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Seçkin Çiriş a, Mert Akay b,*, Ece Tümer c 

a Department of City and Regional Planning, Faculty of Fine Arts and Architecture, Necmettin Erbakan University, Konya, Turkiye 
b Department of Human-Centered Design, Faculty of Industrial Design Engineering, TU Delft, Delft, the Netherlands 
c Smart City Department, Istanbul Metropolitan Municipality, Istanbul, Turkiye   

A R T I C L E  I N F O   

Keywords: 
Multiscale geographically weighted regression 
(MGWR) 
Data-driven urbanism 
Urban big data 
Bicification 
Istanbul 

A B S T R A C T   

Cycling has seen a remarkable rise, signifying a paradigmatic move towards sustainable, eco-friendly, and 
efficient commuting alternatives in the contemporary urban setting. Cities also encourage this trend by estab-
lishing cycle lanes, bike-sharing programs, and incentives for frequent riders. To enhance these motivations from 
an urbanistic perspective, it is essential to comprehend the influence of urban characteristics on cycling volume 
and to incorporate this understanding into data-driven decision-making processes. 

This research examines the Bicification project data from Istanbul with a spatial perspective. Utilising a 
comprehensive array of spatial big data, the study explores the impact of urban land use, transport services, land 
morphology, and sociodemographic factors on cycling volume through a Multi-scale Geographically Weighted 
Regression (MGWR). With an Adj R2 value of 0.68, the model demonstrates a strong relation between cycling 
volume and several factors, including biking park stations, park and ride points, pier stops, rail stops, transfer 
points, main roads, elevation, population, industrial facilities, health facilities, sports areas, and residential areas. 
The findings will serve to develop a data-driven strategic approach to promote cycling in Istanbul.   

1. Introduction 

During the last decades of the 20th century, the contemporary urban 
planning and design agenda has been discussing strategies and concepts 
that will enable the cities to overcome the problems in the future. 
However, the scale and structure of cities have grown to such an extent 
that conventional urban planning and management systems are no 
longer feasible. Correspondingly, cities are utilizing technological ad-
vancements presented by the information age and data, which is the fuel 
of our era (Al Nuaimi et al, 2015). Enhanced smart city technologies and 
systems produce big-data flow, providing possibilities to formulate 
evidence-based decisions for urban environments. The notion of big data 
and data-driven decision-making, in this sense, is gaining attention in 
the urbanism context in both practice and research as an emerging so-
lution to contemporary problems (Kitchin, 2014a,b, 2017; Bibri and 
Krogstie, 2021; Batty et al., 2012). It enables experts to control the 
process proactively by providing adaptive, reflexive, and responsive 
approaches. Furthermore, utilizing urban big data presents a practical 
opportunity to understand its citizens, predict their present and future 
requirements, identify the underlying reasons for current issues, and 

produce diverse projections to estimate the social, environmental, and 
economic advantages before initiating city projects. 

Such an emerging approach offers an opportunity to provide sus-
tainable solutions for diverse urban planning agendas, including urban 
transport. The urban transport discipline draws advantage from the 
data-centric approaches (Zhu et al., 2018) by having a direct impact on 
the daily activities of urban flow. Data-driven decision-making provides 
practical insights into understanding the transport patterns of cities to 
increase the efficacy of urban decision-making by collecting, moni-
toring, and processing real-time big data (Welch and Widita, 2019). It 
also enables the planning of well-connected, and sustainable transport 
systems in cities. Cycling, one of the most prominent modes of sustain-
able transport, comes to the fore in the contemporary research agenda, 
leveraging big-data-related approaches. The substantial growth in big 
data related to cycling in recent years has spurred numerous approaches 
in the fields of transportation and urban planning. A large track 
concentrated on employing large spatial–temporal trajectory data for 
shared bike demand prediction (Hua et al., 2020; Wang et al., 2023). 
There is also other significant research on the location optimization of 
biking systems (Yang et al., 2020a,b, Caggiani et al., 2020; Frade and 
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Ribeiro, 2015). Several studies have been conducted to characterize the 
spatial effects of the built environment on bike ridership (Chen et al., 
2017; Lyu et al., 2020; Yang et al., 2020a,b; Dai et al., 2023; Zhou et al., 
2023a,b). With such a broad perspective being developed in the context 
of cycling, there is an emerging research track on the big data-informed 
strategy development for cycling (Duran-Rodas et al., 2019; Gao et al., 
2023; Nelson et al., 2023; Xie and Wang, 2018; Yuan et al., 2023) and 
room for further research. 

From this perspective, in this research, we examine the spatial 
relationship between different variables and cycling volume to develop 
a framework for data-driven urbanism. We used twenty-four indepen-
dent variables listed as religious facilities, green areas, commercial fa-
cilities, sports areas, industrial facilities, health facilities, cultural 
facilities, public spaces, financial facilities, educational facilities, resi-
dential areas, transfer points, park and ride points, pier stops, minibus 
stops, bus stops, rail stops, bicycle parking stops, main roads, pedestrian 
roads, car parks, vehicle flow, elevation, and population to investigate 
the impact of urban variables on route choice. For this purpose, we 
employed the cycling trip data from the Bicification project which is 
funded by the European Institute for Innovation and Technology (EIT) 
Urban Mobility, an organization of the European Union. Istanbul 
Metropolitan Municipality (IMM) supports decision-making with a data- 
driven approach by providing high-quality data and data governance 
studies based on global best practices. Herein, we also aim to provide a 
mapping of cycling use patterns by highlighting the strategies for data- 
driven decision-making. 

The article consists of six consecutive sections. In the first section, the 
introduction, we explain the general content of the research by setting 
the contextual frame, the objectives, and the scope of the study. 
Following this, in the second part, the literature review, the joint liter-
ature review is formulated to reveal the current research agenda and 
identify research gaps in the context of data-driven decision-making and 
cycling. In the methodology, we present Istanbul as a study area and 
explain the data collection, validation, computation, and modeling ap-
proaches of the research. In the fourth section, the results, we deliver the 
model results by referring to the theoretical foundation of the research. 
In the discussion, we propose critical inferences for Istanbul in the 
context of data-driven decision-making and cycling. We also acknowl-
edge the limitations of our research and suggest future directions for 
further investigation. In the conclusion, we generalize the results and 
contextualize the discussion by exploring the potential applications of 
the research approach in Istanbul. 

2. Theoretical background 

2.1. Data-driven urbanism and decision-making in the context of cycling 

Technological developments have made revolutionary changes 
possible among different professions in the last two decades. The digital 
methods and new techniques that arise with the increasing usage of 
computers affect professional practices. The use of computers has 
enabled faster performance of complex operations and simplified the 
solution of computational problems. In the field of urbanism, the most 
significant recent development has been the integration of technology 
into planning and design processes. It enabled the creation of adaptable 
solutions that are responsive to specific contexts and provide a relational 
framework for discovering new ways of decision-making, as well as 
enhancing the complexity of planning and design processes (Aish & 
Woodbury, 2005, p. 1; Marshall, 2012). In this context, the notion of big 
data paves the way to generate the necessary approach to relate tech-
nology and urbanism (Al Nuaimi et al., 2015; Batty, 2013, 2018; Kitchin, 
2014a,b, 2015; Bibri, 2019a). 

In the urbanism agenda, with the increasing importance of big data, 
data-informed decision-making is becoming prominent as the main 
catalyst of smart city systems and technologies (Bibri, 2019b; Batty, 
2013; Kitchin, 2014a,b). Although there is a diverse utilization pattern 

of big data for urban services, urban transportation systems increasingly 
rely on data-informed decision-making. As argued by Bibri and Krogstie 
(2021), this approach prioritizes the use of data analytics to guide policy 
and operational decisions, ensuring efficient, sustainable, and user- 
friendly urban transport solutions. Leveraging data for informed 
decision-making and tactical management, data-driven approaches 
involve collecting, analyzing, and utilizing data to guide decisions and 
strategies (Rosa et al., 2020). It stands in contrast to traditional ap-
proaches, which often rely more on heuristic or experience-based deci-
sion-making. The adoption of a data-driven approach in urban 
transportation is crucial for the development of efficient, sustainable, 
and responsive city transit systems (Olaniyi et al., 2023). To provide 
such an integrated approach, big data collection is an important process 
that involves gathering a wide array of data, including traffic sensor 
readings, GPS data from public transportation systems, user feedback, 
and insights derived from social media analytics (Zha et al., 2023). This 
extensive data collection is crucial in painting an accurate picture of the 
urban mobility landscape. As presented by Yin et al. (2023), following 
collection, the data undergoes thorough analysis, where advanced an-
alytics, incorporating AI and machine learning algorithms, are 
employed to process and interpret this vast amount of information. The 
analysis stage is pivotal in extracting meaningful insights about traffic 
patterns, user preferences, and potential inefficiencies within the sys-
tem. Lastly, modeling plays a critical role, as it leverages data to forecast 
future trends in urban transportation (Alessandretti et al., 2023). Such 
predictive capability is instrumental in proactive planning, ensuring that 
cities can effectively manage traffic, maintain their infrastructure, and 
develop it further to meet future demands. In essence, a data-driven 
methodology transforms urban transportation into a dynamic, adap-
tive system, capable of meeting the evolving demands of growing urban 
populations while promoting environmental sustainability and 
improving the quality of urban life. 

