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Preface

In April 2006, 10 minutes after | had graduated from my Mdstdmnwas approached by
my professor Frank Sanders with the question whether | wikedto perform a PhD.
Within a few days, | was talking to Hans van Lint about travedd prediction and a
possible PhD position. Although the start was a bit cautioasy soon the cooperation
between me and Hans became very positive (although Hansohadl/ise me to follow
a few additional courses on traffic theory). Soon | undetti@at without money, a
position would be hard to obtain. | started to write my firsbposal for a grant (more
would follow), a Casimir grant in this case which | applied together with Vialis in
Haarlem and which was denied because the plan was ‘too augitiNonetheless, the
contacts with Vialis were that good, that we all decided thedmbined research program
was worth a shot. Therefore, the first of January 2007 | officstarted my PhD career.
I would like to thank Vialis, and especially Wim Broederst &mabling this start of what
was to become a very positive working experience, even tindlg combined research
program between the TU and Vialis didn’t work out in the long.r

And so the work had started. Besides the everyday pleasurgitng to solve a Hes-
sian of some new model | was trying to use, the papers | deli/put me in great places.
The first paper | ever wrote immediately delivered me a tri@hana, which | very much
enjoyed. | got to know my colleagues better, and still rememividly how we cele-
brated Pauline’s birthday elevated 400 meters above thengron Shanghai, just after
Serge, Huizhao and | had a near-death experience in a taxngiibackwards on the
highway. One year later, | had the opportunity to presentgepa Surfer’'s Paradise,
Australia. The one month trip that me and Pauline made aftetswvas without a doubt
the best holiday | ever had. Of course, the trips were notysdviall of sunshine - one
‘Hoegaarden Grand-Cru’ too much made me swear never to dgaki at the DTA con-
ference in Leuven, Belgium.

| was the luckiest of PhD’s with my supervisors. | valued mgiependence, and |
suppose they valued my independence too, but whenever éddedp, it was available.
Hans, | was always in close contact with you, being office nleays, and | have always
valued greatly your ability to find time to help me out when Isasuck. Also, | valued
the very quick responses of Hans, Henk and Frank Sandersew#iehhad written a
new paper. Within days, | could expect very serious and tginoemarks and questions



ii Preface

which have helped to get my papers published. | would likdnémk all three of you for
letting me do what | thought was good, but still steering meméver | needed steering.

Already after a few months, | got to know Frank Zuurbier asordy a good pingpong-
player and a hard worker, but also as an entrepreneur, anglimportantly, as a friend.
Very quickly, we both decided that we did not want to work fob@ss after our PhDs,
and we started making plans for billion-euro companiesdbasgin random order) GPS-
dating, track & tracing, horizontal candles, a website fading puzzles, a GSM with
medical check-up abilities and Hitman Mobile, but (surpiggy) all ideas appeared not
to be good enough. Then, in 2008 we started a new adventureofe months, we had
had the idea to use the model IDSMART after our PhDs to deimertraffic information
services. Soon we decided that the perfect domain name i®wes Fileradar.nl, but
discovered that the domain name was taken. Luckily for us,ma@aged to contact
the owners of the domain name, two young entrepreneurs diathdty of Aerospace
engineering who had just given up on the whole idea of beingrairepreneur. They were
so kind to share their experiences with us, as well as handtbgelomain name, over a
very expensive diner in Amsterdam. | would like to thank boftithem for being so kind
(Frank, you still owe me half the diner!). The adventure tteok off. We started to apply
for funding wherever we could. We entered a competitiorecktthe Academic Year Prize,
for which we had to work our butts off but which was an extrey@sitive experience,
winning the second prize. From there on, we submitted forlarigation Grant at STW
(granted), we competed in the Delft Design and Engineeriwgrd (did not even make
it to the finals) and, together with TomTom, worked on a terfdethe NDW (denied).
Our last effort, the IMM-subsidy from the Ministry of Trans, Public Works and Water
Management, was finally granted in September 2010. The @ppenod will therefore
be very intensive, but | have very high confidence in a pasitivtcome, although 1 still
have my doubts about the billion-euroness of the undentakéil in all, Frank, without
you there would be no Fileradar and | probably would have éngbeworking for a boss.
| am extremely grateful for having you as a colleague andemdtj and | hope that we will
continue to work together for many years.

Through the years | got to know several great roommates: MEinkemke, Thomas,
Maaike, Nina, Victor and Leila. Not only did they help me onnmgarccasions when |
had questions regarding Matlab, Latex, mathematics didisgience in general, but also
they ensured that there was a very positive atmosphere m rb81. Femke, | would
like to apologize for all those occasions where | shoutedaobit too loud looking for
my coffee-card or keys. Also, | would like to apologize to thdire department (and the
departments on Floor 3 and 5) for my enthusiasm at the pirgypadsie. Again, | might
have shouted out a bit too loud on occasions. On a more positle, all the practice at
the pingpong table helped me to get to know most people ateépartiment, helped me
to empty my brain between the Hessians and the programmifiig®MART, and helped
me to become the Transport & Planning Pingpong Champion.20I0ight enter the



world championship next year.

Besides my roommates, | got to know other colleagues asdsieAdam, thank you
for your laughs, for fithess and tennis, and for dealing withstorming into your room
when | needed a break. The same goes for the other inhalofdtite smart-room’ Olga,
Niels, Hao and Tamara. Kees and Theo, thank you for teachelgaw to play pingpong
(can I now finally borrow that book about it?), and sorry foe temarks that | might have
made about your age. All Chinese colleagues, (especiallyltila Hao Li and Huizhao)
thank you for teaching me your fantastic language and fontaay great diners at the
Chinese restaurants in the Hague and Rotterdam. Mariok §@nfor sharing your life
experience with me during our trip to Washington.

During my PhD, | could always count on the full support of mynily. Rix, thank
you so much for always being there for me. Douwe, thank yosli@aring your scientific
views with me and thank you for suggesting that | should maigethmasis paper-based,
and Lars, you are a fantastic brother. Both of your, thankfpoleing my paranymphs.
Peter, thank you for your continuous support. | love youradt,to forget all your partners
and my niece and nephew. My family-in-law, Cees and Tonnga8ne and Sipco and
the kids, | am a lucky man to have been married into your family

Finally, | would like to dedicate a paragraph to the love of lifig, Pauline. First
of all, I would like to thank you from the bottom of my heart feupporting me in all
those years and for being so patient, also when Frank and tchggend evening after
evening to finish a document or presentation. Also, | wole to thank you for listening
to me explaining something difficult that | was doing, eveitvias something extremely
technical which | didn’t even fully understand. Not only didu support me, but you
also gave me the energy to keep going, and you put my feet battkeoground in those
cases where | became overenthusiastic. The last monthskawvevery intensive, with
me working hard on the PhD, trying to build a company, and nmpbrtantly, the birth
of our fantastic daughter Eefje. Of course, without youhmegiof these three would have
been possible. | love you with all my heart and | thank you semfor loving me back.
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Chapter 1

Introduction

In this thesis, the focus will be oroad traffic Road traffic has played a major role
in everyday human life over the past decades. It has led toogcim growth and an
increased mobility and freedom of people, but it has alsadednumber of negative side
effects such as unsafety, traffic congestion and pollution.

1.1 Model formulation and data assimilation

Many different phenomena of the road traffic system have baefied over the decades,
to improve the performance of the traffic system or to allevisome of the negative
side effects of traffic. For the description of these phenmmever the years scientists
have proposed mathematical models to describe these plkeageither deductively (by
reasoning based on axioms, laws, etc.), or inductively bgstigated and interpreting
traffic data. In general, traffic science is mostly an emplracience where the induc-
tive formulation of models appears to be dominant. In Fidufehis process is depicted
schematically. On the left the real-world is drawn, whichihis case represents the road
traffic system. Sensors are used to measure certain aspéus reality, which could be
(average) speeds of passing vehicles somewhere in the ebadmk. Using such sensors,
data is collected, which usually needs to be cleaned andketdor validity after which
it is stored. This cleaned data can then be interpreted tlyzmeegularities in order to
develop new theories and concepts, as Bruce Greenshigldgdmple already in 1934
analyzed that with an increasing density of vehicles theame speed has the tendency
to decreaseGreenshieldsl934). Based on these new theories, new hypotheses are pro-
posed to explain the observed phenomena, which are usoathufated in mathematical
models. These models are then used to make predictionsliby.rea

There are important interactions between the three stegstaacquisition, the devel-
opment of theories and concepts and model formulationt &irall, when a new math-
ematical formulation is formed based on a hypothesis, thdenioeeds to be validated
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Dat
Sensors - / o \ Interpretat%on
Data cleaning & Analysis

Calibration )
Empirical Theories &
validation Face Concepts
validation
Estimation Mather;z;tical QJFiormulation of
and prediction mocels hypotheses

Figure 1.1: Schematic representation of the circle of mat#sielopment

against the original theory that was developed. This isedd#ice validation Generally,
the next step is to compare the model against (new, unseaguranents of reality, to
see if the model is able to reproduce these measurementality.ré&his is calledempir-
ical validation or as Miguel de Cervantes wrote in 1615: ‘the proof of thedig is in
the eating'. In order for a model to make a prediction, it generally ndsdtorical and/or
real-time data for calibration and as input for predictiofi$ie validated and calibrated
model can then make estimates and predictions of realitglwtan be used for a variety
of applications. All of these interactions are indicatedrigurel.1 by arrows.

However, traffic is a system with stochastic properties bsedt is the result of human
behavior subject to temporarily or permanently changirtgresal conditions (due to inci-
dents, large events, changing weather, globalizatiomgihg political landscape or the
credit crunch to name a few). Furthermore, there are difteyges of roads (anywhere
from a one lane farm road to a twenty-six-lane freefyayn which behavior of drivers
cannot be expected to be equal. Notably, there are alsodéfgeences of travel and driv-
ing behavior between countrieBycher 1988 Golias and Karlaftis2001, Ozkan et al.
2006, as well as large international differences in road layoaffic laws and traffic
management. For many phenomena more than one plausibky the® been proposed
on the basis of the same empirical evidence. This has suéstygled to a multitude

LIn fact, his original text was not about pudding but aboutsedgl freir de los huevos lo vera’, or ‘it
will be seen in the frying of the eggsié Cervantes Saavedd®15.
2For example, the Katy Freeway in Houston, Texas is currdogigg widened to 26 lanes.
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of mathematical models describing the same phenomena.xgorpe, inOssen2008
eight different models were identified for the task of moadglcar-following behavior,
and invan Hinsbergen et a(2007) over a hundred different models were identified for
the prediction of single traffic variables such as flow or ¢tdime.

Because of the fact that so many models exist for the desumipf the same traf-
fic phenomenon, a user that wants to model a certain traffingghenon generally
has to make a choice from a wide variety of models. When chgolsetween mod-
els one possible solution is to analyze them on certain ptiegesuch as mathematical
simplicity, numerical stability or computation speddaganzo 1995h Aw and Rascle
2000 Ran 200Q Nagel et al. 2003 Vlahogianni et al. 2004. A second approach is
to choose models based on their ability to predict reality fi@asurements of real-
ity) (Smith and Demetskyl997 Lee et al, 1998 Huisken and van Maarsevee?00Q
Nikovski et al, 2005. The former approach is close fiace validationof multiple mod-
els, while the second can be interpreted astingirical validationof multiple models as
indicated in Figurel.1

From the previous, it appears that data is used for diffdeskis in the circle of model
development: it is used to formulate new theories, to védidladividual models against
reality, to choose one or more models from a selection ofi@ia validated models, to
calibrate the models so that they make optimal predictiand, finally as input to cali-
brated models for optimal estimates or predictions of tgaBecause choosing between
models can be seen as validation of each model individuallya@mparing the relative
outcomes, often these two steps are taken together. I@sttiat there are strong interac-
tions between all these steps: models can only be propdrtiated if they are calibrated
properly, and predictions are only expected to be accuriie models are validated first,
and if they are calibrated.

This thesis deals with the use of data together with modelsdéscribe phenomena
that have been analyzed by scientists studying road trafffi@ simultaneous treatment
of data and models is often termddta assimilationRobinson and Lermusiau2001),
although the term has been used for various meanings defgeodithe field of interest.
In this thesis, data assimilation is defined as follows:

“Data assimilation is the use of techniques aimed at thettreant of data in
coherence with models in order to construct an as accurate @msistent
picture of reality as possible. It comprises the use of datanfiodel vali-
dation and identification (choosing between models), moaldration and
estimation and prediction and specifically deals with theractions between
all these tasks.”
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Thesis scope: data assimilation

Dat
Sensors / o \ Interpretat%on
Data cleaning & Analysis

Calibration

Empirical Theories &
validation Face Concepts
validation
Estimation Mather;z;tical %mulation of
and prediction mocels hypotheses

Figure 1.2: The focus of this thesis is on data assimilatioroad traffic

1.2 Objectives and scope of this thesis

As the title of this dissertation indicates, this thesisulsges on data assimilation in road
traffic. Extensive literature studies, as will be presemte@hapter2 - 7, reveal that no
method exists in the field of (road) traffic science that cetesitly deals with all steps of
data assimilation. The goal of this thesis is therefore td irmethodology that allows
for structural treatment of data in coherence with modelhe Methodology is required to
be applicable to a wide variety of models, because diffegres of data and models are
used throughout all subfields of road traffic science. Thigeds represented in Figure
1.2by the gray box.

This thesis proposes a unified method for the three taskstafagsimilation: model
validation & identification - calibration - estimation & piietion, applied to different
traffic phenomena. The thesis will specifically not use datdavelop new models, but
will use data only to improve applications with existing netel Therefore, the goal of
this thesis is defined as follows:

“to find a unified methodology for data assimilation for a widege of mod-
els describing different road traffic phenomena, so thaterewmcurate and
consistent predictions can be made of the road traffic sy'stem

The remainder of this chapter is organized as followsl.Bithe three tasks of data
assimilation that were identified above are treated moensitely. Then, irl.5a unified



1.3 The three tasks of data assimilation 5

framework for data assimilation is described. 116 the outline of this thesis is treated,
followed by a description of the contributions of this treeisi1.7.

1.3 The three tasks of data assimilation

There are three tasks in data assimilation: (1) the vabdatind identification of (the
best) model(s) for a certain application, (2) the calilmabf the chosen model(s) for best
performance and (3) the use of data as an input to the chosleraéibrated model(s) for
an estimate or a prediction of reality. Each of these threedascribed in more detail
below.

1.3.1 Model validation and identification

A scientist who has formulated a new model needs to put hisponodel to the test:
validationis required. Usually, models are validated first by analyzhme properties of
their outcomes to see if they do what they are intended to dafahey are internally

consistent (‘face validity’), and second by comparing theded with (measurements of)
the real traffic system (‘empirical validity’). In case mdslalready exist for the task at
hand, it is even more interesting to see whether the newlgldped model outperforms
existing models.

Even in the case when no new model has been developed, idedéficationneeds
to take place: a scientist or practitioner who wants to madetrtain phenomenon will
have to choose one or more models from all available modelsrature on model per-
formance generally is not conclusive about ‘the best mode€ to differences in the
performance measures that are used, in the types, locdifterént countries) and layout
of roads that the models are applied to, in the type and sitieeoflata sets used for the
comparison and in the methods used for calibration of theatsadan Hinsbergen et al.
2007).

Usually, models are chosen based on whatever is availamdatever the scientist
or practitioner is familiar with. This thesis proposes t@ asmore systematic way for
choosing between multiple models using traffic data. Funtioee it should be noted that
apart from choosing between models, also the option exisising multiple models in
parallel for the same task, and to combine their predictimiisg for example a weighted
average of the individual outcomes of the models. This iedalcommitteer ensemble
In this thesis such a committee will be used on different sicres.

1.3.2 Model calibration

When a model is applied to a real world application, it alnadsfys requiresalibration.
The small or large amounts of data that are available to assi®r a practitioner need to
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be used to tune the model to the specific situation that theisibailding an application
for. This is done by setting thearametergo specific values that are expected to result in
the highest performance of the chosen model(s). The peaimcexmeasure used to define
what the highest performance exactly is, as well as the mdgthoptimize this measure,
is user defined and therefore heavily influences the outcoffrtbe calibration task.

1.3.3 Estimation and prediction

Finally, when the user has identified the model(s) that eskaest suited for his or her
application, and all models have been calibrated using tfega the chosen model(s) can
be used to make estimates or predictions about certaintaspfdbe traffic system.

In application of a calibrated model a separation betwestimationand prediction
needs to be made. Estimation can be defined as a ‘predictibe past’, in other words,
a reconstruction of reality, while a prediction is in theutg. The process for the two is
exactly the same: data (either historic data for estimatoreal-time data for prediction)
serves as input to the model, which then makes a predictisadban its mathematical
structure and its parameter values that were obtaineddhroalibration.

Figurel.3schematically depicts the different steps of data assiimiiand their inter-
relations. In order to systematically describe the medmsiand interrelationships of the
steps identified in Figure.3, first definefZ, to be the underlying assumptions of a certain
modelg, which is part of a collection of modelsc M. H, equals the model paradigm,
i.e. the blueprint of the model, including for example thetlmemnatical structure of the
model, the type of data that should be used as input, the nuamgetype of parameters
it contains and the variable(s) that is/are predicted withrhodel. Let us first take for
example the model validation step. Validation of such a tiygsis can be seen as trying
to find the user’s degree of belief that the hypothésjss correct. Such belief is based
on evidence in favor of or against the hypothesis1 M different ways of reasoning to
guantify such a degree of belief are treated.

1.4 Belief, reasoning and evidence

Several mathematical “theories of evidence” have beengsegbfor the quantification of
someone’s degrees of belief in something, suddagesian Infereng®®empster-Shafer’s
theoryor theTransferable Belief Mod€lTBM) (Brachman and Levesqu2004). Each of
these frameworks tries to combine objective informatiochsas statistical probabilities
with subjective information such as prior belief to expré#ss user’s confidence in some
outcome. Dempster-Shafer’'s theory is a generalizationayfeBian inference, and the
TBM is again an elaboration of Dempster-Shafer’s theorye iain difference between
these frameworks is that Dempster-Shafer’s theory alsts deth concepts such as ig-
norance and confidence which is not part of the Bayesianenésr framework, and that



1.5 The Bayesian framework for data assimilation 7

the TBM specifically includes the “open-world assumptioit’may well be that the set
of available alternatives is not exhaustive, so that thereason to believe that an event
not described in the set of alternatives will occur, i2(0)) > 0. For example, when
tossing a coin one usually assumes that Head or Tail will oddue open-world assump-
tion is that the coin could also land on its side, be hit by asidemntally passing bullet or
spontaneously dissolve in thin air so that neither Head adrotcurs. Apart from these
three frameworks, there are also related concepts suebhzzy LogiqZadeh 1965 and
Possibility TheoryZadeh 1978.

Which framework to use is part a rather complex and long-ngdebate which is
inappropriate to repeat here. Eventually, it boils down fwessonal preference as it is
hard to win this debate based on arguments and because ehasetechniques can be
interpreted in so many ways that there is for example eveatdedn whether Dempster-
Shafer’s theory is a theory or noBifnets 1993. In this thesis, Bayesian inference is
chosen where everything is expressed as probabilitiesrrétian for example possibil-
ities. Just as the outcomes of Bayesian inference are onjpad as the assumptions
that were made on for example its probability distributioss are the outcomes of the
analyses made in this thesis only as good as this choice fgedian reasoning; if the
reader agrees with this choice, then he or she will also agiteethe outcomes, but if he
or she disagrees, then he or she will not support the outcoAsamost of the other belief
models are extensions on or related to Bayesian infereheequthor believes that it is
possible to apply the alternative methods to the same prable

The basis for the Bayesian inference framework for datarakgion has been laid
by the seminal work oMackay (1992a 1995. The book ofBishop (1995 deals with
the same subjects. In chapter 10 of that book the Bayesiarefvark is explained very
well, along with good examples and a thorough descriptioitsgfros and cons. Finally,
Thodberg(1993 has written on the subject, and chooses a slightly diftepenspective
on the matter which helps for a better understanding. Eatiesk references are highly
recommended material for any interested reader. Theseswuitkalso be referenced
many times throughout this thesis.

1.5 The Bayesian framework for data assimilation

In this subsection the Bayesian inference framework theiblean chosen as a tool for data
assimilation will be described from the very beginning. Tegivation below is based on
the papers oMackay(1992a 1995 and the book oBishop(1995. Following the order
of the data assimilation steps from Figur& from top to bottom, the framework will be
described.
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Uses of data Bayesian formulation

( Model formulation )

Model identification pH|D)
Model calibration PO|D,H)

Estimation & Prediction 2(7|8.D,H)

Figure 1.3: The four uses of traffic data and the process ad dasimilation

Model validation

In Bayesian inference, validation equals evaluatingattedability that the hypothesifl,

is correct. This probability is denoted by(H,). This probability quantifies the cer-
tainty (to the user) that modelcorrectly describes the phenomenon under consideration,
l.e. that its blueprint is perfect for the description of flgenomenon. In other words,
validatingmodelq equalsevaluatingP(H,,).

As noted before, data can be used for validation, in whicle ¢ags an empirical
validation. DefineD to represent a certain data set that will be used for vabdatihe
interest is now in finding the conditional probabilify{ H,|D), i.e. the probability that
the assumptions underlying modgére right, given that the data sbtis representative
for the underlying traffic process.

Using Bayesian inference, an expression for the conditjpradability P(H,|D) can
be found. This probability is usually called tpesteriorprobability, indicating that it is
an outcome of the inference process. Bayes’ theorem in &lsis states:

P(D|H,)P(H,)
P(D)

P(H,|D) = (1)

In other words, the probability that the assumptidfsthat were made for modelare
correct, given it has been calibrated to a datdsét known in case the following three
terms are known:

e P(D|H,) equals the probability that the datacan be produced by the modgl
which is usually known as thé&elihood

e P(H,) equals the probability that the assumptions that were maddé model;
are correct in itself, usually termed tpeor.
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e P(D) equals the probability that the data itself are observedaliystermed the
normalization factor

Model comparison

As stated, evaluating (H,|D) can provide an answer to how valid a model is. However,
the relative probabilities of two models, for examptéH,| D) for modelg andP(H,|D)
for another modet, can also be used mmparethe models. In other words, the model
identification step is very similar to the validation step.

Prior to this comparison, a user may have belief that a certeadel is more likely
to be correct in its predictions than another, for examptabse of earlier experience or
because of a literature study. The priefH,) allows for such belief to be incorporated
in the choice process. However, if a modeler has no abilityish to include prior
information, then the tern?(H,) can be set equal for all models under consideration in
which case it can be omitted. Because the normalizationif&ttD) is independent of the
model assumptiond,,, this term can also be omitted when comparing models. Toexef
if no prior is included, the model identification can be penied by investigating the
likelihood term alone:

P(H,|D) ~ P(D|H,) (1.2)

In this case, the likelihood term is sometimes also catdencdor modelg.

Model calibration

As stated before, for a fair comparison of models, the bessipte parameter values need
to be found for each model. Define the set of parameters valuesdelq by the vector

0,. If the same datasd? is used to find optimal values for these parameters, thetresul
of the calibration procedure can be described by the camditiprobabilityp(8,|D, H,).

This posterior probability describes the probability tbattain parameter values are cor-
rect, given the assumptiotts, that describe what function the parameters have, and given
the data set that has been used. This posterior distribatitre parameters can also be
found using Bayes’ theorem:

p(qua Hq)p(0q|Hq)

p(eq‘Dqu) = p(D‘Hq)

(1.3)

The evidence term ofl(2) can now be recognized as the denominatorla®)( In (1.3
the evidence represents a normalization factor. It theeegquals the integral:

+o0
P(D|H,) = / p(DI6,. H,)p(6,|H,)de, (1.4)

—00
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Equation {.4) describes the interrelationship between the model viadidédentification
step and the calibration step; one should not take placeutithe other, and if one of the
two posterior distributions is found, the other is foundcsmitically too. Generally the
calibration is performed first, after which the validatiancomparison is performed.

Estimation & prediction

The final step of the data assimilation process is the esbmat prediction step. Define
y, to be the vector of outcomes of a model The prediction step is described by the
conditional probabilityp(y,|0,, D, H,). Using the distributions of the parameters, the
outcome of such a prediction is thus not a single value, bustailaltion of values. For
this last step, Bayes’ rule can be used once more:

p(0q|yq7 Da Hq)p(yq|D7 Hq)
p(9q|D> Hq)

p(yq|9anqu) = (1.5)
If a likelihood function is assumed for this prediction s{@aistribution of the data that
is used for the prediction step), as well as a prior distidmytthen the output distribu-
tion is known: the denominator ofL(5) equals the posterior ofL(3). This marks the
interrelationship between calibration and estimatioedpstion.

Expressing each step in the data assimilation process bapiigstic terms, a frame-
work appears. This framework functions as a three-stepepitoe, where each step is
interrelated with the previous step. If an expression isioled for a posterior distribution
in any of the steps, then this solution can be used to solvstége‘above’ or ‘below’.
In Figure 1.3 these interrelationships are shown schematically. In igénthe process
starts with a calibration procedure, after which the val@dcomparison and the estima-
tion/prediction steps follow automatically.

As has been stated before, the goal of this thesis is to findfiedimethodology for
data assimilation for a wide range of traffic models. The Bayeinference framework
that has been described is hypothesized to be able to béaistithroughout this thesis,
the framework will be applied to different models that aredis traffic science, ranging
from models describing the individual driving behavior todels describing traffic as a
whole. In the core chapters of this thesis, the frameworktivdrefore be put to the test.

1.6 Outline of this thesis

This thesis consists of six edited versions of papers tha baen submitted to interna-
tional journals and conferences and have all been peemeslieTwo of the papers are at
the time of printing this thesis still under review. At eadtapter an abstract will be given
such that the reader has a quick overview of the contentsabtttapter. Furthermore, the
reference to the original version of the journal or confeeepaper will be included.
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Bayesian data assimilation ] ( Real-time application of LWR with EKF

Ch1: Introduction

Ch2: Car-following models
Ch3: Regression models

Ch4: Feed forward neural networks

Ch5: State space neural networks

Ché: Calibration of Extended Kalman Filter
Ch7: Localized Extended Kalman Filter

( Ch8: Conclusions j
J U

Figure 1.4: The structure of this thesis’ chapters

Figure 1.4 shows the eight chapters of this thesis. ChagteiChapter7 consist of
edited versions of articles. The first five of these chapteesa#l based on the same
Bayesian framework that has been presentel.th The different applications of the
framework are presented in order of increasing compleXithe models. In Chapte2
the Bayesian framework is applied to models that predictaéowing behavior that op-
erate at the individual level. These models contain onlyagdarameters. Because there
exist many different models for the description of cardaling behavior and because of
heterogeneity in car-following behavior the framework pesifically used to compare
and choose between different models for each individuaédri

In Chapters3, 4 and5 the same framework is applied to the prediction of traveé8m
These travel times are predicted on a freeway corridor. ap@h3 the Bayesian theories
are first applied to two relatively simple regression modiisxt, in Chapted the theories
are used with Feed-Forward Neural Networks, and in Chdptath the more complex
State-Space Neural Networks. The papers that are the lmasisaind 5 are based on
nearly the same theories and originally contain about 308tlap. This overlap has been
removed from Chaptes so that Chapte4 and5 should be read together and have little
overlap.

The last level of application is on a network-wide scale. ©oemonly used model
to describe traffic on a network level is the macroscopic dyinda WR model. One com-
monly applied tool for data assimilation with the LWR modeltihe Extended Kalman
Filter (EKF). In this thesis two chapters deal with problethat need to be overcome
before the EKF can be applied to the first order model for lagge traffic state esti-
mation and prediction. First of all the EKF contains parasreitself that need to be
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calibrated from data. Chaptérapplies the same Bayesian framework that was applied to
the problems of car-following and travel time predictionthe Extended Kalman Filter.
Finally, current implementations of the EKF are too slowyalyem that is dealt with in
Chapter7. The Localized Extended Kalman Filter is designed in thiaptar as an al-
ternative method to compute the posterior distributionthefBayesian data assimilation
framework, which is shown to be much faster than current push

Finally, Chapter8 describes the conclusions and synthesizes the differaters.
Also, in the same chapter recommendations for future reBeae proposed.

1.7 Contributions of this thesis

This section describes the contributions that this thesssrhade. Two types of contribu-
tions are distinguished: scientific/methodological, aratpcal.

1.7.1 Scientific and methodological contributions

Scientific and methodological contributions are contiifng that answer the question:
“what new knowledge has been gained by the research predarited thesis, and what
new methods have been developed in order to obtain this kdge®. Below, for the
three types of applications to which the framework is ajplaand for all applications as
a whole, these contributions are summed up.

Car-following behavior

e This research has shown that the Bayesian framework foragaienilation is able
to quantify inter-driver differences. It can compare anys$ear-following models
of any type.

e Recent studies have suggested that there may be largelinter-differences in car-
following behavior. In a case study on 500 m of Dutch highvwagse inter-driver
differences have indeed been confirmed and quantified.

Travel time prediction

¢ In this research the Bayesian ‘evidence’ measure has exédnbeen used to cre-
ate committees of networks using different combinatioatsgies, such as Winner
Takes It All or the Weighted Linear Combination. Experinsgehtive shown that
both strategies lead to small improvements of the resuit$ tlaat there appears to
be little difference in performance between these stragegi
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e A heuristic has been proposed to deal with models beingreadid by datasets of
unequal size by normalizing the likelihood.

e As the evidence is a predictor of the true generalizatiohitgln this research it is
used for the first time as a stopping criterion during tragnif neural networks. In
the thesis it is shown that this early stopping reduces céatipn time and at the
cost of only a small loss in accuracy.

e Experiments have revealed that the evidence is not a pgrfedictor of the true
generalization ability, because of imperfections of thelale themselves, noise in
the data and approximations that need to be made to quamsifgMidence.

e Experiments have nonetheless revealed that the use ofittenee to form a com-
mittee generally leads to an improvement of accuracy of thdiptions and to an
improvement of accuracy of error bars compared to the padace of all individ-
ual models.

e In this thesis the exact Jacobian and Hessian for a recuneamal network have
been derived, that allow for more accurate training of resntrneural networks
using gradient-based methods, although at the cost of migttethcomputation
times.

Network-wide state estimation

e Using static parameters of the Extended Kalman Filter,ttieésis shows that there
is a clear optimum in the parameter settings, where a shifi@fsettings to one
side causes the corrections to be too weak and the data netusea to its full
potential, while a shift of the settings to the other sidehaf bptimum leads to too
much correction where noise is copied into the model.

¢ Inthisthesis a new method is proposed to set the paraméendxtended Kalman
Filter dynamically. This method is derived in the same watha€xtended Kalman
Filter was derived itself. In one experiment, the dynami@paeter settings achieve
approximately the same level of accuracy as the optimat&ettings, independent
of the starting point that was used.

e Experiments have revealed that the traditional Global okl Kalman Filter (G-
EKF) makes many negligible corrections to the traffic statéha cross-correlation
of the states at two locations in the traffic network that areapart are generally
almost zero.

e Experiments have revealed that with networks larger thewdfindred (measured)
cells, the G-EKF becomes too slow to perform in real-time oww@nal PC.



14

1 Introduction

e In this thesis a new methodology is proposed termed the lzszhlExtended

Kalman Filter (L-EKF) that approximates the G-EKF by makimgny sequen-
tial corrections to the traffic state, where each sequeotiakction only corrects
the traffic state in the vicinity of a measurement (termedr#wius of the filter).
Experiments have empirically validated that the L-EKF aebs the same level
of accuracy with much lower computation times, and have shihat the L-EKF
scales much more beneficial with the size of the network anld the number of
measurements.

Experiments have revealed that an increasing radius of #BKF leads to a rela-

tively small increase in computation time, so that the radian safely taken quite
large. This leads to the level of accuracy of the L-EKF beiggae to that of the

G-EKF.

All applications combined

e This research shows that the Bayesian framework is apjdicala variety of prob-

lems in the field of road traffic.

e In each application, it has been shown that the frameworkbleagfits that are

specific to the problem at hand, such as the quantificatiomei-driver differences
in car-following modeling.

1.7.2 Practical contributions

Practical contributions are contributions that answerdhestion: Wwhat can be done
based on the research presented in this thesis that coutérdone before?

