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Abstract

Bi-VAKs: Bi-Temporal Versioning Approach for Knowledge Graphs

by Lisa MEIJER

Over time Linked Data collections are continuously subject to change because of nu-
merous reasons. Users could insert new observations, or they could rectify erroneous
statements in these knowledge graphs. In order not to lose historically import informa-
tion, this trend of evolving Linked Data collections increases the need to version these
collections. Furthermore, retrieving prior versions and their in-between changes could
provide Linked Data users relevant information. However, for some changes to these
collections we should record both their transaction time and their valid time. To ad-
dress these two problems of versioning Linked Data collections and having bi-temporal
changes, we introduce the Bi-Temporal Versioning Approach for Knowledge graphs (Bi-
VAKs): a prototypical bi-temporal change-based Version Control System for an arbitrary
RDF dataset. Bi-VAKs registers both the transaction time and the valid time of a set of
modified quads, and therefore, it allows for coupled historical and retrospective SPARQL
queries. In addition, in order to enhance collaboration between its users Bi-VAKs also
keeps track on provenance data; it supports diverged states; and provide a standard data
access interface. However, since the standard RDF data model is atemporal, defining such
a set of modifications (update) in RDF poses difficult challenges. Firstly, to indicate this
transaction time and the valid time of an update Bi-VAKs divides a revision or version
into a transaction revision and a valid revision. And hence it directly separates the meta-
data from the actual data. Secondly, to denote and retrieve the modified triples/quads
within a update Bi-VAKs uses RDF-star and SPARQL-star. In order to connect these revi-
sions we develop three reference strategies: the explicit, the implicit, and the combined
reference strategy. These strategies let a transaction revision either refer explicitly to its
corresponding valid revision(s) or implicitly by the same revision number and branch in-
dex. Based on these strategies we initiate some different approaches to query the updates
from the revision-store. And, we propose some different methods to construct a (prior)
version. However, to evaluate these different design decision we cannot use the existing
uni-temporal benchmarks for our bi-temporal versioning approach. Therefore, we expand
the BEAR benchmark to a bi-temporal benchmark (Bi-BEAR). By means of this benchmark
we demonstrate that all three reference strategies have about the same storage size. We
notice that the usage of a snapshot and retrieval of all updates worsen the version ma-
terialisation (VM), delta materialisation (DM), and version (VQ) query performance. In
addition, the VM query look up time considerably decreases if only the matching updates
are queried. And modified updates, branches, and more updates in the revision-store
slightly lower the VM, DM, and VQ query performance. In addition, for the implicit and
combined reference strategy the query time is rather the same, and sometimes even better
if we sort the updates instead of aggregating them directly. Overall, the implicit reference
strategy is performing best, and is quickly followed by the combined reference strategy.
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Chapter 1

Introduction

The value of data can hardly be underestimated nowadays, especially, if it contains mean-
ingful information. Data could gain more meaning by linking it. A way of structuring data
so that it is interconnected is Linked Data. Linked Data forms a web of data, which it not
only understandable and interchangeable between humans but also between machines
(Berners-Lee, 2006). Besides, the data model representing Linked Data, the Resource De-
scription Framework (RDF) (Cyganiak, Wood, and Lanthaler, 2014), has many advantages
over other data models, such as its graph structure, and its interoperability. Therefore,
Linked Data has many real-world applications in various industries, even in a small coun-
try as the Netherlands. Digital Network for Heritage (Netwerk Digitaal Erfgoed1), for
instance, uses Linked Data to increase the usability of digital heritage collections. Linked
Data Overheid2 (LiDO) is an example of a Linked Data collection that provides insight into
the connections between national and European regulations, judgements by Dutch and
European judges, parliamentary documents and official announcements. And Kadaster3

has made the Addresses and Buildings Key Register (BAG) available as Linked Data such
that it can be easily connected with other (governmental) key registers.

However, over time these arising interconnected datasets are continuously subject to
change due to numerous reasons, such as the insertion of new observations or rectify-
ing erroneous conceptualisations (Umbrich et al., 2010). This trend of evolving Linked
Data collections increases the need of versioning these knowledge graphs, particularly,
not to lose historically important information. Retrieving prior Linked Data versions and
their in-between changes could provide Linked Data users relevant information. If the
BAG is archived over time, users of the BAG could, for instance, examine people’s reloca-
tion behaviour. Nevertheless, the BAG faces a significant problem when an archive only
records the time of changes on a single time line: the time that a change is either stored
or valid. A change of address does not have to be valid yet at the time of recording.
Unfortunately, adding time information to the RDF model raises difficult challenges, and
therefore, these bi-temporal changes cannot be modelled straightforward in order to store
and retrieve the RDF dataset versions. In addition, Linked Data users work collectively
on these collections, which yet leads to new problems, primarily, in a distributed setting.
In this thesis, we introduce a bi-temporal Linked Data versioning approach that records
both time dimensions for each change and that supports the evolution of a dataset in a
collaborative setup. We explain our approach in more detail, after we outline the prob-
lem of versioning Linked Data collections and the problem of temporal data modelling in
section 1.1 and 1.2.

1https://netwerkdigitaalerfgoed.nl
2https://linkeddata.overheid.nl
3https://www.kadaster.nl

https://netwerkdigitaalerfgoed.nl
https://linkeddata.overheid.nl
https://www.kadaster.nl


2 Chapter 1. Introduction

1.1 Versioning Linked Data

In addition to Kadaster, Digital Network for Heritage (NDE) could also benefit from ver-
sioning its data collections, since versioning prevents information loss, and hence con-
tributes to one of NDE’s main purposes: sustainability of its Linked Data collections. Ver-
sioning lets important heritage-related sources remain available, accessible and verifiable
for its users in the long term. Nonetheless, apart from the arguments that querying prior
versions, or identifying version differences provide valuable information, we can define
many other reasons for the need of a Linked Data version control system, in particular,
the following reasons:

Understanding the Evolution of Data ‘Volatility’ is an essential concept of the current
web, as it is continuously evolving. By also storing the previous states of the dataset, data
users could inspect which statements were added, removed or modified, and therefore
could understand, and prove why the dataset has been changed accordingly. Besides,
knowing the evolution of the data opens up opportunities for assessing the quality of
the data. The amount of modified statements, for instance, may indicate how actively a
dataset is maintained (Meinhardt, Knuth, and Sack, 2015).

Collaboration As people work collectively on RDF datasets, often, they may not immedi-
ately agree on the content of the dataset. Data users might differ in their motivation to
contribute to the dataset, for instance because of their differences in perspective or under-
standing of the data (Arndt et al., 2019). In order to express dissent without damaging
the common dataset, we need to keep track of multiple different dataset versions (Arndt
et al., 2019). By having diverged versions, versions could be developed separately, while
still sharing a common part of the dataset. When eventually these data users have reached
consensus, these versions might either be synchronised by exchanging the changes.

Version References and Data Consistency In a collaborative setting usually data users
work with a dataset fixed at a specific point in time. In order to let other users know
which version they work with, they should explicitly refer to their specific static state of
the dataset. Furthermore, version referencing could help to keep datasets uniform. As a
version reference denotes a particular state of the dataset at a point in time, knowing the
reference of two separate datasets might indicate whether one dataset is consistent with
values in another dataset at the same point in time.

Provenance Recording and Exploration When we evaluate, or interchange datasets
from different sources, it may be desired to record the provenance information of the
data. Provenance information improves the determination of data reliability, and hence
the data quality, since it gives data users the opportunity to assess not only what has been
changed, but also who it has changed, and why and when the dataset has been changed.

Error Correction and Backup Although collaboration let data users contribute to a com-
mon dataset, it may also cause insufficiencies in the data. By tracking all the changes
collaborators might be better at detecting, and subsequently correcting these failures in
coming versions. Besides, versioning can allow to switch to an older version until er-
roneous changes are undone. In addition, the data might even get lost, if an attack or
complete crash corrupt the dataset. Periodically performing version controlled data set
backups might help to avoid content loss by restoring the data from the previous versions.

In summary, versioning Linked Data is not only about storing and hence retrieving ver-
sions, and their differences. It is also about maintaining data quality and collaborating
between data users. However, these concepts add even more challenges to an already
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complicated task: the storage-recreation trade-off (Bhattacherjee et al., 2015). By sepa-
rately storing full versions a particular version can quickly be retrieved, but these versions
may have a lot of overlap. By storing only the differences (deltas) between versions there
is less overlap, but higher latencies due to a version’s construction time.

1.2 Temporal Data Modelling in Linked Data

Just like Kadaster, LiDO also has a need to manage the validity of their Linked Data
collection(s), especially, in order to obtain the part of the legislation that was effective
at the requested time. A judge, for example, can refer to a law article in general or
to the version in force on the day of the judgment. However, besides that regulations
can enter into force proactively, it can also enter into force retroactively. Therefore, not
only the date of entry into force matters, but also the view date: Could someone know
at the time of acting on the legal text that it had been amended retroactively (Opijnen,
2018)? It allows users to view regulations as they were before they were changed by a
retroactive amendment, and as they were when they were effective at a requested time.
Thus, instead of a uni-temporal data model, which considers either the time the data is
valid (valid time) or the time the data is stored (transaction time), we need a bi-temporal
data model to consider both these time dimensions and to allow for coupled historical
and retrospective queries.

1.3 Bi-Temporal Versioning Approach for Knowledge graphs
(Bi-VAKs)

To address the two problems of versioning Linked Data collections and having bi-temporal
changes, we introduce the Bi-Temporal Versioning Approach for Knowledge graphs (Bi-
VAKs): a prototypical change-based version control system for an arbitrary RDF dataset,
also known as knowledge graphs. Bi-VAKs registers both the transaction time and the
valid time of a set of modified quads, and hence allows for bi-temporal SPARQL (Up-
date) queries. By having a change-based storage strategy Bi-VAKs has a proper balance
between the storage-recreation trade-off, because it only stores the set of inserted and
deleted quads (change sets) between consecutive versions. In addition, this strategy of-
fers Bi-VAKs considerable opportunities for collaboration between Linked Data users in
a distributed environment, such as branching off a common dataset, keeping track of
provenance information, and the possibility of exchanging changes. However, the RDF
data model itself is atemporal. Therefore, adding two-dimensional time information to
an in RDF defined change poses difficult challenges.

In the first place, a change must have both a transaction time as well as valid time.
Therefore, our prototypical system Bi-VAKs distinguishes transaction revisions from valid
revisions to denote respectively the transaction time and the valid time. Moreover, this
division between transaction revisions and valid revisions respectively separates the meta-
data, such as the author, the modification type, or the creation time, from the actual
changes, such as the collection of inserted and deleted RDF quads made to the Linked
Data collection, the name of a branch, or the description of a tag.

In the second place, we need to detect and to model a RDF structured change set in
such a way that we can refer to the actual modified data (triples, or quads). Therefore,
Bi-VAKs utilises SPARQL Update queries and RDF-star (Hartig and Thompson, 2014) to
respectively detect and model these change sets, which we call Updates. RDF-star and its
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associated query language SPARQL-star are an extension on RDF and SPARQL to annotate
RDF triples by a more compact representation of statement-level metadata than standard
RDF reification (Brickley and Guha, 2014).

In the third place, we must retrieve these Updates to construct a (prior) version and re-
turn a response for a SPARQL query. However, by querying all changes over a certain
time period we probably cannot see the wood for the trees because of the excessive num-
ber of Updates. Therefore, Bi-VAKs extracts the basic triple pattern from the incoming
SPARQL queries. And it subsequently uses a triple pattern and SPARQL-star (Hartig and
Thompson, 2014) to query these Updates more efficiently.

In addition to the fact that a well modelled change could enhance collaboration, for ex-
ample through the exchangeability of changes, it may also be made easier when Linked
Data users can continue using their existing RDF tools and stores. Therefore, Bi-VAKs is a
middle-ware between the Linked Data users and SPARQL endpoints of some triple/quad-
stores. It provides a standard SPARQL 1.1 endpoint supporting a read/write interface on a
versioned RDF dataset. Therefore, Bi-VAKs connects to the revision-store - a triple/quad-
store containing all transaction and valid revisions - and to data store(s) - triple/quad-
store(s) containing a materialisation version of the RDF dataset. Furthermore, Bi-VAKs
also supports some general versioning concepts, such as branching, tagging, and revert-
ing. Figure 1.1 shows a sketch of Bi-VAKs, and demonstrates the main contributions of
Bi-VAKs: the creation, retrieval, and management of Linked Dataset versions. Bi-VAKs is
still a first step to a bi-temporal versioning approach. Storing uncompressed all changes
in a single RDF dataset might not be space efficient. And, adding the valid time as object
to a triple might not be query efficient.

FIGURE 1.1: Outline of the prototypical Bi-Temporal Versioning Approach
for Knowledge graphs (Bi-VAKs).

In thesis we focus on a generic solution for versioning Linked Data. Bi-VAKs does not
make any assumptions on the application domain, and additional semantics such as OWL
(McGuinness, Van Harmelen, et al., 2004) or SKOS (Miles and Bechhofer, 2009). It
has to rely on the pure RDF data model. Besides, since blank nodes cannot uniquely
be identified over different datasets, they pose an issue when it comes to referring to
modified quads. Therefore, we decided not to consider blank nodes. Furthermore, due
to time limitations we were not able to re-implement existing version control system for
RDF datasets. In addition, all implemented existing RDF versioning approaches consider
a uni-temporal data model, instead of a bi-temporal data model. Therefore, we do not
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aim to compete with these existing systems. We entirely evaluate our system by self-
predefined experiments, and on a self-created bi-temporal versioned RDF graph. Besides,
we do not evaluate our system on complex SPARQL queries. We only assess our system
on basic triple pattern queries: the basic elements of SPARQL. We refer to Chapter 9 for a
more in-depth study on these issues.

1.4 Research Questions

In the previous section, we debated the need for a collaborative Linked Data Version Con-
trol System that can manage both the valid time and the transaction time of a collection
of modified quads, and therefore, can support bi-temporal SPARQL (Update) queries.
Such a change set (or update) is exchangeable, and allows users to efficiently distribute
their changes among other collaborators. In addition, metadata can easily be added to
these updates, and to further enhance collaboration an update can be in different diverg-
ing states simultaneously. Therefore, we opt for an in RDF defined update representations
that decouples transaction revisions from valid revisions registering respectively the trans-
action time and the valid time, and the metadata and the actual data. This design choice
compromises the first research question:

RQ1: How can we design a Linked Data change-based collaborative version
control system that can manage both the valid time and transaction time of a
collection of changes made to a RDF dataset?

But since the RDF data model itself is atemporal, the inserted and deleted quads should
be modelled otherwise to let an update refer to the modified quads. Therefore, we repre-
sents such an update by means of RDF-star. Due to its compact representation, RDF-star
increases the efficiently of data exchange. Moreover, such a representation makes it possi-
ble to simply request only the changes that actually contain the triple pattern(s) specified
in the user’s query. And, thus it enables efficient version materialisation (VM), delta
materialisation (DM), and version (VQ) basic triple pattern queries on a versioned RDF
dataset. We formulate the second research question as follows:

RQ2: How can we represent updates by using RDF-star, and enable efficient
bi-temporal version materialisation, delta materialisation, and version basic
triple pattern queries by using SPARQL-star?

In addition to a theoretical framework of our versioning approach, we also build a pro-
totypical implementation. In order to evaluate its ingestion and query performance we
need a bi-temporal versioned RDF dataset, and a collection of queries and their VM, DM
and VQ results over the different bi-temporal versions. To the best of our knowledge,
due to the limited research on bi-temporal RDF versioning approaches, thus far no work
has been proposed to systematically benchmark bi-temporal RDF archives. Therefore, for
convenience we extend the uni-temporal Benchmark for RDF archives (BEAR) proposed
by Fernández et al. (2019) so that this new bi-temporal benchmark (Bi-BEAR) can also
assess bi-temporal RDF versioning approaches. This leads to the third and final research
question:

RQ3: How can we expand the BEAR Benchmark to a bi-temporal benchmark,
and what is the ingestion and query performance of our prototypical change-
based version control system?
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1.5 Contributions

We summarise the contributions of this thesis as follows:

• We present a prototypical change-based version control system for RDF datasets,
Bi-VAKs, that records both the transaction time and the valid time of its dataset
changes in order to provide for bi-temporal SPARQL (Update) queries.

– Bi-VAKs creates for each versioning operation a transaction revision and (mul-
tiple) corresponding valid revision(s), which indicate respectively the trans-
action time and the valid time. In addition, this division makes it possible
to query these revisions separately; to refer to the same or multiple revisions
simultaneously; and to have these revisions serve different purposes.

– Bi-VAKs represents its changes by using RDF-star in order to enable referring
to the added, deleted, and modified quads within an RDF structured change.

– Bi-VAKs has a standard SPARQL 1.1 endpoint supporting a read/write interface
on a bi-temporal versioned RDF dataset. It detects and creates the RDF dataset
changes from the SPARQL Update queries. And it supports version materiali-
sation, delta materialisation, and version SPARQL SELECT basic triple pattern
queries to allow for historical and retrospective queries.

– Bi-VAKs allows its users to make changes over its existing changes, and it en-
sures the completeness and accuracy of all changes ever made to Bi-VAKs. Bi-
VAKs even computes a cryptographically secure hash for each revision, and it
includes the hash of its predecessors to guarantee the integrity of each revision.

– Bi-VAKs supports branching, tagging, reverting and merging to support collab-
oration between Linked Data users.

• We expand the uni-temporal BEAR Benchmark to a benchmark for bi-temporal RDF
version control systems (Bi-BEAR).

• We evaluate Bi-VAKs’ ingestion and query performance on various input parameters,
such as the number of branches or the number of updates.

1.6 Thesis Outline

The rest of the thesis is structured as follows. In Chapter 2 we outline the needed back-
ground such as an explanation of the resource description framework (RDF), RDF-star,
and their query languages. We also created a overview of the already known version
control systems for datasets in general and not RDF in particular. In Chapter 3 we give
a literature overview of various RDF version control systems; how changes can be rep-
resented and detected; and an overview of RDF archiving benchmarks. In Chapter 4 we
define Bi-VAKs requirements and concepts. And while we give in Chapter 5 a detailed
description of Bi-VAKs’ conceptual design, we describe in Chapter 6 some of its practical
design choices. In Chapter 7 we briefly explain the actual implementation of Bi-VAKs
in Python, and in Chapter 8 we conduct a set of experiments, evaluation Bi-VAKs inges-
tion and query performance from several angles. Following the experimental results, we
discuss these in-depth in Chapter 9, even as the limitations of Bi-VAKs itself. We end
this work with some concluding remarks and a number of proposals for future work in
Chapter 10.
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Chapter 2

Background

In this thesis we develop an approach to version a bi-temporal RDF dataset using RDF-
star. In this chapter we establish background knowledge, and explain the main concepts
and terminology which form the background of our work. We begin this chapter by
introducing the terminology of Linked Data, RDF, and SPARQL in Section 2.1. In Section
2.2, we explain the triple annotation approach RDF-star, and SPARQL-star. Subsequently,
in Section 2.3 we present some terminology of temporal data. Finally, in Section 2.4, we
give an global overview of existing (data) version control systems which uses other data
models than RDF.

2.1 Linked Data

Linking data may give data more meaning, because it establishes certain relations that
were otherwise unknown. Thereby, it is important to have this data available in a standard
format, as it could make the data more accessible, manageable and exchangeable to both
humans and machines. Linked Data defines such a set of design principles for sharing
machine-readable interlinked data using the international standards of the World Wide
Web Consortium (W3C), for example the use of URIs (Uniform Resource Identifier) to
name things. Another principle stated that one should use the open standards RDF and
SPARQL, which we explain in more detail in the following sections.

2.1.1 The Resource Description Frame (RDF)

The Resource Description Frame (RDF) (Cyganiak, Wood, and Lanthaler, 2014) is a data
model to represent interconnected data by making statements about resources. The core
structure of RDF is a set of triples - each consisting of a subject, a predicate, and an object -
which is called a RDF graph. A triple can be interpreted as a statement about a resource,
the subject in essence. The objects describes its value, and the predicate explains their
relationship or property. A triple can be represented as a node-arc-node link in a directed
graph, which is illustrated in Figure 2.1. Such a node can be an IRI (Internationalized
Resource Identifiers), literal, or a blank node. An IRI or a literal denotes a resource, which
can be anything, including physical things, documents, abstract concepts, numbers, and
strings. IRIs define a resource by a unique identifier, while, literals define it by a datatype,
such as strings, number, and dates. A blank node, however, does not identify a specific
resource, and is, therefore, called an anonymous resource. A subject of a triple is either
represented by an IRI or blank node, a predicate only by an IRI, and an object by an IRI,
blank node, or a literal.
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FIGURE 2.1: An example RDF graph describing the resource
http://recipehub.nl/recipes#Cake, its properties, and relationships.

A collection of IRIs, which are intended for the same use, is called an RDF vocabulary.
The IRIs in an RDF vocabulary often begin with a common sub-string known as a names-
pace IRI. For instance, the RDF Schema vocabulary contains the IRIs indicating the RDF
Schema language, and its namespace IRI is http://www.w3.org/2000/01/rdf-schema#.
In addition to a single RDF graph, multiple graphs may also be grouped together in a
RDF dataset. An RDF dataset always consists of exactly one default graph and zero or
more named graphs. These named graphs are named by either an IRI or a blank node.
Therefore, a statement can also be represented as a quad (4-tuple), where the fourth
component denotes the graph name. Triples or quads can be stored and retrieved respec-
tively in a triple- or quad-store through semantic queries, such as SPARQL (Section 2.1.2).
Nevertheless, to enable the exchange of RDF graphs and RDF datasets between systems,
they should be serialized into RDF documents syntaxes to represent the RDF data. An
RDF document is a document that encodes an RDF graph or RDF dataset in a concrete
RDF syntax. A variety of RDF concrete syntaxes exists, such as Turtle, RDFa, JSON-LD, or
TriG. Listing 2.1 shows the Turtle syntax of the RDF graph illustrated in Figure 2.1.

LISTING 2.1: An example of the Turtle syntax.
@prefix r e c i p e s : <ht tp ://www. recipehub . n l / r e c i p e s#> .
@prefix food : <ht tp ://www. recipehub . n l / food#> .
@prefix rd f : <ht tp ://www.w3. org/1999/02/22− rdf−syntax−ns#> .
@prefix r d f s : <ht tp ://www.w3. org /2000/01/ rdf−schema#> .

r e c i p e s : Cake
rd f : type r e c i p e s : Recipe ;
r e c i p e s : c u i s i n e r e c i p e s : Dutch ;
r e c i p e s : i ng red i en t "4 eggs " ;
r e c i p e s : i ng red i en t "200g bu t t e r " ;
r e c i p e s : produces food : Cake ;

.
r e c i p e s : Dutch

r d f s : l a b e l " Nederlands " ;
.

2.1.2 SPARQL

SPARQL 1.1 (Prud’hommeaux and Seaborne, 2008) is the W3C’s recommended RDF
query language. Generally, a SPARQL query consists of a set of triple patterns, which
is called a graph pattern. A triple pattern t := (s, p, o) ∈ (I ∪ B ∪V)× (I ∪V)× (I ∪ L ∪
B ∪ V) is an RDF triple that allows a variable (V) at any position. A basic graph pattern
will be matched with the RDF terms (IRI, literal, blank node) in the RDF graph such that
these RDF terms can be substituted for the variables in order to return all possible query

http://www.w3.org/2000/01/rdf-schema#
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solutions. In other words, graph pattern matching produces a solution sequence, where
each solution has a set of bindings of variables to RDF terms. SPARQL has four query
types (query forms):

• SELECT returns the variables and their bindings to RDF terms.

• CONSTRUCT returns a single RDF graph constructed by substituting the RDF terms
for the variables in a graph template.

• ASK returns a boolean that indicates whether a query pattern has a solution.

• DESCRIBE returns a single RDF graph containing all triples that describe a resource.

Listing 2.2 demonstrates a SPARQL SELECT query to fetch all recipes, which have the
Dutch cuisine, and Listing 2.3 demonstrates its result in JSON Format1. Nonetheless,
all triple patterns must match to produce a solution. Therefore, if the triple pattern in
the SPARQL OPTIONAL part does not match, no bindings are created, but the solution
is not eliminated. Moreover, SPARQL UNION provides an approach of combining graph
patterns so that one of the several alternative graph patterns may match. To restrict
solutions, SPARQL offers the FILTER operator that only returns those bindings for which
the filter expression evaluates to true. Furthermore, in order to create a specific sequence,
any sequence modifier, such as LIMIT, ORDER, and DISTINCT, can be applied. However,
many RDF data stores hold multiple RDF graphs. To specify the named graphs that are
used for matching a basic graph pattern, there exist multiple options: the FROM clause
to specify the default graph and the FROM NAMED clause to specify the named graph(s);
the GRAPH operator; or the SPARQL protocol request.

LISTING 2.2: An example of a SPARQL SELECT query that fetches all
recipes with the Dutch cuisine.

PREFIX r e c i p e s : <ht tp ://www. recipehub . n l / r e c i p e s#> .
PREFIX r d f s : <ht tp ://www.w3. org /2000/01/ rdf−schema#> .
SELECT ? rec ipe
WHERE {

? rec ipe r e c i p e s : c u i s i n e ? c u i s i n e .
? c u i s i n e r d f s : l a b e l " Nederlands " .

}

LISTING 2.3: An example of a SPARQL 1.1 Query Results JSON Format
from the query presented in Listing 2.2

{ " head " : {
" vars " : [ " r e c i pe " ]
} ,

" r e s u l t s " : {
" b ind ings " : [

{
" r e c i pe " : { " type " : " u r i " , " value " : " h t tp :// recipehub . n l / r e c i p e s#Cake " }

}
]

}
}

SPARQL Update

In order to modify existing RDF graphs or datasets SPARQL 1.1 Update (Gearon, Passant,
and Polleres, 2013) provides a number graph update operations and graph management
operations. While the INSERT DATA or DELETE DATA graph update operation respectively
directly inserts or deletes the triples stated in the query into a graph, the DELETE/INSERT

1https://www.w3.org/TR/sparql11-results-json/

https://www.w3.org/TR/sparql11-results-json/
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operation inserts and deletes a group of triples which matches the query patterns stated
in the update query. In addition, The LOAD operation respectively inserts the content of
a document representing a RDF graph into a graph, and the CLEAR operations deletes
the triples from a single or multiple graph(s). The graph management operations only
concentrates on graph operations, such as the creation, deletion, copy and move of a full
RDF graph.

2.2 Triple Annotation

A long standing issue for RDF is the lack of a convenient way to annotate RDF triples and
query such annotations. Previous research already proposed a number of approaches in
order to support statement-level metadata annotations. The approach that is supported
by any RDF store is standard RDF reification (Hayes and Patel-Schneider, 2014). To
express metadata about a given RDF triple, RDF reification include four additional RDF
triples to refer to a reified triple. This is rather inefficient for exchanging as well as for
managing RDF data, and its SPARQL syntax is also cumbersome (Hartig and Thompson,
2014). Another approach is via named graphs (Carroll et al., 2005). The identifier of
the named graph can be considered as a node in the RDF graph, and it can be used to
represent the provenance of a set of triples. A significant drawback is the overload of
named graphs, and it hinders an application to use named graphs for other use cases.

An alternative to the named graph as identifier is Singleton Properties (Nguyen, Bodenrei-
der, and Sheth, 2014). Singleton Properties uses the predicate (property) as an identifier
to make a metadata annotation. However, it is highly inefficient for querying data, and it
introduces a large number of unique predicates, which is untypical for RDF data and thus
again disadvantageous for commonly-used SPARQL optimization techniques. Further-
more, it is much harder to share and combine different datasets, and moving data from
one tool to another tool is not as simple. Therefore, Hartig (2017) proposed RDF-star
(RDF*), which is an extension of the RDF 1.1 standard that allows making statements
about other statements. To query these annotations, Hartig (2017) also extended the
SPARQL query language. This extension is called SPARQL-star (SPARQL*).

2.2.1 RDF-star

RDF-star proposes a more efficient reification serialisation syntax. Because of its com-
pact representations this syntax reduces the document size, and it shorten the SPARQL
queries, which increases the efficiency of data exchange and improves comprehensibility.
In addition, triple stores could be further optimised internally to handle RDF reification
by using such a representation. The idea of RDF-star is to put a triple in the subject or ob-
ject position of another triple that represent metadata about the embedded triple. These
triples that include a triple as a subject or object are known as RDF-star triples (Hartig et
al., 2021). In a given RDF-star graph, an identical triple may be both an embedded triple,
which is RDF-star triple that is used as the subject or object of another RDF-star triple,
and an asserted triple, which is just an element of an RDF-star graph. Thus, an embedded
triple does not exist on its own as a triple in the RDF-star graph.

