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Preface

In April 2006, 10 minutes after I had graduated from my Master’s, I was approached by
my professor Frank Sanders with the question whether I wouldlike to perform a PhD.
Within a few days, I was talking to Hans van Lint about travel time prediction and a
possible PhD position. Although the start was a bit cautious, very soon the cooperation
between me and Hans became very positive (although Hans had to advise me to follow
a few additional courses on traffic theory). Soon I understood that without money, a
position would be hard to obtain. I started to write my first proposal for a grant (more
would follow), a Casimir grant in this case which I applied for together with Vialis in
Haarlem and which was denied because the plan was ‘too ambitious’. Nonetheless, the
contacts with Vialis were that good, that we all decided thata combined research program
was worth a shot. Therefore, the first of January 2007 I officially started my PhD career.
I would like to thank Vialis, and especially Wim Broeders, for enabling this start of what
was to become a very positive working experience, even though the combined research
program between the TU and Vialis didn’t work out in the long run.

And so the work had started. Besides the everyday pleasure oftrying to solve a Hes-
sian of some new model I was trying to use, the papers I delivered put me in great places.
The first paper I ever wrote immediately delivered me a trip toChina, which I very much
enjoyed. I got to know my colleagues better, and still remember vividly how we cele-
brated Pauline’s birthday elevated 400 meters above the ground in Shanghai, just after
Serge, Huizhao and I had a near-death experience in a taxi driving backwards on the
highway. One year later, I had the opportunity to present a paper in Surfer’s Paradise,
Australia. The one month trip that me and Pauline made afterwards was without a doubt
the best holiday I ever had. Of course, the trips were not always full of sunshine - one
‘Hoegaarden Grand-Cru’ too much made me swear never to drinkagain at the DTA con-
ference in Leuven, Belgium.

I was the luckiest of PhD’s with my supervisors. I valued my independence, and I
suppose they valued my independence too, but whenever I needed help, it was available.
Hans, I was always in close contact with you, being office neighbors, and I have always
valued greatly your ability to find time to help me out when I was stuck. Also, I valued
the very quick responses of Hans, Henk and Frank Sanders whenever I had written a
new paper. Within days, I could expect very serious and thorough remarks and questions
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ii Preface

which have helped to get my papers published. I would like to thank all three of you for
letting me do what I thought was good, but still steering me whenever I needed steering.

Already after a few months, I got to know Frank Zuurbier as notonly a good pingpong-
player and a hard worker, but also as an entrepreneur, and more importantly, as a friend.
Very quickly, we both decided that we did not want to work for aboss after our PhDs,
and we started making plans for billion-euro companies based on (in random order) GPS-
dating, track & tracing, horizontal candles, a website for trading puzzles, a GSM with
medical check-up abilities and Hitman Mobile, but (surprisingly) all ideas appeared not
to be good enough. Then, in 2008 we started a new adventure. For some months, we had
had the idea to use the model JDSMART after our PhDs to delivernew traffic information
services. Soon we decided that the perfect domain name for this was Fileradar.nl, but
discovered that the domain name was taken. Luckily for us, wemanaged to contact
the owners of the domain name, two young entrepreneurs of thefaculty of Aerospace
engineering who had just given up on the whole idea of being anentrepreneur. They were
so kind to share their experiences with us, as well as hand over the domain name, over a
very expensive diner in Amsterdam. I would like to thank bothof them for being so kind
(Frank, you still owe me half the diner!). The adventure thentook off. We started to apply
for funding wherever we could. We entered a competition called the Academic Year Prize,
for which we had to work our butts off but which was an extremely positive experience,
winning the second prize. From there on, we submitted for a Valorisation Grant at STW
(granted), we competed in the Delft Design and Engineering Award (did not even make
it to the finals) and, together with TomTom, worked on a tenderfor the NDW (denied).
Our last effort, the IMM-subsidy from the Ministry of Transport, Public Works and Water
Management, was finally granted in September 2010. The coming period will therefore
be very intensive, but I have very high confidence in a positive outcome, although I still
have my doubts about the billion-euroness of the undertaking. All in all, Frank, without
you there would be no Fileradar and I probably would have ended up working for a boss.
I am extremely grateful for having you as a colleague and a friend, and I hope that we will
continue to work together for many years.