By relying on the existing research agenda, for this study, we focused 
on the studies that discuss, particularly, the relationship between data- 
driven decision-making and cycling. Although there has been 
numerous data-driven research on cycling (Romanillos et al., 2016), the 
potential use of big data for decision-making in cycling remains to be 
explored. Correspondingly, Xie and Wang (2018) analyzed trip history 
data from the Capital Bikeshare system in Washington to investigate the 
connection between data-driven decision support and bike-sharing 
systems. Similarly, Gao et al. (2023), by utilizing a machine learning 
model, assessed the impact of built environment factors on the mode 
substitution patterns of the dockless bike-sharing system, providing an 
analytical foundation for decision-making systems. Also, Yuan et al. 
(2023) developed a data-driven decision-making framework for 
greenway planning through the examination of how various built 
environment factors influence cycling behavior. Nelson et al. (2023) 
highlighted the importance of data-driven decision-making and classi-
fied the streets with a k-means clustering algorithm based on bicycle 
usage by utilizing diverse spatial data on the built environment, com-
munities, and bicycling. By focusing on the correlation between the 
arrivals and departures of station-based bike-sharing systems and built 
environment factors, Duran-Rodas et al. (2019) formulated a 
decision-making approach as a strategy for executing or extending 
bicycle-sharing systems. From a qualitative perspective, Marquart et al. 
(2020) investigated the awareness of decision-makers regarding cyclists’ 
needs and perceptions, aiming to develop a bottom-up decision-making 
perspective. 

2.2. Spatial parameters influencing cycling volume 

The influence of the urban built environment on the cycling volume 
has been thoroughly documented in many research. For instance, there 
exists a positive correlation between the mixture of land use and the 
density of commercial usage with the volume of cycling (Pucher & 
Buehler, 2006; Griswold et al., 2011; Chen et al., 2017; Hankey et al. 
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2012). When urban facilities have mixed land uses, such as residential 
and commercial, destinations become closer to each other. This reduces 
the need for long-distance travel and makes cycling a convenient and 
practical mode of transportation for short trips. (Heinen et al., 2010; 
Moudon et al., 2005; Zhou et al., 2023a,b). Furthermore, while there 
exists a positive correlation between residential density and bicycle 
volume (Noland et al., 2016; Zhou et al., 2023a,b), some studies indicate 
that there is no statistically significant correlation with cycling volume 
(Sun et al., 2017; Chen et al., 2017). In addition, the implementation of 
cycling infrastructure, such as bike lanes and bike racks, not only en-
hances safety but also fosters increased participation in cycling (Buck 
and Buehler, 2012; Reynolds et al., 2009; Griswold et al., 2011; Xing 
et al., 2010). 

Several studies have emphasized the impact of temporal attributes 
and weather conditions on the volume of cycling (Tin Tin et al., 2012; El 
Esawey et al., 2013; Gosse & Clarens, 2014; Zhou et al., 2023a,b). Some 
of the results exhibit that there are more significant decreases in cycling 
volume on routes during rainy, cold, and windy days (Miranda-Moreno 
and Nosal, 2011). Upon deeper examination, Hong et al. (2020), and 
Chen et al. (2017) state that the frequency of cycling activities is higher 
in spring, summer, and autumn compared to winter, indicating that the 
peak cycling activity occurs during the summer months. Moreover, Sun 
et al. (2017) and Tin Tin et al. (2012) emphasize that bicycle usage is 
higher during peak hours in the morning and evening compared to other 
times of the day. 

2.3. Model approaches 

Various regression-based models have been utilized to identify the 
relation between the spatial elements in urban areas and the cycling 
volume. Tin Tin et al. (2012), Dill and Carr (2003), and Pucher and 
Buehler (2006) applied multivariate regression models to demonstrate 

the relation. Hankey et al. (2012) yielded negative binomial models to 
provide reasonable relative estimates of volumes for non-motorized 
traffic. Similarly, Miranda-Moreno and Nosal (2011) utilized log-linear 
models and regression models for count data, encompassing conven-
tional negative binomial models as well as multilevel count data 
regression models designed for repeated measures to show the correla-
tion between weather conditions and cycling ridership. Hong et al. 
(2020) utilized a fixed-effect regression model to measure the influence 
of rainy conditions on cycling safety using crowd-sourced cycling data. 
Faghih-Imani et al. (2014) and Sun et al. (2017) employed a linear 
mixed model to identify the dependencies linked with the movement of 
bicycles. 

In the context of Poisson distribution, Jestico et al. (2016), and Chen 
et al. (2017) employed a generalized linear mixed model to capture the 
temporal changes in bicycle volume while accounting for temporal au-
tocorrelations. Similarly, Hankey et al. (2012) and Noland et al. (2016) 
utilized negative binomial regression, which is another type of Poisson 
regression. They analyze the impacts of bicycle infrastructure, popula-
tion and employment, land use mix, and transit access individually, 
considering different seasons of the year and distinguishing between 
weekdays and weekends. 

Alternatively, an increasing number of studies have investigated the 
presence of nonlinearity in the relationship between the built environ-
ment and cycling behavior (Ji et al., 2023). A generalized additive 
model, incorporating marginal nonlinear interactions, was applied to 
investigate the associations between spatial characteristics of urban 
areas and cycling (Hu et al., 2022). 

2.4. Identifying gaps in the literature and novel aspects of the research 

This research contributes to the ongoing research agenda from a 
practical and methodological perspective in three ways by identifying 

Fig. 1. Distribution of variables and models in current discussions.  
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gaps identified through the review of the current literature. 
Most studies tend to focus on a single scale within the built envi-

ronment, such as streets or neighborhoods with a limited set of vari-
ables. It makes it challenging to ensure a comprehensive understanding 
of the impact of the built environment on cycling. Our research aims to 
investigate the correlation between the built environment and cycling 
volume, addressing a research gap. The research identifies the influen-
tial factors and comprehensively analyzes the spatial characteristics of 
cycling at different scales. For this objective, we utilize numerous vari-
ables in the research that cover the urban facilities through points of 
interest (POIs), transportation services, land morphology, and socio- 
demographic structure. 

In the literature, while most studies utilize linear regression models; 
some of them examine the non-linear and threshold effects of the built 
environment on cycling volume. The utilization of these models limits 
the incorporation of variables exhibiting spatial characteristics within 
the study area. As Anselin (2010) states linear models are negatively 
impacted by spatial data due to spatial heterogeneity and autocorrela-
tion. To overcome this gap, this research employs the MGWR model 
which enables the variation of scales for the coefficients of each covar-
iate. It permits the spatially variable adjustment of scales in the rela-
tionship between variables, providing a comprehensive understanding 
of the connection between spatial dynamics and cycling volume. 
Although a few studies (Lyu et al., 2020; Zhou et al., 2023a,b) employ 
the MGWR model, the elaborative evaluation of the impacts of spatial 
variables within the urban areas has been limited by the small set of 
variables. This study contributes to ongoing discussions by employing a 
distinctive geographic regression method to model the relationship be-
tween comprehensive spatial variables (Fig. 1). 

Another conclusion from the literature is that existing studies offer 
limited interpretations of the results derived from calculating the rela-
tionship between urban characteristics and cycling. In contrast, the 
research not only evaluates the results of the analyses but also examines 
them in the context of strategic planning and data-driven urbanism. We 
believe that the results will provide urban planners, experts, and 

decision-makers with valuable insights on how to optimize the urban 
built environment to encourage cycling behavior. 

