische eigenschappen beschrijft. Deze
worden vertaald naar numerieke descriptoren. Met behulp van
literatuurdata werd de relevantie van deze descriptoren aangetoond
door twee afzonderlijke QSPR-modellen te trainen voor de voorspelling
van retentietijden in ionenuitwisselingschromatografie (IEX), wat

resulteerde in een gevalideerde R2 van 0,87 en 0,95.

Een beperking van de datagedreven modelleringsaanpak is dat deze
modellen alleen geldig zijn voor de experimentele condities waarop ze
zijn getraind. Kennisgedreven modellen maken gebruik van
fundamentele kennis, bijvoorbeeld over massatransport. In
chromatografie zijn adsorptie-isothermen essentieel om de binding van
een eiwit aan een chromatografische resin te beschrijven. In
hoofdstuk 3 ontwikkelden we een multiscale modelleringsaanpak
door QSPR te integreren met mechanistische modellering. Adsorptie-
isothermparameters voorspeld door QSPR werden gebruikt in een
mechanistisch model. Dit multiscale model werd gevalideerd met
experimentele data en toonde slechts 0,2% verschil tussen de
retentiepieken, relatief ten opzichte van de zoutgradiéntlengte.
Vervolgens werd het gevalideerde mechanistische model gebruikt om

een chromatografische vangststap te optimaliseren.

Commercieel beschikbare modeleiwitten vormen een goede basis voor
een proof of principle, maar QSPR-modellering wordt krachtiger
wanneer toegepast op hostcel-eiwitten (HCPs). Daarom
karakteriseerden we in hoofdstuk 4 het chromatografisch gedrag van

de HCPs aanwezig in een Escherichia coli (E. coli) lysaat door middel

13



Samenvatting

van fractionering en daaropvolgende analyse met massaspectrometrie.
Retentietijden van respectievelijk 816 en 908 HCPs werden verzameld
voor hydrofobe interactiechromatografie (HIC) en IEX. Door de HCPs
op te splitsen in subsets op basis van cellulaire locatie, functie en
interacties werden basistrends zichtbaar gemaakt. Vervolgens
voorspelden we de structuur van elk individueel HCP, die werd gebruikt
om QSPR-modellen te trainen. Dit was succesvol voor de IEX-data, wat
resulteerde in een QSPR-model met een gevalideerde R2 van 0,70 bij

gebruik van de monomeer-HCP-subset.

Het verkrijgen van retentiegegevens met hoge resolutie voor HCPs
vereist nog steeds aanzienlijke experimentele inspanning. Daarom zou
de inzet van QSPR-modellen voor procesontwikkeling baat hebben bij
het opstellen van een lijst van breed beschikbare (commerciéle)
eiwitten die een hostcelproteoom kunnen representeren. In hoofdstuk
5 analyseren we de overdraagbaarheid van een model dat is getraind
op oplossingen van enkele eiwitten voor de voorspelling van HCP-
retentie. Hiervoor werden de retentietijden van 13 eiwitten gemeten
onder dezelfde condities als in hoofdstuk 4 en gebruikt om een QSPR-
model te trainen. Dit model werd geévalueerd op 572 E. coli HCPs en
kon het retentiegedrag van 51% met voldoende nauwkeurigheid
voorspellen (fout £5%). Bovendien identificeerden we de belangrijkste
kenmerken die ontbraken in de trainingsdataset, wat belangrijk is om

de modelprestaties in de toekomst te verbeteren.

Datakwaliteit is essentieel voor succesvolle training van QSPR-
modellen. Daarom vergeleken we in hoofdstuk 6 de nauwkeurigheid
van drie methoden voor het bepalen van isothermparameters voor een
HIC-isotherm. Specifiek werden twee correlatiegebaseerde methoden
(Parente en Wetlaufer, en Yamamoto) en een simulatiegebaseerde
foutminimalisatiemethode (inverse methode) geévalueerd voor twee
eiwitten onder verschillende condities. Door de nauwkeurigheid van de

mechanistische modellering te vergelijken met experimentele data,
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bleek de inverse methode de meest nauwkeurige resultaten te leveren,
gevolgd door de Yamamoto-methode. Dit biedt praktische richtlijnen
voor de keuze van een methode voor isothermbepaling en maakt het
mogelijk om hoogwaardige data te genereren die QSPR-modeltraining

kunnen ondersteunen.

Al met al benadrukt dit proefschrift het potentieel van QSPR voor het
voorspellen van het chromatografisch gedrag van eiwitten. Vooral voor
HCP-voorspelling blijkt QSPR een waardevol hulpmiddel te zijn in
combinatie met geavanceerde structuurvoorspelling. Daarmee levert

het een belangrijke bijdrage aan in silico procesontwikkeling.
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Glossary

Abbreviation

Definition

AEX
CEX
CHO
Cv
DoE
DRT
DSP
EP
HCP
HIC
HTS
IEX
IM
KS
LGE
mAbs
MAE
MD
MHP
MLR
MM
MS
PD
pI
PLR
PPI
PW
QbD
QSAR
QSPR
RMSE
SASA
SEC
SFS
UPLC
uspP

Anion exchange chromatography

Cation exchange chromatography
Chinese hamster ovary

Column volumes

Design of experiments

Dimensionless retention time
Downstream processing

Electrostatic potential

Host cell protein

Hydrophobic interaction chromatography
High throughput screening

Ion exchange chromatography

Inverse method

Kolmogorov-Smirnov

Linear gradient experiments

Monoclonal antibodies

Mean absolute error

Molecular dynamics

Molecular hydrophobicity potential

Multi linear regression

Mechanistic modelling

Mass spectrometry

Process development

Isoelectric point

Partial least squares

Protein-protein interaction

Parente and Wetlaufer

Quality by design

Quantitative structure activity relationship
Quantitative structure property relationship
Root mean squared error

Solvent accessible surface area

Size exclusion chromatography
Sequential forward selection

Ultra performance liquid chromatography
Upstream processing
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General introduction and thesis outline

1.1 Background

Vaccine discovery has been pivotal in improving public health, and has
contributed to extending the average life expectancy up to 30 years in
most middle- to high-income countries over the last two centuries.[']
By probing the immune system by controlled pathogen exposure, a
vaccine reduces severe symptoms upon wildtype infection.[?] As part of
the biopharmaceutical industry, the total marked size for vaccines has
grown to 77 billion dollars in 2023.[3]

The most important components of a vaccine are the active
ingredients, which are the antigens that stimulate the immune
system.[?] These active ingredients can be whole pathogens, as live
attenuated or inactivated. Alternatively, specific parts of the pathogen
that are recognized by the immune system can be used. The first
SARS-CoV-2 vaccines are recent examples that use mRNA encoding for
target antigens.[*l Upon vaccination, the mRNA transfects several host
cells which will start producing the antigens, triggering a subsequent
immune response.[®] These types of vaccines have proven to be a great
success during the Covid-19 pandemic, as the established platform

process allows for relatively fast process development (PD).

Alternatively, protein subunit vaccines already contain these specific
antigens, and do therefore not require transfection and translation after
vaccination. In contrast to mRNA vaccines, which are stable for up to
6 months when frozen (-20 to -80 °C)[®], protein subunit vaccines have
been reported to be stable for multiple years when refrigerated (2 to 8
°C).[78] Therefore protein subunit vaccines currently have less

distribution limitations.

These vaccines are also known as recombinant vaccines, meaning that
they are produced during a fermentation process by host cells which

are transformed/transfected with DNA aimed to express the antigen.[®!
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Chapter 1

Common host cells used for the production include bacteria, yeast,
insect, and mammalian cells. The process of amplifying host cells and
expressing the antigens is the upstream processing (USP),
subsequently, active ingredients require purification from the crude
mixture, which is important to ensure safety and efficacy.['®l This is
done during the downstream processing (DSP), which precedes the
vaccine formulation (Figure 1.1). During the DSP of protein subunits,
removal of host cell proteins (HCPs) is most challenging, as these
impurities might show similar behaviors as the antigens. For
separation, chromatography often has a central role during DSP due to

its versatility and specificity.[!]

Upstream Downstream Formulation
= OO
Fermentation Lysis Clarification Purification Fill & finish

Figure 1.1: General representation of a vaccine production pipeline.

1.1.1 Chromatography

Packed bed chromatography is the most commonly used technique to
achieve high resolution separation of proteins.[*?] For this method a
column is packed with porous beads, the resin, which will bind solutes
based on their physicochemical properties (stationary phase). Solvent
passes through the column, dragging along any dissolved proteins
(mobile phase). The retention of a protein is determined by how
strongly the protein binds to the chromatographic resin. Ion exchange
chromatography (IEX) is one of the most used methods and DSP of
pharmaceutical proteins often have one or more of these steps.[*3! This

type of chromatography separates based on charge; cation exchange

22
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(CEX) or anion exchange (AEX) resins bind proteins based on positive
or negative charge, respectively. Other alternative modes of separation
include hydrophobic interaction chromatography (HIC), which
separates based on hydrophobicity, size exclusion chromatography
(SEC), separation based on size, or mixed mode chromatography,

which is a combination of multiple modes (e.g., IEX and HIC).[1#15]

Typical vaccine purification consists of several orthogonal
chromatography steps performing an initial capture, followed by an
intermediate purification and final polishing.['%'%1  During PD,
appropriate resins are selected, and operating conditions are optimized
to ensure a robust process. Optimization can be performed by
heuristics or by experimental screening methods like design of
experiments (DoE) or high throughput screening (HTS).[10]
Alternatively, model-based PD uses data- and/or knowledge-driven
methods to predict protein behavior in silico.['”] This reduces the
required wet-lab experiments and thereby materials and has therefore

the potential to significantly reduce development time and costs.

1.1.2 Model-based process development

Mechanistic modeling (MM) is a prime example of a knowledge-driven
method that simulates the chromatographic behavior of proteins
(Figure 1.2). In these models, partial differential equations describe
the transport in the liquid phase, while partitioning between the solid
and liquid phase is approximated by adsorption isotherms.['8] Process
parameters such as column dimensions, operating conditions, and
buffer compositions can be tested and optimized.[16:19.20] Successful
deployment of MM is highly dependent on the model parameters,
especially the adsorption parameters.l?] These parameters are
determined experimentally from sets of dynamic (isocratic or linear

gradient elution experiments) or static (batch adsorption studies).[??-
24]
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Figure 1.2: Schematic representation of a mechanistic model. Different levels of a
chromatography column are depicted left to right showing first the whole column,
followed by the packed bed and finally a porous bead. The equation shows the general
formulation of a lumped kinetic model where C; and q;represent the solute concentration
in the mobile and stationary phase, respectively. u represents the superficial velocity,
D,; the axial dispersion, F the phase ratio, x the position in the column, and t represents
the time. A more detailed description of the mechanistic model used in this thesis is

documented in Chapter 3.

Alternatively, chromatographic behavior can be predicted from the

protein structure. The physicochemical properties of proteins are a

product of the amino acid sequence and subsequent protein folding.

Structure models contain the positions of every atom and can therefore

be used to calculate properties relevant for different chromatographic

modes (Figure 1.3). Recent breakthroughs in the field of structure

prediction, primarily by AlphaFold, enable fast obtainment of high

quality structure models.[?>-271 These models can be used in molecular

dynamics (MD) simulations that calculate the molecular forces and

movement of each atom at femtosecond time scales.[28:29] For

chromatography, these simulations have been used to predict the

binding energies, isotherm parameters, and preferred binding

orientations.[39-351 While these simulations provide immense detail,

computational costs are a limiting

factor as simulations in the

nanosecond range can take days to calculate. Therefore, this method

scales poorly for large molecules, like proteins, and is currently

unsuitable for screening purposes.
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Figure 1.3: Use of protein structure models. Top shows a solvated simulation box which
is used during molecular dynamics simulations. Bottom shows surface charge projections
that can be used to calculate protein properties for QSPR modeling

Quantitative structure property relationship (QSPR) modeling is
another method that uses the molecular structure to predict the
chromatographic behavior.t*136-381 This method is data-driven and uses
fundamental knowledge derived from the structure to train predictive
models. This method is most mature for the discovery of small
molecule drugs where it carries the name quantitative structure activity
relationships (QSAR).[3°1 Descriptors are calculated from the molecular
structure which can range from number of double bonds to solvation
energy.[4°l Over 1000 distinct descriptors have been designed mainly
focusing on one- or two-dimensional molecular representations.

Proteins contain many more atoms, folded in complex structures.

25




Chapter 1

Therefore, the descriptors designed for the small molecules are often
not relevant. Different types of descriptors have been developed for
protein chromatography prediction.[37.41-441  GSpecifically, surface
descriptors that use the solvent accessible surface area of a protein
onto which the hydrophobicity or charge can be distributed has shown
to be effective. For the application of QSPR models, specific descriptors
are selected and used to train regression or machine learning models
that can recognize which descriptors are relevant to describe
chromatographic retention. After training an accurate model, predicting
the behavior of a new protein can be performed within seconds. QSPR
is therefore an excellent method to screen different resin types in
tandem with experimental characterization, limiting experimental

efforts.

1.2 Project setting

The project Molecular Modeling for Protein Chromatography Prediction
is a collaboration between GlaxoSmithKline Biologicals S.A. (Belgium)
and Delft University of Technology (The Netherlands) and was partly
funded by GlaxoSmithKline Biologicals S.A. (Belgium) and ChemistryNL
(The Netherlands). The aim of this collaboration is to develop a model-
based high throughput development platform for the DSP of protein
subunit vaccines. This platform allows increased productivity and
fundamental understanding. As such, two additional PhD projects are
part of this collaboration. One of the projects focuses on the
development of experimental methods to characterize HCPs which are
applied to Escherichia coli (E. coli) lysates.[**] The other project aims
to use MM to describe and optimize DSP.[46] The focus of this thesis is
predicting the chromatographic behavior of proteins from their
molecular structure. To support the goal of developing a high
throughput development platform QSPR is used as the main modeling

tool.
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1.3 Thesis outline

The main content of this thesis is divided into 5 chapters which all focus

on specific research questions (Figure 1.4).

In chapter 2, the feature calculation software that forms the basis of
this thesis is introduced. It starts with an overview current state-of-
the-art in QSPR modeling for protein chromatography, followed by a
comprehensive explanation on how the features are calculated from
protein structures. These features are subsequently used to train
models capable of predicting IEX retention times obtained from

literature.

This software is applied in chapter 3 to predict the chromatographic
behavior of model proteins in CEX using a multiscale modeling
approach combining MM and QSPR. In this chapter, retention times as
well as model parameters are predicted which are used to perform
model-based optimization. To validate the impact of prediction
uncertainty to the optimization, the parameters were varied using the

95% confidence interval.

In an actual process, an antigen often needs to be removed from a
host cell lysate. Understanding this complex mixture of host cell
material provides a great basis to guide PD. Therefore, in chapter 4
the chromatographic behavior of HCPs from a host cell lysate is
analyzed. Additionally, by using predicted HCP structures, QSPR

models are trained to predict chromatographic retention.

As retention time determination of HCPs is experimentally demanding,
general QSPR models are trained in chapter 5. Specifically, a set of
widely available proteins are characterized for the same process
conditions as used in chapter 4. The dimensionless retention times
(DRTs) of these proteins are then used to train QSPR models which are

applied to predict HCP DRTs. By analyzing feature distribution plots of

27
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the training and HCP sets, concrete recommendations are made to

improve training set selection.

While all previous chapters focus on IEX, chapter 6 compares three
adsorption isotherm parameter determination methods for HIC. This
chapter contributes to the overall project as it describes different
available methods and assesses the accuracy of all parameters. By
providing practical guidance for method selection reliable HIC modeling

is enabled, which can be extended to HCPs in the future.

The final chapter 7 presents the overall conclusion of this thesis and
summarizes all key findings. Using this information, prospects of the

field are discussed and suggestions for future research are motivated.

28



General introduction and thesis outline

Chapter 3
PI'ODeS Multi-scale modeling for process optimization

open-source software tool
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Chapter 2

Chapter 4 Chapter 5
Characterization and prediction of HCPs Generalized QSPR for HCP prediction
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A python
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Chapter 7

Chapter 6
Comparing HIC isotherm determination methods Conclusion and outlook

Parameter determination Parameter validation
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Figure 1.4: General overview of the Thesis
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Abstract

Protein-based biopharmaceuticals require high purity before final
formulation to ensure product safety, making process development
time consuming. Implementation of computational approaches at the
initial stages of process development offers a significant reduction in
development efforts. By preselecting process conditions, experimental
screening can be limited to only a subset. One such computational
selection approach is the application of Quantitative Structure Property
Relationship (QSPR) models that describe the properties exploited
during purification. This work presents a novel open-source Python tool
capable of extracting a range of features from protein 3D models on a
local computer allowing total transparency of the calculations. As an
open-source tool, it also impacts initial investments in constructing a
QSPR workflow for protein property prediction for third parties, making
it widely applicable within the field of bioprocess development. The
focus of current calculated molecular features is projection onto the
protein surface by constructing surface grid representations. Linear
regression models were trained with the calculated features to predict
chromatographic retention times/volumes. Model validation shows a
high accuracy for anion and cation exchange chromatography data
(cross-validated R? of 0.87 and 0.95). Hence, these models
demonstrate the potential of the use of QSPR to accelerate process

design.
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2.1 Introduction

The market for protein-based biopharmaceuticals, such as protein
subunit vaccines and therapeutic antibodies, developed rapidly over
recent years.[!] Opposed to chemical synthesis to manufacture small
molecule drugs, protein-based biopharmaceuticals are produced by
living host cells. During downstream processing (DSP) the target
product is separated from host cell impurities, which is of major
importance to guarantee patient safety and drug efficacy. To attain
sufficient purity, chromatography is a method of choice due to its
specificity and versatility.[>~*] However, the vast variety of commercially
available resin types (e.g., ion exchange (IEX) or hydrophobic
interaction chromatography (HIC)) and experimental conditions (e.g.,
salt concentrations, buffers, and pH) results in extensive experimental
screening to obtain optimal separation conditions, driving both cost and
development time. In silico preselection of resins and conditions prior
to experimentation would allow a decrease in costs and development

time by narrowing the empirical screening space.

Chromatographic separation is based on the difference in
physicochemical properties between the product and impurities. For
proteins, physicochemical properties are determined by the amino acid
sequence (1D) and the three-dimensional (3D) structure. Quantitative
Structure Property Relationship (QSPR) aims to relate physicochemical
properties to specific behavior (e.g., chromatographic retention
time).[> For QSPR, physicochemical properties are described as
numerical features and subsequently used in predictive machine
learning models as input variables. To build a QSPR workflow,
experimental data of known proteins is split in a training and test set.
Numerical features are calculated from the proteins in the training set
and selected to train a machine learning model (e.g., linear regression,

partial least squares (PLS), or neural networks) which predicts the
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behavior of interest. The resulting model is tested using the numerical
features obtained from the proteins in the test set, to assess the model
accuracy for new data. When the model provides sufficiently accurate
predictions, the property of proteins unknown to the model can be

predicted (Figure 2.1).

The simplest QSPR approach is to calculate protein features based on
the amino acid sequence. From the amino acid sequences, one can
derive properties such as residue counts, hydrophobicity scores, overall
charge, and the isoelectric point. Although these properties are
indicative, such features consider the contribution of each residue as
equal since topological information on whether the residue is buried or
accessible for resin ligands is lacking. This information can be obtained
from 3D protein structure models. Developments in protein structure
prediction allows accurate prediction of protein structures from amino
acid sequences, the current state-of-the-art being Alphafold2.[6:7]
PROFEAT!®! and ProtDCall®! offer webserver interfaces where structure
files can be analyzed to calculate protein features needed as input for
QSPR model approaches. Both tools calculate a list of general numerical
features based on the 1D and 3D protein structure. For feature
calculations using a local machine, the drug discovery software
platform Molecular Operating Environment (MOE) is widely applied.['°-
16] An alternative package is Schrddinger’s BioLuminate Suite, which
has recently been expanded by including features based on the protein
sequence, 3D structure, and surface patches.!['”] A comprehensive

overview can be found elsewhere.[8]

Using structural protein features to predict protein retention times was
first described in 2001 by Mazza et al., who calculated protein features
using the transferable atom equivalent method!>!°2°1 and the
proprietary software platform MOE. By applying a genetic algorithm for
feature selection, a PLS model was trained, capable of predicting

retention times for ion exchange chromatography from protein
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structure models. Applying the same feature calculation methods,
support vector machine regressions for both feature selection and the
final predictive model have also been applied for successful protein
retention prediction in ion exchange, hydrophobic interaction and
mixed mode chromatography.[10-161 As the chromatographic resin
interacts with the amino acid residues on the protein surface,
Malmquist et al. implemented a grid representation of the protein
surface to map protein properties.[?!l By applying distance functions to
project charge and hydrophobicity onto the surface grid points, protein
features were calculated and used in a PLS model to predict retention
times for anion and cation exchange columns. As charge and
hydrophobicity are usually not uniformly distributed over the protein
surface, binding orientations play important roles in protein-resin
binding affinities.[?223] To account for such orientations in QSPR
models, Hanke et al. described a method to sample the surface in
neighborhoods and uses this for HIC retention time predictions.[?4
These neighborhoods are defined as the surface within a specific
distance of a central surface point (7 & and 14 A distances were
described). Alternatively, Kittelmann et al. used property projections
on a plane, sampling different orientations.[?>26] By projecting the
properties onto a plane, this method considers steric hindrance on the
surface. This results in penalizing the area of surface cavities, which

are located at a greater distance from the projection plane.
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Figure 2.1: Schematic representation of a Quantitative Structure Property Relationship
(QSPR) workflow for chromatographic retention prediction. The first step to build a QSPR
model is data acquisition. Here, a set of known proteins is used to construct a dataset
containing experimentally determined properties (e.g., retention times). The
experimental property dataset is split into a train and test set. The training set is used
for model building. The physicochemical properties for each protein are calculated using
the corresponding 3D structure. The physicochemical properties are expressed as
numerical features. The number of features is reduced using dimension reduction
methods such as principle component analysis or variance filtering, and the most
descriptive features are selected by feature selection to train a predictive model. The
resulting model is tested on the test set to assess the accuracy for unseen proteins.
Predictive models with good accuracy can be applied to predict the properties of
uncharacterized proteins.
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Most of the described studies use proprietary or in-house software to
perform feature calculations and model training. As a result,
reproducing these studies is near to impossible. Therefore, direct
comparison between different approaches by minimizing the variables
cannot be performed, hindering benchmarking opportunities and
scientific progress. Additionally, the lack of open-source tools limits
software availability for new users and customizability to solve a wide
variety of development challenges. We aim to close this gap, and in
this work, we provide an open-source Python tool that is able to
calculate 3D protein features. The current implemented operations and
features aim to consolidate the most often described protein features
from literature.[13:21.2526]  The validity of the features for
chromatographic process development was shown by training multiple
linear regression (MLR) models predicting retention times/volumes for
cation and anion chromatography resins obtained from literature. To
promote transparency and scientific reproducibility, the software
developed for this study is freely available open source at
https://dx.doi.org/10.5281 /zen0do.10369949.

2.2 Methods

2.2.1 Protein charge

Protein charge is the key property that governs separation in ion
exchange chromatography. Protein charge is dependent on the
protonation state of the titratable groups. Residues Arginine (Arg, R),
Lysine (Lys, L) and Histidine (His, H) can have positively charged
sidechains when fully protonated, while Aspartic acid (Asp, D),
Glutamic acid (Glu, E), Cysteine (Cys, C) and Tyrosine (Tyr, T) can be
negatively charged when deprotonated. Additionally, the C and N
termini of the protein can also be negatively or positively charged,
respectively. The protonation states of these residues can be described

by the Henderson-Hasselbalch Equation(?71;
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-
pH=pKa+log<%), (2.1)

where AH is the protonated and A~ is the deprotonated form of the
titratable group. Therefore, titratable residue sidechains are
deprotonated when the pH is higher than their pKa and protonated
when the pH is lower than their pKa resulting in charges of +1, 0 or -
1. Alternatively, the overall charge can be calculated for negative and

positive charges as follows:

Charge = m [e], (22)
And

Charge = m [e], (2.3)
respectively. By default, pKa values are assigned based on a scale
documented in Leninger Principles of Biochemistry[?8] with the
exception of Arginine, which is set to 14.[2°1 Alternatively, custom pKa
values (predicted by e.g. PROPKAI[30:31] H+ 032,331 ' WHAT-IF[34]) can be
assighed to specific residues using a json object, allowing improved
description of the charge. To describe charge distribution, the dipole
moment of the protein can be calculated which is defined as the

magnitude of the dipole vector D, calculated as:

D =4.803Y,(r; —nr,) xq; [D], (2.4)
where rp is the protein center and ri is a vector containing the 3-

dimentional coordinates of the atom.[35:36]

2.2.2 Surface definition

Interactions of proteins with their environment often take place at the
protein surface. To rationalize these interactions using protein models,
accurate representations of the surfaces are required. The Solvent
Accessible Surface Area (SASA) is the most common for surface
estimation that represents the protein surface which can be occupied

by water molecules and was first described by Lee and Richards[3’]
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(Figure 2B). A number of tools specifically designed for the
determination of the SASA are available.[38-401 A spherical probe,
representing a solvent molecule, is rolled over the protein atoms
tracing the accessible area using the center of the solvent. We adopted
the method of Shrake and Rupley*l where each surface sphere is
represented by a set of sample points. The nhumber of sample points
are scaled according to the surface sphere radius and are distributed
by a Fibonacci spherel“2], to obtain a distribution of 2 points per 2. The
fraction of each amino acid occupying the surface can be calculated by
dividing the number of surface points of a residue by the total number

of surface points.

2.2.3 Property projection

Projection of properties onto the surface allows for assessing structural
attributes where the interactions occur. A surface grid representation
is composed by constructing grid cells of 1 A3 containing the surface.
Using connected component labeling connecting the grid points
occupied by the surface, a surface grid representation with a
distribution of 1 point per A3is composed (Figure 2C). Projection of

charge, resulting in simplified electrostatic potential (EP), is performed

by:

EP =Yg [V], (2.5)
where d represents the distance between atom i and the grid point, q
is the charge of atom i and ¢ the dielectric constant of a protein, which

is assumed to be 4.[43]

To represent a chromatographic resin, charges are mapped onto planes
(Figure 2D). A total of 120 planes are equally distributed using a
Fibonacci sphere and scaled to a distance of >1 A to any of the protein
atoms. Since the charge is now mapped through multiple media, ¢ is

defined as:
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= MSO [-1, (2.6)

Where subscript p indicates protein, w the solvent and 0 the
conductivity in a vacuum. The distance through the protein and solvent

is estimated using the solvent accessible surface.

Hydrophobicity of proteins is another important factor which governs
interactions. Many different scales describing the contribution of each
respective amino acid to hydrophobic phenomena have been
published.*4l The Cowan-Whittaker!4>] and the Miyazawa-Jerniganl4®l
scales have been reported to give highest correlation for hydrophobic
interaction chromatography retention prediction.[’] In this work, we
use the Miyazawa-Jernigan(#®! scale, which was scaled using a min-
max-scaler to values ranging from -1 to 1. Hydrophobicity values are
projected onto the surface grid to obtain the molecular hydrophobic

potential (MHP) using:

MHP =3, fie™% [-], (2.7)
where fi indicates the hydrophobicity value of the residue, based on the

work of Fauchére et al.[48] with a cut-off of 10 A.

i3 08

Figure 2.2: Protein representation for feature calculation. A) shows all atom
representation using the coordinates for each atom. B) shows the solvent accessible
surface area. C) shows the surface grid representation with mapped electrostatic
potentials. D) shows the plane projection of one orientation

A list of all current supported features can be found in Supplemental
Table S2.1.
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2.2.4 Dataset composition and feature calculation

Two datasets with known retention behavior for Q Sepharose FF and
SP Sepharose HP were required from literature, set 113! and set 2[13]
respectively (Tables 2.1 and 2.2). For both datasets, structures were
extracted from the PDB and used to generate homology models by
SWISS-MODEL[#?:5% to resolve missing atoms. Duplicate chains were
removed for all protein models to obtain monomer structures which
were used in the feature calculation. To calculate the protonation
states, the default pKa values were used for the titratable residues.
Building the surface grid was performed using a sphere radius of 1.4 A
to represent water.