RDF-star extends a number of RDF concrete syntaxes to define the following new syn-
taxes: Turtle-star, TriG-star, N-Triples-star, and N-Quads-star. Turtle-star, for instance, uses
double angle brackets to enclose a triple that serves as a subject or object of another triple,
which is illustrated in Listing 2.4. In Listing 2.4, the triple 〈 reciples:RecipeChowMein
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recipes:cuisine attributes:ChineseCuisine 〉 is only an embedded triple and not an asserted
triple, like the triple 〈 attributes:ChineseCuisine rdfs:label “Chinese keuken” 〉.

LISTING 2.4: An example of the Turtle-star syntax.
@prefix r e c i p e s : <ht tp :// recipehub . n l / r e c i p e s#> .
@prefix a t t r i b u t e s : <ht tp :// recipehub . n l / a t t r i b u t e s#> .
@prefix r d f s : <ht tp ://www.w3. org /2000/01/ rdf−schema#> .
@prefix : <ht tp ://www. example . org/> .

a t t r i b u t e s : ChineseCuis ine r d f s : l a b e l " Chinese keuken " .
<< r e c i p l e s : RecipeChowMein r e c i p e s : c u i s i n e a t t r i b u t e s : ChineseCuis ine >> : accordingTo :

L i s a .

2.2.2 SPARQL-star

SPARQL-star (SPARQL*) is an RDF-star-aware extension of SPARQL in order to query RDF-
star graphs (Hartig, 2017). In addition to the standard solution mappings of SPARQL
which bind variables only to IRIs, blank nodes, or literals, the solution mappings of
SPARQL-star introduces the possibility to bind variables to RDF-star triples, and enables
users to directly access metadata triples via queries. Therefore, in contrast to the cor-
responding queries for the other proposals (e.g., RDF reification, singleton properties),
SPARQL-star queries are very concise. This compact syntax does not require users to
write verbose patterns and other constructs. An example of a SPARQL-star is illustrated
in Listing 2.5 that shows that SPARQL-star allows for BIND clauses with an embedded
triple pattern.

As mentioned in Section 2.1.2, SPARQL queries can take four forms: SELECT, CON-
STRUCT, DESCRIBE, and ASK. The introduction of RDF-star changes the result serial-
ization format of CONSTRUCT and DESCRIBE, as they should now be represented by
Turtle-star instead of Turtle for instance. The serialization format for representing SE-
LECT query results should also be extended in order to represent the embedded triple
RDF term by adding an extra RDF term “triple”.

LISTING 2.5: An example of a SPARQL query that fetches all recipes with
the label “Chinese keuken”.

PREFIX r e c i p e s : <ht tp ://www. recipehub . n l / r e c i p e s#> .
PREFIX r d f s : <ht tp ://www.w3. org /2000/01/ rdf−schema#> .
PREFIX : <ht tp ://www. example . org/> .

SELECT ? rec ipe
WHERE {

<< ? rec ipe r e c i p e s : c u i s i n e ? c u i s i n e >> : accordingTo : L i s a .
? c u i s i n e r d f s : l a b e l " Chinese keuken " .

}

2.3 Temporal Data

Temporal data is data that varies over time, and that represents a state at a certain point
in time. We could collect temporal data for weather forecasting, analysing food prices
or studying demographic trends, and so on. Time values in the data can be described
as a point time or as a duration of time (time interval). Whereas a time point refers
to a single point in time, a time interval is a range of time points starting from a start
time point and ending at an end time point. In general, temporal data can be further
divided into two types: the transaction time, and the valid time. Although, sometimes
one also considers other types, such as decision time, publication time or efficacy time.
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The transaction time is the time period when the data are actually stored or available
in the database (Jensen and Snodgrass, 1999). It primarily captures the time-varying
states of the database (Zhang et al., 2021). The valid time is the time period during
which a statement is true in the modelled or real world (Jensen and Snodgrass, 1999).
It particularly captures the time-varying states of the modeled world independent of its
recording time (Zhang et al., 2021). However, the valid time is not always known. We
refer to these time points as anonymous timestamps. To handle data along these two
different timelines, we need a bi-temporal data model instead of a uni-temporal model.
With bi-temporal modelling it is possible to rewind the information to “how it actually
was” in combination with “when it was actually recorded”. Therefore, all data becomes
immutable: information can never be overwritten or discarded. Hence, we can make
retroactive changes to data points while retaining the history of what these data points
believed to be in the past.

2.4 Dataset Version Control Systems

A Version Control System (VCS) keeps track of, manage and record changes to source
code, documents, or other collections of information over time. Generally, VCS serves as
a safety net to protect collections of information from irreversible harm. VCS allow users
to revert datasets to their previous versions in order to recover lost data, or locate and
fix problems. In addition, with VCS users are able to compare the changes made to the
data over time, and exchange their changes in order to work simultaneously on the same
dataset. Often, VCS does not only store the evolution of the data, but also the reasoning
behind the change(s), the user who made the change(s), and its timestamp. The data
file(s), its complete history of changes, and its metadata are stored in a repository. In the
initial VCS these repositories were kept locally - the repository and its user were on the
same machine - or were located on a shared folder allowing users to collaborate within
a local area network. Subsequently, in order to enable geographically dispersed teams
working on projects together, centralised VCS became popular. These client/server VCS
store the entire repository on a central server, and its clients are able to read from and
submit changes to it. But as clients must have a network connection to check in and out
changes, in these recent years distributed VCS are turning out to be the standard VCS.
These distributed systems allow collaboration without the need of a central repository, as
clients store the full repository locally, and re-synchronize it with other repositories later
on.

Since the repository holds all versions of the content, changes to the data need to be
saved from the working directory/copy of the user to the repository in order to create a
new version of the content. This act of recording changes to the repository creating a new
version is called commit. Each commit might contain changes possibly to different parts
of the dataset, its associated metadata, a unique identifier (version number), a message, a
reference to the parent commit, a reference to the author of the changes, and a reference
to the committer. For VCS it is advantageous to perform atomic commits. It ensures that
if any part of the dataset, that has been committed, fails to be accepted by the repository,
the whole commit should fail, and all of the changes completed in the atomic commit are
reversed. And it ensures that only one atomic commit is processed at a time. Commits
occur in a sequence over time, and thus can be arranged in order, either by a version
number or a timestamp. In a linear order, with no branching or undoings, each commit is
based on its immediate predecessor alone, such that they form a linear graph, called the
main stream. As collaboration is a significant aspect of VCS, users can branch off from
the main stream, such that they can work on several versions of the content in parallel



2.4. Dataset Version Control Systems 13

FIGURE 2.2: A rooted directed acyclic version graph. Trunk is in green,
branches in orange, and tag in blue.

without interference. These branches can be merged later on into the main stream or into
another branch by incorporating both changes. If these changes, however, overlap, it may
be difficult or even impossible to merge. The main stream and all branches might form
a rooted directed acyclic graph, because the commits’ parents are always backwards in
time, and the graph starts with the oldest version. The last element(s) of such a graph are
called the head(s). Figure 2.2 illustrates a simple example of a version graph, for which
(6) and (7) are the heads of this graph. In some VCS, users can annotate a commit as
a tag. Tags are special types of branches that mark a milestone along the evolution of a
dataset.

Datasets are rather varied in nature, ranging from small to large, from structured (tabu-
lar) to unstructured (text and arbitrary binary objects), and from largely complete to noise
and incomplete. The most well known version control systems are for (plain text) files
and unstructured datasets, such as Subversion, and Git. Most version control terminology,
and techniques still are clearly inspired by these systems. Therefore, before we introduce
in Section 2.4.2 the version control systems for structured datasets, as RDF datasets, we
give in section 2.4.1 a convenient introduction of the systems for unstructured datasets.

2.4.1 Version Control Systems for (plain text) files and unstructured datasets

One of the first attempts of a version control system is the revision control system (RCS)
(Tichy, 1982) that helps managing multiple versions of a single text file. RCS automates
the basic storing, retrieval, logging, branching, and merging of revisions. RCS stores an
entire copy (snapshot) of the most recent version of the file and its reverse differences
(deltas) to get back to the older states. Such a reverse-delta schema allows for a very
quick checkout of the current revision. However, the older the checkout revision, the
longer the checkout takes since an increasing number of deltas need to be calculated
against the current snapshot. In addition, the version history can be edited by the users,
and only one user can work on a file simultaneously. Since RCS only manages individ-
uals files, and not collections of files, the centralized version control system, Concurrent
Versions System2 (CVS), expands upon RCS and adds support for repository-level change
tracking, and a client/server networking element. The first step is to set up a central-
ized repository on a remote server, and to import a project into the repository, which is
called a module. Clients obtain copies of modules to their working directory on their lo-
cal machines by checking them out from the remote server. Clients can modify their own

2https://www.gnu.org/software/trans-coord/manual/cvs/cvs.html

https://www.gnu.org/software/trans-coord/manual/cvs/cvs.html
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working copy concurrently, but before they can commit their changes, they need to keep
their working copy up-to-date. Although RCS has been seen as a de facto standard during
the nineties, it has some limitations, such as no atomic commits, no global version num-
bering, and no good support for binary files. Therefore, the centralised version control
system Subversion3 (SVN) is built with the intention of fixing some of these limitations.
A Subversion repository on a remote server has a directory called db/revs in which all re-
vision tracking information for the checked-in (committed) files and directories is stored.
A commit includes changes to multiple files and directories and is stored in a new file in
the revs directory. In order to be more space efficient, the full content of a file is stored,
once it is committed for the first time. Upcoming commits of the same file will store only
the deltas.

Even though centralised version control systems have been a common approach over
many years, currently distributed version control systems have gathered widespread at-
tention and adoption. These distributed systems, however, have some challenges, many
of which are inherent in any distributed system. For instance, it is impossible to tempo-
rally order revisions in any given repository, as users can commit in parallel. In order
to ease exchange of commits, these systems must keep track of the ancestry relations
between commits. Both the recognized distributed version control systems Git and Mer-
curial4 have opted to use SHA1 hashes of the contents of the commit as their unique
identifier. By including the reference to the parental commit in the SHA1 hash, all history
leading up to any revision can be verified using its hash. Furthermore, such an identifier
can also be used to verify whether the contents of the commit have not been changed,
or whether the contents of multiple commits are identical. Mercurial stores the history
of a file in a firelog consisting of its individual file content and its deltas from the previ-
ous version. The manifest puts together the information about the files. If a file has not
changed between two commits, the entry for that file in the two revisions of the manifest
will point to the same revision of its filelog. The changelog contains the meta-information
about each commit. Git5 is by far the most widely used distributed version control sys-
tems, nowadays, especially in software development. Git provides rapid branching and
merging strategies through smart referencing, and offers synchronizing with multiple re-
mote repositories. Every user works locally on a working copy, which is a complete clone
of a (remote) Git repository. A Git repository consists of commits that each represents
the current state of the files in the working directory at a given time by pointing to a Git
tree object. A git tree object consists of a group of pointers, pointing to other tree objects
and binary large objects (blobs). A blob stores the contents of a file as binary data. Thus,
instead of storing the changes to each file as the aforementioned systems do, Git stores
the references to other references or to blobs containing the new created or changed files.

2.4.2 Version Control Systems for (semi-)structured datasets

Although there has been a long line of version control systems for unstructured datasets,
they all are designed to deal with modest-sized files, and therefore, they have signif-
icant limitations when handling large files, (unordered) structured datasets, and large
number of versions. When using such a version control system (e.g. Git) teams tend
to store their data in files, often using highly ad hoc and manual version management
techniques. It is not uncommon that directories contain thousands of files with names
like data1-v1.csv, data1-v2.csv, data1-v1-after-applying-program-XYZ.txt, etc. (Bhardwaj

3https://subversion.apache.org
4https://www.mercurial-scm.org
5https://git-scm.com

https://subversion.apache.org
https://www.mercurial-scm.org
https://git-scm.com
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et al., 2015). In general, these systems require each user to have a separate, complete,
local copy of a dataset, which is impractical within large, multi-gigabyte or terabyte-scale
databases (Maddox et al., 2016). In addition, they are designed to store unstructured
data. Therefore, they use general-purpose differencing tools (like Unix diff) to determine
deltas and compare versions, which are highly inefficient for structured data, and slow to
handle the scale (Maddox et al., 2016). Furthermore, these systems do not support suf-
ficient querying and retrieval functionalities, e.g., querying specific versions of datasets,
performing joins across versions, or explore and query metadata.

The above-mentioned reasons urge the need of (semi-)structured data version control.
Prior research (Bhattacherjee et al., 2015), however, demonstrated there is a natural
trade-off between the storage requirements and the querying efficiency. All data version
control systems must deal with this trade-off, despite they are designed for handling
different types of datasets. There has already been plenty of research on time travel (or
temporal) databases (e.g., relational (Ahn and Snodgrass, 1986; Salzberg and Tsotras,
1999; Tansel et al., 1993), graph (Khurana and Deshpande, 2013) and array (Seering et
al., 2012; Soroush and Balazinska, 2013)) which is, essentially a linear chain of versions,
that annotates each record with a time interval. This interval denotes the version it
belongs to, and facilitates "time-travel" queries. However, many of these systems lack
support for branching, and merging versions.

An example of a data VCS for relational database is proposed by Bhardwaj et al. (2015).
This multi-version data management system, Dataset Version Control System (DVCS),
provides similar version management functionalities to Git, such as branching, but DVCS
has significantly more powerful versioning query language and scales to larger and more
structured datasets. In addition, they built a hosted platform on top of DVCS, DataHub,
which is analogous to Github6. Via DataHub, users can interact with datasets, either by
directly issuing queries to DataHub servers or by checking out local copies of datasets. A
key component of DataHub is the Relational Dataset Branching System, Decibel (Maddox
et al., 2016), which is a relational storage system with built in version control to track,
integrate, and query changes made by different users to the same dataset. Decibel uses
a very flexible logical data model that treats datasets as unordered collections of records,
where records are identified by primary keys. Users can interact with Decibel by opening
a connection (or session) to the centralized Decibel server. In Decibel, every modifica-
tion conceptually results in a new version. In update-heavy environments, however, this
would lead to extra overhead. Consequently, Decibel allow users to classify some of these
versions as committed versions, which can only be checkout, and queried. However, Deci-
bel requires redesigning the entire database stack, and does not benefit from the querying
capabilities that exist in current database systems. Therefore, Huang et al. (2017) pro-
posed a dataset version control system, ORPHEUSDB, which is built on top of standard
relational databases as a middleware layer.

Nowadays, there also exist a number of non-academic data or/and Machine Learning ex-
periment management tools for data science applications. An example of a commercial
tool is Data Version Control7 (DVC) that works on top of Git repositories. In order to en-
able data versioning, it replaces large files, dataset directories, machine learning models,
etc. with small meta-files, which point to the original files. Another example is Split-
graph8, which is a tool for building, versioning, and querying datasets. It works on top of
PostgreSQL and uses SQL for all versioning and internal operations.

6https://github.com
7https://dvc.org
8https://www.splitgraph.com

https://github.com
https://dvc.org
https://www.splitgraph.com
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Chapter 3

State of the Art

In addition to research on Version Control Systems (VCS) for relational databases, there
is also some research on VCS for Linked Data collections. A simple storage strategy to
manage versions over Linked Data is Independent Copies (IC) (Fernández, Polleres, and
Umbrich, 2015). IC stores and manages a separate copy of the dataset(s) for each version.
Therefore, it is easy to query a specific version of the dataset(s). However, a disadvan-
tage of IC is it scalability regarding its storage space, especially when users frequently
make small changes. All versions should be stored separately, and corresponding triples
are copied over several places. Besides, whenever information about the changes is re-
quested, these changes must firstly be computed on the fly. These challenging tasks such
as computing deltas and loading the appropriate versions require non-negligible process-
ing efforts (Fernández et al., 2019). An example of an IC approach is SemVersion (Völkel
and Groza, 2006). SemVersion is inspired by the classical version control systems (e.g.,
CVS or SVN), with support for multiple RDF graphs, branching and merging.

To address this scalability problem, Arndt et al. (2019) proposed another storage strategy:
Fragment-based (FB). Instead of fully copying all triples across versions FB only stores
snapshots of changed fragments such as resources, sub-graphs or individuals graphs. FB
corresponds to the storage strategy that Git1 has implemented. A Git repository only
stores the snapshots of modified files instead of a snapshot of all files and stores the
reference(s) to the unchanged files. This FB version control system, Quit Store (Arndt et
al., 2019), is built on top of Git, and provides collaborative version control for multi-graph
RDF datasets. In addition, it uses the PROV ontology (Lebo et al., 2013) for metadata
management. Quit Store physically stores the history of the dataset in text files (N-Triples
files) by considering each version to be a commit, and makes this history accessible via
a SPARQL endpoint. Although Quit Store only stores snapshots of the modified files,
it still requires a lot of memory whenever frequently small changes are made (Pelgrin,
Galárraga, and Hose, 2021).

Another storage strategy that Fernández, Polleres, and Umbrich, 2015 defined is the
Timestamp-based (TB) approach. TB associates to each triple its time- or version-related
metadata such as temporal validity intervals or insertion/deletion timestamps. Haupt-
mann, Brocco, and Wörndl, 2015, for instance, stored each triple in a different named
graph such that the context information can be used as identifier for the triple. Accessing
random versions can explicitly be queried through virtual graphs. X-RDF-3X (Neumann
and Weikum, 2010) is an extension of RDF-3X, and annotated each triple with a created
and deleted timestamp. It reconstructed a version at time t by returning all triples for
which t falls into the corresponding interval. x-RDF-3X does not support versioning for
multiple graphs, neither branching nor tagging. RDF-TX (Gao, Gu, and Zaniolo, 2016)

1https://git-scm.com

https://git-scm.com
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is an in-memory query engine that efficiently manages temporal RDF data over single
RDF graphs. It indexes triples and their time metadata using a compressed multi-version
B+tree. RDF-TX achieves a fast evaluation of temporal queries by proposing an extension
of SPARQL (SPARQLT), which support queries over the temporal RDF graphs. RDF-TX
outperforms similar systems as X-RDF-3X in terms of query efficiency.

v-RDFCSA (Cerdeira-Pena et al., 2016) is built on the RDF compressor RDFCSA (Brisaboa
et al., 2015). It used RDFCSA to compress the RDF triples in the archive, and encoded
the information about the versions using bitsequences. V-RDFCSA provides efficiently
retrieval algorithms by utilizing RDFCSA self-indexing capabilities for accessing the com-
pressed triples, and perform bit-based operations to enable versioning queries. However,
its query functionalities are still limited since it only supports VM, DM, and VQ queries
on basic triple patterns. Dydra (Anderson and Bendiken, 2016) is an RDF graph stor-
age service that supports multi-graph dataset versioning. It indexes quads in six ways
implemented as B+trees and link them to visibility maps. It used insertion and deletion
timestamps to indicate the time the quad was present. Furthermore, they extended the
query language by introducing the REVISION keyword, which is similar to the SPARQL
keyword GRAPH for referring to different dataset versions. Moreover, another work that
annotates to each triple its time metadata is StarVers (Kovacevic et al., 2022). StarVers
employed RDF-star to annotate each triple with temporal metadata.

Although these systems seem rather storage efficient because of their indexing, and com-
pression techniques, not all existing Linked Data tools can directly utilise them, as these
techniques need special triple/quad-stores. In addition, TB approaches are not so suitable
for a proper collaboration. It is hard to exchange these indexed and compressed version
datasets between different systems, and adding diverging states is complex. Furthermore,
these approaches are so far designed for either the valid time or the transaction time of a
triple. It would add an extra dimension of complexity to design them for both transaction
and valid time.

The storage strategy that addresses the aforementioned issues is the Change-Based (CB)
approach (Fernández, Polleres, and Umbrich, 2015). CB only stores the differences
(deltas) between versions. These deltas are much easier to exchange between systems,
and can typically be stored in any triple/quad-store. Furthermore, both the transaction
and the valid time can simply be attached to such a change. Therefore, this storage strat-
egy is suitable for our approach. However, its storage-efficiency still depends on the ratio
of changes occurring between consecutive versions. The IC approach is still more storage-
efficient than CB, if large changes between consecutive versions are made. Furthermore,
the CB approach has a high materialization cost for version materialisation (VM) queries,
particularly for long sequences of deltas between two snapshots (delta chain). Hence,
the fundamental challenge of RDF archiving is the storage-recreation trade-off: the more
storage we use, the faster it is to recreate or retrieve versions, while the less storage we
use, the slower it is to recreate or retrieve versions (Bhattacherjee et al., 2015). In section
3.3 we further outline the existing research on the change-based and hybrid RDF version
control systems.

However, before the difference between versions can be stored and retrieved, they first
have to be detected in a manual or automatic fashion or a posteriori using some change
detection tool. Therefore, we first give in Section 3.1 a brief overview of change detection
approaches. In addition, in order to exchange the changes between collaborators, we
require a proper change representation which is understandable between humans and
machines. Subsequently, in Section 3.2 we discuss which solutions have already been
put forward in the literature to represent changes. Furthermore, we also looked into the
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limited research on bi-temporal RDF version control systems in Section 3.4. Finally, we
end this chapter by outlining the general different queries, and the some RDF archiving
benchmark, which can be used to evaluate the ingestion and query performance of RDF
versioning systems.

3.1 Change Detection

As a change-based storage approach only stores the changes (or deltas) between two con-
secutive versions, it requires a change detection approach to identify the changes between
two (subsequent) versions. One approach would be to use a differencing algorithm. A
differencing algorithm calculates the differences between two versions of a RDF dataset
or a RDF graph. OntoView Klein et al. (2002) compared two versions of an ontology by
using a UNIX diff inspired comparison tool. It is a lined based tool, and thus the ontology
is first canonicalized at the syntactic level before being given to the diff tool. Promptdiff
(Noy and Musen, 2002) is an ontology-versioning tools that determines what has changed
between two versions by using a set of heuristics matchers, IF-THEN rules, that compares
the two ontologies on different triple conditions. And COnto-Diff (Hartung, Groß, and
Rahm, 2013) is a generic diff algorithm that automatically determine expressive (com-
pact) diffs between given ontology versions. This approach is based on the result of a
(semi-) automatic match operation. A problem of such algorithms is that they are either
based on lines that always requires a canonicalisation algorithm or on a collection of well
defined definitions that describes the semantics of different change operations (Papavas-
siliou et al., 2009). Another approach is to detect changes using temporal queries over
a version log that is maintained during updates (Plessers and Troyer, 2005). The down-
side is that the detection process requires a version log to be maintained, so it essentially
requires recording information on the changes as they happen. Moreover, many existing
triple/quad-stores do not support a version log. Therefore, another approach is to detect
the changes from a SPARQL (Update) query. Roussakis et al. (2015) and Singh, Brennan,
and O’Sullivan (2018), for instance, relied on plain SPARQL queries to query the two RDF
dataset versions, and they extracts the changes from the results. Frommhold et al. (2016)
detects its changes from SPARQL Update Query itself. Namely, a SPARQL Update Query
is a quite prominent way to gather information about a change, because it might literally
contain the changes.

3.2 Change Representation

Changes (or deltas) between two RDF versions can be seen as changes between two RDF
datasets. As a RDF statement is the smallest directly manageable piece of knowledge, a
change can be represented as a set of triple/quad insertions and deletions. Therefore, a
triple update in a RDF dataset could be modeled as a deletion of the old triple, followed
by an insertion of the new value of the triple. A RDF change model generally has two
semantic layers of change (Roussakis et al., 2015): simple (low-level) and complex (high-
level) changes. Whereas, simple changes only distinguish added and deleted triples,
complex changes define human-readable changes with the purpose of obtaining a more
concise explication on the whys and hows of the change. These data changes can be
described via RDF using specialized vocabularies and change ontologies, or through patch
file formats. A patch file format is a (text) file containing a list of difference between two
versions, mainly produced by running a related difference algorithm.
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3.2.1 Change Vocabularies and Ontologies

To represent changes to RDF datasets by means of RDF itself a variety of vocabularies and
ontologies exists. Haase and Stojanovic (2005), for instance, formalized the semantics of
changes with respect to an individual OWL dataset by defining arbitrary consistency con-
ditions: structural, logical, and user-defined consistency. They assumed that an important
aspect in the evolution process of an ontology is to guarantee the consistency of the ontol-
ogy when it changes. Therefore, they ensured by means of defined resolution strategies
that these conditions are maintained as the ontology evolves. Watkins and Nicole (2006)
developed a document provenance ontology as the basis for a semantic version control
system. They used named graphs to record the class instance in the provenance ontology
and signed them with a digital signature (SHA-1) to verify the integrity of the provenance
data.

Changeset2 is a vocabulary that describes changes to resource descriptions using RDF
reification. The class ChangeSet encapsulates the delta between two versions of a single
resource description, and it uses RDF statement(s) to refer to the added and deleted
triple(s). In the Log Ontology (Auer and Herre, 2006) changes are also represented as
reified statements. The main concept introduced in this work is the concept of atomic
graphs, which provides a practical approach to deal with blank nodes in change sets.
Additionally they introduced a formal hierarchical system to structure a set of changes
and evolution patterns that lead to the changes of a knowledge base.

Instead of using RDF reification the Graph Update Ontology3 (GUO) used a different ap-
proach. GEO also described a change of a single resource description in a specified graph,
but a change is encoded as a graph node with properties that point to the actual target
node. However many of these vocabularies only included triple level change information,
and they did not include resource level change information as well. Therefore, Singh,
Brennan, and O’Sullivan (2018) proposed the Delta-LD Change model. The Delta-LD
Change model models the atomic level change operations, such as the added and deleted
triples (triple level change information). In addition, it also models the objective of the
atomic changes, such as the change type and the subject (resource IRI) of the change in
the older and newer version (resource level change information). Namely, a change in
the IRI of a resource can lead to structurally broken interlinks.

Apart from using change vocabulary to model changes, provenance vocabularies are also
frequently used. The Provenance Vocabulary Core Ontology (PROV-O) (Lebo et al., 2013),
for instance, is not designed to describe changes in particular, but many of its properties
can be reused. As a World Wide Web Consortium (W3C) Recommendation PROV-O is
the de facto standard for the representation, exchanging, and integrating of domain-
independent provenance information generated in different applications and under dif-
ferent contexts. Despite of the usefulness of change vocabularies due to the allowance of
communication via Semantic Web technologies, these change representations are gener-
ally not very compact, and for each atomic change, new RDF statements must be created.
Furthermore, none of these vocabularies are accepted as a real standard, and it is still not
commonly adopted to describe changes in RDF.

2https://vocab.org/changeset/schema.html
3http://purl.org/hpi/guo

https://vocab.org/changeset/schema.html
http://purl.org/hpi/guo
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3.2.2 Patch File Formats

While patch file formats are not as expressive as RDF change vocabularies, they incline to
be more compact making them suitable for practical space-conscious applications. Al-
though patch files are mainly text files, they are mostly derived from RDF syntaxes.
Berners-Lee and Connolly (2004) defined that such a format needs to uniquely iden-
tify what is changing and to distinguish between the pieces added and those subtracted.
Based on these needs they proposed a patch format for RDF deltas by using the property
“replacement” to express any change. Listing 3.1 illustrates an example of a triple update
in that format.

LISTING 3.1: RDF Delta
@prefix d i f f : <ht tp ://www.w3. org /2004/ de l t a#>.
{ ?x bank : accountNo "1234578"; bank : balance 4000}

d i f f : replacement
{ ?x bank : accountNo "1234578"; bank : balance 3575}.

Another patch format is PatchR (Knuth, Hercher, and Sack, 2012). PatchR is a bit of
a combination between a patch file and a RDF change vocabulary. It expresses change
requests (patches) within a Linked Data collection to propose changes for correcting in-
correct data. The Patch Request ontology describes various kinds of these patch requests
by adopting concepts from the Graph Update Ontology (GUO) and includes the prove-
nance information based on PROV ontology (Lebo et al., 2013). Listing 3.2 illustrates an
example of a single patch.

LISTING 3.2: PatchR
@prefix : <ht tp :// example . org/> .
@prefix rd f : <ht tp ://www.w3. org/1999/02/22− rdf−syntax−ns#> .
@prefix r d f s : <ht tp ://www.w3. org /2000/01/ rdf−schema#> .
@prefix pat : <ht tp :// pur l . org / hpi / patchr#> .
@prefix guo : <ht tp :// webr3 . org /owl/guo#> .
@prefix prov : <ht tp :// pur l . org / net / provenance /ns#> .
@prefix xsd : <ht tp ://www.w3. org /2001/XMLSchema#>
@prefix dbp : <ht tp :// dbpedia . org / resource/> .
@prefix dbo : <ht tp :// dbpedia . org / ontology/> .

: Patch_15 a pat : Patch ;
pat : appl iesTo <ht tp :// dbpedia . org / void . t t l #DBpedia_3.5> ;
pat : s t a t u s pat : Open ;
pat : update [

a guo : Update Ins t ruc t ion ;
guo : ta rge t_graph <ht tp :// dbpedia . org/> ;
guo : t a r g e t _ s u b j e c t dbp : Oregon ;
guo : de l e t e [

dbo : language dbp : De_jure ] ;
guo : i n s e r t [

dbo : language dbp : Engl i sh_language ] ] ;
prov : wasGeneratedBy [

a prov : A c t i v i t y ;
pat : conf idence "0.5"^^xsd : decimal ;
prov : wasAssociatedWith :WhoKnows ;
prov : actedOnBehalfOf :WhoKnows#Player_25 ;
prov : performedAt ".. ."^^ xsd : dateTime ] .