3. Methodology 

3.1. Study area 

Istanbul, Türkiye’s largest metropolis, is a dynamic and culturally 
rich city that serves as a bridge between Europe and Asia. With a pop-
ulation of over 16 million, it stands as a true melting pot of cultures and 
traditions. In particular, the city contributes significantly to the econ-
omy of Türkiye, accounting for approximately 30 % of the country’s 
GDP (TÜİK, 2023). 

To accommodate the needs of its population, Istanbul has various 
modes of transportation. Approximately 630 public transport routes 
crisscross the city, providing around 9 million daily boardings. A sig-
nificant portion of the population engages in intercontinental trips, 
amounting to around 2.2 million per day. The city operates an extensive 
bus fleet of 6546 and has a maritime presence with 396 ferries (IMM 
Smart City Directorate, 2021). Rail transport includes 11 metro lines and 
4 tram lines, indicating a well-developed infrastructure. In addition, a 
push towards green transport is evident, reflecting Istanbul’s commit-
ment to sustainable urban mobility. In addition to such a developed and 
integrated use of transport facilities, pedestrian activity is also notable 
with a high pedestrian rate of 40.5, however, bicycle usage remains 
below 1 % (Istanbul Planning Agency, 2021). 

Istanbul aims to promote sustainable transport solutions, including 
cycling, to achieve carbon neutrality soon. To reduce traffic congestion 
and pollution, Istanbul aims for 35 % of trips to be made by public 
transport. Additionally, there is a strong emphasis on active mobility, 
with a goal for 50 % of daily journeys to be conducted by walking and 
cycling, promoting both environmental and health benefits (Istanbul 
Planning Agency, 2021). 

Fig. 2. Study area and Bicification project cycling route data.  
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3.2. The Bicification project 

Istanbul Metropolitan Municipality (IMM) engaged in a Bicification 
project to provide practical solutions for promoting cycling in Istanbul. 
Bicification is a project funded by EIT Urban Mobility, an initiative of 
the European Institute for Innovation and Technology (EIT), an orga-
nization of the European Union. The project aims to encourage the use of 
sustainable and healthy mobility options by raising citizens’ awareness 
of the quality of their urban environment, rather than focusing on 
infrastructure (EIT Urban Mobility, 2022). Bicification proposes a 
reward-based gamification system that includes patented hardware and 
software to reliably track cycling trips and reward cyclists. It offers a 
high-TRL (TRL9) technological solution that includes patented hard-
ware and software to track bike journeys. This system not only promotes 
cycling but also provides Istanbul with valuable data on cycling 
volumes. 

The data set of the Bicification project comprises spatial and tem-
poral patterns of cycling volume, rider demographics, and route pref-
erences. The project’s novel approach to data collection enables a 
comprehensive understanding of cycling volume and behavior/patterns. 
By utilizing GPS and motion sensors, the project gathers spatial big data, 
providing insights into the most frequently used routes, peak cycling 
times, and underutilized paths (IMM Open Data Portal, 2023). 

In this sense, we used Bicification data in this research to develop a 
data-driven decision-making framework for cycling in Istanbul, aiming 
to reveal further spatial correlations with relevant urban parameters 
(Fig. 2). 

3.3. Data collection 

In the research, we collected 25 different variables by categorizing 
(a) dependent variables (1) ‘Bicification’ Project Cycling Volume Data 
and (b) independent variables (2) Point of Interest (POI), (3) Trans-
portation Services, (4) Land Morphology, and (5) Socio-demographic 
Structure (Fig. 3). Respectively, we employed the following dataset in 
the research: 

‘Bicification’ Project Cycling Volume Data: We obtained the cycling 
volume data from the Open Data Platform of Istanbul Metropolitan 
Municipality (IMM) (https://data.ibb.gov.tr/en/). The dataset in-
cludes trip route, starting latitude, longitude, and time, ending lati-
tude, longitude, and time, and driving ID. The data was collected by 
IMM for 7 months between June and December 2022. Before uti-
lizing the data, we removed several trips from the dataset due to 
errors that arose during the data collection process. After cleaning 
the data, we aggregated all trips into a single dataset. In this stage, 
we used the Driving ID as a unique attribute to create the database. 

This allowed us to structure a database for analysis, containing 2033 
individual trip routes. 
Point of Interests: Considering all relevant land use services with 
cycling in an urban setting, we utilized eleven POIs listed as Religion 
Facilities, Green Areas, Commercial Facilities, Sports Areas, Indus-
trial Facilities, Health Facilities, Cultural Facilities, Public Spaces, 
Financial Facilities, Educational Facilities, Residential Areas. We 
gathered the data from the Open Data Platform of IMM (https://data. 
ibb.gov.tr/en/) with latitude and longitude attributes. We also con-
ducted cleaning for the POIs by removing duplicates. Finally, there 
are 374,306 POIs within the data set. 
Transportation Services: As a complementary data set for the cycling 
volume studies, we gathered eleven different variables for trans-
portation services as follows: Transfer Points, Park, and Ride Points, 
Pier Stops, Minibus Stops, Bus Stops, Rail Stops, Bicycle Parking 
Stops, Main Roads, Pedestrian Roads, Carparks, Vehicle Flow. For 
the pedestrian roads, we obtained the road data from OpenStreetMap 
(OSM) (https://www.openstreetmap.org), an open-source spatial 
data platform. We cleaned road data and structured a filtered data set 
to use only pedestrian roads. We also procured other variables 
through the Open Data Platform of IMM (https://data.ibb.gov.tr/en/ 
). 
Land Morphology: To determine the elevation within the study area, 
we used the Digital Elevation Model (DEM) from the United States 
Geological Survey (USGS) Raster Dataset (https://www.usgs.gov/). 
Employing ArcGIS Pro software, we also obtained contour lines from 
the DEM to calculate the average slope. 
Socio-demographic Structure: As the only variable for socio- 
demographic structure, we obtained population data from the 
Global Human Settlement Layer (GHSL) generated by the European 
Commission JRC (https://ghsl.jrc.ec.europa.eu/ghs_pop2023.php). 
The dataset comprised 250-meter resolution grids. As the research 
employs a 1 km hexagonal grid for the analysis scale, we aggregated 
the population data using ArcGIS Pro software. 

3.4. Modeling approaches of the research 

3.4.1. Global vs. local regression models 
Spatial regression analysis enables modeling, examination, and 

investigation of spatial relationships providing a means to clarify the 
factors contributing to observed spatial patterns. Conventional or 
traditional regression methods are classified as global statistics, 
assuming a consistent relationship throughout space, so the parameter is 
estimated to be uniform across the entire study area (Tu and Xia, 2008). 
Within the global model, the parameters are estimated globally and, as a 
result, do not exhibit spatial variability (Pu et al., 2017). Global models 
represent the associations between the explanatory and response vari-
ables as follows: 

yi = β0

∑m

j=0
βjxij + εi (1)  

where yi represents the target variable, xij denotes the value of the j-th 
predictor variable, m is the number of predictor variables, β0 is the 
intercept term, βj is the regression coefficient for the j-th predictor 
variable, and εi is the random error term. 

While the estimates of global regression coefficients can capture the 
overall relationships, they fall short of representing local variations; the 
information regarding local dynamics remains insufficient (Chi and Zhu, 
2020). Liu et al. (2020) argued that global models operate under the 
assumption that the geographical environment is spatially homogeneous 
across regions, potentially obscuring local features in real-world appli-
cations. In the modeling of the relationship between dependent and 
explanatory variables, where these relationships do not vary over space, 
global models assume spatial stationery (Reda et al., 2023). To enable 
the variation of variables across space, local models expand the general 

Fig. 3. The general framework of the research.  
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Fig. 4. Spatial distribution of model variables-1.  
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Fig. 5. Spatial distribution of model variables-2.  
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Fig. 6. Spatial distribution of model variables-3.  
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regression model whilst reducing the spatial stationary assumption 
(Brunsdon et al., 2002). While spatial non-stationarity and spatial 
autocorrelation frequently manifest jointly as attributes of geographic 
data, the application of local models, a prevalent local regression tech-
nique, offers a means to mitigate issues associated with both within the 
conventional framework of global models (Qiu and Wu, 2011). 