Car-following behavior

e Using the Bayesian data assimilation framework this thieagspaved the road for

a heterogeneous microscopic simulation, where multipi¢ateowing models are
used in a single simulation environment. The framework camded to quantify
the distribution of optim& models for a given group of drivers.

e This thesis shows that the Bayesian framework for data @ssiom can be used to

find the optimal car-following model(s) for a single driveg, that for that driver the
vehicle position can be accurately predicted with errospahich can be useful for
vehicle-to-vehicle or vehicle-to-roadside infrastruetu

SWhat is optimal depends on the error function that the useosés.
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Travel time prediction

¢ In this contribution it has been shown that the Bayesianeswd can be used to
choose between a set of available models. Therefore, usévager have to choose
based on experience or gut-feeling, but based on a numerezdure that expresses
the user’s belief in the model.

¢ It has been shown that instead of choosing between modelgyilence can also
be used to form a committee of models so that multiple modeksdictions are
made in parallel and are combined into one single prediction

e This research shows that the uncertainty due to the simgdiifics made by the
models, due to noise in the data and possibly due to disagrgdratween different
models can be quantified in the form of error bars on the ptiedie (prediction
intervals).

Network-wide state estimation

e Using the L-EKF that has been developed in this thesis, lacgée networks can
be simulated on a single computer. This allows for accugaiesibly nation-wide
state estimation and prediction.

¢ In this thesis a method is developed to automize the prodesdibrating the pa-
rameters of the Extended Kalman Filter.

All applications combined

¢ In this research the applicability of the same Bayesian émmork for data assim-
ilation is shown for a large variety of models describing ariaxy of phenomena
observed in road traffic, such as car-following models,dravne prediction and
network-wide traffic state estimation.
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Chapter 2

Bayesian calibration and comparison of
car-following models

This chapter is an edited version of van Hinsbergen, C. #ah Lint, J. W. C., Hoogen-
doorn, S., and van Zuylen, H. J. (2010f). A unified framewakdalibration and com-
parison of car-following models. Submitted for publicatio Transportmetrica.

Recent research has revealed that there exists large dgpeteity in car-following behav-
ior such that different car-following models best desculiféerent drivers’ behavior. A
literature review reveals that current approaches to ibkband compare different mod-
els for one driver do not take the complexity of the model iatgount or are only able
to compare a specific set of models. This contribution apdiayesian techniques to
the calibration of car-following model. The resulting esite measure can be used to
guantitatively assess any set of models and describes hdwdivferent models explain
the car-following behavior of a single driver. When consatkeover multiple drivers the
evidence can be used to describe the heterogeneity of iegipopulation. In a test
case on actual data the Bayesian evidence indeed reveatsdmteity and it is shown
how these differences can quantitatively be assessedh@tBayesian framework.

17
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2.1 Introduction

The longitudinal driver behavior of drivers in a traffic stne determines for a large part
the dynamics of the flow of traffic. This important role of lotuglinal driver behavior has
resulted in a multitude of mathematical models to predietdimgitudinal driving behavior
of individual drivers, such as the CHM mode&llfandler et a).1958, the IDM model
(Treiber et al. 2000, the OVM model Bando et al.1995 and the models proposed by
Helly (1959, Bexelius(1968, Gipps(1981), Addison and Low(1998, Lenz et al(1999
and Tampere(2004). Brackstone and McDonal(l999 present a historical review of
these and other car-following models.

In recent microscopic traffic modeling research, a numbestadies have revealed
that there are large inter-driver differences in car-follog behavior, such that different
car-following models may apply to different driveiBrockfeld et al, 2004 Ossen et a/.
2006 Hoogendoorn et g120073. Additionally, intra-driver differences (the fact thaiki
dividual drivers may change their behavior over the datéecbbn period) can cause
some car-following models to produce erroneous predistauring certain episodes of
the driver’s car-following behavioHoogendoorn and Osse2005 Hamdar et al.2008.
The effects of such heterogeneity of car-following behawo the macroscopic prop-
erties of traffic are importantHoogendoorn et g12007h). One possible solution is to
model traffic heterogeneously, i.e. using multiple caleiwing models in one simula-
tion. To achieve such a heterogeneous microscopic siraldtiom all available models
the most likely best-performing models need to be identifidéally, this identification
process should be performed based on data, that is alsoarsedibration of the models.
This contribution describes both the calibration and idieation process of car-following
models.

2.1.1 State of the art in model calibration and comparison

First, an extensive literature study has been carried omvestigate current calibration
and model selection methods. Four methods have been identifsing default parame-
ters, using the calibration error, using the validatiomeor using the Likelihood-Ratio
Test. Below, each of these methods is described.

Default parameter settings

One study was found where the default manufacturer parasnate used to evaluate the
performance of different modelPénway and Dig2005, even though they recognize the
importance of the parameter values on the performance ohtul. It is clear that these

default parameters cannot be used in every case, and thatldaild be used to calibrate
and compare the models.
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Calibration error approach

The second and most commonly used approach is to select srmaked on the outcomes
of the calibration procedureAycin and Benekohal 1999 Chakroborty and Kikuchi
1999 Rakha and CrowtheP003 Ranjitkar et al. 2004 2005 Ossen and Hoogendogrn
2005 Ossen et al.2006 Punzo and Tripodi2007 Kesting and Treiber2008. In most
cases these studies conclude that models containing m@eegers perform better than
simpler models. However, the calibration error approacksdwt take the model com-
plexity into account. In many cases more complex modelsmwatlmake better predic-
tions, due to ‘overfitting’ of the complex models. The modeith many parameters then
start predicting the noise rather than the underlying sysfehe use of calibration error
as a basis to select models should therefore be rejected.

Validation error approach

Instead of using the same data set to calibrate and companedtiels, also a separate data
set can be used to make a selection from a set of models. Tidatah set approach is a
theoretically sound way to compare models in case the @iuldata set is representative
for the phenomenon that one is trying to model. Interesyingjfferent studies confirm
that more complex models do not always perform bewér et al, 2003 Brockfeld et al,
2003 2004 Punzo and Simonelli2005. For example, inBrockfeld et al.(2003 the
model with 20 parameters performs worse on the validatibo@apared to simpler mod-
els, a confirmation of the overfitting problem of overly coesptar-following models.

Unfortunately, this approach requires two data sets to agedole for one single driver.
Such data can usually only be collected under controlledlitons, where the same
drivers are asked in an experimental setup to perform théotlawing task. This has two
major drawbacks: the results of experiments in control@aditions may not always be
portable to a real-life’ situation, and usually only a sntita set is available because of
the expenses that have to be made to equip vehicles andact gérrticipants. More data
may be collected monitoring the regular’ traffic systemrjgsior example cameras or a
helicopter), but in those cases usually the data set of eaglesriver is too small to be
splitin half. Therefore, a method that allows for all datdb&used for calibration, while
still preventing overfitted models to be selected, shoultiast cases be preferred.

Likelihood-ratio test

The Likelihood-Ratio-Test (LRT) is a method that allowsddita to be used for calibra-
tion and model selection in parallel, while still prevewgtioverfitted models to be selected
(Hoogendoorn et gl2006 2007ab). More complex models receive a penalty, while mod-
els that fit well on data are promoted. This balances the gessdof-fit to the data with
the model complexity.
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However, this method is only valid when used to compaegarchically nesteanod-
els. This means that the simple model must be a special case ofore complex model
by setting one or multiple parameters to zero. Therefldaggendoorn et a(2006 for-
mulated first a general equation in which several car-fallgnmodels could be fitted.
However, as not all car-following models that have been ldgpesl over the years may be
fitted into one general equation, this will not be possiblewl modeler is interested in
trying many different car-following models.

Therefore, in this chapter a novel method is proposed tbredé and compare car-
following models. It is an extension to the LRT method, arldves$ for the comparison
of any car-following model.

2.1.2 Structure of this chapter

In the Methodology section a Bayesian approach to calitamatecompare car-following
models is developed, after which it is applied to two rekinsimple car-following mod-
els in order to show its workings: the CHM model and the lindafly model. Next,
the result of the Bayesian ‘evidence’ as a selection meshars shown, after which a
discussion, a conclusion and recommendations are presente

The Bayesian approach is a generalization of the LRT appr@aogendoorn et gl.
20073. Prior probabilities are transformed into posterior @bitities for each parameter
in the car-following model, for which Bayes’ rule is used the Methodology section the
exact formulation of this new method for calibration and mleslection will be presented
and it will be shown that this approach has several advastaggr existing mechanisms:
(1) the most important feature is that it leads to a probsiilapproach to compare dif-
ferent models on the basis of posterior distributions ofrtharameters. This allows a
modeler to select the model that most probably best descaloertain driver’s behavior,
taking into account both the calibration error as well asitoglel complexity. The main
contribution of the Bayesian approach compared to the LR¥ageh is that any model
can be used; (2) just as with the LRT approach prior inforamatan be included when
calibrating the parameters of car-following models to rolg unrealistic estimation re-
sults due to the fact that too little information is presemtertain parameters within data;
(3) the approach can be used to combine the predictions efalanodels in a so-called
committee or ensemble of models in which different modeésljmt the behavior of one
single driver, which may lead to a decrease in the error dugra-driver differences; (4)
error bars (prediction intervals) can be constructed omtadictions of the car-following
models.

In this chapter the focus will be on the methodology. To reni@cussed, the workings
of the proposed procedure are then demonstrated using sttvedy simple models and
using some simplifications. Although these simplificatidosnfluence the results, they
do not prevent the illustration of the benefits of the Baye$&iamework itself.
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2.2 Methodology

2.2.1 Bayesian Inference: from prior to posterior

For the Bayesian analysis, the interest is in finding thegrastprobability density func-
tion of a parameter vectd = (6, ...,0y)” which contains allvV parameters of a car-
following model under investigation after having used safat setD for calibration.
This data set contains for example positions (lateral anditadinal) and speeds of dif-
ferent vehicles, from which car-following models can behlnalted. This posterior prob-
ability is denoted by (0| D), e.g. the probability density function of the paramet@rs
given the data seéb. Bayes’ rule can be applied to find an expression for thisgrast

p(D]0)p(6)
p(@|D) = ———= 2.1
61D) === 75 (2.1)
wherep(D|6@) represents the distribution of noise on the data and carrelspto the
likelihood function,p(@) is a prior probability of the parameters, which represenis p
knowledge of possible values for each parameter in our made wherep(D) is a
normalization factor.

Now define the prior probability as a multivariate Gaussidtweand and covari-
ance matrixx:

1 1 \Ts—1 3
p(0) = CREDIEE exp (—5(0 —-0) X (60— 0)) (2.2)

where N equals the number of parameters of the model. A Gaussiare shajhosen
in this study because it simplifies the calculations and kexsadnalytical expressions for
the posterior distribution of the parameters. Note tha dssumption can be relaxed and
other distributions are possible.

Ifitis assumed that the noise of the data is Gaussian digéabas well with mean zero
and standard deviation, the likelihood functiorp(D|@) can be defined as a uni-variate
Gaussian (Hoogendoorn et al., 2007b):

K

p(D|0) = W exXp ( Z Upred k 0 Uobs(k))2> (23)

k=1

whereuv,,.q(k, 8) is the predicted vehicle speed at time instamtith the parameter sé,
vebs (k) is the observed (measured) vehicle speed at time instanid wherds equals the
number of observations of vehicle speed and position. Nwein this study the models
are calibrated on speeds alone, but that other likelihoadtions which incorporate for
example the predicted positions of the vehicles are alssilples
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2.2.2 Description of posterior distribution of parameters

Substituting 2.2) and @.3) into (2.1) results in an expression for the posterior distribution
of the parameters:

K
p k
X exp (—%(0 -0)'z="1(6 - 5)) (2.4)

where Z, is a constant that originates froptD) and the 2r-constants’ in 2.2) and
(2.9). This posterior distribution of the parameters can be iesd by the most probable
parameter vecto®'” (the maximum of the posterior), and its covariance maBigthe
width of the posterior), with the knowledge that it has a Gaas shape.

The maximum of the posterior is denoted by the ve&Yr’, and can be found by
maximizing the logarithm of4.4):

oMY = argmgxln (p(6|D)
= arg max — E(0)
= arg mln E(9) (2.5)
whereE(0) is defined as
E(0) = Kln(o;) + E,(0) + E,(0) (2.6)
with £, and £, defined by:
1 _
E,(0) = 5 (6 — 0) © ' (0-0) (2.7)
K
— Z (Vpreal(k, 8) — vops (K))? (2.8)

20
U =1

Notice that in 2.6) the expressions resulting froi, and |2|'/? have been omitted, as
these do not influence the solution &% and becomes zero for the derivatives that
are defined next. For the minimization &.6) (so to find@*?), there is the condition
(Hoogendoorn et gl20073:

VoE(0)=%""(6—8) + VogE(0) =0 (2.9)

which needs to be solved for the model under consideration.
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The covariance matri® of the posterior distribution (not to be confused with the
covariance matriX: of the prior) can be approximated using:

e6M") = — (A(OM")) (2.10)
where A(0) is the Hessian, given by:
A(0) = V3E(0) =X + V3E|(0) (2.11)

Finally, for the description of the posterior a value for gt@endard deviation of the likeli-
hood functions; needs to be found, for which the derivat®€ /0o, is set to zero. This
leads to
1 & )
of = = ; (Vprea(k; @) — Vops (K)) (2.12)

2.2.3 Bayesian framework for model comparison

Consider a certain car-following model with a set of assumption&,,,, and another
modeln with a different set of assumptiorf¢,. To compare these two models in how
well they describe the car-following behavior of a certaiiver, the posterior probability
of a modelg € (m,n) as a whole after it has been calibrated with datéor this driver,
which is denoted by’(H,|D), can be derived by again applying Bayes' rule:

p(D‘Hq)P(Hq>
p(D)

The termP(H,) represents the prior probability of the model If a priori there is no
preference of one type of model over the other (so there isflibht the assumptions,,,
are as likely add,,), then the priotP(H,) is equal for ally. As the denominator o(13)
is independent of the modelg,, the posterior probabilities of the modetsandn can
in that case be compared by only investigating the te(Mm|H,), which is termed the
evidencdor the model; (Mackay, 1995:

P(H,|D) = (2.13)

P(Hy|D) ~ p(D|H,) (2.14)

This evidence can be recognized as the denominat@: Hfif the conditional dependence
on the model assumptiond, is made explicit. The expressions used for deriving the
posterior distribution for the parametersan therefore be used to derive expressions for
theevidence for the entire moddtrom @.1) the evidence can be written in the form

p(D|H,) = / p(D16, H,)p(6]11,)d6 (2.15)
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Because this term would require integration (marginalzgtover the entire parameter
space, calculating it analytically is only possible in cabeery simple models, and even
then requires elaborate calculations. Although a numlesmaroximation could be used,
in this study an analytical approximation is chosen to be a&bknalytically describe the
evidence. Assuming that the posterior distribution is glygsgeaked around its maximum,
the evidence is approximated as the value at this maximumstiime width of the peak,
which in the multivariate case leads to the expressidackay, 19995:

(OJLIP|H )
* et (407 27)

Together with 2.2), (2.3) and @.11) a solution (approximation) is now found for the
evidence. Note that values for the prior covariance mairiand the prior mea#d are
needed for this; the way the prior is defined will be treateelrla

The evidence 0f4.16) can be interpreted as consisting of two elements:

p(D|H,) ~ p(D|0™" H,) (2.16)

Evidence= Best-fit likelihoodx Occam factor (2.17)

A higher best fit likelihood favors models that can explaie tiata well, i.e. that have a
low prediction errory " (v,.ca — vobs)?. However, if only this would be investigated the
overfitting problem would occur as when the calibration eisased for model selection.
Therefore, the model’s performance is penalized by the @de&tor, which is always
smaller than 1 and is named after Occam’s RaBturgier et al, 1987). A model that has
more parameters, so which is more complicated, has a lowear®@¢€actor and therefore
receives lower evidence. The evidence thus naturally tsftee trade-off between a good
fit and overfitting. Extensive literature is available on iimportance of this trade-off and
other features of the evidencEodberg 1993 Mackay, 1995 Bishop 1995 Sivia, 1996
Mackay, 2003 van Hinsbergen et al2008ad).

In the remainder of this contribution, the evidence is usedank different car-
following models for individual drivers. This is achieveg determining the evidence
after the posterior distribution of its parameters has eend, after which a conclu-
sion can be drawn to which model probably describes whickeds behavior best. The
Bayesian analysis will be applied here to two simple caoeiing models, for which the
evidence can be derived analytically.

2.2.4 Evidence for CHM model

To illustrate the derivation of the evidence for a car-falilog model, consider the CHM
model Chandler et a).1958. This stimulus-response model describes the delayediacce
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eration of a vehicle as a function of the relative speed vagpect to its leading vehicle:
a(t +71,0) = vAuv(t) (2.18)

wherea(t + 7,0) is the acceleration of the following vehicle at time+ 7 given the
parameter sé? andAwv(t) the speed difference between the leader and the followenat t
t. In this study, one-step-ahead predictions are made, wherebserved speeds of the
follower and its leader in the previous time step are usetercalculations. An explicit
time stepping scheme is used to solve the model, resultinigerfollowing numerical
scheme for the speed at tintte

Uprea(t, @) = vops(t — At) + a(t — At, 0)At (2.19)

with vy, (t— At) the observed speed at time At, andAt the size of the time step which
should be sufficiently small. The acceleration is in thisssuk determined by:

a(t — At,0) = yAvgs(t — At — 1) (2.20)
The model has only one parameter that needs to be calibrétiedata:
¥ response parameter (1/s) (2.21)

For this model, the parameter vector is denote@ as . For the sake of this example,
the reaction time is chosen to be a constant with a valuerof 1s, and not as a pa-
rameter. This heavy simplification is made to keep the dsoudocussed on illustrating
the Bayesian framework and its benefits; the (complex) daam of the derivatives to
7 is not required to show the workings of the framework. In d wearld application,
the reaction time- does need to be calibrated with data, and derivatives foottlevbe
needed.

To analytically derive the evidence for the CHM model, fitsé gradient of 2.9)
needs to be computed:

OEO) 1

At E
= -5 — At — vy 2.22
oy P (7 7pmor) + 012 ; vg(vp + Yvg vs) ( )

prior

wherey,, ., is the mean of the prior distribution anﬁ,m is the prior variance (previously
6 and X, but now for the one-dimensional case because the modelcamitains one
parameter), and wherg, v, andv, are all observations at different time steps, defined
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by:
Vs = Vops (k) (2.23)
Vp = Ugps(k — At) (2.24)
Vg = Vobs(k — At — 7) (2.25)

The Hessian of4.1]) is given by:

02E,() 1 Ard
e = v? (2.26)

prior

k=1

To calculate the evidence, the most probable paramétéris required, for whichZ.9)
needs to be solved. This is done numerically using standaxtiab! optimization tools
as the analytical solution becomes rather complex. Tiéfi is calculated using12),
MP andaM? are substituted in2(2), (2.3 and @.11), and the resulting equations into
(2.16 together withy ando? , , resulting in the evidence for the model.

prior prior?

2.2.5 Evidence for Helly model

As a second example of the derivation of the evidence for-fotl@wing model, consider
the Helly model Helly, 1959, another stimulus-response model with a higher complex-
ity. It is defined by:

a(t +7,0) = alv(t) + B (Az(t) — Az™(v(t))) (2.27)
Az (v) = 29+ Tv (2.28)

wherea(t + 7,0) is the acceleration of the following vehicle at time+ 7 given the
parameter sél, Av(t) the speed difference between the leader and the followenat
Az(t) the distance headway between the leader and the followieret and Az (v(t))
the desired distance headway of the follower when drivingpatedv(t), the speed of
the follower at timef. Again, one-step-ahead predictions are made, where theaus
speeds and distances of the follower and its leader in thequetime step are used in the
calculations. The same numerical scheme a2ih9 is used, but with the acceleration
now determined by:

a(t — At,0) = alvgs(k) + B (Azups(k) — Az™ (vg(k))) (2.29)
k=t—At—rT (2.30)
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The model has the following four parameters that need to tirmat®d from data:

o) response parametgr/s) (2.31)
I5; response parameter/s?) (2.32)
Zo stopping distancém) (2.33)
T minimum time headways) (2.34)

For this model, the parameter vector is denote@ as («a, 3, o, T'). Again, as with
the CHM model, the reaction time is chosen to be a constahtawialue ofr = 1s, and
not as a parameter.

The gradient and Hessian for the Helly model are derivedysinally again, the result
of which will be omitted here as it involves quite lengthy afjans. The most probable
parameter vecto®” is estimated numerically using standard numerical toolthen
Matlab software package, as the conditi@rf) is not easily solvable analytically. Then,
the same procedure as with the CHM model is used to calciiatevidence.

Prior distribution for CHM model parameter

The original work of Chandler, Herman and Montroll showedhhvariations between
subjects for the constant, between0.17s~! and 0.74s~! with a mean of(0.37s7!
(Chandler et a). 1958 Brackstone and McDonaldl999. A benchmarking study by
Ossen et al(2006 conducted on a Dutch motorway using helicopter data shawed
distribution of parameter values for the CHM model as shawRigure2.1, more or less
confirming the spread of the original study of Chandler, Hemrand Montroll. From the
results of these studies, a prior distributidity,;,,., 0>,.,.) = N(0.3,0.04) is chosen.

prior

CHM (Avn_1 ’n): C,

F(C,)

02 04 06 038 1 1.2
Figure 2.1: The cumulative distribution of the parametefdenoted by:; in the figure)
given byOssen et al(2006
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Prior distribution for Helly model parameters

Helly in his original work Helly, 1959 estimated the mean parameter values=
0.5571, 8 = 0.125572, 20 = 20m andT = 1s. The earlier mentioned benchmarking
study Ossen et al.2009 only presents CDFs for the parameters&ind 5 as shown in
Figure2.2 and not forry and7'. Taking both these studies into account, the following
prior mean and covariance matrix are chosen (not takingaotount covariance between
the different parameter):

6 = (a,B,%,T)" = (0.25,0.075,20,1)"
01 0 0 0

0 001 0 0
=10 0 400 0 (2.35)
0 0 0 04
Helly (Avn_m). C,
1 .
O o5
T
O 1 1
0.5 1 15
Helly (Axn_m—Axn_m). C,
1 . . ;
™
QO o5
L

0.1 0.2 0.3 0.4 0.5

Figure 2.2: The cumulative distribution functionscofc;) andg (c3) given byOssen et al.
(2006

Large variances are taken fayand7 to reflect the fact that there is no reference study
available for estimates of the variance of these two pararmmetHowever, the variances
are chosen in such a way that it is ensured that most of the faagsast 95%) of the
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CDF is for values> 0, which is sensible in the light of the physical meaning oktnévo
parameters.

2.3 Experiment

To illustrate the workings of the Bayesian evidence the twadets described in the
methodology section are applied to a vehicle trajectorya da&tt of the A2 motorway
in the Netherlands, near the city of Utrecht, which was ot#ld using helicopter data
(Hoogendoorn et 812003. The traffic state at the data collection period was cormgest
so that the drivers were mainly in car-following mode. Théadeovers approximately
500m of motorway stretch; the data interval(id s.

A selection was made in the dataset of drivers who were fatigwne leader without
any lane changes of either follower or leader (229 drivetstal). The posterior distribu-
tions of the parameters of the two models were then found aftech the evidence was
calculated for each model for each driver. Note that therahtogarithm of the evidence
is used, as the denominator &.3) is taken to the power of, which means that the
likelihood becomes very large if, < 1 and very small ifo; > 1 in caseK > 1. Given
that the number of measurements and predictions is in ther @fdL0O0 to 400 for each
driver, the log of the evidence is used to prevent numericatin the computations.

2.4 Results

Figure 2.3 shows the log evidence for the two models for 9 of the 229 dsivés can
be seen, the evidence assigns a preference over differegelsnfor different drivers:
for some, the Helly model is preferred, while for others thdMCmodel is preferred. To
illustrate why this happens, consider drivers 47 and 48urféig.4shows the actual speeds
versus the predicted speeds that followed from the caidrdity both the CHM model
and the Helly model for these two drivers. The figure nicellysiirates the mechanism
of the Bayesian framework. After calibration for driver 4 Root Mean Square Error
(RMSE) of the estimated versus the measured speed w&n /s for the CHM model,
while it was 0.085m /s for the Helly model. The larger calibration error of the CHM
model is dominant over its lower complexity. The log of thedewce for the CHM model
was therefore lower this case, 11.4 versus 44.0 for the Hadigtel.

In the case of driver 48, the two models perform almost egwedll. Both the CHM
model and the Helly model had an RMSE©#96m/s. The evidence in this case prefers
the simpler model over the more complex model, and assigog eMidence of 118.5 to
the CHM model and 115.0 to the Helly model. The Helly modehis tase is punished
for its higher complexity: the extra parameters do not |eea fower calibration error.

The Bayesian evidence is a tool for ranking models for eadividual driver. The
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Log Evidence of both models for different drivers
180F T T T T T

Il Helly
I CHM
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46 47 48 49 50 51 52 53
Driver number

Figure 2.3: The natural logarithm of the evidence for the tmodels for 9 of the 229
drivers

posterior probability of the entire model can also be exggds Two assumptions then
need to be made. First, equal priors are assumed for bothlsn@de (chm, helly),
P(Hpm) = P(Hpeny) = P(H). Second, a closed world is assumed, i.e. the CHM
and Helly models are considered to be the only two possibl@etsdor explaining car-
following behavior, such thaP(()) = 0. The normalization factoP (D) in (2.13 can
then be expressed as:

P(D) = P(H) (P(D|Hhm) + P(D|Hpeuy)) (2.36)
The probability of one model then equals:

P(D|H,)

(Dl o) + P(D] ) (2:37)

P(H,ID) = -

Aggregated over all drivers, this mechanism can be usedctb®s well models perform
relative to the other models for a group of drivers. By taking mean of2.37) over all
individual drivers, an expression is found for the probigpipf a model compared to the
probability of both used models. In Tal®el such aggregate results are presented. Note
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that the closed world assumption is not very realistic is tase, because from literature it
is known that there exist many more car-following modeld #ra not used in this study.
As Mackay (19923 notes, inference is normally open ended: in the scientificgss
new models will be tested or developed to account for the ttatiahave been gathered.
Nevertheless, the closed world assumption here aids t@sgposterior probabilities for
each of the two models, which are meaningful in comparisagaith other. For a more
detailed discussion on this assumption, $&e

Table 2.1: Probabilities of the CHM and Helly model averageeér all 229 drivers

Model P(H,|D)
CHM 31.0%
Helly 69.0%

2.5 Discussion and conclusion

The Bayesian evidence that has been developed for the ltamiftg models in this con-
tribution is shown to be useful as a tool for quantitativehalyzing inter-driver differ-
ences. It can be used to find a distribution of model paramessr well as to compare
models based on how well they fit and the relative complexithe models.

As can be seen from the experiment the inter-driver diffeesnare confirmed: for
some of the drivers the CHM model suffices and the additioaedmpeters of the Helly
model do not contribute to explaining their car-followinghavior, in which case the
Helly model is penalized for its higher complexity. For athéhe additional parameters
do lead to a better explanation of the car-following behawievhich case the Helly model
is rewarded for this. The Bayesian evidence thus acts asuaahaelection mechanism
when choosing between different car-following models. é\ttat for the two models
chosen in this study the Likelihood Ratio Test could alsogydiad, but that the evidence
is favorable over the LRT in the general case, because tllemse can be used for any
model, while the LRT can only be applied to hierarchicallgteel models.

The evidence, when normalized, represents a a probatiktgertain modej’s prob-
ability to describe one drivers behavior, as expressed iB.87). If this probability is
averaged over all driversof a certain dataset, an approximation of the best perform-
ing models for an entire population of drivers can be madés aglicated in Tabl€.1
Such probabilities can serve as a basis for a heterogeneotusspopic simulation: first
a model is drawn based on the posterior probabilities of tbdets, after which parame-
ters are drawn from the posterior distribution of the paramseof the drawn model. The
trajectories of the car are then predicted with the chosedemnwith the chosen param-
eter set. Future study will need to reveal if such a hetereges microsimulation better
describes reality.
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Other benefits of the Bayesian approach that have not bestréted in this study
are the possibility to use the evidence to create a commédteto construct prediction
intervals. A committee may improve the description of indaal behavior (because it
may deal with intra-driver differences), while the prediatintervals may become useful
when predicting the trajectory of a single driver, in for exyae vehicle-to-vehicle or
vehicle-to-roadside architectures. Future studies vedldhto investigate these benefits of
the Bayesian calibration framework.
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Chapter 3

Bayesian committee of regression
models to predict travel times

This chapter is an edited version of van Hinsbergen, C. Pvdn Lint, J. W. C.,
and van Zuylen, H. J. (2008a). Bayesian combination of trdaime predic-
tion models. Transportation Research Record: Journal of the Transpmia Re-
search Boargd 2064:73-80. Copyright© 2008 National Academy of Science,
http://pubsindex.trb.org/view.aspx?id=847531.

Short-term prediction of travel time is a central topic imtamporary intelligent trans-
portation system (ITS) research and practice. Given theneamber of options, selecting
the most reliable and accurate prediction model for onaquéat scientific or commer-
cial application is far from a trivial task. One possible wayaddress this problem is to
develop a generic framework that can automatically combyiokiple models running in
parallel. Existing combination frameworks use the errahprevious time steps. How-
ever, this method is not feasible in online applicationsabese travel times are available
only after they are realized; it implies that errors on poesi predictions are unknown.
A Bayesian combination framework is proposed instead. Tethod assesses whether a
model is likely to produce good results from the current ismiven the data with which
it was calibrated. A powerful feature of this method is thadutomatically balances a
good model fit with model complexity. With the use of two siphear regression mod-
els as a showcase, this Bayesian combination is shown t@ieprediction accuracy for
real-time applications, but the method is sensitive in trenethat all models are biased
in a similar way. It is therefore recommended to increasentivaber and the diversity of
the prediction models to be combined.

35
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3.1 Introduction

Advanced Traffic Information Systems (ATIS) are widely aoktedged to have the po-
tential to increase the reliability of road networks andltevaate congestion and its neg-
ative environmental and societal side effects. Howeverthese beneficial collective ef-
fects to occur, reliable and accurate traffic informatioreguired yan Lint et al, 2005.
One valuable and objective piece of traffic information &vél time. Real-time travel
time predictions can be used in dynamic traffic managemenMDapplications and in
commercial applications for pre-trip planning or en-rongvigation. Reliably and accu-
rately predicting travel time for ATIS is a complex task thas been the subject of many
research efforts over the past few decades.

In the international literature, many studies have focusedhort-term travel time
prediction. Invan Hinsbergen et a{2007) an overview of prediction methods is given.
Many types of prediction models can be distinguished. Haneavery prediction model
q has some set of assumptiorig,§ that can be physical, mathematical or statistical and
a parameter vectd that must be determined from a certain data/3eta travel time
prediction of model; can be written ag, = G(«, )| H,, wherex represents the current
input(s).

Given the myriad of prediction models and the complexityra¥él time prediction, it
is a far-from-trivial task to select the prediction modedttis most reliable, most accurate,
or both for a particular application. One possible way torapph this problem is to
develop a generic framework that can automatically combinkiple models that run in
parallel.

Prior attempts to combine multiple prediction models ak tise error the models
made in the previous time interval(F€tridis et al. 2001, Kuchipudi and Chien2003
Zheng et al. 2009. However, predicting travel time in real time, a necesforymost
DTM and commercial applications, has one major complicatibtakes time (the travel
time, in fact) for the actual travel times to realize. Theref the actual travel time of the
previous time step often is not yet revealed, especiallyoimgested situations in which
travel time prediction is most valuable. Using the errorhia previous interval(s) when
combining travel time prediction models hence must be ctamed a theoretical exercise
and inapplicable to most real-time applications. Anothgpraach is needed.