Through the years I got to know several great roommates: Minwei, Femke, Thomas,
Maaike, Nina, Victor and Leila. Not only did they help me on many occasions when I
had questions regarding Matlab, Latex, mathematics or traffic science in general, but also
they ensured that there was a very positive atmosphere in room 4.31. Femke, I would
like to apologize for all those occasions where I shouted outa bit too loud looking for
my coffee-card or keys. Also, I would like to apologize to theentire department (and the
departments on Floor 3 and 5) for my enthusiasm at the pingpong table. Again, I might
have shouted out a bit too loud on occasions. On a more positive side, all the practice at
the pingpong table helped me to get to know most people at the department, helped me
to empty my brain between the Hessians and the programming ofJDSMART, and helped
me to become the Transport & Planning Pingpong Champion 2010. I might enter the
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world championship next year.
Besides my roommates, I got to know other colleagues as friends. Adam, thank you

for your laughs, for fitness and tennis, and for dealing with me storming into your room
when I needed a break. The same goes for the other inhabitantsof ‘the smart-room’ Olga,
Niels, Hao and Tamara. Kees and Theo, thank you for teaching me how to play pingpong
(can I now finally borrow that book about it?), and sorry for the remarks that I might have
made about your age. All Chinese colleagues, (especially Hao Liu, Hao Li and Huizhao)
thank you for teaching me your fantastic language and for themany great diners at the
Chinese restaurants in the Hague and Rotterdam. Mario, thank you for sharing your life
experience with me during our trip to Washington.

During my PhD, I could always count on the full support of my family. Rix, thank
you so much for always being there for me. Douwe, thank you forsharing your scientific
views with me and thank you for suggesting that I should make my thesis paper-based,
and Lars, you are a fantastic brother. Both of your, thank youfor being my paranymphs.
Peter, thank you for your continuous support. I love you all,not to forget all your partners
and my niece and nephew. My family-in-law, Cees and Tonny, Suzanne and Sipco and
the kids, I am a lucky man to have been married into your family.

Finally, I would like to dedicate a paragraph to the love of mylife, Pauline. First
of all, I would like to thank you from the bottom of my heart forsupporting me in all
those years and for being so patient, also when Frank and I hadto spend evening after
evening to finish a document or presentation. Also, I would like to thank you for listening
to me explaining something difficult that I was doing, even ifit was something extremely
technical which I didn’t even fully understand. Not only didyou support me, but you
also gave me the energy to keep going, and you put my feet back on the ground in those
cases where I became overenthusiastic. The last months havebeen very intensive, with
me working hard on the PhD, trying to build a company, and mostimportantly, the birth
of our fantastic daughter Eefje. Of course, without you neither of these three would have
been possible. I love you with all my heart and I thank you so much for loving me back.
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Chapter 1

Introduction

In this thesis, the focus will be onroad traffic. Road traffic has played a major role
in everyday human life over the past decades. It has led to economic growth and an
increased mobility and freedom of people, but it has also ledto a number of negative side
effects such as unsafety, traffic congestion and pollution.

1.1 Model formulation and data assimilation

Many different phenomena of the road traffic system have beenstudied over the decades,
to improve the performance of the traffic system or to alleviate some of the negative
side effects of traffic. For the description of these phenomena, over the years scientists
have proposed mathematical models to describe these phenomena, either deductively (by
reasoning based on axioms, laws, etc.), or inductively by investigated and interpreting
traffic data. In general, traffic science is mostly an empirical science where the induc-
tive formulation of models appears to be dominant. In Figure1.1 this process is depicted
schematically. On the left the real-world is drawn, which inthis case represents the road
traffic system. Sensors are used to measure certain aspects of this reality, which could be
(average) speeds of passing vehicles somewhere in the road network. Using such sensors,
data is collected, which usually needs to be cleaned and checked for validity after which
it is stored. This cleaned data can then be interpreted to analyze regularities in order to
develop new theories and concepts, as Bruce Greenshields for example already in 1934
analyzed that with an increasing density of vehicles the average speed has the tendency
to decrease (Greenshields, 1934). Based on these new theories, new hypotheses are pro-
posed to explain the observed phenomena, which are usually formulated in mathematical
models. These models are then used to make predictions of reality.