Furthermore, in spatial analysis, there exist two fundamental factors 
that have negative influences on global models, especially in OLS: 
spatial heterogeneity and spatial autocorrelation of observation (Anse-
lin, 2010). Distinctly, local models such as GWR and MGWR overcome 
these impacts by operating based on Tobler’s (1970) first law of geog-
raphy: “Everything is related to everything else, but near things are more 
related than distant things” (Oshan et al., 2019; Zhou et al., 2023a,b). 
They consider both the spatial autocorrelation and spatial heterogeneity 
of observations, making it a widely employed method for investigating 
spatial non-stationary regression models (Soltani et al., 2018; Zhao 
et al., 2020). 

GWR, one of the prevalently utilized local models, bears similarity to 
linear regression, differing in that it computes a set of local linear re-
gressions instead of a global one (Chang Chien et al., 2020). It expands 
upon the conventional regression model or local model by relaxing the 
assumption of spatial stationarity, thereby permitting spatial variations 
in the variables across different geographical locations (Brunsdon et al., 
2002). The mathematical representation of the GWR model is formal-
ized by Fotheringham et al. (2003): 

yi =
∑m

j=0
βj(ui, vi)xij + εi (2)  

where xij denotes the j-th predictor variable, bj (ui, vi) represents the j-th 

coefficient, εi is the error term, and yi is the response variable. 

3.4.2. Multi-scale geographically weighted regression 
While GWR represents a notable improvement, the utilization of a 

uniform bandwidth in a standard GWR may not be suitable in scenarios 
where diverse independent variables operate across varying spatial 
scales, thereby possessing distinct spatial relationships with the depen-
dent variable (Zhou et al., 2023a,b). As a result, MGWR undergoes 
additional improvement. MGWR models address the challenge of vary-
ing variable scales and bandwidths by employing the optimal bandwidth 
specific to each independent variable (Chen et al., 2023). The basic 
formulation of MGWR can be expressed as (Fotheringham et al., 2017): 

yi = βbw0(ui, vi)+
∑m

j=0
βbwj(ui, vi)xij + εi (3)  

where βbw0(ui, vi) denotes the local intercept of the i-th observation, βbwj 
(ui, vi) represents the parameter associated with the j-th independent 
variable xij, the term bwj in βbwj denotes the bandwidth utilized for the 
calibration of the conditional relationship associated with the j-th in-
dependent variable, εi signifies the random error term, and (ui, vi) in-
dicates the spatial coordinates of the i-th observation. 

We utilized MGWR in the research since it offers a more flexible and 
advanced structure than GWR by analyzing the spatial relationship be-
tween dependent and independent variables at different spatial scales 
(Zafri and Khan, 2022). Analyzing relationships at various spatial scales 
offers flexibility that can help minimize over-fitting, decrease bias in 
parameter estimates, and alleviate issues related to collinearity 
(Fotheringham et al., 2017; Oshan et al., 2019). 

Table 1 
Descriptive statistics of the variables.  

Variables (n = 604) Description Mean SD Min Max 

Dependent Variable(s) 
Cycling Volume Number of cycling journeys 17.05 28.94 1 205.  

Independent Variable(s) 
Point of Interests 
Religious Facilities Number of religious facilities 5.07 8.84 0.00 82 
Green Areas Number of green areas 4.70 5.05 0.00 29 
Commercial Facilities Number of commercial facilities 277.99 524.67 0.00 6586 
Sport Areas Number of sport areas 3 3.70 0.00 23 
Industrial Facilities Number of industrial facilities 71 156.61 0.00 1591 
Health Facilities Number of health facilities 22.19 38.04 0.00 430 
Cultural Facilities Number of cultural facilities 2.45 6.73 0.00 89 
Public Space Facilities Number of public space facilities 5.88 8.23 0.00 58 
Financial Facilities Number of financial facilities 18.26 26.20 0.00 272 
Educational Facilities Number of educational facilities 15.09 16.90 0.00 125 
Residential Areas Number of residential areas 194.07 330.16 0.00 2626  

Transportation 
Transfer Points Number of transfer points 0.07 0.27 0.00 2 
Park and Ride Points Number of park and ride points 0.35 0.83 0.00 7 
Pier Stops Number of piers stops 0.08 0.39 0.00 5 
Minibus Stops Number of minibuses stops 0.42 0.82 0.00 5 
Bus Stops Number of bus stops 13.66 9.98 0.00 54 
Rail Stops Number of rails stops 0.35 0.77 0.00 5 
Bicycle Parking Stops Number of bicycle parking stops 0.39 1.14 0.00 10 
Main Roads Length of main roads 6635.50 5213.69 0.00 26696.79 
Pedestrian Roads Length of pedestrian roads 195.11 953.65 0.00 14763.68 
Car parks Number of car parks 178.59 518.81 0.00 5828.00 
Vehicle Flow Number of cars 64557835.37 69747562.41 0.00 398,186,801  

Land Morphology 
Elevation Average slope 13.91 5.16 0.00 36.20  

Socio-demographic 
Population Number of people 19644.82 21759.23 0.00 126,329  
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3.4.3. Model factors for multi-scale geographically weighted regression 
A variety of parameters and model options are required to run 

MGWR. Correspondingly, the selection of the optimal bandwidth rep-
resents a crucial stage in the entire process. MGWR employs a distinctive 
bandwidth for each explanatory variable, thereby accounting for the 
diverse spatial scales of the coefficients (Lyu et al., 2020). In this 
research, we employed the adaptive bi-square as the spatial weighted 
(kernel) approach for estimating the kernel bandwidth. This approach 
enables the model to effectively capture and analyze spatially varying 
relationships. It provides more accurate and reliable local estimates by 
adapting to local data density and it is more flexible in the handling of 
data density variations. 

Another parameter that must be considered when employing MGWR 
is the searching method. The Golden Section method was employed to 
identify uniform and locally varying bandwidths. The optimal band-
width value is identified by successively narrowing the range of values 
within which the optimal value exists and comparing the optimization 
score of the model for each. The Gaussian model type for calibrating 
MGWR ensures a comprehensive understanding of the spatial hetero-
geneity of relationships between a continuous dependent variable and 
multiple predictors. This method is employed when the dependent 
variable is continuous and follows a normal distribution. Moreover, it 
provides a more localized perception than global regression models. 
Lastly, the Corrected Akaike Information Criterion (AICc) was employed 
to optimize the model. The model with the lowest AICc is considered to 
represent the optimal fit (Fotheringham et al., 2017). Besides, it is useful 
for the selection of bandwidth in adaptive kernels. 

3.5. Computation of the variables 

For the spatial aggregation of the variables, we used Hexagon within 
the scope of the research. Correspondingly, the study area was divided 
into a grid of hexagons, with 1 km cells. Although the majority of the 
research in spatial analysis uses square grids (Polisciuc et al.,2016), we 
preferred to conduct our analyses with hexagons since they reduce 
sampling bias caused by edge effects of grid shapes (Chien et al., 2020; 
Duan et al.,2023). This is because hexagons are the closest shape to a 
circle that can tessellate to form an evenly spaced grid. Furthermore, we 
preferred hexagons over administrative boundaries because adminis-
trative boundaries usually have a limited capacity to exhibit spatial 
variation. Additionally, administrative boundaries are subject to change 
over time and spatial dynamics do not necessarily follow the boundaries 
drawn with a ruler (McKenzie, 2022). 

In particular, we employed H3 Hexagons in our research, by utilizing 
ArcGIS Pro Software. Developed by Uber, H3 is a hierarchical indexing 
system that uses hexagons to tile the surface of the Earth (Uber Tech-
nologies, 2023). H3 hexagons are practical since they are built over a 
model of the Earth, ensuring their position remains consistent at each 
resolution. This makes them an ideal standardized grid for use across 
multiple scales of spatial analysis. Correspondingly, we created 9928 
hexagonal cells for Istanbul to be used within the MGWR analysis by 
utilizing ArcGIS Pro Software. Out of these, 604 cells were used for the 
analysis as they intersected with cycling volume data. 

To spatially aggregate the variables within hexagons we followed 
several operations aligned with the characteristics of the variables 
(Figs. 4–6). In this sense, we counted the total number of POI per cell. 
We also followed the same operations for transport services except for 
main roads, pedestrian routes, car parks, and vehicle flows. For main 
roads and pedestrian roads, we calculated a sum of lengths for each cell. 
Car parks and vehicle flows have been computed as an aggregated sum. 
As the only variable from socio-demographic data, the population was 
also figured with the same approach. As a final variable, we overwritten 
the average slope of the contour lines for each cell. Additionally, we 
computed the descriptive statistics through R Studio to have a further 
understanding of the variables (Table 1). 