Table 2.1: Dataset 1, Retention times of specific proteins described by Hou and

Cramer!®®] for Q Sepharose Fast Flow. Superscript 1 indicates the protein models used
as test set.

Protein PDB-ID Retention time (min)
Lectin 2PEL 12.35
Phosphorylase 1GPB! 12.56
Conalbumin 1AIV 15.31
Transferrin 1A8E 15.63
Trypsin Inhibitor 1AVU 16.19
a-Lactalbumin 1F6R 18.63
Glutamic Dehydrogenase 1NR7 21.29
Ovalbumin 10VA 21.47
Lipoxydase 1F8N 23.02
Human Serum Albumin 1A06 23.19
Adenosine Deaminase 1VFL 25.00
B-Lactoglobulin B 1BSQ! 26.26
Lipase 3TGL 26.51
B-Lactoglobulin A 1BSO 29.16
Cellulase 1EG1 29.71
Amyloglucosidase 1LF6 36.61
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Table 2.2: Dataset 2, Retention volumes of specific proteins at different pHs described
by Yang et al.[*3! for sulfopropyl Sepharose high-performance. Superscript 1 indicates
the pH used as test set (6).

Retention volume (mL)

Protein PDB-ID pH4 pH5 pH6' pH7 pHS8
Carbonic anhydrase 1V9E 7.86 3.51

Conalbumin 10VT 6.18 3.21 1.52
Pyruvate kinase 1A49 7.48 2.37

Bovine trypsin 1S81 6.94 3.82 2.37 2.14 1.15
Bee phospholipase A2 1POC 11.83 8.01 5.64 3.35 1.37
Elastase 1LVY 5.80 3.81 2.47 2.51 2.29
Trypsinogen 1TGB 7.17 4.27 3.34 3.34 2.90
Ribonuclease A 1RBX 13.12 9.23 5.72 4.96 3.66
a-Chymotrypsin 5CHA 8.93 6.87 5.95 5.87 5.19
a-Chymotrypsin A 2CGA 8.55 6.64 5.87 5.95 5.34
Bovine cytochrome C 2B4z 17.55 10.91 8.39 8.47 7.86
Horse cytochrome C 1HRC 17.63 10.91 8.39 8.47 7.93
Lysozyme 1AKI 14.12 10.83 9.54 9.16 8.01
Avidin 1VYO 19.54 1496 12.36 10.73 9.77
Aprotin 1PIT 1435 11.29 10.68 10.68 10.53
Lactoferrin 1BKA 26.87 25.34 24.96 24.81 23.89

2.2.5 Linear regression modeling

After splitting the data in train and test sets, a correlation filter was
applied for the removal of features with a high Pearson correlation
coefficient (0.99). Deciding which features should remain was based
on the Pearson correlation with the protein retention times/volumes,
making this a supervised feature filter. Next the feature list was further
reduced based on the Pearson correlation with the retention times,
removing 30% and 10% of the features with lowest correlation for
dataset 1 and dataset 2 respectively. Sequential forward feature
selection was used for selecting the features for the linear regression
model. Selected feature sets were validated using a repeated 2-fold
cross-validation and leave-one-out cross-validation. Feature
importance was assessed according to regression coefficients and by

feature permutation.

2.3 Results and discussion

To evaluate the performance of the developed Python tool, two

datasets were obtained from literature containing protein retention
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times/volumes for ion-exchange chromatography columns. The first
dataset contains protein retention for Q Sepharose FF, and the second
for SP Sepharose HP. For both datasets, predictive models were trained
relating protein structure to retention time or volume. To determine the
validity of the selected features, the regression coefficient and cross-
validated R? of a permutation model, where each feature is scrambled,

are discussed.

2.3.1 Protein retention prediction for Q Sepharose FF

To develop a simple model with high interpretability, a MLR model was
trained on protein retention times for the anion exchange resin Q
Sepharose FF (Table 2.3). The dataset that was used (Table 2.1) was
composed of 16 proteins, of which two were selected for testing while
the remaining 14 were used for model training.[*5! As overfitting can
be an issue for linear regression models, a ratio of five datapoints per
feature should be maintained, resulting in three features for this
dataset [°1l, The model’s predictability was considered sufficient, with
a cross-validated R? of 0.87, a RMSE of 2.23, and RMSEtest of 2.50
(Figure 2.3). The two most important features are the median negative
surface EP (regression coefficient of -31 and permutated CV R? of -
0.352) and the number of positive electrostatic surface grid points
(regression coefficient of 18.17 and a permutated CV R2?of 0.563), both
calculated using the formal charge (Table 2.3). A negative regression
coefficient indicates an inverse correlation with the retention time of
the protein and vice versa. In alignment with the mode of action of the
anion exchange resin, the negative surface potential is the most
important feature, as it has the highest regression coefficient and
permutation of this feature yields a model uncapable of predicting
retention times (Supplemental Figure 2.1A). The second feature,
number of surface points with a positive EP, shows a positive correlation

with protein retention time. This is not in line with the mode of action
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as a positive protein surface should be repelled by the anion exchange
resin. Permutation of this feature reduces the performance of the
model to a cross-validated R? of 0.563 (Supplemental Figure 2.1B).
The selection of this feature might be due to the current absence of
local surface descriptors. The affected proteins might still contain areas
on the surface which are negatively charged that could interact with
the anion exchange ligands. The final feature, the valine surface
fraction, is of the lowest importance, with a regression coefficient of -
5.75. The permutation of this feature results in a model with a cross-
validated R? of 0.733.

Table 2.3: Overview of features selected for the linear regression model for Q Sepharose

FF and the corresponding regression coefficient and cross-validated R2 of permutation
models

Feature Coefficient CV R? permutation
Intercept 36.76 -
Negative surface EP* median -31 -0.352
(formal)?
Number of surface points with 18.17 0.563
positive EP" (formal)?
Valine surface fraction -5.75 0.733

@ Charge calculated using formal charge (+1, 0 or -1). * Electrostatic Potential
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Figure 2.3: Prediction of Q Sepharose FF retention times. A) shows the leave-one-out
cross-validation (gray circles) and test set (white triangles) results of the model. B)
shows the predicted retention times volumes for the external test set (Table 1).
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2.3.2 pH dependent protein retention prediction for SP
Sepharose HP

The applicability of the Python tool for a different chromatography
mode and varying process conditions was tested using a second set of
protein retention volumes reported in literature.['3] The second set
consists of retention volumes of 16 different proteins for the cation
exchange resin SP Sepharose HP. In contrast to the previous dataset,
the proteins were measured at a pH range from 4 to 8, yielding a total
of 72 datapoints. The obtained numerical features were filtered and
subsequently selected using forward feature selection, shown in Table
4. The final MLR model is composed of 10 features and has good
predictability with a cross-validated R? of 0.95, a RMSE of 1.37, and
RMSEtest of 1.14 (Figure 2.4).

Six of the 10 selected features are directly related to the protein charge
and are inherently interconnected. The feature with the highest
regression coefficient of 31.24, and therefore deemed most important,
is the minimum surface EP. The positive coefficient indicates that an
increase in minimum surface EP leads to a higher retention volume,
which is in line with the mode of action of the cation exchange resin.
The total charge is the second most important feature with a regression
coefficient of -27.77. This indicates that proteins with a higher total
charge have lower retention volumes. Considering the dataset to be
retention volumes for the cation exchange resin SP Sepharose HP, a
negative correlation with the total charge is counter intuitive. This
correlation might not indicate a direct causation with the retention
volume, but rather that the total charge might compensate for other
charge related features, as there is collinearity between the charge
related features. To directly assess the importance of the feature, the
permutation model results in a reduced cross-validated R? of 0.861.

The permutation model for the minimum surface EP resulted in a
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greater decrease in performance (cross-validated R? of 0.822). This
indicates that the total charge is indeed less important for the final

model compared to EP.

The dipole vector length has a regression coefficient of 20.72. The high
positive regression coefficient indicates the importance of charge
polarization, and that proteins elute later with more uneven charge
distribution. The isoelectric point is the next charge-related feature
with a regression coefficient of 12.02. This feature is unaffected by pH
as it represents the pH at which the protein is neutrally charged.
Interestingly, even though the feature has only the fourth highest
coefficient, permutation of the feature results in a permutation model
with the lowest R? of 0.769 (Supplemental Figure 2D). This feature has
a low cross correlation with the other features, indicating that less
compensation is possible with the remaining data. The importance of
the remaining features is significantly lower compared to the first four
features (Cross-validated R? of permutation > 0.888), a detailed
discussion on these features can be found in the supplemental

material.
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Table 2.4: Overview of features selected for the linear regression model for SP
sepharose HP and the corresponding regression coefficient and cross-validated R’ of
permutation models

Feature Coefficient CV R2 permutation
Intercept -3.78 -
Minimum surface EP" (average)® 31.24 0.822
Total charge (average)® -27.77 0.861
Dipole vector length 20.72 0.842
Isoelectric point 12.02 0.769
Standar*d deV|at|o_n of_ positive 11.07 0.934
EP” shell projections
Lysine surface fraction -7.42 0.919
Mean negative surface EP* _
(formal)? 5.48 0.934
Standard deviation of negative
surface hydrophobicity 5.46 0.934
Cysteine surface fraction 5.12 0.888
Surface shape max -1.21 0.946

a Charge represented as formal charge (+1, 0 or -1). " Charge calculated using equations
2 and 3. " Electrostatic Potential.

While the QSPR model for the first dataset is trained to predict different
proteins at similar conditions, the second model is trained to predict
similar proteins for different pH conditions. The effect of different pH
values is captured by five of the 10 selected features which are pH
dependent (Minimum surface EP, Total charge, Dipole vector length,
Standard deviation of positive shell projections and Mean negative
surface EP). Thus, the remaining five features are pH independent, and
therefore similar for different pH conditions. Therefore, a slight bias
might have been introduced, indicated by clustering of identical
proteins. The impact of this bias is considered minimal due to the
greater regression coefficients and effect of permutation of the pH
dependent features. The increased amount of available data for the
second model is therefore thought to be the main factor driving greater

accuracy compared to the first model.
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Figure 2.4: Prediction of SP Sepharose HP retention volumes. A) shows model results
of the leave-one-out cross-validation (gray circles) of the proteins at pH 4, 5, 7 and 8 as
well as the test set (white triangles) which are the proteins at pH 6. B) shows the
predicted retention volumes for the external test set which are all proteins measured at
pH 6 (Table 2).

The two QSPR models are cabable of the retention prediction for Q
Sepharose FF and SP Sepharose HP. All physical phenomena are
described implicitly, therefore these models would only be suitable for
describing retention behavior for these specific resins. Extending these
models to predict protein retention of other resins would require
additional data. This data can subsequently be used in a similar model
building approach as described here, yielding predictive models for the

new conditions.

2.4 Conclusion

Physically relevant protein features are essential to achieve robust
predictions of protein properties, like chromatographic retention
behavior. To mature the field of protein QSPR, adaptable and
transparent open-source software for the calculation of protein features
is essential to directly benchmark between different tools and improve
the current state-of-the-art. Using the open-source software presented
here, we were able to train models that predict the retention
times/volumes for two different ion-exchange chromatography
datasets, showing applicability for unknown proteins and differences in
pH (cross-validated R2 of 0.87 and 0.95, respectively). Most features
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selected by the forward feature selection method have an
apprehensible relation to protein retention for specific chromatographic
conditions. However, collinearity between multiple features was
observed. Model performance might therefore benefit from feature
reduction techniques such as principal component analysis or PLS
regression. Nevertheless, these models show good performance and
would allow for pre-screening of chromatographic resins. Finally, it was
shown that the amount of data available for model training is a major
factor determining model accuracy. By increasing the available input
data for protein properties like chromatographic retention time, the
true impact of the 3D protein features and in silico property prediction

for process design can be unlocked in the future.
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2.6 Supplemental information

Supplemental Table S2.1: list of all descriptors calculated

Name

unit

Description

Molecular weight

Shape min

Shape max

Area
Formal charge
Average charge

Isoelectric point
Dipole
NsurfPoints
AlaSurfFrac

ArgSurfFrac

AsnSurfFrac

AspSurfFrac

CysSurfFrac

GInSurfFrac

GluSurfFrac

GlySurfFrac

HisSurfFrac

IleSurfFrac

LeuSurfFrac
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Da

Sum of the weight of each amino acid in the
protein

Shape of the protein surface, calculated by
dividing the minimum distance by the average
distance between the surface points and the
protein centre of mass (COM)

Shape of the protein surface, calculated by
dividing the average distance by the maximum
distance between the surface points and the
protein COM

The calculated surface area based on the Shrake
Rupley algorithm

The charge calculated based on the pH of the
solution using binary charges of +1, 0 or -1

The charge calculated based on the pH of the
solution using charges ranging between 1 and -1
The estimated isoelectric point

The magnitude of the dipole vector

The number of surface grid points

Fraction of alanine on the surface calculated by
dividing the alanine surface area by the total
surface area

Fraction of arginine on the surface calculated by
dividing the arginine surface area by the total
surface area

Fraction of asparagine on the surface calculated
by dividing the asparagine surface area by the
total surface area

Fraction of aspartic acid on the surface calculated
by dividing the aspartic acid surface area by the
total surface area

Fraction of cysteine on the surface calculated by
dividing the cysteine surface area by the total
surface area

Fraction of glutamine on the surface calculated
by dividing the glutamine surface area by the
total surface area

Fraction of glutamic acid on the surface
calculated by dividing the glutamic acid surface
area by the total surface area

Fraction of glycine on the surface calculated by
dividing the glycine surface area by the total
surface area

Fraction of histidine on the surface calculated by
dividing the histidine surface area by the total
surface area

Fraction of isoleucine on the surface calculated
by dividing the isoleucine surface area by the
total surface area

Fraction of leucine on the surface calculated by
dividing the leucine surface area by the total
surface area
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LysSurfFrac

MetSurfFrac

PheSurfFrac

ProSurfFrac

SerSurfFrac

ThrSurfFrac

TrpSurfFrac

TyrSurfFrac

ValSurfFrac

SurfEpMaxFormal
SurfEpMeanFormal
SurfEpTrimeanFormal
SurfEpminFormal
SurfEpMedianFormal
SurfEpSumFormal

SurfEpStdFormal

NSurfPosEpFormal

SurfPosEpMeanFormal
SurfPosEpTrimeanFormal
SurfPosEpMedianFormal
SurfPosEpsumFormal

SurfPosEpFracFormal

Fraction of lysine on the surface calculated by
dividing the lysine surface area by the total
surface area

Fraction of methionine on the surface calculated
by dividing the methionine surface area by the
total surface area

Fraction of phenylalanine on the surface
calculated by dividing the phenylalanine surface
area by the total surface area

Fraction of proline on the surface calculated by
dividing the proline surface area by the total
surface area

Fraction of serine on the surface calculated by
dividing the serine surface area by the total
surface area

Fraction of threonine on the surface calculated by
dividing the threonine surface area by the total
surface area

Fraction of tryptophane on the surface calculated
by dividing the tryptophane surface area by the
total surface area

Fraction of tyrosine on the surface calculated by
dividing the tyrosine surface area by the total
surface area

Fraction of valine on the surface calculated by
dividing the valine surface area by the total
surface area

The maximum observed electrostatic potential
calculated using binary charges of +1, 0 or -1
The mean of all electrostatic potentials calculated
using binary charges of +1, 0 or -1

The trimean of all electrostatic potentials
calculated using binary charges of +1, 0 or -1
The minimum observed electrostatic potential
calculated using binary charges of +1, 0 or -1
The median of all electrostatic potentials
calculated using binary charges of +1, 0 or -1
The sum of all electrostatic potentials calculated
using binary charges of +1, 0 or -1

The standard deviation of the electrostatic
potentials calculated using binary charges of +1,
Oor-1

Number of points with a positive electrostatic
potential calculated using binary charges of +1,
Oor-1

The mean of all positive electrostatic potentials
calculated using binary charges of +1, 0 or -1
The trimean of all positive electrostatic potentials
calculated using binary charges of +1, 0 or -1
The median of all positive electrostatic potentials
calculated using binary charges of +1, 0 or -1
The sum of all positive electrostatic potentials
calculated using binary charges of +1, 0 or -1
The fraction of points with a positive electrostatic
potential, NsurfPosEp/NsurfPoints calculated
using binary charges of +1, 0 or -1
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SurfPosEpStdFormal

NSurfNegEpFormal

SurfNegEpMeanFormal

SurfNegEpTrimeanFormal

SurfNegEpMedianFormal

SurfNegEpsumFormal

SurfNegEpFracFormal

SurfNegEpStdFormal

SurfEpMaxAverage

SurfEpMeanAverage

SurfEpTrimeanAverage

SurfEpminAverage

SurfEpMedianAverage

SurfEpSumAverage

SurfEpStdAverage

NSurfPosEpAverage

SurfPosEpMeanAverage

SurfPosEpTrimeanAverage

SurfPosEpMedianAverage

SurfPosEpsumAverage

SurfPosEpFracAverage
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The standard deviation of the positive
electrostatic potentials calculated using binary
charges of +1, 0 or -1

Number of points with a negative electrostatic
potential calculated using binary charges of +1,
Oor-1

The mean of all negative electrostatic potentials
calculated using binary charges of +1, 0 or -1
The trimean of all negative electrostatic
potentials calculated using binary charges of +1,
Oor-1

The median of all negative electrostatic
potentials calculated using binary charges of +1,
Oor-1

The sum of all negative electrostatic potentials
calculated using binary charges of +1, 0 or -1
The fraction of points with a negative
electrostatic potential, NsurfNegEp/NsurfPoints
calculated using binary charges of +1, 0 or -1
The standard deviation of the negative
electrostatic potentials calculated using binary
charges of +1, 0 or -1

The maximum observed electrostatic potential
calculated using charges ranging between 1 and
-1

The mean of all electrostatic potentials calculated
using charges ranging between 1 and -1

The trimean of all electrostatic potentials
calculated using charges ranging between 1 and
-1

The minimum observed electrostatic potential
calculated using charges ranging between 1 and
-1

The median of all electrostatic potentials
calculated using charges ranging between 1 and
-1

The sum of all electrostatic potentials calculated
using charges ranging between 1 and -1

The standard deviation of the electrostatic
potentials calculated using charges ranging
between 1 and -1

Number of points with a positive electrostatic
potential calculated using charges ranging
between 1 and -1

The mean of all positive electrostatic potentials
calculated using charges ranging between 1 and
-1

The trimean of all positive electrostatic potentials
calculated using charges ranging between 1 and
-1

The median of all positive electrostatic potentials
calculated using charges ranging between 1 and
-1

The sum of all positive electrostatic potentials
calculated using charges ranging between 1 and
-1

The fraction of points with a positive electrostatic
potential, NsurfPosEp/NsurfPoints calculated
using charges ranging between 1 and -1
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SurfPosEpStdAverage

NSurfNegEpAverage

SurfNegEpMeanAverage

SurfNegEpTrimeanAverage

SurfNegEpMedianAverage

SurfNegEpsumAverage

SurfNegEpFracAverage

SurfNegEpStdAverage

SurfMhpMax
SurfMhpMean
SurfMhpTrimean
SurfMhpmin
SurfMhpMedian
SurfMhpSum
SurfMhpStd
NSurfPosMhp
SurfPosMhpMean
SurfPosMhpTrimean
SurfPosMhpsum
SurfPosMhpFrac
SurfPosMhpStd
NSurfNegMhp
SurfNegMhpMean
SurfNegMhpTrimean
SurfNegMhpsum
SurfNegMhpFrac

SurfNegMhpStd

The standard deviation of the positive
electrostatic potentials calculated using charges
ranging between 1 and -1

Number of points with a negative electrostatic
potential calculated using charges ranging
between 1 and -1

The mean of all negative electrostatic potentials
calculated using charges ranging between 1 and
-1

The trimean of all negative electrostatic
potentials calculated using charges ranging
between 1 and -1

The median of all negative electrostatic
potentials calculated using charges ranging
between 1 and -1

The sum of all negative electrostatic potentials
calculated using charges ranging between 1 and
-1

The fraction of points with a negative
electrostatic potential, NsurfNegEp/NsurfPoints
calculated using charges ranging between 1 and
-1

The standard deviation of the negative
electrostatic potentials calculated using charges
ranging between 1 and -1

The maximum observed hydrophobicity potential
The mean of all hydrophobicity potentials

The trimean of all hydrophobicity potentials

The minimum observed hydrophobicity potential
The median of all hydrophobicity potentials

The sum of all hydrophobicity potentials

The standard deviation of the hydrophobicity
potentials

Number of points with a positive hydrophobicity
potential

The mean of all positive hydrophobicity
potentials

The trimean of positive hydrophobicity
electrostatic potentials

The sum of all positive hydrophobicity potentials
The fraction of points with a positive
hydrophobicity potential,
NsurfPosMhp/NsurfPoints

The standard deviation of the positive
hydrophobicity potentials

Number of points with a negative hydrophobicity
potential

The mean of all negative hydrophobicity
potentials

The trimean of all negative hydrophobicity
potentials

The sum of all negative hydrophobicity potentials
The fraction of points with a negative
hydrophobicity potential,
NsurfNegMhp/NsurfPoints

The standard deviation of the negative
hydrophobicity potentials

61




Chapter 2

ShellEpMaxFormal

ShellEpMeanFormal
ShellEpTrimeanFormal

ShellEpminFormal

ShellEpMedianFormal
ShellEpSumFormal

ShellEpStdFormal

NShellPosEpFormal

ShellPosEpMeanFormal

ShellPosEpTrimeanFormal

ShellPosEpMedianFormal

ShellPosEpsumFormal

ShellPosEpFracFormal

ShellPosEpStdFormal

NShellNegEpFormal

ShellNegEpMeanFormal

ShellNegEpTrimeanFormal

ShellNegEpMedianFormal

ShellNegEpsumFormal

ShellNegEpFracFormal

ShellNegEpStdFormal

The maximum observed shell electrostatic
potential calculated using binary charges of +1,
Oor-1

The mean of all shell electrostatic potentials
calculated using binary charges of +1, 0 or -1
The trimean of all shell electrostatic potentials
calculated using binary charges of +1, 0 or -1
The minimum observed shell electrostatic
potential calculated using binary charges of +1,
Oor-1

The median of all shell electrostatic potentials
calculated using binary charges of +1, 0 or -1
The sum of all shell electrostatic potentials
calculated using binary charges of +1, 0 or -1
The standard deviation of the shell electrostatic
potentials calculated using binary charges of +1,
Oor-1

Number of points with a positive shell
electrostatic potential calculated using binary
charges of +1, 0 or -1

The mean of all positive shell electrostatic
potentials calculated using binary charges of +1,
Oor-1

The trimean of all positive shell electrostatic
potentials calculated using binary charges of +1,
Oor-1

The median of all positive shell electrostatic
potentials calculated using binary charges of +1,
Oor-1

The sum of all positive shell electrostatic
potentials calculated using binary charges of +1,
Oor-1

The fraction of points with a positive shell
electrostatic potential, NshellPosEp/120
calculated using binary charges of +1, 0 or -1
The standard deviation of the positive shell
electrostatic potentials calculated using binary
charges of +1, 0 or -1

Number of points with a negative shell
electrostatic potential calculated using binary
charges of +1, 0 or -1

The mean of all negative shell electrostatic
potentials calculated using binary charges of +1,
Oor-1

The trimean of all negative shell electrostatic
potentials calculated using binary charges of +1,
Oor-1

The median of all negative shell electrostatic
potentials calculated using binary charges of +1,
Oor-1

The sum of all negative shell electrostatic
potentials calculated using binary charges of +1,
Oor-1

The fraction of points with a negative
shellelectrostatic potential, NShellNegEp/120
calculated using binary charges of +1, 0 or -1
The standard deviation of the negative
electrostatic potentials calculated using binary
charges of +1, 0 or -1
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Supplemental Figure S2.1: Model results of model 1 while removing each feature. A)
contains the model results in absence of the negative surface EP median. B) contains the
model results in absence of the number of surface points with positive EP. C) contains
the model results in absence of the valine surface fraction.

63



Chapter 2

>
o]

B1 @ crassvalidation ) 35] @ Crosswalidation °
A Test A Test

30 R*: 0.B61
R 30
RM;’Esgzsl . RMSE: 2.268

254 RMSE test: 1.80824 25 RMSE test: 1.68466 N"'

8

&

Predicted retention volume (mL)
Predicted retention volume (mL}

. }f:_vﬂ o % °

10 15 0
Reported retention volume (mL)

(@]
o

@ Cross-validation

@ Crossvalidation

=) jy

Eax| A ten Eas{ A e

] R%: 0842 L) R 0.768

E RMSE: 2.422 E RAMSE: 2,925

35 20 RMSE test: 2.09741 5 209 RMSE test. 171298

E E

c c 15 °

81 k-] (=] o
£ €

T 1] ]

£, g X A
] ] o® ]
k=] k-] (<]
s 2 5 @b é &

] e s P @ e

5 -]

v .19 g, e

&0 @ %

10 15 20 10 15 20
Reported retention volume (mL) Reported retention volume (mL)

oy @ Crossvalidation = @ Cross-validation @
Ezs A Test En A Test
@ R 0,934 U R 0.019
E RMSE: 1.561 E RMSE: 1.729
5 20 RMSE test: 1.20726 5 20 RMSE test: 1.57433
) o
> >
< c
s 515
=} ° E=]
5 3
<0 =10
¢ ¢
o o
£ . £
kel ]
-1 =1
2 'ﬁ g o
a o a
0 5 25 o

10 15 20
Reported retention volume (mL)

(9]

H

@ Cross-validation @ Cross-validation

3 )
_E.?s A Test £ 2] A Test
@ R 0934 @ R7: 0.934
= RMSE: 1.558 13 RMSE: 1.561
5 20 AMSE test: 1.20854 S 20 AMSEtest: 15271
= =2
S S
c

15 <
2 s
H =
£ 10 2
s g

&
o
& 3
K] E 5
: S
2
a ® g of @G,
[} 20 25

15 20 25

10 15
Reported retention volume (mL| 1o .
P {mL} Reported retention volume (mL)

64



Predicting protein retention in ion-exchange chromatography using an
open source QSPR workflow

@ Crossvalidation
25 A Test

A*; 0888

RMSE: 2.034

20| RMSE test: 1616

15 Y} A...’. s
o e

#

° L)
L
o
)

h%\

Predicted retention volume (mL)

o 5 10 15 20
Reported retention volume (mL)

Supplemental Figure S2.2: Model results of model 2 while removing each feature. A)
contains the model results in absence of the minimum surface EP. B) contains the model 2
results in absence of the total charge. C) contains the model results in absence of the
dipole vector length. D) contains the model results in absence of the isoelectric point. E)
contains the model results in absence of the standard deviation of positive shell
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projections. F) contains the model results in absence of the lysine surface fraction. G)
contains the model results in absence of the mean negative surface EP. H) contains the
model results in absence of the standard deviation of negative surface hydrophobicity.
1) contains the model results in absence of the cysteine surface fraction. J) contains the
model results in absence of the surface shape max.
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2.6.1 Supplemental discussion

Due to the increased number of features compared to the previous
dataset, 10 opposed to three, interpreting the final model is more
challenging. Six of the 10 selected features are directly related to the
protein charge and are inherently interconnected. The feature with the
highest regression coefficient of 31.24, and therefore deemed most
important, is the minimum surface EP. The positive coefficient indicates
that an increase in minimum surface EP leads to a higher retention
volume, which is in line with the mode of action of the cation exchange
resin. The total charge is the second most important feature with a
regression coefficient of -27.77. This indicates that proteins with a
higher total charge have lower retention volumes. Considering the
dataset to be retention volumes for the cation exchange resin SP
Sepharose HP, a negative correlation with the total charge is counter
intuitive. This correlation might not indicate a direct causation with the
retention volume, but rather that the total charge might compensate
for other charge related features, as there is collinearity between the
charge related features. To directly assess the importance of the
feature, the permutation model results in a reduced cross-validated R?
of 0.861. The permutation model for the minimum surface EP resulted
in a greater decrease in performance (cross-validated R? of 0.822).
This indicates that the total charge is indeed less important for the final

model compared to EP.