The goal of this study is to develop an alternative approacdhe online combination
of travel time predictions. A model’s prediction and the lpability that a model predicts
the travel time correctly are used for this approach (Figugl. For real-time appli-
cations, the probability must be calculated without logkat the errors in previous time
intervals; only ‘internal’ information about the modelsdae used, with errors that have
been revealed. In the model layer, multiple models simefasly predict travel times,
and the probability that a model is right about its predici®computed for each model.
The revealed prior prediction errors are stored in the datar] which also provides in-
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formation about current traffic conditions. In the combioatlayer, Bayes’ theorem is
used to combine the predictions, using the output of the iMager and of the data layer.

Model Layer

model 1 model ... model M

I

:

Data Layer :
| =msssssss=ss===== - I

N s/

:

I

[

current (traffic) : -~
conditions predictions, model probabilities

prior errors

generic combination
framework

Y
generic prediction

Figure 3.1: Framework for combining prediction models

3.2 Methodology

In this section it is shown how to combine multiple prediotimodels using the frame-
work presented in Figur8.2.1 These efforts are based on the Bayesian framework for
model fitting and model comparison presentedMackay (1995, providing a principled
formalism that allows the ranking of the appropriatenesg®l{hood) of the model pre-
dictions, given the current inpuis, the parameter8, the dataD with which these were
calibrated, and all the other assumptidgihsinderlying the model. The framework is the
same framework that has been described in Ch&ptiés derivation will be repeated here
so that this chapter is individually readable.

3.2.1 Bayesian framework for model fitting and comparison

Assumel/ models in which a model € M has underlying assumptiods, (e.g., linear
and contains 2 parameters, or nonlinear and contains 1éhptees) and is calibrated on
a particular data séb. Using Bayes’ theorem, the posterior probability that a elasl
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correct can be written addackay, 1995 2003:

P(D|H,)P(H,)

P(H|D) = == 55

(3.1)

P(D) =Y P(D|H,)P(H,) (3.2)
qeM

The numerator of3.1) can be interpreted as the evidence for madg(more formally,
P(D|H,) denotes the probability of generating ddteusing modelH,) times the prior
probability of modelg, P(H,), which could be based on belief or expert knowledge or
statistics. Because the normalization constant in therdéeredor of 3.1) will be equal for
all hypotheses tested, one can compare the posterior plitibalof different hypotheses
on the basis of the numerator only. If it is further assumed #priori each model is
equally probable #(H,) is equal for allg), then the different models can be evaluated
and ranked on the basis of the evidedee)|H,) only. The question is, how does one
calculate this evidence?

Recall that most (travel time) prediction models are patanmed by means of some
parameter vecta®, which is calibrated on some data getwhich in turn is assumed to
be representative of the problem at hand. This process othittihg usually entails
minimizing some cost or objective functidrx

Héwp = argn%in (E6,,D,H,)) (3.3)

q

which reflects the sum of squared errors on the calibratite Bafor example, or some
other goodness-of-fit measure. Mackay convincingly argli@smodel fitting should be
viewed as probabilistic inference, in which the task is ta fithe maximum probable
parameter vectoﬁé”P , given the available dat® and all our other assumptiorf$,
(Mackay, 1995 2003. That is,

6,'"" = argmax (P(8,|D, Hy)) (3.4)

In this case, Bayes’ theorem yields

P(D|6,, H,)P(0,|H,)

P(0,|D,H,) = (3.5)
( q‘ (I) P(D|Hq)
in which the denominator
P(DIH,) = [ P(DI6,. 1,)P(0,/1,)d6, (3.6)

now equals the evidence fron8.(). Because this term would require integration
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(marginalization) over the entire parameter space, caitig it analytically is possible
only in simple models and even then requires elaborate legicns. In practice, it must
be approximated.

To this end, first note that the model evidence (the denomit(3.5)) does not de-
pend on the parameters; they are integrated out of the equts a result, the parameter-
fitting problem reduces to

03/”3 = argmax (P(D|6,,H,)P(0,H,)) (3.7)

The first term in 8.7), P(D|6,, H,), equals the likelihood of the data arising from
a modelH, with parameter®,, whereas the second term, the priefé,|H,), can be
viewed as a term that bounds the parameter space to certggamseaeflecting the prior
belief on (or the known or desirable statistics of) thesapaaters. For example, if param-
eters have physical meaning (e.g., capacities or critpads in traffic models), then the
prior enables us to incorporate these restrictions. In #geBian framework, model fit-
ting thus leads to a posterior distribution of the paransaié?,| D, H,) with a maximum
at6,"” and varianc@®,, rather than one particular parameter ve@gr’.

3.2.2 Approximating the model evidence

Bayesians rank models on the basis of the eviddnde|H,) for a certain modef after
observing data.Mackay (1995 2003, Bishop (1995, Sivia (1996 and Minka (2001)
put forward clever approximations to quantify this evidewoa the basis of the quantities
calculated in the model fitting phase. Figu# shows the concept for a simple model
with a one-dimensional parameter space.(é,|H,) be the prior accessible volume by
the model before fitting to the data (solid line). After thedwbis fitted to the data, the
accessible volume collapsesi®,|D, H,) (dashed line). The evidence &.6) equals
the integral under this posteripf6,|D, H,). Because this posterior usually is sharply
peaked aB)'” , this integral can be approximated by the height of its pealof'")
times its width,og,|p, marked by the gray area on the right side:

P(D|H,) =~ P(D|0)'", H,) x P(8)'"|H,)o9,p (3.8)

If the prior is (approximately) uniformly distributed (m@ag each value of within
a particular range is equally probable), th8r8| reduces to

06,|D

P(efypmq) ~ — P(D|H,) ~ P(D|9§4P,Hq) x

09,|D 90,

(3.9)

The first term of the right side 0oB(9) can be interpreted as the best-fit likelihood of the
model, which equals the height of peak of the dashed linegurei3d.2 A model with
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]

Evidence = integral |~

—p(O|H.

TLEr PEB{D‘II)'_I ) Llnderp(ﬂlD,Hq)
i i Approximate by

height x width =

p(ﬁ‘“’|D,Hq) X Oy,
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Figure 3.2: The evidence for the one-dimensional case. fedlipom Mackay 1995

a higher peak is ‘secure’ about its fit. A higher best-fit likebd therefore promotes
models with a good fit. The second term of EquatiBrd) penalizes models that either
have a large prior or a small posterior; it is called the Oc¢aotor. Occam’s razor is

the concept of preferring the simpler model over the comptexel if they predict the

data equally well. Overly complex models with many paramsetieat are allowed to vary
over a large parameter space tend to overfit the data andajjeeguvoorly. The second
term automatically penalizes a model that is overly compbseerfits the data, or both.

Equation 8.9) therefore can be written as

Evidence= Best-fit Likelihoodx Occam factor (3.10)

The evidence automatically balances a good fit on the da&fittlng, and model com-
plexity. Recall that this same result was obtained in equa@.17).

3.2.3 Normalizing the likelihood

In case the models that are to be compared do not all use tine @ata set), a problem
possibly occurs: how can two models be compared if the désasm P(H,|D) are not
equal? Of course, when the data sets are completely diffesgaoh a comparison will
not be possible. However, when one model uses only a subske¢ afata selD while
another uses the entire data set, then a heuristic can bedypld the comparison can
still be made. If the models do not have equal numbers of daitatpwhich are used
for calibration, then this discrepancy can be correctedaiyng the log likelihood and
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dividing over the number of data points. The corrected lkglihood for model; equals

. L
Lq:—I}Vq

q

(3.11)

The corrected log likelihood then can be converted back tkedihood in the range of
[0, 1]. The evidence 0f3.10 alters to the normalized likelihood times the Occam factor
Oy:
Ev, o< exp(Ly) x O, (3.12)
Note that this heuristic will only work if all data comes fraime same data sé? but
when one of the models uses not all data frbrvhile another does.

3.2.4 The Occam factor for the multidimensional case

If a model has more than one parameter and the posterioibdigtn of the parameters
can locally be approximated by a (multi-dimensional) Gaursdistribution, then the gen-
eralized variance (the determinant of the covariance maty) can be used to describe
the ‘width’ of the distribution Mackay, 1999. Note that®, is the covariance of the like-
lihood function, and not the covarian€, of the posterior distribution.The Occam factor
O, of a modelg then equals

O, = P(0)"|H,)det'*(Z,) (3.13)

If the optimal parameters are found by using a cost functiat ts efficient (i.e., that
minimizes error variance such as the maximum likelihoodvete (MLE)), then the co-
variance matrix can be estimated as the inverse of the negdgssianA, of the log
likelihood functionln L, (Greene2000:

-1

0*InL

¥, =(-A,)"' = (- q) (3.14)
! ! 06’

3.2.5 Combination strategies

The models can be combined using their evidence. Two cormbmstrategies are pro-
posed:

e Winner Takes It All (WTIA)
Mackay proposes to evaluate the evidence to rank the maithelsnodel with the
highest Evidence is chosen as the prediditagkay, 1995:

y(t) = y,(t) whereq = arg meax (Evy(t)) (3.15)
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e Weighted Linear Combination (WLC)
It was investigated whether the evidence can be used as &twéit) A/ models’
predictions are used but are multiplied by factors that goitou. If two models
have an equal probability, then the truth intuitively wié between the two predic-
tions. A weighted linear combination is proposed in whicldence is normalized
and used as a weight for a model’s prediction:

y(t) = Z Wq(t)yy(t) (3.16)
_ Euv,(t)
wy(t) = S Fol) (3.17)

3.3 Proof of concept: two simple models

To demonstrate how the above theory can be applied in peadt® linear regression
models where the evidence can be analytically solved areechoa linear regression
(LR) model and a locally weighted linear regression (LWLR)dul. For the sake of
simplicity, a prediction horizon of 0 min ahead is choseredictions are made for the
travel time on a route for vehicles that leave in the currenétwindow.

Rice and van Zwe{2004 demonstrate that there is an approximate linear relation-
ship between instantaneous travel time (ITT) and predittack| time at a time interval
t. Both models use the ITT, here denoted by the synghah which traffic conditions
(and therefore the speeds reported by loop detectors) suenasl to be constant for the
whole trip. The vehicle speed is considered linearly insirggor decreasing between two
detectors:

d = 2dy—d, L —dx
() = w(t) ; (U:cgt) + Uml()t)) T (3-18)
where
X = number of loop detectors on the route, (3.19)
d, = distance from loop detector to the beginning of the route, .20B
u, = speed reported by loop detectgrand (3.21)
L = length of the route (3.22)

The first and last terms 08(18 calculate the travel time from the beginning of the route
to the first detector and the travel time from the last detdotthe end of the route. Using
the ITT, a simple linear model of the travel time equals

y(t) = a+ B¢(t) +e(t) (3.23)
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where
y(t) = travel time prediction at time window (3.24)
((t) = instantaneous travel time at time window (3.25)
«, B = parameters to be estimated from data, and (3.26)
e(t) = random error that is normally distributed= N (0, o?). (3.27)

MLEs of the parameters, 5 ando? are desired. Both linear regression models use a two-
dimensional parameter vector, with parametei@nd 5. If these parameters are chosen
to be drawn from the same parameter space, then the prioalpitity P(6,|H,) is equal

for both models. Therefore, the Occam faatprof (3.13 reduces to

O, oc det™/2 (~A,) (3.28)

For this two-dimensional case, the Hessinof the log likelihood function (so not the
Hessian of the posterior) equals

8%InL; 06%InL,

_ da? Oad

Ay = [ ity 0°inly ] (3:29)
B0 032

wherelL is the likelihood function, which is Gaussian because thiarpaters are assumed

to be normally distributed.

One assumption for the Bayesian framework is that the maalelsunbiased (i.e.,
the error distribution ha8 mean). To achieve this, the biases of the two models of prior
predictions are incorporated into the predictions. It casden as the connection between
the data layer and the combination layer in Fig8r2.1 knowledge of prior errors is
included in the Bayesian framework by subtracting the mdadheo(revealed) prior error
distribution of a certain model from the model’s prediction

3.3.1 Model 1: Linear Regression

Assume that a prediction is to be made at time stelRice and van Zwet2004 perform

a linear regression on a data set of ITTs and actual travektitmat were measured before
time 7. Of the data set, only those points in history that have tineesame of day are
used for regression. For example, if one wishes to predectrdvel time at 8 a.m., the
model is fitted to a data set consisting of all pairs of TT ant &f 8 a.m. in the data set.
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Best fit likelihood

For a linear regression, the least squares estimate etpedi$ltE and satisfies the objec-
tive function

min Y~ (y(t) — a — B((1)? (3.30)

wherer is the current data interval. In total, between- 1 and¢ = 7 there areN data
points that are used for fitting the linear function; in thése, only those points are used
of the same time of day. As stated before, the joint PDRy (0 is the product of the
marginal PDFs Casella and Bergef990. Because the parameters are assumed to be
Gaussian distributed, the likelihood function equals

T

Lon(r) = T[] exp <_ (y(t) = o — BE(1) ) 3:31)

202
o OV 2T

The most probable parameters are estimated by the followeguations
(Casella and Berget990:

_ i) = Q) — )

== ) - o8 (3:32)
a(r) =y - B¢ (3.33)
() = = 3 (vl — o — ()’ (3:34)

where( is the mear andy is the meary. The best-fit likelihood is found by substituting
the estimated parameters in the likelihood function3089).

Occam factor

First, the log-likelihood function must be obtained fro&32):

In Lp(r) = —g In(27) — gln(UQ) EpYE (y(t)Q_Uf —5eE) (3.35)

The HessiamA () is the second derivative of this log likelihood to the partere (see
(3.29). The negative value of the Hessian equals

(3.36)
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The variancer? can be obtained fronB8(32. Substituting equatior8(36) in (3.28 gives
the Occam factor:

T 2 T 2\ ~1/2
On(r) (N S 60— (S, ¢1) ) 3.37)

ol

3.3.2 Model 2: Locally Weighted Linear Regression

Locally weighted linear regression (LWLR) is a ‘memory bdismethod, where model
fitting is postponed until the moment of predictioAtkeson et al. 1997 Zhong et al.
2005 Nikovski et al, 2005. The input vector, consisting of all measurements befoee t
current point, is weighted by the proximity to the currentasigrements. This way, points
in history that are close to the current situation are weidimore heavily in the regression
than points farther away (FiguB3). ITT is used as input for the LWLR, analogously to
the LR model described earlier.

X

Figure 3.3: In locally weighted regression points are wegghby the proximity to the
current point ()

Best fit likelihood

The same linear model as i8.23 is used, but the parameters are found by optimizing a
weighted least squareAtkeson et al.1997%):

min Y pu(t) (y(t) — al(t) — B)? (3.38)
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with 7 the current time interval. In contrast to the LR model, ndiyguoints at the same
time of day but all points in history for which the ITT and tedtime are known are used
for regression. The term(t, 7) is a weight that is put on the input vector. Although
no substantial empirical evidence prefers a certain weigttnction over all others, a
Gaussian kernel is often usesitkeson et al.1997 Zhong et al.2005:

u(t,7) = exp(—6(t, 7)) (3.39)
() = ¢(7)]
t,7)=>——"—>+ 3.40
where
((t) = an instantaneous travel time at tiheome time in history, (3.41)
¢(7) = current instantaneous travel time at timeand (3.42)

K = kernel width, which determines how quickly weights decline (3.43)

The prediction performance of the LWLR model was insensitiy the X' value. The
cost function of 8.38 was flat, with values of< betweerb0 and150. Therefore, it was
decided not to varys in optimizing the objective function but to set it as a fixedineaof
100s(K = 100). Using the objective function 0B(38), the likelihood function becomes

T

LLWLR<T) _ H 1 exp (_M(t, T)(y(t) - — BC(t))z) (344)

202
oV 2T

and the most likely parameter estimates become

= L e -0 (249
a(r) =gy — ¢ (3.46)
#(r) = - St (w(t) —a— Bc(n)) (3.47)

Occam factor

The Occam factor can be determined by substituting the kagitiood in 3.29 and
substituting the result i3(28), resulting in

ol

Oswia(r) o (zt; plt7) Sy (a8, 1Y) = (S sl T><<t>>2) "
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3.4 Results

For this study, two data sets were available: one from liegrate recognition cameras
at the beginning and end of the route, and one from 19 double detectors along the
whole route. The layout of the network is shown in Fig8ré

.‘\\'\7 oorburg

T ey ‘{Intersection
\ On & Off ramp

Zoectermeer
e Zoctermecr

M

Figure 3.4: The A12 network from Zoetermeer to Voorburg Neéherlands

The selected route is a 8.5-km (5.3-mi) stretch on the A1Z2omaty in the Nether-
lands, from an on ramp (Zoetermeer) to an off ramp (Moorbukgdense plate cameras
were placed at both ramps to record vehicle license platesprdy four of six charac-
ters were recorded because of privacy legislation. Indaidravel times based on the
four-character matches were recorded for 95 days in theewarid spring of 2007. The
data were filtered for outliers, which are considerable,niyabecause of coincidental
matches between the four recorded license plate charaétties the data were filtered
and visually inspected, the travel times of the vehiclesitenin the same 5-min period
were aggregated. The selected motorway has a considerabhengy peak but rarely an
evening peak. Therefore, only the morning peaks betweeb &nd 10:00 a.m. were
selected from the data sets.

For the same periods, double loop detector data were alatladt allow for the cal-
culation of ITTs, used in both models. The loop detector detee available in 1-min
arithmetic mean speeds for all vehicles that were recorded {ime mean speeds). To
smooth out large variances, five ITTs were calculated foh &min period using3.18
and aggregated using the arithmetic mean.

The data sets were split in two: a training set of 80% (76 dags)a test set of 20%
(19 days). To correct for bias, for the second half of thentrey set (38 days), predictions
were made by the two models and the prediction errors weredstly model. Predictions
were then made for each 5-min period in the test set, and ttee rokthe prior error
distribution was subtracted from each prediction. For ga@tod, the predictions also
were combined using the two Bayesian combination stratedgscribed earlier. This
way, 681 predictions of 5 min were made. The models and the®8ay framework were
programmed in Microsoft Visual J#. The 681 predictions tadiotal time of 410 s per
combination strategy on an Intel Pentium M 1.60 GHz, whiaiuded reading data files
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of previously stored ITTs and actual travel times and stptire results. Of this time, only
1.0 s was spent on calculating the evidence.

Table3.1lists the prediction results and three performance indrsathe root-mean-
square error (RMSE), which indicates the overall errorias, which shows a structural
difference between the actual and predicted travel timelaadoot residual error (RRE),
which is the remaining error after correcting for bias. Metihat

RMSE? = Bias® + RRE? (3.49)

Table 3.1: Results of the different prediction models

Prediction model RMSE (s) Bias (s) RRE (s)
LR 50.5 +1.6 50.5
LWLR 48.5 -2.5 48.4
Bayesian WTIA  48.0 -2.3 48.0
Bayesian WLC  47.9 -1.5 47.9

Table3.1shows that the Bayesian combined model has the best perioenaverall
and that the WLC strategy is slightly better then the WTlAatdgy. Using only internal
information, calculated while calibrating the models, tmmbined predictions show a
lower RRE and lower bias. However, on one day (Friday, Ap8),lthe two models
largely underestimated travel time. It is hypothesized #maccident occurred on that
day, but no data are available to validate this theory. Nbedss, this type of congestion
apparently was not present in the training set, causing buitels to perform badly.
April 13 data therefore were deleted from the results, beedbe Bayesian combined
model will never be able to create a good prediction from tad predictions.

As an example of how the Bayesian framework combines the teod@ril 16 is
considered (Figur8.5). Especially at the peak of congestion, the Bayesian maaiel ¢
minimize errors. For most periods of this day, the evideactor follows the model with
the lowest prediction error. It especially can be seen ap#dak of congestion, between
8:25 and 8:50 a.m. The single models show large peaks in thawb error, but the
combined model shows a more flat error, cutting off those peBktween 8:55 and 9:15
a.m., the Bayesian framework is sensitive to bias; the cstiedissolves rapidly. Both
models lag behind and overestimate the travel time (i.¢h bave a positive bias). The
Bayesian combined model is bounded by the two predicti@sland therefore also shows
a positive bias. Moreover, the evidence wrongly approved WLR model over the LR
model. Although the lines of the two single models are clossich other, because of the
steep descent of the travel times the vertical distancedsatthe prediction and the actual
travel time (the prediction error) is large. The effect ofrgimg out the wrong model is
therefore large on these occasions.



3.5 Discussion and conclusion 49

3.5 Discussion and conclusion

Using the Bayesian framework, the LR and LWLR prediction elsdvere successfully
combined, slightly improving prediction accuracy andabliity. Even though some sim-
plifications were made, such as the errors and the postdrtbe@arameters being nor-
mally distributed, using the evidence as a ranking mechaisas a weight improved
results with limited extra effort. Additional research iseted to determine which com-
bination strategy generally is preferable. The Bayesiaméwork for combining predic-
tion models can be used for online DTM or commercial applcest, because the often
unrevealed error in previous interval(s) is not neededyOmniernal’ information on the
models’ probabilities is needed, and it can be calculatet #fe parameters of the models
have been fitted to the data. This result is promising for Iscténtists and practitioners
and encourages future research in this direction.

As the results show, the evidence was not always right abbigthwmodel performed
best, having consequences on performance. One way of owgngahis problem could
be to introduce prior knowledge about the models’ perforceamder certain conditions.
It was assumed that every model is equally probably a prief#,) is equal for allg);
however, from prior predictions of the models, one may knowcl model performs
better under which conditions. For example, the LR model gexerally outperform the
LWLR model in dissolving congestion. The Bayesian framdutben balances model fit,
overfitting, model complexity, and prior model performance

As the results indicate, the Bayesian combined model istsent® bias. Itis bounded
by the minimum and maximum predictions of all models. If abbaels have a bias with
the same sign, then the Bayesian framework will have a lgygetiction error than the
best of the single models. Therefore, it is recommended d¢cease the number and
diversity of the models inside the model layer of the framew®oing so will decrease
the chance of all models having the same bias. More advameddécpon models, such as
neural networks or dynamic traffic assignment models, hbagers promising prediction
results in different circumstancegaf Hinsbergen et al2007). Adding these models to
the Bayesian framework can be expected to improve results.
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{5556 Actual vs. predicted travel times, 16 April 2007
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Figure 3.5: Data from April 16, 2007: (a) actual versus pretid travel times for the two
single models and the WLC combined model, (b) normalizetteee, and (c) absolute
errors of the two models and the combined model



Chapter 4

Bayesian committee of neural networks
to predict travel times

This chapter is an edited version of van Hinsbergen, C. #ah,Lint, J. W. C., and van
Zuylen, H. J. (2009d). Bayesian committee of neural nettolpredict travel times with
confidence intervalsTransportation Research Part C: Emerging Technologigs498—
500.

Short-term prediction of travel time is one of the centradies in current ITS research
and practice. Among the more successful travel time predicpproaches are neural
networks and combined prediction models (a ‘committee’pwidver, both approaches
have disadvantages. Usually many candidate neural netvaoektrained and the best per-
forming one is selected. However, it is difficult to selea tiptimal network. In commit-
tee approaches a principled and mathematically sound fvankeo combine travel time
predictions is lacking. This contribution overcomes thavavacks of both approaches
by combining neural networks in a committee using Bayegiéerénce theory. An ‘evi-
dence’ factor can be calculated for each model, which carsbd as a stopping criterion
during training, and as a tool to select and combine diffemenral networks. Along with
higher prediction accuracy, this approach allows for aateuestimation of prediction in-
tervals. When comparing the committee predictions to simgiural network predictions
on the A12 motorway in the Netherlands it is concluded thaibproach indeed leads to
improved travel time prediction accuracy.

51
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4.1 Introduction

The widely acknowledge potential of traffic information tibegiate congestion and to
decrease negative environmental and societal side effiestéed to a surge of research
into reliable and accurate traffic and travel time predictimodels in the past few decades
(van Lint et al, 2005.

Among the most applied types of traffic prediction models &RIMA-
like time series approachedNiban 198Q Lee and Fambro1999, Kalman filter-
ing (Okutani and Stephaneded4984), local weighted regressionS(@n etal. 2003
Zhong etal. 2005 van Hinsbergen et al. 20083 (see also Chapter3), nearest
neighbor techniques Smith and Demetsky 1996 Clark, 2003, neural networks
(Dougherty and Cobbettl997 Zhang 200Q Dharia and Adeli 2003 van Lint et al,
2005 Innamaa 2005 and so called committee or ensemble approaches, in whi¢h mu
tiple model-predictions are combineBdtridis et al. 2001, Kuchipudi and Chien2003
Zheng et al. 2006 van Hinsbergen et al20083. The last two approaches, neural net-
works and committees, have shown a high accuracy for predicf traffic conditions
(van Hinsbergen et al2007). However, these two approaches exhibit some imperfec-
tions when applied in real-time applications, as will bewshan sectiongt.1.1and4.1.2

One valuable and objective piece of traffic information is travel time. Real-time
travel time predictions can be used in dynamic traffic maneegg applications and in
commercial applications, such as pre-trip planning orarte navigation. In Chapter
3 two simple regression models were applied for the task oktrame prediction, and
their predictions were combined using the Bayesian datiandaton framework. This
contribution presents a neural network-based committ@eoagh as an alternative for
online travel time prediction, because, based on liteeatilveir predictions are expected
to be more accurate. The same Bayesian framework that hasapeéed in Chapter2
and3 will also be applied to these neural networks.

4.1.1 Committees of prediction models

One way of improving prediction accuracy and reliabilitytdcscombine multiple pre-
diction models in a committee, where the outcomes are a wegigtombination of the
outcomes of its members. Previous attempts to combinectyaf@diction models typi-
cally use the errors the models make in the previous timevale Petridis et al.200%;
Kuchipudi and Chien2003 Zheng et al.200§. However, when applied to predicting
travel time, one major complication occurs: it takes tinreféict the travel time) for the
actual trip to be realized and consequently for a travel tismeecome available. There-
fore, in most practical situations the actual travel tim&éag available within one dis-
crete time step, especially in congested situations whamarate travel time prediction is
most valuable. Using the error in the previous intervalsaimbine travel time prediction
models must thus be considered a theoretical exercise apglinable to most real-time
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applicationsyan Lint, 2008.

In Chapter3 an alternative committee approach using Bayesian infertmeory was
applied to the travel time prediction problem. In this thea model’s prediction as
well as the probability that a model predicts the travel tooerectly (theevidencdor a
model) is used. The relative probabilities of the modelsthem used to combine their
predictions. This approach does not involve evaluatingpttegliction error of the last
prediction(s) made, which makes it appropriate for onlippl@ations. In the chapter it
is demonstrated that prediction accuracy can be improvied tisis approach.

4.1.2 Artificial neural networks

It is common practice in the application of (artificial) naunetworks for travel time
prediction to train many different candidate networks amehtto select the best, based
on the performance on an independent validation set, to madictions. Although this
might intuitively make sense, there are a number of serioawlohcks to this approach.
In the first place, this implies that much effort involved maihing networks is wasted.
More seriously, the fact that one neural network model atiwpes all other models on
one particular validation data set does not guaranteetiisat¢ural network model indeed
contains the optimal weights and structure, nor that thidehbas the best generalization
capabilities. This completely depends on the statisticapgrties of the training and
validation set (e.g. the amount of noise in the data), theptexity of the problem at
hand and most importantly on the degree to which the traiaimg) validation set are
representative for the true underlying process which isetezti The network performing
best on the validation set may therefore not be the one wéthhést performance on new
data Bishop 1995.

These drawbacks can be overcome by combining all (or a repias/e selection
of) trained neural network models in a committee. The Bayefiamework that is ap-
plied in Chapter3 can be used for this purpose. The theory of Bayesian inferémc
train and combine a committee of feed-forward neural ndta/tias been described in
Bishop(1995 andMackay(1992h 1995 and has been applied in various fields of study
(Thodberg1993 Mackay, 1994 Penny 1999 Baesens et al2002 Chua and Go2003
Lisboa et al.2003. To the authors’ knowledge this approach has not yet beplieajto
travel time prediction or traffic prediction in general.

4.1.3 Objective of this study

In this study the Bayesian approach for neural network baseel time prediction will
be used and its workings will be demonstrated on real data free A12 motorway in
the Netherlands. In this approach two intrinsic and infdimeaquantities are calculated,
which allow for real time model comparison and combinatibinst, during training, the
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so-called model-evidence is calculated, which ranks thedetsoon the basis of the fit
on the training data taking into account the degree of ovingi (inducing variance) or
under-fitting. Second, in actual operation the approaahallews the estimation of error
bars on each prediction, which indicate the degree in whielcurrently presented input
pattern matches with the input patterns seen during trginithe committee approach
is compared to individual neural networks to show that th@madttee provides a more
accurate prediction of travel times and has better gezatan performance.

As traffic systems are highly dynamic, it is expected thatriteo to make highly
accurate travel time predictions, neural networks thatade to incorporate these dy-
namics are needed, such as recurrent neural networks ersgiate neural networks
(van Lint et al, 2005. However, to maintain focus on the workings and powerfoler-
ties of the Bayesian framework, relatively simple feedafard neural networks are used
in this study.

4.2 Methodology

In this section first the general approach to Bayesian motlielgfiis presented. Subse-
quently, the construction of a committee of neural netwankd the derivation of error
bars on each committee member’s predictions are discussed.

4.2.1 Feed forward neural networks for travel time prediction

Figure4.1 shows a typical feed-forward neural network topology withiput layer, a
hidden layer and an output layer. The input layer consistsioput elements, the hidden
layer of M hidden nodes and the output layercajutputs.

INPFUT HIDDEN OUTFOT
LAYER LAYER LAYER

Figure 4.1: A neural network witll input elements, one hidden layer withh hidden
nodes and outputs, where the biases are represented as an extra nodeay)
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Mathematical description of a neural network

An outputy, k = (1, ..., c) can be described by the following equations:
M+1
yr(@) = fa (Z 9ka]‘> (4.1)
j=1
d+1
Zj = f1 (Z 9j1$i> (42)
=1

whered,;; andd; are calledweightswhich are adjustable and whose values need to be
estimated from data. Thieias weights(biases) are represented by an extra node in a
layer to the left (the gray nodes in Figudel) which have a constant output @f so
rqr1 = landzy . = 1. The functionsf; andf, are callecactivation functionsind apply
transformations to the weighted sum of the output of thesunithe left. Common forms

of the activation of the hidden nodes are tbgistic sigmoidand thehyperbolic tangent
functions. In practice, the latter is found to give rise tstéa convergencd3{shop 1995.

A linear activation function is commonly used for the outpaoits.

fi(a) = tanh(a) (4.3)

fola) =a (4.4)
The weights and biases together form a weight ve#teith a total ofi” weights (param-
eters). The input vectat™ = (z7,...,27) is drawn from a data set = (z?,..., ")
of N data points. The output values of the netwarke™) = (y1(x"), ..., y.(x™))
can be compared to target value$ = (oy,...,0.), drawn from a target data set
D = (o',...,0"). Only networks with a single output, = 1, are considered in this

study, so the indek will be omitted from now on.

Neural network training (model fitting)

The values of the weight vectérof the network need to be learned from data, which is
usually referred to as neural network training. Typicaflistiearning mechanism is based
on a maximum likelihood approach, equivalent to the minatian of an error function
such as the sum of squared error:

1 N

Ep=35) (y(x"0)—0")’ (4.5)

n=1

Preferably, a regularizer term is added4td to avoid overfitting of the networks to the
training data. A commonly used regularizer is fherrtitioned weight decagrror term
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which has empirically been found to improve network geneasion Krogh and Herts
1995 and is invariant to transformations to the input or outpatadBishop 1995. Let
us briefly explain this regularizer. Definégroups of weight#,,, e.g. one for each layer
and one for the biases, and define the regularizer by:

”
Bw =Y a,Bw, (4.6)
v=1
1 2
By, =5 > o (4.7)
0€0,

where the parametens control the extent to which the regularizer influences thetsm.
The regularized performance (error) function then becomes

E(0) = Ep + Ey (4.8)

The minimum of this performance function can be found by l&ghback-propagation
or one of its many variations such as gradient desdeotmelhart et aJ.1986 or the
(scaled) conjugate gradient algorithiwi(liams, 1991 Johansson et al1991, Mgller,

1993 Press et al2007). In the current study the scaled version of the latter atigoris

used.