4. Results 

4.1. Evaluation index and model comparison 

We employed five evaluation indices to assess the comparative per-
formance of the two models by computing R-squared value (R2), 
adjusted R-squared value (Adjusted R2), corrected Akaike information 
criterion (AICc), sigma-squared (SS) and residual sum of square (RSS) 
(Chien et al., 2020; Fotheringham et al., 2017; Shi et al., 2023; Senyel 
Kurkcuoglu, 2023; Zhou et al., 2023a,b). The R-squared value is a 
commonly preferred indicator as the measure of the model’s goodness of 
fit. Higher values indicate that the model explains a larger portion of the 
variability in the dependent variable. AICc serves as a metric for eval-
uating model performance and can be employed to compare different 
regression models. A lower value is indicative of a better fit when 
regarding model complexity. SS is the least-squares estimate of the 
variance and represents the square of the standard deviation for the 
residuals. RSS denotes the sum of squared residuals within the model. 
Smaller values of this statistic for SS and RSS are considered more 
favourable (Table 2). 

The model results demonstrate that the MGWR model outperforms 
the GWR model. This is evidenced by its lower AICc and RSS, as well as 
its higher log-likelihood or R-squared values, indicating that the MGWR 
has a better model fit. The adjusted R-squared value of the model was 
0.68, pointing out that 68 % of the variation in cycling volume can be 
explained by the variables in the model. Additionally, the AICc value of 
1229.685 further supports the model’s fit to the data. The AICc value for 
MGWR is 21 % lower, and the R-squared value is 28 % higher. 

4.2. Local multicollinearity tests 

The presence of multicollinearity among independent variables 
constitutes a significant concern, as it introduces bias into the outcomes 
of the model. The Variance Inflation Factor (VIF) serves as a tool for 
detecting multicollinearity, evaluating the increased variance of an 
estimated regression coefficient when variables exhibit correlation (Wen 
et al., 2018). An instance in which the VIF value exceeds 7.5 signifies 
redundancy within the explanatory variables, while a VIF surpassing 10 
indicates a high degree of multicollinearity (Chen et al., 2023). As 
shown in Table 4 no statistically significant collinearity was detected 
among the independent variables. So, they are suitable for constructing 
a regression model and there is no necessity for additional processing. In 
addition to VIF, the Pearson Correlation Coefficient (PCC) serves as an 
alternative approach to assessing the impact of multicollinearity, and 
variables with coefficients exceeding 0.7 are eliminated. (Tang et al., 
2019; Li et al., 2023). 

4.3. Spatial heterogeneity and autocorrelation tests 

The study of spatial heterogeneity and spatial autocorrelation is of 
significant importance as it allows us to comprehend the robustness and 
accuracy of model application. Spatial heterogeneity, evident in the 
diverse characteristics observed at local and global levels, informs our 
understanding of spatial patterns. This intricate variation across space 
lays the foundation for exploring the phenomenon of spatial autocor-
relation, where nearby observations tend to exhibit similarities. While 

Table 2 
Evaluation indices for GWR and MGWR models.  

Statistic GWR MGWR 

R-Squared 0.472 0.756 
Adjusted R-Squared 0.372 0.682 
AICc 1558.950 1229.685 
Sigma-Squared 0.792 0.317 
Residual Sum of Square 319.151 163.756  
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spatial autocorrelation can challenge statistical tests due to its violation 
of independence assumptions, it also offers valuable insights into spatial 
clustering and biases within the data. 

The spatial heterogeneity analysis results show that the bandwidths 
associated with population, transfer points, sports facilities, and park- 
and-ride points can be considered micro-scale, indicating higher 
spatial heterogeneity. Elevation, industrial areas, and the length of main 
traffic axes are global-scale variables, thus exhibiting low spatial het-
erogeneity. Variables with bandwidths between 358 and 603 do not 
demonstrate spatial heterogeneity (Table 4). 

On the other hand, we utilized Moran’s I index (Lyu et al., 2020) to 
investigate spatial autocorrelation. Moran’s I values range from − 1, 
indicating perfect dispersion, to +1, indicating perfect correlation, with 
a value of zero interpreted as a random spatial pattern (Pu et al., 2017). 
Regarding the MGWR models, the global Moran’s I of their residuals is 
much lower (0.037), indicating the successful incorporation of spatial 
heterogeneity. The insignificant p-value indicates that the null hypoth-
esis, suggesting the absence of autocorrelation, cannot be rejected. The 
strong model fit (0.756) with weak and statistically insignificant levels 
of spatial autocorrelation (0.037) in the residuals, implies the suitability 
of employing this model (Table 4). 

4.4. Coefficient analysis of spatial pattern 

The population variable demonstrates statistical significance in 
about 12 % of the observations, indicating its impact on a local scale 

with 33 neighborhoods (Table 3). The coefficients show variations in 
regions with significant values, influenced by the demographic structure 
of Istanbul. In densely populated areas of the Asian continent (central- 
southern), the coefficients are both significant and low. On the European 
side, in certain regions with the average population (central-southern), 
the coefficients are significant and moderate. Additionally, in the 
northern part of the Asian continent with a relatively lower population, 
the coefficients are both significant and high. 

The variable of sports facilities/areas is significant in 24 % of 
neighborhoods. The coefficients exhibit statistically significant values in 
the coastal areas of the Asian side bordering the Sea of Marmara and in 
the central-eastern sector of the European side. Notably, their influence 
on bicycle volume is exclusively positive in the regions situated on the 
Asian side. Health facilities are significant in 32 % of all neighborhoods. 
The coefficients demonstrate statistical significance across the eastern 
part of the Asian continent and a substantial area of the European 
continent where the number and distribution of health facilities are 
quite high. The residential density variable is insignificant in all obser-
vations, while its impact on a global scale with 604 neighborhoods. In 
the central part of the European side, characterized by high building 
density, the coefficient values are lower compared to the eastern part of 
the Asian side, where density is low. Nevertheless, it’s noteworthy that 
the residential density variable shows limited diversity, indicated by its 
low standard deviation value. The variable of industrial facilities is 
significant 15 % of observations and it operates at a regional scale with 
249 neighborhoods (Table 3). In Istanbul, there exist two primary large- 
scale organized industrial zones (OIZ): Dudullu OIZ, located in the 
central part of the Asian continent, and ̇Ikitelli OIZ located in the central- 
eastern part of the European side. The coefficient values are both sig-
nificant and low on the Asian side, whereas on the European side, they 
are high but lack statistical significance. 

The variable of stop location of urban rail systems is significant in 33 
% of observations (Table 3), indicating its impact on a global scale with 
468 neighbors. In the eastern part of the Asian region, the coefficients 
demonstrate statistically significant and higher values. The pier stop 
variable is significant in 31 % of observations while operating at a 
regional scale with 385 neighbors. The coefficients show high values in 
the southern part of the Bosporus on both the east and west sides, as well 
as in the central-southern part of the European and Asian continents. 
However, they are statistically significant only in the central-southern 
part of the European side. The main road length variable has signifi-
cance in 10 % of the observations, indicating its influence on a local 
scale with 190 neighborhoods. The observation reveals a concentration 
of access roads within the city center, particularly in the central region 
of the European side. In these areas, the coefficients display a significant 
and high value. Furthermore, notable coefficients are also observed in 
the central-northern and central-western regions. However, on the Asian 
side, specifically in areas with bridge connection roads (central west), 
although a relatively high value is present, it lacks statistical signifi-
cance. The transfer point variable shows statistical significance in 
approximately 5 % of the observations, suggesting its impact at a local 
scale with 84 neighborhoods. Upon analyzing points that facilitate 
transfers between different modes of transportation, a specific distri-
bution pattern is observed across certain areas of the city. Notably, the 
coefficients are significant and high in the central-southern region of the 
European side. The park and ride points variable demonstrates statistical 
significance in about 24 % of the observations, operating at a regional 
scale with 385 neighbors. The coefficients are positive across the entire 
study area but achieve significance only in the eastern part of the Asian 
continent, where bus and rail stop density is at a relatively moderate 
level (Fig. 5). The bike park variable displays significance in all obser-
vations, with its impact expanding globally across 604 neighborhoods. 
Notably, the coefficients show positive and higher values in the central 
part of Istanbul, encompassing two continents and the Bosporus line. 