The dipole vector length has a regression coefficient of 20.72. The high
positive regression coefficient indicates the importance of charge
polarization, and that proteins elute later with more uneven charge
distribution. The isoelectric point is the next charge-related feature
with a regression coefficient of 12.02. This feature is unaffected by pH
as it represents the pH at which the protein is neutrally charged.
Interestingly, even though the feature has only the fourth highest

coefficient, permutation of the feature results in a permutation model
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with the lowest R? of 0.769 (Supplemental Figure S2.2D). This feature
has a low cross correlation with the other features, indicating that less
compensation is possible with the remaining data. The fifth highest
regression coefficient is 11.07 for the standard deviation of the shell
projections with a positive value. This feature represents the spread of
the plane projections with an overall positive EP. An increase in
standard deviation indicates a greater spread of positive values.
Although the correlation coefficient is similar to that of the isoelectric
point, permutation of the feature results in only a 0.02 decrease in
performance, resulting in a R? of 0.934 (Supplemental Figure S2.2E).
The minor decrease in performance can be explained by the Pearson
correlation coefficient of the fifth feature to the minimum surface EP,
total charge, and the dipole vector length, which are 0.54, 0.76, and
0.69 respectively (data not shown). As a result of this relatively high
correlation, the remaining features can compensate for the missing
feature, minimizing the loss of model performance. Apart from the
cysteine surface fraction, the permutation of the four remaining
features with the lower regression coefficients results in a loss of
predictive capability similar to the standard deviation of positive shell
projections, resulting in a cross-validated R? range of 0.948 - 0.922
(Supplemental Figure S2.2F, G, H, J). These features are therefore
important to finetune the model but are difficult to interpret due to the
low level of correlation between the single feature and the protein
retention volume. Permutation of the cysteine surface fraction feature
from the model yielded a reduced cross-validated R? of 0.895
(Supplemental figure S2.2I). Since cysteine residues can act as a
hydrogen bond donor, they can potentially interact with the
sulphopropyl active groups on the resin, however no correlation was

found for the single feature and retention volume.

The test set shows that 1V9E is predicted with low accuracy at the

prediction limit of 0 mL. The inability to predict an accurate retention
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volume is due to a 2.5 fold decrease in dipole moment for 1V9E when
moving from pH 5 to pH 6 while the other proteins in the dataset only
show a maximum decrease of 1.5 fold. Due to the importance of the
dipole vector length in the model, the reduction in protein resin affinity
is overestimated. Another feature which greatly affects the estimation
of the retention volume of 1V9E_6 is the standard deviation of positive
shell projections. This feature was found to be outside of the value

range observed in the training set. This highlights the importance of
outlier identification.
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Abstract

Optimizing a biopharmaceutical chromatographic purification process
is currently the greatest challenge during process development. A lack
of process understanding calls for extensive experimental efforts in
pursuit of an optimal process. In silico techniques, such as mechanistic
or data driven modeling, enhance the understanding, allowing more
cost-effective and time efficient process optimization. This work
presents a modeling strategy integrating quantitative structure
property relationship (QSPR) models and chromatographic mechanistic
models (MM) to optimize a cation exchange (CEX) capture step limiting
experiments. In QSPR, structural characteristics obtained from the
protein structure are used to describe physicochemical behavior. This
QSPR information can be applied in MM to predict the chromatogram
and optimize the entire process. To validate this approach, retention
profiles of six proteins were determined experimentally from mixtures,
at different pH (3.5, 4.3, 5.0, 7.0). Four proteins at different pH’s were
used to train QSPR models predicting the retention volumes and
characteristic charge, subsequently the equilibrium constant was
determined. For an unseen protein knowing only the protein structure,
the retention peak difference between the modeled and experimental
peaks was 0.2% relative to the gradient length (60 column volume).
Next, the CEX capture step was optimized, demonstrating a consistent
result in both the experimental and QSPR-based methods. The impact
of model parameter confidence on the final optimization revealed two
viable process conditions, one of which is similar to the optimization
achieved using experimentally obtained parameters. The multiscale
modeling approach reduces the required experimental effort by

identification of initial process conditions which can be optimized.
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3.1 Introduction

Over the past years, the biopharmaceutical industry has experienced
substantial growth, with protein-based biopharmaceuticals (e.g.,
monoclonal antibodies (mAbs) and protein subunit vaccines) being a
significant part of the industry.['l As a consequence, the
biopharmaceutical industry endeavors to accelerate process
development with the primary goal to deliver biopharmaceuticals at the
earliest possible time, pushing the competitive market.[?! Moreover, the
competition even intensified more due to the emerging field of
biosimilars.[34 The biopharmaceutical sector requires therefore
innovative approaches to advance process development, while
ensuring product quality and stability.[>] Especially the downstream
process is the major cost driver of the overall manufacturing costs,
demanding an efficient and cost-effective process. To achieve very high
product purities, chromatography is currently the most essential but

also the most costly technique.(®!

In silico techniques, such as mechanistic or data-driven modeling, can
be of great merit for process development. These methods allow for
increased process understanding while reducing experimental effort
and/or use of critical sample material and decreasing process
development times.[7:8] Within the next years, modeling techniques will
become more essential for biopharmaceutical industry. Specifically for
Industry 4.0 that aims to digitalize the entire manufacturing process.[°-
12] Moreover, increased process understanding and process and product
quality control are in agreement with the Quality-by-Design (QbD)
guidelines.['3-16] [dentifying the operating window of the critical process
parameters (CPP) is an essential part to guarantee process’ stability.
Currently, these operating windows are determined with expensive and
time-consuming wet-lab Design-of-Experiments (DoE).

Chromatographic mechanistic models (MM) attempt to describe the
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chromatographic process in silico and could be an inexpensive and fast
alternative to determine the CPP operating window. Over the past
years, the industry has been gradually adopting chromatographic MM,
with ongoing advancement being made in determining the essential
input parameters.['7-20] In the future, the ultimate objective is to
determine adsorption isotherm for complex mixtures more easily.[?1:22]
Progress in utilizing mass spectrometry data could play a crucial role
in achieving this goal.[?3! However, at this moment determining
adsorption isotherm parameters for the MM remains a bottleneck for
industrial application, mainly due to time and material limitations
especially in the early phase of downstream process development.[?4]
Quantitative Structure Property Relationships (QSPR) modeling could
be an in silico alternative to experimentally determining the adsorption
isotherm parameters. QSPR aims to correlate physicochemical
properties with specific behavior, such as chromatographic retention
time.[23] These physicochemical properties are calculated from protein
structure models that describe the position of each atom. Combining
MM with QSPR and optimization tools could pave the way for a holistic

modeling approach/workflow.

In 2001, Mazza et al. introduced a QSPR model for predicting protein
retention times for ion exchange chromatography.[?>1 Their approach
involved feature calculation using the proprietary software platform
MOE a genetic algorithm for feature selection for the training of a
partial least squares model.[26:27] As a result, several follow-up studies
applied QSPR models to different modes of chromatography/type of
chromatography resins, using support vector machine regression
methods, and including pH effects.[28-33] Malmquist et al. developed an
additional set of protein descriptors that are pH-dependent and based
on electrostatic and hydrophobic properties.[3*] Moreover, several
studies considered the crucial binding orientations within protein-resin
binding affinities in their QSPR models.[3°-37] In recent years, QSPR has
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been applied to more complex proteins, such as Fabs and mAbs,
showing the growing interest from industry and the added value of
these models.[243839] Robinson et al. showed the potential of QSPR
models for in silico resin screening of six chromatographic systems
applied to Fabs.[38] While Saleh et al. built QSPR models using 21 mAbs
variants to predict the adsorption isotherm parameters, the equilibrium
constant and the characteristic charge, which were subsequently
applied to the MM and able to predict the cation exchange
chromatography (CEX) step.?1 Their study shows promising
capabilities of a multiscale model to simulate different process
conditions without the need for wet-lab experiments. Several software
packages are available to calculate the protein descriptors that are
needed for QSPR modeling, an overview of these software packages
has been provided elsewhere.[*041] Most software tools are only
available via webservers or commercially, lacking source code
availability. Therefore, Neijenhuis et al. have recently published an
open-source QSPR software tool, which has also been used in this

work.[42]

Most research on QSPR modeling either developed protein descriptors
or applied existing protein descriptors for their QSPR model with the
aim to increase the protein-behavior understanding via retention
prediction.[31,34,:38,39.43] Additionally, other research also applied the
predicced QSPR parameters to MM and validated the predicted
chromatographic process from a protein structure/sequence.[2430.32] 5o
far, no research has shown the ability of QSPR models in combination
with MM to optimize a chromatographic process step without any need
for protein material. Moreover, the influence of the accuracy of the
predicted QSPR-parameters on an optimized process has not yet been

evaluated.

This study presents a general multiscale modeling strategy that

integrates QSPR and chromatographic MM to optimize a CEX capture
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step. We were able to simulate and validate a CEX step only using the
protein structure. Subsequently, we compared the uncertainty of the
experimentally determined and predicted parameters on the final
optimization outcome. An overview of the experimental-based and
QSPR-based strategy is shown in Figure 3.1. This strategy can be used
to determine the operating window of CPPs in early-stage process
development, showing the potential applicability for industry.
Combining these modeling techniques together with optimization
software reduces the experimentally effort overall process
development time significantly. Previous research mostly used pure
components to perform the linear gradient experiments (LGE),
however the availability of pure components is limited in
biopharmaceutical industry. Therefore, performing LGE with complex
protein mixtures would offer significant advantages. So far, only Buyel
et al. applied QSPR modeling to a crude mixture of plant extracts to
predict elution conditions for ion exchange and mixed mode
chromatography separations.[331 Here, we performed LGE for five
different gradient lengths and four pHs applied to two mixtures of each
three proteins. Performing the experiments with protein mixtures
instead of each protein individually, reduces the total LGE from 30 to
10 experiments. We developed QSPR models for predicting the
retention volumes and characteristic charges. These predicted QSPR
parameters were used to obtain the equilibrium constants. The
multiscale model was validated for an unseen protein, which was
excluded from the QSPR training and testing data. Finally, we compared
the influence of parameter uncertainties on the optimization outcome

by using experimental and QSPR predicted parameters.
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Figure 3.1: Overview of the experimental-based method and the QSPR-based method.
Both methods can be used to determine the adsorption isotherm parameters that can be
used in the mechanistic model for process optimization purposes. The equilibrium
constant is denoted by K., and the stoichiometric coefficient of salt counter ions with v.

3.2 Materials & Methods

3.2.1 Materials & Equipment

A 1-mL CEX column of HiTrap SP FF (Cytiva Life Sciences, USA) was
used for the preparative column experiments. For the analytical size
exclusion chromatography - ultra performance liquid chromatography
(SEC-UPLC), an ACQUITY UPLC Protein BEH SEC 200 & column (Waters

77



Chapter 3

Corporation, USA) was used, protected with a prior/foregoing ACQUITY
UPLC Protein BEH SEC guard 200 & column (Waters Corporation, USA).

The following proteins were purchased from Sigma-Aldrich, USA:
bovine serum albumin (BSA), |lysozyme, cytochrome ¢,
chymotrypsinogen A from bovine pancreas, and conalbumin.
Ribonuclease pancreatic (RNAse) was purchased from Roche
Diagnostics GmbH, Germany. Dextran (DXT1740K) (American Polymer

Standards Corporation, USA) was used for column characterization.

The buffers were prepared with Milli-Q water and adjusted to the
desired pH using either 0.5 M sodium hydroxide or 1 M hydrochloric
acid. The buffers were filtered to remove undissolved salts, 0.2 ym
pore-size hollow fiber MediaKap (Repligen, USA) filter for UPLC buffers
and a 0.2 ym Membrane Disc Filter (Pall corporation, USA) for AKTA
buffers. Moreover, all buffers were degassed for 20 minutes using an
ultrasonic bath (Branson Ultrasonics, USA) to prevent introducing air
bubbles into the column. The protein mixture was filtered using a 0.2
um Whatman Puradisc FP 30 mm (GE Healthcare Life Sciences, USA).

3.2.2 Linear gradient column experiments

LGE were conducted at various pH values (pH 3.5, 4.3, 5.0, and 7.0)
for five gradient lengths: 20, 30, 40, 60, and 80 column volumes (CV).
For every pH a different running buffer was needed, citric acid
monohydrate (pH 3.5, 20 mM), sodium acetate trihydrate (pH 4.3 and
5.0, 50 mM), and sodium phosphate monobasic dihydrate (pH 7.0, 50
mM). The elution buffer is the same as the running buffer for that
respective pH with the addition of 1 M sodium chloride. The pH-values
were selected to theoretically favor a positive net charge for most
proteins and therefore anticipate their binding to the CEX resin. The
chromatographic column experiments were performed on an AKTA
pure system (Cytiva Life Sciences, USA) with UNICORN version 7.5

software, with a flowrate of 1 mL/min, and measuring UV absorbance
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at 230, 280, and 400 nm wavelength. The column characteristics are
given in Table 3.1, more information on the characterization methods
can be found in the Supplemental Methods. During the chromatography
runs, 1 mL samples were collected using a fraction collector. These
samples were additionally analyzed with a Dionex UPLC system using
Chromeleon Chromatography Data System version 7 software,
measuring UV absorbance at 230, 280, and 400 nm wavelength. The
UPLC-running buffer was a 100 mM sodium phosphate monobasic
dihydrate with a pH of 6.8. A flowrate of 0.1 mL/min and analysis time
of 40 minutes was applied. The SEC-UPLC analysis enabled the
identification of the peaks obtained during the LGE’s with their
corresponding proteins. However, the protein mixture was divided into
two groups, as some proteins with similar characteristics were
indistinguishable in the SEC-UPLC analysis. Group one consisted of
RNase, cytochrome ¢, conalbumin, and group two of
chymotrypsinogen, lysozyme, and albumin. Both multi-component

mixtures contained 0.8 mg/mL of each protein.

First, the column was equilibrated with 5 CV running buffer, followed
by a 300 yL sample injection using a 10 mL Superloop (Cytiva Life
Sciences, USA). After the sample injection, unretained proteins were
removed by washing the column for 5 CV using the running buffer.
Subsequently, a gradient elution was performed from 0 (running
buffer) to 1 M sodium chloride (elution buffer). The proteins in the
collected fractions were identified with the SEC-UPLC analytical
method. Though, it is expected that the elution order of the proteins
remains the same and therefore, only the fractions of two gradients for
each pH were analyzed with SEC-UPLC. For each fraction analysis, 5 uL

sample was injected.
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Table 3.1: Column characteristics for HiTrap SP FF column.

Parameter Value Unit
Column volume 0.97 mL
Column diameter® 0.70 cm
Bed height® 2.50 cm
Maximum pressure?® 2.0 MPa
Ionic capacity® 800 mM
Particle size® 90 um
Pore diameter¢ 54 nm
Cross sectional area 0.39 cm?
System dead volume (V,..q) 0.34 mL
Total porosity (g,) 0.918 -
Extraparticle porosity (g,) 0.298 -
Intraparticle porosity (¢,) 0.887 -
System dwell volume (V4,..) 1.09 mL

aManufacturer, ®Osberghaus et al.[*4], 3Hagemann et al.[#°]

Table 3.2: Overview of the protein characteristics and the protein data bank (PDB) entry
used for calculations.

Protein PDB names Mass (kDa) Estimated
Isoelectric
point*

Conalbumin 10VT 75.83 6.62

Albumin 6QS9 66.43 5.49

Chymotrypsinogen 2CGA 25.67 8.13

Lysozyme 1GWD 14.31 9.20

Ribonuclease 1RNC 13.69 8.29

Cytochrome C 6FF5 12.33 9.60

* Estimations were performed using the open-source QSPR tool
3.2.3 Chromatographic mechanistic model

The chromatographic MM from previous work was used to describe the
dynamic adsorption behavior during the chromatographic separation
process.[“®] This employed MM is a combination of the equilibrium
transport dispersive model combined with the linear driving force

model as

6Ci aql 6Cl 62Ci
F

9% R0 9% il 3.1
ot TF5e = ~uox T g (3.1)
dq; .
6_131 = kov,i( G — Ceq,i ) ’ (32)
d d 1"
Kppi = |—2 +—P2— ] , (3.3)
ovit [6kf,L 60(’5pr’!’

80



From protein structure to an optimized chromatographic capture step
using multiscale modeling

where the concentration in the liquid phase is represented by C; and in
the solid phase withg;, in which subscript i denotes the protein
component. The liquid phase concentration at equilibrium is denoted
by Ceqi- The phase ratio is equal to F = (1 —¢,)/e,, Where ¢, is the bed
porosity. Time and space are indicated by t and x respectively. u is the
mobile phase interstitial velocity and D,is the axial dispersion
coefficient. The overall mass transfer coefficient, k,,;, is defined as the
combined result of both the separate film mass transfer resistance and
the mass transfer resistance within the pores.[*’1 In equation 3.3, the
particle diameter is denoted by d,, the intraparticle porosity by ¢,, and
the effective pore diffusivity coefficient by D,. The effective pore

diffusivity is described according to Fick’s law and calculated as

D, =221y, (3.4)
where 7t is the tortuosity and y the diffusional hindrance parameter
determined by Brenner and Gaydos.[*8] The free diffusivity (Dy)has
been calculated using the Young correlation for globular proteins.[#°]
The film mass transfer resistance is ks = D;Sh/d,, in which Sh is the
Sherwood number. The Method of Lines was applied using a fourth-
order central difference scheme for both first and second-order
derivatives to spatially discretize the partial differential equation into a
set of ordinary differential equations. The Livermore Solver for
Ordinary Differential Equations (LSODA) algorithm, part of the
scipy.integrate package, is employed to solve the Ordinary Differential
Equations (ODEs), automatically transitioning between the nonstiff
Adams method and the stiff BDF method.[?%1 Additional details

regarding the MM can be found in a prior study.[5!]

We employed the linear multicomponent mixed-mode isotherm,
developed by Nfor et al., to determine the equilibrium liquid phase

concentration ast52]
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i 4 v -
C*L = Keq,iA(VL+nl)(ZsCs) vlcv nl)/i, (35)

eq,i

where the equilibrium constant, K.,; quantifies the strength of the
interaction between the protein and the stationary phase. 4 is the
ligand density or ionic capacity of the concerned resin, z, is the charge
of the salt counter ion, ¢, is the salt concentration in the liquid phase,
and ¢, is the molarity of the solution in the pore volume. The
stoichiometric coefficient of salt counter ions is denoted by v,
determined by v; = z,/z, in which z, is the effective binding charge of
the protein. For monovalent counter-ions, the charge equals one (z, =
1), for example Na®* in the sodium chloride elution buffer. In this work,
only the ion-exchange part of the mixed-mode isotherm is used,
therefore hydrophobic interaction stoichiometric coefficient (n;) will be
equal to zero. The activity coefficient (y) of the protein solution can be

calculated as

yi = efsicstKpiCi (3.6)
where K; is the salt-protein interaction constant and K, the protein-
protein interaction constant. In the linear range of adsorption, the
protein concentrations are low and protein-protein interactions are
expected to be minimal, therefore K, becomes insignificant and can be
neglected.[>3>4 Because of the low salting-out effects, the K, also
becomes negligible.[>3] Subsequently, incorporating the assumptions
for this work, the linear multicomponent mixed-mode isotherm is
reformulated as

qi
C*

eq,i

= Keq,iAvi(ZsCs)_vi . (37)
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3.2.4 Procedure to determine adsorption isotherm
parameters

The peak retention volumes were obtained from the LGE’s for each
gradient length and at each pH. The initial retention volumes (V;,) were

corrected to be aligned with the elution gradients as follows:

Ve = Voo — Voo —Vp =% (3.8)
where V} is the peak retention volume, V,, is the column void volume,
determined by dextran pulse, and V, is the system’s dwell and dead
volume, details can be found in the Supplemental Methods.[>3! The
injection volume is denoted by V;,;, half of this volume needs to be

subtracted.[>®]

The regression formula of Shukla et al.[*7], adapted from Parente and
Wetlaufer!>%], was used to obtain the equilibrium constant (k.,) and the

characteristic charge (v) for each protein as follows:

1
VK, FA'(v+ 1) % (Csp— C v+l V
VR — (C5V,6H+ miteq ( ) ( s.f s,0)> _Cs,O " G : (39)
VG Cs,f - Cs,O

where V; is the gradient length. C;, and C, are the initial and final salt
concentration during the elution respectively. As no separate pore
balance is considered in the chromatographic MM, the column phase
ratio is considered the same F = (1 — ¢,)/¢,. To validate the regression
and accordingly the MM, the experimental data of 60 CV is left out

during the regression.

The initial peak retention volumes (V;,) were determined using the
function find_peaks of the signal module from the SciPy library. The
regression was performed using the curve_fit function of the optimize

module from the SciPy library.

Specifically at pH 5.0, Cytochrome c and RNase co-eluted. The

absorbance and respective calibration lines of cytochrome c at 400 and
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280 nm were used to trace back the RNase peak. Moreover, at pH 4.3,
albumin and chymotrypsinogen co-eluted. However, from the SEC-
UPLC analysis it was observed that albumin eluted later compared to
the UV peak detected by the UNICORN software. Therefore, the peak
retention volumes for albumin at pH 4.3 were determined by analyzing
the concentrations by SEC-UPLC in the 1 mL fractions obtained from
the LGE. Albumin peak areas obtained from the SEC-UPLC were used
to fit a third degree polynomial function representing the retention

volume as the maximum.

3.2.5 Structure preparation and descriptor calculation

For each protein, the respective models, listed in Table 2, were obtained
from the protein data bank![>8], specific entry selection was performed
based on resolution and coverage. Duplicate chains were removed from
each structural model using pdb-tools®®1 to yield monomer
representations. The side chain pKa of titratable residues were
predicted using PROPKA3.0[%1 allowing for more accurate charge
calculations with respect to pH. Protein features at pH 3.5, 4.3, 5.0 and
7.0 were calculated using our open-source software package prodes,
available at https://doi.org/10.5281/zen0do.10369949, using the
default settings, only supplying the pKa estimations.[*?] Visualization of

protein structures was performed using UCSF-Chimera.[6!]

3.2.6 QSPR model training

For predicting the protein retention volumes and adsorption isotherm
parameters, Multi Linear Regression (MLR) models were trained. The
prediction of conalbumin was removed from the dataset prior to train-
test splitting to eliminate all bias. To find an accurate predictive MLR
model, series of filter thresholds were screened by testing a range of
feature-feature correlation filters (Pearson correlations of 0.8, 0.9 and
0.99). Followed by feature-observation correlations filtering,

maintaining a predefined percentage of features (10% to 100% in 10%
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increments). Feature selection was performed by sequential forward
selection. Final models were selected based on the cross-validated R?
and test set RMSE, which should be close to the cross-validation RMSE
to ensure model robustness. Feature importance was assessed by
analysis of the regression coefficient and the influence of feature
permutation. For the prediction of the unknown conalbumin, the

confidence interval was calculated as

Lty e, ) ¥ \/MSE (1 + XT(XTX)"1X,), (3.10)

where j, is the predicted value, t,. _« is the “t-multiplier”, X and X,

(1—57n-p)
are the feature matrixes of the training set and the value to be

predicted. The mean squared error (MSE) is calculated as
MSE = =¥y — 9%, (3.11)

3.2.7 Optimization

We evaluated the uncertainty-influence of the regressed and predicted
QSPR adsorption isotherm parameters on the final optimization
outcome. The equilibrium constant and characteristic charge values
were varied between their standard deviation values for 100 samples.
These samples were used in the optimization. First, the optimization
was formulated and evaluated to be consistent when performing the
same optimization multiple times. The global and local objectives were

formulated as follows:

minf (x) = 2 * (100 — yield(x)) + 1 * (100 — purity(x)) (3.12)
s.t. h(x) =0 (3.13)
0 <x<1, (3.14)

where the objective function, f(x), is minimized. The equality
equations, such as the mass balances and equilibrium relations, need
to be satisfied (Eq. 3.12). Moreover, variables (x) were normalized for

more efficient optimization purposes (Eq. 3.13). Four variables were
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chosen namely the initial and final salt concentrations, and the lower
and upper cut points. The weights of the objective function were
chosen to reflect a capture step to be optimized, hence removing most

of the bulk impurities and preventing losing product material.

For the global optimization, the differential_evolution algorithm from
the scipy.optimize package was employed, using the Latin hypercube
sampling to initialize the population and the maximum number of
iterations was 10 with a population size of 23. For the local optimization
the Nelder-Mead algorithm was used, with a maximum of 100
iterations. The relative and function tolerances for both global and local
optimizations were set to 1e-2. The lower cut point ranges from 1 -
80% on the left of the peak maximum, and the upper cut point from
20 - 99% on the right of the peak maximum. The initial salt
concentration varies between 1 - 150 mM, and the final salt

concentration between 320 - 800 mM.

3.3 Results & Discussion

3.3.1 Determining the retention volume

LGE’s were conducted for two protein mixtures at four pH values (pH
3.5, 4.3, 5.0, and 7.0) and various gradient lengths (20, 30, 40, 60,
and 80 CV), as described in the experimental section 2.1. The elution
order of the proteins was identified by SEC-UPLC analysis for each pH,
to determine single peak retention volumes. The results for the 20 CV
LGE are shown in Figure 3.2. As expected, a downward trend for the
retention is observed when increasing the pH. No correlation between
isoelectric point (PI) and retention was observed. Although cytochrome
¢, lysozyme, RNase and chymotrypsinogen elute in the order of
descending pI (9.60, 9.20, 8.29, and 8.13 respectively) at pH 3.5. No
retention volume for albumin and conalbumin (pI of 5.49 and 6.62,

respectively) was determined as these proteins did not elute during the
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salt gradient, showing greater affinity for the column, which is in

accordance with Yang et al..[6?]
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Figure 3.2: Peak retention volumes (mL, y-axis) given for each protein (x-axis) at each
pH (bars). These retention volumes are from the 20 CV gradient length using a HiTrap
SP FF column, 1 CV is equal to 0.97 mL.