In the conjugate gradient algorithm, a series of searclcuiinesd; through weight
space is constructed using the negative gradignt= —V E(8), which can be found by
back propagating the errondécht-Nielsen1989. A new search direction is set to always
be conjugateto or non-interferingwith all previous search directions, which ensures fast
convergence to a minimum. After having found a search doecthe length of the step is
determined using the Hessiah = V'V E(0), which can be exactly evaluated by a back
propagation approactBishop 1992. In the scaled version of the conjugate gradient
algorithm, a Levenberg-Marquardt technique is added torenthat the quadratic error
approximation that is used in the approach is valid for tleg sinder consideration.

However, instead of using maximum likelihood techniquesjral network training
can be viewed from a Bayesian inference perspecBishpp 1995 Mackay, 1995.
This has some major advantages in the application of theahaetworks. First, error
bars can be assigned to the predictions of a network. Seaoraljtomatic procedure for
weighing the two error part&, and £y, of the error function can be derived; the values
of these weights can be inferred simultaneously from theitrg data without the need
of a separate validation data set. Because all data is usé@ifting, better models will
result. Third, theevidencaneasure emerging from the Bayesian analysis can be used as
an early stopping criterion in the training procedure. Hnalifferent networks can be
selected and combined in a committee approach using thdsme® measure.
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4.2.2 Bayesian trained neural networks for travel time predction

From a Bayesian inference perspective, the parametersaaralmetwork (or any model
for that matter) should not be conceived as single valugsapadistribution of values
representing various degrees of belief. The goal is themtbtfie posterior probability
distribution for the weights after observing the datasetlenoted by (6|D).

Neural network training formulated as Bayesian inference

This posterior can be found using Bayes’ Theorem:

p(D]0)p(6)
p(D)

wherep(D) is the normalization factop(D|0) represents a noise model on the target
data and corresponds to the likelihood function, af#) is the prior probability of the
weights. Although many forms of the prior and the likelihdadction are possible, often
Gaussian forms are chosen to simplify further analyses:

p(61D) = (4.9)

\%4
1
p<0) = Zw(a) exXp <_ vzlavEW,v> (410)
1 B
DI|6) = exp | —= z", 0) — o")? 4.11
§DI6) = o p<2n§;<y< ) >) (4.11)
where Zy, and Zp are normalizing functions and = (a4,...,ay) and are called

hyperparameterss they control the distributions of other parameters, thghis w of
the network. The prior has zero mean and variariges for every group of weights, the
likelihood function has zero mean and variagg. It can be seen that the exponents in
4.10and4.11take the form of the error functions;;, and £/, already introduced id4.8.
Substitutingd.10and4.11in 4.9results in an expression for the posterior:

p(0|D) = exp (—E(8)) (4.12)

o
Z5<a7 ﬁ)

\%4
E(0) = BEp + Y avEw, (4.13)

v=1

whereZs(a, ) is a normalizing function. Consider now the maximum of thetpdor
distribution, 8" (the most probable value of the weight vector). This can hado
by minimizing the negative logarithm @f.12 which is equivalent to minimizing.13
Because this equation is similar 408 (except for an overall multiplicative factor), the
maximum of the posteriop(8|D) can be found by simple and well-established back-
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propagation techniques (see sec#op.]).

Approximation of the posterior distribution of the weights

Although the most probable values for the weights (the péakeoposterior distribution)
can be found using normal back-propagation, the entireepostistribution needs to be
evaluated to generate for example error bars on the predsgotir to construct a committee
of networks, as will be shown later. A complication here attihe normalizing coefficient
Zs(a, B) of 4.12in most cases cannot be evaluated analytically. Therefioegyosterior
needs to be approximated, for example by a Taylor expansf@cKay, 19925, which
results in the posterior

p(0|D) = Zi exp (—E(OMP) — %AOTAAO) (4.14)
S

whereA is the Hessian given by

1%
A=VVE(0)=BVVEp+ > a,l, (4.15)

v=1

whereE, is the error function of equatioh5and I, is a matrix with all elements zero
except for the elementg; = 1 wherei corresponds to a weight from a group This
estimation of the posterior distribution of the weights t@nused to construct error bars
and to create a committee of networks.

Approximation of the posterior distribution of the hyperpa rameters

In order to evaluatd.13 the values (distributions) of the hyperparameteasida in 4.13
need to be found. These can be approximated by the same Bayefgrence framework
that is used to approximate the posterior distributionfieieights. The posterior distri-
bution ofa andj given the data is given by:

p(Dla, B)p(e, 5)

p(a, B|D) = (D)

(4.16)

It can be shownGull, 1989 Mackay, 1992a Bishop 1995 that the maximum of this
posterior can be approximated with the following valuesdaandj3:

MP Yo
= v 4.17
* T 5B, (4.17)
N —
gr N1 (4.18)

2Fp
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wherey = Zvvzl v, IS the so-called number of well-determined parameterslgmments
of which are given by:

w

j=1

wheren); is the jth eigenvalue of the Hessia#, V' is the matrix of eigenvectors of the
HessianA andI, was defined when explaining equat#i5 In this summation negative
eigenvalues are omittedltodberg 1993.

In practice, the optimal values fex and 3 as well as the optimal weight vect@f’”
need to be found simultaneously. A simple heuristic is toaus&ndard iterative training
algorithm (i.e. the scaled conjugate gradient algorithonfirid 8/ while periodically
re-estimating the values ef andj using4.17and4.18

The initial values of the hyperparameters depend on thedypalues of the input
(e.g. speeds, flows) and outputs (e.g. travel times). The afattransformed to ensure
that all of the input and target variables are of order unityywhich case it is expected
that the network weights also are of order unity, and thushiyperparameters can be
initialized to one. If the variables are treated as indepahdhey can be transformed by

i = ‘ (4.20)

ag;

wherez; is the mean of théth variable and; its standard deviation.

4.2.3 The evidence framework for committees of neural netwés

In the next sections the Bayesian evidence framework forahewetwork training and
model comparison will be discussed.

Calculating the evidence for a single neural network

Consider a certain neural netwaykvith a set of assumptiond,,, such as the number of
layers and the number of hidden units. The posterior prdibabf this model given the
training dataD, P(H,| D), can be determined using Bayes rule:

p(D‘Hq)P(Hq>
p(D)

where P(H,) is the prior probability of modeH, andp(D|H,) is called theevidence
for modelq. The evidence is a measure which intuitively and consistexmbines a
model’s ability to fit the data with its complexitjackay, 19923. It naturally embodies
Occam’s Razqgrwhich states to prefer a simpler model over a more complexgiven

P(H,|D) =

(4.21)
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it predicts the data sufficiently well and can be used to fanegle compare different
models after they are trained. The evidence equals the deatomof4.16if the prior
P(H,) is taken equal for all models and the conditional dependendbe model, are
made explicit. Therefore, the evidence can be found using

p(D|H,) = / / p(Dler, B, Hy)p(ew, | H,)dexdp (4.22)

If the same Gaussian approximation introduced in deridirigis assumed and the sym-
metries of neural networks with equal structures but diférnitial weights, correspond-
ing to for example exchanges of weights or sign-flip’ symmestrare accounted for, the
following logarithm of the evidence for a two-layer neuratwork model, emerges:

v
W, 1.2
Inp(D|H,) = Z (Thlaiwp +3 ln”y_ — af)\/[PE%’f) — pMP MNP

v=1

1 N up 1 2
—§ln|A|+§lnB +lnM!+21nM+§lnN_ (4.23)
where terms which are equal for all modéfg are omitted, as only the relative values
of the log evidence of the different models are of interesviide shown later. For the
exact derivation of this equation, the reader is referrd@hodberg 1993 Bishop 1995.

As the determinant of the Hessiahin equation (18) is a product of the eigenvalues
it is sensitive to errors in small values of the eigenvalddwgerefore, eigenvalues smaller
than a certain cutoff valueshould be excluded when determini| to avoid numerical
problems Bishop 1995.

Using the evidence as a stopping criterion

The evidence can be used as a stopping criterion or as a guigeuning, due to its
abilities to balance between model fit and model complexityofberg 1993. In this
study, the development of the evidence is monitored duraiging. Itis found by looking
at many examples that the evidence flattens around the pbien where is little to be
gained in the generalization performance.

Figure 4.2 shows an example of this behavior for a case of predictingetrémes
where a dataset of 59 days was randomly splitin two parts: \88%m@mssigned to a training
set and the remaining 20% was used as a set to test the geagoaliperformance. The
log evidence, calculated usirg23 of a network with 12 inputs and 15 hidden nodes
hardly increases after epoch 100. Around the same timertbed the network on the
test set does not decrease anymore, although the trainorgeres decrease if training is
continued. The training can therefore be stopped once tirease in the evidence falls
below a certain threshold valye
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Evidence versus test error
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Figure 4.2: Evidence and test error during training of a netkw with 12 inputs and 15
hidden units

Constructing a committee on the basis of the evidence

The evidence that was derived in sect@.3can also be used to select promising net-
works and to construct a committee. In a committee, the ptiedis of multiple models
are combined. It has been shown that committees can leadpi@wed generalization
(Thodberg 1993 Bishop 1999. In this study, neural networks with different structures
and different weight distributions are combined.

Consider a generalized committee given by a weighted caatibmof predictions of
its L members of the formRerrone 1994).

L
Yaun(®) =Y tigyq(T) (4.24)

The bestl. committee members may be selected based on their eviderffarebt types
of weightsy, are possible, but in this study a simple average over all ctte@members
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is consideredy, = %Vq (Thodberg 1993 Mackay, 1994:

L
yarn(@) = 73 yil@) (4.25)

Note that in ChapteB the evidence was used as a weighting factor of the committee
members. Initial experiments that were performed indi¢chge this did not result in
different outcomes. Therefore, a simple average was used he

4.2.4 Error bars on each committee member’s predictions

If it is assumed that the output distribution arises from §&@n noise on the output
variables, that the distributions on the weights are Gaunssind that the posterior distri-
bution of the weights is sufficiently narrow so that it can Ippr@ximated by its linear
expansion aroun@™”, then the output distribution of a single neural networkiveg by
N(yM?, 0,) wherey™? is the output of the network with the parameters s&'td’, and
the standard deviatian, can be found byBishop 1995:

1
ol =0k + oy = 5 +ETATE (4.26)

whereA is the Hessian ankl is defined by:
k= V9y|0MP (427)

This standard deviatiof.26 has two contributions: the first term reflects the spread (the
uncertainty) in the target data, whereas the second teractethe width of the posterior
distribution of (and thus the uncertainty in) the networkigi®s. The standard devia-
tion can be used to construct error bars, for example 95%qtieal intervals (twice the
standard deviation).

A third and additional source of output variance is in theeggrof the predictions
between members of a committee. If the committee membegsigtions are combined
using the simple average 4f25 it can be shown that the combined error bar for a pre-
diction becomesThodberg 1993:

O =0+ 01y + 05 (4.28)

wheres?, is the average over a#f,, 53, the average over ali?}, ands? is the committee
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variance (the disagreement among the networks) given by:

=13 (een(@) (@) (4.29)

q=1

In the next section all ingredients discussed so far are sanmed and presented in a
step-by-step description of the Bayesian committee agproa

4.2.5 Step-by-step procedure: committee of neural network

To summarize all key concepts, below a step-by-step praeddipresented for making
the committee predictions.

1. Construct many different neural networks with differentmbers of hidden units
and with different initial weight values.

For a model, draw initial weight values for the hyperpaggars from their priors.
Train the networks by the scaled conjugate gradient gkgor

Every step of the algorithm, re-estimate valuesd@and using4.17and4.18

a > 0D

Calculate the evidences for each network every few epd€hise increase in the
evidence relative to the previous epoch it was calculatésidalow a certain thresh-
old ¢, stop, otherwise go to step 3 and repeat the procedures.

6. After all networks are trained, choose a selection of gt networks on the basis
of their final evidences and construct a committee ugi2&

7. Combine the error bars usidg28and draw 95% prediction intervals by adding and
subtracting twice the standard deviation from the commipedictions.

4.3 Experiment

The theory of a committee of neural networks to predict trawvees is applied to an
8.5 km (5.3 mi) long route of the A12 motorway in the Nethedanfrom an on ramp
(Zoetermeer) to an off ramp (Moorburg) (see Figdt8). This is the same network on
which the regression models were tested in Cha@tén this route, 84 neural networks
with the number of hidden nodes varying from 3 to 14 and wiffedent initial weight
values were trained, after which the networks with the heglewidence were selected
and combined. To investigate the effects of early stoppiagussed in sectiof.2.3 the
networks were also trained using a fixed number of 400 eparsisg the same structure
and initial weight values as when trained with early stogpin
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Figure 4.3: The A12 motorway from Zoetermeer to The Hague

4.3.1 Data

At both the on ramp and the off ramp license plate cameraslaceg that record each
vehicles’ license plate. Individual travel times based atahes of license plates were
available for 95 days in the winter and spring of 2007 (as iafér3). The data were
filtered for outliers, which were a considerable number,ntyailue to the fact that only
four characters out of six are recorded due to privacy lagmts. After filtering the data
and inspecting them visually, the travel times of the vedsdéaving in the same 5-minute
time period were averaged. A total of 47 peak periods of aBdmthours each were
selected from the data set. These peak periods were randpiitlpver two subsets: 37
peak periods with which the networks were initially trairsedl 10 peak periods on which
the performance of the individual networks and of the cortesitvas validated.

As input to the neural networks, 12 double loop detectorenvspread over the
route, are available, reporting speeds and flows every minLite speed data are avail-
able in one minute arithmetic mean speeds of all vehiclesatearecorded (i.e. time
mean speeds). Due to the inherent bias in time mean speedsuskd as a proxy for
space mean speeds, the speeds were corrected to space ®e@ds$ sENg an estimate
for the variance of the speeds in the one minute intervalrdest in van Lint (2004);
van Hinsbergen et a{20083.

4.3.2 Parameters

Initial values for the hyperparameters (sectib.? were set tav, = 1Vv and = 1.
The cutoff value when calculating the determinant of thedites(sectior.2.3 was set
to e = 1071°. The early stopping criterion (section4.2.3 was set to 1%, where the
evidence was evaluated every 10 epochs.
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4.4 Results

Figure4.4shows the log evidence versus the test errors. A negative t@n be seen from
this graph: the lower the error, the higher the log evidetieefitted linear line has aR?

of 0.52. As theR? deviates from zero, the graph shows that the evidence isnirafiive
about the accuracy of the predictions on a new data set,ugjththe correlation does
show imperfections. Figuré.5shows the effect of varying the size of the committee on
the prediction error of the combined models. It shows thatdhbtimal size is 4 for this
case, and that after that point there is no gain in increabiegize of the committee.

Log Evidence versus Prediction Error
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Figure 4.4: The log evidence versus MAPE on the test set fdif&¥ent neural networks
shows a negative trend

The effect of the committee size on the prediction error
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Figure 4.5: The MAPE versus the committee size shows an aline of 4
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Table4.1 shows the Mean Absolute Percentage Error (MAPE) of the cdteenof
4 networks compared to the 4 individual networks’ preditsion the test set. It can be
seen that the committee leads to a small gain in accuracycraake of almost 0.3% in
the error, compared to selecting the single network withiglest evidence, is achieved
by retaining multiple networks and combining their preidios.

Table4.2 presents the effects of the early stopping criterion disedsn sectiod.2.3
on the training time for all 84 neural networks and the meanrodtee prediction error.
The number of epochs when stopping early varied between &@@@, with a mean of
134 epochs. It can be seen that the total training time of é@arks is much lower when
using the early stopping criterion, at the cost of only a $oedrease in performance.

Table 4.1: The performance of the individual networks comgao the committee pre-
diction

Predictor Log evidence MAPE
#1 827.3 8.11%
#2 781.0 8.51%
#3 771.3 8.39%
#4 771.0 8.89%
Committee - 7.82%

Table 4.2: The effect of early stopping on training and on phediction results for 84
networks

Stopping criterion Training Mean Optimal Committee
time (min) epochs committee  MAPE
size
< 1% evidence increase 475 134 4 7.82%
400 epochs 1415 400 21 7.72%

Figure4.6 shows a particular day where the error bars are plotted liegetith the
committee predictions. The error bars are larger in the péake day, where the pre-
dictions are indeed deviating more from the actual traveés. It was found that 97.4%
of the actual travel times fell within the calculated 95% coittee prediction intervals.
However, the prediction intervals are found to be too pessiocon occasions, where the
first factor of4.26 1/, appears to be dominant. This is due to the fact that the &mor
Ep isrelatively large for all networks, as they show oscitigtbehavior around the actual
travel times in some peak periods of the training days. Taishe explained by the fact
that relatively simple neural network architectures, ahace not capable of capturing all
traffic dynamics, are chosen in this study, as was alreaddrintthe introduction (section
4.1.3.
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Figure 4.6: Prediction of travel time with prediction int&ls. In congested situations,
the error bars are larger than in free flow situations

4.5 Discussion

As is shown in Figurel.4, the evidence is found to be informative on the generabrati
performance of the neural networks. It can therefore be tssdlect high performance
neural networks from all models that are trained, withowtiingito split the training set
in two and using a part to test the generalization performantie evidence framework
provides a convenient and simple way to select high perfoomaetworks, leaving all
training data to be used to train the networks. The coridietween the evidence and
the test error does show imperfections, as is reported lgr @tinthors as wellMackay,
1992h Thodberg 1993 Bishop 1995. Apart from the fact that the calculation of the
evidence involves several simplifications and assumptibfackay (1992 notes that
a poor correlation between evidence and generalizati@m sray be an indicator for the
limitations of the models. The neural networks used in thudygall have one hidden layer
and use only one time period of flows and speeds as input; er etbrds, the predictive
power of these networks is limited due to their relativeljgie input structures. It is
expected that if some of these limitations are overcomegfample by using recurrent
or state space networks (van Lint et al., 2005), the corogldietween the evidence and
the generalization error can become stronger. Furtherrtteegest error is measured on a
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finite data set and therefore is a noisy quantity, causinggbéne scatter in Figuré.4. It
is expected that the correlation becomes stronger wheretinerks are tested on a larger
data set.

The error of the committee is 0.3% lower than that of the imtlial neural network
with the highest evidence. This means that the effort iming many candidate networks
is not lost, but can be used to improve predictions. Besilisshieing positive for the
modeler, the gain in prediction accuracy will benefit thedraaer, as they will have more
accurate information available about the travel time thdl experience. This may be
beneficial to alleviate congestion and to decrease negeffeets on the environment and
the society.

The prediction interval provides a convenient way to infdha road user about the
uncertainty of the predictions. It is desirable to avoidimggyvthe road user a false sense
of certainty when in fact the travel time proves hard to beljmted (by the selected pre-
diction models). The users’ trust of the information is apaortant factor for the impact
of ATIS applications Kantowitz et al, 1997, as providing inaccurate traffic information
causes drivers to distrust the information and the possibieficial effects of ATIS to
decrease. The estimation of the error bars appeared to jEessimistic on occasions,
due to oscillating behavior of the models causing relagiVaige errors on training data.
When more powerful models are used, the data error #8pms expected to decrease,
and asg ~ ﬁ from equationd.26it follows that the prediction intervals will decrease
as a result.

4.6 Conclusion

In this study two successful approaches to traffic predictiave been fused: combined
prediction and neural networks. The Bayesian frameworknfural networks, which
is applied to traffic prediction for the first time, introdgca way of dealing with noisy
input data when training neural networks and naturally $e@dprediction intervals. A
new stopping criterion using the evidence factor calcdlée each neural network was
introduced in the contribution. Furthermore, the evidgmoed to be useful as a measure
to select high performance networks and to form a committé@eel time predictors.

The predictions of the committee with the selected higlitence networks proved to
be more accurate than those of the individual networks. Eages the modeler with a
procedure to construct a more accurate prediction with \rghg additional effort, but
more importantly, the end user with more accurate inforomatiTogether with the error
bars that follow from the Bayesian analysis, the end uses doeonly receive more accu-
rate traffic information, but also receives information ba teliability of the information
and of the traffic conditions. This leads to more useful infation for commercial as
well as dynamic traffic management applications.

Future research will focus on the application of the thearyother traffic variables,
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such as traffic flow, which can serve as an input to Dynamicfi€rassignment (DTA)
models. The DTA models can then be used to predict traffic ibond on entire road
networks or as a dynamic traffic management tool.

If the Bayesian learning of the network weights is appliech&works with more
powerful structures, such as recurrent networks, or witref@ample Bayesian pruning,
and if the analysis is applied to larger training and tes, seis expected that the evidence
becomes more informative and the error bars become morezgecu
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Chapter 5

Bayesian committee of state space
neural networks to predict travel times

This chapter is an edited version of van Hinsbergen, C. Rah, Lint, J. W. C., and
van Zuylen, H. J. (2009e). Bayesian training and committéetate space neural net-
works for online travel time predictionlransportation Research Record: Journal of the
Transportation Research Bogr@105:118-126. Copyright) 2009 National Academy
of Science, http://pubsindex.trb.org/view.aspx?id=88)

This chapter presents the Bayesian framework that enahiesied way of constructing
committees of an arbitrary number of models. The main coution is that this frame-
work is expanded for recurrent neural networks, which imeslderiving the gradient and
the Hessian of the network. State Space Neural Networks KBSispecial type of re-
current neural networks, are compared to Feed Forward NBigtsaorks (FFNN) and
the effect of the Bayesian framework on both types is ingasid on a freeway in the
Netherlands. From a cross-validation procedure it can beladed that for a short time
horizon, both Bayesian training and recurrence do not leachprovements, but that for
a longer horizon both techniques are beneficial. It is shawahthe use of a committee
leads to improved performance and the correlation betwleerevidence factor, which
follows from Bayesian model-fitting, with the generalizatiperformance is compared
versus the training error and the generalization perfooeatt is found that the evidence
has lower correlation, which is an indication that (1) theadat may be too small, (2) the
used models require improvement and (3) the approximafitrecevidence is imperfect.
Future research will need to resolve these issues. HowteeBayesian framework will
already be beneficial to more complex problems, and leadstito&ions of error bars on
the predictions, which may be useful for many applications.

71
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5.1 Introduction

In Chapterd neural networks were applied for the task of online travektprediction. A
Bayesian framework was used to train and combine neuralnksof different structures
and sizes with a large data set. It was shown that this framenat only leads to better
selection between models, but that #vdencemeasure that follows from the framework
can also be used for early stopping, that accurate errorcaare constructed using the
Bayesian analysis and that multiple models could be condbim@ so-calleccommittee
leading to lower errors.

The neural networks used in Chaptearefeed forward neural networkdHowever,
the traffic processes are highly dynamic. Therefore, it peeked that travel time predic-
tions models which incorporate a dynamic component coutidthéw improve the predic-
tion accuracy. Good candidate models are Elman Networksate-Space Neural Net-
works (SSNN) yan Lint et al, 2005, which have been shown to produce good results in
numerous studiesy(in et al, 1998 Dia, 2001 van Lint et al, 2002 Alecsandry 2003
Ishak et al. 2003 and has been applied to freeways as well as urban stnaaid nt,
2004 Liu et al,, 2005. Therefore, in this chapter the framework of Chaptés applied
to SSNN. To the authors best knowledge, the evidence theordyesian model fit-
ting and comparison, as described Mackay, 1992h Thodberg 1993 Mackay, 1995
Bishop 1995 has so far only been applied to Feed Forward Neural Netw@#kSIN).

The main contribution of this chapter is the application bé tpreviously used
Bayesian theory to recurrent neural networks, which haasorfly been applied to feed-
forward neural networks. The SSNNs are then compared to RN the effect of using
the Bayesian theory is investigated.

5.2 Methodology

In this section first a brief general description of the SSNN§iven. For a more elaborate
description of the mathematics, see ChagtemMNext, the Bayesian approach to fitting
the parameters of the SSNN is described. It is then showrthigyields an automatic
procedure for ranking and combining the SSNNs in a committee

5.2.1 State Space Neural Networks for travel time predictio

Figure5.1shows a State Space Neural Network (SSNN) topology. It stsef an input
layer, a hidden layer, a context layer and an output layee imput layer consists af
input elements, the hidden layer and context layev/diidden nodes and the output layer
of ¢ outputs. The inputs are grouped by road section; every hiddee represents one
road section of the route under consideration and can bescteuhto a few or all inputs
of the route under consideration. The context layer, whitdcgvely represents a short
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term memory of the internal states of the network, is fullpected to the hidden layer
to allow the model to learn the different (upstream and ddreasn) dynamics of traffic.

Output layer consists of one neuron,
which calculates the predicted travel time

on route R for vehicles departing >t+1,
based on the internal states. Context layer consists of M neurons. where M

denotes the number hidden layer neurons. Tt
stores the previous internal states of the SSNN.
y(t) It is fully connected to the hidden layer.

---------
''''''''
_________

""""""""
""""""

Hidden layer (or internal states) consists of M neurons,
where M denotes the number of sections defined on route R.

Inputs each hidden neuron receives inputs (fraffic flow and
average speeds) from detectors located on its respective
Xl(t) Xd(t) section. These include detectors on the main carriage way
| | and (if available) on on and off ramps

. trainable connections

—-.

ey fixed connections

i i i i i i
section 1 section m section M

Figure 5.1: Topology of a state space neural networks, olgtifromvan Lint et al.
(2009

Mathematical description of the SSNN
An outputy,, k = (1, ..., c) can be described by the following equations:
M+1

Yrt(x) = falak:) = fo Z 02t (5.1)
j=1

d+1 M
zir = filaj) = fi Z O + Y +05210-1 (5.2)
i—1 =1

wheref;; are the weights from the inputs to the hidden layer,are the weights from
the context layer to the hidden layer afid are the weights from the hidden layer to the
output layer. Note tha®(1) is equal to 4.1) but that 6.2) now contains an additional term
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compared t04.2). Also note that now the time step of the dats explicitly included
as an index to all variables, because values of baih well ast — 1 are used in the
computations. In the SSNN, the input layer may not be fullpreexted to the hidden
layer but the context layer is fully connected to the hiddsret. Also note that in the first
time stept = 1, 2,1 = 2,0 Will not exist, and that a constant valdefor z;, will be
chosen to initialize the context units with. The bias wesgfiitiases) are represented by
an extra node in the input layer and hidden layer which havenstant output of 1, so
g1 = 1 andzy; = 1. The functionsf;(a) and f»(a) are called activation functions
and apply transformations to the weighted sum of the outpthie@connected units. A
logistic sigmoid is used for the hidden layers and a lineéivaiion function is used for
the output units, just as id(3) and @.4):

fi(a) = tanh(a) (5.3)
fala) =a (5.4)
All weights (parameters) together form a weight ve@af sizell. The same definitions
for the input vectotr™, output vectory (") and target values™ as in Chapted is kept.
Note that in order for the context layer to remain consistiérg data set needs to consist

of a continuously chronological set of values, in which dhsetime step index is equal
to the data index.

In matrix notation, the SSNN can be written in a state spaoa, fthence the name
State Space Neural Netwonkan Lint et al, 2005:

Y = fo(Orzy)
z = f1(0z, + 012, 1) (5.5)

The vector9);, 8, and@,, contain the weights from input to hidden, context to hidded a
hidden to output layers respectively.

Neural network training (model fitting)

The same training algorithm as 4n2.1is used for the SSNN. A slightly different defini-
tion will be used for the data errdip:

C

=3 D (ke — onn)? (5.6)

t=1 k=1

l\')l»—
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The same regularizer is used:

v
EW = Z aUEW,U (57)
v=1
1 2
By, =5 ; w (5.8)

where the hyperparametets control the extent to which the regularizer influences the
solution. Adding also a hyperparametefor the data error, the regularized performance
(error) function then becomes

E(6) = BEp + Ey (5.9)

The minimum of this performance function is found using tbaled conjugate gradient
algorithm Williams, 1991, Johansson et all99% Mgller, 1993 Press et al2007).

5.2.2 Neural network training formulated as Bayesian infeence

Just as it.2.2the training can also be viewed from a Bayesian inferencepgetive. The
parameters in the SSNN are no longer conceived as singlesjddut as a distribution of
values representing various degrees of belief. The postistribution of the parameters
is given by

p(D]0)p(0)
0|D)=——-"= 5.10
p(6|D) (D) (5.10)
Again, Gaussian forms are chosen for the prior and for treditikod:
1 14
0) = — E 5.11
p( ) Zw(a) eXp( ;av W,U) ( )
1 5 N c
D|@) = exp | —= — ops)? 5.12
p(DIO) = 7 p< 2;;<yk,t m)) (5.12)
Substitutings.11and5.10into 5.10results in an expression for the posterior:
1
0|D) = —exp(—FE(0 5.13
p(6|D) Zs(a B) p(—£(0)) (5.13)
\%4

E(0) = BEp + > a,Bw, (5.14)

v=1
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The maximum of the posterior distributia"’” is found by minimizing the negative
logarithm of5.13 which is equivalent to minimizin.14 As in Chapted simple and
well-established back-propagation techniques are usatif Finally, the same approx-
imation for the hyperparameters asdiri7and4.18is used and the input and output data
is transformed using.2Q

5.2.3 Determination of the gradient

For training and for the Bayesian framework, the gradietteferror function towards the
weights needs to be known. In contrast to the feed-forwamdat@etworks, where well-
established algorithms exist for the exact calculationhef gradient Rumelhart et aJ.
1986 and HessianRishop 1992 through back-propagation there exist no exact defi-
nitions for recurrent neural networks for these first andbedcderivatives yet. In this
section, the gradient is determined for each weight in théeeSSpace Neural Network; in
the next section the same will be done for the Hessian.

To determine the derivative of the error function to the vistsgat a certain epoch,
consider the data errdy, and the regularizer errosy,, separately, so:

\%4
VE(6) =BVEp+V Y _ aEw, (5.15)
=1

The derivative of the second term is straightforward:

Vv Vv
VY aBEw, =Y a0, (5.16)
v=1 v=1

wherel, is a matrix with all elements zero except for some diagoraheintsl;, = 1
where: is the index in the weight vect@ of a weight belonging to a group

The gradient of £p is more complex. Because this term is a sum overNall
input patterns, the gradient of the error over one patterfwhich is equivalent to
the error at time step as noted before) will be considered first, which is defined as
Ep: = %Zk (Yt — ok,t)z, and later be summed over all patterNsto obtain the full
gradient. Define the part of the error from one outp@s Ep 1., = % (Yrt — om)z. For
an arbitrary weight, in any layer of the network, it holds that it only influencg' ;
through the outputg,, so the chain rule for partial derivatives can be applied:

3EDt Z 3EDkt3yk
Y

)
- Z g y’“ (5.17)
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whered,: = 0Epr+/0yr = (yr:r — 0xt). Substituting5.1, 5.2, 5.3 and5.4in 5.17,
the derivatives for the weights in each layer are found. Ttaeederivation is given in
AppendixA; here, only the resulting equations are given:

OFEp

00 OS2 (@) 20 (5.18)

J

0FE .

39;7t - ; Ok,t.f2 () it (5.19)

OE ,

60[;7t = Z 5k,tf2(ak,t)gka,t (5.20)
J k

whered,; is a weight in the output layef;; a weight in the hidden layer arfg, a weight
in the context layer);, ; = (yr: — ox+) and where the auxiliary variablés; ; andgy;, ¢
are defined by:

hijir = Z Orjr [1(ajr 1) wirjis (5.21)
=
wjrjit = DjriTip + Z O;1.f1(are—1)wjii—1 (5.22)
.
rjte = Y Oy f1(az )y (5.23)
>
Nijie = Bjrjzie—1 + Z O f1(aw e—1) 1011 (5.24)

l/

where A is the Kronecker delta symbol. Finally, the starting coiodi$ n,;;, =
A;;CV5, 5, L andw;jin = Ajjz1Y7, j, @ hold. What should be noted is that the recur-
sive variables (of time — 1) in an actual application can be kept in memory for the next
iteration, and can be overwritten at the end of each timetstep used later.

The total gradient of the error terfi, can now be obtained by concatenating all
values into a vector of siz8/ (the total number of weights in the network), summing
over allt and multiplying the resulting vector hy. The gradient term 05.16is then
added to obtain the entire gradient for a certain epoch.