The average slope variable is significant in 16 % of observations 
while operating at a regional scale with 333 neighbors. In the central- 

Table 3 
Summary of independent variables and neighborhoods.  

Dependent Variables Neighbors* (% of 
Features) 

Significance** (% of 
Features) 

Point of Interests 
Religion Facilities 604 (100.00) 0 (0.00) 
Green Areas 604 (100.00) 0 (0.00) 
Commercial Facilities 604 (100.00) 0 (0.00) 
Sport Areas *** 114 (18.87) 147 (24.34) 
Industrial Facilities *** 249 (41.23) 94 (15.56) 
Health Facilities *** 468 (77.48) 197 (32.62) 
Cultural Facilities *** 604 (100.00) 604 (100.00) 
Public Space Facilities 604 (100.00) 0 (0.00) 
Financial Facilities 604 (100.00) 0 (0.00) 
Educational Facilities 604 (100.00) 0 (0.00) 
Residential Areas *** 604 (100.00) 604 (100.00)  

Transportation 
Transfer Points *** 84 (13.91) 34 (5.63) 
Park and Ride Points 

*** 
385 (63.74) 144 (23.84) 

Pier Stops *** 385 (63.74) 192 (31.79) 
Minibus Stops 520 (86.09) 0 (0.00) 
Bus Stops 604 (100.00) 0 (0.00) 
Rail Stops *** 468 (77.48) 204 (33.77) 
Bicycle Parking Stops 

*** 
604 (100.00) 604 (100.00) 

Main Roads *** 190 (31.46) 64 (10.60) 
Pedestrian Roads 604 (100.00) 0 (0.00) 
Car parks 604 (100.00) 0 (0.00) 
Vehicle Flow 604 (100.00) 0 (0.00)  

Land Morphology 
Elevation *** 333 (55.13) 101 (16.72)  

Socio-demographic 
Population *** 33 (5.46) 73 (12.09)  

* The number in the parenthesis ranges from 0 to 100% and can be interpreted 
local, regional, and global scale based on the geographical context from low to 
high. 

** In the parenthesis, the percentage of features that have significant co-
efficients of an explanatory variable. 

*** Statistically significant independent parameters. 
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southern parts of the European continent, where the average slope is 
comparatively lower than the northern and eastern sides, the coefficient 
values are both higher and statistically significant. 

5. Discussion 

5.1. Implications of model results for data-driven cycling strategies in 
Istanbul 

Numerous studies (Faghih-Imani et al., 2014; Noland et al., 2016; 
Lyu et al., 2020; Zhou et al., 2023a,b) identified that the size of the 
population has a positive impact on cycling. They indicated that in areas 
with a high population density, the prevalence of facilities and services 
increases accessibility, rendering cycling a convenient mode of trans-
portation for a variety of purposes. In contrast, in the findings, there 
exists a negative correlation between population and cycling volume. 
Among the regions exhibiting significant values, a negative relationship 
is observed in particular in the southern part of the Asian continent. The 
most significant factor contributing to this situation is the extensive use 
of a long recreational coastline with bike lanes. As illustrated in Fig. 5, 
the population along the coastline is notably lower than in nearby re-
gions. Conversely, some densely populated areas on the European side 
also exhibit low levels of cycling. The primary factor causing the low 
cycling rates observed in these areas is the lack of adequate infrastruc-
ture, which is a consequence of the high housing density (Fig. 7). To 
increase cycling volume in these areas, there is a necessity to strengthen 
connectivity between key cycle routes within the city and optimize bike- 
sharing services in high-demand areas. It is also crucial to integrate 
cycling into daily routines and to create a continuous cycle network 

from the city center to the coast, complementing the implementation of 
coastal strategies. 

Elevation, as a natural factor, plays a significant role in influencing 
the cycling volume among individuals. A high percentage of slope dis-
courages people from using bicycles and directs them to explore 
different alternatives in route selection. Cyclists generally exhibit a 
preference for avoiding terrain with significant elevation or hills (Gris-
wold et al., 2011; Chen et al., 2017). The research conducted by Men-
ghini et al. (2010) shows that cyclists tend to prefer routes with lower 
inclines, avoiding steep gradients. Nevertheless, this observation stands 
in contrast to the findings of Sener et al. (2009) who identified a stated 
preference for moderate hills, especially in the context of recreational 
cycling when compared to flat terrain. An alternative perspective in the 
literature proposes that regions with steep slopes may serve as a positive 
motivator for bicycle users, potentially attributed to the wide range of 
visual perspectives they offer. On the street level, the slope is identified 
as the most crucial factor, with the green and sky view indexes following 
in importance (Zhou et al., 2023a,b). In this context, the model results 
provide parallels with the existing literature. It is evident in the central- 
southern part of the European side, characterized by a moderate slope 
(Fig. 7). The region’s cultural richness and its elevated position, which 
affords panoramic views of the Bosporus, have positively influenced the 
volume of bicycle usage. 

Sports areas, as a part of the green ecosystem in the urban environ-
ments, are identified as being positively associated with cycling (Fraser 
and Lock, 2011; Nawrath et al., 2019). The research findings indicate 
that on the Asian side of Istanbul, the results are consistent with previous 
studies. The positive and statistically significant impact of sports facil-
ities on cycling volume in the Asian continent can be attributed to the 

Table 4 
Coefficient values of the variables.  

Variable Mean STD Min Median Max VIF Bandwidth* ACV of Pseudo-t Statistics** 

Intercept 0.028 0.382 − 0.396 − 0.079 1.758 − 30 3.287  

Point of Interests 
Religion Facilities 0.077 0.001 0.076 0.077 0.079 3.117 604 1.975 
Green Areas 0.016 0.005 0.010 0.014 0.024 2.810 604 2.016 
Commercial Facilities 0.042 0.001 0.040 0.042 0.044 7.188 604 1.980 
Sport Areas 0.005 0.185 − 0.285 − 0.004 0.553 3.438 114 2.779 
Industrial Facilities − 0.057 0.107 − 0.286 − 0.025 0.058 1.651 249 2.466 
Health Facilities 0.114 0.021 0.092 0.101 0.156 5.536 468 2.041 
Cultural Facilities 0.134 0.001 0.133 0.134 0.135 3.313 604 1.974 
Public Spaces − 0.086 0.005 − 0.096 − 0.085 − 0.079 4.406 604 2.019 
Financial Facilities − 0.075 0.003 − 0.080 − 0.075 − 0.069 6.912 604 2.006 
Residential Areas 0.294 0.004 0.289 0.292 0.302 6.457 604 1.975 
Educational Facilities − 0.051 0.004 − 0.056 − 0.051 − 0.046 4.500 604 2.019  

Transportation Services 
Transfer Points 0.011 0.105 − 0.123 − 0.009 0.565 1.241 84 2.911 
Park and Ride Points 0.060 0.036 0.011 0.049 0.121 2.667 385 2.190 
Pedestrian Roads − 0.039 0.000 − 0.040 − 0.039 − 0.038 4.912 604 1.972 
Main Roads 0.032 0.080 − 0.125 0.037 0.236 1.380 190 2.646 
Pier Stops − 0.060 0.020 − 0.094 − 0.061 − 0.017 1.520 385 2.106 
Minibus Stops − 0.001 0.023 − 0.029 − 0.005 0.034 1.182 520 2.186 
Carparks 0.031 0.002 0.027 0.031 0.035 2.044 604 2.022 
Bus Stops − 0.005 0.006 − 0.012 − 0.009 0.008 2.256 604 2.055 
Bicycle Parking Stops 0.128 0.002 0.123 0.128 0.132 1.684 604 2.019 
Rail Stops 0.063 0.025 0.027 0.060 0.100 1.956 468 2.130 
Vehicle Flow 0.001 0.005 − 0.005 − 0.002 0.009 1.304 604 2.021  

Land Morphology 
Elevation 0.034 0.059 − 0.066 0.023 0.139 1.198 333 2.458  

Socio-demographic 
Population − 0.250 0.529 − 3.325 − 0.120 0.640 4.068 33 3.225  

* Bandwidth for GWR is constant: 344. 
** Adjusted Critical Values (ACV) of Pseudo-t Statistics: This value is utilized for assessing the statistical significance of coefficients in a two-sided t-test at a 95% 

confidence level. The value corresponds to a significance level (alpha) of 0.05 divided by the effective degrees of freedom. 
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Fig. 7. Spatial distribution of significant parameter coefficients for MGWR-1.  
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extensive, public, and mixed-use characteristics of the coastal areas. This 
enables urban residents to prioritize their preference for cycling in these 
specific regions. On the other hand, on the European side, it is observed 
that the statistically significant areas have a negative impact on cycling 
volume. The primary cause of this phenomenon is the high residential 
density, which has resulted in the distribution of sports facilities in a 
small and fragmented manner. This case has the effect of discouraging 
people from utilizing their bicycles in sports areas. 