3.3.2 Regression of adsorption isotherm parameters

The corrected retention volumes, according to equation 3.7, were used
to regress K., and v using equation 3.8. The regression parameters for
each protein at each pH are shown in Table 3.3. The regression plots
of each protein at each pH are provided in Supplemental Figures S3.2-
S3.5, all fits achieved an R? close to one and RMSE values varied
between 0.002 and 0.22.A
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Figure 3.3: Trendlines between the (a) characteristic charge (y-axis) and (b) the
equilibrium constant (y-axis) and the pH value (x-axis) for each protein.

From Table 3.3 it can observed that the characteristic charge, v, varied
between 1% and 6% of the regressed parameter value and the
standard deviation values of the equilibrium constant, K,,, varied
between 7% and 25%. Figure 3.3a shows that the characteristic charge
decreases with increasing pH for all proteins with multiple data points.
This is due to the protonation of amino acids, which results in a higher
net protein charge at lower pH values. A higher net charge results in
more available binding sites to interact with the resin. However, no
general trend can be observed between the equilibrium constant and
the pH (Figure 3.3b). The equilibrium constant of cytochrome ¢ and
lysozyme decreases rapidly from pH 3.5 to pH 4.3. However, at pH 7.0
K., increases again for RNAse, chymotrypsinogen, lysozyme, and
cytochome c (increase of 1.19, 0.26, 0.23, and 0.23 respectively).
Similar findings were reported by Yang et al.[®?], and the regressed
parameters are in the same order of magnitude as reported in
literature.[*+62] In general, a higher equilibrium constant indicates a
stronger binding affinity towards the resin and therefore eluting later
during the salt gradient. The same trend can be observed for the
majority of proteins, see Table 3.3 and Figure 3.3. Not all proteins
follow this trend, such as chymotrypsinogen, cytochrome ¢, and
lysozyme relative to RNAse (pH 7.0), and albumin relative to

chymotrypsinogen (pH 4.3). These proteins elute at a later moment
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while having a lower equilibrium constant than the proteins eluting at
an earlier moment. Though, the characteristic charge value is higher
for these proteins with a lower equilibrium constant. Eventually, it is
the combination of these two parameter values that determines the

protein’s elution moment.

Table 3.3: Regressed adsorption isotherm parameters, the characteristic charge and
the equilibrium constant, for each protein at each pH. The standard deviation is indicated
with number after £ sign.

pH 3.5 pH 4.3 pH 5.0 pH 7.0
Characteristic charge (v)
Conalbumin 2.37 £ 0.12
Albumin 3.88 £ 0.66 1.46 £ 0.04
Chymotrypsinogen 421 £0.22 2.68+0.14 2.36 £0.11 1.09 + 0.003
RNAse 5.88 £ 0.27 4.20 £ 0.26 3.30 £ 0.15 0.23 + 0.05
Cytochrome C 7.16 £ 0.34 4.44 +£0.21 3.16 £ 0.14 1.78 £ 0.04
Lysozyme 5.85 £ 0.28 4.09 £ 0.21 3.54 + 0.15 2.22 +£ 0.06
Equilibrium constant (K.,)
Conalbumin 0.071 £ 0.02
Albumin 0.05 £ 0.04 0.051 £0.01
Chymotrypsinogen 0.13 £ 0.03 0.14 £ 0.03 0.14 £ 0.03 0.44 £+ 0.003
RNAse 0.42 £ 0.07 0.16 £ 0.04 0.11 £ 0.02 1.26 £ 0.21
Cytochrome C 3.68 £ 0.28 0.39 £ 0.07 0.21 £ 0.04 0.37 £ 0.03
Lysozyme 1.30 £ 0.16 0.36 £ 0.07 0.30 £ 0.05 0.37 £ 0.04

3.3.3 Chromatographic mechanistic model validation

The chromatographic MM was validated for the gradient length of 60
CV, for pH 5.0 and 7.0. The results of pH 5.0 are shown in Figure 3.4,
and of pH 7.0 in the supplemental discussion and Supplemental Figure
S3.6. The calibration lines convert the UV absorbance to concentration,
these can be found in Supplemental Figures S3.7 and S3.8. As the
experiments were performed in two mixtures of each three proteins,
only parts of the peaks corresponding to a certain protein were used
to avoid pollution of the peak by another component. In this way, the

validation of each protein with the MM could be clearly evaluated.
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Figure 3.4: Chromatographic mechanistic model validation for gradient length of 60 CV,
equal to 58.2 mL, at a pH of 5.0. The blue line indicates the MM predicted concentration
of the protein, while the red dotted line indicates the experimental concentration. The
black dotted line indicates the salt concentration. The initial concentrations are albumin:
0.24 mg/mL, chymotrypsinogen: 0.80 mg/mL, conalbumin: 0.31 mg/mL, cytochrome C:
0.41 mg/mL, lysozyme: 0.55 mg/mL, and RNase: 0.56 mg/mL.

For all proteins at pH 5.0, the maximum retention peak difference is
1.04 CV and the average retention peak difference is 0.92 CV, which is
1.73% and 1.53% with respect to the gradient length (60 CV). In all
cases, except for RNAse, the model predicts the start of the elution and
the peak maximum earlier than the experimental results. Even though
it was not feasible to extract the entire experimental peak in all cases,
it was observed that for conalbumin, cytochrome c, and lysozyme the
experimental peak seems sharper than the modelled peak. To assess
the concentration agreement between the modeled and experimental
results, we compared the difference between the peak width at half of
the peak maximum and the peak concentration. The maximum peak
width difference is 1.14 CV, equal to 1.89% relative to the gradient
length (60 CV). The average peak width difference is 0.81 CV, equal to
1.35% relative to the gradient length (60 CV). The average difference
in the peak concentration is 0.04 mg/mL, equal to 7.36% relative to
the initial concentration. Overall, the mechanistic model, using the

regressed adsorption isotherm parameters, can predict the
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experimental data sufficiently accurate with a maximum retention peak
difference of 1.73%.

3.3.4 QSPR

QSPR models relate specific descriptors, calculated from the protein
structure, to behavior (e.g., retention). Prediction of the MM
parameters, needed for simulation, starting from the protein structure
allows for a full in silico optimization framework. From the dataset
composed of the six different proteins, conalbumin at pH 5.0 was
removed to be used for model verification. This protein and pH was
selected because retention volumes for this protein were not obtained
for any other pH value. This means that conalbumin at pH 5.0 would
be truly unknown for the final predictive model. The remaining 18
datapoints were split into a train and test set, where the test set was
comprised of albumin measured at pH 4.3 and 5.0. As retention
volumes for albumin were only obtained for pH 4.3 and 5.0, these two
data points will validate the models’ ability to predict the effect of
differences in pH and to predict unseen proteins. The features
considered during the QSPR model training, ranging from protein shape
to charge and hydrophobicity projections, were calculated using the

open-source software prodes.

3.3.4.1 Characteristic charge

For the prediction of the characteristic charge, a MLR was trained. To
avoid overfitting, a ratio of five observations to one feature should be
maintained.[®3] Meaning only a maximum of three features should be
used in the model. To select the specific features, a redundancy filter,
removing features with a Pearson correlation of >0.99 to other
features, was applied. A second filter step was performed removing
40% of the features with lowest correlation to the characteristic
charge. From the remaining features, sequential forward selection was

performed to select the best features. A model with high accuracy
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(cross-validated R? of 0.86 and RMSE of 0.67) was obtained using only
two features (Figure 3.5). As would be expected, the most important
feature was related to the electrostatic potential (EP) of the protein
surface. More specifically, the maximal found surface EP. The
regression coefficient of this feature was found to be 8 and permutation
of the feature would result in a model not capable of predicting v
(Figure 3.5B). The second feature that was selected is the trimean of
the negative hydrophobicity potential. This feature is less important as
the regression coefficient is 1.5 and permutation results in a model
with a cross-validated R? of 0.8. The positive regression coefficient for
the second feature suggests that increasing the hydrophilicity reduces
the characteristic charge. There is the possibility however, that this
feature captures the titratable amino acid content on the surface, as
amino acids contributing to a negative hydrophobicity are
predominantly titratable. At this point we have been unable to confirm

this.
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Figure 3.5: Prediction of characteristic charge. A: Model validation of the regression
model trained to predict v where the circles represent the leave-one-out cross-validation
and the triangles the test set. B: Overview of the selected features with the regression
coefficient and the cross-validated R? after feature permutation.

Applying the same approach to build a QSPR model for K., did not yield
sufficiently accurate models. With the current dataset, the best
performing models yielded only a R? of 0.58 (data not shown). While v
has direct physical implications, by representing the number of charge
interactions between the resin and protein, K., is lacking these physical

implications.[“464 The equilibrium constant represents all phenomena
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contributing to adsorption. As observed in Figure 3.3, v shows a clear
negative trend with increasing pH, this trend is lacking for K,,. It is
thought that the current dataset size is the main limitation as more
features might be required to capture the complex relation. To
overcome this challenge, increasing the dataset-size would result in a
model trained over a greater range of property values, while also
allowing an increase of the number of used features without loss of

robustness.[24,62]

3.3.4.2 Retention volumes

Alternatively, the K., can be obtained from the regression as performed
in 3.3.2 for experimental data. To achieve this, a MLR model for each
LGE was trained (Figure 3.6). The best performing models were
obtained using a feature - property correlation filter, removing 40% of
the features with the lowest correlation, prior to the feature selection.
The trained MLR models, for each LGE, all achieved a cross-validated
R? of at least 0.88. For all models, the most important feature relates
to the EP. More specifically, the median shell positive EP was most
important for the four lower gradient lengths (20, 30, 40, and 60 CV).
This feature describes the positive EP on the exterior of the protein by
projecting each charge onto a plane that represents the resin. For the
calculation of the shell, a total of 120 planes surround the protein, in
this way representing different binding orientations. Opposed to
mapping the EP onto solvent accessible surface, this method considers
the distance through the solvent, penalizing protein surface within
pockets. The surface fraction of alanine was the second feature
selected. Alanine is a small hydrophobic amino acid, therefore this
feature implicitly describes the surface hydrophobicity. The positive
regression coefficient fitted for this feature indicates that a greater
alanine content, and thus higher surface hydrophobicity, results in a

higher retention volume. This can be explained by the salting-out effect
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Figure 3.6: Prediction of protein retention at different salt gradient lengths where the
circles represent the leave-one-out cross-validation and the triangles the test set. A to E
show the validation and test of the prediction of the retention volume while applying a
salt gradient of 20, 30, 40, 60 and 80 column volumes, respectively. One column volume
equals 0.97 mL (Table 1). The tables right of the plots show the feature coefficients and
the effect of feature permutation on the cross validated R?.

For the 80 CV retention MLR model, the following features were
selected: shell positive EP mean, solvent accessible surface positive EP
mean, and the serine surface fraction. The feature combination yielded
an accurate model with a cross-validated R? of 0.91 and a RMSE of 3.9
(Figure 3.6E). For the prediction of the test set, it is observed that the
point at the lower end of the retention data is under predicted,
compared to being over predicted in all other models. While the EP
remains the most important in the model, different features were
selected during the sequential feature selection. This is due to the fact
that there is no exact linear relationship between gradient length and
retention, as can be most notably observed at pH 7.0 in Supplemental
Figure S3.5. While the Mean and Median of the shell EP are similar, the
slight differences in the features resulted in the selection of the mean.
Both the mean of surface positive EP and mean of shell positive EP are
important features, with regression coefficients of 37.73 and 26.28
respectively. This importance is not reflected by the permutation
models, as both features describe the positive EP, collinearity allows for
compensation for a loss of one of the features. However, it is essential
to maintain both features to accurately predict the test set, as
removing one of them results in less accurate retention estimates (data

not shown). Surprisingly, the surface area fraction of serine has a
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positive regression coefficient, like the alanine surface fraction in the
other four models. In contrast to alanine, serine is a hydrophilic
residue. However, the positive regression coefficient indicates
increasing retention with higher serine content on the surface, which
contradicts the hypothesis for alanine selection for the previous four
models. The reason behind the selection of serine in this model is
currently unknown. While the models show difficulty in predicting the
change of elution order switch of lysozyme and cytochrome c for pH
4.3 and 5, a sharper decrease in retention for cytochrome ¢ compared
to lysozyme is predicted (data not shown). Still all models show good
accuracy during both cross-validation and model testing, providing high

confidence in model robustness.

3.3.4.3 Property prediction of conalbumin at pH 5

To demonstrate the true predictive capabilities of the trained QSPR
models for the prediction of retention volumes and isotherm
parameters, conalbumin was completely removed from the dataset
prior to the train test splitting. This allowed to minimize the bias applied
on the model selection. For the prediction of the retention volumes, the
error of prediction increased with increasing gradient lengths (Table
3.4). The range of observed retention volumes rises along with the
gradient lengths, likewise, the 95% confidence interval increases.
Nevertheless, the effect of increasing the gradient length was captured
correctly, having a maximal error of about 2 mL in retention volume,
which falls within the 95% confidence interval. The characteristic
charge was predicted with an error of 0.5, complying to the 95%
confidence interval. Unfortunately, as no robust and accurate QSPR
model for the K., could be trained with the current dataset, no direct
prediction could be made. Therefore, we applied an alternative method,
the predicted retention volumes and characteristic charge were used
to regress the K,using the regression formula, similar to the

experimental data method as shown in 3.3.2. regression of adsorption
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isotherm parameters. The K., obtained was 0.028 +0.006 which is
lower than the K., of 0.078 +0.012 obtained by regression of the
experimental data. This is due to the higher predicted v by the QSPR
model. Validation of the predicted parameters showed an accurate
prediction of the conalbumin elution using a 60 CV gradient length
(Figure 3.7). Both peak maximum and peak shape are simulated
accurately. The difference in the peak retention volume is very small,
0.12 CV, which is 0.2% difference relative to the gradient length (60
CV). The peak concentration differs by 0.009 g/L, which is 2.85%
relative to the initial concentration, and the difference in the peak width
at half of the peak maximum is only 1.0% relative to the gradient
length (60 CV). Interestingly, the predicted parameters seem to better
describe the retention profile compared to the parameters obtained
from the experimental LGE, which was an average peak retention
difference of 1.53% and an average peak width difference of 1.35%
with respect to the gradient length (60 CV).

Table 3.4: Predicted properties for conalbumin at pH 5.0.

Property Experimental Predicted 959%
value (mL) value (mL) Confidence
interval
Retention volume 20 CV  11.66 11.89 2.56
Retention volume 30 CV  12.89 12.92 3.69
Retention volume 40 CV  14.02 13.76 4.80
Retention volume 60 CV  16.20 15.21 7.02
Retention volume 80 CV  18.19 20.23 8.98
Characteristic charge (v) 2.36 3.05 1.40
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Figure 3.7: Chromatographic mechanistic model validation of conalbumin for gradient
length of 60 CV, equal to 58.2 mL, at a pH of 5.0 using the predicted isotherm
parameters. Blue line indicates the MM predicted concentration of the protein, while the
red dotted line indicates the experimental concentration. The black dotted line indicates
the salt concentration.

3.3.5 Comparing optimization results between
experimentally and QSPR-based methods

For the test protein, conalbumin at pH 5.0, both adsorption isotherm
parameters, K., and v, were determined via two methods. The first
method regressed the adsorption isotherm parameters from the LGE
data directly, hence LGE are needed to perform this method. While the
second method involved the QSPR approach, which, after being
properly trained, requires the protein-structure to determine the v and
the retention volumes. These two QSPR models were then used to

regress the K., using the regression formula (Eqg. 8).

The capture step was optimized to separate conalbumin from the other
proteins, prioritizing yield over purity, utilizing the adsorption isotherm
parameters determined from both methods. This optimization aimed to
assess the agreement between the optimized capture step and the
parameters obtained from both methods. The resulting capture steps
for both methods are depicted in Figure 8. The optimized variables
(e.g., lower and upper cut points and the initial and final salt
concentration) show comparability. The differences in both cut points

are within 3.3%, and the deviation for both initial and final salt
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concentration is around 10 mM, approximately 3% relative to the final
salt concentration (330 mM). The obtained purity only differs 0.3% and
the yield 1.2% between both methods. These results demonstrate that,
in this case study, it was viable to optimize the CEX capture step based

solely on knowledge of the protein structure.
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Figure 3.8: Optimized capture step using the mechanistic model, where the optimization
results of the experimental-based (left) and QSPR-based (right) method are compared.
Left: experimental-based method, the adsorption isotherm parameters were regressed
directly from the LGE. K., 0.071 and v = 2.37, lower and upper cut point are 7.7% and
91.2% respectively. The initial and final salt concentration are 24.5 mM and 320.6 mM
respectively. Right: QSPR-based method, the retention volumes and v are obtained from
QSPR models, followed by using these QSPR models to regress the K., parameter. K.,=
0.028 and v = 3.05, lower and upper cut points are 4.4% and 91.7% respectively. The
initial and final salt concentration are 14.8 mM and 330.4 mM respectively.

In the next part, we assessed the effect of the adsorption isotherm
parameter uncertainties on the optimization outcome. We aimed to
determine if variations within the standard deviation of the parameters
would result in different optimal values. For both methods, numerous
sample points were generated for each isotherm parameter, covering a
range within their respective standard deviation. Subsequently, these
sample points were used in the optimization case study. First, the
consistency of the optimization case study was evaluated by running
the same optimization five times. These results for both methods can

be found in Supplemental Tables S1,2. This consistency evaluation
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aimed to ensure there were no major deviations in results within the
same optimization using identical parameters. Additionally, the minor
deviations could be attributed to the optimization process itself. The
optimized results for various combinations of K., and v, ranging within
their respective standard deviation, are shown in Figure 9 for both
methods. This includes optimized variables, such as the lower and
upper cut points and the initial and final salt concentrations, as well as

the purity, and the yield.

In the experimental-based method, the standard deviations for both
K., (0.071 £0.012) and v (2.37 £0.12) are relatively small, resulting
in minimal variance in the optimized variables (Figure 3.9, A.1-F.1 and
A.2-F.2, for variations in K., and v respectively). The lower and upper
cut points have a maximum difference of 7% (Figure 9A,B). The initial
salt concentration varies between 15 and 40 mM (Figure 9C.1,2), and
the final salt concentration is found between 320 and 327 mM (Figure
9D.1,2). These results suggest that despite variations in the isotherm
parameters, a consistent optimum is identified, and the optimized
variables exhibit only minor variations. The impact on the yield is
minimal, with only a 2% variation (Figure 9F.1,2). On the contrary, the
effect on purity is more pronounced, fluctuating between 70% and
81%. The decrease in purity is primarily attributed to an increase in
the K., (Figure 9E.1), which is due to the greater relative standard

deviation compared to v.

For the QSPR-based method, the standard deviation of K., is small
(0.028 £0.006). The randomly spread data indicates that there is no
clear correlation betweenK,, and the optimized variables (Figure
3.9A.3-F3). However, the standard deviation of v is significantly larger
(3.05 +£1.4), this standard deviation was defined by the 95%
confidence interval calculated by Eq. 9. The large variation in v resulted

in two identified optima, which is clearly observed in the shift of the
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final salt concentration (Figure 3.9D.4). The first solution finds an
optimal final salt concentration between 320 - 400 mM. The shift to
the second optimal solution occurs when v is greater than 3.6, finding
the final salt concentration at around 800 mM. Remarkably, both
optimal final salt concentrations are close to the set boundaries. As the
characteristic charge increases, the component is expected to elute at
a higher salt concentration and thus at a later moment during the
gradient. This results in a greater overlap between conalbumin and the
other impurities. Such a shift was not observed for the initial salt
concentration, where most optimal conditions were found between 10
and 30 mM (Figure 3.9C.4). The effect of v is also reflected in the purity
and the yield (Figure 3.9E.4 and 3.9F.4 respectively). Until v is 2.2, the
purity is around 75% and the yield is almost 100%, while above this
value of v, the purity increases rapidly, and the yield drops to about
95%. From this point, increasing v results in a decreasing purity and
increasing yield. However, the range of the purity is broader, 50 - 85%
than that of the yield, which only fluctuates between 95% and 99%.
This broader range in the purity is probably due to a combination of
the shift in retention volume resulting from variation of v, and the
optimization function (11). In the function, the yield is prioritized,
representing a capture step optimization. Therefore, during challenging
separation processes, the compromise on the yield is always less
compared to purity. Changes in the optimization weights would result
in a shift in priority between purity and yield that would translate to
the selection of different cut points rather than initial and final salt
concentrations. Despite the greater uncertainty in the determined v in
the QSPR-method, only two optima were identified, and one of them

corresponds to the optimum found in the experimental-based method.
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Figure 3.9: Joint plots of scatter and hist plots between the adsorption isotherm
parameters (e.g., the characteristic charge and the equilibrium constant) and the
optimized variables (e.g., lower and upper cut point and the initial and final salt
concentrations, and the purity and the yield). Left: experimental-based method results.
Right: QSPR-based method results.

Furthermore, this optimization approach is applicable for defining the
operating window of certain variables. The method employed for
varying the adsorption isotherm parameters can also be used to vary

other variables and assess the optimized result. In this way, the initial
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process design space for CPP can be defined, which is part of the QbD
concept.[®>] The mechanistic modeling outcomes provide knowledge on
the process, therefore the number of wet-lab experiments to define the
real process design space can be reduced in comparison to performing
a wet-lab DoE from scratch. For the QSPR-based method, no wet-lab
experiments are needed to determine the adsorption isotherm
parameters and therefore the total number of experiments are even
more reduced compared to the experimental-based method. For a new
protein, only the protein-structure is needed to perform this
optimization and make an estimation of the operating window for each
optimizing variable. To illustrate, using the results from the QSPR-
based method in this study, we can already narrow down the number
of wet-lab DoE required to define the process design space. The final
salt concentration only has to be evaluated around two main values
(e.g., around 320 mM and 800 mM, see Figure 3.9D.4), while only one
point of the initial salt concentration has to be assessed (e.g., 20 mM).
Ultimately, the QSPR-based method offers an added advantage by
allowing the incorporation of additional data over time. This not only
enhances the model’s accuracy, but also enables the application to

other process designs, provided that the same conditions are used.

Currently, only the linear part of the isotherm is considered as only low
loading conditions are investigated. Prediction of the parameters
describing the non-linear part of the isotherm as well as competitive
behavior would make the method more complete. Nevertheless, for the
purpose of preselection of conditions for early-stage process design,
considering only linear behavior should be sufficient. Additionally, the
amount of available training data might pose a bottleneck, like the
prediction of the K,, presented in this work. Even though the
predictions of the retention volumes and characteristic charge showed
high accuracy, increasing the variety of proteins would make the

models more robust. To extend this method to more complex mixtures,
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such as host cell lysates, several challenges should be overcome. While
a similar fractionation approach to convolute single peaks can be used
for a complex mixture, more accurate analytical methods are required
for protein identification. Potentially, mass spectrometry methods allow
the required resolution providing relative protein abundances.
Additionally, protein interactions and complex formation should be
taken into account during the QSPR modeling. Co-elution has already
been studied extensively, and recently Panikulam et al., published a
novel method to describe co-elution mechanisms for protein A
chromatography.[®®l Further maturation and combination of these
methods would allow better integration and application for complex

mixtures.

3.4 Conclusion

In this work, we demonstrated a holistic modeling approach, where we
combined QSPR and chromatographic MM to optimize a CEX capture
step. For an unseen protein, only the protein structure was needed to
determine the adsorption isotherm parameters and predict the
chromatographic retention behavior with MM. We assessed that the
uncertainties in the determined adsorption isotherm parameters have
a minimal and nearly equal impact for both the experimental-based
and QSPR-based method.

For the experimental-based method, we successfully regressed the
adsorption isotherm parameters with an R? minimum of 0.95. The
standard deviation for the characteristic charge is within 1 - 6% of the
corresponding regressed parameter value, and for the equilibrium
constant, it ranges between 7 - 25% of the regressed parameter value.
Moreover, the MM validation showed to be accurate with an average

retention peak difference of 1.53% with respect to the gradient length.

We successfully trained MLR-QSPR models with a minimum R? of 0.88,

even with a limited dataset composed of only five different proteins
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measured at four pH values. The MLR-QSPR models for predicting the
characteristic charge and the retention volumes can be used to regress
the equilibrium constant using the regression formula. A good
agreement was obtained for the MM validation for an unseen protein,
conalbumin, showing only 0.2% retention peak difference with respect

to the gradient length.

Both the experimental-based and the QSPR-based methods
demonstrated a consistent optimized CEX capture step. The same
optimum was found by both methods, and an additional optimum was
identified using the QSPR-based method, due to the larger standard
deviation in v (3.05 £1.4) compared to the experimentally predicted v
(2.37 £0.12). Using in silico optimization results as a guide can
substantially reduce experimental effort, requiring experimental
validation only for promising conditions. Moreover, increasing dataset
sizes enhances the QSPR model accuracy, diminishing uncertainty in
adsorption isotherm parameters and therefore minimizing the variance

in the identified operating window.

This work highlights the value and applicability of multiscale modeling,
capable of optimizing a CEX capture step with only knowing the protein
structure. Integrating QSPR, chromatographic MM, and optimization
tools creates a versatile workflow relevant to industrial case studies.
The specific case study presented aims to provide a workflow which
should be expanded using larger datasets to enable more accurate
predictions. This approach ultimately enables determining initial
optimal process conditions without preliminary experiments, which is
especially beneficial for early phase process development when limited
material and resources are available. Future applications involve
extending this strategy to complex protein mixtures and broader type
of chromatographic resins, offering a cost-effective and time-saving

alternative that enhances overall process understanding and efficiency.
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3.6 Supplemental material

3.6.1 Supplemental Methods

Dead volume and dwell volume

The volume of the tubing was determined by excluding the column and
using 1 M sodium chloride with a 100 pL sample loop. A schematic
overview of the tubing in the Akta system is shown in Figure S3.1, in
which the dead volume is indicated from the numbers 2 to 4 and the

dwell volume from 1 to 3.

( Column
Mixer
4
[ P
Conductivity

Buffers

Supplemental Figure S3.1: Schematic representation of the Akta system, the dead
volume is defined from point 2 to 4 and the dwell volume from point 1 to 3. The injection
valve is indicated with the dashed line and not considered in the dead volume and dwell
volume. Created with Biorender.com

The dead volume (V,..4), tubing 3 and 4, is calculated according to
Schmidt-Traub et al. (2012) as follows!?8:

Vinj
Vaeaa = VR,o - TJ -V, (53-1)

m
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where Vi, is the retention volume measured including the injection
volume (V;,;), which is therefore subtracted to only obtain the dead
volume. V; is the tubing between the UV-detector and the conductivity
(indicated with number 5), from the internal diameter, 0.50 mm, and

the length, 170 mm, it was calculated to be 0.033 mL.

The dwell volume is needed for the calculations in the regression
formula and is equal to the volume from point 1 to 3 (Figure S3.1). The
tubing before point 1 is already filled prior to elution. The dwell volume
was determined by introducing buffer B, containing 1 M sodium chloride

as a pulse for 5 CV, followed by subtracting the V,.,4, and V.