TurtlePatch4 is a patch format that is inspired by SPARQL 1.1 UPDATE language, but it is
easier to parse and to process than SPARQL 1.1 UPDATE. TurtlePatch only describes the
inserted and deleted triples, and it does not add provenance information to the patch, as
is illustrated in Listing 3.3.

4https://www.w3.org/2001/sw/wiki/TurtlePatch

https://www.w3.org/2001/sw/wiki/TurtlePatch
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LISTING 3.3: TurtlePatch
PREFIX f o a f : <ht tp :// xmlns . com/ f o a f /0.1/>
PREFIX s : <ht tp ://www.w3. org /2000/01/ rdf−schema#>
DELETE WHERE {
<ht tp ://www.w3. org / People / Berners−Lee/ card#i> f o a f :mbox <mai l to : timbl@w3 . org >.
}
INSERT DATA {
<ht tp ://www.w3. org / People / Berners−Lee/ card#i> f o a f :mbox <mai l to : timbl@hushmail . com>.
<ht tp ://www.w3. org / People / Berners−Lee/ card> s : comment " This i s my genera l d e s c r i p t i o n of

mysel f . \ n\ nI t r y to keep data here up to date and i t should be cons idered
a u t h o r i t a t i v e . " .

}

RDF Patch5 is a file format for recording changes made to an RDF dataset. The text format
is similar to N-Triples. Each line starts with an operation code. A means "add", D means
"delete", PA means "add prefix", H means "header". TX and TC delimit a block of quad,
triple, and prefix changes in order to process a patch faster. Listing 3.4 demonstrates an
example of RDF Patch.

LISTING 3.4: RDF Patch
H id <uuid :0686c69d−8f89−4496−acb5−744f0157a8db> .
H prev <uuid :3 ee0eca0−6d5f−4b4d−85db−f69ab1167eb1> .
TX .
PA " rd f " " h t tp ://www.w3. org/1999/02/22− rdf−syntax−ns#" .
PA " owl " " h t tp ://www.w3. org /2002/07/owl#" .
PA " r d f s " " h t tp ://www.w3. org /2000/01/ rdf−schema#" .
A <ht tp :// example/ SubClass> <http ://www.w3. org/1999/02/22− rdf−syntax−ns#type> <http ://

www.w3. org /2002/07/owl#Class> .
A <ht tp :// example/ SubClass> <http ://www.w3. org /2000/01/ rdf−schema#subClassOf> <http ://

example/SUPER_CLASS> .
A <ht tp :// example/ SubClass> <http ://www.w3. org /2000/01/ rdf−schema#labe l > " SubClass " .
TC .

JSON LD PATCH6 defines the inserted and deleted triples via a JSON document structure
that contains an array of single addition or deletion operation objects. These objects
consist of an operation (addition or deletion) and the subject, predicate and object of the
added or deleted triple, which is presented in Listing 3.5.

LISTING 3.5: JSON LD PATCH
[{

" op " : " add " ,
" s " : " h t tp :// example . org /my/ resource " ,
" p " : " h t tp :// example . org / ontology# t i t l e " ,
" o " : {

" value " : "New T i t l e " ,
" type " : " h t tp ://www.w3. org /2001/XMLSchema#s t r i n g "

}
} ,
{

" op " : " de l " ,
" s " : " h t tp :// example . org /my/ resource " ,
" p " : " h t tp :// example . org / ontology#pub l i ca t i onYear " ,
" o " : {

" value " : "2013" ,
" type " : " h t tp ://www.w3. org /2001/XMLSchema#gYear "

}
}]

The Linked Data Patch Format (LD Patch) (Bertails, Champin, and Sambra, 2015) is a
format for describing changes, which could be applied to Linked Data, and it should be

5https://afs.github.io/rdf-delta/
6https://github.com/digibib/ls.ext/wiki/JSON-LD-PATCH

https://afs.github.io/rdf-delta/
https://github.com/digibib/ls.ext/wiki/JSON-LD-PATCH
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seen as a language for updating RDF graphs in a resource-centric fashion. The "Add", and
the "Delete" operation respectively add and remove RDF triples from the target graph.
The "Bind" operation binds an RDF Term to a variable. The "Cut: operation removes one
or more triples connected to a specific blank node, and the "UpdateList" operation updates
members of an RDF collection. Listing 3.6 illustrates an example of LD Patch.

LISTING 3.6: LD Patch
@prefix rd f : <ht tp ://www.w3. org/1999/02/22− rdf−syntax−ns#> .
@prefix schema : <ht tp :// schema . org/> .
@prefix p r o f i l e : <ht tp :// ogp .me/ns/ p r o f i l e#> .
@prefix ex : <ht tp :// example . org /vocab#> .

Delete { <#> p r o f i l e : f i r s t_name " Tim " } .
Add {

<#> p r o f i l e : f i r s t_name " Timothy " ;
p r o f i l e : image <ht tp s :// example . org / t imbl . jpg> .

} .

Bind ? workLocation <#> / schema : workLocation .
Cut ? workLocation .

UpdateL i s t <#> ex : preferredLanguages 1 . . 2 ( " f r−CH" ) .

Bind ? event <#> / schema : performerIn [ / schema : u r l = <ht tp s ://www.w3. org /2012/ ldp / wiki /
F2F5> ] .

Add { ? event rd f : type schema : Event } .

Bind ? ted <ht tp :// conferences . ted . com/TED2009/> / ŝchema : u r l ! .
De lete { ? ted schema : s t a r t D a t e "2009−02−04" } .
Add {

? ted schema : l o c a t i o n [
schema :name " Long Beach , C a l i f o r n i a " ;
schema : geo [

schema : l a t i t u d e "33.7817" ;
schema : long i tude " −118.2054"

]
]

} .

Although, these patches might be very compact and storage efficient, and thus easier
to exchange. It is not possible to query the information within these patches effec-
tively. Therefore, all patches must first be retrieved before a particular version can be
constructed. Furthermore, these patches are not convenient in describing provenance
information or other metadata of a change.

3.3 Change- and Hybrid-Based Storage Approaches

Most literature from in the previous sections only focuses on the representation and de-
tection of changes, and not on the systems that utilise these representations and detection
approaches, such as our approach. Therefore, we describe in this section the literature
of the change-based and hybrid-based RDF versioning systems. Cassidy and Ballantine
(2007) proposed a changed based version control system for RDF graphs based on the
theory of patches as implemented in the Darcs version control system7. The theory of
patches describes a version as a sequence of patches. Cassidy and Ballantine (2007) saved
each patch as a named graph, which contain the reified added and deleted triple(s). Al-
though their approach covers the versioning operations commute, revert, and merge, it
only supports linear version tracking. Im, Lee, and Kim (2012) suggested a system based
on a relation database. This database stores a snapshot of the latest RDF version and the

7http://darcs.net

http://darcs.net
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deltas between the consecutive versions. The deltas are stored separately in a delete and
an insert table. To access a specific version the version is constructed on the fly by join-
ing the original version and the relevant delta tables. Furthermore, to avoid unnecessary
computation due to duplicates in deltas they compressed the delta between two specific
versions and stored them in advance.

R&Wbase (Sande et al., 2013) is a system based on the principles of distributed version
control as it supports branching and merging. R&Wbase stores all triples internally as
quads, where the context value identifies the version and indicates whether the triple was
added or deleted. Aside from the triples, these named graphs also stores the provenance
of the delta by using the PROV-O ontology (Lebo et al., 2013) such as its unique hash
and reference to its predecessor. To access separately a random version R&Wbase pro-
vides a straightforward way through SPARQL by using virtual graphs. R43ples (Graube,
Hensel, and Urbas, 2014) also stores the differences between revisions as separate named
graphs, and it performs version control on a graph level. Therefore, for both systems it
is not guaranteed to use named graphs for other purposes, and potentially an extensive
number of named graphs can be created. R43ples works as a SPARQL proxy in front of
an existing triple-store. To model a version as Linked Data R43ples uses the Revision
Management Ontology (RMO), which is an extended and more domain-specific version
of the PROV ontology. To access the revision named graph R43ples uses an extended
SPARQL protocol language that adds the specified revision information and the commit
message to the query. The R43ples approach also supports tags and branches, which can
be queried by using the new SPARQL keywords BRANCH and TAG. Another change-based
versioning approach is proposed by Frommhold et al. (2016). The Virtuoso server de-
tects the changes within a single transaction. Each deleted or added instance is stored
in a diff table referencing the author, change message, timestamp and transaction. Be-
fore they created a patch of all triples from the diff table and the meta-information, they
first performed the Minimum Self-Contained Graph (MSG) calculation to deal with blank
nodes. Furthermore, to ensure the integrity of the patch they added a unique hash value
to the patch. Although this system is able to track changes for any possible RDF dataset,
even when blank nodes are involved, it does not provide support for branches and for
distributed collaboration.

TailR (Meinhardt, Knuth, and Sack, 2015) is a hybrid IC/CB approach since it stores the
initial or some other version of the dataset as snapshot and the consecutive versions as
deltas. TailR has been implemented as a Python web service on top of a data store. It
comprises a Push API for submitting dataset change information, and a read-only Me-
mento API for providing access to prior version information of linked data resources via
memontoes (Sompel et al., 2009). Memento (Sompel et al., 2009) introduces time travel
for the web. It uses standard HTTP capabilities in order to link and retrieve past states
of web resource using datetime negotiation in HTTP. The most recent developed version
control system is OSTRICH (Taelman et al., 2019). OSTRICH is a hybrid IC-CB-TB stor-
age technique that efficiently resolves version materialisation, delta materialisation and
version triple pattern queries with result offsets. OSTRICH stored the initial version of
a dataset as a fully materialized snapshot in the HDT file format and all other versions
as changesets. In order to reduce storage requirements and lookup times of any triple
pattern query, each change set is stored in a six tree-based index structure, where values
are dictionary-encoded and timestamped. The delta chain is constructed in an aggregated
deltas fashion as proposed by Im, Lee, and Kim (2012). This aggregated deltas fashion
means that the construction of any version only requires at most one delta and one snap-
shot since each delta inherits the changes of its preceding delta. Despite its good query
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performance, OSTRICH does not support branching and merging yet, and it changes are
not easily exchangeable.

3.4 Bi-Temporal Versioning Approaches

Although much research has been done on uni-temporal RDF versioning approaches, very
little research has been done on bi-temporal or multiple-temporal RDF versioning ap-
proaches. Grandi (2011) proposed a multi-temporal RDF data model (Multi-tempRDF)
in order to support RDF light-weight ontology versioning. They assigned a temporal per-
tinence to a RDF triple, which is a subset of the multidimensional time domain. Yang
and Yan (2018) presented TRDFS that maps temporal XML document with Schema to
the temporal RDF triples by introducing some rules and algorithms. Furthermore, they
extended the temporal RDF graph model proposed by Gutiérrez, Hurtado, and Vaisman
(2007) with both valid and transaction time. They used a classical RDF graph with tem-
poral vocabularies to represent temporal RDF. Another model that records both the valid
and transaction time is RDFt (Zhang et al., 2019). RDFt represents temporal data by
adding the time information and the update count information to the predicate part of a
triple, which respectively indicate the valid and transaction time. RDFt uses a RDF reifi-
cation to refer to a triples, and refers to the time and update count information via the
RDFt vocabulary. They also defined a query language called SPARQL[t] to query RDFt. A
non-academic bi-temporal RDF database is TerminusDB8. TerminusDB is an opensource
graph database that is focused on collaboration and versioning. It fully preserves data
lineage and change history with built-in revision control (Otterdijk, Mendel-Gleason, and
Feeney, 2020).

3.5 Retrieval Functionality

In order to evaluate to query performance of RDF versioning systems on different time
perspectives, Fernández et al., 2019 introduced five fundamental query types, which are
referred to as query atoms:

• Version Materialisation (VM) intends to query a specific (historical) dataset version.
Example: Which series were available on Netflix a year ago?

• Delta materialization (DM) aims to retrieve the difference between two versions
and for a certain query. Example: Which series left or were new on Netflix between a
year ago and now?

• Version query (VQ) returns the versions for which a particular query gives a result.
Example: At what time was episode X present on Netflix?

• Cross-version join (CV) joins the results of two queries (Q1 and Q2) respectively
between versions Vi and Vj. Example: Which series were available on Netflix a year
ago and now?

• Change materialization (CM) returns a list of versions in which a given query Q
produces consecutively different results. At what time was episode X new on Netflix
or left it Netflix?

8https://terminusdb.com

https://terminusdb.com
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3.6 RDF archiving benchmarks

In addition to the need of query atoms, we also require a benchmark for evaluation pur-
poses. A benchmark serves as a standard and allows us to easily compare systems by
measuring and assess their performance against the benchmark’s performance. One of
the first proposed RDF archiving benchmark is EvoGen (Meimaris and Papastefanatos,
2016). EvoGen generates synthetic, evolving data represented in the RDF model and
offers workload generation capabilities. It is an extension of the Lehigh University Bench-
mark (LUBM) (Guo, Pan, and Heflin, 2005) generator with additional classes and proper-
ties for enabling schema evolution. It allows the user to adjust parameters of the dataset
and the query generation process, such as the amount of changes and the number of
versions. EvoGen has adapted the LUBM’s existing benchmark queries by new types of
queries, such as temporal queries, queries over changes, and queries across versions.
However, its functionality is restricted to the LUBM scenario, and the evolving RDF data
data is rather synthetic.

SPBv (Papakonstantinou et al., 2017) is also a highly configurable and extensible bench-
mark. The data generator of SPBv extends the data generator of SPB (Kotsev et al., 2016),
which produces RDF descriptions of instances of the BBC creative work core ontology. The
SPBv data generator tries to simulate the evolution of these descriptions by storing them
in different versions according to their creation date. Apart from the required storage
space and the time a system needs for storing a new version, SPBv also evaluates the time
required to answer a query. Therefore, SPBv can generate a set of SPARQL queries for a
described set of versioning queries types. Similar to EvoGen, SPBv is also not really real-
istic. In addition, it only supports insertions, but no deletions and modifications, which
are rather important for evaluating a change-based versioning approach.

BEAR (Fernández et al., 2019) is a benchmark for RDF archive systems which uses real-
world data sets from different domains. BEAR consists of three main data sets, namely
BEAR-A, BEAR-B, and BEAR-C. BEAR-A contains the first 58 weekly snapshots from the
Dynamic Linked Data Observatory (Käfer et al., 2013). The Blank Nodes are replaced
with Skolem IRIs and the context information is removed, which resulted in 58 versions
having between 30M and 66M triples per version. BEAR-A provides triple pattern queries
and their results for three different versioned query types. These triple pattern queries
are split in low and high number of results and have the form (S??), (?P?), (??O), (SP?),
(?PO), (S?O) and (SPO). BEAR-B contains the 100 most volatile resources from the DB-
pedia Live changesets (Morsey et al., 2012) over the course of three months (August
to October 2015) at three different granularities: instant, hour and daily. BEAR-B pro-
vides realistic triple pattern queries, mixing (?P?) and (?PO), and their results, based on
the most frequent triple patterns from the DBpedia query set. Finally, BEAR-C contains
32 weekly snapshots of the Open Data Portal Watch project (Umbrich, Neumaier, and
Polleres, 2015), for which the Blank Nodes are replaced with Skolem IRIs. BEAR-C pro-
vides 10 complex SPARQL queries. While, these queries cannot be solved by the current
archiving strategies, they could stimulate the development of new query resolution al-
gorithms. BEAR provides a baseline for RDF archive implementation based on HDT and
Jena’s TDB store for IC, CB, TB, IC/CB, and TB/CB approaches.
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Chapter 4

Requirements and Concepts for
Bi-VAKs

This chapter give the requirements and concepts of our prototypical bi-temporal change-
based Linked Data Version Control System: Bi-Temporal Versioning Approach for Knowl-
edge graphs (Bi-VAKs). The aim of Bi-VAKs is to version a RDF dataset that is subject
to small and frequently made bi-temporal changes in a highly collaborative setting, and
to provide for historical and retrospective SPARQL (Update) queries. An example of a
dataset with bi-temporal changes and many users working simultaneously is the basic key
register of persons (Basisregistratie Personen (BRP)1). The BRP contains personal data of
inhabitants of the Netherlands (residents) and of persons who have left the Netherlands
(non-residents). Information from the BRP is used and maintained by a large number
of organisations, including municipalities, the Tax and Customs Administration2, UWV3,
etc. Since BRP both has current data (such as one’s current address) and historical data
(such as one’s former addresses), a change has both a transaction time and a valid time.
For instance, the registration date of a relocation might differ from the date the person
actually moves. In addition, these changes could be extremely small, and many changes
are made over time, as the BRP is continuously evolving due to deaths, childbirths, and
relocations. In order to version such a dataset, and query a certain bi-temporal state in
a collaborative environment, there is a need to represent, retrieve, and exchange these
bi-temporal changes.

However, as discussed in Chapter 3 the storage strategy IC is fast for querying single ver-
sions, but not useful when many small changes are made. Furthermore, in a bi-temporal
setting a version has both a transaction and valid time. To store each bi-temporal version
separately we might end up having numerous copies of the dataset. The storage strategy
FB faces the same problem, because it also stores its versions separately, and bi-temporally
versioning would result in many N-Triples files. While, indexing triples and their time
metadata makes versioning systems more query and space efficient, these timestamped
triples are hard to exchange between Linked Data users, and hence not suitable in a very
cooperative setting. Moreover, these TB approaches only associates to each triples its time
or version-related metadata. Associating both time and version-related metadata could
be complex. Therefore, we conclude that the change-based storage strategy is the most
appropriate strategy for the following use cases. Since this strategy stores the differences
between versions, small and frequently made changes (a) only result in a new change set
(or update), which requires less storage space than a complete copy of the dataset, and
does not lead to a version-related metadata for every modified triple. Moreover, both the

1https://www.rvig.nl/brp
2https://www.belastingdienst.nl
3https://www.uwv.nl

https://www.rvig.nl/brp
https://www.belastingdienst.nl
https://www.uwv.nl
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transaction time and the valid time (b) can simply be added to such an update without
requiring a complex index technique. In addition, these updates remain exchangeable,
while these index, and compressed version datasets are hard to exchange. Besides, a CB
approach can also support other versioning operations more efficiently, such as branching
or reversion of errors. These operations also enhance the collaborative and decentralised
design (c). Although, doing historical and retrospective SPARQL queries (d) is not as ef-
ficient as for the IC strategy due to its version’s construction time, still any state can be
constructed by obtaining only the necessary updates. Lastly, the TB storage strategy re-
quires a specialised triple-store to handle these indexing techniques(s). It would involve
a higher complexity to attach these specialised version control functionalities to existing
Linked Data systems (e) than it would for a change-based storage strategy.

Based on these use cases we have defined a number of requirements that Bi-VAKs should
satisfy which we list in Section 4.1. Additionally, these requirements are related to ex-
isting studies on RDF versioning approaches, which we discuss in more detail in Section
4.2. In the subsequent sections we first define the basic versioning operations that Bi-VAKs
supports, and then briefly introduce the basic functioning of Bi-VAKs.

4.1 Requirements of Bi-VAKs

In the following section, we describe the requirements that are relevant for our conceptual
versioning approach Bi-VAKs. These requirements point out the main aspects of modelling
bi-temporal revisions as well as aspects of supporting collaborating on a RDF dataset, and
integrating the system with existing Linked Data tools. First we present the three major
requirements that are directly implied by our aim to support bi-temporal change-based
versioning (REQ 1 to 4). These major requirements are followed by eight requirements
that define SPARQL query improvements (REQ 5 to 6); that are needed to support the
collaboration process (REQ 7 to 9) respective and that are necessary to employ the system
in a Linked Data context (REQ 10 to 12).

REQ1 Bi-Temporal Change-based Versioning Model For some scenarios accessing the histor-
ical values on a single time line is not enough. For these scenarios the time when
it has been changed as well as the time it is valid are both relevant. For instance,
in order to rectify an incorrectly received amount of salary both the incorrect and
correct salary, and their time of recording are required. But, in addition to those
changes to a RDF dataset, also the other versioning concepts, such as branching,
merging, and tagging, might be dependent on a valid time and a transaction time
simultaneously. Therefore, we need a bi-temporal versioning model for the changes
to a RDF dataset and to the versioning system. However, the RDF data model itself
is atemporal, and thus these bi-temporal changes should be modelled otherwise.

REQ2 Triple Annotation Using RDF-star Although it seems appealing to only store the
changes made to a RDF dataset, there is still no standard structure to model these
change sets. A change set consists of a collection of inserted and deleted quads, but
RDF has no common approach to refer within another triple or quad to a modified
triple/quad efficiently. Standard RDF reification, or named graphs are two common
approaches, but in many ways these triple annotation approaches are not as effi-
cient. Therefore, for describing these RDF dataset change sets RDF-star is a much
better alternative. It improves comprehensibility, and it needs less storage space,
because these modified triples can be described in less triple statements compared
to the other approaches.
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REQ3 Historical and Retrospective SPARQL Queries Assessing the Linked Data bi-temporally
is of great importance to ensure the reliability of the dataset, and to derive valuable
insights from it. For example, one wants to know which payment requests have
already been recorded but which are not valid yet. In order to respond to these
queries, it should be possible to access any version and the difference between ver-
sions of the dataset. Therefore, from all the historical and retrospective set of mod-
ifications, a temporary RDF dataset should be created to construct such a version.
Specifically, we focus on querying bi-temporal version materialization (VM), delta
materialization (DM), and version (VQ) basic triple patterns queries. These queries
respectively concentrate on applying the query to a specific version; on obtaining
the differences between versions for that query; or on returning the versions, for
which the query gets a result.

REQ4 Possibility of Modifying Change Sets Unfortunately, no Linked Data user is free of
making mistakes. It can often happen that a user made a change to the RDF dataset,
but saw afterwards that this change is not correct, e.g. the valid time has been
entered incorrectly, or a triple was deleted while it should not have been deleted.
However, if this correction is considered as a new revision without creating a link
between the two change sets, both change sets might be retrieved. Which may
results in a wrong state of the RDF dataset. Therefore, it must be possible to modify
change sets without both change sets ending up in a state incorrectly, and without
the preceding change set being modified or removed.

REQ5 Direct Access to Modified Triples Obtaining a query result for the historical and ret-
rospective SPARQL queries requires to construct (prior) version(s) by rewinding
or fast-forwarding the bi-temporal change sets. Fortunately, we do not require all
change sets to set up (prior) version(s), since we only need the change sets con-
taining the triple pattern stated in the users’ SPARQL query to return a query re-
sponse. This approach speeds up the version construction time, and it improves
the query process. Nonetheless, for this approach, we need a special algorithm that
extracts the basic triple pattern from the users’ query, and subsequently by means
of SPARQL-star queries these change sets.

REQ6 Interleaving Fully Materialised Versions However, constructing every version by re-
trieving all the prior updates might be very time. By storing a interleaving fully
materialised version (snapshot) of a state of the RDF dataset, Linked Data users
could directly access this state without having to construct it first. Especially, if a
particular state of the RDF dataset is queried often, it improves the performance.

REQ7 Support Divergence In a collaborative setting Linked Data users may differ in their
motivation to contribute to a RDF dataset, for instance because of their different
opinions or understandings of a certain subject. Therefore, it would be preferable
to have multiple different versions of the dataset to express dissent, and diverge
from the common dataset. Besides, organisational structures also affects the linear
development of a Linked Data collection, for example if working groups discuss
partial subjects. Therefore, the system needs to be able to support diverging states
of a versioned RDF dataset. Contributors could divide from the current state of
the dataset by creating a branch. In a branch they can freely modify the common
dataset without actually altering it.

REQ8 Track and Record Provenance In addition to diverging states, also tracking prove-
nance encourages collaboration. Data provenance (also referred to as data lineage)
is one of the most important concepts for building trust in a dataset. Reliability is
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necessary in a collaborative data engineering environment, because small changes
to the data are performed by many different parties. Therefore, tracking and record-
ing provenance is a basic requirements for any dataset version control system. To
maintain the origin of the changes the system needs to track the predecessor rela-
tions for a versioned dataset; the contributing Linked Data user (author informa-
tion); the change reason; and the date of change. Furthermore, the versioning sys-
tem should also be extensible to include custom provenance information depending
on the use case.

REQ9 Ensure Exchangeability, Interoperability, and Integrity In order to further enhance
the collaboration, collaborators should be able to easily exchange their changes,
primarily, in order to synchronise their datasets. The synchronisation of datasets is
of great importance to keep datasets up to date, and prevent mistakes due to the use
of an old dataset. To efficiently exchange changes, they require a common change
format, because it let computer systems automatically interpret the information
exchanged meaningfully and accurately. However, a common information exchange
format does not directly ensure the integrity of a change against both accidental and
malicious manipulation. Therefore, in order to verify the change’s integrity, and to
fully track its history, we should compute a cryptographically secure hash for each
change, and also include the hash of their predecessors in order to prevent history
manipulation.

REQ10 Detect data changes through SPARQL Update Queries The tracking of the changes
provides the necessary basis for further analysis in versioning systems. Although
many source code versioning approaches use a differencing algorithm to determine
the changes between two consecutive versions, calculating changes between RDF
datasets with these kind of algorithms has its limitations. It takes time to com-
pare two datasets. The dataset should be presented in a RDF serialization format.
And many differencing algorithms are line-based approaches. Therefore, a canon-
ical representations of the data is needed to allow for a stable comparison (Arndt,
2020). Besides, in a bi-temporal setting against which state of the RDF dataset
should the new version be compared to calculate the differences? Namely the pre-
vious version might have another valid time than the current version. To overcome
these limitations, the data changes should be detected differently. For instance,
directly through the SPARQL Update queries. Therefore, we should develop an al-
gorithm that extracts the inserted and deleted triples/quads from an INSERT DATA
or DELETE DATA update operation.

REQ11 Standard Data Access Interface Linked Data collaborators might already use tools to
create and edit RDF knowledge graphs. They only may lack support for collabo-
rative version control. However, it may involve a high complexity to attach these
specialised version control functionalities to existing Linked Data tools, and, thus,
users may consider not to use these systems (Arndt, 2020). In order to let users
continue using their existing Linked Data tools our version control system should
have a standard data access interface which can be accessed by these existing tools.

REQ12 Support for multiple RDF Graphs Handling multiple RDF graphs (i.e. RDF datasets)
allows Linked Data users to organise their stored knowledge in separate structural
parts. Therefore, multiple RDF graphs may solve various data management prob-
lems in RDF applications, such as tracking provenance of RDF data, access control,
replication of RDF graphs, and separation of concerns. In addition, when existing
Linked Data tools already use multiple RDF graphs, there is no need to transform
the quad-store into a triple-store, and to merge multiple graphs into a single graph.
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However, as it is not possible to annotate quads with RDF-star, we define another
approach to support quads in Bi-VAKs.

4.2 Bi-VAKs’ Relation with State of the Art

Although some of the requirements of Bi-VAKs are mainly based on our use cases, such as
the historical and retrospective SPARQL queries. Most of these requirements are related to
the state of the art versioning approaches discussed in Chapter 3. Zhang et al. (2019), for
instance, added both the time information and the update count to a triple, and therefore
they also recorded both the transaction and valid time. However, an update count and
time information for each modified triple may be redundant, since all modifications in
the same change set have the same values. In addition, Zhang et al. (2019) uses RDF
reification, which is rather an inefficient way for triple annotation compared to RDF-star.
Which is also the case for the change-based versioning approaches R&Wbase (Sande et
al., 2013), R43ples (Graube, Hensel, and Urbas, 2014), and the approaches proposed by
Frommhold et al. (2016) and Cassidy and Ballantine (2007). These systems used named
graphs as triple annotation approach to store the added and deleted triples, which creates
an extensive number of named graphs. Besides, to version a RDF dataset using named
graphs may prevent using named graphs in the versioning approach itself.

In addition to representing bi-temporal changes, none of these state of the art approaches
described an approach for doing historical and retrospective version materialisation (VM),
delta materialisation (DM), and version (VQ) basic triple pattern queries. Most of these
versioning systems, such as OSTRICH (Taelman et al., 2019), only supported historical
VM, DM, and VQ basic triple pattern queries. Therefore, by supporting these queries,
Bi-VAKs fills in an interesting gap. Moreover, RDF-star even makes it straightforward to
directly retrieve the changes which are associated to the requested query, and hence might
improve the version construction time. In addition, a different improvement technique
that some of these approaches used is a snapshot (Meinhardt, Knuth, and Sack, 2015;
Taelman et al., 2019). Therefore, only the change sets between the snapshot and the
requested version are need to construct a version. To allow our users to take advantage
of this improvement, we also decided to create an interleaving fully materialised version
(snapshot). However, in Bi-VAKs a snapshot relies on both a valid time and transaction
time. A requested version and a snapshot can still be far apart, even if their transaction
time is about the same.