The impact of housing density on cycling volume shares several 
characteristics with the population variable in many aspects. Extensive 
residential areas encompass various built environment elements within 
proximity, such as commercial establishments, schools, and green 
spaces, and individuals are likely to prefer cycling for short distances 
(Zhou et al., 2023a,b). In contrast, Cheng et al. (2022) observe that re-
gions characterized by high residential density often signify a large 
population. In densely populated areas, there might be a discourage-
ment for cycling due to factors like traffic congestion and road safety. 
The spatial organization of the built environment has a significant in-
fluence on cycling volume in a city. Cycling may primarily depend on 
the arrangement of the residential neighborhood, ensuring that desti-
nations and activities are conveniently situated within a suitable cycling 
distance (Xing et al., 2010). The results reveal that in all observed grids 
of Istanbul, residential density has a statistically significant and positive 
impact on cycling volume (Fig. 7). This positive correlation suggests that 

higher residential densities contribute to increased cycling activity. The 
findings underscore the importance of considering residential density in 
urban planning and policy-making to promote cycling. Strategies to 
increase residential density, such as mixed-use developments and 
cycling-friendly living environments, could be effective in boosting 
cycling rates in Istanbul. In light of the findings regarding population 
parameters, targeted investments in cycling infrastructure in high- 
density areas could serve to amplify the positive impact of residential 
density on cycling volume. 

Transfer points play a critical role in providing interchange facilities 
for urban rail systems, maritime routes, and rubber-wheeled trans-
portation modes. Public transport systems cannot ensure door-to-door 
service due to constraints of limited station accessibility; thereby they 
need to be consolidated by different modes. Integrating different modes 
of public transport with cycling has a great impact on providing urban 
accessibility and route flexibility of public transport by easing first- and 
last-mile connectivity (Fu et al., 2023). This integration increases the 
traveling efficiency of individuals as well as the service level of the 
public transport system (Ma et al., 2023). The availability of diverse 
transportation options in these areas may positively influence the vol-
ume of cycling, as individuals favoring these transportation modes may 
opt for bicycles to access the region. The central areas of the European 
side and western part of the Asia side of Istanbul provide crucial transfer 
points for various modes of public transport such as bus, bus-rapid 

Fig. 8. Spatial distribution of significant parameter coefficients for MGWR-2.  
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transit, metro, tram, and ferry. In parallel, the model results present a 
positive influence on the central area of both sides of the city, with 
statistical significance observed in central Europe, including the Historic 
Peninsula. It is noticeable that one of the most prominent tourist at-
tractions of Istanbul could be enhanced through the implementation of 
active cycling initiatives, which would require the development of 
comprehensive and inclusive public transport strategies. 

The distribution of urban facilities and services directly related with 
the planning of urban transport systems and preferences of individual 
mode choices. In explaining the relationship between the urban ame-
nities and levels of cycling, several studies (Griswold et al., 2011; Chen 
et al., 2017; Sun et al., 2017; Ji et al., 2023; Zhou et al., 2023a,b) have 
relied on land-use mix. In alignment with the existing discussions, we 
analyzed the urban facilities. Furthermore, we explore all the facilities 
independently to ensure more accurate results in terms of explaining the 
relationship with cycling volume. Correspondingly, for health facilities, 
it is observed that they are concentrated in the central and eastern re-
gions of the European side and the western part of the Asian side (Fig. 4). 
In addition to the model results indicating a positive effect on Istanbul as 
a whole, there is also a statistically significant result on the Asian side. 
Although there is a high density of health facilities on the European side, 
the intensity of bicycle routes and usage on the Asian side, especially 
along the coast, is the main reason for the importance of these regions. 
From this perspective, strategies to enhance the utilization of bicycles, 
particularly for accessing healthcare facilities, appear to be highly 
relevant and practical on the European side. The distribution of work-
places in the city and their proximity to residential areas is a crucial 
factor influencing the utilization of bicycles (Dai et al., 2023). The sig-
nificant and positive impact of the coefficients in these regions indicates 
that for accessing work and urban services, individual preferences are 
concentrated around cycling, particularly for short distances. In this 
regard, industrial facilities present relevant results with the literature. 
They have a negative influence on both the Asian and the parts of the 
European side close to the Bosporus. However, they represent a positive 
influence on the central and western European sides. Notably, the model 
results show a statistically significant negative effect in the central and 
southern regions of the Asian side. The fundamental reason underlying 
this is that the residential zones are predominantly situated on the Asian 
side, while industrial zones are mostly on the European side. In contrast, 
the central areas of the European side, which concentrate industrial 
facilities, experience a positive effect. It provides an opportunity to 
support the transition towards cycling as an active commuting mode, 
attributable to the investment in cycling infrastructure in these regions. 

Several studies (Sun et al., 2017; Zhou et al., 2023a,b) have proved 
that there is a negative correlation between vehicle (road) density and 
bicycle usage volume. However, as is common practice in Türkiye, the 
bicycle lanes are typically integrated into main road axes and share the 
same infrastructure and routes with vehicles. This configuration may 
facilitate increased cycling activity, particularly in areas where the 
length of vehicle routes is extensive. In contrast to the findings of pre-
vious studies, the density of main roads in Istanbul has a positive effect 
on cycling, except for the eastern part of the city. This parameter, which 
is statistically significant in particular in the coastal part of the Anatolian 
side and the central and southern part of the European side, demon-
strates the importance of route selection for bicycle road networks. 
Therefore, it is of great importance that the strategies to be developed 
for the new construction of new bicycle lanes are informed by this un-
derstanding (Fig. 8). 

Stop density of different modes have the potential to encourage in-
dividuals to utilize cycling as a mode of transportation (Ji et al., 2023; 
Zhou et al., 2023a,b). One strategy for enhancing the appeal of cycling is 
to integrate it with alternative modes of public transportation, such as 
ferries and metro systems. This integration can facilitate the transition 
from one mode of transportation to another, making cycling a more 
viable option for commuters. Concerning marine transportation in urban 
areas, the coefficient tends to exhibit positive values in regions along the 

Bosporus coasts where the piers are concentrated. This suggests that 
formulating policies to encourage bicycle users to utilize ferries has the 
potential to enhance bicycle usage between the two continents. The 
same principle can be applied to the Marmaray suburban rail line, which 
connects the Asia and Europe sides of Istanbul. The provision of access 
on the east–west axis enables bicycle users to engage with a broader 
array of built environment elements, thereby contributing to an increase 
in the volume of cycling. (Fig. 8). 

Integrating bicycles as feeders into the park-and-ride system can 
enhance accessibility at different spatial scales such as street level or 
neighborhood level. As an example, the Netherlands Ministry of Trans-
port initiated the “Space for the Bicycle” project to enhance the effi-
ciency of bike parking facilities around metro stations. The 
enhancements have shown some impact on the use of cycling, with 
approximately 11 % of the respondents indicating that improved bicycle 
parking facilities were a motivating factor to travel more frequently by 
bicycle to the train station (Martens, 2007). Park-and-ride facilities can 
attract individuals who may not prefer cycling as their main mode of 
transportation but are willing to use it for part of their journey. This 
could result in an overall increase in cycling volume, even if it is not the 
primary mode of transportation. In this research, the Park and Ride 
parameter has a positive influence on all observation grids within 
Istanbul. The statistical significance of this parameter, particularly in the 
eastern part of the city, where residential areas are dense, provides a 
foundation for further discussions on the potential of bicycles as an 
effective means of transport for accessing residential and work areas. 
Furthermore, the positive effect observed on the European and Asian 
coasts can be utilized as a valuable input for the formulation of policies, 
creating a potential for effective bicycle usage on the north–south axis in 
addition to the east–west direction. 