5.2.4 Determination of the Hessian

To determine the step size in the conjugate gradient algoriand to calculate the
Bayesian evidence, the Hessidnis required for the State Space Neural Network. As
with the gradient, no procedure for finding the exdcexists yet; here it will be derived.
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Again, two error part€, and Eyy,, are considered separately:

§
A=V’E(0) =BV’Ep+ VY>> Ew, (5.25)

v=1

The second term again is straightforward:

Vv Vv
VY By, =Y ad, (5.26)
v=1 v=1

The first term, the error paf;, is first considered per pattern(time stept), £p, and
later summed over all to obtain the full value. If two arbitrary weightg andd, of any
two layers are considered, the previously derived firstvdéries (se®.2.3 can be used:

PEp; 0 (0Ep,
90,00, — 00, \ 00,

(5.27)

The appropriate expression fF ; /06, can then be substituted and the second deriva-
tives can be constructed from the result. As this procedureiy lengthy but only in-
volves straightforward algebra, the complex-looking outes are omitted but the results
again only contain recursive variables from one time stef Jaa- 1, which in an applica-
tion can be kept in memory and overwritten at the end of eacé $itep. The final Hessian
A is obtained by concatenating all the values into a matrixag 8" by 1, by summing
over allt, multiplying the obtained matrix by and by adding the part of equatié2G
The exact derivation is given in Appendix

However, in a final application, the above procedure becorees slow, especially
due to the presence of three recurrent variables which neétiiold loops for each input
vector. Therefore, an approximation of the Hessian is Usefspeed up calculations per
iteration. If the sum-of-squares error function is consede the elements of the Hessian
can be written in the formBishop 1999:

N c

J’Ep N & OYkt OYt Pk y

— ) ) _ ) .2

56,06, = 2= 2= o, a0, T 2= 2 (¥he — on) g a (5-28)
t=1 k=1 t=1 k=1

As the quantity(y,, — ox.) is a random variable with zero mean (if the biases in the
network are well-trained), uncorrelated with the valueref second derivative term, this
whole term will tend to average to zero in the summation oyelassibi and StorkL993.
This term can therefore be neglected, resulting in the #eetauter-product approxima-
tion:

62ED S 6yk t a?/k t
~ E ’ ’ (5.29)
£ 99, 00,
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As this term only involves first derivatives of the outputstb@ weights, which were

already derived when solving equatidriL7 for the different layers in the network, the
evaluation is much easier and faster than the exact progefixtensive tests on various
SSNN topologies with exact and approximate Hessians shaiitie use of the approxi-

mate Hessian leads to similar prediction accuracy, andllesgpproximate procedure is
much faster. The use of the outer product approximationdeefore preferred over the
exact Hessian procedure in this study.

5.3 Experiment

The same 8.5 km (5.3 mi) long route of the A12 motorway in théhdands, from an on
ramp (Zoetermeer) to an off ramp (Voorburg) was investigdbe this study (see Figure
5.2)), the same network that was used in Chaptand Chapted. Four different types
of neural networks were trained to predict travel times as thute: Bayesian SSNN,
Bayesian FFNN, non-Bayesian SSNN and non-Bayesian FFNNthieonon-Bayesian
procedure, constant hyperparameter values were choseedsatiorb.9) for the entire
training procedure. Extensive experiments were carriedoofind optimal values for the
fixed hyperparameters for these networks, resulting #a 1.5 anda,, = 1Vv. In total 70
FFENN and 70 SSNN, with different structures (varying frono4.0 hidden nodes) and in
the case of SSNN some networks having fully and others figitiannected input layers,
were trained on a small random training set. After testinghatworks on the rest of
the dataset, 5 FFNN and 5 SSNN were selected that showed ftow &hese promising
networks were then used for further comparison.

The SSNN needs to learn weights for the context layer frondtta. In that light,
each whole day only represents one data point to the memgay [@herefore, the training
set needs to be as large as possible in order to obtain gooltsré®m the SSNN. The
dataset was therefore randomly split in 33 days for traimng 6 days for performance
testing. To ensure that the results do not heavily dependh@mandom component in
dividing the dataset, a cross-validation approach was. udeel procedure of splitting the
dataset, training and testing was repeated 5 times to iga¢sthe generalization ability
of the different types of neural networks.

Then, the networks were ranked to form a committee. In cagbeoBayesian net-
works, the evidence was used as a ranking mechanism; foroth@ayesian networks,
the data error ED was used. The highest ranking networks there combined using
equationd.25to produce a committee prediction for different committees. Two pre-
diction horizons were used: a 5-minute-ahead (one stepadridminute-ahead (3 step)
prediction, to investigate the different types of netwarkdifferent applications.
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.‘k\'\r oorburg
Gas station
® Zoetermeer

Ty ‘{Interscction
\ On & Off ramp
\4—{

Figure 5.2: The A12 motorway from Zoetermeer to The Hague

5.3.1 Data

At both the on ramp and the off ramp license plate cameraslaceg that record each
vehicles license plate. Individual travel times based otches of license plates were
available for 95 days in the winter and spring of 2007, theesaata set that was also
used in ChapteB and Chapted. After filtering the data for outliers the travel times were
aggregated to 5-minute time periods. A total of 39 morningkpeeriods of 3.5 hours
each were selected from the data set, discarding those Haysither were absent of
congestion or contained failing loop detectors.

As input to the neural networks, 19 double loop detectorsaaeslable, reporting
arithmetic mean speeds (i.e. time mean speeds) and total @ogry minute. Due to the
inherent bias in time mean speeds when used as a proxy foe spaan speeds, these
were corrected to space mean speeds using an estimate f@rihiece of the speeds in
the one minute interval, as described v Lint, 2004 van Hinsbergen et al20083.
The input data were then aggregated to 5-minute periods.

To warrant a proper functioning of the context layer, thetegbhlayer in the SSNNs
was reset to its initial values, = 0, whenever a new day started in the data set, and it
was ensured that the last data points of a previous day ass#ik first points in a new
day were all in free flow conditions.

5.3.2 Stopping criterion

When training the SSNNSs, a stopping criterion needs to badtated. For this purpose,
the evidence can be used as was discussdd?i@ However, to be able to make a fair
comparison between the Bayesian and the non-Bayesian mestwastopping criterion
based on the training errdf, was used. After conducting extensive experiments, it was
found as a rule of thumb that if the decrease of the data eadrH)y, relative to the
starting value oft', with random initial weights in 10 epochs dropped below 0.24é,
network was close to its minimum test error (and has apprateiy the best possible
generalization performance).
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5.4 Results

Table5.1shows several results for the two prediction horizons. Tisedolumn shows the
average number of epochs. The total training time in thersgcolumn is the total time
required to train all networks for all cross validationscdin be seen that the SSNN need
considerably more training time due to the fact that theywiregmore epochs to obtain
a good fit and due to the more complex gradient and Hessian watigns. The next
two columns show the cross-correlation coefficients avetagyer all 5 cross-validations
between the test error (in RMSE) and the training effgr(also in RMSE) and the test
error and the Bayesian evidence. It can be seen that for #eewader investigation the
correlation between the training and test error is strotiggm that between the evidence
and the test error. The last two columns show the average Mesnage Percentage Error
and Root Mean Square Error of the 5 networks over all crosdatadns. It can be seen
that the prediction error for the 5-minute-ahead predicisovery similar for all types of
networks. On such a short term prediction, the recurreniraatf the SSNN does not add
to the prediction accuracy; even a slight decrease of acgwan be seen, which can be
explained by the fact that the SSNNs contain more paramatetsherefore are harder
to train. For the 15-minute-ahead prediction, the recuri@yrer does have effect on the
prediction accuracy, resulting in lower MAPE and lower RMSE

Table 5.1: Results with 5-minute ahead prediction and 15utel ahead prediction

Method Mean Training CorrelationCorrelationMean Mean
epochs time(s) RMSE/F, RMSE/Ev. MAPE RMSE
(S)
5 minute prediction horizon
FFNN 43 1409 0.85 - 12.4% 104.3
SSNN 85 11499 0.79 - 12.5% 108.4
Bayes FFNN 44 4665 0.8 -0.59 12.7% 106.0
Bayes SSNN 80 21265 0.61 -0.42 12.7% 110.1
15 minute prediction horizon
FFNN 47 2009 0.86 - 17.6% 141.6
SSNN 93 19598 0.46 - 16.7% 141.0
Bayes FFNN 50 6468 0.82 -0.50 17.6% 140.0
Bayes SSNN 86 29322 0.57 -0.53 16.4% 139.6

Table5.2 shows the effect of forming a committee on the predictiorueacy. Two
ranking mechanisms were used: the training error and trdepee. To investigate the
effectiveness of the evidence versus that of the trainingr,es committee size of 3 net-
works was chosen. It can be seen that all committee errorscaasderably lower than
the average errors of the individual predictions (compaitd Wable5.1). The ranking
based on the training error performs slightly better thaenvthe evidence is used as a
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ranking mechanism. This is expected, because the cooelasitween training error and
test error is higher than the evidence and test error.

Table 5.2: Committee errors

Method Committee ranked of'p Committee ranked on Evidence
MAPE RMSE (s) MAPE RMSE (s)
5 minute prediction horizon
FFNN 10.8% 92.8 - -
SSNN 10.6% 95.1 - -
Bayes FFNN 11.2% 95.0 11.3% 96.6
Bayes SSNN 11.1% 97.4 11.3% 98.6
15 minute prediction horizon
FFNN 16.2% 133.2 - -
SSNN 14.8% 129.4 - -
Bayes FFNN 16.1% 132.6 16.4% 135.0
Bayes SSNN 14.8% 126.8 14.7% 127.1

5.5 Discussion and conclusion

In this research, the Bayesian framework for neural nete/bds been adapted to recur-
rent neural networks, and State Space Neural Networks ircpkar. With this result,
recurrent neural networks and feed-forward neural nets/ogn now both be applied in
the Bayesian framework. The Bayesian evidence that refsaitsthis framework equips
the modeler with a natural way to select high-accuracy newtavorks from a large pool
of trained networks without the use of additional validatéata sets. Moreover, on each
prediction an error bar can be calculated which providesséimation of the prediction
uncertainty. With this approach, the networks can also mebioed into a committee
of prediction models, which results in lower test error ($able5.2) and more accurate
error bars Bishop 1995.

The adaptation scheme of the hyperparameters, resulongtfie Bayesian analysis,
did not prove to be beneficial for the prediction results om thstep-ahead prediction,
and did show a slight improvement in the 3-step-ahead prediover the use of a fixed
set of hyperparameters. This is an indication that the Bagesdaptation of the hyper-
parameters becomes more important when the system unéstigation becomes more
complex. It is expected that on larger datasets that comiaire diverse and complex
circumstances, the effect of more advanced smoothing (byramusly adapting the hy-
perparameters) will be positive in terms of prediction aacy.

It is clear from the results that there are still issues todsolved in the Bayesian
framework. Tables.1 shows that the cross-correlation between the model-evedand
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the test error is reasonable, but worse than that of theimigaerror. As noted byishop
(1999, the weighting coefficient, in equatiord.24theoretically represents the posterior
probability of the model;, which can be obtained through the evidence factors calcu-
lated for all models. Using this evidence-based weightiegmanism is only expected to
improve results if the evidence and test error (a proxy ferghaneralization error) show
high correlation. A second and related concern is that withweer correlation between
model evidence and test-error the optimal committee siegpected to increase, which
leads to large calculation times. Clearly, improving therelation between evidence and
test error would lead to both better performance as well adlemand hence more prac-
tical committees. Fortunately, there are various ways farave the correlation between
evidence and the generalization error, the most importingb

e Increasing the sizes of both the training and the test sétgvhas two possible
beneficial effects: it would increase the probability tHa¢ training and test set
have identical statistical properties and that the testresrindicative of the true
generalization error (the error on the entire populati@nly 6 days were used for
testing in the cross-validation approach.

e A moderate / weak correlation between evidence and genatialn error is an indi-
cation of inconsistencies in the models. The evidence ges/a quantitative tool to
assess possible improvements, such as weight pruning towathe models struc-
ture (Thodberg1993, different types of input data, other transfer functionswen
completely different mathematical structures. These anw@ments are expected to
not only improve the evidence/generalization error retethip but also to improve
overall prediction results.

¢ In this study the outer product approximation was used faining and for evi-
dence determination to speed up the calculations. The ubke ekact Hessian may
improve the estimation of the evidence.

Finally, error bars, which can prove to be very useful foimas applications, can only be
obtained through Bayesian analysis. Now that the Bayesséamdwork can be applied to
both FFNN and SSNN, future studies will focus on the accudde error bars and its
value for the individual road user.

Other directions for future research include the applatif Bayesian combined NNs
on more complex situations, such as travel time predictioslorter and longer freeway
sections and in urban networks. More technically, the eelee of the exact versus the
outer product approximation of the Hessian (needed to EtEmodel evidence) should
be more thoroughly investigated. Furthermore, it will betharhile to implement other
neural network structures or other types of prediction ned#o the Bayesian frame-
work, to increase the heterogeneity of the committee, wisokxpected to benefit the
generalization result¥é&n Hinsbergen et al20083.
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Chapter 6

Bayesian calibration of the Extended
Kalman Filter

This chapter is an edited version of van Hinsbergen, C. Bchyeiter, T., van Lint, J.
W. C., Hoogendoorn, S. P., and van Zuylen, H. J. (2010b). @érdistimation of kalman
filter parameters for traffic state estimation.Hroceedings of the Seventh Triennial Sym-
posium on Transportation Analysis (TRISTAN VTilomso, Norway.

Online traffic state estimation, which can be used to infavadrusers or as input to traffic
state prediction or route guidance, has been the subjetaidy $or many researchers in
recent years, for various applications in the fields of adedrtraffic information systems
or dynamic traffic management. Online state estimationireguwo components: traf-
fic data, and a traffic simulation model. When combining th®s® it is important to
consider that both the data collection and the model arerii@gieand thus contain noise.
The Extended Kalman Filtering (EKF) provides a convenientfalism to use such traf-
fic models to estimate (partially) unobserved state vaggmliom observed sensor data.
One of the difficulties in applying the EKF for this purposei®osing appropriate (and
possibly time varying) values for the noise parameters wgmvern how well the EKF /
traffic model is able to track state variables from obsenagd.dn this chapter a two-stage
Bayesian framework is proposed which enables simultansaussive estimation of both
state variables and the noise parameters. First, a pastiestabution of state variables
is calculated using the Extended Kalman Filter equatioeso8d, optimal values for the
measurement and process noise parameters are found usmagtits of the first step. In
a small-scale simulation study the approach is verified s&lpgeliminary results suggest
that this approach potentially leads to superior statenesitbn results compared to ad hoc
setting of the noise parameters.

85
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6.1 Introduction

Online traffic simulation models have been subject of stuyniany researchers in the
last years, for various applications in the field of advantaffic information systems
(ATIS) or dynamic traffic management (DTM)ébacquel1996 Ben-Akiva et al, 2001,
Mahmassani2001 Wang and PapageorgipoR005 Zuurbier et al. 2006 Barcel6 et al.
2007 van Hinsbergen et al2008f. One of these applications is online state estimation.
In those applications, the current state of traffic is est@aiasing two components: traffic
data from online data collection equipment at certain oimthe network, and a traffic
simulation model that estimates the state of traffic evepr@hn the network based on
these data and based on fundamental laws that describe &ffiw progresses over the
network. Online estimates of the traffic state can be usenftom road users about the
current state to allow them to anticipate, or can be usedmad o the prediction of the
future traffic state or for route guidance applications sasmZuurbier(2010.

To be able to accurately estimate the current state of trafficaffic model has to be
chosen. In this study, the first order model is chosen as a lmgdgaradigm, as it has
proven to perform well without introducing too many paraenst opposed to second- or
higher-order modeldjaganz91995h. The first order traffic flow model is based on the
kinematic wave theory dfighthill and Whitham(1955 andRichards(1956 and mainly
applies to modeling freeway networks, although extensiang been proposed to be able
to apply it to urban networks/&an Hinsbergen et al20095. One common numerical so-
lution of this model is to discretize the network into segisean cells and model the traffic
in discretized time steps. The state estimation problem toasists of finding the state,
which is uniquely described by the density in each cell, ahdane step; other variables
such as speed and flow in each cell can be obtained througtdarhental diagram. At
each time step, a numerical scheme is used to calculate ias thetween two cells, usu-
ally by applying the Godunov schemieepacquel1996, or as recently proposed, using
Lagrangian coordinatetéclerq et al.2007). As the Godunov scheme is one of the most
widely applied numerical solution, in this study it is algapéed. Application of the ideas
proposed in this contribution to other numerical schemegr&@ghtforward.

One of the challenges in estimating the traffic state in amerdetting is how to use
traffic data to correct the estimates made by the model. Operilant point to consider is
that both the data contains noise (the measurement equipsrietperfect) as well as the
model (the model describes the traffic process imperfecfiny solution for combining
the model with measurements has to be able to deal with tleése processes. Specifi-
cally, there must be a balance between the trust placed andldel and the trust placed
on the measurements for the estimates to be accurate andhsmbe Extended Kalman
Filter (EKF) framework as described byang and PapageorgidR005 is an appropriate
solution, as it is fast and results in smooth estimates o$thie, taking into account both
the error distribution of the measurements as well as thor distribution of the model.
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The EKF has been successfully applied to the first order draffodel Zuurbier et al,
2006 Tampere and Immer2007 van Hinsbergen et al2008).

However, one of the great difficulties of applying the EKF hsitt choices have to
be made for the noise parameters: the covariance of the negasnt noise and of the
process noise. The values of the noise parameters heaflilgnice the accuracy of the
estimates produced by the model with the EKF. Although inesaases, through speci-
fications of the manufacturer, the noise distribution prEtliby the measurement equip-
ment may be known, the size of the process noise is never khefanehand. Up to now,
assumptions are usually made based on trial and error orierpe.

In this study a consistent methodology is proposed to sesiteeof the covariances
of both noise models, using Bayesian inference theory. Tor& 8 based on a similarity
between training neural networks (specifically the worlBdhop (1995 and Mackay
(1995) and Kalman filtering; for more information on these simitias, seeHaykin
(200). To derive expressions for the noise parameters, first tilen&n Filter needs
to be assessed from a Bayesian point of view, where it is showa equal to a Bayesian
Maximum A Posteriori (MAP) approach. Next, a Bayesian caaian be made for the
values of the covariance matrices using the outcomes of #hE Bpproach. This is the
main contribution of this chapter. In a small-scale expenirt will then be shown that
these choices lead to good performance when compared tsiolgdixed values. Finally,
the discussion and conclusion are presented.

6.2 Methodology: Bayesian estimation of noise parame-
ters

Define the state-space equation that describes the sttt wgk| of size N x 1 as a
function of the previous state[k — 1] and a noise vectap|[k]:

zlk] = f(xz]k — 1)) + w[k] (6.1)

and the measurement (observation) equation that desthibeseasurement vectefk|
of sizeM x 1 as a function of the state[k] with measurement noiagk]

2[k] = h(z[k]) + v[k] (6.2)

In this contribution, the state vectaik] equals a vector of all densities in all cells of
the discretized model; the functighequals the first order model solved by the Godunov
scheme; the measurement vectgt| consists of speed and/or flow measurements that
can be translated to densities (and vice-versa) using thdafuental diagram, which is
represented by the functidn This is similar to the approach ilang and Papageorgipu
2005, except that here the parameters of the fundamental aiegre not included in the
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state but are taken a fixed value for the sake of simplicity.

The process noisev[k] and measurement noisgk] are assumed zero mean white
Gaussian noise with covariance mat€Xk| and R[k] respectively and are assumed to
be independent of each other. Furthermore, each elemehedtate or measurement
vector is assumed to be coming from a single distributioh wétriancel /«[k] and1/5[k]
respectively, such th&@[k| = 1/alk]Iy wherel y is the identity matrix of sizeéV x N,
andR[k| = 1/5[k|I; wherel y; is the identity matrix of sizé/ x M. These assumption
are plausible in cases where the state is described everywhéhe same quantity (for
example density in veh/km) as is the case in this contribyaad if all measurements are
of the same quantity (for example speed in km/h) and are pextlby the same type of
measurement equipment.

If a traffic simulation model is operated in an online moddada obtained sequen-
tially over time. Each timé& when new data arrives, the state vector can be updated given
the previous estimate of the statéat1, denoted by[k—1] , and the data obtained so far,
denoted byZ k| = (z[k], z[k —1], ..., z1). In further derivations, the matriX[%]| is split
into two parts:Z [k — 1] to denote all data used up to time step1, andz[k] to denote the
last vector of measurements. This is done to reflect thelfatttk — 1], z[k—2], .. ., 2[1]
have already been used to estimate the stadte-atand only the last data vectefk] will
be used to update the traffic state, as is reflecte®dy &nd 6.2).

This methodology section consists of two parts. In the ségamt, the main contribu-
tion of this chapter is presented: a methodology to chooksmsdor the noise parameters
of the EKF (i.e. the values of the covariance matrices of tltoegss and measurement
noise). To be able to do so, in the first part the Extended Kalmber (EKF) will be
shown to be equal to a Bayesian Maximum A Posteriori (MAP)Yaagh.

6.2.1 Bayesian derivation of the EKF

In (Ho and Lee 1964 Chen 2003 it is shown that the EKF can be given a Bayesian
interpretation. In this section the Bayesian interpretais briefly repeated, as it is a
necessary starting point for the derivation of the Bayesiaoice for the process and
noise covariance matrices which is the main goal of thisrdaution.

Consider the state estimate at tilpedenoted byz k], that is based on the first order
model and the data vectarfk| that was retrieved at time. In probabilistic terms, the
interest is in finding the probability(x[k]|z[k], Z[k — 1]). This probability is called the
posterior probability of the state vector, and describesptobability of the statec[k]
given all dataz[k], Z[k — 1] that were obtained so far. In order to obtain this posterior,
Bayes rule can be applied:

p(z[k]|2[k], Z[k —1])p(x[k]| Z[k - 1])
p(z[K]|Z[k —1])

p(x[k]|z[k], Z[k —1]) = (6.3)
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The right hand side of 63 consists of three terms: a likelihood function
p(z[k]|xz]k], Z[k—1]), a priorp(x|k]| Z[k—1]) and a normalization terp( z[k|| Z [k —1]).
Note that all terms have been conditioned on all dala— 1] that have already been used
in the sequential process prior to obtainia@g]. It will now be shown that by defining
equations for the prior and the likelihood an expressioritierposterior can be obtained.

Definition of the prior p(x[k]|Z[k — 1])

As a starting point, consider the fact that at titne- 1, the available knowledge about
x|k — 1] is the previous estimate of the staté: — 1] and an estimate of its covariance
matrix, denoted byP [ — 1]. For bothi[k — 1] and P[k — 1] equations will be determined
later (note that at the first time stdp= 0, initial estimatesi[0] and P[0] need to be
defined; in the experiment section, it will show that the Bage procedure for finding
amongst other:?[k] is insensitive to these initial values). Moving one timepsi@ward,
an estimate ok[k]| without any new data available yet equals

@~ [k] = f(z[k —1]) (6.4)
This is the prior estimate of the state. The priowdf] is defined to be a Gaussian, i.e.:

P

plaltzle ~ 1) = 5o (= (el = & )" (P71H) " (alt] -2 (1) ) ©5)

p

with Z, given byBishop(1995

Zp::/em)(—l(m%]—i%DT<P%D1@&@-—@%D)dm%]

= (2m)7 |P[K] (6.6)

where P [k] is an estimate of the prior covariance, which can be appratéchby lin-
earizingz k] around the mean of the priar [k] (Haykin, 2001), i.e.

wlk] ~ & [k + Ik — 1] (@k — 1] — &k — 1]) + wk] (6.7)

whereJ k] is the Jacobial¥ . f|zp- Substitution of §.7) into (6.5) leads to an estimate
for the prior covariance matrixghen 2003:

~

P k] = J[k—1)Pk—1Jk—-1" + Q[K] (6.8)
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Derivation of the likelihood p(z[k]|x[k], Z[k — 1))

The likelihood essentially determines the overall measerg noise model. As the mea-
surement noise[k| has already been assumed to be Gaussian with mean 0 ancgoceari
matrix R[k], the likelihood can be described by:

p(l)lelk], Z[k — 1)) = - exp <—1 (=[k] — h(z[k]))" (RIK]) " (2[K] — h([k]))

7 ’ (6.9)
with Z, given by
7= [exp (=3 (210 = Alalk))” (R (6lb] ~ h(e ) ) dal
= (2m) ® |R[K][? (6.10)
Derivation of the posterior p(z[k]|z[k], Z[k — 1])
Substituting 6.5) and 6.9) into (6.3), the posterior can now be written as
a2l Z[k - 1) = - exp (- E(@lk)) (6.11)
with E(z[k]) defined as
E(elk)) = B, (a[k]) + E(e[k) (6.12)
Ey(alk) = 5 (alk] — #l)T (P7[K) " (elk] - 2[4) (6.19)
E@lk]) = 5 (2K — h(z[k))” (RI) ™ (26 —h(alk)) (6.1
and with Z, given by
7. = / exp (— E(@[k])) da [k (6.15)

The maximum of this posterior can be found by maximizing tgatithm of the posterior,
i.e. a MAP approachGhen 2003:

z[k] = argmax In (p(x[k]|2[k], Z[k — 1]))
= arg Hl[}CI]l E(x[k]) (6.16)
Note that in 6.16), the normalizing constarit, has been omitted as it is independent
of z[k] and therefore does not influence the solution. In order totfiedminimum for
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E(x[k]), the condition
VawE(z[k]) =0 (6.17)

needs to be solved. Substitutirg}12 into (6.17), and approximating the measurement
equation by its linearization around the prior estimatek], i.e.

hxlk]) ~ 2~ [k] + H[k] (x[k] — @7 [k]) + v[k] (6.18)

whereH [k] is the Jacobial¥ i h|; - ;) andz™ [k] = k(2™ [k]), and solving foec[k] leads
to the expressiorGhen 2003:

Ek] = & [K] + K[K] (2[k] — 27[K]) (6.19)

~

K[k = P [K]H[KT <R[k] + H[k:]ff[k]H[k:]T) (6.20)

which is exactly the EKFKalman 196Q Haykin, 2001); z[k| equals the estimated mean

A

of the posterior, while the estimate of the covariance md#ik| of the posterior equals

~

Pl = (Iy — K[KH[K) P[] (6.21)

wherel y is the identity matrix of sizeV x N. This equation can be obtained by sub-
stitution of 6.19 in the posterior§.11) and rearranging the resulting terms such that the
posterior covariance matrix appeako(and Lee1964 Chen et al.2003.

Note that the posterior of timé is used to determine the prior at tinke+ 1, in
equations §.4) and 6.8). This indicates the recursive (state-space) nature oEKie
procedure. Moreover, only the previous state vector an@riance matrix need to be
retained in memory; all previous estimates can be discawdedh is a desirable property
for any computational implementation.

6.2.2 Bayesian derivation otx[k] and 5[k]

In common applications, suitable values for the noise &vlk] = 1/8[k]I, and
QI[k] = 1/alk]Iy are chosen based on experience or trial and error. Howesigg u
the same Bayesian framework of the previous section, prapees fora[k] and5[k] can
be found. For this, the posterior distribution®ffk| is used. The noise parameters:|
and[k| are sometimes called hyperparamet®éiackay 1995 Bishop 1995 or scales
(Thodberg 1993, as their distribution controls other distributions ($lkeaf the state).

The correct Bayesian treatment for parameters suoldsindf k], whose values are
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unknown, is to make their dependency explicit and integfaen out of any predictions

pla [k [K], Z[k - 1]) / / BIk| (K], Z[k — 1])dalkldB[K]
// Blk], z[k], Z[k — 1)
olk], BIK) (K], Z[k — 1))dalkldB[k (6.22)

If it is assumed that the posterior probability distributig(«[k], 3[k]|z[k], Z[k — 1]) is
sharply peaked around its most probable valgs and 5[k] , then .22 can also be
written as Mackay, 1995 Bishop 1995:

plalbl=[t), 21k - 1)) ~ B 1) 1, 2l — 1)
/ / <[], Z[k — 1))dalKId1H
a1, Blk] 21K, Zlk — 1) 6:23)

Equation 6.23 states that the valuegk] and 3[k] should be found that maximize the
posterior probability, and the remaining calculationswdtide performed withw[k] and
(k] set to these values.

In order to find these most probable valudgs] and 3[k], the Bayesian MAP can be
applied a second time at the level of the hyperparametershizy the posterior distribu-
tion of a[k] and5[k]| is evaluated. This posterior can be found using Bayes rdaag

p(z[kl|a[k], Bk], Z[k — 1])p(a[k], BIK]| Z[k — 1])
p(z[k]| Z[k - 1])
(6.24)

In (6.249), the likelihood term can be recognized as the denominadtoic]| Z [k — 1]) of
(6.3 conditioned om[k| and 8[k]. This is a very important feature, as it allows for the
derivation of the values fow[k] and S[k] using the current posterior distribution of the
state at timé:. In Bayesian inference, the denominator@2{) is called the evidence for

alk] ands[k].

plalk], BlK]|=[K], Z[k —1]) =

Considering the fact that there is very little knowledge wifable values forv[k] and
Bk], aflat prior is chosen fak[k] andg[k] . Therefore only the evidence is used to assign
a preference to alternative values td¥:| and3[k] (Bishop 1995 Mackay, 1995.
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Derivation of the evidence fora[k] and 5[]
Using Bayesian inference, in this section it will be showattthe value for3[k| can be
updated at each stépby the expression
M
~ T ~
(1] - h(@lk))) " (=[K] - h(x[k])) + Tr(AlK]~ H[K)T HIK)

Blk] = (6.25)

The value fora[k] can be chosen fixed, a6.R5 expressegik] as a function ofx[k]
through the Hessiad (see 6.29); B[k] will therefore be optimal for a given value of
alk]. Becausex[k| and S[k] depend on each other, one of the two can be fixed while
the other can be estimated us®@5 which thus provides a solution for the problem of
finding appropriate values fa@@[k] and R[].

Equation 6.25 can be interpreted as follows. The tefeik| — h(z[k])) represents
a value for the difference between the measurement and tpeintaof the posterior
estimate of the state to the measurement. As the estiiatés optimal (in the sense of
MAP) in case the model is linear (a Kalman Filter) and is thst lestimate that be made
in case the model is linearized (an Extended Kalman Filtei3,difference can be seen
as an estimate of the noise in the data. A larger valuéfgr — h(x[k])) leads to smaller
B[k] and thus larger values of the elementsRik] = 1/3[k]I,,. A larger R[k] in turn
causes the Kalman gain to become smaller, leading to sntaltezctions. This is a very
intuitive result: the higher the estimated noise on the,datéower the trust in the data
should be and the more trust should be placed on the modeljiemgersa.

It will now be shown how the key resulb (25 was obtained. First, consider the fact
that the evidence fat|k] and5[k| equals the denominator d8.@), and that the evidence
can thus be written as

p(z[K]|Z[k — 1], k], BIK]) Z/p(Z[/wa[k], Z[k — 1], olk], BIK])

x p(x[K]| Z[k — 1], a[k], B[k])dx[K]
(6.26)

where the knowledge that the likelihogdz k]| Z[k — 1], x[k]) is independent of[k]
and that the priop(x[k]| Z[k — 1]) is independent of [£] is used. Using&.6), (6.10 and
(6.19 thisis equal to

—_— ZS
- 7,7

p(z[K]|Z[k — 1], afk], 5[k]) (6.27)

Expressions fotZ, and Z, were already found in6(6) and 6.10); the integralZ, still
needs to be evaluated. As this cannot easily be evaluatéytiaally, an approximation
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of the posterior distribution is made that will allow for dgiion. Considering the Taylor
expansion off(x;) around its minimum value|k] where terms up to second order are

retained .
E(z[k]) = E(z) + ; (z[k] — 2[k])" Alk] (k] — 2[k)) (6.28)

with A[k] the Hessian

A[k] = VV o B (2 [K]) |ap
= VVa Ep(z[k]) |2 + VVam Ei(®[k])]am

P

= (PH) " + SRk H (6.29)

Substituting 6.28 into (6.15 leads to a Gaussian form, for which the integral can easily
be evaluatedRishop 1995

Z~ [ (—E(fc[k]) ~ 1 @l — 2lk))” ALK (k] - :&[kb) (]
— exp (—E(@[K])) (27)* | A[K]|

N

(6.30)

Now that expressions have been foundAQr Z; and Z,, an expression for the evidence
is found

NI

1 N
gt 1P
) A (6.31)
The evidence can be used to determine the most probablesvdldeand5[k| by applying
the MAP principle, i.e. by solving the conditioNg,; In p(z[k], Z[k—1], a[k], B[k]) = 0
and Vg, Inp(z[k], Z[k — 1], a[k], B[k]) = 0 respectively. To do so, first the log of the
evidence is evaluated:

N

p(z[k]| Z[k — 1], a[k], Bk]) = exp (—~E(&[k])) (27) |A[K]|~ Iy

Inp(2[H]|Z[k—1], oK. Blk]) = ~E(@[K)~> In(2m)— In | A+ 5 In 5[4~ In [P K]
(6.32)
The derivatives of§.32 for all parts dependent g#[k| to 5[k| are
Vi E(@[k]) = % (z[k] — h(&[k]))" (z[K] — h(@[K])) (6.33)
Vi In |AK]| = Tr (A[k]" 'V Alk]) = Tr (Alk]""H[k]" H[k]) (6.34)
vmk]% In B[k] = M (6.35)
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whereTr equals the Trace operator. Putting everything togethennelds

Vi Inp(z[k]| Z[k — 1], a[k], B[K]) :% (z[k] = h(@[k])" (2[k] — h(@[k]))
_ %Tr (A[K]™ H [k H[K]) + #[k] (6.36)

Setting 6.36) to zero and solving fof k] results in

Bk = Y
(2lk] — h(@lk)T (=[k] — h(@[k))) + Tr(A[k] HKTHIK)

(6.37)

which is the result of§.25 that was presented earlier.