Porosity calculations

The total porosity (e;) was determined using 1 M sodium chloride, as

salt can enter the pores, and calculated as follows:

Vint+Vpor
g = I, (S3.2)
Vin + Vpore = VO,ret — Vaeaar (533)

where V1, is the interstitial volume of the fluid phase also known as the
column void volume, V,,,. is the volume of the pore system, and V¢ is
the total volume of the packed column. V, ., is the measured retention
volume from which the dead volume is subtracted to only consider the
retention volume in the column. The external porosity, ¢, =V,,/V;, was
determined using a solution of 10 mg/mL Dextran (DXT1740K,
American Polymer Standards Corporation, USA) with a volume of 250
ML. V, was determined using Eq. 3. Subsequently, the total and

external porosity are used to determine the internal porosity (e,) as

& — &p

& (S3.4)

- 1_€b-
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Supplemental Figure S3.2: Fitted regression curves at pH 3.5 (grey line) of the
experimental data (dark blue dots) and the test data point (light blue dot) at 58.2 mL,
equal to 60 CV as 1 CV is 0.97 mL. All fits obtained an R? of 0.999 and an RMSE of 0.08,
0.11, 0.11, and 0.09 for chymtrypsinogen, cytochrome C, lysozyme, and RNase
respectively.
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Supplemental Figure S3.3: Fitted regression curves at pH 4.3 (grey line) of the
experimental data (dark blue dots) and the test data point (light blue dot) at 58.2 mL,
equal to 60 CV as 1 CV is 0.97 mL. All fits obtained an R? of 0.999 and an RMSE of 0.07,
0.22, 0.10, 0.10, and 0.09 for albumin, chymtrypsinogen, cytochrome C, lysozyme, and
RNase respectively.
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Supplemental Figure S3.5: Fitted regression curves at pH 7.0 (grey line) of the
experimental data (dark blue dots) and the test data point (ligth blue dot) at 58.2 mL,
equal to 60 CV as 1 CV is 0.97 mL. All fits obtained an R? of 0.999, except for RNAse that
has an R? of 0.95. The RMSE values are 0.03, 0.002, 0.04, and 0.04 for cytochrome C,
chymtrypsinogen, RNAse, and lysozyme respectively.
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3.6.2 Supplemental Discussion

Additional data for the mechanistic model validated at pH 7.0. For all
proteins at pH 7.0, the maximum retention peak difference is 1.01 CV
and the average difference is 0.86 CV, which is 1.68% and 1.43% with
respect to the gradient length (60 CV). To assess the concentration
agreement between the modeled and experimental results, we
compared the difference between the peak width at half of the peak
maximum and the peak concentration. RNAse was left out of this
comparison for the peak width difference, as determining half of the
peak maximum is not possible for the experimental data. The
maximum peak width difference is 2.07 CV, equal to 2.23% relative to
the gradient length (60 CV). The average peak width difference is 0.81
CV, equal to 1.35% relative to the gradient length (60 CV). The peak
concentration differs maximally by 0.04 mg/mL, which deviates about
7.8% to the initial concentration. The average difference in the peak
concentration is 0.01 mg/mL, equal to 3.1% relative to the initial

concentration.
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supplemental Figure S3.6: Chromatographic mechanistic model validation for gradient
length of 60 CV, equal to 58.2 mL, at a pH of 7.0. Blue line indicate the MM predicted
concentration of the protein, while the red dotted line indicates the experimental
concentration. The black dotted line indicates the salt concentration. The initial
concentrations are Chymotrypsinogen: 0.46 mg/mL, Cytochrome C: 0.80 mg/mL,
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Abstract

Purification of recombinantly produced biopharmaceuticals involves
removal of host cell material, such as host cell proteins (HCPs). For
lysates of the common expression host Escherichia coli (E. coli) over
1500 unique proteins can be identified. Currently, understanding the
behavior of individual HCPs for purification operations, such as
preparative chromatography, is limited. Therefore, we aim to elucidate
the elution behavior of individual HCPs from E. coli strain BLR(DE3)
during chromatography. Understanding this complex mixture and
knowing the chromatographic behavior of each individual HCP
improves the ability for rational purification process design.
Specifically, linear gradient experiments were performed using ion
exchange (IEX) and hydrophobic interaction chromatography, coupled
with mass spectrometry-based proteomics to map the retention of
individual HCPs. We combined knowledge on protein location, function
and interaction available in literature to identify trends in elution
behavior. Additionally, quantitative structure-property relationship
models were trained relating the protein 3D structure to elution
behavior during IEX. For the complete dataset a model with a cross
validated R? of 0.55 was constructed, that could be improved to a R? of
0.70 by considering only monomeric proteins. Ultimately this study is

a significant step towards greater process understanding.
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4.1 Introduction

To ensure drug safety and efficacy, removal of impurities is essential.
For protein-based pharmaceuticals (e.g., protein-based vaccines and
monoclonal antibodies (mAbs)), removal of host cell proteins (HCPs)
remains a major challenge.l'l Especially for recombinant
biopharmaceuticals, produced intracellularly or in the periplasm, where

harvest requires cell lysis, resulting in a complex mixture.[?:3]

For the purification of protein-based pharmaceuticals, packed bed
chromatography has been the industry standard due to its high
versatility and specificity.[*] Multiple orthogonal methods are often
performed in sequence allowing to separate the target from the
impurities based on different physicochemical properties. Selection of
specific chromatographic methods and operation conditions currently
remain to be primarily done by Trial-and-error, expert knowledge or
Design of experiments.[>®] In recent years, tools like high throughput
experimentation and in silico modeling have shown great potential to
accelerate the design process.[7-101 These methods allow to not only
consider the elution behavior of target molecules, but the behavior of
HCP impurities. This leads to the development of the purification

process in a rational and systematic manner.

Alternatively, for prediction of protein behavior at specific
chromatographic conditions, quantitative structure-property
relationship (QSPR) models aim to use specific features calculated from
the protein structures.['1*2] Qver the last 20 years, successful models
have been trained for a variety of globular proteins or antibodies.[13-18]
Recently, Cai et al. trained predictive models using both resin and
protein descriptors to predict the adsorption of globular proteins for
different mixed mode resins.['®] These prediction methods become

even more powerful in combination with mechanistic modeling,
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allowing full prediction of the elution profile.[17:201 While these models
highlight how structural knowledge of proteins can be used to describe
chromatographic behavior, application for HCP removal process
development remains challenging. Data available for these models is
generally obtained for pure solutions containing only one protein.
Therefore, these models cannot take the full complexity of a lysate into
account, where often countless of protein-protein interactions (PPIs)
occur between HCPs.[21.221 Additionally, QSPR requires accurate
structures of the HCPs, which are not always available. Recent
advances in protein structure prediction by tools like AlphaFold allow
for construction of missing HCP structures [23l. While promising, the
accuracy and confidence of HCPs which are poorly annotated can be

problematic and should therefore be assessed critically.

Describing the HCP content of various expression host has been of
interest in the last two decades.[?426] Mass spectrometry-based
proteomics (MS) has gained popularity for analyzing HCPs, enabling
the sensitive detection of individual HCPs during process
development.[2527-30]1 Advances in the field allow identification of
specific proteins which are commonly remaining after the downstream
processing 31, Currently, most literature describe HCPs from Chinese
hamster ovary (CHO) cells, more specifically the HCP content after the
protein A capture step in antibody production.[32-35] From these, high-
risk HCPs have been identified for CHO, that have potential
immunogenic responses or compromise product quality due to
degradation.[33] Studies showed that HCP aggregates with mAbs may
promote the persistence of HCPs during the protein A capture step.[3¢-
391 A recent correlation analysis of HCPs identified co-elution of HCPs in

groups that are associated with PPIs.[3%]

Less studies targeting E. coli HCPs have been conducted. To identify

HCP co-elution in immobilized metal affinity chromatography, Bartlow
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et al., analysed a range of elution buffer concentrations using SDS-
PAGE in combination with MALDI-TOF-MS finding 26 proteins co-eluting
during a green fluorescent protein purification.[*?] More recently, Lingg
et al., investigated the effect of metal and chelator type on the HCPs
found in the eluate of a similar process.!*!l For cation- and anion-
exchange chromatography, Swanson et al., studied E. coli HCP elution
in a 5-step isocratic elution.[4?>43] Using the experimentally determined
molecular weight, isoelectric point (pI) and aqueous two-phase
partitioning coefficients of the HCPs, random forest regressor models
were trained to predict protein retention. In a more fundamental study,
Disela et al.,, performed MS analysis on E. coli BLR(DE3) and
HMS174(DE3) HCPs and plotted proteome property maps using the
physicochemical properties of around 2000 HCPs to showcase the

selection of suitable purification strategies.[44]

Despite these efforts, knowledge on chromatographic retention
behavior of E. coli lysates to aid process design is still lacking. This
study aims to guide process development by elucidating the
chromatographic behavior of specific HCPs of the E. coli BLR(DE3)
strain for ion exchange (IEX) and hydrophobic interaction (HIC)
chromatography (Figure 4.1). By analyzing fractions collected from
linear gradient elution (LGE) experiments using MS, the identity and
elution time of different HCPs were determined. For each HCP the
cellular location, function and potential interactions were retrieved to
assess the effect on the elution. For the IEX retention data, predictive
QSPR models were trained using protein descriptors calculated from
predicted 3D structures. Finally, model accuracies using different HCP

subsets were compared.
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EXPERIMENTS
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Figure 4.1: Schematic overview of this study. Chromatographic experiments are
conducted using the lysate containing a mixture of host cell proteins (HCPs). The protein
mixture is injected to the Akta chromatography system and linear gradient elution
experiments on IEX and HIC are conducted. From each of the gradient runs, fractions
are taken and their proteome is analyzed via mass spectrometry. The obtained retention
data of all HCPs is analyzed regarding elution trends occurring due to cellular location,
molecular function and protein-protein interactions. The data is furthermore used to build
a QSPR model and investigate several variations using filters based on the deviating

retention trends (Illustration created using BioRender.com.).

4.2 Materials and methods

4.2.1 Chromatographic experiments and proteomic
analysis

4.2.1.1 E. coli harvest sample and equipment

The cells in the harvest sample originating from a null plasmid E. coli
BLR(DE4) strain, used for the LGE experiments, were disrupted by use
of a French press. Proteins identified in this sample are extensively
described elsewhere.[44]

characterized and Chromatographic
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experiments were performed on an Akta pure with a connected fraction
collector F9-C from Cytiva (Uppsala, Sweden). Prepacked HiTrap Q XL
(IEX, here: anion exchange chromatography) and Butyl FF (HIC) 5 ml
columns from Cytiva (Uppsala, Sweden) were used for
chromatographic experiments. The running buffer for the IEX
experiment was 0.02 M Tris at pH 7.0 with 0.02 M NaCl added. The
elution buffer during the IEX experiment consisted of the same buffer
components with 1 M NaCl added. During the HIC experiment, the
running buffer was 0.02 M sodium phosphate at pH 7.0 with 3 M NacCl
added and as an elution buffer ultrapure water (MilliQ) was employed.
Between experimental runs the chromatography columns were cleaned
using 1 M NaOH solution. All buffers were filtered with 0.22 pm pore

size and sonicated before use.

4.2.1.2 Linear gradient elution experiments

After injection of 1 ml of the dialyzed clarified harvest sample the
column was washed with 5 column volumes of running buffer. Then,
the gradient elution was started by mixing the running buffer with the
elution buffer over a gradient length of 10 column volumes (50 ml).
During the gradient elution runs conducted with a flow rate of 5 ml/min,
fractions were continuously taken and afterwards analyzed using MS.
During the IEX experiment, 1 ml fractions were taken and every other
fraction was analyzed, as described in more detail in [40]. For the HIC
experiment, 2.5 ml fractions were taken and every fraction was

analyzed.

4.2.1.3 Proteomic analysis

Shotgun proteomics to identify individual E. coli proteins in each of the
analyzed fractions from the LGE experiments was performed using LC-
MS as described in [40].
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4.2.1.4 Data processing

The retention profiles (in peak area) of the proteins eluting during the
gradient were fitted to a Gaussian function. If the shape could be fitted
with a R? above 0.7, the maximum of the fitted Gaussian function was
used as the retention volume Vy; of each protein i as exemplified in [#3],
Since a constant flow rate was used in the experiments, the

dimensionless retention time (DRT) could be calculated as

, Vei =V
DRT@) = 37" (4.1)
g

where V is the volume in the beginning of the salt gradient and V; in
the end of the salt gradient. This measure has been used in literature

to describe retention in a dimensionless manner [46],

Abundance measures (for the common scatter plot) and theoretical
physicochemical properties were retrieved from a previous study of the
harvest sample [“4, The cellular location and functions were retrieved
from UniProt [47], Hereby proteins that were exclusively located in the
cytosol or cytoplasm, not in a membrane, were summarized as
cytoplasm proteins. Comparable E. coli K-12 proteins were retrieved
from [19] that show PPIs (Supplemental Table 1 in [19]) and proteins

without measured interactions (Supplemental Table 2[19]).

4.2.2 QSPR

4.2.2.1 Protein model generation

Using the database presented inl44l the amino acid sequence for each
identified protein was retrieved. From the sequences, protein
structures were predicted using AlphaFold2 to ensure full sequence
coverage in the structure.[>%1 Of the predicted structures, only the Rank
0 structures were used throughout the study. For each protein, the E.
coli K12 homolog was used to identify signal peptides which require

removal. Protein descriptors were calculated using the open-source
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software package Prodes (https://github.com/tneijenhuis/prodes) in

default settings.[®!! Visualization of the protein structures was

performed using UCSF Chimera [32],

4.2.2.2 QSPR model training

Multi Linear Regression (MLR) models were trained for the retention
time prediction of the whole dataset and specific subsets of HCPs. The
selection of proteins for each subset was based on their presence in
the cytoplasm, their multimeric state, described interactions and
average per-residue model confidence score (pLDDR). Initially, the
datasets were randomly split into a train (67%) and a test set (33%).
To reduce the number of features considered during the feature
selection, a series of filter thresholds were screened by applying a
range of feature-feature correlation filters (Pearson correlations of 0.8,
0.9, 0.99 and 1). Followed by feature-observation correlations filtering,
maintaining a predefined percentage of features (10% to 100% in 10%
increments). Features were selected using sequential forward selection
for all filter thresholds, resulting in 40 models to be considered. Final
models, and optimal filtering thresholds (Supplemental Table S4.1),

were selected based on the R2 of a 10-fold cross-validation.

4.3 Results and discussion

4.3.1 Retention behavior of individual host cell proteins

4.3.1.1 Protein retention map

To identify retention behavior during HIC and IEX chromatography,
clarified lysate of E. coli was injected, fractions were collected during
LGE and subsequently analyzed using MS. For the orthogonal
chromatographic methods, data was collected on specific DRT of 908
and 816 HCPs for IEX and HIC, respectively. Undetected HCPs elute
either before or after the salt gradient experiments or are below the

detection limit.
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Of the determined HCP DRTs, a total of 569 were found for both
methods, which allows construction of a 2D retention map (Figure 4.2).
As determination of protein abundance remains cumbersome using
shotgun proteomics, relative abundance using peak area and the
protein abundance index (PAI) were used (Figure 4.2a and Figure 4.2b,
respectively). For the different abundance measures, a different order
in abundance is caused by the strong dependence on the protein size
in the definition of PAI. To estimate absolute protein contents in
complex mixtures, the PAI is defined as the number of observed
peptides divided by the number of observable peptides per protein [331,
The abundance of the most abundant protein according to the PAI
value, ARH99394.1, was plotted over the volume during the IEX and
HIC gradient (Figure 4.2c and Figure 4.2d, respectively.

During the IEX LGE, proteins eluted between 0.1 and 0.8 DRT whereas
proteins eluted throughout the whole gradient for HIC. If the retention
of the new target is known, the experimental HCP retention map can
help forming an efficient HCP removal strategy using physicochemical
property maps as discussed in [39]. While the physicochemical
property maps provide a basis for process development, the
experimental retention map provides an improved effective tool. The
retention map reflects the actual retention behavior of the HCPs in the
lysate including interactions with other proteins limited to the used
system, resin and buffer conditions. In contrast to the target retention
behavior, this map can be used to form a general approach to remove
HCP impurities. This promotes a rational and systematic design of a

purification process.
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Figure 4.2: Host cell protein (HCP) retention map of individual HCPs in the E. coli lysate.
Dimensionless retention times (DRTs) were obtained from MS analysis of fractions
obtained from linear gradient experiments on Q Sepharose XL (IEX) and Butyl FF (HIC)
HiTrap 5 ml columns at pH 7 using NaCl as salt in both cases. a) abundance in peak area
and (b) abundance as protein abundance index (PAI) obtained from (Disela et al.,
2023).c) elution of protein ARH99394. 1 during salt gradient on IEX. d ) elution of protein
ARH99394.1 during salt gradient on HIC.

4.3.1.2 Influence of cellular location

To better understand the behavior of specific HCPs, the extensive
proteome dataset was explored regarding a variety of factors which
may influence retention. Cellular location was first investigated, where
proteins were divided according to their cellular localization (as
obtained from UniProt)

in the subgroups cytoplasm, plasma

membrane, and outer membrane (Figure 4.3a&b).

For IEX, the histogram with all proteins shows the highest number of
proteins in the fraction at 0.30 DRT (166 out of 908) and second
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highest number at 0.46 DRT (123 out of 908). The histogram of all
proteins eluting on HIC shows an increase with increasing DRT over the
whole gradient. This spread over the gradient leads to less protein per

fraction in the HIC histograms compared to the IEX histograms.

During the IEX, the majority of the HCPs are cytoplasm proteins (total
572) and the elution follows the general trend of all proteins during
IEX, with the exception of a lower number of proteins eluting at DRT
0.46. At this DRT, the histogram of plasma membrane proteins (total
79) shows the highest abundance (41 out of 79). The histogram of
outer membrane proteins (total 27) shows a low general abundance
throughout the gradient with a slightly higher abundance at 0.26 and
0.46 DRT. In IEX, retention is based on charge, meaning that a protein
with a lower pl elutes later during the LGE. This trend holds true for
the overall dataset, except for the plasma membrane HCPs
(Supplemental Figure S4.1a), suggesting interactions of these proteins
leads to concurrent elution. This indicates that forces causing these
interactions are stronger compared to electrostatic forces that are the
main interaction as shown by the IEX trendline of the majority of the
proteins. Plasma membrane proteins might interact with each other
directly forming parts of known (sdhB, secY) or unknown complexes
(hfIC, arnC) [>*1, We even observe the co-elution of yidC and secY, that
are known to form a multi-protein complex for Sec-dependent
membrane protein integration.[>>] However, the joint elution of several
plasma membrane proteins might indicate that they form liposomes or
are parts of membrane vesicles [°®l, Considering that HCPs are
impurities, a concurrent elution could simplify the development of the
chromatography step. However, for a retention prediction model, joint
elution hampers the prediction for these proteins, when using

calculated protein features.
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Figure 4.3: Histograms representing the elution of groups of host cell proteins (HCPs).
The number of proteins with an elution maximum during a specific dimensionless
retention time (DRT) is listed for ion exchange (IEX) and hydrophobic interaction
chromatography (HIC). (a) histogram of cellular location groups during IEX. (b)
histogram of cellular location groups during HIC. (c) histogram of molecular function
groups during IEX. (d) histogram of molecular function groups during HIC. (e) histogram
of protein-interaction groups during IEX. (f) histogram of protein-interaction groups
during HIC.

During the HIC gradient, the histogram of cytoplasm proteins (total
532) shows a similar shape to the histogram of all proteins with a
slightly lower number of proteins eluting toward the end of the gradient
(Figure 4.3b). At the end of the HIC gradient, the plasma membrane
proteins (total 66) show an increased occurrence. Outer membrane
proteins (total 48) elute continuously throughout the gradient. In HIC,
a correlation to hydrophobicity, such as the GRAVY value (grand
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average of hydropathy) is expected. However, none of the
hydrophobicity measures, calculated from the predicted protein
structure, showed a high correlation and hence it was not possible to
identify protein groups that show deviating retention behavior (data
not shown). This is thought to be due to the highly dynamic behavior
of the proteins in the high salt conditions. Often complex phenomena
such as nonspecific PPIs or partial unfolding upon binding occur,
making the single, static, protein chain representation invalid.
Additionally, preferred binding orientations might play an important
role due to the short range interactions governing adsorption.[®’1 This
complicates the retention prediction substantially, leaving room for
future studies to develop new features to describe flexibility and local

aggregation propensities, influencing protein retention in HIC.

4.3.1.3 Influence of molecular function

Molecular function as a discriminator for retention behavior was
investigated and the results are shown in Figure 3c&d. Proteins that
bind ions, other proteins, ATP, or DNA were identified using the UniProt
entry. During the IEX gradient, the ion (302), protein (190) and ATP
binding proteins (177) follow the trend seen for all proteins. Hence, the
binding sites of ions, other proteins, and ATP seem to have little effect
on retention behavior. In contrast, DNA binding proteins (80) show a
second local maximum at 0.50 DRT. This second maximum is caused
by polymerases and ribonucleases, while the first peak is caused by
other translation proteins. In contrast to the plasma membrane
proteins, the DNA binding proteins follow the trend given by the
correlation to the pI (Supplemental Figure S1b).

During the HIC gradient, the ion (272), protein (165), ATP (133), and
DNA binding proteins (71) are distributed across all elution times with

no clear elution points (Figure 3d).
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4.3.1.4 Influence of protein-protein interactions

In the complex mixture of a host cell lysate proteins can interact,
forming functional or non-functional complexes. The different PPIs at
physiological conditions between E. coli proteins were identified by
Arifuzzaman et al..[4°] Out of the interactions identified by Arifuzzaman
et al., 1270 were found in the IEX dataset and 1225 in the HIC dataset.
From these interactions, 349 protein pairs (27%) in IEX and 178
protein pairs (14%) in HIC showed close retention proximity (IEX <
0.04 DRT; HIC < 0.05 DRT). It is worth noting that close retention
proximity depends on the chosen threshold, which was the fraction
size. While conditions in the running buffer of IEX come close to the
physiological conditions used in the study from Arifuzzaman et al., the
HIC running buffer has a significant higher salt concentration that
might dissociate complexes or induce additional PPIs.[>8] Nevertheless,
these interactions pose an interesting effect on the DRTs of involved

HCPs as indicated in a recent study for CHO cells [3°],

To identify the effect of PPIs, proteins described to interact from protein
pairs in proximity were selected (Figure 4.3e&f). Proteins described as
having no interactions in Arifuzzaman et al. were also plotted as one
group. Additionally, proteins known to be present as monomers were
grouped. During the IEX gradient, the proteins with PPIs (319) show a
high abundance at 0.30 and 0.46 DRT and the surrounding fractions.
This shape impacts the histogram with all proteins significantly.
Monomers (104) and non-interacting proteins (89), on the other hand,
are eluting throughout the IEX gradient with a near Gaussian
distribution. During the HIC gradient, less proteins with PPIs were
detected (170). These proteins show an increased abundance at higher
DRT, which might be related to the large size of the complexes which

is reported to effect retention in HIC.[>®1 For the monomers (98) and
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non-interacting proteins (80) no such trend was observed as these

elute throughout the gradient.

In conclusion, the plasma membrane proteins, DNA binding, and
proteins with PPIs were identified as protein groups that show a deviant
elution behavior due to their location in the cell, molecular functions or
PPIs. Not considering these characteristics during feature calculation
might hinder accurate retention predictions. The proteins in the
cytoplasm, without known interactions, and monomers seem to be

more suited to build an improved model.

4.3.2 Prediction of retention time of individual HCPs in IEX

4.3.2.1 Descriptive QSPR model using the complete dataset

Using the DRTs obtained from IEX LGE of all single peak proteins, a
predictive QSPR model was trained, correlating specific
physicochemical features to protein retention. A final MLR model
composed of 27 features was built achieving a 10-fold cross validated
R? of 0.55 and a mean absolute error (MAE) of 0.049 (Figure 4.4 and
Table 4.1 [ALL]). For the test set, data not involved during feature
selection, a MAE of 0.048 was achieved. Due to the fractionation
approach, the resolution of 25 fractions introduces an experimental
error of 0.04 DRT, which requires consideration while assessing the
final QSPR model. Therefore, the prediction can be considered
successful, given the data resolution. As observed in the IEX
histograms, a significant part of the proteins have a DRT around 0.3.
For the QSPR model, this resulted in a general overprediction for
proteins with a DRT < 0.3 and underprediction for protein with DRT >
0.3 (Figure 4.4). Despite this bias, the trend of the HCP elution

behavior was still captured by the model.

The model captures the importance of charge in IEX since the majority

of the selected features, 15 of the 27, directly describe the charge of
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the protein (Supplemental Table S4.2). Additionally, the surface
content of the four charged amino acids was found to be important.
Due to the number of features and the inherent collinearity of the
charge related features, specific feature importance cannot be
identified. The remaining eight features describe the surface,
hydrophobicity and the surface content of specific noncharged amino
acids. Y-scrambling was performed before training as final validation
(Supplemental Figure S4.2). The resulting model was not able to
predict scrambled protein retention (R? of -0.065) proving physical

validity.
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Figure 4.4: QSPR validation of the regression model trained to predict DRT, where the

circles represent the 10-fold cross-validation and the triangles the test set.

A similar approach was performed to train elution prediction model for
HIC albeit being less successful. No combination of features was found
resulting in a model with a cross validated R? >0.2. It is thought to be
due to the nonspecific protein interactions at high salt conditions and

partial unfolding upon binding which often occur [#°1, As was mentioned
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in 4.3.1.2, no correlation was found with HIC elution and any of the

hydrophobicity features for the full dataset nor any subsets.

4.3.2.2 Influence of HCP subsets on model accuracy

One of the major challenges in accurately describing the HCPs is the
countless interactions that can occur between proteins and other host
cell components. As these interactions have not been taken into
account for the first elution prediction model, the cross validated R? of
0.55 is thought to be a success. Nevertheless, the elution model would
not be suitable for decision making as the residuals are not spread
evenly. To increase the prediction accuracy, the dataset was simplified
by selecting proteins which do not bind the cell membrane (cytoplasm
proteins), or interact to form complexes (monomers, proteins without
measured interactions) and combinations thereof (Table 4.1, Figure
4.5). All models resulting from the different subsets provided a greater
accuracy for the cross validated training set (MAE from 0.045 to 0.039).
In contrast to the cross-validation, the accuracy of the test was not
improved for most models (MAE of 0.058 to 0.043).

For the proteins in the cytoplasm, the overall trend in the model (Table
4.1 and Figure 4.5a) is similar to the trends observed in the model with
all proteins. It was expected that removal of the membrane proteins
would result in a better prediction as these proteins did not adhere to
the correlation between pl and DRT (Supplemental figure 4.1a). In
contrast, the test set was predicted less accurately (MAE of 0.055)
compared to the all HCP dataset (MAE of 0.048). This decrease in
accuracy can be attributed to an increased bias towards a DRT close to
0.3 (Figure 2a).

The subset containing the proteins without PPIs were found to elute

according to a normal distribution (Figure 4.3e), therefore the bias at
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0.3 DRT observed for the other datasets should not pose a problem.
However, the test set accuracy (MAE of 0.058) was found to be lower
than the all HCP dataset (MAE 0.048) (Figure 4.5b, Table 4.1). Unlike
the all HCP or cytoplasm datasets, no bias is observed for the
prediction. While these proteins were described as noninteracting, they
can still be prone to multimerization. Only nine proteins showed
overlap between the noninteracting and monomer dataset (data not
shown). The loss of accuracy is also thought to be due to the smaller
training dataset, resulting in less general QSPR models. Therefore,
complex behavior, such as oligomerization or complex formation,
cannot be captured implicitly.
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Figure 4.5: QSPR validation of the regression model trained to predict DRT of protein
subsets, where the circles represent the 10-fold cross-validation and the triangles the
test set. The presented subsets are the cytosolic proteins (a), the proteins without
interactions (b), proteins reported to be present as monomers (c) and proteins which
are cytosolic and non-interacting (d).
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For the monomer subset a cross validated R? of 0.697 was achieved
and the accuracy of the test set was improved to a MAE of 0.043, 7.5%
off the experimental error (Table 4.1, Figure 4.5c). Additionally, the
residuals of the model are spread more evenly compared to the initial
elution model allowing prediction of parts of the dataset. The main
reason for the improved accuracy is thought to be the structural
representation used for the feature calculation, as the structures were
predicted in a monomeric state. While PPIs were not filtered out, no
major influence was observed. For this model, the average and sum of
the negative electrostatic potential were found to be most important,
as removing either feature resulted in a cross validated R? of 0.47
(Supplemental Table S4.5). The increased accuracy of the subset

highlights the importance of accurate protein structure representation.