5.2. Limitations of the research and further directions 

As is the case with the majority of studies addressing comparable 
issues, this study is subject to some limitations. The first of these relates 
to the type of variable included in the study. Including climatic condi-
tions in the research on bicycle use can provide a more comprehensive 
understanding of the dynamics involved. Climate can significantly in-
fluence people’s willingness and ability to use bicycles for trans-
portation. As was mentioned in Section 2.1, many of the studies covered 
climatic factors (Tin Tin et al., 2012; El Esawey et al., 2013; Gosse & 
Clarens, 2014; Chen et al., 2017; Hong et al., 2020; Zhou et al., 2023a,b). 
Further research can establish a broader framework by incorporating 
climatic factors into a comprehensive analysis of spatial variables. The 
second limitation is about methodology. A substantial body of literature, 
including the present research, employs a methodological approach that 
predominantly focuses on linear relationships between variables. 
However, there is limited research exploring non-linear relationships 
(Sun et al., 2018; Cheng et al., 2022; Ji et al., 2023). In further studies, it 
is possible to conduct comparative analyses of linear and non-linear 
relationships between various spatial variables, thereby providing a 
comprehensive perspective on the existing literature. 

6. Conclusions 

This study employs multi-scale geographically weighted regression 
to investigate the effects of different spatial dynamics on cycling volume 
under the local scale. Upon assessing the benefits of local models in 
contrast to global models, the study identified the most suitable model 
through a comparative analysis of two distinct local models using per-
formance criteria. A comprehensive data set was created by categorizing 
24 different variables related to the built environment, transport ser-
vices, land morphology, and socio-demographic structure as indepen-
dent variables and bicycle volume data were determined as the 
dependent variable. It is observed that POIs, including sport, health, and 
industrial facilities, along with residential density; transportation 
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services encompassing transfer points, park and ride points, piers, rail-
way stops, road length, and bike parks; as well as land morphology 
represented by slope, and socio-demographic variables such as popula-
tion, significantly influence cycling volume. Furthermore, the impacts of 
these distinctive variables on cycling volume exhibit diversity in various 
regions. The results provide a comprehensive perspective on the un-
derstanding of the impact of spatial characteristics on the volume of 
cycling. The findings hold significance for the advancement of data- 
driven methodologies and the implementation of developed strategies 
at both micro (local) and macro (urban) levels. 

By considering the current practice of data-driven decision-making 
in Istanbul, one could argue that the research approach is also highly 
relevant given IMM’s recent work in the context of data-driven decision- 
making. Most recently, IMM launched a project called 34-minute Istan-
bul, an interactive, dynamic, and data-driven planning tool for accessi-
bility planning. The project uses hexagonal grids for analysis and 
displays areas where daily needs can be met by walking on different 
themes. One of these categories is transport (Fig. 9), and our research 
provides a practical basis for further exploring the transport theme of 
cycling. 

By integrating the analytical methodology and significant variables 
as an extra layer for the platform, further indices can be developed for 
citizens in the context of cycling accessibility. IMM also recently 
declared the Istanbul Sustainable Urban Mobility Plan (SUMP). The plan 
has nine key objectives, including stimulating the modal shift to active 
modes – walking and cycling – (IMM, 2022, p.18). Furthermore, data- 
driven decision-making is one of the critical principles of the gover-
nance framework of the project. Herein, the model approach of this 
research has the potential to enable decision-makers to prioritize the 
allocation of resources to areas in need of cycling investment, promote 
carbon-free transport, and improve the overall cycling experience by 
providing a cycling-friendly urban environment in Istanbul. 
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Turkish Statistical Institute (TÜİK). (2023). https://www.tuik.gov.tr/. 
Uber Technologies, Inc. (2023). H3. Retrieved February 10, 2023, from https://h3geo. 

org/. 
Wang, X., Zheng, S., Wang, L., Han, S., Liu, L., 2023. Multi-objective optimal scheduling 

model for shared bikes based on spatiotemporal big data. J. Clean. Prod. 421 https:// 
doi.org/10.1016/j.jclepro.2023.138362. 

Welch, T.F., Widita, A., 2019. Big data in public transportation: a review of sources and 
methods. Transp. Rev. 39 (6), 795–818. https://doi.org/10.1080/ 
01441647.2019.1616849. 

Wen, B., Li, L., Duan, Y., Zhang, Y., Shen, J., Xia, M., Wang, Y., Fang, W., Zhu, X., 2018. 
Zn, Ni, Mn, Cr, Pb and Cu in soil-tea ecosystem: the concentrations, spatial 
relationship and potential control. Chemosphere 204, 92–100. https://doi.org/ 
10.1016/j.chemosphere.2018.04.026. 

Xie, X.F., Wang, Z.J., 2018. Examining travel patterns and characteristics in a 
bikesharing network and implications for data-driven decision supports: case study 
in the Washington DC area. J. Transp. Geogr. 71, 84–102. https://doi.org/10.1016/ 
j.jtrangeo.2018.07.010. 

Xing, Y., Handy, S.L., Mokhtarian, P.L., 2010. Factors associated with proportions and 
miles of bicycling for transportation and recreation in six small US cities. Transp. 
Res. Part D: Transp. Environ. 15 (2), 73–81. https://doi.org/10.1016/j. 
trd.2009.09.004. 

Yang, H., Zhang, Y., Zhong, L., Zhang, X., Ling, Z., 2020a. Exploring spatial variation of 
bike sharing trip production and attraction: a study based on chicago’s divvy system. 
Appl. Geogr. 115, 102130 https://doi.org/10.1016/j.apgeog.2019.102130. 

Yang, L., Zhang, F., Kwan, M.P., Wang, K., Zuo, Z., Xia, S., Zhang, Z., Zhao, X., 2020b. 
Space-time demand cube for spatial-temporal coverage optimization model of shared 
bicycle system: a study using big bike GPS data. J. Transp. Geogr. 88 https://doi. 
org/10.1016/j.jtrangeo.2020.102861. 

Yin, G., Huang, Z., Yang, L., Ben-Elia, E., Xu, L., Scheuer, B., Liu, Y., 2023. How to 
quantify the travel ratio of urban public transport at a high spatial resolution? A 
novel computational framework with geospatial big data. Int. J. Appl. Earth Obs. 
Geoinf. 118, 103245 https://doi.org/10.1016/j.jag.2023.103245. 

Yuan, S., Dai, W., Zhang, Y., & Yang, J. Dockless Bike-Sharing Data-Driven Cycling 
Greenway Planning in Megalopolises: A Case Study of Chengdu. Available at SSRN 
4653775. https://doi.org/10.2139/ssrn.4653775. 

Zafri, N.M., Khan, A., 2022. A spatial regression modeling framework for examining 
relationships between the built environment and pedestrian crash occurrences at 
macroscopic level: a study in a developing country context. Geogr. Sustain. 3 (4), 
312–324. https://doi.org/10.1016/j.geosus.2022.09.005. 

Zha, W., Ye, Q., Li, J., Ozbay, K., 2023. A social media Data-Driven analysis for transport 
policy response to the COVID-19 pandemic outbreak in Wuhan, China. Transp. Res. 
A Policy Pract. 172, 103669 https://doi.org/10.1016/j.tra.2023.103669. 

Zhao, P., Xu, Y., Liu, X., Kwan, M.P., 2020. Space-time dynamics of cab drivers’ stay 
behaviors and their relationships with built environment characteristics. Cities 101, 
102689. https://doi.org/10.1016/j.cities.2020.102689. 

Zhou, X., Dong, Q., Huang, Z., Yin, G., Zhou, G., Liu, Y., 2023b. The spatially varying 
effects of built environment characteristics on the integrated usage of dockless bike- 
sharing and public transport. Sustain. Cities Soc. 89 https://doi.org/10.1016/j. 
scs.2022.104348. 

Zhou, T., Feng, T., Kemperman, A., 2023a. Assessing the effects of the built environment 
and microclimate on cycling volume. Transp. Res. Part D: Transp. Environ. 124 
https://doi.org/10.1016/j.trd.2023.103936. 

Zhu, L., Yu, F.R., Wang, Y., Ning, B., Tang, T., 2018. Big data analytics in intelligent 
transportation systems: a survey. IEEE Trans. Intell. Transp. Syst. 20 (1), 383–398. 
https://doi.org/10.1016/j.ifacol.2021.06.025. 
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