There are important interactions between the three steps ofdata acquisition, the devel-
opment of theories and concepts and model formulation. First of all, when a new math-
ematical formulation is formed based on a hypothesis, the model needs to be validated

1



2 1 Introduction

Figure 1.1: Schematic representation of the circle of modeldevelopment

against the original theory that was developed. This is called face validation. Generally,
the next step is to compare the model against (new, unseen) measurements of reality, to
see if the model is able to reproduce these measurements of reality. This is calledempir-
ical validation, or as Miguel de Cervantes wrote in 1615: ‘the proof of the pudding is in
the eating’1. In order for a model to make a prediction, it generally needshistorical and/or
real-time data for calibration and as input for predictions. The validated and calibrated
model can then make estimates and predictions of reality which can be used for a variety
of applications. All of these interactions are indicated inFigure1.1by arrows.

However, traffic is a system with stochastic properties because it is the result of human
behavior subject to temporarily or permanently changing external conditions (due to inci-
dents, large events, changing weather, globalization, changing political landscape or the
credit crunch to name a few). Furthermore, there are different types of roads (anywhere
from a one lane farm road to a twenty-six-lane freeway2) on which behavior of drivers
cannot be expected to be equal. Notably, there are also largedifferences of travel and driv-
ing behavior between countries (Pucher, 1988; Golias and Karlaftis, 2001; Özkan et al.,
2006), as well as large international differences in road layout, traffic laws and traffic
management. For many phenomena more than one plausible theory has been proposed
on the basis of the same empirical evidence. This has subsequently led to a multitude

1In fact, his original text was not about pudding but about eggs: ‘al freı́r de los huevos lo verá’, or ‘it
will be seen in the frying of the eggs’ (de Cervántes Saavedra, 1615).

2For example, the Katy Freeway in Houston, Texas is currentlybeing widened to 26 lanes.
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of mathematical models describing the same phenomena. For example, inOssen(2008)
eight different models were identified for the task of modeling car-following behavior,
and invan Hinsbergen et al.(2007) over a hundred different models were identified for
the prediction of single traffic variables such as flow or travel time.

Because of the fact that so many models exist for the description of the same traf-
fic phenomenon, a user that wants to model a certain traffic phenomenon generally
has to make a choice from a wide variety of models. When choosing between mod-
els one possible solution is to analyze them on certain properties such as mathematical
simplicity, numerical stability or computation speed (Daganzo, 1995b; Aw and Rascle,
2000; Ran, 2000; Nagel et al., 2003; Vlahogianni et al., 2004). A second approach is
to choose models based on their ability to predict reality (or measurements of real-
ity) (Smith and Demetsky, 1997; Lee et al., 1998; Huisken and van Maarseveen, 2000;
Nikovski et al., 2005). The former approach is close toface validationof multiple mod-
els, while the second can be interpreted as theempirical validationof multiple models as
indicated in Figure1.1.

From the previous, it appears that data is used for differenttasks in the circle of model
development: it is used to formulate new theories, to validate individual models against
reality, to choose one or more models from a selection of available validated models, to
calibrate the models so that they make optimal predictions,and finally as input to cali-
brated models for optimal estimates or predictions of reality. Because choosing between
models can be seen as validation of each model individually and comparing the relative
outcomes, often these two steps are taken together. It is clear that there are strong interac-
tions between all these steps: models can only be properly validated if they are calibrated
properly, and predictions are only expected to be accurate if the models are validated first,
and if they are calibrated.