Besides, so far there is relatively more research on the collaboration aspect of RDF version
control systems. Many of these systems already supported branching, and tagging, and
track and recorded provenance information of a change. For example, R43ples (Graube,
Hensel, and Urbas, 2014), and R&Base (Sande et al., 2013) both used or extended the
PROV-O ontology to specify and to store the provenance information, such as the author
and commit message. And they created diverging states by adding a branch identifier to
the change set. Moreover, a realisation of these systems as a SPARQL proxy between the
Linked Data users and an existing SPARQL endpoint also enhanced cooperation (Graube,
Hensel, and Urbas, 2014; Frommhold et al., 2016; Arndt et al., 2019). A standard data
access interface provides Linked Data users access, while they might use different RDF
editors, and readers. Even some research (Frommhold et al., 2016) detected the changes
from a standard SPARQL Update query. However, in many related work it is not common
to modify an existing change, despite the fact that users could make mistakes. They
probably solved such a mistake by creating a new change, but it does not establish a
link between two changes. In addition, only some systems (Frommhold et al., 2016)
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prevented a change from unperceived history manipulation by computing a hash over a
change, and only some systems (Graube, Hensel, and Urbas, 2014; Frommhold et al.,
2016) had quad support.

4.3 General Versioning Operations

In this section we give a formal definition of the RDF dataset versioning model, and
we define the main versioning operations in general, which we will describe in-depth
in Chapter 5. This foundational formal model is an extension on the formal model de-
scribed by Arndt et al. (2019) and Pelgrin, Galárraga, and Hose (2021). Thus far Pelgrin,
Galárraga, and Hose (2021) have defined a RDF dataset versioning model intuitively as a
temporally-ordered collection of states a RDF dataset has gone through since its creation.
A RDF dataset goes into a new state when a Linked Data contributor makes at least one
change to at least one graph in the RDF dataset. While such a ‘update’ versioning opera-
tion always leads to a new state of the RDF dataset, other versioning operations do not.
By applying these versioning operations our versioning systems creates a new revision
(r) or version, but not specifically a new version of the RDF dataset. Nonetheless, these
revisions are all stored in the so called revision-store (R), and thus applying a versioning
operation (Apl) results in a new revision rj, which leads to a new state j of the revision
store (Rj). Apart from being temporally-ordered based on their transaction time j, these
revisions might have a valid time, and thus should also be temporally-ordered based on
their valid time i. In other words, each state of the revision-store (Ri,j) is on two time lines
i and j simultaneously, and thus we define our RDF dataset versioning model as follows:

Definition 1 (RDF dataset versioning model). A RDF dataset versioning model is a bi-
temporally-ordered collection of states of the revision-store (R0,0, . . . , Ri,j, . . .) that a revision-
store has gone through since its creation (i = 0, j = 0). A revision-store R goes from its
ancestor state Ri−1,j−1 into a new state Ri,j when a new revision ri,j is created by having a
Linked Data user perform one of the following versioning operations Ri,j = Apl(ri,j, Ri−1,j−1):
update, revert, snapshot, merge, branch, and tag.

Figure 4.1 illustrates three revisions (A, B, C) that are for convenience on a single time
line. The first versioning operation Apl1 changes both the state of the RDF dataset, and
the state of the revision-store, but the second versioning operation Apl2 only changes
the state of the revision-store. As showed in Figure 4.1, a revision refers to its previous
revision, which in turn also refers to its ancestor. Therefore, the revision-store is mainly a
(non-)linear chain of revisions created by performing the following versioning operations:
update to record the changes, snapshot to store a full state of the RDF dataset, branch to
support diverging states, tag to specifically refer to a revision, and revert to undo revisions,
and merge to synchronise updates and branches with one another.

FIGURE 4.1: Illustration of bringing the revision-store into a new state.

4.3.1 Update Operation

The update operation is the fundamental versioning operation that applies an update to
a state of the RDF dataset Dj−1 in order to bring the dataset into a new state Dj, which
we formally define as follows:
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Definition 2 (Updating). Updating is the progress of moving an arbitrary state of the RDF
dataset to a new state by changing at least one triple in at least one graph in the RDF dataset.

In other words, a RDF triple is the smallest manageable piece of knowledge, which can
only be added and deleted. Each addition and deletion turns the dataset into a new state,
and thus the history of changes could be defined as a sequence of states, as well, as a
sequence of updates. A RDF dataset in state i (Di) always has a single default graph G0

i ,
and 1 to m named graphs: Di = {G0

i , . . . , Gm
i }. The dataset update Uj = {ûj, u0

j , . . . , um
j }

consists of a collection of inserted and deleted triples for each graph, ui
j = 〈u

i+
j , ui−

j 〉, and
a graph update û, which inserts or deletes complete RDF graph(s). Hence, as Pelgrin,
Galárraga, and Hose (2021) also described, we can obtain a RDF dataset Dj = Uj(Dj−1)

from Dj−1 by (i) applying the individual updates ui
j(G

i
j−1) = (Gi

j−1 ∪ ui+
j ) \ ui−

j for each
graph 0 ≤ i ≤ m, (ii) removing the graphs in û−j , and (iii) adding the graphs in û+

j .

Besides, we can also rewind a dataset and obtain RDF dataset Dj−1 from Dj by swapping
the inserted and the deleted quads in the update. Hence, we get Dj−1 = U−1

j (Dj) by

(i) applying the individual updates (Gi
j)u

i
j = (Gi

j ∪ ui−
j ) \ ui+

j for each graph 0 ≤ i ≤ m,
(ii) removing the graphs in û+

j , and (iii) adding the graphs in û−j . However, in order to

rewind a dataset, an update must be invertible (U−1
j ), and therefore the update Uj may

only consist of the inserted quads, and added graphs which were not in the dataset at
state j− 1, and deleted quads, and graphs that were in the dataset at state j− 1.

Figure 4.2 illustrates an example of two consecutive dataset states D0 and D1. D0 is a
dataset with graphs {G0

0 , G1
0}. The dataset update U1 generates a new dataset state D1.

U1 consists of three changes. u0
1 that modifies the default graph G0. u1

1 that modifies
the named graph, and u2

1 that inserts a second empty named graph. Note that U1 is not
invertible, because 〈:Dinner, a, :Meal〉 is not in D0. Therefore, we cannot obtain D0 from
D1, because it would insert 〈:Dinner, a, :Meal〉 to D0.

D0 U1 D1 = U1(D0)

G0
0 ={〈 :Vegan, a, :Diet 〉,
〈 :GlutenFree, a, :Diet 〉}

û2
1 ={û2+

1 = {G2}, û2−
1 = ∅} G0

1 ={〈 :Vegan, a, :Diet 〉,
〈 :LactoseFree, a, :Diet 〉}

G1
0 ={〈 :Lunch, a, :Meal 〉} û0

1 ={û0+
1 = {〈:LactoseFree, a, :Diet〉},

{û0−
1 = {〈:GlutenFree, a, :Diet〉}

G1
1 ={〈:Lunch, a, :Meal〉,
〈:Snack, a, :Meal〉}

û1
1 ={û1+

1 = {〈 :Snack, a, :Meal〉},
{û1−

1 = {〈 :Dinner, a, :Meal〉}
G2

1 =∅

FIGURE 4.2: A dataset with two dataset states D0, D1. The first state
contains two graphs, the default graph G0 and G1. The dataset update U1
(i) modifies G0, (ii) modifies G1, and (iii) creates a new empty graph G2

Consequently, Pelgrin, Galárraga, and Hose (2021) has modeled these aforementioned
dataset updates as a set of 5-tuples 〈s, p, o, ρ, ζ〉. Here, 〈s, o, p, ρ〉 respectively corresponds
to the subject, predicate, object, and context information of a quad, and ζ symbolises the
state of the RDF dataset. However, our versioning approach should manage a bi-temporal
RDF dataset. An update has both a valid and transaction time, and hence brings the RDF
dataset into a new state Dl,j, which is in a two-dimensional space of time. Therefore,
we model such an update as a set of 6-tuples 〈s, p, o, ρ, ζ, ψ〉, where ζ and ψ together
represent the state of the RDF dataset indicating the moment in the transaction time and
valid time respectively. A dataset update (Ul,j) now consists of a collection of inserted
and deleted quads, which has both a valid time l and transaction time j.
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In order to obtain the bi-temporal RDF dataset Dl,j from Dl−1,j−1, we (i) apply the bi-
temporal individual updates ui

l,j(G
i
l−1,j−1), (ii) remove the graph in û−l,j, and (iii) add the

graphs in û+
l,j.

4.3.2 Snapshot Operation

While a change-based versioning approach has many benefits over other approaches, it
still requires to first construct a particular (prior) state of the revision-store Ri−1, before it
can be queried. Therefore, to lower the construction time, Bi-VAKs stores some interleav-
ing fully materialised version of the complete RDF dataset Dj. We call such as interleaving
materialised version a snapshot. A database snapshot or state is a read-only copy or view
of the database at a certain point in time. Since our revision-store considers both valid
time and transaction time, our complete RDF dataset states are also two-dimensional.
Therefore, we define the ‘snapshot’ versioning operation as follows:

Definition 3 (Snapshotting). A snapshot represents a state of the RDF dataset at a particu-
lar moment in a two-dimensional space of time: Di,j.

In other words, a snapshot contains a read-only copy of the triple/quad-store, which has
been made at time ti and tj. A snapshot only modifies the revision-store, but it does not
change the RDF dataset itself.

4.3.3 Branch Operation

In order to let contributors diverge from the common state of the dataset Bi-VAKs supports
the creation of branches. A branch is a split off either from the common state, also called
the main stream, as depicted in Figure 2.2, or from another branch. As a revision only
refers to its predecessor, we can simply create a branch by adding another revision, which
refers to the same predecessor as the revision from the main stream. Figure 4.3 shows
that both revision E{B}{(R3)}, and revision C{B}{(R2)} refer to the same predecessor
B{A}{(R1)}. Revision E{B} creates now a new branch or fork based on the revision B{A}.
Hence, letting revisions referring to similar ancestors results in a directed rooted in-tree,
which is portrayed in Figure 4.3.

FIGURE 4.3: Two branches evolved from a common revision.

Although, we know that R1 6≈ R2, and R1 6≈ R3, we do not know anything about the
relation between R2 and R3, and might regard them as independent. Based on the formal
syntax described by Arndt et al. (2019), we define the ‘branch’ versioning operation as
follows:

Definition 4 (Branching). Branching is the (independent) evolution of the revision-store R
with two revision-stores R1 and R2 as result, where R1 = Apl(r1, R) and R2 = Apl(r2, R).
The revisions r1 and r2 might be unequal, but can be the same. The same applies for R1 and
R2, they can be different after the independent evolution, but can be similar as well.
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We define a branch by adding the branches’ IRI as a node to the head revision: the latest
revision in the revision graph. The head revision of the main stream does not have the
‘branch’ attribute.

4.3.4 Merge Operation

As portrayed in Figure 4.3, after creating a second branch, the tree of revisions is diverged.
In order to synchronise these diverged states we want to merge these branches, especially
to put the changes from the branch into the main stream. Similar to Arndt et al. (2019),
we define the notation of the merge as follows:

Definition 5 (Merging of two revision-stores). Given the two revision C{B}({R1}) and
E{B}({R2}), merging the two revision-stores R1 and R2 with respect to the revision history
expressed by the revisions C and E is a function

Merge(C({R1}), E({R2})) = MergeC,E({Rm})

The Merge function takes two revision-stores as arguments and creates a new revision-
store Rm. However, only the actual changes to the RDF dataset from the split-off are
merged. The other versioning operations, such as tags, reverts, and snapshots, are not
merged, and they cannot be retrieved from the main stream or branch from which the
merge operation was performed. Therefore, the merge revision MC,E({Rm}) only refers to
its own preceding revision, and not to the latest revision in the branch, as is demonstrated
in Figure 4.4. In addition, our revision-store remains a directed rooted tree, instead of an
acyclic directed graph as in other version control systems (Arndt et al., 2019).

FIGURE 4.4: Merging a branch and the main stream.

Note that the definition does not make any assumptions about what the new revision-
store Rm will look like. It depends on the actual implementation of the Merge function.
Different merge strategies can produce different results, thus it is possible to have multiple
merge revisions with different resulting revision-stores, but it merges the same revision-
stores. We did not implement the merge function.

4.3.5 Tag Operation

In addition to branching and merging, Bi-VAKs also provide for the creation of a tag,
which allows Linked Data users make explicit references to a specific state of the RDF
dataset Di,j. The ‘tag’ versioning operations is hence defined as follows:

Definition 6 (Tagging). Tagging is the operation of creating an explicit reference to a state
of the RDF dataset Di,j.

Figure 4.5 gives an illustration of a tag, which refers to the revision-store state R1. Similar
to the ‘snapshot’ versioning operation, a tag only leads to a new state of the revision-store,
and does not affect the RDF dataset.
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FIGURE 4.5: A revision creating a tag for state R1.

4.3.6 Revert Operation

Although Linked Data contributors can express their disagreement via branches, it still
possible that they make a mistake, and thus Bi-VAKs supports the reversal of revisions.
Bi-VAKs reverts a revision ri by creating a new revision ri+1 that removes revision ri from
the coming states of the revision-store, so ri still exists in the preceding states of the
revision-store (≤ i), but not in the succeeding states (> i). We formally explain the
‘revert’ versioning operation as follows:

Definition 7 (Reverting). Reverting a revision rj in state j removes its existence in the sub-
sequent states of the revision-store (Rj+1, . . .) by calculating the inverse of revision rj and
applying it to the revision-store at state j.

As illustrated in Figure 4.6, reverting revision B{A}({R1}) is done by creating an inverse
revision B−1

{B}({R0}) such that revision B{A} does not exist in the next state of revision-

store. Besides, since B−1
{B} reverts its parent revision, the state of the revision-store in the

last revision R0 is again equal to the state of the revision-store in the first revision (A).
In order to obtain R0, we need to compute the inverse revision B−1

{B}, and apply it to R1,
which is in this example the inverse difference between R0, and R1. In Bi-VAKs, Linked
Data contributors can revert all revisions in revision chain. However, (i) it depends on the
versioning operation how the inverse revision is specified, and (ii) we do not take into
account the inconsistencies a revert might create in RDF dataset itself.

FIGURE 4.6: A revision reverting the previous revision.

4.4 Introduction to Bi-VAKs

In this section we introduce our prototypical Bi-Temporal Versioning Approach for Knowl-
edge graphs (Bi-VAKs). Figure 4.7 gives an overview of Bi-VAKs. A Linked Data user could
either send a SPARQL (Update) query or another versioning operation request to Bi-VAKs,
which we have introduced in Section 4.3. Bi-VAKs extracts from both a SPARQL Update
query and a versioning operation its information, and it forms a single transaction revision
and (multiple) valid revision(s) depending on the users’ request. This division of a change
into a transaction revision and its corresponding valid revision(s) is a way of structuring
revisions or versions in order to indicate their transaction time and their validation time
respectively. These revisions are subsequently stored in a standard quad-store that can
be reached by a SPARQL endpoint. As showed in Figure 4.7, we call this quad-store the
revision-store, which forms a graph of revisions. In addition to a SPARQL update query,
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a Linked Data user can also do historical and retrospective version materialisation (VM),
delta materialisation (DM), and version (VQ) basic triple pattern queries by sending an
SPARQL query with some corresponding time information to Bi-VAKs. Bi-VAKs returns
a response by first constructing the requested version(s) either from its revisions in the
revision-store or from an interleaving fully materialised version of the dataset in the data
store(s). Therefore, Bi-VAKs consists of two main components.

The first component explains the conceptual design of our versioning approach that
mainly focuses on how the revisions in revision-store are structured. It describes how
these valid and transaction revisions are defined for different versioning operations. Fur-
thermore, it explains three different strategies how a transaction revision is connected to
its corresponding valid revision(s). The second component accounts for the interaction
between the Linked Data users, the revision-store, and the data store(s) to allow for bi-
temporal SPARQL (Update) queries. It explains how a change is detected from a SPARQL
Update query; how these changes are represented in RDF-star; and how these changes are
retrieved by means of SPARQL-star in order to constructed a version, and return a VM,
DM, and VQ query result. We discuss these components in more detail in respectively
Chapter 5 and 6. Subsequently in Chapter 7 we give a concise explanation of the actual
implementation of these components.

FIGURE 4.7: Overall architecture of the prototypical Bi-Temporal Version-
ing Approach for Knowledge graphs (Bi-VAKs).
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Chapter 5

Representing Revisions in Bi-VAKs

In this chapter we elaborate on the conceptual design of our change-based versioning ap-
proach, Bi-VAKs, for which we have introduced its concepts and requirements in Chapter
4. Its conceptual design mainly concentrates on how the revision-store is structured, and
the revisions are represented in order to fulfil the need for a bi-temporal change-based
versioning model in a collaborative setting. A main aspect of our design is that we create
for each versioning operation a single transaction revision and (multiple) corresponding
valid revision(s). For example, by applying an ‘update’ versioning operation, Bi-VAKs cre-
ates a Update (valid revision) and a Update Revision (transaction revision). We primarily
make this distinction between these two revisions to respectively express the valid time
and the transaction time of a single version. Because, not only the dataset updates are
bi-temporal, e.g. a change of address that is valid only at time i, but was entered at time
j (i > j), also other versioning operations are bi-temporal, e.g. a tag represents a state
of the RDF dataset both at time i and j (i 6= j). Hence each versioning operation brings
the revision-store into a new bi-temporal state. However, in addition to this specification
of the valid and transaction time, Bi-VAKs also has a number of other requirements that
affects the representation of the revisions. In Bi-VAKs users should be able to modify an
existing change, to diverge from the common RDF dataset, to track its provenance data,
and to ensure changes their exchangeablity, interoperability, and integrity. We begin this
chapter by first describing how these revisions are represented in general in order to avoid
repetition (Section 5.1). Subsequently, in Section 5.2 we give a detailed description of the
different types of transaction and valid revisions for the various versioning operations.

5.1 Transaction & Valid Revisions

In addition to expressing transaction time and valid time, the division between Transac-
tion Revisions and Valid Revisions has many other advantages. First, (I) they could serve
other purposes. The transaction revisions might contain the metadata or provenance in-
formation of a change, such as the author or the reason of the change, while the valid
revisions may include the data that really had been changed. In other words, the transac-
tion revisions only indicate when a change happened, whereas the valid revisions really
indicate what happened. Second, (II) sometimes the transaction time of a valid revision
must remain the same. A valid revision can refer to another transaction time than the
time it was created. Besides, if we did not separate the revisions, (III) a modification to a
valid revision is cumbersome. In addition to referring to their predecessor, the revisions
must also refer to other revisions in the non-linear chain of revisions. Furthermore, (IV)
user might want to create multiple valid revisions at the same transaction time. These
valid revisions cannot be combined, because they could have a different valid time. And
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we cannot put them in a row of transaction revisions, because that would imply a cer-
tain order. Finally, (V) it facilitates the retrieval of revisions separately. However, due
to these reasons, the appearance of a valid revision differs from the appearance of a
transaction revision. Therefore, in this section we give an overall and distinct description
of the transaction revision (Sub-section 5.1.2), valid revision (Sub-section 5.1.3), their
connection (Sub-section 5.1.1), and their unique identifier (Sub-section 5.1.4).

5.1.1 Connection between a Transaction Revision & their Valid Revision(s)

Although we separate these revisions, they must still be linked. To connect the transaction
revision with its corresponding valid revision(s), we develop three referencing strategies,
which are illustrated in Figure 5.1. The first naive reference strategy let the transaction
revision explicitly refer to the valid revision(s), and it uses the direct references to the an-
tecedent transaction revisions and to the valid revisions to obtain the requested revisions.
We call this strategy the explicit reference strategy, and it is represented in Figure 5.1a.
However, retrieving revisions via their antecedent reference may be slow in practise. The
second strategy implicitly let the transaction revision refer to its valid revision(s) by an
equal revision number and branch index. This strategies uses these numbers to obtain
the requested revisions. We call this strategy the implicit reference strategy, and it is dis-
played in Figure 5.1b. Although, these numbers speed up the retrieval of revisions, the
valid revisions now contain some kind of metadata. It might complicate the exchange of
revisions, and two different transaction revisions can no longer point to the same valid
revision. Therefore, we came up with a third strategy which is a combination of these
two strategies. It let the transaction revision explicitly refer to its valid revision(s), but it
obtains the requested revisions by using a revision number and branch index. We call this
strategy the combined reference strategy, and it is showed in Figure 5.1c.

(A) Explicit (B) Implicit (C) Combined

FIGURE 5.1: The three different reference strategies.

5.1.2 Transaction Revisions

The Transaction Revision indicates the transaction time of a change to our versioning
approach Bi-VAKs. Furthermore, it contains some metadata of each versioning opera-
tion, such as the author, the reason and the creation date. Figure 5.2 illustrates the
key attributes of a Transaction Revision, but it is still a generic solution, and it can be
extended for arbitrary domains. Whereas a square indicates a literal, an eclipse indi-
cates an IRI. The text that is written on the arrow points to the predicate or property
name of the transaction revision. The imaginary namespace IRI that is used for Bi-VAKs
is http://bi-vaks.org/vocab/. Each Transaction Revision has its own unique IRI, and
hence is a node in the RDF revision-store. Its IRI is a combination of the type of transac-
tion revision, e.g. http://bi-vaks.org/vocab/UpdateRevision_ and the hexadecimal
of its hash. Depending on the applied versioning operation, it has one of the following

http://bi-vaks.org/vocab/
http://bi-vaks.org/vocab/UpdateRevision_
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RDF types, which all are a subclass of the RDF class Transaction Revision: Update Revi-
sion, Initial Revision, Branch Revision, Snapshot Revision, Merge Revision, Tag Revision, and
Revert Revision. We explain these different transaction revision types in more detail in
Section 5.2.

As stated in Requirement 7, users should be able to diverge from the common RDF dataset
(branching). To specify whether a Transaction Revision belongs to a certain branch, it de-
pends on which reference strategy we use. For the explicit reference strategy only a
branch revision and the head(s) of the graph of transaction revisions explicitly refer to a
branch. For the implicit and combined reference strategy each transaction revision has
a branch index that refers to a particular branch in the revision-store. These transaction
revisions, therefore, form a directed rooted tree, which is illustrated in Figure 5.3. A
Transaction Revision always refers to a single preceding transaction revision except the
first revision, also called the Initial Revision, and multiple revisions can refer to the same
preceding transaction revision when a branch is created. Such a non-linear chain of revi-
sions shows in a glance which revisions were created before or after the others, and thus
indicates the transaction time sequence. In addition to the IRI of its preceding transaction
revision, a Transaction Revision always includes some provenance information. Adding
provenance data is a main requirement for version control systems as stated in Require-
ment 8 in Section 4.1. Nevertheless, for simplicity, a transaction revision only contains the
followings provenance information: the author, a description, and the creation date. They
all are described as a RDF literal, as symbolised in Figure 5.2. But, due to its generality, it
would be possible for Linked Data users to add more provenance data to it.

In addition to provenance information, Requirement 9 stated that we must ensure the
integrity of a revision. Therefore, we include the SHA-256 value as an attribute to each
revision, but we mainly use it to define the unique identifier of each revision. A hash of
a revision is unique for the information included in the revision, as described in Section
5.1.4 in-depth. Finally, as demonstrated in Figure 5.2, the last attribute of a transaction
revision depends on the revision referencing strategy as described in Sub-section 5.1.1.
A transaction revision can explicitly refer to the valid revision by including its IRI to the
transaction revision, or implicitly via its revision number and branch index. And, it can
also combine these strategies. The property name of a valid revision for the explicit or
combined reference strategy depends on the type of the valid revision. For instance, if a
valid revision is an Update, the property is called ‘update’. In summary, for the explicit
strategy the transaction revision includes the valid revision(s); for the implicit strategy
the transaction and valid revision include the revision number and branch index; and
for the combined reference strategy, the transaction revision includes both the revision
number and branch index, and the valid revision(s).

FIGURE 5.2: Transaction Revision
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5.1.3 Valid Revisions

The Valid Revision indicates the valid time of a change to our versioning approach Bi-VAKs.
And, it contains the actual modified data to Bi-VAKs. Similar to a Transaction Revision a
Valid Revision is also a RDF resource in the revision-store with its own unique identifier.
This IRI is a combination of the type of valid revision, e.g. http://bi-vaks.org/vocab/
Update_, and the hexadecimal of the SHA-256 value of the revision, which is further
described in Section 5.1.4. Therefore, if the revisions’ SHA-256 value is completely the
same as hash value of another valid revision, they contain exactly the same information.
Additionally, it ensures that no information in the revision is changed, because once the
hash is created it cannot be changed. Comparable to the Transaction Revision, for all
different versioning operations we create a distinct Valid Revision. However, these types
of Valid Revisions only have a few attributes in common. They all include their SHA-256
value, their RDF type, and their preceding valid revision. Furthermore, if a transaction
revision implicitly refers to its valid revision(s), we also add the revision number and
branch index to each valid revision in order to know to which transaction revision the
valid revision belongs.

Nevertheless, a Valid Revision only has a preceding Valid Revision, if it modifies, reverts
or merges another Valid Revision. To fulfil Requirement 4, Bi-VAKs offers the possibility
of modifying Valid Revisions directly instead of removing them and subsequently adding
them again. In this way we create less revisions, and we keep track of these revisions
being related. Moreover, we do not require to change an existing valid revision, even
when we revert it. Therefore, the SHA-256 value will never change, and we do not lose
any information of the revisions. However, it is not allowed to modify all attribute in
each valid revision. The RDF type, preceding revision, the SHA-256 value, the revision
number, and branch index should never be modified. For the other attributes specific to
the revision type it must always be possible that they could be altered, which we describe
for each specific type in more detail in Section 5.2.

5.1.4 Unique Identifier

Since each change to the graph of revisions results in a new and different revision, we
must uniquely define a revision, and thus specify a unique identifier for each revision.
Therefore, we compute a cryptographically-strong hash identifier, SHA-256, over all in-
formation in a revision. Such a SHA-256 value is unique, when the data in a revision
already differ in a single aspect from another revision. The author, description or branch,
for example, may overlap, but their combination, the relation to its preceding revision,
and revision number or reference(s) to the valid revision(s) most probably do not. Fur-
thermore, since the hash value is completely unique due to the difference in information,
a SHA-256 hash also ensures that nothing has been altered in the revision. It even make
sure that the history of revisions do not change if the revisions are linked to their pre-
ceding revision(s). Namely, if something has been altered, e.g. its preceding revision, we
would obtain another SHA-256 hash value for that revision. However, in order to verify
that nothing in a revision has been altered, its SHA-256 hash has to be computed from a
single, standard format. But the same information in a revision can already be expressed
in a variety of different ways. Therefore, we need a canonicalization algorithm that trans-
forms an input RDF dataset to a normalized RDF dataset, so if any two input datasets
contain the same information regardless of their arrangement, they will be transformed
into identical normalized dataset (Longley, 2021). Since the revisions only contain nodes
which have globally-unique identifiers (no blank nodes), we can use a simple canonical-
ization algorithm. This algorithm first sets the temporal resource identifier of a revision

http://bi-vaks.org/vocab/Update_
http://bi-vaks.org/vocab/Update_


5.2. Types of Transaction & Valid Revisions 43

to http://bi-vaks.org/vocab/TemporalRevision. Then it serialises each triple or quad to
N-Triples (Carothers and Seaborne, 2014) or N-Quads format (Carothers, 2014), and sort
these ntriples, or nquads in lexicographical order. The hash value results from passing the
sorted ntriples, or nquads through the hash algorithm. Listing 5.1 illustrates an example
of a branch revision in N-Triples format sorted in lexicographical ordering.

LISTING 5.1: Representation of a Branch Revision in N-Triples
<http :// bi−vaks . org /vocab/ TemporalRevision> <http ://www.w3. org/1999/02/22− rdf−syntax−ns#

type> <http :// bi−vaks . org /vocab/ BranchRevis ion> .
<ht tp :// bi−vaks . org /vocab/ TemporalRevision> <http :// bi−vaks . org /vocab/ author> " L i s a

Mei jer " .
<ht tp :// bi−vaks . org /vocab/ TemporalRevision> <http :// bi−vaks . org /vocab/branch> <http :// bi

−vaks . org /vocab/Branch_48ak32> .
<ht tp :// bi−vaks . org /vocab/ TemporalRevision> <http :// bi−vaks . org /vocab/ createdAt>

"2021−06−19T13:34:00+02:00"^^xsd : dateTimeStamp .
<ht tp :// bi−vaks . org /vocab/ TemporalRevision> <http :// bi−vaks . org /vocab/ precedingRevis ion>

<http :// bi−vaks . org /vocab/ UpdateRevision_3k8yqcd4k92> .
<ht tp :// bi−vaks . org /vocab/ TemporalRevision> <http ://www.w3. org /2000/01/ rdf−schema#

comment> " Create new branch c a l l e d LisaBranch . " @en−gb .