Finally, the choice of a value fon([k] needs to be considered. The derivative
Vo Inp(z[k]|Z[k — 1], afk], B[k]) cannot be solved for[k] as was done fog[k] be-
cause of the difference in nature in the appearance of therpgpameters in the terms
Lin|P[k]| and X In B[k] respectively. However, the value afk] depends orf[k] and
vice versa. As a heuristic, a fixed value fol] is chosen andb[k] is varied. AsB[k] is

expressed as a function ofk| (through the term of the Hessiat[k]), over time,/3[k]
will thus become optimal given the chosen fixed valuecf@].

6.3 Experiment

To illustrate the impact of the Bayesian choice for the EKFapeeters, a small-scale
case study is performed. The traffic network as shown in Ei§ut is simulated with
JDSMARTwith a time step of two seconds with link capacities as shawRigure6.1a.
A total of 600 time steps are simulated, with four differeatthnd levels at the two origins
O, andO, and four different turn fractions at the node Each time step the speeds in
all cells are stored as the ground truth. Then, the netwodinmilated again with the
same demands and turn fraction, but with random changesedppl the capacities of
the links as shown in Figur6.1b; this represents the presence of process noise. The
speeds at four different cells, indicated by the arrows guFa 6.1a, are then used as
measurements to correct the state in the altered netwonia Mean Gaussian noise is
added to these measurements, representing measuremast mbe states in the noisy
network are then corrected using the EKF every five time st&€pe resulting speeds in
all cells are compared to the cell speeds in the original odtw

For all simulationsl /a[k] was set todveh? /km?Vk, while the initial valuel/3[0]
was varied fron).01 to 20km?/u?, both with the Bayesian adaptation scheme as well as
without. Figure6.2 shows the resulting Mean Absolute Percentage Error (MARE) t
was calculated for all cell speeds for all time steps. It casden from Figuré.2that for
constantl /5[k], the error shows a clear minimum. Left of the minimum the eaéthe
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Figure 6.1: The ground truth network (a) and the network vpttocess noise’ (b). Num-
bers indicate the link capacities in veh/hr and arrows irdeemeasurement locations

measurements is hardly filtered, while right of it the meamsents are hardly used at all.
In the case of the Bayesian choice 1013 [k] very little variation can be seen for different
initial valuesl /5[0]. Moreover, in this case the error for the Bayesian paraméterearly
equal to the minimal possible error for constant parameters
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Figure 6.2: The errors for both constaftk| and continuously adapted Bayesidfi]

6.4 Discussion and conclusions

This contribution has proposed a methodology for settinglaesfor the noise parameters
(measurement and process covariances) in the Extendeda&itter using a two-stage
Bayesian inference framework. First, the posterior distion of the state is found, of
which the maximum is found using a Maximum A Posteriori (MAEpproach. Second,
the posterior distributions of the process covarianceim@)ik| and of the measurement
covarianceR|[k] are found from the posterior of the state. The maximum of tistgrior

for R[k] is found using MAP as well. As a heurist@|[%] is held constant, leading to
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optimal choices foR[k| for a given fixed value o [k]. At the next time step + 1, the
calculations are made with the new most probable estimatbédostate and foR[%].

It is shown that the Bayesian choice for the measurementieovz leads to robust-
ness with respect to a high or low initial choice of the precasd measurement noise
covariance-ratio. Using the two-stage Bayesian infergmoeess, the modeler is given
the tools for more robust Kalman filtering, also in cases whey ground truth is avail-
able. Especially in those cases, it is expected to be hardaose appropriate values for
the covariances as trial and error is not a feasible optien.th

It is found that the Bayesian framework is sensitive to iaseasurements, as the
measurement noise covariance is in those cases overesdinfgai overestimation of the
measurement noise covariance leads to too small correatiiine state. Such bias will
especially occur in congested conditions, where the naesglulition on the data often is
not zero-mean Gaussian as negative flows or speeds do net dbcuissue will need to
be further investigated.

Future work will need to resolve several other issues. Biratl, adapting the process
covariance as well may lead to better results. That will astdnave the benefit that the
results will become less sensitive to the initial valueGdifs]. For this, approximations
will be needed for the derivative of the log evidencets]|, as an analytical solution for
alk] that sets this derivative to zero cannot be found. Which@ppration is best suited
will be the topic of future studies.

Furthermore, it was assumed that each element of the stateasurement vector is
drawn from a single distribution with a single varianigey|k] or 1/3[k]. However, if for
example measurements are obtained from different typegupment, or from equip-
ment that measures different quantities (for example caccies from one detector and
speeds from another), than this assumption is not valichdhdase, the Bayesian frame-
work will need to be adapted to be able to incorporate diffevalues on the diagonal of
RJ[k]. The foundations for this have already been laiBishop(19995.

In the next chapter, Chapt@r the Extended Kalman Filter is used again in combina-
tion with the LWR model. In that chapter, one major probleiat thhccurs when applying
an EKF in real-time is solved: the EKF generally becomes low svhen applied to large
networks with many measurements.
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Chapter 7

The Localized Extended Kalman Filter
for fast traffic state estimation

This chapter is an edited version of van Hinsbergen, C. Bchreiter, T., Zuurbier, F. S.,
van Lint, J. W. C., and van Zuylen, H. J. (2010d). The localiegtended kalman filter for
scalable, real-time traffic state estimation. Submittegtdolication in IEEE Transactions
on Intelligent Transportation Systems.

Current or historic traffic states are essential input to aktbed Traveler Information,
Dynamic Traffic Management and Model Predictive Controtays. As traffic states are
usually not measured perfectly and everywhere, they nebd &stimated from local and
noisy sensor data. One of the most widely applied estimaietnod is the LWR model
with an Extended Kalman Filter (EKF). A large disadvantaf¢he EKF is that it is
too slow to perform in real-time on large networks. To oveneahis problem the novel
Localized EKF (L-EKF) is proposed in this chapter. The logfcthe traffic network
is used to correct only the state in the vicinity of a detecfbine L-EKF does not use
all information available to correct the state of the nekydhe resulting accuracy is
however equal in case the radius of the local filters is takdficgently large. In two
experiments it is shown that the L-EKF is much faster thantthditional Global EKF
(G-EKF), that it scales much better with the network size tad it leads to estimates
with the same accuracy as the G-EKF, even if the spacing leetwetectors is up to 5
kilometers. Opposed to the G-EKF, the L-EKF is hence a highbjable solution to the
state estimation problem.

99
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7.1 Introduction

Advanced Traveler Information Systems (ATIS) and Dynamiaffic Management
(DTM) usually require some estimate of the current traffatestas an input. The esti-
mated state can also be used in a Model Predictive ControC)NBproachKegyi et al,
2005 to optimize traffic conditions. In general, ATIS/IDTM/MP@glications need the
traffic states in real-time.

Usually, the traffic state cannot be directly measured {avieere), but needs to be es-
timated (interpolated) from incomplete, noisy and locafftc data. Commonly, volumes
or average vehicle speeds are measured at certain locatighs traffic network, for
example by double induction loop detectors or by floatingdzda. To estimate the total
traffic state from these point measurements interpolattnwéen the sensors is necessary.

In current state of practice often very simple methods ageel s perform such a task,
such as the Piece-wise Constant Speed-Based (PCSB) maeithtitkaPiece-wise Linear
Speed Based (PLSB) methoga( Lint and van der Zijpp2003. These simple methods
assume that the behavior of traffic is always equal in alfirabnditions. In reality, the
direction in which information travels through the netwaidpends on traffic conditions:
in free flow conditions information travels downstream, utongested conditions in-
formation travels upstream. Therefore, these simple nastlexhibit considerable bias
(van Hinsbergen et al2008f). One reason for their continuous use in practice is that the
alternatives are up to now too slow to perform in real-time.

One way to take the information direction into account isngsa spatio-temporal
interpolation method. The Adaptive Smoothing Methdde{ber and Helbing2002 is
such a method that is able to interpolate traffic conditiomsectly between detectors
taking the information direction into account, but it cahbe used for prediction which
makes it less appropriate for ATIS/IDTM/MPC. A second applothat does allow for
prediction is to use a traffic flow model, such as the LWR motdiglhthill and Whitham
1955 Richards 1956 or second order or higher order traffic flow moddtayne 1971
Hoogendoorn and Bovy007). The traffic flow models with increasing order are of in-
creasing complexity, which comes at the cost of more parammethich makes calibration
more difficult, and at the cost of larger computation timebe Thoice for a model thus
should be based on the balance between model complexity addlrabilities. In this
chapter it is chosen to use the LWR model, but the presenestids are easily portable
to higher order models.

What remains when a model is chosen is a method to combinkttaffec data with
the chosen model. One popular method that does so is thededdtalman Filter (EKF).
This not only provides a way to use traffic data to correct tloeleh state, but also allows
for filtering of measurement noise. The latter is especiatigortant when dealing with
induction loop data because these detectors are infamoubkdw noisy performance.
One disadvantage of the EKF is that it contains expensivexrgierations, which cause
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the computation times to become very high in large scaleiegmns. Therefore, until
now it has been very hard to apply the LWR model with the EKFeal4time on large
networks.

Another disadvantage of the EKF is that it is at least thémaly sensitive to the non-
linearity of traffic. For the EKF a Taylor expansion is usedhieh is inaccurate around
capacity: the derivative of the fundamental diagram thaised in the EKF shows a
sudden sign change around this point, which potentiallseaulnigher order errors (due
to so-called flip-flop-behaviour). Alternatives exist, Buas the Unscented Kalman Filter
(UKF), which can overcome this problem by not using a Taylgrassion but by comput-
ing the covariance numerically. Howeveétegyi et al.(2006 finds no considerable dif-
ference in accuracy in a freeway traffic state estimatiomgte, while the computation
times of UKF is reported to be considerably higher in one sii81-Pierre and Gingras
2004. Because the goal of this chapter is to enable real-timeifilj for online appli-
cations, the EKF is applied here. Over the last decades tHe ltg§ been applied to
traffic modeling with satisfying result$S(n et al. 2004 Wang and Papageorgip2005
Tampere and Immer2007 Wang et al. 2007 van Hinsbergen et al2008f). The same
ideas are believed to be portable to the UKF, just as they@talge to other models or
other numerical solutions of the LWR model.

To create an EKF which is still fast enough for large scalé-tieze applications, in
this chapter a new EKF implementation is proposed called dwalized EKF (L-EKF).
In the methodology section it is shown that the L-EKF is ableapidly combine traffic
data with model information. In an experiment it is then shahat this method is not
only much faster than the traditional Global EKF, but tha #itcuracy of the estimates
is equal given an optimal radius of the L-EKF, and that thedFEscales much better in
network size. Finally, a discussion and a conclusion arseguried.

7.2 Methodology

In this section first a brief description of the first order rabaith the Godunov scheme
is presented, along with a description of the (traditiofat)ended Kalman Filter. Then,
the newly proposed L-EKF is described.

7.2.1 The LWR model solved by the Godunov scheme

The basis of any macroscopic model is given by two relatidinst, a partial-derivative-
equation (PDE) called the conservation equation thatstatd no traffic can be created
without external influenced.{ghthill and Whitham 1955 Richards 1956:

or dq

or g _ 71
ot T or (7.1)
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Figure 7.1: Example of the Smulders fundamental diagram

wherer is the density: the time 4 the flow andr the road space, and second a relationship
between density and space-mean-speed, which is given by
v=1 (7.2)

T

Given this system of two independent equations with thréemawn variables a third
relationship is needed. This third relation is the sourcthefdifferences in macroscopic
traffic flow models. So-called second order models specifscasd PDE that determines
the dynamics of speed such as the Payne mdeégyrie 1971), or improved versions
thereof remedying problems related to isotropy and urseakpeeds such as the models

proposed byRascle(2002 andZhang(2002. In even higher order models a third PDE
is added that governs the variation of spedislijing 1996.

The LWR model, as almost simultaneously proposed Lighthill and Whitham
(1955 and Richards(1956 is called a first-order model because it only contains one
PDE: that of the conservation equatiohl). The simplicity of the LWR model lies in
the fact that it introduces a third relation in the form of ajuiibrium relationg(r) that
specifies for each density an average flow. This relatiorishipually known as the Fun-
damental Diagram. In this chapter the Smulders fundamdragtam is usedImulders
1990.

Figure7.1shows the shape of this fundamental diagram, which contaurparam-
eters that are specific to a link the free flow speedjf ", the critical speed$™, the
critical densityfrj”t and the jam densityj’f“m. These parameters also define the capacity
of the link, C; = vjc.”trj’““, and the jam wave speed which equals the slope of the
congested branch of thgr)-plot. The flowg; of a link j as a function of the densityis
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given by:
free crit
Vs — U . 4
r <Ufree — Tz'j [k] S — ) if r S T'JC-Mt

Cj 4+ Xj(r —r™) otherwise

(7.3)

Additional to modeling traffic on a link, a model needs to besd#n to propagate traffic
over a node. In this chapter Daganzo’s merge and divergemodel is used. Details of
this node model are omitted here but can be foundiaganzo19953.

Given this fundamental diagram there are three indeperadprations with three un-
known variables and the model can be solved. In order to @pplKF a numerical solu-
tion is needed that allows formulating the LWR model in teoha state-space equation.
Several stable numerical solutions exist to the LWR modehsas the Godunov scheme
(Lebacquel996 or methods based on the Lagrangian formulatleetierq et al.2007).
Because it is the most widely applied solution, the Godurebemie is used as a numer-
ical solution in this chapter. The methods developed in¢hegpter are easily applied to
the alternatives.

The numerical solution is found using a finite volume methdeere each linkj in
the network is discretized into cells with homogeneous @@ of lengthAl; and time
is discretized into intervals with length¢ during which the conditions are considered
stationary. The length\/; of cells on a linkj are chosen based on the Courant-Friedrichs-
Lewy condition so that the numerical solution is stalfegrant et a).1928:

Al = vl At (7.4)
wherev;" is the free flow speed of link. Because the free speed on different links
may vary (due to for example different speed limits), thd ezigth is allowed to vary

between links, but all cells on one link are of equal lengtived this discretization, the
conservation equation can be rewritten in state-space form

rijlk + 1] = ri;[k] + % (Fij"[k:] - E‘;“t[k]) (7.5)
J

where F7'[k] [veh/h] denotes the flux into cellof link j at timek and F}3*[k] that out
of the cell. For adjacent cells the flux-out of the upstreathiseequal to the flux-in of
the downstream cell. To calculate these fluxes the well wtded, simple and stable Go-
dunov scheme is usetdd€bacquel1996. Note that there exist other solution methods of
the first order model, for example those based on Lagrangiardmatesl(eclerq et al.
2007, and that here an explicit time stepping scheme is usedhbtilso be an implicit
scheme could be appliedgn Wageningen-Kessels et,&009. Application of the theo-
ries presented in this chapter to other numerical soluisti®ught to be straightforward,
but application to an implicit time stepping scheme is not.
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The fluxesF;;[k] (in veh/hr) between cell borders are determined by compatie
available supplyS;;[%] (the maximum flow that can still enter a certain cglland the
prevailing demandD,_y;[k| (the maximum flow that wants the exit the upstream cell
i — 1) (Lebacquel996. These demand and supply functions read:

free o ’Uc-”t

Tij [k?] (Ujfree — T [kf]#) if Tij [k’] S r]c_rit

o otherwise
C; if 7i[k] < rs

Silkl =< ] it ril ]__ E (7.7)
Cj+ \j(rij[k] —r§™) otherwise

7.2.2 Extended Kalman Filter

The Kalman Filter is a recursive filter that estimates théestd a linear model based
on the last estimate of the state and a number of normallyilmis¢d observations
(Kalman 1960 Maybeck 1979. When made applicable to non-linear models, an Ex-
tended Kalman Filter (EKF) can be used where a linearizatfothe non-linear model
around its current state is usethgwinsky 1970.

The traffic state in the network at timteis uniquely described by the vectey of all
densities;;[k| of all cell 7 on all linksj. The EKF is based on a non-linear state space
equation, which in this case expresses the density vectarfaaction of the density
vector in the previous time step plus a zero-mean Gaussiae mectorw|k] which has
a covariance matri [k|:

(k] = f(r[k —1]) + wlk] (7.8)

The function f(r[k — 1]) here represents the state space equafidb) for each cell.
The EKF furthermore uses a measurement equation desctimengeasurement vector
z[k] as a function of-[k] with zero-mean Gaussian measurement noejgewhich has a
covariance matrixR|[k|:

z[k] = h(rlk]) + v[k] (7.9)

The functionh(r[k]) expresses a function that maps the density to a variableein th
same dimension as the measuremetits;denotes the vector of all measurements. In this
chapter speeds are used as measurements; the fundamagtahdiy.3) together with
(7.2 is used to map the density in a certain cell to a speed. Natdlie EKF is derived
from Gaussian assumptions on both the distributions of éitee @hd the model. Generally,
Gaussian distributions are not found in practice in tratlowever, the EKF can still be
applied when distributions are non-Gaussian, in which dasecomes a meta-heuristic
approach. The value of the EKF has been shown in the many vdsae it has been
applied successfully for traffic state estimati®uf et al.2004 Wang and Papageorgipu
2005 Tampere and Immer2007 Wang et al. 2007 van Hinsbergen et al20084).
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The EKF algorithm consists of two steps: a prediction andraection step. In the
prediction step, the model under consideration is usedddigira new state vector along
with an error variance-covariance matrix. The predicti@pss defined by:

r[k] = f(rlk —1]) (7.10)
P k] = J[K|P[k — 1]J[k]" + QK] (7.11)

whereQ[k] is the error covariance matrix of the model and the maRix k| equals an
a priori estimate of the error variance-covariance matfihe state vector that describes
the noise vectow|k]. Finally, the matrixJ k] is used for the linearization of the model;
it equals the derivative of the model to the state:

JE] = Vo f(r[F]) |+ o1 (7.12)

wherer*[k — 1] is the a posteriori state vector of the previous time steghvhiill be
introduced later. Note that there only exist non-zero @derres between adjacent cells,
either on a link or when a node connects two cells.

In the second step, the correction step, measurementseateaisake corrections to
the state. For the EKF, the measurements also need to beizeet@around the current
state. For this, definél [k] to be the derivative of the measurement mapping function to
the state:

Hk| = Vyph(r[k]) |- n (7.13)

The second step of the EKF is now given by

_ P~ [k H[k]"
Kkl = HI[k|P~[k|H[K|T + R[K] (7.14)
r*[k] = v~ [k] + K[k] (z[k] — h(r~[k])) (7.15)
P[k] = (I — K[K|H[K)) P~ [k] (7.16)

wherel is an identity matrix andK k] is called the Kalman gain which indicates how
much the state should be corrected based on the relatives/salthe uncertainties of the a
priori state estimate (througB ™ [k]) and of the measurements (throuBi¥:]). The result
of the EKF is an a posteriori state vector[k], which is a balanced estimate of the traffic
state given both the estimate of the model and the measutgnaei an a posteriori esti-
mate of the error covariance mattX[k]. A more detailed description of the EKF and its
application to traffic are found inNfang and PapageorgipR005 Tampere and Immers
2007).

The EKF contains two parameters: the values of the measutezoeariance matrix
RJ[k] as well as the process covariance mafdix|. These parameters may be state depen-
dent, but the way to determine these is a discussion too lamihis chapter. In Chapter
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6 a method is proposed to adapt the EKF parameters dynamic¢#dise it is chosen to
keep@ and R constant to keep the discussion focused. Also, as is comibodin@ and
R are taken to be diagonal matrices, assuming independencie thatP[%| will not
be a diagonal matrix but will have non-zero elements off tlagahnal as well, indicating
covariance between the errors in different cells.

7.2.3 Global Extended Kalman Filter

Usually, the EKF is applied at once to the entire network,led the state vectar|k]|
represents all cells in the entire network aR@k] contains estimates of the covariance
of the errors between all cell&psh and Knappl978 Wang and PapageorgipA005
Zuurbier et al. 200§. Each time when measurements become available somewhere i
the network the densities in all cells are corrected at ofbés process, which is termed
Global EKF (G-EKF) here, uses the available data to its maxrinpotential, as all den-
sities in all cells are corrected using the error covaridretgveen all measured cells and
all non-measured cells. However, this procedure has onerroancern: the calculation
times can become very high.

The EKF contains two expensive operations: the inverseatiparin equationq.14)
that scales in the number of measurements and the matrixpfadtions of (7.16 that
scales in the number of cells in the network. Theoreticdllyth of these operations
scale at best in the order 6f(1/28°7) with the Strassen algorithnS{rassen1969. For
larger networks (containing more than say a few hundred ared<sells) the complexity
of these operations will make real-time calculations ingilale on a normal computer,
rendering the G-EKF infeasible for large-scale online mapions.

7.2.4 Localized Extended Kalman Filter

In this section, a new EKF implementation is proposed thatush faster on larger net-
works because it simplifies the inverse operation. Firs§, itnportant to notice that the
error covariance matri®[k| generally contains many values that are close to zero.

Progression of covariance over the network

Over time a non-zero error covariance can exist betweenrtbeseof any two cell states.
In this subsection it will be shown that the covariance undest conditions decrease as
the distance between two cells increases.

Through 7.11) and (7.16) it can be seen that the covariance is influenced by the lin-
earization of the fundamental diagraHi|k], the linearization of the model[k| and the
Kalman GainK[k]. Because of the non-linearity of the system and the stoiciitgsif the
model and the data, itis very hard to analytically prove undgch conditions the covari-
ance will decrease with increasing distance. Howeverpijin@extensive experimentation
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Figure 7.2: The error covariance values of the first cell of @i-cell link and all other
cells on the link in three different conditions: (a) free fld) congestion and (c) a state
change from free flow to congestion. A dark color indicatesgh ltovariance. The
gradient indicates that the covariance decreases the éurtte two cells are apart. Note
that different scales apply to the different figures

on different networks with different sizes it has been obséithat under most conditions
the error covariance between two cells further away arelsmilan between two cells
close to each other. This is a very intuitive result: only ey\amall portion of traffic on a
certain location will travel to another location for examp@l0o0 km away; therefore, it can
be expected that the error covariance between these twiidosas nearly zero.

Figure7.2 shows the error covariance between the cells on a certate.réor this
result the small network as will be presented later (seerEigi) was simulated for 600
time steps. The demand and supply of the origins and destmaiere varied in order
to cause state transitions to occur. In most cases the eoearibetween two cells are
smaller the further they are apart; only in the third casecitheriance between cell 1
and cell 9 is larger than before during a few time steps. Hewdurther downstream the
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error covariance is again very close to zero. Similar resuktre obtained on different
networks with other structures and other congestion petter

The fact that the covariance values are usually smallenéudway from a certain cell
means that in the G-EKF the matd[%| will contain many values close to zero for cells
far apart in the network. Corrections to states based o thesy small covariance values
will be negligible.

Itis important to note that the non-zero values will not ale/ae close to the diagonal
of the matrix, because cells that are spatially close in waordkt cannot be guaranteed to
be close to each other in the matrix. Also, experimentatas $hown thalP[k| is not
always diagonally dominant. These two issues prevent mificieat algorithms to be
applied for the inverse operation, and an alternative igired.

In this chapter it is therefore proposed to use the logic efrtétwork topology in the
corrections and to use a measurement of a detector to cambcthe states of cells in
the vicinity of that detector. The resulting scheme is nainechlized Extended Kalman
Filter (L-EKF) to indicate the local nature of the correct$o

The L-EKF algorithm

In the L-EKF, many local EKFs are called sequentially forteeell that contains measure-
ments, instead of constructing one large EKF for the engitevark. Local measurements
are no longer used to correct the errors of cells far dowastrer upstream, but are only
used to correct the state of cells within a certain radiuwd the measurement. Figure
7.3 shows the principle of the L-EKF with = 2. Note that{ can be taken constant
throughout the simulations or dynamic based on the prexgitaffic conditions. In order
to remain focused, in this chapter it is chosen to keewnstant; future work needs to
validate if a dynami¢ can improve the results.

In the local EKF scheme, first a global estimate of the statéove ~[k] and of the er-
ror covariance matri¥~ [k] is made using fully-sized [£], P[k] and@ matrices. These
global vectors and matrices are indicated by a supersergrtd can be calculated quickly
because the required matrix operations are relatively:ligh

rk] = f(ro[k - 1)) (7.17)
PCk] = JOK)| Pk — 1)(JK)T + Q° (7.18)

Then, a local EKF is constructed for the first measured cetiew, local a priori density
vectorr=~ k] is created by copying all elements within the filter radiufrom r¢|k|
and a local a priori error covariance mati#X"~[k] is obtained by copying the relevant
values fromP[k]. Finally, a new derivative matrifl “[k] is created substituting"~[k]

in (7.13. Now, new estimates of the densities and of the (co)vaeait the vicinity of
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Figure 7.3: The principle of the Localized EKF on a 7-celldimith measurements in
cell 3 and 5. On top a 7-cell link is shown. First the global agpi state vectorr[k]
and a priori error covariance matrixP®[k] are computed usin(7.17) and (7.18. The
7x7 matrix represent®“[k]. Then an L-EKF is constructed for cell 3 which extracts a
P ~[k] matrix (the dark gray 5x5 square). This L-EKF corrects thates of cells 1-5;
the resulting estimates efand P are copied back into the global matrices; then an EKF
is constructed for cell 5 (light gray square) and the procssepeated for cells 3-7
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the measurement are determined using

Ly _ P (k] (H"[k])"
= g ) R (719
rt k] = v k] + K" [K] (2" [k) — h(r"[K))) (7.20)
Pk = (I" — K"[k|H"[k]) P"" [K] (7.21)

The procedure now continues by substituting the state astsn”*[k] and error covari-
ance estimate®"[k] back into the global vectar®[k] and the global matrixP“ [k] at
the correct coordinates. Then, the above process is repieatiie next measurement us-
ing the new values of the state and of the covariance whetleges is overlap (the center
3 cells of the link and the center 9 cells in tRematrix in Figure7.3).

Note that the order in which the local filters are called is @importance in case
the model is linear. The Kalman Filter (so not the Extendetin&a Filter that is an
approximation) is a Bayesian optimal estimator that fin@srttaximum of the posterior
of the state of a cellon a linkj at timek given the data vectoz[k|

plrfralk) = PR PRl (7.22)

Consider the case where two sequential corrections are,roadavith the data point;

and one with the data point, and where the posterior of the first correction is the prior
of the second correction. Note that here the indicgsand% will be omitted to simplify
notations. In the case wheteis first used to correct, then the first correction step of the
Kalman Filter can be written as:

p(ar, 20)p(r|2) (7.23)

rlz1, 29) =
p( | 1 2) p(21|22)

The second correctiop(r|z;) can also be found using the KF, and using Bayes rule can

be written as

p(22|r)p(r)
p(22)

Substituting 7.24) into (7.23 and using the fact that(a|b)p(b) = p(a, b) the following

result is obtained:

p(rlzs) = (7.24)

(p(z1]22, 7)p(z2|r)p(r)

p(21]22)p(22)
_ p(Zl, 22|7”)p(7”) (725)
p(Zh 22)

p(r|z1, 22) =

It can now be seen that the same result would be obtainedwfs first used, and then
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z1. Because the LWR model is non-linear, it can be expectedhtiairder does influence
the solution; however, no a priori knowledge is present oatvander to follow. In case
the state of the model is close to the actual state, i.e. ifrtbdel is well calibrated and
previous corrections have lead to the state being appra&lyneorrect, then the lineariza-
tion is more accurate; in that case, the order in which theections are applied will less
influence the solution. In this chapter it is chosen to appdyfilters in the order of which
data arrives in the estimation processing computer.

The L-EKF process has two major advantages compared to tBERSFirst of all,
the measurement error covariance matrix R7ri9 is of sizel x 1. This means that the
inverse operation becomes scalar and is thus very fast.n8exfaall, the matrix multi-
plications {.21) are performed on much smaller matrices which again resuétgain in
computation time. The L-EKF procedure scales linearly anritimber of measurements;
for each available measurement, equatiah$9- (7.21) need to be carried out one more
time, but each of these operations is very light. OpposetiédG-EKF, the L-EKF is
therefore suitable for large-scale and real-time appboat

Opposed to the G-EKF, in the L-EKF the states of cells far aar@ynot corrected.
This leads to a potential loss of accuracy because not adir@nce values are used for
correction. However, as the error covariance between ftetiser apart is generally very
small, the loss in accuracy is expected to be negligible g® ¢he L-EKFs have a suffi-
ciently large radius and in case of a sufficiently dense nreasent network.

It is important to note that the radius of the L-EKF is takemsgyetric. The number
of cells upstream that are corrected is equal to the numbezlisf downstream. Because
the error covariance matrix is symmetric, the covariandevéen cellA and B is equal
to the covariance betwedn and A. A measurement il can thus equally well be used
to correct the state in celB as a measurement i can be used to correct. Because a
fixed radius is used throughout the simulation and a priatiiing can be said about the
values of the covariance between the center cell and theeapstcells relative to those
between the center cell and the downstream cells, the rediaken symmetric.

To show the difference between the L-EKF and G-EKF both inveasry and in com-
putation time two separate experiments are conducted: maemall scale with synthetic
data, and one on a large scale with real-world data.

7.3 Experiment 1: synthetic data

To illustrate the accuracy of the L-EKF compared to the G-EiBt an experiment on a
small-scale network is conducted. The Localized and GIBB& have been programmed
in the software package JDSMART which is a Java-based inmgiéation of the LWR
model solved by the Godunov scheme. For the Matrix operstitre fast UIMP Java-
library has been usedJJMP, 2010. All computations are performed on a Windows XP
machine with a 3.0 GHz dual core processor and with 2GB of nmgmo
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Destination

Origin 1

Origin 2

Figure 7.4: The experimental network on which the Localigkd® was verified. The
vertical arrows indicate the four measurement locations

Figure 7.4 shows the network of this experiment. Arrows indicate thieing di-
rection. The network is discretized into cells usiffgdf with a time step of 2 seconds,
resulting in 59 cells. First, a ground-truth simulation e&sformed, with a certain demand
pattern on Origin 1 and Origin 2 and a different set of fundatakediagram parameters
for each link as shown in Tablg1, which together caused a complex congestion pattern
on the network. Each time step the densities of all cells styeed as the ground truth.
The speeds in four cells throughout the network indicatethbyertical arrows in Figure
7.4 are stored each time step, which are distorted with zeraarsgaissian noise with a
standard deviation of 5 km/h.