This thesis deals with the use of data together with models that describe phenomena
that have been analyzed by scientists studying road traffic.The simultaneous treatment
of data and models is often termeddata assimilation(Robinson and Lermusiaux, 2001),
although the term has been used for various meanings depending on the field of interest.
In this thesis, data assimilation is defined as follows:

“Data assimilation is the use of techniques aimed at the treatment of data in
coherence with models in order to construct an as accurate and consistent
picture of reality as possible. It comprises the use of data for model vali-
dation and identification (choosing between models), modelcalibration and
estimation and prediction and specifically deals with the interactions between
all these tasks.”
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Figure 1.2: The focus of this thesis is on data assimilation in road traffic

1.2 Objectives and scope of this thesis

As the title of this dissertation indicates, this thesis focusses on data assimilation in road
traffic. Extensive literature studies, as will be presentedin Chapters2 - 7, reveal that no
method exists in the field of (road) traffic science that consistently deals with all steps of
data assimilation. The goal of this thesis is therefore to find a methodology that allows
for structural treatment of data in coherence with models. The methodology is required to
be applicable to a wide variety of models, because differenttypes of data and models are
used throughout all subfields of road traffic science. This scope is represented in Figure
1.2by the gray box.

This thesis proposes a unified method for the three tasks of data assimilation: model
validation & identification - calibration - estimation & prediction, applied to different
traffic phenomena. The thesis will specifically not use data to develop new models, but
will use data only to improve applications with existing models. Therefore, the goal of
this thesis is defined as follows:

“to find a unified methodology for data assimilation for a widerange of mod-
els describing different road traffic phenomena, so that more accurate and
consistent predictions can be made of the road traffic system”.

The remainder of this chapter is organized as follows. In1.3 the three tasks of data
assimilation that were identified above are treated more extensively. Then, in1.5a unified
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framework for data assimilation is described. In1.6 the outline of this thesis is treated,
followed by a description of the contributions of this thesis in 1.7.

1.3 The three tasks of data assimilation

There are three tasks in data assimilation: (1) the validation and identification of (the
best) model(s) for a certain application, (2) the calibration of the chosen model(s) for best
performance and (3) the use of data as an input to the chosen and calibrated model(s) for
an estimate or a prediction of reality. Each of these three are described in more detail
below.

1.3.1 Model validation and identification

A scientist who has formulated a new model needs to put his or her model to the test:
validation is required. Usually, models are validated first by analyzing the properties of
their outcomes to see if they do what they are intended to do and if they are internally
consistent (‘face validity’), and second by comparing the model with (measurements of)
the real traffic system (‘empirical validity’). In case models already exist for the task at
hand, it is even more interesting to see whether the newly developed model outperforms
existing models.

Even in the case when no new model has been developed, modelidentificationneeds
to take place: a scientist or practitioner who wants to modela certain phenomenon will
have to choose one or more models from all available models. Literature on model per-
formance generally is not conclusive about ‘the best model’due to differences in the
performance measures that are used, in the types, location (different countries) and layout
of roads that the models are applied to, in the type and size ofthe data sets used for the
comparison and in the methods used for calibration of the models (van Hinsbergen et al.,
2007).

Usually, models are chosen based on whatever is available orwhatever the scientist
or practitioner is familiar with. This thesis proposes to use a more systematic way for
choosing between multiple models using traffic data. Furthermore it should be noted that
apart from choosing between models, also the option exists of using multiple models in
parallel for the same task, and to combine their predictionsusing for example a weighted
average of the individual outcomes of the models. This is called acommitteeor ensemble.
In this thesis such a committee will be used on different occasions.

1.3.2 Model calibration

When a model is applied to a real world application, it almostalways requirescalibration.
The small or large amounts of data that are available to a scientist or a practitioner need to
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be used to tune the model to the specific situation that the user is building an application
for. This is done by setting theparametersto specific values that are expected to result in
the highest performance of the chosen model(s). The performance measure used to define
what the highest performance exactly is, as well as the method to optimize this measure,
is user defined and therefore heavily influences the outcomesof the calibration task.