5.2 Types of Transaction & Valid Revisions

As we already mentioned in Section 4.4, we consider different types of transaction and
valid revisions. In Figure 5.3 we give a conceptual visualisation of an extremely small
example of a revision-store. Since these transaction revisions always refer to their pre-
ceding revision, they form a directed rooted tree of revisions. In Figure 5.3 every colored
square indicates a particular transaction or valid revision. The dates beneath and above
each square are the creation date of the transaction revision, and the start date and end
date of a valid revision. The numbers within each square represent the revision number
of each transaction revision, which corresponds in this case to the creation dates, and
they indicate the transaction time sequence. Moreover, in this figure these numbers also
indicate to which valid revision a transaction revision refers. As demonstrated in Figure
5.3, the chain of transaction revisions always starts with the Initial Revision. We refer to
this start chain as the main stream. The Initial Revision can subsequently be followed by
any other type of transaction revision except a Merge Reversion. When a Linked Data user
wants to branch off from the common RDF dataset, as depicted in Figure 5.3 by Branch
Revisions (4) and (8), Bi-VAKs creates a Branch Revision that refers to the transaction revi-
sion from which it derives. Thus, only the connection between Branch Revisions and their
predecessor has any real meaning, while between other transaction revisions their link is
purely for time ordering. In addition, the Head Revisions refer to the latest transaction
revisions in the revision-store, which are illustrated by transaction revision (12), (14),
and (16) in Figure 5.3.

As we stated above, each transaction revision is associated with a valid revision. We con-
nect a transaction revision to a valid revision either by letting a transaction revision explic-
itly refer to the valid revision itself, or by adding the revision number and branch index to
the valid revision. In the following sub-sections we discuss each type of transaction and
valid revision in more detail. For each type of valid revision we give a similar schematic
visualisation of its content as illustrated in Figure 5.2, and we visualise a schematic dia-
gram how revisions are related. Figure 5.4a, for instance, illustrates such a diagram of a
Update (Revision). The arrow between two entities means that one entity relates to the
other, but not vice versa. The line means that they both relate to one another. The two
numbers (e.g. 0..1) represent their cardinality ratio. These numbers respectively specify
the minimum and maximum number of relationship instances that an entity relates to.
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As illustrated in these figures, each transaction revision always refers to a single preced-
ing revisions except the initial revision. And it can be referred by multiple succeeding
revisions to support diverging states. Although Git1 let a revision also refer to multiple
preceding revisions, especially to symbolise a merge of two branches, we only let a trans-
action revision refer to a single preceding revision. In this way we do not require to add
the updates from the main stream to the merged branch. Thus, in Bi-VAKs it is not possible
to construct a prior version in a merged branch backwards, and our transaction revision
graph forms a directed rooted tree instead of a directed acyclic graph. Valid revisions, on
the other hand, can form a directed acyclic graph.

FIGURE 5.3: A conceptual illustration of a revision-store.

5.2.1 Initial Revision

The Initial Revision is the first transaction revision in the non-linear chain of revisions. If
a Linked Data user already works with a RDF dataset, this revision initialises an Update
containing all quads in this dataset. If a Linked Data user starts an empty revision-store,
the Initial Revision does not refer to any Valid Revision. It only consists of the provenance
data why, when, and who started this revision-store.

5.2.2 Update (Revision)

The Update and Update Revision are the most elemental revisions. They represent the
actual change to the RDF dataset, and bring the RDF dataset into a new state Di,j. In
Bi-VAKs, a Linked Data user can modify the state of the RDF dataset in the followings
ways:

1. A Linked Data user can send a SPARQL update query to Bi-VAKs.

2. A Linked Data user can dump a RDF formatted file to Bi-VAKs.

3. A Linked Data user can modify an existing Update.

1https://git-scm.com

https://git-scm.com
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4. A Linked Data user can merge two or more Updates.

5. A Linked Data user can revert an Update Revision.

6. A Linked Data user can merge a branch into another branch.

In the first four cases Bi-VAKs creates both an Update Revision and one or multiple Up-
date(s). An Update always alters a single RDF dataset consisting of a default graph and
zero or multiple named graphs, as illustrated in Figure 5.4a. And, it might contain in-
serted and deleted triples from different RDF graphs. An Update Revision refers to a
single or multiple Update(s) either explicitly via the transaction revision or implicitly via
the same revision number and branch index. An Update itself can be referred by multi-
ple other updates in case of a branch, which is demonstrated by the update revision (7)
in Figure 5.3. The update revision (7) modifies update (2), and therefore, update (7)
refers to update (2). But an Update can also refer to multiple preceding updates in case
of an update merge. Thus in comparison with the graph of transaction revisions, updates
revisions may form an acyclic directed graph.

The Update Revisions and Updates are RDF resources with their own IRIs and various
attributes in the RDF revision-store, as showed in Figure 5.4b. In order to define the valid
time of a change, an Update could have an start date and an end date, or it might only
have an start date, an end date, or no valid date at all (anonymous timestamp). In order
to actually change the triples in the RDF dataset, the Update includes the inserted and
deleted triples by using RDF-star, which we explain in more detail in Section 6.1.2.

(A) Update Diagram (B) Update

FIGURE 5.4: (Provenance) diagram of the Update (Revision).

In some situations it would be preferable to modify the Update itself. For instance, a
Linked Data user has made a mistake in the end date of the Update. When we modify
an Update at transaction time tk, this Update should no longer exist in the RDF dataset
after tk. The new Update should be selected in the subsequent versions, and neither
both nor the modified Update. But when we query a version back in time (. . . , tk−1), we
must select the modified Update, because the new Update has not been created before
tk. Therefore, we let this new Update refer to the Update it is modifying, and we call
this Update its preceding update. Hence, the latest Updates are the updates to which no
other updates refer in the same sequence of transaction revisions. Figure 5.5 shows an
example of two update modifications. Update (7) modifies the start date of update (2)
and updates (15) adds an end date to update (2), and they refer to update (2) via the
predicate ‘precedingUpdate’. Now from transaction revision (14) update (7) is the latest
update, while from transaction revision (3) update (2) is the most recent update.

Instead of modifying an Update, it is also possible to revert an Update Revision, and fully
remove the update from the state of the dataset. The revert operation gives the Update
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FIGURE 5.5: Example of modifying an Update.

Revision a start time as well an end time. The Update Revision should no longer exist,
which affects the existence of the Update. All triples and quads stated in the Update
should no longer be in that state of the RDF dataset, and thus the reverted Update should
return to its previous state. This state is either empty, when this Update has not been
modified before, or it contains the data from a modified Update earlier in time. Figure
5.6a shows an example of a reversion of an Update, for which its previous state is empty.
Figure 5.6b demonstrates a reversion, for which its previous state is a modified Update.

(A) Revert an Update that has not been modified.

(B) Revert an Update that has been modified.

FIGURE 5.6: Example of reverting a Update Revision and a Update.

In addition to the fact that multiple Updates can refer to the same previous Update, a
single Update can also refer to multiple previous Updates in order to merge them into a
single Update. However, such a merge is only possible when the Updates belong to the
same chain of transaction revisions (branch or main stream). Namely, it should always be
possible to revert or modify such a Update. If a reverted merge Update refers to an Update
in another branch, the Revert Revision would include an Update that belongs to another
state of the revision-store, which was not in the other revision-store before. For example,
suppose we would merge update (12), and update (6) in Figure 5.3, and then revert this
newly created update revision. Now update (6) will end up in the main stream which
was not there before. If an Update from another branch should be merged into the main
stream or a branch, you should merge the complete branch.

5.2.3 Branch (Revision)

In order to improve the collaboration between Linked Data users, it is preferable to allow
users to diverge from the common dataset without making a new copy. Therefore, Bi-VAKs
allow users to branch off from the main stream or from other branches to create a separate
dataset. In addition to the creation of a new branch, users could also modify an existing
branch, such as its branch name. When a Linked Data user does such a branch version
operation, Bi-VAKs always creates a Branch Revision and a Branch. A Branch Revision
always has a single preceding transaction revision, and other transaction revisions can
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refer to this branch revision. Figure 5.7a also illustrates that a Branch Revision always
refers to a single Branch. A Branch Revision could also refer to other valid revisions, but
it only does when a Linked Data user has made a mistake in the transaction revision the
branch branches off from. When this happened, the branch requires to move to another
place in the graph of revisions. However, the new branch must still refer to the already
existing revisions in the modified branch without changing them. For example, if we
would move branch (8) to transaction revision (4) instead of (7), it should still refer to
transaction revisions (8), (11), and (12). We do not take into account that the semantics
in these updates might conflict due to this change.

For simplicity a Branch only has a specific name. Although it would be possible to add
more information to a branch resource, such as an extra description what this deviation
from the dataset is about, some constraints of this deviation, or users which are allowed
to modify this diverged dataset. This branch name is simply a RDF literal. As illustrated in
Figure 5.7b, a Branch also contains the transaction revision it branches off from, primarily,
in order to obtain all transaction revisions in the branch. For instance, to get all revisions
from transaction revision (1) to (12), we need to know all places the branch (8) branches
off from. And, as it should retrieve revisions (1), (2), (3), (4), (7), (8), (11), and (12), it
needs to know that branch (8) branches off from branch (4) at revision (7), and from the
main stream at revision (3). However, we do not want to retrieve the other transaction
revisions in the branch and main stream.

(A) Branch Diagram
(B) Branch

FIGURE 5.7: (Provenance) diagram of the Branch (Revision).

As we already mentioned, a Linked Data user can also modify an existing Branch. But,
when a Branch is modified, it should no longer exist in the subsequent versions. Similar to
an Update, we let this new Branch resource refer to the Branch resource it modifies. Again
the latest Branch is the Branch to which no other Branch is referring. Figure 5.8 illus-
trates an example of a modification of branch (4) into branch (9) from the revision-store
demonstrated in Figure 5.3. In this example the name has changed from “MyFirstBranch”
to “MyChangedBranch”.

FIGURE 5.8: Example of modifying a Branch.
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In order to ensure that the complete Branch no longer exists in the succeeding transaction
revisions, a Branch Revision can be reverted. It should not be possible to query that branch
at the following transaction time, but in previous transaction time we should still need
to query this branch. Since we can modify a Branch, a reversion of a Branch does not
always lead to a removal of a complete branch. We can also revert a modification of
a branch such that we return to the initial branch. Figure 5.9a gives an illustration of
Branch_2 fully removed, whereas Figure 5.9b gives an example that Branch_3 returns to
its previous state. Nonetheless, if another branch already branches off from a branch,
which is later reverted, this branch is not reverted and can still be queried in succeeding
revisions. Suppose, if we revert branch (4) illustrated in Figure 5.3, branch (8) will still
exist.

(A) Revert a Branch, which has not been modified.

(B) Revert a Branch, which has been modified.

FIGURE 5.9: Example of reverting a Branch Revision and a Branch.

5.2.4 Snapshot (Revision)

In order to speed up the construction process of a particular version, Bi-VAKs allows it
users to create a materialised version of a given state of the RDF dataset Di,j (snapshot).
If this state is frequently used, it can be directly queried without having to construct a
state first. Bi-VAKs creates a Snapshot Revision and a Snapshot when a Linked Data user
either (i) does a snapshot versioning operation to create a complete new snapshot or (ii)
modifies an existing Snapshot, for example, to change its effective date. A Snapshot Revi-
sion always refers to a single Snapshot and the Snapshot also refers to a single Snapshot
Revision, which is illustrated in Figure 5.10a. In addition, a snapshot can also be part of
a branch, and hence can include a materialised version of the diverged dataset, which is
also illustrated in Figure 5.3 by snapshot (11).

A Snapshot should contain all the relevant information to query a RDF dataset via a HTTP
endpoint, such as the name of the dataset and the URL of the triple/quad-store, which
is demonstrated in Figure 5.10b. These attributes are both a literal. In addition, since
the RDF dataset is bi-temporal (Di,j), a Snapshot also contains an effective date (i), and a
transaction revision. This effective date is RDF literal with a date timestamp as datatype,
and can be in the past (i < j) as well as in the future (i > j). The transaction revision is
an IRI that indicates the transaction time, and is either equal to or smaller than the latest
transaction revision (head revision) in the revision-store.

In addition to the creation of a new Snapshot, an user could also modify an existing
Snapshot. For instance, when a snapshot might be outdated. In order to query a snapshot,
the previous snapshots should no longer be queried. They might be overwritten, or moved
to another triple/quad-store. However, since no information may ever be deleted, we
also refer to the preceding Snapshot within the new Snapshot. However, compared to the
other valid revisions, we always want to query the latest snapshot, because this snapshot
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(A) Snapshot diagram (B) Snapshot

FIGURE 5.10: (Provenance) diagram of the Snapshot (Revision).

is actually referring to an existing and reachable RDF dataset. Figure 5.11 represents the
example of snapshot (3) and (10) from Figure 5.3 that overwrite the same quad-store,
such that the RDF dataset comes into a new state with another effective date.

FIGURE 5.11: Example of modifying a Snapshot.

Similar to the update and the branch operations a Snapshot Revision can also be reverted.
Reverting a Snapshot Revision leads either to a complete removal, or a reversal of a Snap-
shot. Figure 5.12a gives an illustration that Snapshot_2 is fully removed, whereas Figure
5.12b gives an example that Snapshot_3 returns to its previous state Snapshot_1.

(A) Revert an Snapshot that has not been modified.

(B) Revert an Snapshot that has been modified.

FIGURE 5.12: Reverting a Snapshot Revision and a Snapshot.

5.2.5 Tag (Revision)

As our versioning approach will create enormous amount of revisions over time, it would
be helpful if Linked Data users could explicitly refer to a state of the RDF dataset by a self-
defined name, also called a tag. For example, to indicate a specific state of the dataset that
users have used in their reports, and projects. When a Linked Data user does such a tag
versioning operation or modifies an existing Tag, Bi-VAKs always creates a Tag Revision,
and a single Tag, which is illustrated in Figure 5.13a.
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As depicted in Figure 5.13b, a Tag resource always contains the self-defined tag name,
which is a RDF literal. Additionally, it contains an effective date, and a transaction re-
vision in order to refer to a state of the RDF dataset. We define its transaction time (j)
by referring to a transaction revision. And we specify the valid time (i) by an effective
date,: a literal with a date timestamp as datatype. This date can be in the past (i < j)
as well as in the future (i > j). The referred transaction revision is either equal to or
smaller than the most recent transaction revision (head revision) in the revision-store.
For convenience, we only include these attributes, but it would be possible to add more
attributes to a Tag, such as an extra description about this state of the dataset, users who
worked on this dataset until this point, or a specific purpose of this state.

(A) Tag Diagram (B) Tag

FIGURE 5.13: (Provenance) diagram of the Tag (Revision).

It is possible, however, that a Linked Data user is not satisfied with the current name of
the tag. Therefore, it is required that we can modify a Tag without losing the data of all
previous Tag(s). Figure 5.14 demonstrates a modification in the name of tag (5) from
Figure 5.3. The Tag_2 sill includes the same effective date and transaction revision.

FIGURE 5.14: Example of modifying a Tag.

In some cases, it is even necessary that a Tag should no longer exist in the next states of
the revision-store. Therefore, our approach supports the reversion of a Tag Revision, and
its corresponding Tag by creating a new Tag that reverts its preceding Tag. This preceding
Tag is either empty, or modified. These two options are illustrated respectively in Figure
5.15a and Figure 5.15b.

5.2.6 Revert (Revision)

As we already describe in the aforementioned sections, we can revert a Transaction Revi-
sion. When we revert such a branch, update, snapshot, merge and tag revision a Revert
Revision is created that implicitly or explicitly refers to a single or multiple newly created
update(s), snapshot(s), branch, merge(s), and tag(s), which is respectively illustrated in
Figure 5.16a. Besides, we can revert a Revert Revision or modify a Revert itself. Both
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(A) Revert an Tag that has not been modified.

(B) Revert an Tag that has been modified.

FIGURE 5.15: Reverting a Tag Revision and a Tag.

actions create a new Revert Revision and Revert. The creation of a Revert Revisions always
goes hand in hand with the creation of a single Revert. The Revert refers to the Transac-
tion Revision(s) it reverts, which is visualised in Figure 5.16b. A Revert might also contain
other attributes such as a keyword that denotes the reason why this revision should be
reverted.

(A) Revert Diagram

(B) Revert

FIGURE 5.16: (Provenance) diagram of the Revert (Revision).

Since our versioning approach should be able to modify all valid revisions, it should mod-
ify the Revert as well. However, not only the Revert, also the other Transaction Revisions, to
which the corresponding Revert refers, should be reverted. For example, if transaction re-
vision b should be reverted instead of transaction revision a, transaction revision a should
have been brought back to its previous state. Therefore, the valid revisions corresponding
to revision a should be reverted first, before the valid revisions corresponding to revision
b can be reverted. The Revert Revision should refer to reverted valid revision from a, and
reverted valid revisions from b. Figure 5.17a illustrates such an example. Suppose we
modify revert (14) from Figure 5.3 such that it now reverts update (7) instead of update
(13). Therefore, update (13) should be no longer reverted, and should be reverted to its
previous update; update (7) should be reverted, and we should modify revert (14), as
demonstrated in Figure 5.17b.

Just as we can modify a Revert, we can also revert a Revert Revision. Reverting a Revert
Revision is rather similar to modifying a Revert. Again we should also revert all transaction
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(A) Example of modifying a Revert

(B) Example of reverting a reverted Update.

FIGURE 5.17: Example of the modification process of a Revert.

revisions to which the corresponding Revert is referring. These newly created valid revi-
sions are subsequently added to the Revert Revision that revert a Revert Revision. Figure
5.18a and 5.18b give an example when revert (14) would be reverted. They respectively
illustrate that the reverted Revert is either empty or it returns back to its previous state.

(A) Revert an Revert that has not been modified.

(B) Revert an Revert that has been modified.

FIGURE 5.18: Reverting a Revert Revision and a Revert.

5.2.7 Merge (Revision)

As Linked Data users can diverge from the common RDF dataset, they should also be
able to conflate the diverged states, for instance, when they finally agree. Although in
our prototypical versioning approach we do not implement the merge operation, in this
section we give a small introduction of the merge operation for completeness. When a
Linked Data user does a merge versioning operation, the user merges the given branch
into a branch from which the user does the operation. When a branch B is merged into
another branch A the updates belonging to branch B should be added to branch A. These
updates from branch B are added to branch A by creating new or referring to existing
Update(s) that contain the inserted and deleted quads in the diverged dataset. However,
we refer to future research for a more in-depth study on the possible merge strategies and
on the practical implementation of a merge.

As depicted in Figure 5.19a, a Merge Revision always creates a single Merge that again
refers to a Branch in order to indicate the branch that is merged into the branch or main
stream from which the user has done a merge operation. Figure 5.3 illustrates an example
of a merge (16) that merges branch (4) into the main stream. Instances of the Merge
Revision and Merge are both resources with their own IRIs and attributes, as showed in
Figure 5.19b. It would be possible to add more attributes to a Merge, such as a merge
strategy or some time constraints the updates must fulfill.
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(A) Merge Diagram
(B) Merge

FIGURE 5.19: (Provenance) diagram of the Merge (Revision).

In addition, a Linked Data user could also make a mistake in the branch it wanted to
merge. When this happens, the updates, which were created or referred to in the mod-
ified merge revision, should be reverted, and should no longer exist in the new state of
the revision-store. Thus, such a Merge modification does something similar as a Revert
modification, because all Updates to which they refer must first be reverted. However,
it must not revert to its previous state, because we might possibly add an update to the
main stream or branch which was not there before. It always reverts an Update as if it
had not been modified before. Figure 5.20 illustrates an example of a merge modification
based on the revision-store presented in Figure 5.3. Instead of merging branch (4) into
the main stream, branch (8) is merged into the main stream. The update (16) should
thus be reverted.

FIGURE 5.20: Example of modifying a Merge.

In addition to rectifying mistakes, a Merge Revision can also be completely discarded from
the revision-store. The corresponding Merge should no longer exist in the coming states of
the revision-store, and this reverted Merge should return to its previous state. Reverting
a Merge Revision is rather similar to modifying a Merge. Again we should also revert all
Updates to which the Merge Revision is referring. The previous state of a Merge is either
empty, or contains some data, which is respectively illustrated in Figure 5.21a and Figure
5.21b.

(A) Revert an Merge that has not been modified.

(B) Revert an Merge that has been modified.

FIGURE 5.21: Example of reverting a Merge Revision and a Merge.
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Chapter 6

Bi-Temporal SPARQL (Update)
Query

In this chapter, we elaborate on the interaction between the Linked Data user and the
revision-store to allow for bi-temporal SPARQL (Update) queries. We begin this chapter
by describing how Bi-TR4Qs detects the bi-temporal changes made to a RDF dataset from
a SPARQL Update query, and how it makes use of RDF-star to actually represent these
changes in the revision-store (Section 6.1). Next, Section 6.2 explains how Bi-TR4Qs
retrieves these changes from the revision-store, and how it subsequently constructs a
particular (prior) state of the dataset by means of these updates. The last section 6.3
gives a description of the different SPARQL basic triple pattern queries, such as the version
materialisation, delta materialisation, and version queries.

6.1 Bi-Temporal SPARQL Update Query

When a Linked Data user sends a SPARQL Update query to insert, delete, or modify some
triples in the RDF dataset, the RDF dataset comes into a new state. In order to keep
track of these changes, and to subsequently query prior states of the RDF dataset, Bi-
VAKs must first detect these bi-temporal changes, then represent them in a Update and
Update Revision, and finally store them in the revision graph Ri,j. In Section 6.1.1 we first
describe how Bi-VAKs extracts the change(s) from the SPARQL Update Query instead of
determining the change(s) between two consecutive dataset states in retrospect by using
a difference algorithm. Once Bi-VAKs has identified the collection of bi-temporal changes
from a single SPARQL update query, this collection must be represented and in addition its
valid and transaction time must be taken into account. Section 6.1.2 gives an explanation
how we model and store such a collection by using RDF-star.

6.1.1 Detecting Changes

In this section we describe how Bi-VAKs determines the collection of inserted and deleted
quads from a SPARQL Update Query. The SPARQL 1.1 Update Language (Gearon, Passant,
and Polleres, 2013) provides various graph update operations and graph management
operations, as described in Section 6.1. These operations modifies triples in a RDF graph
and complete graphs in a RDF dataset. But, due to time limitations we only focus on
the INSERT DATA and DELETE DATA update operations. When a Linked Data user sends
such an update operation, Bi-VAKs should create both an Update Revision and an Update
by determining the inserted and deleted triples or quads from the query. As we stated in
Section 4.3, for an update operations it is important that we can invert the corresponding
Update. A change can be inverted if the inserted quad did not exist yet, and if the deleted
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quad already exists in the RDF dataset at the time of deletion. However, our RDF dataset
is bi-temporal. An Update has a valid time as well as a transaction time. The valid time
tv is a time interval [tv

1, tv
2], an effective date [tv

1, ∞), a final date (−∞, tv
2] or even no date

(−∞, ∞). Therefore, a quad can exist multiple times in the dataset at different moments
in time. A quad can only be inserted if it does not overlap with another update that inserts
the same quad, and a quad can only be deleted if its time interval fully overlaps another
update valid time that inserts the same quad. Nonetheless, it should also be possible to
insert a quad, which was deleted before, or to delete a quad which was inserted again.
Therefore, we define the definitions to insert and delete a quad as follows:

Definition 8 (Insertion of a Quad). A quad Q with valid time tv can be inserted if N = M,
where N stands for the number of updates that inserts Q and somewhere overlaps tv, and
where M stands for the number of updates that deletes Q and fully overlaps tv.

Definition 9 (Deletion of a Quad). A quad Q with valid time tv can be deleted if N = M+ 1,
where N stands for the number of updates that inserts Q and fully overlaps tv and where M
stands for the number of updates that deletes Q and somewhere overlaps tv.

Figure 6.1 illustrates an example of an update containing quad x with start time a and
end time b ([a, b]), and four additional updates that either inserts (blue) or deletes (red)
quad x. Suppose we would like to insert x in an update with time interval [c, d]. It is
not possible to insert this quad if its time interval [c, d] somewhere overlaps the interval
[a, b]. And suppose we would like to delete x. Its interval [e, f ] must fully overlap with
the interval [a, b].

FIGURE 6.1: Example of 5 updates that all insert (blue) and delete (red)
quad x in order to illustrate possible overlaps.

As depicted in Figure 6.1, the INSERT DATA and DELETE DATA update operation explicitly
defines the quads, which should be inserted or deleted in the RDF dataset. Thus, Bi-VAKs
only requires to determine whether these specified inserted and deleted quads satisfy the
above mentioned definitions - the “invertibility check” - in order to create an update that
can be inverted. If a quad does not satisfy these conditions, the whole change will be
rejected.

LISTING 6.1: A INSERT/DELETE DATA graph update operation
PREFIX r e c i p e s : <ht tp ://www. recipehub . n l / r e c i p e s#> .

DELETE DATA
{ GRAPH r e c i p e s : Grea tCur r i e s { r e c i p e s : KatsuCurry r e c i p e s : meal r e c i p e s : MainCourse } } ;
INSERT DATA
{ GRAPH r e c i p e s : Grea tCur r i e s { r e c i p e s : KatsuCurry r e c i p e s : meal r e c i p e s : S t a r t e r } }

Although we only concentrate on INSERT DATA and DELETE DATA update operations
in this thesis, it is also possible to detect the collection of modified quads from the
DELETE/INSERT update operations. Since these operations do not specify the modi-
fied quads explicitly, we must first discover which quads correspond to the query at the
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given particular time point or interval. However, to determine these modified quads from
a bi-temporal RDF dataset is rather complex. If an update has a start s and an end date
t, we need to query the RDF dataset both at state s, and at state t, as they might return
different quads. These different quads must subsequently correspond, and they should
satisfy the above mentioned definitions in order to add them to the collection of modified
quads. Namely, we must ensure that they exist or do not exist in the dataset over the full
time interval. If an update only has a start or end date, we need to query a single state,
but we must still verify that these quads satisfy the above mentioned definitions. Figure
6.2 illustrates an example of 9 updates each containing a single inserted triple {〈 Car_x
:color "red" 〉|x ∈ {1, . . . , 9}}. The bars indicate their time interval. Suppose a Linked
Data users sends the SPARQL update query to change all red cars into blue cars, and it
has a start s and end time t, which are illustrated by the green vertical lines. We construct
the dataset state at Ds,j and at Dt,j, and respectively obtain 4 red cars (2, 5, 7, 8) at state
Ds,j, and 3 red cars (5, 7, 9) at state Dt,j. However, at the end time t car 2 and 8 do not
exist in the dataset, and at the start date s car 9 does not exist. Therefore, only red car 5
and 7 can be changed into blue cars. Suppose the user’s request only has a start date s or
end date t the cars queried at state Ds,j or at state Dt,j should exist over the full interval
in order to delete them.

FIGURE 6.2: Example of 9 updates all containing information about red
cars which are transformed into blue cars in a specific time interval.

Although it does not seem very efficient to determine for each quad whether it satisfies
the above mentioned definitions, it is very important to avoid inconsistencies in the RDF
dataset. Otherwise, it might happen that we delete a quad, which has never been inserted
before, or insert a quad, which has already been inserted. Hence, during a version con-
struction process we might end up in a state of the dataset containing the wrong quads.
In addition to a SPARQL Update query requests, Bi-VAKs should also verify whether the
quads in an update modification request, or update reversion request satisfy the above
mentioned definitions.

6.1.2 Representing Changes

Once Bi-VAKs has extracted the collection of inserted and deleted triples or quads from
the SPARQL Update Query, it should represent these triples in such a way that they can be
stored in a triple/quad-store, and be queried to construct prior states of the RDF dataset.
Instead of using either separate named graphs for the inserted triples and deleted triples,
or standard RDF reification, Bi-VAKs puts them together in a Update and uses RDF-star. As
we already described in section 5.2.2, a Update is a RDF resource that refers to the inserted
triples by the predicate ‘inserts’ and to the deleted triples by the predicate ‘deletes’. The
object of these triples subsequently refers to the inserted and deleted triple by using the
RDF-star notation. A complete inserted or deleted triple has now become a node in a
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RDF graph, such that it is possible to query an update based on the triples it contains.
We even do not need to know these triples in their entirety. They can also be queried
from a basic triple pattern. In addition to the fact that Bi-VAKs should store and query the
annotated triples, it should also consider the transaction and valid time of each collection
of changes. Therefore, we distinguish Update from Update Revisions, which we already
described thoroughly in Section 5.2.2. Listing 6.2 demonstrates an example of an Update
Revision in the Turtle format. This Update Revision refers to the Update illustrated in
Listing 6.3. This Update is in a diverged state of the dataset, and it inserts the triple 〈
recipes:RecipeChocolateCake rdf:type recipes:Recipe 〉 into the RDF dataset, and deletes
the triple 〈 recipes:RecipeLemonCake rdf:type recipes:Recipe 〉.