Therefore, improvements in the model can be made by modeling the
multimeric state of each protein for which it is known. As this
information is not available for every protein, improving accurate PPI
prediction is essential.lé!! This would allow QSPR application to predict
the behavior a full lysate rather than only protein subsets. Additionally,
the structures obtained by AlphaFold are predicted and should
therefore be used with caution. The per residue confidence score and
the predicted aligned error provided by AlphaFold has the potential for
template selection to increase model accuracy. However, current efforts
in setting confident thresholds for the predicted structures did not yield
more accurate retention prediction models (Supplemental Figure
S4.4).

Nevertheless, this work provides an important step towards holistic in
silico process design. In contrast to recent literature, the retention data
used in this work is obtained from a clarified lysate. The increased
uncertainty pared with the heterogeneity results complicates the

predictive modeling compared to the use of model proteins. The
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achieved cross validated R? of 0.697 for the monomer subset
approaches recent work on the retention prediction of mAbs (0.780-
0.835) and model proteins for a range of ligands (0.79-0.82).[62-64] Tt
can therefore be expected that additional research on the algorithms
and HCP understanding will allow for robust prediction of HCP retention

prediction and knowledge transfer between different processes.

4.4 Conclusion and outlook

The observed host cell proteome after lysis of the E. coli BLR(DE3) host
covers the retention times of around 900 unique proteins on IEX and
HIC. By selecting protein subsets based on location, function, and
interactions, trends in retention behavior were examined. For IEX, it
was observed that proteins present in the plasma membrane would
primarily co-elute, disregarding the general trend of the lower pl
resulting in later retention. For HIC, an almost linear trend was
observed for the number of proteins throughout the gradient. Only
proteins located in the plasma membrane or that are known to engage
in PPIs were found to deviate from this trend, primarily eluting at the
end of the HIC gradient. Despite the complexity of the mixture,
structure models predicted by AlphaFold2 were used to train a
descriptive QSPR model (R? of 0.55) for IEX retention, approaching the
experimental error. By selecting proteins annotated as monomer in
UniProt, the accuracy of the QSPR model improved significantly (R? of
0.70). This work is the initial step towards understanding the HCP
elution of the E. coli BLR(DE3) host cell proteome.

To further improve the understanding and implementation of QSPR in
process development, future research should focus on the in-depth
characterization of lysate compositions. Currently, extensivelots of
knowledge is available via databases such as UniProt, however many

proteins remain underdetermined especially regarding PPIs. More
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experiments are needed to identify complex formation of proteins
under different buffer conditions. Additionally, despite the
improvements in structure prediction, automated protocols for
assessing the plausibility of a structure to allow processing of large
datasets are required. Ultimately, this research represents a significant
step towards in silico driven process development, increasing process

understanding and reducing development times.
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4.6 Supplemental material

Supplemental Table S4.1: Selected filtering thresholds selected for the different
protein subsets. Protein subsets were generated based on all proteins (ALL), proteins
present in the cytoplasm (CYT), proteins without PPIs (NI), proteins annotated as
monomers (MONO) or combinations thereof. The feature - feature filter removes
features with a Pearson correlation above the given threshold to other features. The
feature - observation filter maintains a percentage of features with the highest Pearson
correlation to the elution time.

Model Feature - feature filter Feature - observation filter (%)
ALL 0.99 100

CYT 1 100

NI 1 100

MONO 1 50

CYT_NI 0.9 100
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Supplemental Figure S4.1: Correlation of the IEX DRT and the estimated isoelectric
point. All plots contain all proteins identified for the IEX colored according to subsets
based on the cellular location, function and interactions, for a, b and c respectively. The
observed R?: 0.1554, Pearson Correlation: -0.3942
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Supplemental Table S4.2: Regression coefficient and permutation performances for
the linear regression model predicting DRT for all HCPs.

Descriptor Coefficient Permutation R2
SurfNegEpMeanAverage 0.0190 0.5602
SurfMhpMean 0.5221 0.5383
SurfNegEpStdFormal 0.1961 0.5270
SurfNegEpSumFormal 0.4755 0.5430
NSurfPosEpAverage -0.2208 0.5610
Charge -0.0277 0.5632
TYR surface fraction 0.0959 0.5344
SurfPosMhpTrimean 0.0917 0.5508
GLU surface fraction 0.1897 0.5299
LYS surface fraction -0.1200 0.5488
SurfNegMhpMean -0.2287 0.5450
GLY surface fraction 0.0707 0.5412
ShellEpPosSumFormal 0.5769 0.5135
ASP surface fraction 0.0852 0.5455
ARG surface fraction -0.0561 0.5489
ShellEpPosMedianFormal -0.1565 0.5519
ShellEpMaxFormal 0.2441 0.5524
ShellEpMedianFormal -0.5183 0.5429
ShellEpNegMedianFormal 0.2582 0.5499
SurfPosEpSumFormal -0.3920 0.5448
SurfMhpStd -0.2029 0.5523
Isoelectric point -0.1506 0.5536
NSurfPosEpAverage 0.6613 0.5554
Formal_Charge -0.5314 0.5571
ShellEpPosStdFormal -0.0680 0.5561
GLN surface fraction 0.0444 0.5525
Surface shape min 0.0233 0.5556
intercept 0.0552
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Supplemental Figure S4.2: Y-scrambled cross-validation and test of the QSPR model

containing all protein retention times. The circles represent the 10-fold cross-validation
and the triangles the test set.
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Supplemental Table S4.3: Regression coefficient and permutation performances for
the linear regression model predicting DRT for the CYS subset.

Descriptor Coefficient Permutation R2
SurfNegEpMeanAverage -0.4008 0.4959
SurfMhpMean 0.1467 0.5926
SurfNegEpStdAverage 0.7528 0.6084
Avg. Mass -0.3032 0.5969
LYS surface fraction -0.1179 0.5838
SurfNegMhpMedian -0.1301 0.6021
TYR surface fraction 0.0853 0.6049
NSurfNegMhp 0.1932 0.6122
SurfNegEpStdFormal -0.5879 0.6134
GLY surface fraction 0.0494 0.6157
intercept 0.6464

Supplemental Table S4.4: Regression coefficient and permutation performances for

the linear regression model predicting DRT for the NI subset.

Descriptor Coefficient Permutation R2
SurfEpMinAverage -0.2562 0.5351
SurfPosMhpsum 0.0747 0.6152
PRO surface fraction -0.1570 0.4696
SurfMhpMax 0.0904 0.5024
SurfPosEpStdFormal -0.1244 0.5940
TYR surface fraction 0.0969 0.5765
CYS surface fraction 0.0793 0.5528
Surface shape max -0.0670 0.5700
LYS surface fraction -0.0885 0.5658
SurfEpStdAverage 0.0730 0.5984
intercept 0.5735
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Supplemental Table S4.5: Regression coefficient and permutation performances for
the linear regression model predicting DRT for the MONO subset.

Descriptor Coefficient Permutation R2
SurfNegEpMeanAverage -0.6702 0.4642
SurfEpStdAverage 0.2387 0.6068
SurfNegEpsumAverage 0.3120 0.4672
SurfPosMhpsum 0.1692 0.6139
Dipole -0.1435 0.6709
LYS surface fraction -0.0600 0.6612
TYR surface fraction 0.0685 0.6585
ShellEpNegMedianFormal 0.1884 0.6728
CYS surface fraction -0.0785 0.6836
SurfEpminFormal 0.0783 0.6959
intercept 0.3201

Supplemental Table S4.6: Regression coefficient and permutation performances for
the linear regression model predicting DRT for the CYS_NI subset.

4 Descriptor Coefficient Permutation R2
ShellEpNegMedianFormal -0.1617 0.4965
NSurfPosEpFormal -0.2318 0.1871
NSurfPosMhp 0.3078 0.4745
SurfMhpSum 0.2956 0.4208
SurfPosEpsumFormal 0.3028 0.5008
SurfNegEpStdFormal 0.1692 0.6861
CYS surface fraction 0.0365 0.6567
GLU surface fraction 0.1032 0.7012
intercept 0.0276
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Supplemental Figure S4.3: QSPR model results for the different protein subsets.
Protein subsets were generated based on all proteins (ALL), proteins present in the
cytoplasm (CYT), proteins without PPIs (NI), proteins annotated as monomers (MONO)
and proteins with an average pLDDR > 0.95 (HC) or combinations thereof. The circles
represent the 10-fold cross-validation and the triangles the test set.
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Supplemental Table S4.7: Regression coefficient and permutation performances for
the linear regression model predicting DRT for the ALL_HC subset.

Descriptor Coefficient Permutation R2
SurfNegEpMeanAverage -0.8810 0.5936
SurfMhpMean 0.5402 0.5738
SurfNegEpsumAverage 0.7996 0.5648
THR surface fraction -0.0444 0.6111
Average charge -1.2899 0.5717
SurfEpMaxFormal 0.3437 0.5965
ALA surface fraction -0.0069 0.6140
SurfNegEpMedianAverage 0.8888 0.5902
ShellEpminFormal -0.1162 0.6033
SurfEpStdFormal -0.1678 0.6066
ShellEpPosSumFormal 0.2742 0.6035
Isoelectric point -0.2400 0.5983
ShellEpPosTrimeanFormal -0.1224 0.5959
ShellEpPosStdFormal 0.0797 0.6047

4 NShellPosEpFormal -0.0774 0.6125
SurfMhpMedian -0.5114 0.5891
SurfMhpMax -0.0574 0.6086
TYR surface fraction 0.0617 0.6056
LYS surface fraction -0.0754 0.6078
VAL surface fraction 0.0702 0.6032
NSurfPosEpFormal 0.1408 0.6104
HIS surface fraction 0.0557 0.6086
SurfMhpmin -0.0126 0.6127
intercept 0.4896
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Supplemental Table S4.8: Regression coefficient and permutation performances for
the linear regression model predicting DRT for the CYS_HC subset.

Descriptor Coefficient Permutation R2
SurfNegEpMeanAverage -0.3961 0.4525
SurfMhpMean 0.0696 0.5786
SurfEpSumFormal 0.4994 0.4904
THR surface fraction -0.0219 0.5905
ShellEpminFormal -0.2181 0.5746
SurfPosMhpMedian 0.0752 0.5743
LYS surface fraction -0.0679 0.5846
ShellEpNegStdFormal -0.1299 0.5783
SurfEpStdFormal 0.0975 0.5795
NSurfPosEpAverage -0.1575 0.5317
intercept 0.4659

Supplemental Table S4.9: Regression coefficient and permutation performances for
the linear regression model predicting DRT for the NI_HC subset.

Descriptor Coefficient Permutation R2
ShellEpminFormal -0.3764 0.1779
NSurfPosEpFormal -0.0998 0.7549
SurfNegMhpMean 0.0722 0.7612

GLY surface fraction 0.0914 0.6853

SER surface fraction 0.0792 0.7727
SurfMhpmin -0.0786 0.7753
intercept 0.6147
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Supplemental Table S4.10: Regression coefficient and permutation performances for
the linear regression model predicting DRT for the MONO_HC subset.

Descriptor Coefficient Permutation R2
SurfNegEpMedianFormal -0.5677 0.0910
SurfNegEpsumFormal 0.3621 0.3506
SurfNegMhpStd -0.0714 0.6964
SurfNegEpStdAverage 0.0754 0.6861

GLN surface fraction 0.0444 0.7040

CYS surface fraction 0.0388 0.7400
SurfEpminFormal 0.1389 0.7231
intercept 0.3339

Supplemental Table S4.11: Regression coefficient and permutation performances for
the linear regression model predicting DRT for the CYS_NI_HC subset.

Descriptor Coefficient Permutation R2
SurfEpminFormal -0.3609 0.1434
SurfPosEpMedianAverage -0.1125 0.3420

4 ALA surface fraction -0.0785 0.3290
GLN surface fraction -0.0142 0.3588
intercept 0.6665

156



157






Using generalized quantitative structure property relationship (QSPR) models to
predict host cell protein retention in ion-exchange chromatography

Chapter 5

Using generalized quantitative structure
property relationship (QSPR) models to predict
host cell protein retention in ion-exchange

chromatography

Published as:

Neijenhuis, T., Le Bussy, O., Geldhof, G., Klijn, M. E., & Ottens, M.
(2025). Using generalized quantitative structure-property relationship
(QSPR) models to predict host cell protein retention in ion-exchange
chromatography. Journal of Chemical Technology & Biotechnology.

159




Chapter 5

Abstract

Selecting the optimal chromatography resin during biopharmaceutical
downstream process development is a great challenge. Especially for
recombinant sub-unit vaccines, where product properties vary greatly
and recovery often involves cell lysis, which yields a complex mixture
of different host cell materials. Host cell protein (HCP) impurities may
remain similar for platform processes, but their critical impact on
separation efficiency is relative to specific product properties.
Therefore, every process needs to be designed per product. Prior
knowledge on the elution behavior of HCPs would support the
identification of critical compounds. However, determining
chromatographic behavior of HCPs experimentally is a time-consuming
approach. In this work, we leverage quantitative structure property
relationship (QSPR) models calibrated with retention data of 13
commercial proteins, collected at pH 7, 8, 9, and 10 to predict the anion
exchange (AEX) retention of Escherichia coli HCPs. These models use
features calculated from the molecular structure to describe protein
behavior, like chromatographic retention. A multi linear regression
model containing two features (Isoelectric point and sum of negative
surface electrostatics) was able to predict the retention times of 288
HCPs accurately (error <5%). Moreover, we identified the key
attributes missing in the training dataset, which is important to
increase model performance in the future. This work showcases how
chromatographic data obtained using commercial proteins can be
translated to a clarified E. coli lysate to accelerate chromatography

resin selection for new products.
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5.1 Introduction

Recombinant proteins constitute approximately 80% of the global sales
in pharmaceutical industry.l'l To ensure safety and efficacy of these
pharmaceuticals, sufficient product purity (reviewed case-by-case) is
required.[?! This is achieved by the downstream processing (DSP) that
often involves a sequence of chromatographic steps separating the
target protein from process and host cell impurities.!3-5 While product
related impurities are often most difficult to remove, host cell proteins
(HCPs) are a class of impurities that are also challenging to eliminate
sufficiently. The main reason for this is that conventionally, HCP
impurities are treated as one entity, while these are actually individual
entities with a wide variety in physicochemical properties. Therefore
knowledge on persistent HCPs is valuable to guide the DSP design.[®]
As co-purification is a risk, highly sensitive biochemical methods for
detection of persistent HCPs have been developed [7:8], including
identification and quantification by LC-MS/MS proteomics.l’l The
relevance of these techniques is reflected by a comprehensive list of
high-risk HCPs for monoclonal antibody (mAb) production in Chinese
hamster ovary cells.['%] This information can accelerate DSP design in
platform processes as different mAbs products have relatively similar
properties that affect purification.[*!] This means the criticality of HCPs
does not change for new products. Unfortunately, DSP design is less
straightforward for other recombinant proteins, such as subunit
vaccines.['2l Unlike for mAbs, affinity chromatography is rarely
available for subunit vaccines, as their properties vary widely.
Additionally, formulation of standardized sets of HCPs that are likely to
coelute during a chromatography step is impossible. To increase
process understanding, Disela et al. analyzed the HCP content of
Escherichia coli lysates from different strains and expression vectors
[13], The HCP content was found to be 80% to 90% similar between

lysates, leading to the use of HCP property maps to guide DSP design.
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These property maps allow for the identification of potential critical
HCPs by comparing their properties to the properties of the subunit

vaccine.,

An alternative to the property maps are quantitative structure property
relationship (QSPR) models that correlate protein properties to
behavior under specific conditions. These models use features
calculated from the molecular structure in regression or classification
algorithms 41, In In the last 25 years, a wide range of regression
methods have been applied to predict the chromatographic behavior of
proteins, including multi linear regression (MLR)[*>-20]  partial least
squares[?1.22] support vector machines!?3-261, random forests!?7:281, and
Gaussian process regressions(??-31l, While traditional QSPR models
predict chromatographic behavior of proteins for a specific resin, Cai et
al. demonstrated a QSPR analysis combining both protein and ligand
features to predict the protein adsorption on different mixed-mode
resins reaching a cross validated R? of 0.8.127] More recently, Hartmann
et al. trained QSPR models for predicting the partition coefficient by
including protein, resin (ion-exchange, hydrophobic interaction, and
mixed-mode), and mobile phase features.[32] Their models were trained
for therapeutic proteins in their native and high molecular weight form,
and were able to predict low, medium, and high binding conditions with

93-95% accuracy.

Unfortunately, most QSPR models trained to predict protein
chromatographic behavior have only been validated for purified
proteins. This makes it challenging to assess their accuracy for complex
mixtures, such as host cell lysates, where many interactions occur that
potentially change protein retention behavior. An example of more
complex mixtures is the study by Keulen et al., where QSPR models
were successfully trained for the prediction of ion exchange
chromatography (IEX) retention of proteins in three component

mixtures.[1°] However, the total protein concentration of 2.5 g/L used
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in this study is considered insufficient for notable protein interactions.
A more representative complex mixture was used by Buyel et al..[?8]
Here, QSPR models were trained on protein elution salt concentrations
reported in literature to predict the retention of tobacco HCPs in IEX
and mixed mode chromatography. Estimated elution profiles of 67
HCPs were combined and compared to an experimental chromatogram
of a clarified extract, where a good agreement for SP Sepharose FF was
found. Unfortunately, accuracy of specific HCPs could not be quantified
as the experimental data does not provide elution behavior of specific
proteins. Disela et al. performed a more quantitative study on a
clarified lysate of the E. coli expression host, where fractions were
collected from linear gradient experiments and analyzed by LC-
MS/MS.[20.33]1 Such detailed experimental characterization provides
valuable data, but the studies are time and resource intensive. These
efforts could be minimized by training QSPR models with data obtained
for readily available (commercial) proteins and subsequently transfer
the model for the prediction chromatographic behavior of HCPs in

complex mixtures.

To this end, there is limited knowledge on translating models trained
on purified proteins towards complex host cell lysates. Therefore, we
explored the transferability of a QSPR model trained on commercial
proteins for the prediction of HCPs retention in anion exchange
chromatography (AEX). A QSPR model was trained using linear
gradient elution data for 13 proteins on a Q Sepharose XL column as
used by Disela et. al..[2%1 We defined the performance of these models
by testing different subsets of HCPs (including all or only monomeric
HCPs) to identify the current limits of this approach. The work
described in this study is a significant step towards generalizability in
QSPR model application, thereby contributing to faster model

deployment and cost-effective process development.
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5.2 Methods

5.2.1 Materials and Equipment

The retention experiments were performed on two separate Akta pure
systems (Cytiva, Marlborough, USA). Both systems were equipped with
a prepacked HiTrap Q Sepharose XL 1 mL column (Cytiva, Marlborough,
USA) (Supplemental Table S1). All substances were purchased from
Sigma-Aldrich (Saint Louis, USA) and buffers were prepared using
ultrapure water filtered with the Milli-Q Advantage A10 (Merck
Millipore, Burlington, USA). Buffer solutions at pH 7, 8, 9, and 10 were
prepared with 20 mM NaCl (Buffer A) and 1000 mM NaCl (Buffer B) for
running and elution. For pH 7 and 8, a 20 mM Tris-HCI solution was
made, while for pH 9 and 10, 20 mM Ethanolamine was used. pH was
adjusted by titration with 1 M sodium hydroxide or 1 M hydrochloric
acid. All buffers were filtered using a 0.2 ym Membrane Disc Filter (Pall

corporation, New York, USA) followed by 20 minutes of sonication.

Albumin (Bovine), albumin (Human), pepsin, trypsin inhibitor A, lipase,
a-lactalbumin, B-lactoglubulin a, glucose oxidase, lipoxygenase,
ovotransferrin, amyloglucosidase, urease and catalase were purchased
from Sigma-Aldrich (Saint Louis, USA). Each protein was dissolved in
buffer A to reach a concentration of 2 g/L, after which the solutions
were filtered using a 0.22 ym Whatman Puradisc FP 30 mm (Cytiva,
Marlborough, USA).

5.2.2 Linear gradient elution experiments and data
processing

The retention times of the selected proteins were determined for a 10
column volume linear gradient elution from buffer A to buffer B. Each
LGE was performed at a flowrate of 1 mL/min by injecting 200 pL
protein solution followed by a 5 column volume wash with buffer A and

10 column volume gradient to 100% buffer B. Columns were
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regenerated with 0.5 M NaOH and stored in 20% Ethanol. To normalize
the protein retention for the two systems, the normalized retention

times (V;) were calculated as

Ve = Vpo — 0.5Vin; = Vy = Viw — Vivash, (5.1)
Where Vy, is the initial retention time, V;,; is the injection volume , V,
is the dwell volume, V¥, is the column void volume and V,,, is the
volume of buffer A used between injection and start of the gradient
(19,331 Finally, to make the data column independent, and allowing the
comparison of retention times obtained for 5 mL HiTrap Q Sepharose

XL column, the dimensionless retention time (DRT) was calculated as

_ "
DRT =32 (5.2)

Where V; is the gradient length, which is 10 column volumes for these

experiments.

5.2.3 Quantitative structure property relationship
modeling

Molecular structures of the commercial proteins were retrieved from
the protein data bank [341 with the exception of trypsin inhibitor A. The
structure for this protein was retrieved from the AlphaFold databasel3®!
as the experimental structures available missed the positions of some
atoms. The full list of the structures used can be found in Table 5.1.
For each protein the feature sets were calculated at pH 7, 8, 9, and 10
using the default settings of Prodes.['8] Feature redundancy was
reduced by removing features with a Pearson correlation =0.9 to other
features. Selection of which feature to remove was based on the
cumulative cross-correlation to all other features, keeping the feature
with the lowest score. The final feature set used for the multilinear
regression (MLR) model was selected by sequential forward selection
(SFS). Model accuracy was evaluated by k-fold cross validation, leaving

out all datapoints representing one protein at a time. This was done to
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reduce the risk of overfitting as pH independent features would be
constant for the same protein at different pH values. The final model
was tested using a dataset of E. coli HCP DRTs described in a previous
article.[?°1 To make sure that the test data is similar to the training data,
HCPs with any features selected for the model that were outside the
range (below the minimum or above the maximum) of observed in the

training data were removed from the test set.

For the purpose of identifying areas of improvement for the QSPR
model, feature value distributions were compared using the
Kolmogorov Smirnov test for proteins that were over predicted, under
predicted, or accurately predicted.[*¢! These HCP groups were made

depending on the residuals, calculated by:

=Y —Vu (5.3)
where r is the residual value, y and jy are the experimental and
predicted value respectively. Over predicted proteins are defined as r;
<-0.1 DRT, under prediction as r, >0.1 DRT and all other HCPs are
accurately predicted. Visualization of the surface electrostatics was

performed using Prodes.[18]

For the purpose of training a transferable QSPR model, 13 proteins
were selected with a pI ranging from 3 to 6.8, thereby ensuring
chromatographic retention in AEX. From the surface electrostatic
potentials (EP), it can be observed that the surface is predominantly
negatively charged, except for lipoxygenase and ovotransferrin which

also show positive patches (Figure 5.1).
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Table 5.1: commercial proteins and the respective system used for LGE experiments

Name PDB/AF Molecular pI System
model mass (kDa) (theoretical)*
Bovine albumin 4F5S 66.4 5.5 2
Human albumin 1A06 66.5 5.6 2
Pepsin 4PEP 34.5 3.0 1
Trypsin inhibitor A AF-P01070- 20.1 4.4 1
F1-model_v4
Lipase 1TRH 57.1 4.5 2
a-lactalbumin 1F6R 14.2 4.6 2
B-lactoglubulin a 1BSQ 18.3 4.6 1
Glucose oxidase 1CF3 64.1 4.9 1
Lipoxygenase 1F8N 94.4 5.9 1
Ovotransferrin 10VT 75.8 6.6 2
Amyloglucosidase 6FRV 65.8 4.0 1
Urease 3LA4 90.7 6.0 1
Catalase 6P0O0 59.8 6.8 2

*pI was calculated using Prodes

5.3 Results and Discussion

Retention times for these proteins were determined for a 10 CV
gradient length (Table 5.2, Supplemental figure S5.1), similar to the
experimental conditions of the HCPs published elsewhere [2°1, To
maximize the value of this set of proteins, the retention time was
measured at pH 7, 8, 9, and 10. Two datapoints are not reported,
namely lipase at pH 10 (insufficient UV signal) and catalase at pH 8
(technical error). The results show a longer retention time for higher
pH values, as would be expected due to deprotonation of titratable
amino acids. However, this trend was not observed for urease and
lipase, where chromatographic retention remained constant while
varying the pH value. In other work is reported that lysozyme displayed
constant chromatographic retention for SP Sepharose resins at pH 7
and pH 9, which was attributed to a constant global charge.!3”]
However, in the case of urease and lipase, the global charge varies in
the pH range of 7 to 10 when calculated from the molecular structure
by Prodes (-15 to -28 and -18 to -24, respectively). Therefore, we
hypothesize that these proteins have preferred binding orientations

where the local charge does remain constant.
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Figure 5.1: Surface electrostatic potential maps at pH 7 of 13 commercial proteins. The
blue and red color indicate positive and negative electrostatic potential (in volts),
respectively.

Table 5.2: Experimental retention volumes (in mL) of 13 commercial proteins at pH 7,
8, 9, and 10 on a HiTrap Q Sepharose XL 1 mL column with a 10 column volume gradient
from 20 to 1000 mM NacCl.

Retention volume [mL]

Protein pH 7 pH 8 pH 9 pH 10
Bovine albumin 3.42 3.95 4.34 4.51
Human albumin 3.27 3.80 4.27 4.43
Pepsin 6.53 6.50 6.77 6.83
Trypsin inhibitor A 4.38 4.53 4.75 4.83
Lipase 4.80 4.81 4.72
a-lactalbumin 3.38 3.59 4.23 4.41
B-lactoglobulin a 4.08 4.38 4.62 4.70
Glucose oxidase 3.43 3.67 4.12 4.57
Lipoxygenase 2.69 2.99 3.39 3.63
Ovotransferrin 1.89 2.26 2.75 3.08
Amyloglucosidase 4.58 4.75 4.98 5.12
Urease 2.65 2.66 2.60 2.68
Catalase 2.39 3.26 3.93

5.3.1 Host cell protein retention prediction

Cross validation was performed by iteratively removing the retention
times of each protein at all pH values from the training set to ensure
that prior knowledge about the specific protein was absent during
model validation. The SFS selection method resulted in a model with
four features and a cross-validated R? of 0.927 (Supplemental figure

S5.2). Of the four selected features, the protein’s isoelectric point (pI)
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is most important for predicting the retention time. Permutating this
feature has the greatest impact on cross validation accuracy,
diminishing all predictive capabilities (Supplemental Table S5.2).
However, this feature is not pH dependent cannot describe any charge
specific behaviors. The second most important feature, the sum of all
negative surface points does capture retention changes by varying the
pH. Permutation of this feature results in a significant accuracy
reduction to a cross validated R? of 0.76. The remaining two features,
the proline surface fraction and median negative surface
hydrophobicity potential, have similar permutation scores of 0.88 and

0.87, respectively.