1.3.3 Estimation and prediction

Finally, when the user has identified the model(s) that is/are best suited for his or her
application, and all models have been calibrated using data, then the chosen model(s) can
be used to make estimates or predictions about certain aspects of the traffic system.

In application of a calibrated model a separation betweenestimationandprediction
needs to be made. Estimation can be defined as a ‘prediction inthe past’, in other words,
a reconstruction of reality, while a prediction is in the future. The process for the two is
exactly the same: data (either historic data for estimation, or real-time data for prediction)
serves as input to the model, which then makes a prediction based on its mathematical
structure and its parameter values that were obtained through calibration.

Figure1.3schematically depicts the different steps of data assimilation and their inter-
relations. In order to systematically describe the mechanisms and interrelationships of the
steps identified in Figure1.3, first defineHq to be the underlying assumptions of a certain
modelq, which is part of a collection of modelsq ∈ M . Hq equals the model paradigm,
i.e. the blueprint of the model, including for example the mathematical structure of the
model, the type of data that should be used as input, the number and type of parameters
it contains and the variable(s) that is/are predicted with the model. Let us first take for
example the model validation step. Validation of such a hypothesis can be seen as trying
to find the user’s degree of belief that the hypothesisHq is correct. Such belief is based
on evidence in favor of or against the hypothesis. In1.4, different ways of reasoning to
quantify such a degree of belief are treated.

1.4 Belief, reasoning and evidence

Several mathematical “theories of evidence” have been proposed for the quantification of
someone’s degrees of belief in something, such asBayesian Inference, Dempster-Shafer’s
theoryor theTransferable Belief Model(TBM) (Brachman and Levesque, 2004). Each of
these frameworks tries to combine objective information such as statistical probabilities
with subjective information such as prior belief to expressthe user’s confidence in some
outcome. Dempster-Shafer’s theory is a generalization of Bayesian inference, and the
TBM is again an elaboration of Dempster-Shafer’s theory. The main difference between
these frameworks is that Dempster-Shafer’s theory also deals with concepts such as ig-
norance and confidence which is not part of the Bayesian inference framework, and that
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the TBM specifically includes the “open-world assumption”:it may well be that the set
of available alternatives is not exhaustive, so that there is reason to believe that an event
not described in the set of alternatives will occur, i.e.P (∅) ≥ 0. For example, when
tossing a coin one usually assumes that Head or Tail will occur. The open-world assump-
tion is that the coin could also land on its side, be hit by an accidentally passing bullet or
spontaneously dissolve in thin air so that neither Head nor Tail occurs. Apart from these
three frameworks, there are also related concepts such asFuzzy Logic(Zadeh, 1965) and
Possibility Theory(Zadeh, 1978).

Which framework to use is part a rather complex and long-running debate which is
inappropriate to repeat here. Eventually, it boils down to apersonal preference as it is
hard to win this debate based on arguments and because each ofthese techniques can be
interpreted in so many ways that there is for example even debate on whether Dempster-
Shafer’s theory is a theory or not (Smets, 1993). In this thesis, Bayesian inference is
chosen where everything is expressed as probabilities rather than for example possibil-
ities. Just as the outcomes of Bayesian inference are only asgood as the assumptions
that were made on for example its probability distributions, so are the outcomes of the
analyses made in this thesis only as good as this choice for Bayesian reasoning; if the
reader agrees with this choice, then he or she will also agreewith the outcomes, but if he
or she disagrees, then he or she will not support the outcomes. As most of the other belief
models are extensions on or related to Bayesian inference, the author believes that it is
possible to apply the alternative methods to the same problems.