LISTING 6.2: Update Revision representation in Turtle
@prefix r e c i p e s : <ht tp :// recipehub . n l / r e c i p e s#> .
@prefix r d f s : <ht tp ://www.w3. org /2000/01/ rdf−schema#> .
@prefix : <ht tp :// bi−vaks . org /vocab/> .

: Revision_f8dcab6ec0544c0c8287aee7f31a912a9ce572955b0d0e7ba50972d5b053e5a5
a : UpdateRevis ion ;
r d f s : comment " I n s e r t s a choco la te cake rec ipe , and d e l e t e s a lemon cake re c ipe . " ;
: c rea tedAt "2021−05−19T13:15:00+02:00"^^xsd : dateTimeStamp ;
: author " L i s a Mei jer " ;
: hash " f8dcab6ec0544c0c8287aee7f31a912a9ce572955b0d0e7ba50972d5b053e5a5 " ;
: preced ingRev i s ion : Revision_99eff5bc911699bfa200c3296433b48e1481d2e5a7a4fef046 ;
: update : Update_716bb121c3ce50d043d3fc7058f23d7e5160f3194948c114dcb ;
: revisionNumber "1005"^^xsd : nonNegat iveInteger ;
: branchIndex "2"^^xsd : nonNegat iveInteger ;

.

LISTING 6.3: Update representation in Turtle-star
@prefix r e c i p e s : <ht tp :// recipehub . n l / r e c i p e s#> .
@prefix rd f : <ht tp ://www.w3. org/1999/02/22− rdf−syntax−ns#> .
@prefix : <ht tp :// bi−vaks . org /vocab/> .

: Update_716bb121c3ce50d043d3fc7058f23d7e5160f3194948c114dcb
a : Update ;
: i n s e r t s << r e c i p e s : RecipeChocolateCake rd f : type r e c i p e s : Recipe >> ;
: d e l e t e s << r e c i p e s : RecipeLemonCake rd f : type r e c i p e s : Recipe >> ;
: s t a r t e d A t "2021−04−10T17:45:00+02:00"^^xsd : dateTimeStamp ;
: endedAt "2021−09−03T09:00:00+02:00"^^xsd : dateTimeStamp ;
: hash " _716bb121c3ce50d043d3fc7058f23d7e5160f3194948c114dcb " ;
: revisionNumber "1005"^^xsd : nonNegat iveInteger ;
: branchIndex "2"^^xsd : nonNegat iveInteger ;

.

Representing named graphs

One of the main disadvantage of RDF-star for our version control system is that RDF-star
is not able to represent quads. Therefore, we must define quads differently. We add
the context information or graph name of the inserted and deleted quads to the context
information the update. In this way an Update can contain quads from multiple named
graph. Listing 6.4 shows an example of an Update that inserts the following quad 〈
recipes:RecipeLambVindaloo rdf:type recipes:Recipe recipes:GreatCurries 〉.

LISTING 6.4: Update representation in Turtle-star including an inserted
quad.

@prefix r e c i p e s : <ht tp :// recipehub . n l / r e c i p e s#> .
@prefix : <ht tp :// bi−vaks . org /vocab/> .
@prefix rd f : <ht tp ://www.w3. org/1999/02/22− rdf−syntax−ns#> .

: Update_f544227dfd877dd995bc886b54e4b8c22120bd94379628753af5655ac29f6aa1
a : Update ;
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: s t a r t e d A t "2021−06−16T12:20:00+02:00"^^xsd : dateTimeStamp ;
: endedAt "2021−12−07T10:30:00+02:00"^^xsd : dateTimeStamp ;
: hash " f544227dfd877dd995bc886b54e4b8c22120bd94379628753af5655ac29f6aa1 " ;

.
r e c i p e s : Grea tCur r i e s {

: Update_f544227dfd877dd995bc886b54e4b8c22120bd94379628753af5655ac29f6aa1 : i n s e r t s <<
r e c i p e s : RecipeLambVindaloo rd f : type r e c i p e s : Recipe >> ;

. }

Content strategies of an update

As we already described in Section 5.2.2, Linked Data users could make a mistake in an
Update. For instance, its start date is incorrect, or some triples should not be included.
Bi-VAKs gives users the possibility to modify an Update. However, a modification might
cause overlap between the modified Update and the newly created Update. In Figure 6.3
we show two strategies how we can express these Update modifications. The first strategy
(1) - the repeated update content strategy - creates a new Update which contains the
triples present in the new state of the dataset. It fully copies the previous Update and
only changes the quads, and dates which the user modifies. The second strategy (2) - the
related update content strategy - creates a new Update that only contains the modified
quads and dates, and refers to its modified Update for the unchanged quads.

FIGURE 6.3: Visualisation of two update content strategies: (1) the re-
peated update content strategy and (2) the related update content strategy.

Suppose a Linked User would like to delete the ‘RecipeAppleCake’ instead of ‘RecipeLe-
monCake’ depicted in Listing 6.3. Listing 6.5 gives an illustration of strategy (1) that
replaces 〈 recipes:RecipeLemonCake rdf:type recipes:Recipe 〉 with
〈 recipes:RecipeAppleCake rdf:type recipes:Recipe 〉. Listing 6.6 gives an illustration of
strategy (2) that deletes 〈 recipes:RecipeAppleCake rdf:type recipes:Recipe 〉 and inserts
the 〈 recipes:RecipeLemonCake rdf:type recipes:Recipe 〉.

LISTING 6.5: Update representation in Turtle-star using the repeated up-
date content strategy

@prefix r e c i p e s : <ht tp :// recipehub . n l / r e c i p e s#> .
@prefix rd f : <ht tp ://www.w3. org/1999/02/22− rdf−syntax−ns#> .
@prefix : <ht tp :// bi−vaks . org /vocab/> .

: Update_ae338f95e454e75a2b913824ef270c7bc58894f30007d63a8f07acd9884d34f9
a : Update ;
: i n s e r t s << r e c i p e s : RecipeChocolateCake rd f : type r e c i p e s : Recipe >> ;
: d e l e t e s << r e c i p e s : RecipeAppleCake rd f : type r e c i p e s : Recipe >> ;
: preced ingRev i s ion : Update_848c4085c112cb3d822636feb91db8d8122e78dda76 ;

.

LISTING 6.6: Update representation in Turtle-star using the related update
content strategy

@prefix r e c i p e s : <ht tp :// recipehub . n l / r e c i p e s#> .
@prefix rd f : <ht tp ://www.w3. org/1999/02/22− rdf−syntax−ns#> .
@prefix : <ht tp :// bi−vaks . org /vocab/> .
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: Update_ae338f95e454e75a2b913824ef270c7bc58894f30007d63a8f07acd9884d34f9
a : Update ;
: d e l e t e s << r e c i p e s : RecipeAppleCake rd f : type r e c i p e s : Recipe >> ;
: i n s e r t s << r e c i p e s : RecipeLemonCake rd f : type r e c i p e s : Recipe >> ;
: preced ingRev i s ion : Update_848c4085c112cb3d822636feb91db8d8122e78dda76 ;

.

6.2 Version Retrieval

In this section we explain how we can construct a particular version or state of the dataset
Di,j to allow for bi-temporal SPARQL queries. Such a specific version can be constructed
by first obtaining the updates, then by sorting these updates based on their transaction
time, and finally by fast forwarding them on an empty RDF graph. Suppose the state of
the dataset has a single time dimension, and we would like to construct the blue dataset
state, as illustrated in Figure 6.4. We must first obtain all the updates represented by the
yellow blocks. Then we sort the updates, and subsequently fast forward them to construct
the blue dataset state. The inserted triples are added, and the deleted triples are removed
from every intermediate dataset state. Figure 6.4 directly shows that we must first sort
the updates before we can fast forward the updates. Otherwise we end up with a different
set of triples in the blue state. Besides, we cannot aggregate the updates to speed up this
process, because we cannot invert the updates: g is already deleted in the second update,
while it is just inserted in the fourth update. Aggregating takes all updates together, and
it cancels out the same added and deleted triples. Hence, aggregating avoids sorting.

FIGURE 6.4: Visualisation of the influence of non-invertible updates to the
states of the RDF dataset.

A bi-temporal state of the dataset or version Di,j depends on a valid time i and a transac-
tion time j, where both i and j are a single point in time. In order to create a certain state
of the dataset, we first need to obtain all required updates. An update, however, also has
both a transaction time, and a valid time. The valid time tv of an update can be a time
interval [tv

s , tv
e ], an effective date [tv

s , ∞), a final date (−∞, tv
e ] or even no date (−∞, ∞).

Therefore, it is possible that several updates might not exist in certain state of the RDF
dataset, because they are just valid ahead (ts > i) or back (te < i) in time. Besides, the
update’s transaction time tt can be an effective date [tt

s, ∞) as well as a time interval [tt
s, tt

e]
due to a reversion or modification. Therefore, in order to obtain the right updates, the
updates’ transaction time tt must enclose the transaction time j, and their valid time tv

must enclose the valid time i of the requested state Di,j. The transaction time of update u
encloses j if no other update with tt

s ≤ j is referring to update u. The valid time encloses
i if tv

s ≤ i ≤ tv
e .

However, the way we retrieve these updates and updates revision from the revision-store
depends on the reference strategy (Sub-section 5.1.1). For the explicit reference strategy
we use SPARQL property paths (Seaborne, 2010) to query all transaction revisions that
meets the given time interval, and we use the explicit reference to the valid revision(s)
to query the updates. Listing 6.7 presents an example of a SPARQL query for the explicit
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reference strategy. With line 5 and 6 we query all updates having a transaction time
equal to or smaller than j. With line 7 to 10 we query all updates having a valid time
that encloses i, and with line 11 to 15 we remove all updates having a transaction time
smaller than j.

LISTING 6.7: An example of a SPARQL query to obtain the request updates
for the explicit reference strategy

1 PREFIX : <ht tp ://www. bi−vaks . org /vocab/> .
2
3 SELECT ? update
4 WHERE {
5 : Revision_f8dcab6ec0544c0c8287ae : preced ingRev i s ion * ? t r a n s a c t i o n R e v i s i o n .
6 ? t r a n s a c t i o n R e v i s i o n : update ? update .
7 OPTIONAL {{ {? update : s t a r t e d A t ? s t a r t D a t e . }}
8 FILTER ( ! bound(? s t a r t D a t e ) || ? s t a r t D a t e <= "2015−07−02T06:01:23+00:00"^^<http ://

www.w3. org /2001/XMLSchema#dateTimeStamp> )
9 OPTIONAL {{ ? update : endedAt ?endDate . }}

10 FILTER ( ! bound(? endDate ) || ?endDate >= "2015−07−02T06:01:23+00:00"^^<http ://www.w3
. org /2001/XMLSchema#dateTimeStamp> )

11 MINUS {
12 : Revision_f8dcab6ec0544c0c8287ae : preced ingRev i s ion * ? o therTransac t ionRev i s ion .
13 ? o therTransac t ionRev i s ion : update ? o the rVa l idRev i s i on .
14 ? o the rVa l idRev i s i on : precedingUpdate ? update .
15 }
16 }

For the implicit reference strategy we use the revision numbers and the branch indices to
query the updates. Listing 6.8 gives an example of such a SPARQL query for the implicit
reference strategy. With line 6 to 9 we query all updates having a transaction time equal
to or smaller than j. In this example, it means that we must query all updates in the main
stream having a revision number smaller or equal to 31. With line 10 to 13 we query all
updates having a valid time that encloses i, and with line 14 to 20 we remove all updates
having a transaction time smaller than j.

LISTING 6.8: An example of a SPARQL query to obtain the request updates
for the implicit reference strategy

1 PREFIX : <ht tp ://www. bi−vaks . org /vocab/> .
2 PREFIX rd f : <ht tp ://www.w3. org/1999/02/22− rdf−syntax−ns#> .
3
4 SELECT ? update
5 WHERE {
6 ? update rd f : type : Update .
7 ? update : revisionNumber ? revisionNumber .
8 OPTIONAL { ? update : branchIndex ? branchIndex }
9 FILTER ( ( ! bound(? branchIndex ) && ? revisionNumber <= 31 ) )

10 OPTIONAL {{ {? update : s t a r t e d A t ? s t a r t D a t e . }}
11 FILTER ( ! bound(? s t a r t D a t e ) || ? s t a r t D a t e <= {0} )
12 OPTIONAL {{ ? update : endedAt ?endDate . }}
13 FILTER ( ! bound(? endDate ) || ?endDate >= {0} )
14 MINUS {
15 ? other rd f : type : Update .
16 ? other : revisionNumber ? otherRevisionNumber .
17 OPTIONAL { ? other : branchIndex ? otherBranchIndex }
18 FILTER ( ( ! bound(? otherBranchIndex ) && ? otherRevisionNumber <= 31 ) )
19 ? other : precedingUpdate ? update .
20 }
21 }

Finally, for the combined reference strategy we uses the revision numbers and branch
indices to query the update revisions, and the explicit reference to the valid revision(s) to
query the updates. Listing 6.9 gives an example of such a SPARQL query for the combined
reference strategy. With line 5 to 7 we query all update revisions having a transaction
time equal to or smaller than j. In this example, it means that we must query all update
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revisions in the main stream having a revision number smaller or equal to 31. With line 8
we query the updates corresponding to the update revisions. With line 9 to 12 we query
all updates having a valid time that encloses i, and with line 13 to 19 we remove all
updates having a transaction time smaller than j.

LISTING 6.9: An example of a SPARQL query to obtain the request updates
for the combined reference strategy

1 PREFIX : <ht tp ://www. bi−vaks . org /vocab/> .
2
3 SELECT ? update
4 WHERE {
5 ? t r a n s a c t i o n R e v i s i o n : revisionNumber ? revisionNumber .
6 OPTIONAL { ? t r a n s a c t i o n R e v i s i o n : branchIndex ? branchIndex }
7 FILTER ( ( ! bound(? branchIndex ) && ? revisionNumber <= 31 ) )
8 ? t r a n s a c t i o n R e v i s i o n : update ? update .
9 OPTIONAL {{ {? update : s t a r t e d A t ? s t a r t D a t e . }}

10 FILTER ( ! bound(? s t a r t D a t e ) || ? s t a r t D a t e <= {0} )
11 OPTIONAL {{ ? update : endedAt ?endDate . }}
12 FILTER ( ! bound(? endDate ) || ?endDate >= {0} )
13 MINUS {
14 ? o therTransac t ionRev i s ion : revisionNumber ? otherRevisionNumber .
15 OPTIONAL { ? o therTransac t ionRev i s ion : branchIndex ? otherBranchIndex }
16 FILTER ( ( ! bound(? otherBranchIndex ) && ? otherRevisionNumber <= 31 ) )
17 ? o therTransac t ionRev i s ion : update ? other .
18 ? other : precedingUpdate ? update .
19 }
20 }

After we have obtained all updates fulfilling the transaction and valid time, we can con-
struct the version: we first sort the updates by their transaction time and subsequently
fast forward the updates by inserting and deleting their quads from a temporal dataset
state. Figure 6.5 gives an illustration of various transaction and valid revisions between
1 June 2021 and 1 July 2021. The Updates and Updates Revision in yellow might have a
different transaction and valid time which is indicated by their position in the figure. The
Updates only have an effective date [tv

s , ∞), and some Updates are modified or reverted,
because another Update is referring to them. Suppose we would like to know which up-
dates belong to a state of the RDF dataset. For example, a state has a valid time of 20
June 2021 and a transaction time of 4 June 2021 (green). We only consider Update Re-
visions (25) and (26). Since Update (26) is not valid yet at 20 June 2021, this state only
contains Update (25). Another example considers a state with a valid time of 12 June
2021 and a transaction time of 28 June 2021 (blue). We consider all Update Revisions
in the main stream, but only Updates (25) (30), (27), and (29) are valid. Furthermore,
we take Update (30) instead of (25), because Update (30) is referring to (25). The last
example look at a state in a branch with a valid time of 3 June 2021 and a transaction
time of 19 June 2021 (red). For this example, we consider Update Revisions (35), (33),
(27), (26), and (25), but only Update (25) is valid yet.

Nonetheless, it can be very time consuming to first obtain, then order, and finally fast
forward all the updates from the initial state onward in order to construct the requested
bi-temporal state of the RDF dataset. Therefore, we introduce three improvements to
reduce the retrieval time of a version. The first improvement let a Linked Data user set
up a fully materialised version of a state of the dataset (Snapshot). We can now construct
the requested state from a Snapshot with probably fewer updates than from the Initial
Revision. In Section 6.2.1 we explain how we can construct a version or state from such
a snapshot. In Section 6.2.2 we describe our second improvement. This improvement
makes it possible to query the updates that specifically contain the quads corresponding
to the quad pattern in the SPARQL query. Finally, Section 6.2.3 gives an explanation of
the third improvement: aggregating the Updates. Since the Updates can be inverted, it is
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FIGURE 6.5: Visualisation of valid and transaction revisions between 1
June and 1 July 2021.

possible to take all updates together and cancel out the same added and deleted triples in
order to leave out the sorting process. In the last Section 6.2.4 we give a brief summary
of the complete version retrieval process.

6.2.1 Constructing a state of RDF dataset from snapshot

In order to construct a state of the RDF dataset Di,j from a Snapshot we first require to
determine which Snapshot to take. The state of the Snapshot and of the request dataset
might differ in their valid time as well as their transaction time, but to determine their
difference in transaction time might be more complicated. Therefore, in our thesis we
take for convenience the Snapshot that is closest to the requested state Di,j based on the
valid time. Although, it is very easy to compute the difference in transaction time for the
implicit and combined reference strategy. In addition to time, the closest Snapshot must
also take into account whether the requested state and the snapshot are on the same
chain of transaction revisions. For example, it is not possible to reach Snapshot (36) from
Update Revision (37) in Figure 6.5.

After we have discovered the closest Snapshot, we query this Snapshot to establish the
beginning of the version construction process by means of a CONSTRUCT query. This
CONSTRUCT query contains the triple from the users’ SPARQL query. And we add this
CONSTRUCT query result to a temporal RDF dataset. Then we need to retrieve the up-
dates between the closest snapshot and the requested state of the RDF dataset. Whether
we should fast-forward or rewind the Updates depends on their transaction and valid
time. Suppose the closest Snapshot has valid time l and transaction time k, (Dl,k), and the
requested dataset state has a valid time i and transaction time j, (Di,j). The Updates all
have a start time ts, and end time te. And, since the modified and reverted updates should
be omitted, we retrieve the most recent updates: the updates with only an effective date
tt.

Nevertheless, we encounter a notable problem when we bring state Dl,k into state Di,j,
because users could modify or revert an Update. Therefore, a Snapshot might contain
the updated Updates, whereas the requested dataset still contains the old Updates (j <
k). As illustrated in Figure 6.5, Snapshot (36) contains Update (30), while the dataset
at revision number (27) still contains Update (25). Or a Snapshot still contain the old
Updates, whereas the requested dataset already contains the updated Updates (j > k). As
illustrated in Figure 6.5, Snapshot (28) still contains Update (25), while the dataset at
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revision number (31) already includes Update (30). It means that we first must rewind
or later fast-forwards these modified or reverted updates for constructing a state. The
definitions below explain how we can convert one state to another state. While definition
10 describes how we can bring two states with the same valid time (l) from one to the
other (from Dl,k to Dl,j), definition 11 describes how we can bring two states with the
same transaction time (k) from one to the other (from Dl,k to Di,k).

Definition 10 (From Dl,k to Dl,j). To bring state Dl,k into state Dl,j we must either rewind
or fast-forwards the latest updates having a difference in transaction time (j 6= k).

• (j < k) We must first rewind all updates having tv
s ≤ l ≤ tv

e and j < tt ≤ k. We
must subsequently fast-forward the updates having tt ≤ j and tv

s ≤ l ≤ tv
e which are

modifications of the updates having j < tt ≤ k and tv
s ≤ l ≤ tv

e .

• (j > k) We must first rewind the updates having tt ≤ k and tv
s ≤ l ≤ tv

e which
are modifications of the updates having k < tt ≤ j and tv

s ≤ l ≤ tv
e . We must

subsequently fast-forwards all updates having tv
s ≤ i ≤ tv

e and k < tt ≤ j.

Definition 11 (From Dl,k to Di,k). To bring state Dl,k into state Di,k we must either rewind
or fast-forwards the latest updates having a difference in valid time (i 6= l).

• (i < l) We must rewind all updates having i < tv
s ≤ l, tv

e > l, and tt ≤ k, and fast
forward all updates having tv

s < i, i ≤ tv
e < l, and tt ≤ k.

• (i > l) We must fast-forwards all updates having l < tv
s ≤ i, tv

e > i, and tt ≤ k,
and rewind all updates having tv

s < l, l ≤ tv
e < i, and tt ≤ k.

Below we give for each scenario an example to illustrate how we can covert the state of
the closest snapshot Dl,k in the state of requested RDF dataset Di,j.

j = k Same Transaction Time

i = l Both the valid time and the transaction time have the same value. Therefore,
we we can directly query the Snapshot, since the state of the Snapshot exactly
corresponds to the state of the dataset.

i < l The valid time of the dataset is smaller than the valid time of the snapshot,
which is illustrated by the red dotted line in Figure 6.6. By following Definition
11, we can construct Di,j from Dl,k. We rewind update (1), (5), and (9), and
fast-forward update (3), (4) and (8).

i > l The valid time of the dataset is larger than the valid time of the snapshot, which
is illustrated by the green dotted line in Figure 6.6. By following Definition 11,
we can construct Di,j from Dl,k. We rewind update (1), (2), and (5), and
fast-forward update (6).

j < k Smaller Transaction Time

i = l Although, both states have the same valid time, the transaction time of the
dataset is smaller than the transaction time of the snapshot, which is illustrated
in Figure 6.7 by the blue, and black color of Dl,k, and Di,j respectively. By
following Definition 10, we can construct Di,j from Dl,k. Thus, we rewind
update (1) and (5).

i < l Since the state Di,j has a smaller transaction time than Dl,k, we first bring state
Dl,k into state Dl,j by following Definition 10. Thus, state Dl,k = {1, 2, 5, 7, 9}
from Figure 6.7 becomes state Dl,j = {2, 7, 9}. However, the valid time of the
dataset is smaller than the valid time of the snapshot, which is illustrated by
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FIGURE 6.6: Constructing the dataset state Di,j from the snapshot state
Dl,k, where j = k.

the red dotted line in Figure 6.7. By following Definition 11, we can construct
Di,j from Dl,j. Hence, we rewind update (9), and fast-forward update (3) and
(8)

i > l Again since the state Di,j has a smaller transaction time than Dl,k, we first bring
state Dl,k into state Dl,j by following Definition 10. However, the valid time of
the dataset is larger than the valid time of the snapshot, which is illustrated
by the green dotted line in Figure 6.7. By following Definition 11, we can
construct Di,j from Dl,j. Thus, we only rewind update (2).

FIGURE 6.7: Constructing the dataset state Di,j from the snapshot state
Dl,k, where j < k.

j > k Larger Transaction Time

i = l Although, both states have the same valid time, the transaction time of the
dataset is larger than the transaction time of the snapshot, which is illustrated
in Figure 6.8 by the blue, and black color of Di,j, and Dl,k respectively. By fol-
lowing Definition 10, we can construct Di,j from Dl,k. We fast-forward update
(1) and (5).

i < l We first bring state Dl,k into state Di,k by following Definition 11, since the
valid time i is smaller than valid time l, which is illustrated by the red dotted
line in Figure 6.8. We rewind update (9), and fast-forward update (3) and
(8), and thus, state Dl,k = {2, 7, 9} now becomes state Di,k = {2, 3, 7, 8}. We
subsequently bring state Di,k into state Di,j by following Definition 10. Thus,
we fast-forward update (4).

i > l Again we first bring state Dl,k into state Di,k by following Definition 11, since
the valid time i is larger than valid time l, which is illustrated by the green
dotted line in Figure 6.8. We rewind update (2), and thus, state Dl,k = {2, 7, 9}
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now becomes state Di,k = {7, 9}. We subsequently bring state Di,k into state
Di,j by following Definition 10. Thus, we fast-forward update (6).

FIGURE 6.8: Constructing the dataset state Di,j from the snapshot state
Dl,k, where j > k.

6.2.2 Retrieving updates based on a triple pattern

The easiest and most naive strategy to construct a specific version would be to query all
updates enclosing both time intervals. For instance, suppose we would like to construct
version F from version A, as showed in Figure 6.9. Since all updates have the same
valid time, we must obtain all six updates to construct version F from A. However, only
some updates actually include the triples that are needed to answer the users’ basic triple
pattern query. For instance, if a user would like to know all labels of the IRI http:
//recipehub.nl/recipes#FrenchCuisine, the grey and purple updates in Figure 6.9 do
not include a triple that matches this triple pattern. Therefore, Bi-VAKs does not need to
query all updates to return a query response to the user. It only obtains those updates
that in fact match the triple pattern stated in the SPARQL query, which are most probable
less updates than all updates.

FIGURE 6.9: Representation of six different Updates Revisions and their
corresponding Updates.

Due to the compact representation of SPARQL-star, we only need to add a single line
to the SPARQL queries demonstrated in Listing 6.7, 6.8, and 6.9 in order to query the
updates that match the basic triple pattern. Listing 6.10 presents an example of such a
line of SPARQL. It selects all updates that either inserts or deletes a triple that matches 〈
recipes:FrenchCuisine rdfs:label ?label 〉.

LISTING 6.10: A SPARQL query line to query an update matching a basic
triple pattern.

PREFIX r e c i p e s : <ht tp ://www. recipehub . n l / r e c i p e s#> .
PREFIX r d f s : <ht tp ://www.w3. org /2000/01/ rdf−schema#> .

? update ?p << r e c i p e s : FrenchCuis ine r d f s : l a b e l ? l a b e l >>

http://recipehub.nl/recipes#FrenchCuisine
http://recipehub.nl/recipes#FrenchCuisine
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Although we only consider basic triple pattern queries due to shortage of time, there also
arises a significant problem when a users’ query contains multiple triple patterns. Often,
the variables in one triple pattern correspond to the variables in another triple pattern, so
these triple patterns are interdependent. Furthermore, a single update might not include
all triple patterns. These matching triples might be spread out over multiple updates. It
means that we require to query over all updates, and we must define independent update
variables in the SPARQL query. If we do not query over all updates, but over a select
group of updates, some variables might stay undefined. For instance, suppose we would
like to obtain all recipes having the label ‘"Chinees"@nl’ between version D and F, as
illustrated in Listing 6.11. The update that defines the cuisine having ‘Chinees"@nl’ as
label (‘ChineseCuisine’) belongs to version C. Therefore, ‘?cuisine’ will never be bound
to ‘ChineseCuisine’ between version D and F. ‘?cuisine’ stays undefined, and thus we are
not able to determine the recipes with the ‘ChineseCuisine’ between version D and F. A
simple strategy to solve these issues is to query all the updates which match one of the
triple patterns, which is illustrated in Listing 6.12. This strategy is less specific, but it still
filters updates, which are absolutely not relevant for the users’ query.

LISTING 6.11: SELECT Query containing two triple patterns.
PREFIX r d f s : <ht tp ://www.w3. org /2000/01/ rdf−schema#> .

SELECT ? rec ipe
WHERE {

? rec ipe : c u i s i n e ? c u i s i n e .
? c u i s i n e r d f s : l a b e l " Chinees "@nl .

}

LISTING 6.12: A SPARQL query line to query an update matching a basic
triple pattern.

PREFIX r e c i p e s : <ht tp ://www. recipehub . n l / r e c i p e s#> .
PREFIX r d f s : <ht tp ://www.w3. org /2000/01/ rdf−schema#> .

{ ? update ?p << ? rec ipe r e c i p e s : c u i s i n e ? c u i s i n e >> }
UNION
{ ? update ?p << ? c u i s i n e r d f s : l a b e l " Chinees "@nl >> }

6.2.3 Aggregating updates

The last improvement we introduce is the aggregation of updates. Instead of first sorting
the updates based on their transaction time, we take them together as a single collection
of inserted and deleted quads, and remove all quads from the collection, which are both
inserted and deleted. Thus, we insert quad q if I > D, and delete quad q if i < D, where I
is the number of times q is inserted, and D the number of times q is deleted. However, in
addition to rewinding updates we can only aggregate updates when they are invertable.
Figure 6.10 gives a similar illustration as Figure 6.4, but now all updates can be inverted.
It demonstrates that we only need to insert triples b, c, and g if we want to construct the
blue state. The triples a, d, and e are canceled out.