Table 7.1: Parameters of all links in the synthetic data expent

Link number v/ [km/h] v [km/h] C' [veh/h] riam [veh/km]
1 100 80 3000 125
2 100 80 2000 125
3 100 80 2000 125
4 100 80 2000 125
5 100 80 1000 125
6 100 80 1500 125
7 100 80 2000 125
8 100 80 2000 125
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The network is then simulated again, with the same fundaaheigrams but with
zero-mean Gaussian noise added to the demands at the timsgstandard deviation
of 200 veh/hr) and the turn fractions of node 1 (standardat®n of 20%). This causes
the resulting congestion pattern to be considerably diffefrom the ground-truth experi-
ment. Using the (noisy) speed measurements from the grsutidsimulation, the states
can be corrected (the intentionally added noise removeady wsther the L-EKF or the
G-EKF. The process of adding noise to the speed measureareht® the demand and
turn fractions is repeated 25 times in order to be able torgdine the results.

Figures7.5and7.6show an example of the ground-truth, distorted and cordemtd
densities for one of the 25 simulations at the four seleabedtlons. For the corrected
densities the best performing G-EKF and L-EKF are plottedcah be seen that the
estimated densities are much closer to the ground truthittesheshen compared to the
simulation without EKF, and that the L-EKF and G-EKF overfapalmost all time steps
for all locations.

The parameters of the L-EKF and G-EKF (the matrid¢sand Q and the L-EKF
radius() were set as follows. The values on the diagonaRoére set ta25km?/h? for
both the L-EKF and the G-EKF, because the measurement eaxsca Btandard deviation
of 5 km/h. For each of the 25 simulations, the EKFs are testdddifferent values on the
diagonal of@, and the best scoring values are chosen; for the L-EKF, thiasa is also
varied (but taken equal for all filters in one simulation)vee¢n 0 and 59, the network
size.

Figure7.7(a) shows the average Root Mean Square Error (RMSE) betveecot-
rected states and the ground-truth states for all time Stepall 25 simulations, along
with the average computation times. As can be seen from theefipoth EKFs result in
lower errors than when no correction is applied. It can atseden that the L-EKF with a
small radius £ 5) performs worse compared to the G-EKF, because not all daiseid to
its full potential; however, with sufficiently large radit(5) the same level of accuracy is
obtained. This result confirms that corrections made by #ieKE to cells far away are
indeed negligible. Also, the results of the L-EKF with fudidii (59 cells) confirm that the
order in which the filters are used are in this case not imparés the sequentially called
filters are as accurate as the G-EKF.

Figure7.7(b) shows that even for this small network the L-EKF is fastem the G-
EKF for ¢ < 20. Performing 4 individual corrections on a small radius issttalready
faster than doing 1 large correction. For largethe calculation times start to increase
beyond the average computation times for the G-EKF, beazfuke overhead in copying
the data back and forth and because of the other matrix opesgf.19-(7.21).
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Evolution of density in ground truth and with and without correction at location
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Figure 7.5: The resulting density patterns from one of theigtulations for the locations
indicated by vertical arrows in Figur@.4. The black solid line is the ground truth. The
resulting ‘wrong’ pattern is shown in light gray, and the cected densities using G-
EKF/L-EKF in darker gray. For almost all time steps, the diéies from G-EKF and
L-EKF are almost equal
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Evolution of density in ground truth and with and without correction at location
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Figure 7.6: The resulting density patterns from one of thaeigtulations for the locations
indicated by vertical arrows in Figuré.4
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RMSE for different filters
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Figure 7.7: Comparison of accuracy in terms of RMSE (a) andoohputation times (b)
for the different filters. The L-EKF (dark solid line), is cpared for different horizons to
the base simulation without EKF (dashed lines) and G-EKghflsolid line)
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Figure 7.8: The freeway network around the city of Rotterdes a total length of 272
km

7.4 Experiment 2: real data

To show the gain in computation time and the comparative racguof L-EKF versus
G-EKF on a large real-world network the two EKFs are appl@the freeway network
around Rotterdam, the Netherlands as shown in FigL8e

This freeway network has a total length of 272 km. A time stép®is chosen,
after which the links are discretized using4) leading to a total size of the network of
1911 cells with an average cell length of approximately 14Zimroughout the network
531 double loop detectors are placed, which corresponds &verage spacing of about
500m, of which each minute speed data is available.

The fundamental diagrams are roughly calibrated using asteuapproach that uses
three years of historic data of all detectors in the networke free speed and critical
speed are found sorting the speeds of each detector in a ativeuturve as shown in
Figure7.9. The figure shows two points of sharp curvature. The cureatiithe com-
plete right of the graph is a point where only few vehiclewvelfiaster and can thus be
interpreted to be the free flow speed“c. The second curve from the right indicates
a point where suddenly few speed measurements are availabl traffic breakdown
and can thus be interpreted to #&. The estimation procedure of these two speeds is a
heuristic based on two other empirical observations: (&gdp are approximately evenly
distributed between the critical and free flow speed so tieline between the two points
is always a straight line and (2) no detector was found whemerthan 70% of the mea-
surements are congested. The two speed parameters arebiptaldng the slope of the
line at 70% of the total number of points and by finding the paght and left to it where
the cumulative curve deviates more than a threshold frorslthe. If multiple detectors
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" : ;l:) numi)erof r;.:;.surem:lnts " x 10°
Figure 7.9: Sorted speeds of one detector. The horizomteslindicate the free flow speed
and critical speed. The dashed line indicates the lineaureabf the cumulative curve in
free flow conditions

exist for one link, the median of all estimates fdrec andv"* are taken for the link; if
no detectors exist of a link the parameters of the surrognliiks are used. The remain-
ing two parameters of the fundamental diagram are takertaotn®r all links based on
experiencer< " = 25veh/km and\ = —18km/h.

For the experiment a regular Monday morning peak period lscgsd, 10 March
2008 from 6AM to 10AM. The 531 detectors are split in two: oratpvhich is used
for estimation, and another part which is used for validatidhe validation detectors
are used to compute the Root Mean Square Error (RMSE) betitheerstimated speeds
and the modeled speeds. Four different scenarios are madensreasing scarcity of
detectors used for estimation: 25%, 50%, 75% and 90% validaletectors, where it
Is always ensured that the remaining estimation detecters\enly distributed over the
network. With fewer detectors used for estimation, comfporiatimes are expected to
decrease while the RMSE is expected to increase.

Each scenario the network is simulated, feeding data irea#twork each minute;
the prediction step of the EKFs is performed each time stéievthe correction step is
performed only once when new data is loaded into the netvewdry 12 time steps). The
4-hour simulation is performed with the L-EKF with fixed rearying between 1 and 30
and with the G-EKF. For both filter types, 8 different valué<bwere tested on a large
range from 0.01 (almost no correction) to 100,000 (a lot ofection)veh? /km? with a
fixed value ofR = 25km?/h?.

Table 7.2 shows the results for the different filters for the simulasavithout any
EKF and the best performing L-EKF and G-EKF. For all four smérs the number of
validation detectors is given, as well as the average spdmtween detectors. The last
column shows the RMSE of the L-EKF. It can be seen that withfiicgntly large radius
the RMSE for the L-EKF is always at least as low as the G-EKRhBitters result in
more accurate estimates of the speeds compared to no camrect
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A very large difference between the computation times oftthe types of filters is
visible: the L-EKFs are between 12 and 51 times faster, déipgron the radius and the
number of detectors used for estimation. As expected, thgpatation time increases
with more detectors used for estimation and fewer for vélida However, the computa-

tion times of the G-EKF steeply increase when more detear@sised for estimation, as
shown in Figurer.10

Table 7.2: Best results of L-EKF versus G-EKF on a large soalsvork with 1911 cells

for different numbers of detectors used for validation

Method Optimal Computation x Real-Time  RMSE [km/h]
Q?[veh?/km?] time [s]
25% (133) validation detectors; spacing = 0.7 km
No EKF - 24 605.0 33.3
L-EKF (¢ =1) 100 730 19.7 17.6
L-EKF (¢ = 10) 1000 876 16.4 17.3
L-EKF (¢ =20) 100 1067 13.5 16.9
L-EKF (¢ =30) 100 1566 9.2 16.8
G-EKF 100 37150 0.4 16.7
50% (264) validation detectors; spacing = 1.0 km
No EKF - 20 720.0 33.3
L-EKF (¢ =1) 100 653 22.4 17.8
L-EKF (¢ =10) 100 723 19.9 17.6
L-EKF (¢ =20) 100 857 16.8 175
L-EKF (¢ =30) 10 1138 12.7 19.4
G-EKF 100 21813 0.7 17.8
75% (398) validation detectors; spacing = 2.0 km
No EKF - 24 590.2 33.1
L-EKF (¢ =1) 100 711 20.3 23.3
L-EKF (¢ = 10) 1000 1002 14.4 21.8
L-EKF (¢ =20) 100000 1021 14.1 21.5
L-EKF (¢ = 30) 1000 910 15.8 21.7
G-EKF 1000 13779 1.0 22.1
90% (478) validation detectors; spacing = 5.1 km
No EKF - 66 217.5 32.9
L-EKF (¢ =1) 100 681 21.1 28.1
L-EKF (¢ =10) 10 797 18.1 27.9
L-EKF (¢ =20) 10 792 18.2 27.8
L-EKF (¢ =30) 100 964 14.9 27.7
G-EKF 10 11670 1.2 27.9
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Comparison of computation times L-EKF vs. G-EKF
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Figure 7.10: Computation times as a function of the numbeletéctors used for estima-
tion. The L-EKFs show hardly an increase in computation timigle the G-EKF shows
a rapidly increasing computation time

In Table7.2it can also be seen that the G-EKF is slower than real-timenwhere
than 25% of the detectors are used for estimation. Howelverl {EKF is still at least
9 times faster than real-time, even if 75% of the detectagsuaed for estimation. This
means that even for a large network with hundreds of kilorsetéroad, such as the one
used in this experiment, the L-EKF still is able to perfordmna@cessary computations for
the state estimation of the next minute within one minute.

7.5 Discussion and conclusion

In this chapter the Localized Extended Kalman Filter (L-BK¥&s been proposed, op-
posed to the traditional Global EKF (G-EKF). The L-EKF is édon the observation
that in the error covariance matrRR of a G-EKF many values are generally close to zero,
leading to very small corrections which can be neglecte@. I-EKF uses only local data
in the physical vicinity of the measurement location, cotiregg only the states of the cells
that have a considerable error covariance with the meas@ledThe radius of the cor-
rections is user-defined and influences the accuracy of tmeass on the one hand, and
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the required computation time on the other hand. In two empents, one with synthetic
data and one with real data, it is found that for a sufficielatge radius, the accuracy of
the L-EKF is equal to that of the G-EKF.

In the same experiments it has been shown that the order ichwhe local filters
are used appears not to be important; in case the lineamzatf the Extended Kalman
Filter are accurate, it has been shown that the order in fae$ thot matter; otherwise
a stochastic and unpredictable component exists in thmmgalkder. Future study will
need to validate if the calling order indeed never influethesaccuracy to a considerable
extend.

The L-EKF overcomes the major issue that has prevented tB&Gbeing applied
on a large scale: the calculation times of the G-EKF are vigly oin large-scale networks
because the EKF procedure requires two expensive matrbatipe, which scale to the
power of 2.8 in the number of measured cells or the total nurobeells in the network.
In this chapter it has been shown that the complexity of tHeKlE scales linearly in the
network size. Furthermore, in a real-world experiment oargd network it has been
shown that the L-EKF was between 12 and 51 times faster, igstirat it can still run
within real-time, making it now possible to use the first arttaffic flow model for real-
time state estimation in large traffic networks, a task thas wntil now only possible
on small-scale networks or corridors. This computatioredpdifference will be even
larger when the size of the network or the number of measurtsrmiacreases. Real-
time application is therefore now possible, leaving timeddditional computations for
ATIS/DTM/MPC applications.

Based on the two experiments it can be stated that the L-Eldiniays preferable
over the G-EKF because it is faster and still delivers theeskawvel of accuracy, even if
the data is scarcely distributed. In the worst case expatithe average spacing between
the detectors was 5.1 km. Even then the L-EKF delivered theedavel of accuracy as
the G-EKF. Of course, with fewer detectors both filters penfavorse than when more
detectors are used for estimation.

Increasing the radius of the L-EKF leads to higher compaotetimes due to the over-
head in copying values from the global matrices to local io@$rand back, and due to
the required matrix operations. However, when the netwa is large, this overhead
becomes negligible. Therefore, the radius of the locakéltan safely be taken large to
ensure a high accuracy, without increasing computatioagioonsiderably.

Future research needs to resolve several open questiass.ofall, in this chapter
many simulations were run with different fixed radii. Futuesearch should investigate
the possibility of predefining the optimal radius based @ndkpected influence area of a
certain location, for example based on the shape and pagawaties of the fundamental
diagram. Also, it is possible that a dynamic radius of the KFEbased on prevailing
traffic conditions increases performance in accuracy amdimputation time. Finally, the
authors believe that the same idea of localization couldipiied to Unscented Kalman
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Filter theory, other numerical solutions to the LWR modeid ather traffic flow models,
making it possible to apply those theories to large scaleoris as well with possibly
higher accuracy than the LWR/EKF-combination used in thegpter.



Chapter 8

Conclusions and recommendations

In this thesis the Bayesian framework for data assimilakias been described. It has
been applied to several problems in the traffic modeling dopfieom an individual level
(microscopic modeling of car-following behavior) to an aggpted level (network-wide
state estimation). Furthermore, a fast new implementatidine Extended Kalman Filter
has been proposed. In this chapter, first the conclusionprasented that are drawn
based on the research that has been performed. Next, thigatgois for practitioners
in the relevant fields of traffic modeling are treated. Fiyyaktcommendations for future
research are presented.

8.1 Conclusions

In this section, the main conclusions are presented thatraven based on the studies that
have been performed. First, recall the goal of this thesiswlas defined in Chaptér

“to find a unified methodology for data assimilation for a widege of mod-
els describing different road traffic phenomena, so thaterewcurate and
consistent predictions can be made of the road traffic sy'stem

To reach this goal, first in the introduction a probabiligi@rspective was chosen on
the data assimilation problem. Then, a framework was fohiatl ises Bayesian infer-
ence to develop equations for the validation & identificaticalibration and estimation &
prediction steps, based on the seminal worklatkay(1992a 1995 andBishop(1995.
Each of these steps are strongly interrelated, where dgntra calibration task is per-
formed first, after which the validation, identification tiegation and/or prediction can
take place. Throughout the chapters of this thesis, thindveork has been applied to a
variety of traffic phenomena. In each chapter, the litemhas been reviewed on the cur-
rent state of practice in data assimilation, and the framkewaat was defined in Chapter
1 has been applied as an alternative.

123
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The conclusions are organized in the following way. Firstsdd on the literature
reviews of all chapters together conclusions will be drawnh® current state of practice
in data assimilation. Conclusions will be drawn on the Baye$framework itself based
on the experience of applying it to several problems. Thengckusions are drawn in
each field of traffic science individually to which the franmWw was applied. Finally,
conclusions will be drawn on the Localized Extended Kalméie-

8.1.1 Current state of practice

In each chapter, the current state of practice has beeredthgiinvestigating the scientific
literature for the specific problem at hand. As stated in tliduction, data assimila-
tion consists of three steps: model validation/identifa@atmodel calibration and predic-
tion/estimation. For the model identification step, therhture studies of each individual
problem have revealed that:

e Usually many different models exist for the descriptioeffiction of the same traf-
fic phenomenon.

e Usually a model is chosen based on ‘gut feeling’ or expesenather than based
on numerical evidence that the chosen model is better thatheinatives.

¢ Inthe case when models are numerically compared, the casopas based on one
of the following indicators, each of which has issues:

— The prediction error of the last intervalThis approach has two problems:
first, the prediction error of the last interval may not beilade at the time a
new prediction needs to be made, for example if the variableetpredicted
is the travel time. Second, traffic is dynamic and stochastithe prediction
error is dynamic and stochastic too. Looking at the recesttfoainformation
on the current performance of models can thus be misguiding.

— The calibration error Calibrating models usually entails minimization of
some performance measure. The values of these measures campared
after each model is calibrated using the same method andithe data set.
This approach tends to promote overly complex models beddugsabsolute
value of the calibration error is generally lower for modelth more param-
eters, and it can even reach zero in case the number of pamsneziuals
the number of data points. Comparing these values can trerkfad to the
choice for models with low generalization abifitfoverfitted’ models).

1The generalization abilityreflects the notion that a model is able to predict the traffieqmmenon
under consideration well, in all possible (likely) situats. A model that has a high generalization ability
will therefore not only perform well on the data set that wasdifor calibration, but will also perform well
in case new data is fed to the model.
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— The validation error With this method, first a part of the data is used for
calibration, and the performance of the models is thendestehe other part
of the data. This requires the data set to be split in two heath less data to
be available for calibration and thus poorer predictions.

— The Likelihood-Ratio Test (LRTJhis method overcomes all previously men-
tioned problems, but has one problem on its own: it can onlysed on
so-calledhierarchically nested modelse. models where one model is a spe-
cial case of the other. In general, the available modelsdecdption of traffic
phenomena are not hierarchically nested.

The Bayesian framework that is proposed in this thesis isnergdization of the
Likelihood Ratio Test and is able to overcome all problem#itio@ed above. It
balances the model fit with the model complexity, it allowlsdata to be used for
calibration while still allowing for a numerical comparisof models and it is thus
less sensitive to stochasticity and dynamics. It can be tesedmpare any set of
models, also when they are not hierarchically nested.

e Usually only one model is studied or individual models armpared, but predic-
tions of models are hardly ever combined in a ‘committee’.

For the model calibration, the literature studies reveat:th

e Usually, single parameter values are found, while paranaiggributionsbetter
represent the stochasticity of the traffic system.

e Prior information is hardly ever used in the calibrationgedure. Because many
parameters in traffic models usually have a physical meariing a missed op-
portunity to improve the outcomes of the calibration praged Furthermore, the
collected data does not always contain information on alaeters. In those
cases, using prior information can prevent the paramed&isg up unrealistic val-
ues based on random noise in the data.

Finally, for prediction/estimation, the literature reisthat:

e Usually, single values are predicted such as the travel iwhée it may make sense
to not only predict the most likely value, but also the prédit intervals. These
prediction intervals may be directly communicated to thd aser in Advanced
Traffic Information Systems, but may also serve as an inpidyoamic Traffic
Management systems. As the user’s trust in the informasiessential for effective
management of traffic, this is an important missed oppatguni
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8.1.2 Bayesian framework for data assimilation

For the framework in general, the following conclusions bardrawn:

e The Bayesian framework for data assimilation has proveceta binified method
and has been shown to be applicable to a wide range of modsdsihiag different
road traffic phenomena.

e The application of the Bayesian framework for data assiiitegenerally leads to
better performance (i.e. more accurate and with higherrgénation ability) of the
models that it is applied to.

e Assumptions need to be made explicit through the prior idigtions on the pa-
rameters (model calibration) and the prior distributiofigntire models (model
identification). Given the assumptions and the data, Bapdsiference leads to an
answer that is only as good as the assumptions and the dateetteaused as input.

One important feature of the Bayesian framework is thatid$eto a numerical value
for how good a model is expected to be (its generalizatiotit@bi This is called the
evidencdor a model, which can be used to compare a model to anotheelm®dlde ev-
idence balances how well a model fits on the data with the cexitglof the model. A
model with more parameters will always better fit to a data lsat will not necessarily
make better predictions (have better generalizationtgpilA model with very few pa-
rameters may not be sophisticated enough to describe théepr@at hand. The evidence
measure balances between these two extremes. The evidaraieulated based on cali-
brated models. All available data can be used for calibmatiecause the evidence does
not require the data set to be split up in two. In case dataisscthis is a very beneficial
property. The following conclusions can be drawn for thiglemce measure:

e The evidence is preferable over other numerical compamsetinods such as the
Likelihood Ratio Test (LRT), because LRT requires modeldéohierarchically
nested while the evidence can be used to compare any set @isndd case the
models are hierarchically nested, the outcomes of the taogaiures are identical.

¢ In order to use the evidence for choosing between modelgatinelation between
evidence and the generalization ability needs to be strétayvever, in studying
this correlation in Chaptés it is found that this is not always the case because of
the following possible problems:

— The available data set that was used to represent the ‘gtouthd i.e. to test
the generalization ability, may be too small, i.e. the \aiion data set is not
representative (enough) for the problem at hand.
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— The used models do not contain ‘the perfect’ model (the Bapesference
framework makes a closed-world assumption, so that thegibity that none
of the alternatives is correct is zerB(()) = 0). A weak correlation between
evidence and generalization ability is an indication theg mnodels require
improvement.

— Related to the previous point: the system under consideratintains ‘system
noise’: not all explanatory factors will be present in théadarl his can cause
all models to fail, and a weak correlation between evidencegeneralization
ability.

— The evidence is estimated using several assumptions:ly§elssian distri-
butions are assumed and some derivatives are approxinsategdas the outer
product approximation of the Hessian, in order to speed lquizdions. The
difference between generalization ability and evidencg & caused by a
difference between the approximated evidence and the &ealence.

e The evidence is useful for selecting high-potential mottels a set of alternatives.
e The evidence is useful as a selection criterion and/or alwe&iga model committee.

e Possible improvements to models, such as pruning (rem@angmeters, thus de-
creasing complexity) or using additional or alternativeey of input data, can be
evaluated using the evidence.

In several chapters of this thesisammitteavas created: predictions of several mod-
els are combined. Concerning the committees, the followorglusions can be drawn:

¢ In all cases the use of a committee leads to improved prediettcuracy. Although
the improvements are not spectacular, the additionaltdfiamreate a committee is
very low in case the user already has multiple models at h@hdourse, running
more models in parallel puts higher demands on computdtpmveer. The trade-
off between more computation power and higher accuracy neetie made for
each application individually by the user.

e If all models have similar bias (for example, all models @gtimate the quantity
to be predicted), the committee generally leads to worseigtiens than the best
of the individual models. Increasing the heterogeneitjhefdvailable models very
likely decreases the probability of all models having thmedias and thus leads
to more accurate predictions.

In Chapterd and>5 error bars (prediction intervals) are constructed arotedtedic-
tions. These error bars naturally follow from the Bayesizerience framework, because
distributions are created on the data as well as on the p&eesneA distribution thus
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exists on the outputs. This distribution can be used to cocisprediction intervals. This
way, the end user receives information not only on the mastyitraffic conditions, but

also on the reliability of the information and of the trafficraitions. This will be useful

in Advanced Traffic Information Systems, but also in casepiteglictions serve as input
to Dynamic Traffic Management or Model Predictive Contradtsyns.

8.1.3 Car-following behavior

The Bayesian framework for data assimilation has beenegpithe problem of predict-
ing car-following behavior in Chapt@: Concerning this study, the following conclusions
are drawn:

e One major issue in car-following behavior is driver hetenogity: there are large
inter-driver differences, so that one model may be beseduid one driver but
another model to another driver. The Bayesian evidence toa®¢ to be a useful
tool for analyzing andjuantifyingthese inter-driver differences. Using this tool,
the driver heterogeneity can now be explicitly modeled.

e The Bayesian framework can also be used to construct thebpildi of models in
an entire population (the distributiad( #|D)). This posterior distribution of the
models can serve as a basis for a heterogeneous microsguoplatson.

8.1.4 Travel time prediction

In Chapters3, 4 and5 the Bayesian framework has been applied to travel time gtiedi
Concerning these studies, the following conclusions aaevdr

e There is a huge number of alternative models that have beshfos travel time
prediction. In most studies that have been published abesetmodels, the authors
compare in some way their model to a set of other models andwda that the
new model outperforms ‘existing models’. However, in altmosne of the studies
the data assimilation is treated explicitly or conseqyest that the conclusion of
better performance is at least dubious.

e Only a few studies exist where these models are combined amanittee. All of
these use the error of the previous interval, but this eraanot be known in real-
time because the travel time is only known after it has bealiwerl. The Bayesian
evidence is a solution to this problem that has proved irhadlé chapters to lead to
improved prediction accuracy.

e In Appendix A the exact Hessian for recurrent neural networks is deriasid
on back-propagation theory. In the case study that was pesdén Chapteb the
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outer product approximatioof the Hessian, which is much faster to compute than
the exact Hessian, has proved to lead to well trained neetalarks, but the exact
Hessian may be preferable in case the evidence needs tocokatad accurately.

¢ In the case study of Chapt8rit has been found that for a longer prediction hori-
zon a recurrent layer in neural networks leads to betterigreds, but that for a
shorter horizon the added complexity of a recurrent layesduwot help - in fact,
for a 5-minute horizon the added complexity leads to over§itand slightly worse
predictions.

8.1.5 Extended Kalman Filter parameters

The same theories that were used for calibration of entiréatschave also been applied
to the problem of defining the parameters of an Extended Kalsiger that is combined
with the LWR traffic model solved by the Godunov scheme. Thesdgon of equations
for these parameters is very similar to those of tlyperparametersf training algo-
rithms used with neural networks. Concerning this study,féllowing conclusions can
be drawn:

¢ In the presented case study, the dynamic adaptation of tikedakameters leads to
almost equally accurate state estimates as when the optk@dlEKF-parameters
are used.

e However, the Bayesian adaptation of parameters leads testiodss of initial es-
timate of parameter values, while a wrongly chosen fixed pldFameter set may
lead to a considerable loss in accuracy. This robustnesgeis/alesirable property,
as it is usually very hard to make an initial estimate of thearace of the model
and of the data because no ground-truth is generally alailab

e The Bayesian framework assumes Gaussian distributionseodata. The frame-
work has been found to be sensitive to the distribution ofdii not being Gaus-
sian. In case of for example speeds of 0 km/h, the distributamnot be Gaussian
because negative speeds cannot exist. In that case, th@atweais overestimated
leading to too small corrections of the state.

8.1.6 Localized Extended Kalman Filter

In Chapter7 a new, fast and scalable implementation of the Extended &alRilter has
been described: the Localized EKF (L-EKF). The L-EKF is ateralative method to
compute the posterior distributions of the model stategudie Kalman Filter equations.
The L-EKF has been compared to the traditional ‘Global EKE-EKF) using the LWR
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model solved by the Godunov scheme. Concerning this stbdyptlowing conclusions
can be drawn:

8.2

In the G-EKF many negligible corrections are made becausettor covariance
matrix contains many values close to zero. The L-EKF usad#t, together with
the network topology, to make only relevant corrections. #asurement is only
used to correct the traffic state within the vicinity of theasarement location.

The radius of the corrections is user-defined and influeneesatcuracy of the
estimates on the one hand, and the required computatiorotirtiee other hand.

In two experiments, one with synthetic data and one withde#, it is found that
for a sufficiently large radius, the accuracy of the L-EKF ¢ual to that of the
G-EKF.

This result validates that the order in which the local fdtere used is not important.

The L-EKF overcomes the major issue that has prevented tB&EGbeing applied
on a large scale: the calculation times of the G-EKF are veg bn large-scale
networks because it requires expensive matrix operatidnmshvscale to the power
of 2.8 in the number of cells or the number of measurementsametwork. In the
study it has been shown that the complexity of the L-EKF schiearly with the
network size.

Because the L-EKF scales much better in the network sizeniw possible to use
the Extended Kalman Filter on a very large scale. Real-tippdieation is possible,
leaving time for additional computations for Advanced ®iav Information Sys-
tems, Dynamic Traffic Management systems or Model Pre@ic@iontrol systems.

Based on the two experiments | have the opinion that the L-Bkdfways prefer-
able over the G-EKF because it is faster while maintainimgstéame level of accu-
racy, even if the data is scarcely distributed over the nd¢wo

Implications for practitioners

This research has aimed to provide tools for practitionatsrasearchers in the field of
traffic information and traffic management that enable theoptimally use their models
in combination with data. One of the most important notiohhs thesis is that models
and data go hand in hand and should always be treated togé&tieeBayesian inference
framework is one way of approaching this, which has been stiowave various benefits
as presented in the conclusions before.

For practitioners, the research has the following impiores:
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e The Bayesian framework is a single framework for model \alwh, model identi-
fication, model calibration and estimation/prediction.

¢ In Bayesian inference, assumptions need to be made explibiéther or not this is
a good feature is part of a long debate between Bayesiangemkehtists. In any
case, the outcomes of the model identification, calibragio prediction steps are
only as good as the assumptions that were made and the datathased for each
of the steps.

e This framework has been shown to be applicable to a variepyaslems, such as
car-following prediction, travel time prediction and contous calibration of EKF
parameters. The exact same ideas can be applied to anymriobdeffic for which
one or more models are available.

e Using the evidence, models can be compared based on a nahmeeasure. The
comparison can be made while all data can still be used fdsrasibn.

8.3 Recommendations and future research

In this final section of the thesis, several new applicatamgfields of study are identified
which may direct future research. These new fields of stutlyotdside the scope of
this thesis, but are deemed to be able to benefit from the Eayé&mmework for data
assimilation. As with the conclusions, these questiondiesestated for the framework
as awhole. Then, possible future research is defined foraaalication separately.

8.3.1 Bayesian framework for data assimilation

During this thesis, the Bayesian framework has been apydiadariety of problems: car-
following behavior, travel time prediction and data as$atimn for macroscopic traffic
modeling.

In Chaptersd and5 the correlation between evidence and generalizationtyalvias
found not to be perfect. As noted before, a weak correlatetwéen the evidence and
the generalization ability is an indication that the modelguire improvement. Another
way to look at this is that the probability of the empty set nmay be zero: all models
that are used may be wrong, i.e. the selected set of modedsnddeontain the ‘perfect’
model. Recall froml.4 that the Transferable Belief Model (TBM) explicitly takdsg
possibility into account. Now that the Bayesian framewaalk proven to be very useful
in data assimilation in a wide variety of applications irfficascience, the TBM may be
applied in a similar fashion. Because the Bayesian framleuwga special case of the
TBM, this thesis has laid the basis for such research.

Several ideas exist to apply the Bayesian framework torgiffeproblems, such as:
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¢ In modeling of pedestrian behavior, multiple models exsti¢scribe walking be-
havior. Calibration of these models is a challenge becarmeng-truth data is gen-
erally scarce compared to the number of parameters of thelsotihe Bayesian
framework may lead to better answers to how well these mgeferm relative to
each other, even in the case when data is scarce.

e Using one or more (data-driven) models for prediction ofeottraffic variables
than travel time. The prediction of traffic flow, for examplean onramp, can
be useful as an estimate of the demand at origins in a netwml&-traffic state
prediction. Also, predicted route choice, or aggregateder@hoice represented
by split rates or turn fractions can serve as a parameterisdme network-wide
traffic state prediction. Finally, there is often an intérespredict variables like
level-of-service, crash rates and incident duration foarety of applications.

e Using the framework for OD-matrix prediction. As with thehet traffic phenom-
ena, a multitude of models exist for the prediction of Orifiastination matrices.
The Bayesian evidence can be used to put a number to how vedlineadel per-
forms compared to the others. The OD-estimation problent theasame time
one of the most underdetermined problems in the field of ¢raffhe inclusion of
prior knowledge may thus be a crucial factor in solving thighgpem. In the work
of Bell (1997), prior information is for example already included in a gealized
least squares approach, an approach that is easily exténdled Bayesian one.
As an additional benefit, the Bayesian framework allows &imeation of the un-
certainty of the predictions, which is a very desirable deatf the problem is so
underdetermined.

8.3.2 Car-following behavior

In the application of the Bayesian framework to car-follogribehavior, the following
recommendations are made for future research:

e Besides of inter-driver differences there are also intreed differences: one driver
does not always behave according to the same model, but naagelhnis behavior
stochastically or depending on conditions. The use of arbgémeous pool of
models (a committee) for one single driver may increase thestness towards
this changing behavior and may increase the accuracy witbhwdriver behavior
can be predicted.

e Error bars have not yet been constructed on the predictefblbawving behavior.
In some applications, it may make sense to do so: for exampénwpredicting
the trajectory of a single driver in vehicle-to-vehicle @hicle-to-roadside archi-
tectures.
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e As was proposed in Chapt@r the work that has been done has paved the road
for a heterogeneous microscopic simulation. In this sithuta different models
exist for the same task. Using a large data set, the BayesiareWwork is used to
find a distribution of the probability of a model best desiripa driver’s behavior.
Each time a new car is entered into the network, first a modeas/n from this
distribution. Then, for this model parameter values arevdr&om the posterior
distribution of the parameters. The vehicle can then be lsited through the net-
work using his model and his parameter set. Experimentsidtiben investigate
if such a heterogeneous simulation better describes tfie sgstem than when a
single model is used for all drivers.