The basis for the Bayesian inference framework for data assimilation has been laid
by the seminal work ofMackay(1992a, 1995). The book ofBishop(1995) deals with
the same subjects. In chapter 10 of that book the Bayesian framework is explained very
well, along with good examples and a thorough description ofits pros and cons. Finally,
Thodberg(1993) has written on the subject, and chooses a slightly different perspective
on the matter which helps for a better understanding. Each ofthese references are highly
recommended material for any interested reader. These works will also be referenced
many times throughout this thesis.

1.5 The Bayesian framework for data assimilation

In this subsection the Bayesian inference framework that has been chosen as a tool for data
assimilation will be described from the very beginning. Thederivation below is based on
the papers ofMackay(1992a, 1995) and the book ofBishop(1995). Following the order
of the data assimilation steps from Figure1.3 from top to bottom, the framework will be
described.
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Figure 1.3: The four uses of traffic data and the process of data assimilation

Model validation

In Bayesian inference, validation equals evaluating theprobability that the hypothesisHq

is correct. This probability is denoted byP (Hq). This probability quantifies the cer-
tainty (to the user) that modelq correctly describes the phenomenon under consideration,
i.e. that its blueprint is perfect for the description of thephenomenon. In other words,
validatingmodelq equalsevaluatingP (Hq).

As noted before, data can be used for validation, in which case it is an empirical
validation. DefineD to represent a certain data set that will be used for validation. The
interest is now in finding the conditional probabilityP (Hq|D), i.e. the probability that
the assumptions underlying modelq are right, given that the data setD is representative
for the underlying traffic process.

Using Bayesian inference, an expression for the conditional probabilityP (Hq|D) can
be found. This probability is usually called theposteriorprobability, indicating that it is
an outcome of the inference process. Bayes’ theorem in this case states:

P (Hq|D) =
P (D|Hq)P (Hq)

P (D)
(1.1)

In other words, the probability that the assumptionsHq that were made for modelq are
correct, given it has been calibrated to a datasetD is known in case the following three
terms are known:

• P (D|Hq) equals the probability that the dataD can be produced by the modelq,
which is usually known as thelikelihood.

• P (Hq) equals the probability that the assumptions that were made for the modelq
are correct in itself, usually termed theprior.
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• P (D) equals the probability that the data itself are observed, usually termed the
normalization factor.

Model comparison

As stated, evaluatingP (Hq|D) can provide an answer to how valid a model is. However,
the relative probabilities of two models, for exampleP (Hq|D) for modelq andP (Hr|D)
for another modelr, can also be used tocomparethe models. In other words, the model
identification step is very similar to the validation step.

Prior to this comparison, a user may have belief that a certain model is more likely
to be correct in its predictions than another, for example because of earlier experience or
because of a literature study. The priorP (Hq) allows for such belief to be incorporated
in the choice process. However, if a modeler has no ability orwish to include prior
information, then the termP (Hq) can be set equal for all models under consideration in
which case it can be omitted. Because the normalization factorP (D) is independent of the
model assumptionsHq, this term can also be omitted when comparing models. Therefore,
if no prior is included, the model identification can be performed by investigating the
likelihood term alone:

P (Hq|D) ∼ P (D|Hq) (1.2)

In this case, the likelihood term is sometimes also calledevidencefor modelq.

Model calibration

As stated before, for a fair comparison of models, the best possible parameter values need
to be found for each model. Define the set of parameters valuesof modelq by the vector
θq. If the same datasetD is used to find optimal values for these parameters, the result
of the calibration procedure can be described by the conditional probabilityp(θq|D,Hq).
This posterior probability describes the probability thatcertain parameter values are cor-
rect, given the assumptionsHq that describe what function the parameters have, and given
the data set that has been used. This posterior distributionof the parameters can also be
found using Bayes’ theorem:

p(θq|D,Hq) =
p(D|θq, Hq)p(θq|Hq)

p(D|Hq)
(1.3)

The evidence term of (1.2) can now be recognized as the denominator of (1.3). In (1.3)
the evidence represents a normalization factor. It therefore equals the integral:

P (D|Hq) =

∫ +∞

−∞

p(D|θq, Hq)p(θq|Hq)dθq (1.4)
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Equation (1.4) describes the interrelationship between the model validation/identification
step and the calibration step; one should not take place without the other, and if one of the
two posterior distributions is found, the other is found automatically too. Generally the
calibration is performed first, after which the validation or comparison is performed.