FIGURE 6.10: Visualisation of the influence of invertible updates to the
states of the RDF dataset.
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6.2.4 Constructing an arbitrary state of the RDF dataset (version)

In the previous sections we explained all steps to construct a version or state of the RDF
dataset to allow for retrospective and historical SPARQL queries. In this section we bring
everything together, and summarise the steps for constructing a version.

Step 1 Latest Transaction Revision When an user does not explicitly give a transaction time,
we always take the most recent transaction time. This time always corresponds to
the latest transaction revision: the revision to which no other revision is referring.
Moreover, if a branch name is given we search for the latest transaction revision in
that branch.

Step 2 Closest Snapshot Based on the transaction revision and the given valid time, we
can now determine which Snapshot is the closest to the valid time. If we find a
Snapshot, we query this Snapshot with a CONSTRUCT query, which is based on the
user’s SPARQL query, and we use its result as start point of our constructed version.

Step 3 Query Updates Based on the closest Snapshot we now retrieve the updates from the
revision-store, as we have explained in section 6.2.1, and 6.2.2. Then we aggregate
these updates, and we add the inserted quads to the constructed version.

6.3 Bi-Temporal SPARQL Query

As stated in the introduction retrieving both prior Linked Data versions, and the changes
between them could provide Linked Data users relevant information, especially for cou-
ple historical and retrospective queries. Therefore, Bi-TR4Qs allows its Linked Data users
to do different bi-temporal SPARQL queries. A Linked Data user can query a (prior) ver-
sion, which we call a version materialisation (VM) query (Section 6.3.1). An user can
also query the difference between two versions directly, which we call a delta materiali-
sation (DM) query (Section 6.3.2). And, to determine which versions or states of the RDF
dataset are able to return an answer to that SPARQL query, an user can do a version query
(VQ) (Section 6.3.3). In this thesis we only focus on single triple pattern queries. Note
that these queries do not cover the full spectrum of SPARQL queries. Nonetheless, triple
patterns form the basis for more complex queries.

6.3.1 Version Materialisation (VM) Query

For version materialisation queries we would like to query a specific state or version of the
RDF dataset Di,j. Therefore, we must first retrieve this state by following the procedure
described in Section 6.2; subsequently we must apply the user’s query to this state of the
RDF dataset, and finally we must return the result back to the user.

6.3.2 Delta Materialization (DM) Query

For delta materialisation queries we would like to obtain the difference in the query re-
sult between two different states of the RDF dataset. For instance, if state A returns
+1,+5,−6, and state B return +1,−8, the difference between these states is +5,−6,−8.
Since the user’s SPARQL query only contain a single triple pattern, we can directly query
the Updates, and we do not need to construct both states first. Therefore, we directly
obtain the updates, which correspond to the triple pattern stated in the users’ SPARQL
query, and subsequently aggregate these updates in order to return this collection of in-
serted and deleted triples back to the user. However, as we already described in Section
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6.2.1, two states can differ in both their transaction time and valid time. Therefore, by
following the same proceeding described in Section 6.2.1 we can obtain the inserted and
deleted triples between two different states of the RDF dataset.

6.3.3 Version Query (VQ)

For version query we would like to know at which state of the dataset Di,j we can answer
the specified query. However, the valid time i could be a continuous unbounded time, and
although the transaction time is discrete and bounded, the revision-store might consists
of numerous transaction revisions. Therefore, for convenience we consider a Tag as a
version, because a Tag is a reference to a specific state of the RDF dataset. Thus, a version
query returns all the Tags that return an answer to the specified SPARQL query.
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Chapter 7

Bi-VAKs Implementation

In this chapter we concisely describe the prototypical implementation of our change-based
Version Control System, Bi-VAKs. This implementation is a realisation of the requirements
and concepts described in Chapter 4, 5, and 6. However, due to time limitations Bi-VAKs
does not support reversions and mergers yet. Figure 4.7 gives an overview of Bi-VAKs.

FIGURE 7.1: A general overview of the Bi-Temporal Versioning Approach
for Knowledge graphs (Bi-VAKs).

As illustrated in Figure 7.1, Bi-VAKs is a middle-ware between Linked Data users and
other RDF applications: the revision-store and some data stores. Bi-VAKs communicates
with these triple/quad-store via a standard SPARQL 1.1 endpoint, and it respectively
sends SPARQL queries and SPARQL Update queries to retrieve and store the data in these
triple/quad-stores. A basic requirements for our middle-ware is that the tools, which
Linked Data users already use, do not work on a file basis, but on a triple/quad-store
with a SPARQL interface. Thus, to allow users to work with their own tools and Bi-VAKs
simultaneously, Bi-VAKs provides a standard SPARQL 1.1 endpoint that currently only
supports SPARQL 1.1 Select and Update Queries. These endpoints form the read/write
interface on the versioned RDF dataset. In addition to this SPARQL 1.1 endpoint, Bi-VAKs
also has endpoints to which Linked Data users can do other versioning requests, such as
the creation of a branch, tag, or snapshot. In the subsequent sections we briefly discuss
these endpoints in more detail. The prototypical implementation of Bi-VAKs is developed
using Python1. It uses the Flask API2 and RDFLib3 to provide a SPARQL 1.1 interface

1https://www.python.org/
2http://flask.pocoo.org/
3https://rdflib.readthedocs.io/en/stable/

https://www.python.org/
http://flask.pocoo.org/
https://rdflib.readthedocs.io/en/stable/


72 Chapter 7. Bi-VAKs Implementation

via HTTP. As the underlying quad-store to store the revisions and the snapshots, we use
the in-memory store of Apache Jena-Fuseki 4.0.04. Bi-VAKs’ implementation code and
the code for the experiments - which we further describe in Chapter 8 - can be found at
https://github.com/lhmeijer/Bi-VAKs.

7.1 Update Requests

To provide write access to the versioned RDF dataset, Bi-VAKs supports a standard SPARQL
1.1 Update (Gearon, Passant, and Polleres, 2013) endpoint that thus far only supports IN-
SERT DATA or DELETE DATA update operations. Nevertheless, in addition to a SPARQL
Update query, in our implementation the user must also add a description and its name to
its request in order to track some provenance information, as illustrated in Figure 7.2. In
the figures below the bold lines around the input data indicate that this data is required.
As explained in Section 5.2.2, an user can also add a valid time to a change by means of a
start date, end date, or both dates. Furthermore, in order to modify a diverged versioned
RDF dataset (also known as a branch), an user can add the corresponding branch name
to its request. After Bi-VAKs has received this update request, it first extracts all modi-
fications from the SPARQL Update query and all other remaining data from its request.
Secondly, it checks for each modification whether we can insert or delete this modified
quad into or from the RDF dataset. Then it constructs a Update Revision and Update, and
finally, it stores these revisions in the revision-store by sending an SPARQL 1.1 Update
query to the quad-store serving as the revision-store. Furthermore, it also deletes the pre-
vious Head Revision of the chain of transaction revisions, and it add a new Head Revision
that refers to this newly added Update Revision: the latest added transaction revision.
From the Head Revision we can determine the latest transaction revision for the main
stream, and the other branches in the revision-store.

In addition to creating a new update, it is also possible to modify an existing update by
sending a similar request to an additional endpoint with the update identifier in the URL,
as illustrated in Figure 7.2. This existing update has not already been modified in the
same chain of transaction revisions. From this request Bi-VAKs first extracts the included
data. However, Bi-VAKs uses the data from the modified update if no data is included.
Then, Bi-VAKs checks whether this modification is permitted by the “invertibility check”,
and then constructs both a Update Revision and Update. In addition, it let the new Update
refer to the modified Update.

FIGURE 7.2: Illustration of an update request.

4https://jena.apache.org/documentation/fuseki2/

https://github.com/lhmeijer/Bi-VAKs
https://jena.apache.org/documentation/fuseki2/
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7.2 Other Versioning Requests

In addition to an update request, Linked Data users can also do other versioning requests
to Bi-VAKs, as illustrated in Figure 7.1 and 7.3. These requests are rather similar to an
update request, but they create a Branch, Snapshot, or Tag instead. In Figure 7.3a we first
demonstrate the branch request, which Linked Data users can send in order to diverge
from the common RDF dataset. This branch request must always contain a branch name,
as showed in Figure 7.3a. In addition, they could add a transaction revision at which the
new branch should branch off from. And, they could add a branch name of an existing
branch, if the new branch should branches off from that particular branch. If a transaction
revision is not given, the new branch always branches off from the head of the chain of
transaction revisions. This chain depends on whether the new branch should branch off
from the main stream or from another branch. In addition, an user could also send a
branch request with a branch identifier in the URL in order to modify an existing branch.
This branch must always be the latest branch. You cannot modify a branch which is
already modified somewhere in the past. From both branch requests Bi-VAKs constructs
a Branch Revision and a Branch, and it stores them in the revision-store. Furthermore, it
also creates a new Head revision, which points to the this newly added Branch Revision. It
only deletes the previous Head Revision if Bi-VAKs modifies an existing branch in order to
prevent a new branch from being created.

The next versioning operation request is the snapshot request, as presented in Figure
7.3b. The snapshot requests creates a materialised version of a state of the RDF dataset
based on the information in the requests. The effective date and the transaction revision
respectively denote the valid time and the transaction time of this state. However, if the
user does not include an effective date to its request, Bi-VAKs uses the current date to
denote the valid time. And if no transaction revision is given, Bi-VAKs uses the head of
the chain of transaction revisions to denote the transaction time. Bi-VAKs first creates this
state of the RDF dataset by retrieving the corresponding update from the revision-store,
and stores this state in a new triple/quad-store. This triple/quad-store has a standard
SPARQL 1.1 endpoint, and it can be queried by a dataset name and URL included in the
user’s request. Similar to the other versioning operation requests, an user can also modify
an existing snapshot by adding a snapshot identifier to the URL of the request. Bi-VAKs
creates for both snapshot requests a Snapshot, and a Snapshot Revision. It deletes the
previous Head Revision, and it inserts a new one referring to the latest Snapshot Revision.

The last versioning operation request that is implemented in Bi-VAKs is the tag request.
As displayed in Figure 7.3c, a tag request always need a name to label a specific state of
the dataset. A state is based on a valid time and a transaction time. Similar to a snapshot
request, the valid time is either denoted by a given effective date or by the current date,
and the transaction time is either indicated by a given transaction revision or the current
Head Revision. Again, an user can modify an existing tag by adding the tag identifier to
the URL of the request. Bi-VAKs creates for both tag requests a Tag, and a Tag Revision.
It deletes the previous Head Revision, and it inserts a new one referring to the latest Tag
Revision.
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(A) Branch request (B) Snapshot request (C) Tag request

FIGURE 7.3: Illustration of three different versioning operation requests.

7.3 Version Materialisation, Delta Materialisation & Version
Query Requests

To provide read access to a versioned RDF dataset Bi-VAKs has a standard SPARQL 1.1
(Prud’hommeaux and Seaborne, 2008) endpoint that so far supports version materiali-
sation (VM), delta materialisation (DM), and version (VQ) basic triple pattern SELECT
queries. A Linked Data user must send this query atom (VM, DM, and VQ) and the SE-
LECT query via a GET request to Bi-VAKs. If an user sends a VM query request, Bi-VAKs
first constructs the requested state of the RDF dataset; applies the SELECT query on this
state; and sends its response back to the user in JSON Format. As explained in Section
6.2, this state can either be constructed sorted or aggregated, from the initial revision
or from a snapshot, and all updates or only specific updates. The user can include the
requested state in many ways to its query request. A user can sends a tag name that is
referring to an existing Tag. A user can include a transaction revision and an effective
date to directly indicate the transaction and valid time. Or the transaction and valid time
are respectively based on the Head Revision and the current date.

For a DM query request, an user must send the state information of two states, as for
this query it is required to determine the difference between the query results over two
different states of the RDF dataset. Similar to the VM query request, these states are
either based on a tag name, a transaction revision, or an effective date. After Bi-VAKs
has extracted this state information, it either constructs both versions separately, and
it compute their difference over the SELECT query results, or it directly determine their
difference over the in-between updates. Subsequently, it returns the results of the inserted
and deleted triples back to user in JSON format. The VQ query request works a little
differently than the other two. The version query returns the versions for which the
SELECT query gives a results. Instead of seeing each transaction revision as a version,
we indicate a Tag as a version. A Tag consists of an effective date and a transaction
revision to indicate the valid and transaction time. Therefore, Bi-VAKs first determine all
Tags in the chain of transaction revisions, which, additionally, depends on a given branch
name. Subsequently, it either constructs each state of the RDF dataset separately, or it
uses the previous state and the in-between updates to construct a version. After applying
the SELECT query on each version, it returns a result in JSON format back to its user,
including the tag name and its corresponding query result if the state indicated by that
tag gives a result for the user’s query.
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(A) VM query request (B) DM query request (C) VQ query request

FIGURE 7.4: Illustration of the three different query requests.
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Chapter 8

Evaluation

In this chapter we evaluate the ingestion and query performance of our prototypical
Linked Data Version Control System, Bi-VAKs, on different input settings. In other words,
in this chapter we assess the ingestion and query performance of our prototypical imple-
mentation described in Chapter 7 on some design decisions we described in Chapter 5 and
6. In general, the performance of RDF versioning approaches can be assessed by the stor-
age size, by the ingestion time of new changes, and by the look up time of different query
types. These type of queries queries the (prior) versions (Version Materialisation (VM)),
queries the differences between versions (Delta Materialisation (DM)), or queries all the
versions returning a solution (Version Query (VQ)). However, the aim of our experiments
is not to compare Bi-VAKs’ performance with the performance of existing Linked Data ver-
sioning approaches, such as OSTERICH (Taelman et al., 2019) and QuitStore (Arndt et
al., 2019). Because, these approaches only consider changes having a single time dimen-
sion. Our experiments serves as a benchmark to evaluate the performance of bi-temporal
Linked Data versioning systems. This benchmark, Bi-BEAR, is an extension of the BEAR
benchmark (Fernández et al., 2019) in order to evaluate bi-temporal ingestion and query
performance. In Section 8.1 we outline in detail how we expand the BEAR benchmark.
Besides, we also evaluate the effect of some design decisions of Bi-VAKs on the ingestion
and VM, DM, VQ basic triple pattern query performance. Based on these design decisions
described in chapter 5 and 6, we give in Section 8.2 an overview of them, the so-called
evaluations points, for which we have evaluated Bi-VAKs’ performance. In the subsequent
sections we give the results of Bi-VAKs’ ingestion performance derived from its ingestion
time and storage size (Section 8.3), and Bi-VAKs’ VM, DM and VQ basic triple pattern
query performance based on the time needed to obtain a query result (Section 8.4) on
these evaluation points. All these experiments were performed on a MacBook Pro with a
3,1 GHz Dual-Core Intel Core i7 processor and 16 GB of RAM on the local machine.

8.1 Expansion on the BEAR Benchmark (Bi-BEAR)

In this section we describe how we expand the Benchmark for RDF archives (BEAR) pro-
posed by Fernández et al. (2019) from a uni-temporal benchmark to a bi-temporal bench-
mark (Bi-BEAR). BEAR is a test suite to evaluate the storage space efficiency and the
performance of retrieval operations of RDF archiving approaches. BEAR is meant to serve
as a baseline for RDF versioning systems, as they performed an empirical evaluation on
various archiving strategies and RDF stores. BEAR consists of three main datasets and a
corresponding set of SPARQL test queries and their results, namely, BEAR-A, BEAR-B and
BEAR-C. Due to time and memory limitations we only use the BEAR-B-Daily. The dataset
of BEAR-B contains the 100 most volatile resources from the DBpedia Live changesets
(Morsey et al., 2012) over the course of three months (August to October 2015) at three
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different granularities: instant (21,046 versions), hour (1,299 versions) and day (89 ver-
sions). These datasets only contain triples, and thus no quads. BEAR-B provides a batch
of 62 realistic triple pattern queries, which is a mix of (?P?) and (?PO) queries and their
VM, DM, and VQ results for the granularities: hour and day. The dataset of BEAR-B, and
the queries, and can be found at https://aic.ai.wu.ac.at/qadlod/bear.html.

Nevertheless, the BEAR benchmark evaluates uni-temporal RDF archiving systems instead
of bi-temporal systems, such as Bi-VAKs. The versioned triples and the queries in BEAR
only have a transaction time, a version number. However, in Bi-VAKs both changes and
queries have a transaction time as well as a valid time. Thus, we must alter the dataset to
add an extra time dimension to the system’s changes and to the queries. A simple solution
would be to put all modifications between two consecutive BEAR versions into a single
Update and add a time interval that overlaps the effective date of all queries. This time
overlap is required because otherwise the Bi-VAKs might return other VM, DM and VQ
results than the results of BEAR-B. However, in this solution all updates have the same
valid time, and we still evaluate an uni-temporal versioning system. Therefore, we divide
the changes between two consecutive BEAR versions into multiple Update Revisions and
their corresponding Updates, and we add a different start and end date to these Updates.
We do so by having an artificial Linked Data user send an HTTP request to the SPARQL
Update endpoint of Bi-VAKs containing a SPARQL Update query and a randomly selected
start and end date. Such a SPARQL Update query contains a set of inserted and deleted
triples randomly taken from the changes between two consecutive BEAR versions. In
order to ensure that the query results do not differ from the actual BEAR results, the
Updates - which matches with one of the queries - must have a time interval that overlaps
the effective date of that query. Although for convenience all queries have the same
effective date for each version, we can now assess the effect of both the transaction and
valid time. However, since a BEAR version now consists of multiple updates (revisions),
we require another method to refer to a BEAR version. Therefore, we create for each
BEAR version a Tag. As in Bi-VAKs each version is bi-temporal, these tags also have a
different transaction and valid time. This valid time corresponds to the effective date of
the queries.

FIGURE 8.1: Example of transforming changes between two consecutive
BEAR versions into Update Revisions and Updates.

Figure 8.1 illustrates an simplified example of extending the changes between version
1 and version 2 into Update Revisions and Updates, and creating a Tag for each version.
Due to these adaptations we can no longer compare the Bi-VAKs’ performance with the
performance of BEAR and other versioning approaches. The number of Updates might

https://aic.ai.wu.ac.at/qadlod/bear.html
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affect the speed of constructing a version, and a restriction on an effective date may
slow down the retrieval of updates. In addition, we have made our versioning system
more realistic by adding some metadata to each Update Revision, such as a description, an
author and creation date. As a result, our revision-store contains more triples than other
change-based versioning approaches, which only stores the changes between versions.

8.2 Evaluation Points to Assess Bi-VAKs

In the previous section we described how we have expanded the BEAR benchmark, and
that we divided the changes between two consecutive BEAR versions into multiple Update
Revisions and Updates. In addition to adjusting this number of modifications per Update
and their time interval, we can vary various other input parameters in Bi-VAKs, which
might affect Bi-VAKs’ performance. These input parameters or so-called evaluation points
(EVA) are based on certain design decision we have discussed in chapter 5 and chapter
6. In this section we outline these evaluations points, and demonstrate in the subsequent
sections their impact on the Version Materialisation (VM), Delta Materialisation (DM)
and Version (VQ) query performance, and storage costs of Bi-VAKs. However, to limit
the number of experiments we did not consider all design decisions. One of the design
decision we did not evaluate is named graphs. Although Bi-VAKs supports named graphs,
since BEAR-B-Daily only contains triples, we does not include them in our experiments,
and we refer to future work how we can extend our experiments to include them.

FIGURE 8.2: A global illustration of the different evaluation points.

Figure 8.2 gives a comprehensive illustration of the nine different evaluations points,
which we further discuss below:

EVA1 Modifications per Update The number of modifications per update affects the total
number of updates between two consecutive versions. The more updates in the
revision-store the more updates Bi-VAKs requires to assess whether they are com-
patible with the transaction and valid time and the more storage space is needed.
In our experiments, we either consider 50, or 100 modifications per update.

EVA2 Valid Time Interval By varying the valid time interval of each update, we could
influence the number of updates that are needed to a construct a version having a
certain valid time. The more the updates’ time intervals overlap the more updates
must be queried for an overlapping valid time. We determine these time interval by
first generating a date (t) in the middle of the interval from a normal distribution
with a constant mean (µt =1 July 2015) and a variable standard deviation (σt). σt
is either 1000000 (LC) or 5000000 seconds (HC). And then we generate a width
(w) of the interval from a normal distribution with a constant standard deviation
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(σw =1 day) and a variable mean (µw). µw is either 5 days (LW) or 50 days (HW).
We now compute the start date by t−w and the end date by t+w. Since we assume
a maximum time interval of a year, we give updates no start date or no end date if
respectively their start date is negative and end date is larger than 365 days.

EVA3 Snapshot Instead of storing only the changes we could also store a full materialised
version of a state of the dataset (Snapshot). Therefore, we do not need to retrieve
all updates ever made to the revision store, but only the differences between two
states of the revision-store. In our experiments, we have created such a snapshot
after the 45th version with an effective date of 1 July 2015 (S45).

EVA4 Branches In Bi-VAKs it is possible to branch off from the common dataset or from an-
other branch. Branches might affect the query performance. Every branch branches
off from the preceding branch, such that all transaction revisions still form a single
chain. In our experiments, we have created a branch after each 3th version (B3).

EVA5 Modified Updates Linked Data users could also modify a valid revision in a revision-
store. Such valid revision modifications affects the number of valid revisions in the
revision-store and the references to their preceding valid revisions. Therefore, we
modify some existing Updates in the revision-store by adding one second to their
start and end date, and randomly modify an existing update after every 5 newly
created updates (M5).

EVA6 Fetching Strategy As described in Section 6.2.2, in order to construct a previous
version, we can either query all updates (FA) or we can only query the updates
matching the basic triple pattern specified in the SPARQL query (FS).

EVA7 Reference Strategy In Chapter 5 we explained three reference strategies to connect a
transaction revision with its corresponding valid revision(s). The implicit reference
(RI) refers via revision numbers and branch indices to the valid revisions. The
explicit (RE) and combined (RC) reference strategies directly refer via an attribute
in the transaction revision.

EVA8 Update Content Strategy As described in Section 6.1.2, we can represent a Update
modification in two different ways. We can either copy all modifications of a preced-
ing update to its new update, or we let the new update refer to its predecessor. The
update content strategies are respectively called the repeated (CP), and the related
(CL) update content strategy.

EVA9 Change Order Constructing a RDF dataset state from its change sets requires to
sort them in advance. Sorting (SO) might be very time-consuming. However, by
having invertible changes sorting is not needed, and we can directly aggregate (AG)
them. However, checking whether a modification can be invertible, is also time-
consuming.

In order to evaluate these evaluations points we create a number of different experi-
ments. These experiments vary in the evaluation points they evaluate. To indicate which
evaluations points they consist of, we use their abbreviations as stated above. Suppose
an experiment has 100 modifications per update (100), a little overlap (HC-LW), a sin-
gle snapshot (S45), branches (B3), modified updates (M5), fetches all updates at once
(FA), an explicit reference strategy (RE), a repeated update content strategy (CP), and
aggregated changes (AG). We indicate to this experiments as 100-HC-LW-S45-B3-M5-FA-
RE-CP-AG.
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8.3 Ingestion Performance of Bi-VAKs

We evaluate the ingestion performance on storage size and ingestion time. Due to time
and memory limitations we only use BEAR-B daily for our experiments. We ingest all
its 89 versions, which has a total of 93,131 modifications. In order to assess the query
performance of Bi-VAKs, we create a total of 21 different revision stores which vary in a
number of storage evaluations points, such as the time interval, update content strategy,
etc. We refer to Section 8.2 for the abbreviations of these evaluation points. These 21
revision stores are listed in the left column of Table 8.1. Besides, as we explained in
Section 4.3, in order to be able to aggregate modifications and rewind updates an update
must be invertible. Therefore, we need to check for each modification whether it can
actually be inserted or deleted in the revision-store. This check has a substantial impact
on the ingestion time, and hence we have measured the ingestion time both with and
without the so-called “invertibility check”.

Table 8.1 displays the number of triples, and the storage size for the 21 revision stores
in MB. The revision-store with 50 modification per update contains 1912 updates, and
the revision-store with 100 modification per update contains 982 updates. Although the
storage size of all three reference strategies do not differ much, Table 8.1 still demon-
strates that the implicit and combined reference strategy have the highest storage size. In
addition, the storage size increases when the modified updates contain all modifications
from their preceding update (repeated update content strategy (CP)), and stays almost
the same when the modified updates refer to its preceding updates for their modifications
(related update content strategy (CL)). Furthermore, although the storage sizes for the
implicit and combined reference strategy are almost the same, they slightly differ when
we add branches to the revision-store.

TABLE 8.1: Number of triples and storage size in MB of a revision-store
having different input settings

Approach Number of Triples Storage Size (MB)
Explicit Implicit Combined Explicit Implicit Combined

50-LC-HW-CP 148744 150747 150747 44.17 44.53 44.60
50-HC-LW-CP 148562 150565 150565 44.13 44.49 44.56
100-LC-HW-CP 138514 139587 139587 42.03 42.22 42.26
50-LC-HW-CP-B3 149179 155258 153278 44.27 45.45 45.13
50-LC-HW-CP-M5 171468 173853 173853 50.89 51.31 51.40
50-LC-HW-CL-M5 153328 155713 155713 45.18 45.60 45.69
50-LC-HW-CP-S45-M5 171481 173867 173867 50.90 51.32 51.41

In Figure 8.3 we have plotted the median (cumulative) ingestion time and the 25th and
75th quantile time in seconds without and with the invertibility check in the revision-store
50-LC-HW-CL-S45-B3-M5. To calculate the median ingestion time we have repeated the
process of constructing a revision-store 5 times. The vertical lines, which form the wide
colored bars, indicate the 10th up to 80th version. These lines point out that some version
contains more triples than others. Figure 8.3a puts the median cumulative ingestion time
with the invertibility check on display, and it has a mean total ingestion time of around 4
hours for all three reference strategies. Figure 8.3c puts the median cumulative ingestion
time without the invertibility check on display and it has a mean total ingestion time
of around 3 minutes for all three reference strategies. Figure 8.3b shows the median
individual ingestion time for each update in seconds with invertibility check, and Figure
8.3d shows the median individual ingestion time without invertibility check. These figures
show that the ingestion time increases tremendously when we need to check for each
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update whether it is invertible. It even further increases when the number of triples
grows in the revision-store. As showed in Figure 8.3a, all three graphs have a convex
shape. While with invertibility check it takes a bit less time for an implicit reference
strategy than for an explicit and combined reference strategy, without invertibility check
all three reference strategies almost have a similar ingestion time. In addition, they also
do not increase when the number of triples grows in the revision-store, because the graphs
in Figure 8.3c have a linear and an almost concave shape.

(A) Cumulative ingestion time with invertibility
check

(B) Ingestion time with invertibility check

(C) Cumulative ingestion time without invertibility
check

(D) Ingestion time without invertibility check

FIGURE 8.3: (Cumulative) ingestion time in seconds (sec) over 89 versions
for revision-store 50-LC-HW-S45-B3-M5-CL.

8.4 Query Performance of Bi-VAKs

In this section we evaluate the query performance of Bi-VAKs over version materialisation
(VM), delta materialisation (DM), and version (VQ) basic triple pattern queries. We eval-
uate the query performance by measuring the time it takes to obtain a query result. Due
to time and memory limitations we only use BEAR-B daily for our experiments. We eval-
uate all its 89 versions. BEAR-B provides two query sets that contain ?P? and ?PO queries
having respectively 49 and 20 queries. But because of time constrains we only use 20
queries of the ?P? query set for our experiments. Since we look at the median query time
over all queries and not at a individual query level, 20 queries might enough to assess the
overall query performance. We evaluate each query as VM query for all versions, as DM
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query between the first version and the next fifth version, and as VQ query. We have re-
peated every experiment 5 times to minimise outliers. To present the VM and DM results
in Figures 8.4 and 8.6 we have plotted the median query duration in seconds and its 25th
and 75th quantile. We plotted the median and quantiles instead of the mean, because
they are less sensitive to outliers than the mean and standard deviation. In Figure 8.5 we
plotted the median time and the difference between the 75th quantile and the median,
because VQ queries return a single value for each query, and we plot these values in a bar
chart instead of a line chart.

8.4.1 Performance of Version Materialisation (VM) Queries

Figure 8.4 presents the median query time that it takes to obtain a result for a Version
Materialsation (VM) query for different input settings. With a VM query an user can query
a specific version or state of the RDF dataset. In Figure 8.4a we have plotted the median
query duration when we query all updates to construct a version. The colored, almost
grey, area in Figure 8.4a shows the number of triples needed to obtain a results. Since we
query all updates, this number is the same for all 20 queries. For the subsequent query
results this number differs, because they query only the specific updates, and these might
vary between queries. Therefore, the remaining sub-figures only display the query look
up time. Figure 8.4a shows that the more updates and triples we need to construct a
version, the more time it takes to obtain a query result. In the subsequent sub-figures this
trend is also slightly present, especially for the explicit reference strategy.