8.3.3 Travel time prediction

In the application of the Bayesian framework to travel timedaction, the following open
guestions for future research have risen:

¢ In all applications the prior distributions of models haweh taken equal (‘flat’)
for all models. However, inclusion of prior knowledge maypirove results: better
assumptions to start with lead to better results from theeBay inference. Future
study should investigate ways to find prior knowledge, faraple by investigating
literature comparatively.

¢ In Chapters3 - 5 the Bayesian framework was applied to at maximum tyyesof
models, although many neural networks with different streess have been trained
for Chapted and5. In literature, literally hundreds of models have been fbtivat
have been used for prediction of traffic variablearn( Hinsbergen et al2007). It
Is an interesting research project to test a multitude ofetwith one or more large
scale experiments with the Bayesian framework. Such a shalybe used as the
basis for future practitioners to a priori select potehtialell-functioning models,
so that they do not have to test all possible models that heea Heveloped over
the last decades.

¢ It was found that for longer prediction horizons recurrestiral networks perform
better than feed-forward neural networks, while for shdrteizons this is the other
way around. Future study should validate if this result batdgeneral. If so, it is
an interesting feature that can perhaps serve in a priorehszdection, which can
save work for practitioners.

8.3.4 Extended Kalman Filter parameters

In Chapter6 the Bayesian theories have been applied to the continutiusag¢i®n of the
parameters of the Extended Kalman Filter. The followingrogeestions have risen:
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¢ In the current approach, only the data covariance matriwigicuously changed,

because the equations could not be solved for the modeliaocar Future re-
search can possibly further improve results by trying to &hdrnative ways to set
the model covariance, for example by numerical estimateseo€ovariance or by
approximation of some of the equations.

The solution is found to be sensitive to bias in the data. Qussiple solution
is not to use a Gaussian distribution but another, non-symmrgistribution. An
analytical solution of the equations is in those cases [igthearder, so assumptions
or numerical approximations may be needed.

The continuous adaptation of the EKF parameters has beteul tess the ‘Global’
EKF. Future study should see if the same good results arénebit# they are ap-
plied to the Localized EKF of Chapté&r

8.3.5 Localized Extended Kalman Filter

In Chapter7 the Localized EKF has been proposed as an alternative ingpiation of
the traditional Global EKF. The following future researolpics are of interest:

e The order in which the L-EKFs are called are now based on ttheran which data

arrives in the processing computer. Future research sliguio confirm the result
that the order in which the filters are called is not importdhthis result is found
not to be general, ways should be proposed to optimally setaling order of the
sequential filters.

In the study many simulations were run with different fixediraFuture research

should investigate the possibility of predefining the optimadius based on the
expected influence area of a certain location, for examptedan the shape and
parameter values of the fundamental diagram.

Alternatively or additionally it is possible that a dynamaalius of the L-EKF based
on prevailing traffic conditions increases performanceccuaacy and/or computa-
tion time.

The same ideas of localization can be applied to other filferexample the Un-
scented Kalman Filter. Furthermore, it is interesting tidzde the localization with
other numerical solutions to the first order model or othedet®such as second or
higher order models.



Appendix A

Exact gradient and Hessian for
Recurrent Neural Networks

In this appendix the exact gradient and Hessian for recuneural networks are derived.
In this appendix the definitions as given in Chapt@nd5 are used as a basis. In Figure
5.1the layout of a State Space Neural Network (SSNN) can be sdanh is a special
form of a general Recurrent Neural Network (RNN) with cartaeights set to zero. The
derivation for the exact gradient and Hessian hold for bo¢hRNN as well as the SSNN.

A.1 Determination of the gradient

To determine the direction for each step in the conjugatdigrda algorithm, the gradient
of the error function to the weights is needed. The data éffpand the regularizer errors
Ew., will be considered separately, so:

|4
VE(6) =BVEp+V Y a,Eyw, (A.1)

v=1

The derivative of the second term, the gradient of the weaghtrs (regularizers), is
straightforward:

1% 1%
VY aBw, =Y a,d,0, (A.2)
v=1 v=1

wherel, is a matrix with all elements zero except for some diagoraheintsl;; = 1
wherei is the index in the weight vectd of a weight belonging to a group

The gradient ofE';, is more complex. Because this term is a summation oveVall
input patterns, the gradient of the error over one pattefwhich is equivalent to the
error at time step as noted before) can first be considered, which is definefilas-
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2>yl — ot)?, and later be summed over all patteriisto obtain the full gradient.
Define the part of the error from one outpuasE}, , = 3 (y — ot)?. For an arbitrary

weight ¢, in any layer of the network, it holds that it only influencg$, through the
outputsy,, so the chain rule for partial derivatives can be applied:

8E§) B 8EtD’k %

a0, —~ Oy 06,

IS0 2
_2%:5‘% (v = ok)" 5,

_ t_ ot Y
_ tﬁyk
=5 g 0 (A.3)

whered! = (yi — of).

A.1.1 Determination of dy/ow

In this section, for each weight in the recurrent neural wekvwhe derivative A.3) will
be determined.

For a weight),; in the output layer, it holds that:

6yk/ . 8 t
D0~ 9072
Oal
et k'
- f2(a’k’)60kj
= fé(a';,) Z Ajj’Akk’Z;
j/
= Akk/fé<a2/)/3§ (A4)

with A, the Kronecker delta function.
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For a weight;; in the hidden layer:

ayltc . 0 t
90, 00;; falay)
dal,

_f2( )89

ak Z@w f1 ;
6at !

= f3(al) D 0k Fi(a)) | Ay +Ze THC (A5)
3! Ji

8a,

Define: o4
CL /
wh; = ae = Ajjzh + Z O fi(a) " )wp! (A.6)
and
6a
II;]Z - k Z ekj fl j "ji (A7)
Equation A.5) then becomes:
&Uk
60]@ f2( ) kji (A8)

The starting condition fow follows from the fact that it = 1, the context layer contains
constant value€’, so that

J 15i = <Z HJWJ: 0+ ZH /lC>
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For a weightd;; in the context layer:

3yk _
W]l 39]1f2( )
dat,
f2( )ae]l

8a,
ak‘ Zek] fl ; 89

, , 8at,1
= f3(ap) > Oy fi(dl) (Amzl +Z9wf1 e ) (A.10)
j/

Definen by:
Oajr
n,;/jl = 80j ,7 ]zl _'_ Z 9 ’l’fl al/ nl’_]l (All)
gl
and
Thjt = Z Oryr f1(a5)05 5 (A.12)

Equation A.10) then becomes:

Iy,
89; faai) ghju (A.13)

The starting condition for is:

0
Mo = 90,1 (; Ojriz; + IZ,QWC> = A;;C (A.14)

A.1.2 The gradients for each layer

Using A.3), (A.4), (A.5) and @A.10) the gradient of the error function can now be con-
structed for each layer. For the output layer:

OE;, . Oyt
0 20 0015

= Awwdi falag)?]
k/
= foay,)d1.2; (A.15)
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For the hidden layer:

k

90, 90,
=Y falal)dhi; (A.16)
k
For the context layer:
OEY, : Oy,
00, 4= 00,
= filal)digt (A.17)

k
Note that in an actual application the valuesdoandn have already been calculated in
the previous time step and can be kept in memory for refergmitee next time step.

The total gradient of the error function can now be obtaingddncatenating all
values into a vector of sizé’ (the total number of weights in the network) and summing
over alln. The gradient term ofA.2) is then added to obtain the entire gradient.

A.2 Determination of the Hessian

To determine the step size in the conjugate gradient algoriand to calculate the
Bayesian evidence the Hessidnis needed, which is considered separately for the two
error partskp and Eyy

\%4
A=V’E(0) = BV’Ep+V*> a,Ew, (A.18)

v=1

The second term again is straightforward:

1% 1%
VY aBw, =Y o, (A.19)
v=1 v=1

The first term, the error paifp, is first considered per pattern(time stept), E%,, and
later summed over all to obtain the full value. Using the previously derived firstigla-
tives of (A.15) - (A.17), the second derivatives can be found one by one.
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A.2.1 Both output layer

OE, 0 (0E,
00,001 00i; \ by
)

= ﬁk] (fé (a%)&i/z;-/)

35;@ ¢ 0f5(ak)

= Ayl z! (( flat)’ + f;’(ag,)cs,g,) (A.20)

Note that if the output function is lineaf;(a) = 1 and f; (a) = 0, and the result reduces
to Akk/Z;Z;.

A.2.2 Output layer and hidden layer

PE, 0 [0E,
90,00,  00;; \ 96y,

0
89]2 (fz(ak)5 )

ost 02, . da
= fia) (< gt + Sk ) + O e
= fé(ai:) ( j/f2(ak:) kji + 5kf1( ) ] ]z) f ( ) tzt hi:]z (A21)

Note that in case of a linear output, the last term vanishésthsit casef’ (a) = 0.

A.2.3 Output layer and context layer

OE, 0 (0E,
00,100, 005 \ 00y

9 (o
= o (fla)ot))
J
= F3(a) (I3 aahs + LT ) + Sy (A22)

Note that in case of a linear output, the last term vanishés thsit casef)/ (a) = 0.
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A.2.4 Both hidden layer

PEL, 0 (0F,
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t k t Yk t 7 k
(hkf"i/aeﬂ % 90, ) + i 2 )aeﬂ

(f ( )hlli:]zhl;c] "i! + 5 1/%; ’q! ]i) + fél( )5t hi:]zh’t :| (A23)

Z e
k
> [fa(ah)
k
where the auxiliary variablé is defined as:
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with the starting condition fox:

0
le'”j’i’ji = W]Z (Aj//jll'll/) =0 (A26)
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A.2.5 Hidden layer and context layer
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80j2‘80j/1 N 80ﬂ a0 g'l
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with ¢ defined by
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A.2.6 Both context layer
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The final Hessian is obtained by concatenating all the vahtesa matrix of sizél’
by W, by summing over alt and by adding the part of equatiof.(9).

A.3 Outer product approximation of the Hessian

Because the exact evaluation of the Hessian may becomeastoapproximation of the
Hessian is sometimes required. Consider the sum-of-sgjrer function, which is
repeated here for convenience:

|
Ep = 5 Z (yli - 02)2 (A.35)

then the second derivative df, to two arbitrary weightg, and 6, anywhere in the
network can be written in the form

82E 82 1 N c
56,50~ 0.9 [5 > > () — 20 + (02)2)]
q s r

1 1
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ayt 8yt azyt
=22 3 o6, T2 2 Wk —ok) gpap (A.36)

As the quantity(y. — o) is a random variable with zero mean, uncorrelated with the
value of the second derivative term, this whole term willdea average to zero in the
summation ovet (Hassibi and Stork1993. This term can therefore be neglected:

PE, &

00,00,

~ O vl
< £~ 90, 06,

~
~

(A.37)

This approximation is known as the outer-product approtiona As this term only in-
volves first derivatives of the outputs to the weights, whigre already derived in equa-
tions (A.4), (A.5) and A.10), the evaluation is much easier and faster than the exact
procedure.
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Summary

Bayesian Data Assimilation for Improved Modeling of
Road Traffic

This thesis deals with the optimal use of existing models phadict certain phenomena
of the road traffic system. Such models are extensively usAdvanced Traffic Informa-
tion Systems (ATIS), Dynamic Traffic Management (DTM) or Mb&redictive Control
(MPC) approaches in order to improve the traffic system. Aslrvaffic is the result
of human behavior which is ever changing and which variesridtionally, for each of
these phenomena a multitude of models exist. The scientdgi@lure generally is not
conclusive about which of these models should be prefer@te common problem in
road traffic science is therefore that for each applicatich@ce has to be made from a
set of available models. A second task that always needsgeri@med is the calibration
of the parameters of the models. A third and last task is tpégtion of the chosen and
calibrated model(s) to predict a part of the traffic system.

For each of these three steps, generddliia(measurements of the traffic system) is re-
quired. In this thesis, all three uses of data are summaintedata assimilationwhich is
defined asthe use of techniques aimed at the treatment of data in cober@ith models
in order to construct an as accurate and consistent pictdineality as possible. It com-
prises the use of data for model validation and identifiaa{ichoosing between models),
model calibration and estimation and prediction and spealfy deals with the interac-
tions between all these task this thesis, a Bayesian framework is used in which these
interactions can be treated consistently: solving one egelsteps automatically leads to
the solution of the other steps. Throughout the thesis, dhibration task is always per-
formed first using standard optimization techniques suae@®ssion or gradient-based
algorithms. Once all available models are calibrated, &cehman be made between them.
The selected model(s) can then be used to make an as acawditipn as possible.

One very important feature of the Bayesian framework isititakes the complexity
of models into account in the model comparison step. Moreptexnrmodels generally
show a lower calibration error than more simple models, livey do not necessarily make
better predictions. This is known as the problem of ovenfitti The Bayesian frame-
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work deals with overfitting by penalizing models which cantaore parameters and are
thus more complex. The Bayesian assessment of models @®dumeasure called the
evidence which balances between a goodness of fit to the calibrat&a set and the
complexity of the model. Besides this, the framework hasen@nefits. First, prior in-
formation can easily be included in each step of data assiion. Second, error bars can
be constructed on the predictions. This may be beneficidiggperformance or public
acceptance of ATIS, DTM or MPC systems. Thirdc@nmitteecan be constructed, in
which predictions of multiple models are combined. Comeeittgenerally produce more
accurate predictions than individual models.

The Bayesian framework for data assimilation is applietitee different phenomena:
(1) car-following modeling, (2) travel time prediction a(®) traffic state estimation using
a first order traffic flow model (the LWR model) and an Extendathian Filter. Finally, a
part of the research is devoted to speeding up the EKF suth taa be applied together
with the LWR model in real time to large networks.

Car-following behavior

Recent research has revealed that there exists large ¢peteity in car-following behav-
ior such that different car-following models best descuiféerent drivers behavior. The
choice of a car-following model thus has to be made for eadlvieual driver. Current
approaches to calibrate and compare different models #®domer do not take the com-
plexity of the model into account or are only able to compaspecific set of models.
Using the Bayesian framework for data assimilation theasulity of any set of mod-
els can be quantitatively assessed for each single drivethi$ research the Bayesian
framework for data assimilation is applied to two simple-ftdiowing models, the CHM
model and the Helly model. The workings of the Bayesian fraork are demonstrated
in a real-world experiment using 229 trajectories of dsvesho were in car-following
mode. Aggregated over all drivers, the probabilities ofhemmdel relative to the prob-
ability of all used models can be computed. This can serve@d ito a heterogeneous
microscopic simulation of traffic. The outcomes of this expent show that averaged
over all drivers the CHM model has a probability31f% and the Helly model o69%.

Travel time prediction

In this research different types of models are applied toptioblem of travel time pre-
diction: linear regression models and neural networkse@ lexperiments are performed
on an 8.5 km long stretch of the A12 motorway in the Netheandravel time data
was collected during a period of three months in early 2007 every experiment the
Bayesian framework is applied to calibrate a set of avalaibdels, to make choices be-
tween models and to make predictions of the travel timesll Bxperiments a&ommittee
is used.
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In the first experiment two linear regression models are .ubethis experiment the
framework is applied dynamically: each time step, the atdd measured travel times
and a set of historic loop detector data are used to rectdiltina models using standard
regression tools. After this regression (calibration) mssfied, the evidence measure as-
signs a preference for one of the two models over the othes.sIvategies are tested: (1)
the prediction of the model with the highest evidence is @s®t(2) the weighted average
of the predictions of both models is used, where the evidenaeed as a weight factor.
The results show that both models perform similarly well] #mat the committees show
a slight improvement of accuracy. A clear difference betwie two strategies was not
found.

In the second experiment feed forward neural networks age,usith one hidden
layer with different numbers of hidden nodes. The Bayesiaméwork is used to train
(calibrate) 84 different neural networks, and the evideneasure is used to select high-
potential networks. Using a separate validation data Betevidence is tested as a pre-
dictor of the true prediction error. It is found that theraisorrelation between the two,
but that the evidence is not a perfect predictor of a welfguaring neural network due to
several reasons: (1) the size of the data sets may be too sorthkt the validation error
does not equal the true error, (2) the models that are usedeqayre improvement, such
as weight pruning and (3) several assumptions were madelér ty solve the necessary
equations, such as the assumption that all distributiom&aussian. In the same exper-
iment a committee was tested using a simple average of tlwmets of a selection of
models, ranked on the evidence. It was found that the avenagkction error decreased
from 8.1% of the best individual neural network 8% for the committee. Finally, in
the experiment the construction of error bars was testatlitavas shown tha®7.4% of
the true travel time fell within the5% prediction intervals. The discrepancy between the
two can be attributed to the relative simplicity of the usednal networks.

In the third and final experiment feed forward neural netwaofkFNN) as well as
state-space neural networks (SSNN, a specific type of aresduor EIman neural net-
work) were applied. The SSNN generally contains more pararsi¢han the FFNN, but
potentially are more accurate because they can take timendepcies into account: a
typical problem of the necessity of balancing complexitgiagt the ability to fit to a data
set. For the Bayesian framework to be applied, the JacolmdrHassian of the SSNN
were derived (see Appendk). Then, the Bayesian framework could again be used to
compute the evidence for each model. In the experiments RINFknd 70 SSNN were
trained. The evidence was then used to form a committee ahheatworks to predict
the travel time on the selected motorway. The results shaitkie FFNN perform bet-
ter on a short prediction horizon (5 minutes ahead), whigeSBNN perform better on a
longer horizon (15 minutes). The results also show that feeafl a committee improves
the accuracy of the predictions. In this experiment thebeation error was found to be
a better predictor of the true error than the evidence. Negksss, the experiments show
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nearly no difference in performance of committees ranketherevidence or ranked on
the calibration error.

The first order model with an Extended Kalman Filter

In this research, two studies are performed on the appiicati a first order model (the
LWR model) in combination with an Extended Kalman Filter (EKo create a network-
wide estimate of the traffic state. The first study deals whih fact that the EKF it-
self contains parameters that require calibration. UdnegBayesian framework that has
also been applied to calibrate car-following models andelréime prediction models,
a method to calibrate the parameters of the EKF is derivedngubis result, the EKF
parameters can be dynamically adapted during simulatio@nlexperiment on a small
network it is then shown that the dynamic Bayesian choic@&mameters leads to nearly
the same accuracy compared to the optimal choice of fixedrdeas values. This result
is especially useful in large-scale applications, wherg iitnpossible to test all possible
fixed parameter values of the EKF.

Finally, the last study overcomes a large disadvantageeoEWF: it is too slow to
perform in real-time on large networks. To overcome thisopgm the novel Localized
EKF (L-EKF) is proposed. The logic of the traffic network isedsto correct only the
state in the vicinity of a detector. The L-EKF does not usardtirmation available to
correct the state of the network; the resulting accuracyvedver equal in case the radius
of the local filters is taken sufficiently large. In two expeeants, one on synthetic data
and one on real-world data, it is shown that the L-EKF is muastdr than the traditional
Global EKF (G-EKF), that it scales much better with the netngize and that it leads to
estimates with the same accuracy as the G-EKF, even if treergphetween detectors is
up to 5 kilometers. Opposed to the G-EKF, the L-EKF is hencigllyscalable solution
to the state estimation problem.



Samenvatting
Nederlandse vertaling van Bayesian Data Assimilation for

Improved Modeling of Road Traffic

Dit proefschrift gaat over het optimaal inzetten van besi@amodellen die gebruikt wor-
den om bepaalde verschijnselen van het wegverkeerssysteemorspellen. Dergelijke
modellen worden uitvoerig gebruikt om het verkeerssysteeunerbeteren, bijvoorbeeld
in geavanceerde verkeersinformatiesystemen, dynameteersmanagementsystemen
of modelvoorspelde regelingssystemen. Voor de beschgjvan ieder onderdeel van het
verkeerssysteem bestaan er in de regel verschillende lenodemdat verkeer het resul-
taat is van menselijk gedrag dat altijd aan verandering iedgg is en bovendien sterk
varieert van land tot land. De wetenschappelijke literaisiin het algemeen niet eendui-
dig over welk van deze modellen gebruikt zou moeten wordem d&gemeen probleem
binnen de verkeerskunde is daarom dat voor iedere toegassmkeuze gemaakt moet
worden uit een set van beschikbare modellen. Een tweedéeprobs dat de parameters
van deze modellen gekalibreerd moeten worden. Een derdeatsid taak is het toepas-
sen van de gekozen en gekalibreerde modellen om een vdorgpelmaken van een deel
van het verkeerssysteem.

Voor elk van deze drie stappen is in het algemdata (metingen van het verkeers-
systeem) nodig. In deze dissertatie zijn alle drie de gebiedharin data wordt gebruikt
samengevat aldata assimilatie dat gedefinieerd is alshét gebruik van technieken om
data in samenspel met modellen in te zetten voor een zo natigZk® consistent moge-
lijke reconstructie van de werkelijkheid. Het behelst hedirgiik van data om modellen te
valideren en te identificeren (het kiezen tussen modelteagiellen te kalibreren en om
schattingen en voorspellingen te maken en het gaat exjpbairemet interacties tussen
deze stappén In dit proefschrift is een Bayesiaans raamwerk gebruikirin op een
consistente wijze met de interacties tussen elk van de @@en wordt omgegaan: het
oplossen van €én van de drie problemen leidt automatigdiet oplossen van de andere
twee. In het hele proefschrift vindt telkens eerst de katierplaats, gebruik makend
van standaard optimalisatietechnieken zoals regresgjeagient-gebaseerde algoritmes.
Nadat alle beschikbare modellen zijn gekalibreerd kanolgens daartussen een keuze
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worden gemaakt. Het gekozen model kan of de gekozen modeli@men vervolgens
worden gebruikt om een zo nauwkeurig mogelijke voorspglienmaken.

Een zeer belangrijk kenmerk van het Bayesiaanse raamweek feet rekening houdt
met de complexiteit van modellen in de vergelijkingsstapekingewikkelde modellen
hebben in het algemeen een lagere fout na afloop van de kedidemn meer eenvoudige
modellen, maar zij maken niet noodzakelijkerwijs beterergpellingen. Dit is bekend
als het probleem van ‘overfitten’. Het Bayesiaanse raamweadt om met overfitten
door modellen te straffen die veel parameters bevatten emeer complex zijn. Bij het
Bayesiaans vergelijken van modellen wordt de ‘bewijsmgabruikt, een maatstaf die
de complexiteit van een model balanceert met de laagte véoutléjdens de kalibratie.
Daarnaast levert het gebruik van het raamwerk een aantat@mdordelen op. Ten eerste
kan voorinformatie gemakkelijk in iedere stap van de dasnaitatie worden verwerkt.
Ten tweede kunnen betrouwbaarheidsintervallen wordezkbad bijiedere voorspelling.
Dit kan belangrijk zijn voor het presteren en de publiekesptatie van verkeersinforma-
tiesystemen, dynamisch verkeersmanagementsystemerdefvoorspelde regelingssys-
temen. Ten derde kan met behulp van het raamwerkceemng& worden geconstrueerd,
waarin voorspellingen van meerdere modellen worden geowrald. Comités leveren in
het algemeen meer nauwkeurige voorspellingen dan indédumodellen.

Het Bayesiaanse raamwerk voor data assimilatie is in diéfpobirift toegepast op
drie verschillende onderdelen van het verkeerssysteevo@rtuigvolgmodellen, (2)
reistijdvoorspelling en (3) toestandschatten met eerteeersie model en een Extended
Kalman Filter (EKF). Tot slot is een deel van het onderzoekigeaan het versnellen
van het EKF opdat het real time toegepast kan worden in catibimet het eerste orde
model op grote verkeersnetwerken.

Voertuigvolgmodellen

Recent onderzoek heeft aangetoond dat er grote hetereigdi@staat in voertuigvolg-
gedrag, zodat verschillende modellen het beste het gearagerschillende bestuurders
beschrijven. De keuze voor een voertuigvolgmodel moetatagrer individu gemaakt
worden. Bestaande aanpakken om verschillende modellalibedren en te vergelijken
voor een bestuurder houden geen rekening met de comptesdtede modellen, of zijn
alleen in staat om met een specifieke set aan modellen omrielgabBayesiaanse raam-
werk kan gebruikt worden om de geschiktheid van alle soartedellen te kwantificeren
voor iedere individuele bestuurder. In dit onderzoek israamwerk toegepast op twee
eenvoudige voertuigvolgmodellen: het CHM-model en hetlydelodel. De werking
van het Bayesiaanse raamwerk is gedemonstreerd in eenragpemet 229 werkelijk
gemeten trajectorieén van bestuurders die hun voorgamdgden. Geaggregeerd over
alle bestuurders kan voor ieder model de waarschijnligkerden berekend relatief aan
de waarschijnlijkheid van alle gebruikte modellen. Dit kdienen als invoer van een
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heterogene microsimulatie van verkeer. De resultaten itaexgeriment laten zien dat
gemiddeld over alle bestuurders de waarschijnlijkheidheCHM modeB1% is en van
het Helly model9%.

Reistijdvoorspelling

In dit onderzoek zijn verschillende soorten modellen irejean reistijden te voorspellen:
lineaire regressiemodellen en neurale netwerken. Er zgneckperimenten uitgevoerd op
een 8,5 km lang stuk van de A12 tussen Zoetermeer en Voorlpglat stuk snelweg
zijn reistijden gemeten gedurende een periode van drie desan 2007. In ieder expe-
riment is het Bayesiaanse raamwerk gebruikt om meerderelleade kalibreren, om
keuzes te maken tussen de modellen en om voorspellingenevegidtijd te maken. In
elk experiment is ook een comité ingezet.

In het eerste experiment zijn twee lineaire regressient@dgliebruikt. In dit experi-
ment is het raamwerk dynamisch toegepast: iedere tijdgtaplie voorgaande gemeten
reistijden en een set van historische lusdetectordataitgtlom beide modellen opnieuw
te kalibreren door middel van standaard regressietechnidkadat de regressie (kalibra-
tie) was voltooid kon de bewijsmaat worden berekend om eerkeair uit te drukken voor
één van de twee modellen. Twee strategie en om een cognvi@rmen zijn vervolgens
getest om tot een voorspelling te komen: (1) alleen het moeé¢de hoogste bewijsmaat
wordt gebruikt om te voorspellen en (2) de voorspellinganh@de modellen worden ge-
wogen gemiddeld naar rato van de bewijsmaat. Het resuttaat 8an dat beide modellen
ongeveer even nauwkeurig voorspellen, en dat het gebruilega comité de resultaten
iets verbetert ten opzichte van de individuele voorspgll&en duidelijk verschil tussen
de twee strategie en is niet gevonden.

In het tweede experiment zijn feed-forward neurale netemigebruikt, met één tus-
senlaag met verschillende aantallen neuronen. Het Bayessaaamwerk is gebruikt om
84 verschillende neurale netwerken te trainen (kalibierBe bewijsmaat is vervolgens
gebruikt om een selectie te maken van kansrijke netwerken.aparte validatie-dataset
is gebruikt om de bewijsmaat te testen als voorspeller vawet&elijke voorspellings-
fout. Het resultaat toont dat er een correlatie bestaaetuds twee, maar dat de be-
wijsmaat geen perfect selectiemiddel is van nauwkeurigspellende modellen om een
aantal redenen: (1) de gebruikte dataset kan te klein zijnepmesentatief te zijn voor de
werkelijke voorspellingsfout, (2) de gebruikte modelleargen te worden verbeterd, bij-
voorbeeld door het verwijderen (‘snoeien’) van parametar) verschillende aannames
zijn gemaakt om de benodigde vergelijkingen op te kunneseloszoals de aanname dat
alle verdelingen Gauss-verdelingen zijn. In hetzelfdeseixpent is een comité getest door
simpelweg de voorspellingen van een selectie van modegjésurteerd op de bewijsmaat,
te middelen. De resultaten tonen dat de gemiddelde vodirsgefbut vang, 1% van het
beste individuele model daalt naar8% door gebruikt te maken van een comité. Tot
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slot zijn in het experiment de betrouwbaarheidsintervadietest. De resultaten laten zien
dat97, 4% van de werkelijke reistijden binnen &&%-betrouwbaarheidsintervallen lig-

gen. De discrepantie tussen de twee kan worden toegesolaanele relatief eenvoudige
structuur van de gebruikte neurale netwerken.

In het derde en laatste experiment zijn zowel feed-forwandae netwerken (FFNN)
als state-space neurale netwerken (SSNN, een speciaaltsoarent of Elman neuraal
netwerk) gebruikt. Het SSNN bevat in het algemeen meer peteasidan het FFNN,
maar kan potentieel ook nauwkeurigere voorspellingen makedat het rekening kan
houden met tijdsafhankelijkheden. Dit is daarom een typiorbeeld van de noodzaak
om het vermogen om een kalibratiedataset te beschrijveala@teren met de complexi-
teit van het model. Om het Bayesiaanse raamwerk toe te kupagsen zijn eerst de
Jacobiaan en de Hessiaan van het SSNN afgeleid (zie AppAjdRaarna is het raam-
werk gebruikt om voor ieder netwerk de bewijsmaat te berekein het experiment zijn
70 FFNN's en 70 SSNN's getraind. De bewijsmaat is daarnaugebsm een comité van
neurale netwerken te construeren om de reistijd te vodespeDe resultaten tonen dat
de FFNN beter presteren bij een korte voorspellingshor{sominuten vooruit), terwijl
de SSNN beter presteren bij een langere horizon (15 minu@al tonen de resultaten
aan dat het gebruik van een comité de nauwkeurigheid vamdespellingen verbetert.
In het experiment is gevonden dat de kalibratiefout in ditagjeen betere voorspeller is
van de werkelijke fout dan de Bayesiaanse bewijsmaat. Dies@min tonen de experi-
menten nauwelijks verschil in nauwkeurigheid van de cemitie gerangschikt zijn op de
kalibratiefout in vergelijking met een rangschikking oplzvijsmaat.

Het eerste orde model met een Extended Kalman Filter

In dit onderzoek zijn twee studies verricht naar het toegrassn een eerste orde model
(het LWR-model) in combinatie met een Extended Kalman FHEKF) om een netwerk-
brede schatting te maken van de verkeerstoestand. De strdie richt zich op het feit
dat het EKF zelf parameters bevat die moeten worden gekalihr Het Bayesiaanse
raamwerk dat eerder werd gebruikt voor voertuigvolgmaahedin reistijdvoorspelling is
toegepast om een uitdrukking te vinden voor de parametersetstEKF. Gebruik makend
van deze uitdrukking worden de parameters van het EKF gjdersimulatie voortdurend
aangepast. In een experiment op een klein netwerk is aangkiat de keuze voor
de dynamische Bayesiaanse parameterwaarden leidt tatdegelfde nauwkeurigheid in
vergelijking met de optimale statische parameterwaarBé@mesultaat is vooral bruikbaar
bij grootschalige toepassingen, waarin het onmogelijKésmaogelijke statische waarden
van de parameters van het EKF te testen.

Tot slot richt de laatste studie zich op een groot nadeel erEKF: het is te traag
om real time toegepast te kunnen worden op grootschaligeeenetwerken. Om dit
probleem te verhelpen is het nieuwe Lokale EKF (L-EKF) okiwid. De logica van het
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verkeersnetwerk wordt gebruikt om alleen de toestand inadghreid van een detector
te corrigeren. Het L-EKF gebruikt niet alle beschikbaremiatie om de toestand in het
hele netwerk te corrigeren; de resulterende nauwkeudgbeichter gelijk in het geval de
radius van de lokale filters groot genoeg wordt genomen. &etexperimenten, een op
een synthetisch netwerk en een op een grootschalig wérkeliyverk, is aangetoond dat
het L-EKF veel sneller is dan het traditionele Globale EKFEKF), dat het veel gunsti-

ger schaalt met de grootte van het netwerk en dat het leidctwttingen met dezelfde
nauwkeurigheid als het G-EKF, zelfs als de gemiddelde radstassen de detectoren 5
kilometer is. In tegenstelling tot het G-EKF is het L-EKF da@a een zeer schaalbare
oplossing voor het schatten van de verkeerstoestand.
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