Estimation & prediction

The final step of the data assimilation process is the estimation or prediction step. Define
yq to be the vector of outcomes of a modelq. The prediction step is described by the
conditional probabilityp(yq|θq, D,Hq). Using the distributions of the parameters, the
outcome of such a prediction is thus not a single value, but a distribution of values. For
this last step, Bayes’ rule can be used once more:

p(yq|θq, D,Hq) =
p(θq|yq, D,Hq)p(yq|D,Hq)

p(θq|D,Hq)
(1.5)

If a likelihood function is assumed for this prediction step(a distribution of the data that
is used for the prediction step), as well as a prior distribution, then the output distribu-
tion is known: the denominator of (1.5) equals the posterior of (1.3). This marks the
interrelationship between calibration and estimation/prediction.

Expressing each step in the data assimilation process in probabilistic terms, a frame-
work appears. This framework functions as a three-step procedure, where each step is
interrelated with the previous step. If an expression is obtained for a posterior distribution
in any of the steps, then this solution can be used to solve thestep ‘above’ or ‘below’.
In Figure1.3 these interrelationships are shown schematically. In general, the process
starts with a calibration procedure, after which the validation/comparison and the estima-
tion/prediction steps follow automatically.

As has been stated before, the goal of this thesis is to find a unified methodology for
data assimilation for a wide range of traffic models. The Bayesian inference framework
that has been described is hypothesized to be able to be just that. Throughout this thesis,
the framework will be applied to different models that are used in traffic science, ranging
from models describing the individual driving behavior to models describing traffic as a
whole. In the core chapters of this thesis, the framework will therefore be put to the test.

1.6 Outline of this thesis

This thesis consists of six edited versions of papers that have been submitted to interna-
tional journals and conferences and have all been peer reviewed. Two of the papers are at
the time of printing this thesis still under review. At each chapter an abstract will be given
such that the reader has a quick overview of the contents of that chapter. Furthermore, the
reference to the original version of the journal or conference paper will be included.
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Figure 1.4: The structure of this thesis’ chapters

Figure1.4 shows the eight chapters of this thesis. Chapter2 - Chapter7 consist of
edited versions of articles. The first five of these chapters are all based on the same
Bayesian framework that has been presented in1.5. The different applications of the
framework are presented in order of increasing complexity of the models. In Chapter2
the Bayesian framework is applied to models that predict car-following behavior that op-
erate at the individual level. These models contain only a few parameters. Because there
exist many different models for the description of car-following behavior and because of
heterogeneity in car-following behavior the framework is specifically used to compare
and choose between different models for each individual driver.

In Chapters3, 4 and5 the same framework is applied to the prediction of travel times.
These travel times are predicted on a freeway corridor. In Chapter3 the Bayesian theories
are first applied to two relatively simple regression models. Next, in Chapter4 the theories
are used with Feed-Forward Neural Networks, and in Chapter5 with the more complex
State-Space Neural Networks. The papers that are the basis for 4 and 5 are based on
nearly the same theories and originally contain about 30% overlap. This overlap has been
removed from Chapter5 so that Chapter4 and5 should be read together and have little
overlap.

The last level of application is on a network-wide scale. Onecommonly used model
to describe traffic on a network level is the macroscopic dynamic LWR model. One com-
monly applied tool for data assimilation with the LWR model is the Extended Kalman
Filter (EKF). In this thesis two chapters deal with problemsthat need to be overcome
before the EKF can be applied to the first order model for largescale traffic state esti-
mation and prediction. First of all the EKF contains parameters itself that need to be
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calibrated from data. Chapter6 applies the same Bayesian framework that was applied to
the problems of car-following and travel time prediction tothe Extended Kalman Filter.
Finally, current implementations of the EKF are too slow, a problem that is dealt with in
Chapter7. The Localized Extended Kalman Filter is designed in this chapter as an al-
ternative method to compute the posterior distributions ofthe Bayesian data assimilation
framework, which is shown to be much faster than current methods.