Figure 8.4b, 8.4c, and 8.4d present the query time when the number of modifications
per update is either 50 or 100; or when the updates overlap a lot or a little. Figure
8.4b and 8.4d respectively show that it takes less time to query a specific version when
there are less updates in the revision-store. Figure 8.4b and 8.4c demonstrate that it
takes almost the same time to do a VM query when updates overlap a lot or a little.
Figure 8.4b, 8.4d, 8.4e, and 8.4f present the time when the updates are either aggregated
or sorted for both 50 and 100 modifications per update. For these sorted updates it is
not needed to check their invertibility. These figures show that for the sorted updates
the query duration mainly increases for the explicit reference strategy when a higher
version is evaluated. And, the query time is about the same or even lower for the implicit
and combined reference strategy. Although in general it is lower when there are 100
modifications per update instead of 50.

We have plotted in Figure 8.4g, 8.4h, 8.4i, and 8.4j the median query duration when
users have created branches in the revision-store; when they have constructed a single
snapshot; or when they have modified some updates. Figure 8.4b and 8.4h demonstrate
that the query time slightly increases when some updates are modified. Figure 8.4g and
8.4h illustrates that there are small time differences between a related and a repeated
update content strategy. For all three strategies the query time is a bit lower for the re-
lated content strategy. Figure 8.4b and 8.4i show that the query performance immensely
declines when a single snapshot is created and when the versions are constructed using
a single snapshot. Figure 8.4i shows that around version 45 the time drops, but starts
growing substantially after version 45. Figure 8.4b and 8.4j show that branches consider-
ably affect the query time for the implicit and combined reference strategy, in particular
when the number of branches grows. And these figures demonstrates that the time for an
explicit reference strategy stays more or less the same.
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(A) 50-LC-HW-FA-CP-AG-VM (B) 50-LC-HW-FS-CP-AG-VM

(C) 50-HC-LW-FS-CP-AG-VM (D) 100-LC-HW-FS-CP-AG-VM

(E) 50-LC-HW-FS-CP-SO-VM (F) 100-LC-HW-FS-CP-SO-VM

(G) 50-LC-HW-FS-CP-M5-AG-VM (H) 50-LC-HW-FS-CL-M5-AG-VM
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(I) 50-LC-HW-FS-CP-S45-M5-AG-VM (J) 50-LC-HW-FS-CP-B3-AG-VM

FIGURE 8.4: Version materialisation (VM) query look up time in seconds
(sec) over 89 versions for different input settings.

8.4.2 Performance of Delta Materialisation (DM) Queries

Figure 8.6 presents the median query time it takes to obtain a result for a Delta Materi-
alisation (DM) query for different input settings. With a DM query an user can query the
difference in the query result between two different states of the RDF dataset. These DM
queries are computed between the first version (state) and the subsequent fifth version
(5, 10, etc.). We have only plotted the results with a fetching strategy of specific, because
we determine a DM query result by only obtaining the modified quads between two con-
secutive versions, and from the previous section (8.4.1) we can conclude that its query
look up time is significantly higher. The strategy’s performance of querying directly the
modifications between two version is displayed in Figure 8.6a, 8.6c, 8.6e, 8.6f, 8.6g, and
8.6i. For these figures we have put the y-axis in log scale to also present the difference
between the implicit and combined reference strategy. Besides, instead of querying the
modifications directly, in the remaining sub-figures we have plotted the results when we
first retrieve both versions and subsequently compute their differences. These versions
are retrieved by sorting the updates instead of aggregating the updates. Hence it is not
required to check the updates their invertibility.

Figure 8.6a, 8.6b 8.6c, 8.6d, and 8.6e present the query duration when the number of
modifications per update is either 50 or 100; when the modifications are either aggre-
gated or sorted; or when the updates overlap a lot or a little. These figures show that
for an explicit reference strategy it takes much more time to get a DM query result than
for an implicit and combined reference strategy. Although the time goes down a bit if we
have 100 modifications per update instead of 50. These figures also demonstrates that
for an explicit reference strategy it is quicker to first determine each version separately
and then their differences instead of directly obtaining their differences. For an implicit
and combined reference strategy computing each version separately seems a bit faster,
but not significantly. As illustrated in Figure 8.6a and 8.6e, between much overlap and a
little overlap there is almost no difference.

In the remaining sub-figures we have plotted the median query duration when users have
created branches in the revision-store, and when they have modified some updates. Again
by comparing Figure 8.6a, and 8.6f we can see that branching has some influence on
the query performance, especially for the implicit and combined reference strategy. The
query time increases when the number of versions and thus branches grows instead of
being constant. Figure 8.6g, 8.6h, 8.6i, and 8.6j demonstrates that for all three reference
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strategies the query time increases when users have modified existing updates. Besides,
whether we use a repeated or a related update content strategy, it hardly affect the query
performance, primarily for the implicit and combined reference strategy.

8.4.3 Performance of Version Queries (VQ)

Figure 8.5 presents the median query time it takes to obtain a result for a Version Query
(VQ) for different input settings. With a VQ Query an user can query the states of the RDF
dataset for which it gets a response to its specified query, and thus we obtain a single query
duration for each query. We determine a VQ query by first obtaining the tags and then by
constructing the corresponding version based on its previous version. In general, Figure
8.5 shows that the look up time for the explicit reference strategy is always higher than
for the implicit and combined reference strategy. These two strategies do not differ much.
In addition, the query time increases when users have modified existing updates, or have
created branches in the revision-store. The last group of bars in Figure 8.5 presents the
query time when we construct each version independently, and sort the updates instead of
aggregating the update. This corresponds to the sum of the query times shown in Figure
8.4e. For the explicit reference strategy this VQ query time is significantly lower, while
for the other reference strategies it is somewhat lower.

FIGURE 8.5: Version (VQ) query look up time in seconds (sec) over 89
versions for different input settings.

(A) 50-LC-HW-FS-CP-AG-DM-p (B) 50-LC-HW-FS-CP-SO-DM-p
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(C) 100-LC-HW-FS-CP-AG-DM (D) 100-LC-HW-FS-CP-SO-DM

(E) 50-HC-LW-FS-CP-AG-DM (F) 50-LC-HW-FS-CP-B3-AG-DM

(G) 50-LC-HW-FS-CP-M5-AG-DM (H) 50-LC-HW-FS-CP-M5-SO-DM

(I) 50-LC-HW-FS-CL-M5-AG-DM (J) 50-LC-HW-FS-CL-M5-SO-DM

FIGURE 8.6: Delta materialisation (DM) query look up time in seconds
(sec) over 89 versions for different input settings.
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Chapter 9

Discussion

In this chapter we discuss the key findings, implications, and limitations of Bi-VAKs. We
have divided this chapter into two parts. In Section 9.1 we discuss the experiments from
Chapter 8 and their limitations. In addition, we interpret the evaluation results in more
detail. In Section 9.2 we give an in-depth discussion of some limitations of Bi-VAKs.

9.1 Experimental results

In Chapter 8 we have presented a thorough evaluation of Bi-VAKs. In this evaluation, we
focus on the ingestion performance and the version materialisation (VM), delta material-
isation (DM), and version (VQ) basic triple pattern query performance. We acknowledge
that this evaluation does not cover all aspects of Bi-VAKs. For example, we omit a perfor-
mance analysis of modifications to a branch and tag, but such evaluation would be rather
similar to the evaluation of update modifications. They may even have less influence on
the performance than update modification, because the updates are queried more often
than branches or tags. Nevertheless, our experiments have many other limitations. There-
fore, we give a comprehensive overview of these limitations in section 9.1.3. But, we first
elaborate on the key findings from the conducted experiments in Section 9.1.1 and 9.1.2.

9.1.1 Ingestion Performance

For the ingestion performance we look both at the storage size as well at the ingestion
time of creating a revision-store with different input settings. We showed that revision-
stores with an implicit and combined reference strategy and with a repeated content
update strategy have the largest storage size, because they contain the highest number
of triples. The implicit and the combined reference strategy contains the same amount
of triples except for the revision-store including branches. The implicit reference strat-
egy adds a revision number and branch index to a valid, and transaction revision, and
the the combined reference strategy adds a revision number, branch index, and the valid
revision to a transaction revision. The explicit reference strategy only adds the valid revi-
sion(s) to the transaction revision, which results in a smaller storage size. Furthermore,
a revision-store with a repeated update content strategy consists of more triples than a
related content strategy, because, as the name already implied, it repeated the modifica-
tions in the newly created update. Although, fortunately there is not a great difference in
storage size between the various revision-stores, they still contain much more triples than
the total number of modifications (93,131). The extra metadata, as the authors, creation
dates, SHA-256 value, descriptions, and the preceding revision also affect their storage
sizes.
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In addition to the storage size, we also study the ingestion time. If we look at the in-
gestion time for a revision-store with an input setting of 50-LC-HW-CL-S45-B3-M5, we
conclude that the ingestion time increases tremendously when we would check for every
modification whether we can delete or insert it to the revision-store. The time even in-
creases when the revision-store consists of more updates. It grows almost exponentially.
It takes around 10 seconds to ingest a single update. It will not be feasible in practice if
Linked Data users regularly make changes to the dataset. Moreover, in practise a single
update might not have 50 modifications but perhaps as many as 1000. If we did not check
whether a modification is invertible, Bi-VAKs has a much more realistic ingestion time of
around 80 milliseconds. Its ingestion time also has a linear growth and is independent
of the number of updates in the revision-store. In practise ≈ 80 milliseconds might be
still high if numerous users make many adaptations in a short time. Computing sequen-
tially a SHA-256 value for each transaction and valid revision may take too long for these
systems. We may get concurrency errors, such as some updates might refer to the same
update, while they should end up in sequence.

9.1.2 Query Performance

For the query performance we primarily examine the time to obtain a version materi-
alisation (VM), delta materialisation (DM) or version (VQ) query result. We looked at
the influence of various input settings, such as different fetching strategies, branches, a
snapshot, and modified updates. We conclude that the overall performance of the im-
plicit and of the combined reference strategy are roughly the same. Their median query
duration lines in the various graphs overlap at most points, and their query time is low
for most input settings. The performance of an explicit reference strategy, however, can
considerably vary from graph to graph, and can sometimes be very bad. Sometimes, we
even could not obtain a result when there are too many updates in the revision-store. The
explicit reference strategy uses SPARQL property paths to obtain the required transaction
revisions instead of revision numbers. These property paths from one transaction revision
to all its preceding transaction revisions might profoundly affect the query performance.
In addition, all revisions must be retrieved in order to sort the updates, whereas for these
other strategies the updates are sorted according to their revision number. Besides, Fuseki
got an stack overflow error after trying to query too many updates. The query paths have
seemed to be too large. Below we further discuss the results for each query atom sepa-
rately.

Version Materialisation (VM) From the query results presented in section 8.4.1 we con-
clude the following points. (i) Sorting and aggregating nearly give the same results for
the implicit and combined reference strategy, while sorting certainly influence the perfor-
mance of the explicit reference strategy. It means that the aggregation of updates does
not directly lead to a better result, so regarding performance it not necessary if updates
are invertible. (ii) Adding a snapshot considerably worsens the query performance for all
three reference strategies. The retrieval of the updates and the process of fast-forwarding
and rewinding these updates between two states take much longer than the retrieval and
the process of fast-forwarding all updates from the initial revision. (iii) Adding a lot of
branches affects the query duration for the implicit and combined reference strategy. The
explicit reference strategy has the same procedure with as well as without branches. For
the implicit and combined reference strategy we must first determine the branch indices
and the revision numbers from which these branches branch off, and then based on these
numbers we can retrieve the updates. (iv) Having modified updates slightly influences
the performance, particularly, for the explicit reference strategy. When retrieving updates



9.1. Experimental results 91

we always want the updates with the latest transaction time. Therefore, we must omit
the modified updates, which might affects the query performance. (v) The related up-
date content strategy slightly improve the query performance. Thus, the related update
content strategy has both a better ingestion performance and a query performance than
the repeated update content strategy. (vi) More modifications per update improves the
query performance, because we need to consider and retrieve less updates. (vii) Little
and much overlap rather affects the performance. It mainly does for the explicit and com-
bined reference strategy. Querying the updates with much overlap takes a little bit more
time, because we must retrieve more of them at once. (viii) In conclusion, the explicit
reference strategy has the best aggregated VM query performance, but its query time in-
creases when we evaluate a later version. It means that property paths are performing
well for a small number of versions, but worse or not all for a large number of versions.
The implicit reference strategy performs better than the combined reference strategy. For
the implicit reference strategy we can directly query the Updates, while for the combined
reference strategy we first query the Updates Revision and then the Updates.

Delta Materialisation (DM) From the query results presented in section 8.4.2 we con-
clude the following points. (i) Although the aggregated DM performances are good for
the implicit and combined reference strategy, their VM performances for a single snapshot
are really bad. This is contradictory, because we retrieve the updates between two states
in the same way. However, for the snapshot we compare the snapshot state with the re-
quest version, while for DM queries we compare the first version with the fifth, tenth, etc.
version. Therefore, there are no or hardly any updates to compare with whether they are
modifications or reversions of each other. The retrieval of modified updates by previous
or following updates takes a lot of time. (ii) Constructing each version separately by sort-
ing them first and then computing their difference has an equal or even lower query time
than querying the updates between two states directly. Again, regarding performance it
not necessary if updates are invertible. Both for retrieving updates between two states as
well as for retrieval all updates from the initial revision it is needed to go over all updates
in the revision-store. This process is probably more the bottleneck than the number of
updates. Moreover, for retrieving updates between two states we must rewind some up-
dates, and we must fast-forward others. Therefore, in our implementation we query the
endpoint of revision-store multiple times, which might be less efficient than a single time.
(iii) The implicit and the combined reference strategy have around the same constant DM
query performance, whereas the performance of the explicit reference strategy is worse
and declines. Te implicit and combined strategies are not affected by the number of ver-
sions, properly, because for each version we check the same amount of updates whether
they meet the valid and transaction time conditions. The explicit strategy obtains the
updates via SPARQL property paths, which takes more time when this path is longer. (iv)
Similar to the VM query performance, a larger number of updates, modified updates, and
branches in the revision-store also lead to a higher query look up time for DM queries.

Version Query (VQ) From the query results presented in section 8.4.3 we conclude the
following points. (i) The VQ performance is slow in general. We go from one tag to
another tag, and we construct every state separately. Although we build one state from
its previous state, this process is still time consuming. It has to compare many updates
whether they satisfy the time constrains. However, it is complex to query all updates at
once and to subsequently construct every version. A version depends on two time lines
simultaneously. Two consecutive tags might have different valid times, and therefore, we
do not have a single valid time to query the corresponding updates. (ii) The explicit refer-
ence strategy has a much higher VQ query time than the implicit and combined reference
strategy. Which are almost the same. For the explicit reference strategy constructing a
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state from another state is much more time consuming than for the implicit and the com-
bined reference strategies. Which we can also conclude from the DM results. The SPARQL
queries to retrieve the explicit referenced updates might be less efficient. (iii) For all three
reference strategies it is faster to first sort the updates and then construct every version
separately than to aggregate the updates and construct a version from another version.
Similar to the VM and DM performance, it means that we can better sort the updates than
aggregate them, and that thus the “invertibility check” is not needed. (iv) In conclusion,
again the number of updates, modified updates, and branches in the revision-store lead
to lower query performance.

In summary, the query performance (immensely) declines when we query all updates in-
stead of only the updates that match the users’ SPARQL queries; and when we want to
determine the updates between two states, such as for the VM queries with an interme-
diate materialised version of a state (snapshot) or for the DM and VQ queries. For the
implicit and the combined reference strategy the query performance is around the same
or even lower when we first obtain all updates from the initial revision, and sort them
instead of aggregating updates directly. It means that the “invertibility check” of the mod-
ifications in the update is not needed in order to obtain a better query performance. In
addition, the number of updates, modified updates, and branches in the revision-store
slightly affect the query performance of all three strategies. Finally, over all query types
and various input parameters, the implicit reference strategy is the best performing strat-
egy, and is quickly followed by the combined reference strategy. The explicit reference
strategy performs well for VM queries, but worse for the other query atoms.

9.1.3 Limitations of Experiments

In this section we discuss some limitations of our experiments in more detail. One of
the limitations of our experiments is that we only have evaluated Bi-VAKs on triples. We
decided to not include named graphs to the BEAR-B-Daily dataset to limit the number of
experiments. These named graphs could have been added to the dataset by giving some
triples randomly a fourth element (an IRI) that pretends to be a name of a named graph.
A second limitation is that we did not evaluate our versioning system, Bi-VAKs, on the
other BEAR Benchmark datasets. We only used BEAR-B-Daily. This dataset is the smallest
dataset. Therefore, it is suitable for the time and the computer memory we had, but it
is absolutely not representative to fully assess a (large-scale) version control system. It
is quite possible that Bi-VAKs works well for BEAR-B-Daily, but not for BEAR-A. Namely,
whereas all change-based versions in BEAR-B have together a storage size of 44MB, these
versions in BEAR-A have a storage size of 138GB.

Another limitation is that we did not compare our work with existing RDF versioning
systems. It would have been possible to put all changes in a single Update and to give
them all the same valid time or no valid time at all. Instead of evaluation a bi-temporal
versioning system, we would have evaluated a uni-temporal system. Therefore, we could
have compared our results with the results of other systems. However, our system is a
bi-temporal versioning approach and not a uni-temporal system. If we had considered
these uni-temporal updates in the revision-store, we would have lost an import aspect of
our system in the experiments. Another comparison we have not made is the annotation
of triples by using named graphs instead of RDF-star. The literature on RDF-star suggested
that RDF-star is better annotation approach than named graphs, but it would have been
valuable to really assess this statement.
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Where our performance analysis also falls short is that we do not take into account the
number of retrieved updates per query. In our experiments we computed the median
over all query time for each update, and we did not look at whether some queries needed
more updates to determine a query result than others. It is also likely that it leads to
performance differences. The last limitation we discuss is our usage of Jena Fuseki in our
experiments. Jena Fuseki might perform poorly compared to other triple/quad-stores,
such as MarkLogic1, or Stardog2. However, some of these stores might not be open
source and therefore, too costly for a master student. In addition, some other open source
triple/quad-stores do not support RDF-star, such as Virtuoso3.

9.2 Limitations of Bi-VAKs

In addition to the limitation of our experiments, in this section we discuss some limitations
of our prototypical Linked Data Version Control System, Bi-VAKs. One of main limitations
of Bi-VAKs is that needs a lot of memory to store the revisions in a single revision-store
and plenty of time to retrieve the revisions from this revision-store. To describe these
revision we rely on the pure RDF data model. It would be interesting to compress these
revisions in order to reduce the revision-store its storage size, and to develop an indexing
technique in order to query the revisions efficiently. However, Bi-VAKs would require
a compression approach that supports both RDF-star and bi-temporal time information.
A second performance limitation of Bi-VAKs is that its algorithms are not optimised for
constructing a single version or the difference between versions as fast as possible. They
are mainly based on SPARQL queries. Thus, their performance primarily depends on how
well we have set up these SPARQL queries, and on how fast the triple/quad-store can
process these queries, and can return a result back to our system. However, it was not our
primary goal to fully optimise this construction process, but just to show that our system
can retrieve versions. Finally, a third performance limitation is the use of a materialised
version of a state of the RDF dataset (snapshot). Since this snapshot has both a valid and
a transaction time, it is inefficient to query the updates between two states. However,
existing research already has proven the performance increase for snapshots. Therefore,
a possible improvement may be to make Bi-VAKs its snapshots valid time independent by
annotating each triple with its valid time.

In addition to performance limitations, Bi-VAKs also has some RDF application limitations.
First of all, Bi-VAKs only support INSERT DATA and DELETE DATA update operations. It
does not provide for the other graph update and management operations, such as the
creation and deletion of entire graphs, and it cannot handle data dumps of a complete in
RDF presented data file. Moreover, the insertion or deletion of an empty graph requires a
new representation in an Update, because we must insert or delete a graph name instead
of a triple. Secondly, Bi-VAKs does not support complex SPARQL queries. It only supports
basic triple pattern queries. It means that these complex SPARQL queries can only be
computed from the results of each basic triple pattern in the complex query separately.
Nonetheless, a solution might be to retrieve all updates matching one of the basic triple
patterns stated in the complex SPARQL query and merge them. In addition to complex
queries, Bi-VAKs also does not support blank nodes, although blank nodes are an import
concept within RDF, and certainly some RDF dataset will contain blank nodes. However,
because of their local scope one cannot assume that blank nodes with the same iden-
tifier but from different graphs are the same. In a situation where an unique name is

1https://www.marklogic.com
2https://www.stardog.com
3https://virtuoso.openlinksw.com

https://www.marklogic.com
https://www.stardog.com
https://virtuoso.openlinksw.com
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required, like ours, we could replace all blank nodes in an RDF graph with IRIs, also
called Skolemisation.

The last group of limitations are some implementation limitations of Bi-VAKs. In Bi-VAKs
it is not possible yet to do a revert or merge request. A merge request also means that
we must develop a merge strategy that solves how two contradicting updates can be
merged. Furthermore, it is also not possible to exchange updates and thus to synchronise
a versioned RDF dataset with each other, which also calls for a merge strategy. Another
limitation is that thus far Bi-VAKs does not have an endpoint to request for provenance
data such that users can obtain all updates created by themselves, or all collaborators
that work on a diverged state of the dataset. In conclusion, Bi-VAKs is, nonetheless, a first
step to a bi-temporal versioning approach. It still lacks support for many other versioning
concepts, such as authentication, concurrency issues, or a remote repository.
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Chapter 10

Conclusion and Future Work

This thesis presents a Bi-temporal Versioning Approach for Knowledge graphs (Bi-VAKs):
a bi-temporal collaborative change-based Linked Data Version Control System. Bi-VAKs
is a prototypical approach that records both the transaction time and the valid time of
a collection of modified quads in a collaborative setting. Thus, Bi-VAKs can provide for
coupled historical and retrospective SPARQL queries. To conclude this work, we explicitly
answer the research questions as presented in the introduction. In addition to the fact
that Bi-VAKs concentrates on bi-temporal modifications to a RDF dataset, and bi-temporal
SPARQL (Update) queries, it also focuses on collaboration between its Linked Data users
by keeping track of provenance data, supporting diverged states, and providing a standard
data access interface. Therefore, Bi-VAKs divides a change, also called a revision, into a
transaction revision and (multiple) valid revision(s), which respectively denote the valid
time and the transaction time. This leads us to answer the first research question.

RQ1: How can we design a Linked Data change-based collaborative version control
system that can manage both the valid time and transaction time of a collection of
changes made to a RDF dataset. In Chapter 5 we have introduced a conceptual design
that depicts the structure of the revisions in the revision-store. Each revision is divided
into (multiple) valid revision(s) and a transaction revision. More specifically, in Section
5.1 we describe that we make this distinction, primarily, in order to denote the transac-
tion time and the valid time. We also discuss in this section the three reference strategies
that connects a transaction revision with its corresponding valid revision(s): the explicit,
the implicit, and the combined reference strategy. These strategies let a transaction re-
vision either refer explicitly to its corresponding valid revision(s), or implicitly by the
same revision number and branch index. In Section 5.2 we give an general explanation
about these valid and transaction revisions, but we mainly address the different revision
types. Namely, Bi-VAKs also supports other versioning operations besides updating, such
as branching, tagging, and reverting. These other versioning operations are generally
aimed to improve the collaboration between users, and thus these revisions have a differ-
ent type and representation.

Although the conceptual design of the revision-store represents how the revisions are
structured, and how they are related to one and other, it does not explain how these
revisions can be stored in an actual RDF database. Therefore, to describe and to retrieve
an update in a RDF syntax Bi-VAKs uses RDF-star and its corresponding query language
SPARQL-star. Due to its comprehensibility it is a good candidate for describing triples
within a RDF structured update, by which we answer the second research question.

RQ2: How can we represent updates by using RDF-star, and enable efficient bi-
temporal version materialisation, delta materialisation, and version basic triple pat-
tern queries by using SPARQL-star? Chapter 6 discusses the interaction between the
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Linked Data users and the revision-store to enable bi-temporal SPARQL (Update) queries.
More specifically, in Section 6.1 we explain how Bi-VAKs extracts the modified triples or
quads from a SPARQL Update query, and how it represents these modifications in an up-
date. In Section 6.2 we explain how these updates can be retrieved, and how a version
or state of the RDF dataset can be constructed. We construct a version by querying the
updates starting from the initial revision or from a materialised version of the dataset
(snapshot). We could query all updates or only the updates that match the basic triple
pattern in the SPARQL query. And, we could aggregate the updates, or sort them to
construct the version.

In order to evaluate these representation, and version construction decisions, we must as-
sess Bi-VAKs’ ingestion and version materialisation (VM), delta materialisation (DM), and
version (VQ) basic triple pattern query performance. However, existing benchmark only
assess uni-temporal versioning systems. Therefore, we first expand the BEAR benchmark
to a bi-temporal benchmark (Bi-BEAR), and we subsequently use it to evaluate Bi-VAKs
on the different design decisions. This leads us to answer the third and final research
question.

RQ3: How can we expand the uni-temporal BEAR Benchmark into a bi-temporal
benchmark, and what is the ingestion and query performance of our prototypical
change-based version control system? In Chapter 8 we first explain how we expand the
BEAR Benchmark into a bi-temporal benchmark (Bi-BEAR). We split up a BEAR version
into multiple updates with a randomly assigned valid time, and we denote a BEAR version
by a tag. Then, in Section 8.2 we describe on which various input parameters we evaluate
Bi-VAKs to assess our design decisions. Finally, in the last two sections we give the results
of the ingestion, and VM, DM, and VQ basic triple pattern query performance of our
implementation of Bi-VAKs, as described in Chapter 7. In Section 8.3 we show the storage
size and the ingestion time to create each revision-store in Bi-VAKs. We observe that
the ingestion time immensely increases when we check for each update whether we can
invert it, and that all three reference strategies have about the same storage size. From
Section 8.4 we notice that the usage of a snapshot, and retrieval of all updates worsen
the query performance. The query time considerably decreases when only the matching
updates are queried. And modified updates, branches, and more updates in the revision-
store slightly affects the query performance. In addition, for the implicit and combined
reference strategy the query time is rather the same, and sometimes even better if we sort
the updates instead of aggregating them directly.

10.1 Future Work

In the discussion, we already suggested some future research directions for Bi-VAKs. In
this section we elaborate on several of those directions.

Optimise Version Retrieval Although we have already made some suggestions to im-
prove the version construction, this procedure could be further optimised. Instead of
using a SPARQL query to retrieve the requested updates we could also let an optimised
algorithm determine whether an update encloses the requested transaction and valid
time. In addition, we could also use a better performing triple/quad-store to store and
query the revision-store instead of using the in-memory store of Apache Jena-Fuseki. Or
we could optimise the SPARQL queries itself to receive a faster response from the triple-
store. Moreover, we could try to make a snapshot valid time independent, but we still
require to fast-forward or rewind all modified updates in order to avoid repetition.
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Compression of Revisions Currently, Bi-VAKs might not be very storage and query ef-
ficient. While it offers many opportunities for collaboration, other RDF versioning ap-
proaches may have a better storage and query performance. Namely, Bi-VAKs does not use
efficient compression and indexing methods to store and retrieve the updates (Fernández,
Polleres, and Umbrich, 2015). It stores the revision-store in a simple triple/quad-store,
which is not optimised for storing and querying revisions efficiently. Although the com-
pression of revisions could result in a lower storage space, it requires a complex indexing
technique to query these revision based on their valid time, transaction time, and basic
triple patterns. Furthermore, compressing may make the revisions less easily exchange-
able, which will worsen cooperation.

Expand on Versioning Concepts Our present work already keeps track of provenance
data; provides for diverging states; and has a standard data access interface to support
collaboration between Linked Data users. However, it still lacks the support for many
other versioning concepts that also enhance cooperation. In Bi-VAKs users cannot conflate
their diverged states. They cannot exchange the revisions between systems in order to
synchronise their states with the state of others. They cannot reverse their faulty revisions,
and they cannot query the revisions based on their metadata. Furthermore, it does not
support authentication of the users. Its implementation still concentrates on a single
user. And, it does not provide for a remote repository where users can publish their RDF
dataset, and from where other collaborators can copy (clone) the whole or parts of the
dataset. In conclusion, Bi-VAKs is still a very simple prototypical versioning approach that
can be expanded on many different versioning concepts.

Support for more complex RDF Concepts Our work currently only provide for INSERT
DATA and DELETE DATA update operations and basic triple pattern SELECT SPARQL
queries. In addition, Bi-VAKs does not support blank nodes. For a versioning approach
to work well on existing Linked Data systems it must also support these more complex
concepts. For example, we could replace all inserted blank nodes with skolem-IRIs. We
could combine all the results of each triple pattern in order to obtain a result for the
complex query. In addition, we could come up with an approach to identify the modified
triples/quads in the INSERT/DELETE update operation, and we could propose a repre-
sentation to insert and delete empty graphs in the update.
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