To explore the transferability of the model trained with commercially
available proteins, E. coli HCPs were used as a test set. This data set
consists of features for 836 HCPs, from which 481 HCPs (approximately
58%) have features that are within range of the training set. Since
QSPR models are only valid for the trained conditions, 481 HCPs were
used for testing. With this approach, the retention time could be
predicted with a root mean squared error (RMSE) of 0.085 using HCP
structures predicted by AlphaFold2 (Figure 5.2A). To identifying HCPs
that might coelute with a target protein, we believe an error of <5%
to be sufficient considering a DRT between 0 and 1. This takes into
account that the DRT describes the retention as a single value, which
in reality is a distribution. In practice, when a target protein has a DRT
of 0.3, the HCPs with a DRT between 0.2 and 0.4 can be considered as
potentially coeluting. For the test set predictions, 207 (~43%) HCPs

have an error of <5%.
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Figure 5.2: Measured (x-axis) versus predicted (y-axis) dimensionless retention time
(DRT) of A) four features and B-D) two features. Models were validated with kfold-cross
validation (circles) and tested on HCP DRTs (triangles), The dotted line represents a
perfect prediction and the gray area a 5% error. A and B show the HCPs test set filtered
for the 4 features model while C and D show the HCPs filtered on the two features. The
test set in D is reduced to only include monomeric HCPs.

To assess the model’s ability to generalize for new proteins, the ratio
between the RMSE of the test and cross validation should be analyzed.
For the current model, the test set RMSE is 3 times the cross validated
RMSE. While this might indicate that the training set misses features
which are essential to describe HCP retention, the model might also be
overfitted. Therefore, a new model was trained using only the two most
important features (isoelectric point and the sum of the negative
surface electrostatics). For this model, the cross validated R? was
reduced to 0.840 (Supplemental figure S5.2) while the test set was
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predicted with a RMSE of 0.07 (Figure 2B). By eliminating the two least
important features, overfitting was significantly reduced (test RMSE is
1.5 times the cross validated RMSE). This also increased the number
of accurately predicted HCPs to 246 (~51%) HCPs, which is a 11
percent point improvement. For this test set, the filtering criteria were
based on the four feature ranges meaning that the same 481 HCPs
were used despite the feature adjustment. Filtering based on the range
of two features increases the test set size to 572 HCPs, of which 288
(~50%) can be predicted with an error of <5% (Figure 5.2C).

5.3.2 HCP structural representation

It should be noted that DRTs of HCPs are predicted using monomer
representations obtained from AlphaFold2. Therefore, the QSPR model
does not take into account the complex dynamics of a lysate mixture,
in which many interactions may occur. Still, the model is capable of
predicting the DRT of 288 HCPs. The structural representations of
proteins that are actually monomeric are expected be more
representative. Therefore, the model with two features was also tested
on 77 of the 572 HCPs that are annotated as monomer in Uniprot.
Surprisingly, the subset performed similar to the complete HCP test set
with a test RMSE of 0.073 and ~43% predictions with <5% error
(Figure 5.2D). This suggests that the lack of interaction information
about the HCPs does not limit the current model’s accuracy. The two
features used in the model describe the protein globally and might
therefore not capture the required intricacies. A similar phenomenon
was observed for the proteins presumed to be homodimers
(Supplemental Figure S5.3, Supplemental Table S5.3). For this subset
of HCPs, predictions using monomer structures (RMSE: 0.071)

performed similar to homodimer representations (RMSE: 0.068).
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5.3.3 Model improvement strategies

We have shown that a QSPR model trained with 50 retention times
obtained for 13 proteins at various pH values predicted 288 HCPs with
an error £5% using only two features. While this is a significant part
of the available HCP retention times, application of QSPR modeling for
in silico process design would require accurate prediction of all
detectable HCPs. To identify possibilities to enhance model
performance, the test set predictions were divided into overpredicted
(181 HCPs), underpredicted (103 HCPs), and accurately predicted (288
HCPs). For these categories, feature value distributions were analyzed
to identify potential biases in the model towards features that were not
selected for the QSPR model (Supplemental Table S5.4). For a feature
that does not contribute to any bias, it can be expected that the
distribution over the three sets is similar, which can be observed for
the molecular weight (Figure 5.3A). A feature that shows great
differences in distribution is the standard deviation of the surface
electrostatics (Figure 5.3B), with Kolmogorov-Smirnov (KS) test values
of 0.23 and 0.22 for under- and overpredicted HCPs, respectively. For
underpredicted HCPs, a generally higher standard deviation is observed
compared to the accurately predicted HCPs, while for overpredicted
HCPs this feature tends to be lower. This indicates that the model is
lacking information on deviations in surface electrostatics. For the
training set, the feature range (0.6 to 1.2) is much smaller compared
to the range in the test set (0.4 to 1.6) (Supplemental Figure S5.4).
Therefore, expanding the training set with commercial proteins that

have a wider range of this feature could improve model performance.

For the features that were selected for the model, the pI showed a
notable difference in the distributions (Figure 5.3C). Especially for pI
>4.5 the feature distribution starts to differ, which indicates that there

is a bias for proteins in this pI range. It is therefore not only important
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to extend the training set based on the surface electrostatics deviation,

but also selecting proteins with a pI >4.5.

o
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Figure 5.3: Cumulative distribution plots of the 572 HCPs for A) molecular weight, B)
standard deviation of the surface electrostatics, and C) the isoelectric point. The
accurate, over and under predicted HCPs are represented by blue, orange and green
respectively.

While extending the training set is essential to improve model quality
and robustness, design of novel features is considered equally
important. Plotting the surface electrostatics of the three monomeric
HCPs with the lowest and highest error reveals positively charged
surface areas for the under predicted HCPs (Figure 5.4). Such positive
patches are not found on the surface of the three accurately predicted
HCPs. The presence of these patches contribute to an increase in the
surface electrostatic potential standard distribution feature, as can be
observed in Figure 4. Additionally, favorable binding orientations might
be more prevalent in the underpredicted HCPs, and these phenomena
cannot be captured by the global features used in this study.[38:3°]
Therefore, designing specific local features representing binding
orientations would be essential to improve model performance. For
chromatography specifically, local surface features have been designed
as either defining patches or projecting properties on a plane.[1>17,40]
However, the contribution of preferred binding orientations on
adsorption differs between proteins and pH.[37.4142] This means each
protein requires an individual assessment to identify possible binding
orientations. This can be done with state-of-the-art molecular

dynamics simulations coupled to advanced sampling methods.[3°]
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Unfortunately, these methods are too computationally expensive to
perform on the scale of a host cell proteome. As such, future research
should focus on identifying computationally efficient methods to score
surface patches based on interaction likelihood. This may also include
combining information from patches distant from each other, as ligands
with flexible linkers (e.g., XL resin used in this study) probably reach

multiple binding sides of the protein.[37]

Acurate prediction

Over predicted

[Al lenueiod oneysonos|g

Under predicted

Figure 5.4: Surface electrostatics at pH 7 of monomer HCPS that are predicted most
accurate (top), greatest over prediction (middle) and greatest under prediction (bottom).
The blue and red color indicate positive and negative electrostatic potential (in volt).

Finally, the choice of regression method could also influence the
accuracy. Even though the validation on the training data was
satisfactory with a cross validated R? of 0.84, assumptions associated
with a MLR model might limit the accuracy.l*3l Especially the
assumption that protein retention has a linear dependency on the
features. Alternative non-linear regression methods might be a solution
to capture non-linear dependencies between protein properties and
retention behavior. In recent literature, algorithms such as random
forest regression, support vector regression, or Gaussian process

regression, have been applied for accurate prediction (R> > 0.85) of
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different attributes corresponding to chromatographic behavior.[?5:27-
30,321 Unfortunately, increasing model complexity comes with a risk of

overfitting, especially when using small training datasets.[#4]

5.4 Conclusion and outlook

In this work, we showcased a workflow to predict retention behavior of
572 E. coli HCPs for a Q Sepharose XL column using experimental data
obtained for 13 commercial proteins under similar experimental
conditions. The described QSPR model with two molecular features
(isoelectric point and standard deviation of the surface electrostatics)
can predict a total of 288 (~50% of the total test set) HCPs with an
error of £5% DTR. Interestingly, predictions of the monomer HCP
subset did not yield greater accuracy than the complete dataset, which
includes proteins that may form multimers. This suggests that the
model handles 3D structural inaccuracies regarding multimerization

well.

We identified significant differences for the features representing
electrostatic deviations on the surface by comparing the feature value
distributions for HCPs with an error of <5% and >5%. Additionally, it
was observed that for proteins with a pI higher than 4.5, HCP retention
time is more likely to be underpredicted. Therefore, it is suggested to
extend the current training set with proteins that have a pI >4.5 and
that contribute to a wider range of surface electrostatic deviations.
Additionally, novel features representing preferred binding orientations
are required to better describe charge distributions and further
increase model accuracy. Despite these proposed improvements, this
work provides insight into the use of a small dataset for the prediction
of HCP retention behavior, thereby accelerating chromatography resin

selection for new products.
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5.6 Supporting Information

Supplemental Table S5.1: System properties

System 1 2
Dead volume [mL] 0.246 0.239
Dwell volume [mL] 1.109 1.109
Void volume [mL] 0.253 0.249
Column length [mm] 7
Column diameter [mm] 25

Supplemental Table S5.2: Model parameters for the QSPR model with four features.

Coefficient Permutation R?

Isoelectric point -0.539 -0.27
SurfEpNegSumAverage -0.231 0.76

PROSurfFrac 0.089 0.88

SurfNegMhpMean -0.123 0.87

intercept 0.813
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Supplemental figure S5.2: QSPR model cross validation results of the training set.
Measured (x-axis) versus predicted (y-axis) dimensionless retention time (DRT) of a

QSPR model trained on four (A) or two (B) features. The model was validated with kfold-
cross validation.
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Supplemental figure S5.3: Homodimer HCP predictions using A) monomer structure
and B) predicted homodimer structure. Measured (x-axis) versus predicted (y-axis)
dimensionless retention time (DRT) of a QSPR model trained on two features. The model
was validated with kfold-cross validation (circles) and tested on HCP DRTs (triangles).
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Supplemental Table S5.3: model features for homodimer HCPs calculated from a
monomer or homodimer structure.

Monomer structure Homodimer structure
ID pl SurfEpNegSumAverage pl SurfEpNegSumAverage
ARH97593 5.03 -19378.1 5.363 -54988.1
ARH96837 5.215 -19917.7 5.738 -52527.1
ARH96219 5.251 -29950.9 5.403 -87292.2
ARH96022 5.024 -20139.4 5.279 -55287.8
ARH98242 6.133 -14919.8 6.218 -43961.7
ARH98543 4.504 -11312.7 5.057 -31176.7
ARH99203 4.906 -22561.4 5.569 -49525.7
ARH97151 3.859 -12130.3 4.882 -25314.9
ARH98083 5.312 -12210.7 5.926 -27508.5
ARH97695 4.756 -19305.6 4.815 -45812.2
ARH96704 4.769 -15453.2 5.419 -34216.3
ARH99670 4.345 -30868.3 4.875 -88303.6
ARH98250 5.324 -18458.5 5.405 -49684.4
ARH97968 5.05 -21129.7 5.818 -54097.8
ARH97818 4.476 -17344.4 5.325 -41168.1
ARH97190 5.117 -21365.5 5.419 -47288.2
ARH99778 5.228 -10979.7 5.596 -24431.9
ARH97386 4.965 -12408.7 5.039 -43649.2
ARH95908 5.711 -11634.3 6.177 -21775.1
ARH98111 5.327 -19589.1 5.174 -74270.2
ARH97701 4.547 -20670 5.268 -43418.9
ARH95833 5.534 -13658.4 5.851 -39497.5
ARH96141 5.817 -14686.5 5.943 -29570
ARH97716 5.702 -11011.5 5.445 -33338.1
ARH97717 4.463 -31109.7 5.378 -75546
ARH98656 4.572 -24523.5 4.8 -63261.4
ARH98155 5.576 -17202 5.545 -46233
ARH97457 4.779 -17535.9 5.086 -46810.2
ARH97452 5.258 -47150 5.749 -132326
ARH97703 4.315 -39709.6 4.854 -87131.2
ARH95854 4.969 -37135.4 5.363 -117947
ARH96954 3.943 -95116.2 4.418 -297729
ARH99014 4.281 -16082.2 4.651 -42222.3
ARH99185 4.951 -28103.8 5.415 -71048.4
ARH98432 4.825 -18669.4 5.571 -41188.3
ARH95944 4.583 -16556.3 4.928 -44904.7
ARH98173 5.034 -12588.2 5.604 -29113.7
ARH99034 3.884 -27690.8 4.326 -85279.6
ARH95789 4.832 -15249.3 4.915 -46949.2
ARH95876 4.031 -53997.7 4.439 -140268
ARH96669 4.739 -32529.6 5.188 -93616.6
ARH95939 4.079 -47555.9 4.541 -112189
ARH96404 4.866 -46565.5 5.463 -124958
ARH98978 5.723 -17631.3 5.767 -53215.5
ARH97914 4.571 -22863.8 5.051 -82901.9
ARH97435 4.366 -108507 4.747 -307185
ARH99054 4.754 -16038 5.219 -37074.7
ARH99823 4.807 -29248.7 4.904 -87391.2
ARH99236 5.592 -27242.8 6.029 -60161.9
ARH97789 4.898 -43657.1 5.465 -134692
ARH98367 4.602 -13063.4 5.38 -29087.4
ARH97611 5.065 -35322.2 5.329 -93082.4
ARH96870 5.429 -18006.2 5.659 -41534.4
ARH99681 5.35 -31069.8 5.825 -71970.3
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ARH99115
ARH96780
ARH96098
ARH97261
ARH98634
ARIO0054

ARH95959
ARH98295
ARH97371
ARH97928
ARH96965
ARH98514
ARH97394
ARH99841
ARH99712
ARH99585
ARH99442
ARH97497
ARH99358
ARH98673
ARH97996
ARH99658
ARH96706
ARH98524
ARH99426
ARH99592
ARH98103
ARH97557
ARH98612
ARH98399
ARH99828
ARH99628
ARH99392
ARH98148
ARH96683
ARH97345
ARH99626
ARH96265
ARH95810
ARH99655
ARH97615
ARH96215
ARH98664
ARH98193
ARH96414
ARH99407
ARH95981
ARH99258
ARH99121
ARH96866
ARH96902
ARH99877
ARH99441
ARH99624
ARH96155
ARH98443
ARH96911
ARH96956
ARH98479
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-11849.7
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-16881.2
-24506.5
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-16519

-84757.1
-14932.3
-17889.8
-14774

-29559.8
-65018.7
-14991.2
-28339.8
-21356.9
-29660.4
-18056.2
-21168.5
-25967

-24498.1
-16133.1
-27304.9
-36967.3
-50718.9

4.921
5.236
5.82

5.305
5.675
5.024

5.032
5.465
6.42

4.954
5.447
6.286
5.151
5.16

5.567
5.067
5.14

4.935
5.12

5.203
5.849
4.997
5.309
5.486
5.158
5.836
5.643
4.967
5.677
4.779
5.943
5.478
5.073
5.224
4.821
5.253
5.524
5.009
5.637
5.237
4.907
4.71

6.016
5.652
5.356
4.941
5.561
5.573
4.91

5.235
4.656
5.899
5.473
6.158
5.807
4.968
4.63

4.93

-35612.9
-59268.5
-40398.2
-59681.8
-52380.6
-68950.9
-46407
-34093.8
-44325.3
-19109.5
-55026.2
-67909.5
-26101.6
-55434.2
-49661.3
-30734.5
-95771.2
-51817.7
-53669.9
-79624.2
-61874.6
-29860.3
-107115
-140219
-69686.4
-38905.6
-116498
-27593
-236979
-33845.8
-41634.1
-41601.1
-146690
-156174
-41373.5
-145974
-29441.6
-44887.5
-68341.8
-131533
-51034.6
-257712
-48865.2
-31891.2
-40725.6
-69585.5
-153146
-46578.1
-77386.4
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-107112
-53798.7
-45069.7
-93404.3
-60816
-48766.6
-81314.4
-95611.4
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ARH99443
ARH96347
ARH97343
ARH96664
ARH98064
ARH97694
ARH98256

4.943
4.981
5.761
4.762
4.114
4.815
4.094

-23290.8
-31162.6
-16723.6
-27572.8
-98919.9
-24038.7
-26668.3

5.567
5.338
6.094
5.161
4.581
4.872
4.484

-66256.8
-90789.8
-33816.2
-69301.9
-302197

-72766.9
-69073.5
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Supplemental Table S5.4: Kolmogorov-Smirnov (KS) test results for under and over
predicted HCPs against accurately predicted HCPs.

Under predicted Over predicted
feature KS value p value KS value p value
Molecular weight 0.061 0.921 0.072 0.582
Isoelectric point 0.262 0 0.155 0.008
Dipole 0.212 0.002 0.156 0.008
Formal charge 0.201 0.004 0.188 0.001
Average charge 0.205 0.003 0.185 0.001
Area 0.086 0.591 0.123 0.062
ALASurfFrac 0.09 0.535 0.19 0.001
ARGSurfFrac 0.121 0.199 0.151 0.011
ASNSurfFrac 0.112 0.269 0.137 0.027
ASPSurfFrac 0.125 0.169 0.043 0.977
CYSSurfFrac 0.054 0.97 0.15 0.012
GLNSurfFrac 0.073 0.784 0.046 0.963
GLUSurfFrac 0.201 0.004 0.181 0.001
GLYSurfFrac 0.08 0.685 0.157 0.007
HISSurfFrac 0.149 0.061 0.164 0.004
ILESurfFrac 0.12 0.204 0.067 0.668
LEUSurfFrac 0.123 0.182 0.046 0.964
LYSSurfFrac 0.109 0.304 0.234 0
METSurfFrac 0.06 0.932 0.228 0
PHESurfFrac 0.162 0.033 0.103 0.174
PROSurfFrac 0.071 0.802 0.111 0.118
SERSurfFrac 0.107 0.319 0.051 0.912
THRSurfFrac 0.066 0.865 0.068 0.654
TRPSurfFrac 0.11 0.294 0.101 0.188
TYRSurfFrac 0.141 0.087 0.133 0.035
VALSurfFrac 0.126 0.163 0.068 0.651
NSurfPoints 0.093 0.493 0.118 0.081
Shape max 0.052 0.978 0.166 0.004
Shape min 0.06 0.927 0.058 0.824
SurfEpMaxFormal 0.275 0 0.112 0.114
SurfEpMinFormal 0.108 0.311 0.208 0
SurfEpMeanFormal 0.241 0 0.194 0
SurfEpTrimeanFormal 0.251 0 0.194 0
SurfEpMedianFormal 0.238 0 0.193 0
SurfEpSumFormal 0.137 0.103 0.149 0.013
SurfEpStdFormal 0.183 0.011 0.218 0
NSurfPosEpFormal 0.278 0 0.133 0.035
SurfEpPosMeanFormal 0.284 0 0.11 0.124
SurfEpPosTrimeanFormal 0.273 0 0.124 0.06
SurfEpPosMedianFormal 0.268 0 0.103 0.171
SurfEpPosSumFormal 0.28 0 0.12 0.074
SurfEpPosStdFormal 0.269 0 0.104 0.163
NSurfNegEpFormal 0.061 0.923 0.116 0.092
SurfEpNegMeanFormal 0.208 0.002 0.196 0
SurfEpNegTrimeanFormal 0.222 0.001 0.192 0
SurfEpNegMedianFormal 0.226 0.001 0.193 0
SurfEpNegSumFormal 0.138 0.1 0.156 0.008
SurfEpNegStdFormal 0.115 0.244 0.242 0
SurfMhpMax 0.126 0.162 0.117 0.088
SurfMhpMin 0.076 0.742 0.055 0.864
SurfMhpMean 0.189 0.007 0.116 0.093
SurfMhpTrimean 0.192 0.006 0.1 0.196
SurfMhpMedian 0.187 0.008 0.099 0.208
SurfMhpSum 0.064 0.886 0.081 0.435
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Supplemental figure S5.4: Cumulative distribution plot of the SurfEpStdAverage for
the training (Blue) and test (Orange) sets.
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Abstract

Hydrophobic interaction chromatography (HIC) is a widely used
separation method in biopharmaceutical downstream processing. For
process development (PD), silico mechanistic modeling can be used to
reduce timelines by simulating protein transport and adsorption during
chromatography. Accuracy of the parameters used in the model is
essential for successful deployment. This work compares three
isotherm parameter determination methods for a simplified linear HIC
isotherm. Specifically, the Parente and Wetlaufer method, the
Yamamoto method, and the inverse method. These methods were
tested for two proteins, using the same linear gradient elution (LGE)
experiments. Accuracy of the obtained parameters was determined via
cross-validation using three LGEs. Finally, the obtained parameters
were tested for alternative linear gradients with varying initial and final
salt concentrations. While all results were comparable, parameters
obtained by the inverse method showed the greatest accuracy. This
method does require high quality chromatograms, while the other
methods only need retention volumes. Therefore, it is less suitable
when signal quality is compromised. The Yamamoto method showed
similar robustness as the inverse method outperforming the Parente
and Wetlaufer method. Therefore, the Yamamoto method is a good
alternative for parameter determination. This comparison offers
practical guidance for method selection for isotherm determination,

thereby enabling reliable mechanistic modeling of HIC processes.
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6.1 Introduction

Hydrophobic interaction chromatography (HIC) is a separation method
widely used at different stages biopharmaceutical downstream
processing (DSP).[%21 It is specifically applied as an orthogonal method
for ion exchange chromatography (IEX), as HIC separates based on
surface hydrophobicity rather than surface charge.[?! Protein affinity is
driven by solvophobic effects, which can be enhanced by anti-
chaotropic ions or reduced by chaotropic ions. These effects need to be
optimized to establish a robust separation process. Therefore, process

development involves an elaborate screening of operation conditions.

To accelerate the design of a chromatographic purification step, in silico
tools, in combination with high throughput experimentation can be
deployed.[3-3] Recently, mechanistic models (MMs) have proven to be
valuable by increasing process understanding.[®-13] These models can
describe the flow and mass transfer of proteins through a
chromatography column. The dynamic adsorption of proteins is
captured by adsorption isotherms that describe the equilibrium
between the protein concentration in the solid and liquid phase.[**! For
HIC, the isotherm developed by Mollerup!*>-17] js commonly applied to
simulate protein adsorption under varying salt concentrations.[18-20]
This isotherm is based on the stochiometric displacement model and
uses an activity coefficient to incorporate salt dependency.[*”] To apply
this isotherm, several parameters require to be determined, which can
be done using a set of linear gradient elution (LGE) experiments or
batch adsorption experiments. The accuracy of these parameters is

essential to ensure successful protein adsorption modeling.

The inverse method (IM) is a common method to estimate isotherm
parameters and has been proven to provide accurate simulations for
different chromatographic modes.[1221-25] M fits the result of the

mechanistic model to experimental chromatograms and updates the
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isotherm parameters to minimize the difference between model and
experiment. Therefore, high quality chromatograms of pure
components are required for accurate parameter estimation.
Alternatively, isotherm parameters can be estimated from protein
retention volumes. The Parente and Wetlaufer (PW) method (non-
linear) and the Yamamoto method (linear) are correlations that relate
LGE conditions to retention volumes.[?¢27] While both methods are
developed for IEX, they have been adapted for HIC in recent
literature.[29281 As no iterative simulations are required, using the
correlations is more computational efficient which is beneficial when
large datasets are analyzed.[?° However, the correlations only allow
determination of the linear part of the isotherm, therefore it can only

be used under low loading conditions.

In this work we compare the accuracy of isotherms obtained using IM,
PW, and Yamamoto using the same LGE experiments. For this we apply
the transport dispersive model and the linear part of the isotherm
developed by Mullerup to model the adsorption behavior of two
proteins under dilute conditions. The model parameters are
subsequently validated via cross validation and compared to
experimental chromatograms. Quantitative analysis is performed
based on differences in peak maxima and peak widths. Finaly, the
robustness of the estimated isotherm parameters are tested under
alternative salt gradient conditions. Consequently, this work enables
informed method selection, enhancing reliability of mechanistic

modeling of HIC processes.

6.2 Methods

6.2.1 Materials and Equipment

The retention experiments were performed on an Akta pure system
(Cytiva, Marlborough, USA), equipped with a prepacked HiTrap Butyl
FF 1 mL column (Cytiva, Marlborough, USA) (Appendix A1l). All
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substances were purchased from Sigma-Aldrich (Saint Louis, USA) and
buffers were prepared using ultrapure water filtered with the Milli-Q
Advantage A10 (Merck Millipore, Burlington, USA). Buffer solutions
were prepared using 50 mM sodium phosphate and a range of
ammonium sulfate concentrations (2.0 M, 1.5 M, 1.3 M, 1.1 M, 0.8 M
and OM) to be adjusted to pH 7 using 1 M sodium hydroxide. All buffers
were filtered using a 0.2 ym Membrane Disc Filter (Pall corporation,

New York, USA) followed by 20 minutes of sonication.

Chymotrypsinogen A and glucoamylase were purchased from Sigma-
Aldrich (Saint Louis, USA). For each experiment, proteins were
dissolved in the respective high salt buffer to reach a concentration of
2 mg/mL, after which the solutions were filtered using a 0.22 ym
Whatman Puradisc FP 30 mm (Cytiva, Marlborough, USA).

6.2.2 System and column characterization

To determine relevant system and column properties, a set of pulse
experiments with a flowrate of 1 mL/min were performed using a set
of nonbinding tracers as described by Schmidt-Traub et al..[3%] Dextran
DXT180 (Agilent, Santa Clara, USA) and dextran DXT2000k (Toronto
Research Chemicals, Toronto, Canada) were used as penetrating and
non-penetrating tracers, respectively. The system dwell volume,
describing the volume between the mixing chamber and the column
inlet was determined as described by Keulen et. al..[11] A complete list

of the determined properties can be found in Supplemental Table S1.

6.2.3 Linear gradient elution experiments

A set of LGE experiments were performed with 10, 15, 20, 30 and 40
column volume (CV) gradient lengths with a flowrate of 1 mL/min. After
equilibration with the high salt buffer, 200 pL protein solution was
injected followed by a 5 CV wash and the start of the salt gradient.
Upon reaching the end of the gradient, the column was washed with
10 CV low salt buffer. During the experiments, UV absorbance was
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measured at 280 nm and the system was operated using UNICORN
version 7.5 software. For the chymotrypsinogen LGEs from 1.5 Mto 0
M ammonium sulfate, the chromatograms were deconvoluted in python

using two gaussians that were parameterized by scipy.minimize.

6.2.4 Mechanistic model

Simulation of the adsorption behavior of the proteins during the
chromatographic experiments was performed using equilibrium
transport dispersive model combined with the linear driving force

(Equation 6.1), as described in chapter 3.[31

aCi aql aCl BZC,-
FT T Ry e (6-1)
a i *
a_qt = Kov,i(ci - Ceq,i)l (62)
d a2 1t
Ko = | ] (6.3)
ovit |:6kf‘1 608pr,i

Here, the protein concentration in the liquid and solid phase are
denoted as C and gq, respectively, while C;, is the liquid phase
concentration at equilibrium. The phase ratio is defined as F=(1-
&,)/€,, Where g, is the bed porosity, u is the interstitial velocity of the
mobile phase and D, is the axial dispersion coefficient. Time and space
are represented by t and x, respectively. The overall mass transfer
coefficient (K,,) is defined as the summation of the mass transfer
resistance in the film and within the pores. Here, d, is the particle
diameter, D, is the effective pore diffusivity and ¢, is the intraparticle
porosity. The film mass transfer coefficient is defined as k; = D;Sh/d,
where Sh is the Sherwood number and Dy is the free diffusivity which
is calculated using empirical correlation (equation 6.4) based on the

molecular mass (MW). [32]

Dy = 260 * 10711 (MW ~1/3), (6.4)
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6.2.5 Hydrophobic interaction isotherm

In this work, the commonly used HIC isotherm developed by

Mullerup!*>-171 is used. This isotherm is defined as:

a_ K., (%)n (1 -1 )n exp (Kscs + Kycp), (6.5)

Cp Amax

where A is the ligand concentration, n is the stochiometric coefficient,
c is the molar concentration in the pores. K., K; and K, are the
equilibrium constant, salt and protein interaction parameters,
respectively. Finally, ¢ and g¢,. are the current and maximum

concentration in the solid phase.

This isotherm allows for some simplifications, since K, has been proven
to have minor impact, this parameter can be assumed to be
zero.[20.33:341 Additionally, assuming that ¢ remains constant[19.28:35]
allows for an alternative definition of the equilibrium constant as K;,; =

Keq(A/c)™ resulting in the following:

n
é: Ke’q (1 — %137) exp (Kscg). (6.6)

Finally, for low loading conditions, it can be assumed that ¢ < ¢z,
resulting in (1 — q/qmq)™ = 1. Applying this to equation 6.6 yields the

final form of the linear isotherm used in this study, which is defined as:
% = Koqexp (Kscs).. (6.7)

6.2.6 Isotherm parameter determination

To apply isotherm equation 6.7, accurate determination of K;, and K;

are essential. In this work, we will compare three methods which

require a set of linear gradient elution (LGE) experiments.

6.2.6.1 Parente and Wetlaufer

The first approach is based on the Parente and Wetlaufer regression
formula, originally developed for ion-exchange chromatography.[26]
Chen et al.[3¢] adapted this formula for HIC:
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Vg

_ _B'(Cs,f_cs,i) a+ﬁ-gsi
T —Be(es pcs) fn (1 +Vn Ve ¢ s (6.8)

Ve g

where Vi, is the corrected retention volume (Vz, = Vg —V,, —0.5V;,; —
Vawenr): Vi is the gradient length and V,, is the void volume. a« and g are
fitted using the retention volumes at different gradient lengths. The

fitted parameters relate to the retention factor by:

In(k") = a + Bc,, (6.9)
As

K =%t - Fy, (6.10)

to
where t; and t, are the time of retention and start of the gradient,
respectively. 4; is the initial slope of the isotherm, which is equal to

equation 6.7. As such, equation 8 can be rewritten as follows:

_ Ve —Ks(Cs,r=Cs,i) s ;
VRo = Steoymaan " 1ML+ WP =, T Keq ), (6.11)

6.2.6.2 Yamamoto

The second method is based on the Yamamoto approach, which is like
the previous method originally developed for ion-exchangel10:27:371,
Recently, Hess et al. adapted this method for the regression of HIC
isotherm parameters.[371 It relates the normalized gradient slope (GH)
to the salt concentration at which the peak maximum is observed (c;z)
using a linear formula. The normalized gradient slope is defined as

follows:

GH = g(1 — €,)Veo1, (6.12)

where g is the gradient slope, defined as:

Cs,fCs,i

9=""0s (6.13)
and V_,, is the total volume of the column. When size exclusion effects
are neglected, the normalized gradient length can be related to ¢,z by
the following linear equation(2°1:
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In(—=GH) = —Kscsp — In (—KK.q) (6.14)
The salt concentration at which the peak maximum is determined by
Csr = Cs5; + gVg 4. The isotherm parameters are obtained from fitting a
linear regression model (sklearn.linear_model.LinearRegression) using
In(—GH) and ¢, as y and x variables respectively. By combining the
regression model and equation 6.14, K. can be identified as the

negative slope of the linear fit, while K;, = exp(—intercept) K;'*.

6.2.6.3 Inverse method

The final approach tested in this study is the inverse method, where
the parameters are tuned by running simulations and fitting the results
to the experimental data. This is performed by minimizing the sum of

squared errors (SSR) calculated by:

tend

SSR=) Y (& - a®)’ (6.15)

i to
where ¢(t) and é(t) are protein concentrations at the outlet of the
columns at time t determined experimentally and computationally,
respectively. This function is minimized using Scipy.minimize with the
Nelder-Mead method and initial guesses of 0.01 and 10 for K;, and K;
respectively. Both the experimental and simulated chromatograms are

scaled using a minmax scaler to normalised values between 0 and 1.

6.2.7 Error calculation

Comparing the accuracy of the isotherm parameters is performed
based on retention volume and peak width at 50% intensity using the
scaled chromatograms that results from mechanistic model. The
simulations are performed using a near identical protocol as the
experimental. As the system dwell volume is not modeled explicitly,
the wash prior the gradient start is extended with this volume to a total
of 6.025 mL (4.85 mL wash + 1.175 mL dwell volume). The retention

volume was determined from the peak maximum and the absolute
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error was calculated by subtracting the experimental retention volume,
normalized errors are calculated by dividing the absolute error with the
gradient length. Relative peak width is calculated by dividing the
modeled peak width by the experimental peak width, both determined
at 50% intensity.

6.3 Results and discussion

6.3.1 Linear gradient elution experiments

Linear gradient elution (LGE) experiments are required for all three HIC
parameter estimation methods. The chromatographic retention of
chymotrypsinogen and glucoamylase were measured for 5 gradient
lengths (Figure 6.1). For both proteins it is observed that the retention
shifts towards the beginning of the gradient. In the chromatogram of
chymotrypsinogen at gradient lengths 15 to 40 CV, a shoulder is
observed prior to the main peak. This is considered to be a result of a
conformational shift, as the high salt concentrations during HIC can
cause conformational changes, leading to more than one peak.[?3839]
When the initial ammonium sulfate concentration was lowered from 1.3
M to 1.1M, this shoulder was not observed (Supplemental figure
S6.1A). By increasing the initial concentration to 1.5 M, the shoulder
moves towards the back of the main peak (Supplemental Figure
S6.1B). This suggests that the dominant conformation shifts to the
weaker binding orientation for an increasing salt concentration. While
glucoamylase eluted as a symmetrical peak for all gradient lengths, an
initial isocratic elution is observed during the wash. This is most notable
for the 40 CV gradient length where glucoamylase elutes over the
greatest volume, resulting in lower peak intensity. For both proteins

the corrected retention volume is reported in table 6.1.
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Figure 6.1: Superimposed normalized LGE chromatograms for chymotrypsinogen (dark
blue) and glucoamylase (light blue) (Hitrap Butyl FF 1 mL, flowrate 1 mil/min) with
varying gradient lengths (black).

Table 6.1: Corrected experimental retention volumes in mL of chymotrypsinogen and
glucoamylase for LGEs with five gradient lengths.

Ve [ML]
gradient length chymotrypsinogen glucoamylase
10 CV 6.25 3.24
15 CV 8.25 4.03
20 cv 10.32 4.66
30 Cv 13.91 5.7
40 CV 17.34 6.71

6.3.2 Parente and Wetlaufer method

The PW method fits isotherm parameters K., and K, simultaneously to
the experimental data. Cross-validation by leaving out individual
gradient lengths provided an accurate representation of regression
accuracy for data not used in the fit (Figure 6.2A, Supplemental Figure
S6.2). The cross-validation shows that the retention times of gradient
lengths 15, 20 and 30 CV are predicted with high accuracy (errors <0.1
mL). For 10 and 40 CV a greater error is observed (errors >0.15 mL
and >0.35 mL respectively). The difference in accuracy highlights that
the PW method is less accurate when extrapolation is required. For the
three intermediate gradient lengths, K., values of 0.134 and 0.013 and
K, values of 5.681 and 5.682 chymotrypsinogen and glucoamylase

were obtained, respectively.
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6.3.3 Yamamoto method

When using the Yamamoto method the parameters are obtained using
linear regression. Isotherm parameter K; is directly obtained from the
intercept while K¢, is derived from the slope (Figure 6.2B). As observed
for the PW method, the Yamamoto method estimates the retention at
gradient lengths 15, 20 and 30 CV more accurately compared (errors
<0.21 mL ) to the gradient lengths at the bounds, especially for the 40
CV LGE, resulting in absolute errors >0.66 mL (Supplemental Figure
S3). For the 15, 20 and 30 CV gradient lengths, fits with R? >0.97 were
achieved, providing K., values of 0.181 and 0.006 and K values of

5.350 and 6.488 chymotrypsinogen and glucoamylase, respectively.
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Figure 6.2: Isotherm parameter fitting results of chymotrypsinogen (dark) and
glucoamylase (light) for the 20 CV gradient length as test (triangle) and the remaining
gradient lengths as fitting data (circles). A) shows the Parente and Wetlaufer method
results with gradient length on the x-axis and retention volume on the y-axis. B) shows
the Yamamoto method results with salt concentration of the peak maximum on the x-
axis and the natural log of the normalized gradient slope on the y-axis

6.3.4 Inverse method

While the previous two methods only require the retention volume, the
inverse method uses the full chromatograms as presented in Figure
6.3. Because of this, the inverse method does not only optimize for
retention volume, but also for peak shape, which comes at the cost of

increased computational time (minutes compared to seconds). This
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method provides average K., values of 0.094 and 0.003 and K, values
of 6.137 and 7.331 chymotrypsinogen and glucoamylase, respectively.
As observed for the PW and Yamamoto method, the cross validation
shows difficulty to extrapolate gradient lengths, especially for the

shorter gradient lengths (Supplemental Figure S6.4).

1.0

0.8

0.6

0.4

normalized concentration [-]

0.0] F=

volume [mL]

— = Inverse method chymotrypsinogen

= Experimental chymotrypsinogen
Inverse method glucoamylase
Experimental glucoamylase

Figure 6.3: Superimposed normalized inverse method results of chymotrypsinogen
(dark) and glucoamylase (light) for the 20 CV gradient length test. The dashed line
depicts the model results while the continuous line shows the experimental
chromatogram.

6.3.5 Comparing predictive accuracy

Given the reduced accuracy observed at the shortest (10 CV) and
longest (40 CV) gradient lengths, comparisons between methods focus
exclusively on the intermediate gradients of 15, 20, and 30 CV. Table
6.2 presents an overview of the isotherm parameters estimated using

the three methods.

For both proteins, IM determines a lower K;, and a higher K; compared
to the other two methods. A higher K. indicates a greater salt
dependence, resulting in sharper peaks. In contrast to the standard

deviation of K;, which is similar for all methods, the standard deviation

for K; is highest for IM (0.158 and 1.127), while the other two methods
provide more similar deviations (0.054 to 0.073). The high standard
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deviation is considered to be a result of the extensive fitting effort by

IM which might amplify differences in the data being used.

Table 6.2: Isotherm parameters obtained from cross-validation excluding 15, 20 and 30

CV gradient lengths iteratively.

Ke’q [_] Ks [M_l]
Chymotrypsinogen
Parente and Wetlaufer 0.134+0.006 5.681+0.054
Yamamoto 0.181+0.010 5.35+0.058
Inverse method 0.094+0.011 6.137+0.158
Glucoamylase
Parente and Wetlaufer 0.013+0.001 5.682+0.073
Yamamoto 0.006+0.001 6.488+0.063
Inverse method 0.003+0.000 7.331+1.127

To determine the actual accuracy of the different parameter
combinations, simulations were performed for the 15, 20 and 30 CV
gradient length experiments comparing the results to the experimental
data (Figure 6.4, Supplemental Figure S6.5). Table 6.3 shows the
average absolute and normalized peak maximum errors as well as the
relative peak width for the different parameters. For
chymotrypsinogen, peak maxima were predicted with an average error
of close to 0.1 mL by all methods. For peak width, parameters obtained
with IM resulted in the best agreement with the experimental data
(relative peak width of 1.018). This is to be expected since this method
considers chromatogram shape during the fitting. Simulations using
the parameters obtained from the PW and Yamamoto method resulted
in broader peaks (relative width of 1.095 and 1.164, respectively),
which can be attributed to the lower K; and higher K;, compared to the

IM.
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Figure 6.4: Normalized modeled and experimental chromatogram of chymotrypsinogen
(A) and glucoamylase (B) with a 20 CV linear gradient starting at 1.3 M ammonium
sulfate.

Simulations of glucoamylase retention showed to be more challenging,
resulting in higher absolute errors compared to chymotrypsinogen.
Especially parameters estimated using PW let to an average retention
offset of 1.1 mL, while the Yamamoto method and IM achieved offsets
below 0.4 mL. This might be attributed to the fact that glucoamylase
elutes early in the gradient, even displaying minor isocratic elution.
Interestingly, while IM vyielded the most accurate retention times
overall, it produced the largest deviations in peak width. As shown in
Figure 4B, the simulations capture the initial slope of the
chromatogram accurately but predict a too steep decent after reaching

the peak maximum.

To verify whether the early elution of glucoamylase limits the accuracy
of the different methods, gradients starting at 1.5 M ammonium sulfate
were used for parameter determination (Supplemental Table S6.2).
These parameters were subsequently used to predict the behavior of
glucoamylase at a gradient running from 1.3 M to 0 M ammonium
sulfate (Table 6.3). For the PW parameters, the simulation accuracy
was significantly improved to an average retention error of 0.54 mL.
For the Yamamoto and inverse method, accuracy was slightly reduced
to an average error of 0.44 mL, while the normalized error remained

constant.
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Table 6.3: Average quantitative modeling accuracy measures for the different
parameter sets. *Parameters determined using the 1.5 M to 0 M ammonium sulfate
LGEs.

chymotrypsinogen glucoamylase glucoamylase*
Absolute retention error [mL]
PW 0.119 1.096 0.539
Yamamoto 0.095 0.389 0.440
M 0.119 0.273 0.440
Normalized retention error [-]
PW 0.0056 0.0525 0.0267
Yamamoto 0.0043 0.0192 0.0211
M 0.0057 0.0154 0.0143
Relative peak width [-]
PW 1.095 1.084 0.946
Yamamoto 1.164 0.917 1.023
M 1.018 0.803 0.938

6.3.6 Predicting alternative salt gradients.

To assess the quality of the isotherm and the parameters, obtained
parameter sets were tested for other salt concentrations. For
chymotrypsinogen, two additional gradients were measured starting at
1.1 Mand 1.5 M ammonium sulfate, both reaching a final concentration
of 0 M. The additional salt gradients for glucoamylase were measured
at 1.5Mto 0 Mand 2.0 to 0.8 M ammonium sulfate (Figure 6.5, Table
6.4). Simulations were performed using the parameters determined
based on the 1.3 M to 0 M gradients for chymotrypsinogen, while for

glucoamylase the gradients starting at 1.5 M were used.
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Figure 6.5: normalized predicted (dashed, dash-doted, and dotted) and experimental
(continuous) chromatograms of chymotrypsinogen (dark) and glucoamylase (light) for
the 20 CV LGE at alternative buffer compositions. A) and B) show chymotrypsinogen
ammonium sulfate LGEs 1.1 M to 0 M and 1.5 M to O M, respectively. C) and D) show
glucoamylase LGEs from 1.5 M to 0 M and 2.0 M to 0.8 M, respectively.

For all three methods, retention could be predicted with high accuracy,
resulting in an average retention offset <0.44 mL. While the
parameters obtained from the Yamamoto method resulted in simulated
chromatograms with the smallest error in peak maxima (0.03 to 0.33
mL), the relative widths are highest (1.16 to 1.28). Simulations using
the parameters obtained from the inverse method result in
chromatograms with peak widths closest to the experimental peaks
(1.03 to 1.12 relative widths). Peak widths for chymotrypsinogen
starting at 1.5 M ammonium sulfate were estimated with the greatest
deviation from the experimental data (1.12 to 1.28 relative widths).
For these conditions, the chymotrypsinogen peak was deconvoluted
from experimental data using two gaussians (Supplemental Figure
S6.6). Therefore, the chromatogram (Figure 5B) is an estimation of the
elution which might occur less symmetrically, like observed for
chymotrypsinogen starting the LGE at 1.1 M ammonium sulfate (Figure
6.5A).
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Table 6.4: Average quantitative modeling accuracies for the alternative LGEs.

chymotrypsinogen glucoamylase

Ammonium sulfate [M] 11-0 1.5-0 1.5-0 2.0 -0.8
Absolute retention error [mL]

PW 0.357 0.431 0.070 0.143
Yamamoto 0.206 0.328 0.031 0.077
M 0.311 0.431 0.206 0.288
Normalized retention error [-]

PW 0.0163 0.0216 0.0039 0.0070
Yamamoto 0.0103 0.0156 0.0014 0.0028
M 0.0162 0.0216 0.0080 0.0128
Relative peak width [-]

PW 1.111 1.207 1.066 1.074
Yamamoto 1.179 1.283 1.164 1.171
M 1.027 1.116 1.055 1.070

Overall, all three methods provided parameters to model the retention
of both proteins accurately. Even though both correlation methods only
use peak maxima information, peak shape can be predicted with a
maximum over estimation of 30%. Therefore, for the simplified
Mullerup isotherm, the correlations are good alternatives to the more
computationally expensive inverse method. This is useful when data
quality is compromised, as was seen for the LGE starting at 1.5 M
ammonium sulfate for the elution of chymotrypsinogen. Comparing the
two correlations, the Yamamoto method provides the most accurate
peak maxima for the two proteins, while the PW method results in more
accurate peak widths. Additionally, the linear representation of the
Yamamoto method showed to be more robust compared to the PW
method for the early eluting glucoamylase for the 1.3 M to 0 M

ammonium sulfate LGE.

6.4 Conclusion

In this study, we have compared the Parente and Wetlaufer method,
the Yamamoto method, and the inverse method to obtain isotherm
parameters for a simplified Mullerup isotherm for HIC. The different
methods applied on five LGE experiments (10, 15, 20, 30, and 40 CV

gradient lengths) for chymotrypsinogen and glucoamylase. While the
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different methods estimated parameters within the same order of
magnitudes, the early elution of glucoamylase resulted in systemic
under prediction using the parameters estimated by the PW method,
which was not observed for the other methods. Overall the inverse
method performed best, but it is most computationally expensive and
requires high quality chromatograms. Therefore, the Yamamoto
method is a good alternative for the inverse method when data quality
is compromised, or computational resources are limited. This
comparison offers practical guidance for isotherm determination
method selection, thereby enabling reliable mechanistic modeling of

HIC processes.
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6.6 Supplemental information

Supplemental Table S6.1: system and column parameters

Parameter Value Unit
Column diameter 0.70 cm
Column height 2.50 cm
Particle size 90 pHm
Total porosity (&) 0.914 -

Extraparticle porosity (¢,) 0.336 -
Intraparticle porosity (,) 0.870 -

System dead volume 0.281 mL
System dwell volume 1.175 mL
A 1.1-00MLGE B 1.5-0.0 MLGE

—— chymotrypsinogen 10

—— chymotrypsinogen
1400
0.8 1200

1000
0.6

=
S

04
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s
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volume [mL] volume [mL]

Supplemental Figure S6.1: Linear gradient elution chromatograms of

chymotrypsinogen with a 20 CV gradient length starting at 1.1 M (A) and 1.5 M (B)
(NH4)2504
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Supplemental Table S6.2: Isotherm parameters for glucoamylase determined using
1.5 to 0 M ammonium sulfate LGEs

Keq [-] Ks [M-1]
Parente and Wetlaufer 0.007+0.000 6.34+0.088
Yamamoto 0.014+0.001 5.819+0.069
Inverse method 0.008+0.003 6.365+0.417
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Supplemental Figure S6.6: Deconvolution of the chymotrypsinogen chromatogram of
a 20 CV LGE from 1.5 M to 0 M ammonium sulfate.
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7.1 Conclusion

Model-based process development (PD) of biopharmaceuticals can
significantly increase productivity and thereby shorten the lab to
market timelines. Understanding fundamental phenomena allows a
reduction in experimental effort and costs. For protein chromatography
modeling, predicting the interaction behavior between the protein and
resin is the most challenging. These interactions are governed by
physicochemical properties which are a result of the protein amino acid
sequence and subsequent 3D structure. Structure models contain the
coordinates of every atom. Therefore, they have the potential to

provide all information.

This thesis shows how protein structures can be used for prediction of
their chromatographic behavior. Specificallyy, a comprehensive
quantitative structure property relationship (QSPR) workflow is
presented. For this, an open-source software package was developed
(chapter 2) that was validated for literature data on ion exchange
chromatography (IEX). This package allows wide deployment of QSPR
using the Python programming language that is available for the whole
scientific community. This contributes to general progress in the field
by providing transparency, thereby lowering the initial investment for
beginners. Additionally, the distribution of the source code allows for

customizability by experts.

This software package was successfully used in a multiscale modeling
approach (chapter 3). For a total of six model proteins, QSPR models
were trained that accurately predict retention times for different salt
gradient conditions, which were subsequently used in a regression
formula to obtain isotherm parameters. These parameters were used
for process optimization resulting in similar optimal operation
conditions when using experimentally determined parameters.

Additionally, it was observed that the estimation uncertainties have a
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minimal effect on the operation condition selection. This highlights the
potential of QSPR for PD.

Extensive knowledge of crude mixture is essential to be able to apply
QSPR for the development of a capture step. Therefore, in chapter 4
retention profiles of Escherichia coli BLR(DE3) lysates were determined
for hydrophobic interaction chromatography (HIC) and IEX
chromatography. Retention times of around 900 unique host cell
proteins (HCPs) could be determined. By analyzing protein subsets
based on location, function, and interactions, it was observed that
proteins located in the plasma membrane or that are participating in
protein-protein interactions deviate from general elution trends. Using
predicted protein structures, QSPR models could be trained to predict
HCP retention times, which was most successful for monomeric

proteins.

As experimental characterization remains expensive and time
consuming, the ability of a set of widely available proteins to represent
the HCPs was assessed in chapter 5. For IEX, a QSPR model could be
trained that predicts part of the HCP data also presented in chapter 4.
No difference in accuracy was observed when predicting HCP subsets.
This shows that pure protein data can be used for predicting HCP
behavior in a mixture. Key differences in feature distributions were
found in the training and testing data, indicating areas of

improvements.

Finally, a study of different isotherm parameter determination methods
for HIC was performed in chapter 6. This study showed that both
correlation methods and inverse fitting methods results in mechanistic
model simulations with similar accuracies. Additionally, the robustness
and computational complexity of the different methods are discussed.
As such, it provides practical guidance for method selection, thereby

enabling reliable mechanistic modeling of HIC processes.
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These findings are a significant step towards more accessible model-
based PD. They provide evidence that protein structures can be used
to predict chromatographic behavior, specifically for IEX. The recent
advances in protein structure prediction methods, like AlphaFold, have
shown to be highly valuable for partly elucidating the chromatographic
behavior of the host cell proteome. Still, there remain some challenges
that need to be overcome in order to fully implement these workflows

for a broad range of resin types.

7.2 Outlook

7.2.1 Surface hydrophobics

While this thesis shows successful QSPR modeling of IEX, it does not
present any models for HIC or mixed mode chromatography. While
hydrophobicity features can be calculated by the software in chapter
2, attempts in training models to predict HIC retention were
unsuccessful. These prediction challenges are thought to be the result
of the complex adsorption mechanism, which is driven by the entropy
of water.[] Extending the calculated protein features might enable
prediction of HIC processes and improve prediction of other modes.
Spatial aggregation propensity maps are an alternative method to map
local hydrophobicity by describing regions which are likely to
aggregate. Therefore, these maps might be better at capturing the

forces that drive HIC adsorption.[?=4]

7.2.2 Protein binding conformations

Another challenge that needs to be tackled for HIC is alternative
binding conformations resulting from the high salt conditions, as
observed in chapter 6. Implementation of local features, like surface
patches, might partially solve this issue. As preferred binding
orientations are not only present for HIC, local features could also

greatly improve predictions for other chromatography modes.
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Additionally, proteins might be susceptible to aggregation or unfolding
upon binding, which is currently not described by the static structures
used for the QSPR. Calculating local flexibility scores can potentially
provide indications of surface areas that might undergo conformational
changes.!®! These additional features may indicate which proteins will
present alternative binding conformations. Alternative protein
structures can be generated by constrained molecular dynamics (MD)
introducing additional rigidity in inflexible regions coupled with
advanced sampling methods like simulated annealing.[®l Unfortunately,
these methods are often paired with high computational costs and

should therefore be reserved for high interest targets.

7.2.3 Protein docking

Protein docking is another method that can provide detailed
information of the interactions.l’-°! This method uses the molecular
structure representing the protein and resin to minimize the binding
energies. Accurate description of the chromatographic resin is currently
a limiting factor. Often the resin is modeled as a plane of ligand
molecules, which lacks the three-dimensional pore structure.[10]
Ballweg et al. proposed a method to simulate polymerization reactions
that form the resin beads, resulting in a complex resin structure.[®l
They revealed that not only the ligand, but also the backbone of the
resin is essential to accurately estimate affinity of peptide. While this
is very relevant, application on larger scales like complete proteins is
limited due to the high associated computational costs. Recent
developments in graphical processing unit (GPU) acceleration and
advances in hardware allowed for a reduction in computational times
for protein docking and MD simulations.[*!] These advances are mainly
attributable to the increased power budgets and improved thermal
regulation.['?13] Therefore, advancement might be limited due to

foreseeable issues regarding sustainability.
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7.2.4 Hybrid QSPR-MM models

Considering model-based PD, accurate description of protein
adsorption behavior remains challenging. Hybrid modeling provides a
solution by using black box models to predict phenomena that are ill
understood.[1415] Currently, these hybrid models have been limited to
the use of machine learning models trained on experimental data.
Therefore, they provide no knowledge that can be transferred to other
targets. Implementation of QSPR into the hybrid modeling framework
could bring new possibilities. Specifically, by training QSPR models that
predict the ratio between bound and unbound proteins as a function of
protein and salt concentration, the dynamic binding behavior can be
predicted directly from the protein structure. This approach would solve
limitations with the adsorption isotherms that require multiple

parameters to be fit and only describe a single isotherm shape.

7.2.5 Model proteomes

In chapter 5, we attempt to describe the E. coli proteome using a set
of 13 model proteins, which was successful for over 200 HCPs.
Additionally, a set of improvement strategies are described in this
chapter. Specifically, extending the model protein dataset to capture
most relevant protein features is relevant for straight-forward QSPR
deployment. For initial screening, a general proteome would be suitable
to provide retention predictions to support early phase resin selections.
For more accurate predictions, model proteomes could be tuned to
represent specific hosts as post-translational modifications might vary.
Currently, pure protein solutions provide the highest quality retention
data and have been shown to represent close to 25% of the observer

E. coli proteins accurately.

While there have been major breakthroughs in the field of
chromatography modeling as well as protein structure prediction,

significant investments are required before the field reaches maturity.
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The suggestions for follow-up research as well as an increased effort in
data collection and curation will enable further advancements.
Ultimately, progress in model-based PD will allow for faster and more

cost-effective processing.
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