Finally, Chapter8 describes the conclusions and synthesizes the different chapters.
Also, in the same chapter recommendations for future research are proposed.

1.7 Contributions of this thesis

This section describes the contributions that this thesis has made. Two types of contribu-
tions are distinguished: scientific/methodological, and practical.

1.7.1 Scientific and methodological contributions

Scientific and methodological contributions are contributions that answer the question:
“what new knowledge has been gained by the research presentedin this thesis, and what
new methods have been developed in order to obtain this knowledge?”. Below, for the
three types of applications to which the framework is applied, and for all applications as
a whole, these contributions are summed up.

Car-following behavior

• This research has shown that the Bayesian framework for dataassimilation is able
to quantify inter-driver differences. It can compare any set of car-following models
of any type.

• Recent studies have suggested that there may be large inter-driver differences in car-
following behavior. In a case study on 500 m of Dutch highway,these inter-driver
differences have indeed been confirmed and quantified.

Travel time prediction

• In this research the Bayesian ‘evidence’ measure has extensively been used to cre-
ate committees of networks using different combination strategies, such as Winner
Takes It All or the Weighted Linear Combination. Experiments have shown that
both strategies lead to small improvements of the results, and that there appears to
be little difference in performance between these strategies.
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• A heuristic has been proposed to deal with models being calibrated by datasets of
unequal size by normalizing the likelihood.

• As the evidence is a predictor of the true generalization ability, in this research it is
used for the first time as a stopping criterion during training of neural networks. In
the thesis it is shown that this early stopping reduces computation time and at the
cost of only a small loss in accuracy.

• Experiments have revealed that the evidence is not a perfectpredictor of the true
generalization ability, because of imperfections of the models themselves, noise in
the data and approximations that need to be made to quantify the evidence.

• Experiments have nonetheless revealed that the use of the evidence to form a com-
mittee generally leads to an improvement of accuracy of the predictions and to an
improvement of accuracy of error bars compared to the performance of all individ-
ual models.

• In this thesis the exact Jacobian and Hessian for a recurrentneural network have
been derived, that allow for more accurate training of recurrent neural networks
using gradient-based methods, although at the cost of much higher computation
times.

Network-wide state estimation

• Using static parameters of the Extended Kalman Filter, thisthesis shows that there
is a clear optimum in the parameter settings, where a shift ofthe settings to one
side causes the corrections to be too weak and the data not to be used to its full
potential, while a shift of the settings to the other side of the optimum leads to too
much correction where noise is copied into the model.

• In this thesis a new method is proposed to set the parameters of an Extended Kalman
Filter dynamically. This method is derived in the same way asthe Extended Kalman
Filter was derived itself. In one experiment, the dynamic parameter settings achieve
approximately the same level of accuracy as the optimal static settings, independent
of the starting point that was used.

• Experiments have revealed that the traditional Global Extended Kalman Filter (G-
EKF) makes many negligible corrections to the traffic state as the cross-correlation
of the states at two locations in the traffic network that are far apart are generally
almost zero.

• Experiments have revealed that with networks larger then a few hundred (measured)
cells, the G-EKF becomes too slow to perform in real-time on anormal PC.
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• In this thesis a new methodology is proposed termed the Localized Extended
Kalman Filter (L-EKF) that approximates the G-EKF by makingmany sequen-
tial corrections to the traffic state, where each sequentialcorrection only corrects
the traffic state in the vicinity of a measurement (termed theradius of the filter).
Experiments have empirically validated that the L-EKF achieves the same level
of accuracy with much lower computation times, and have shown that the L-EKF
scales much more beneficial with the size of the network and with the number of
measurements.

• Experiments have revealed that an increasing radius of the L-EKF leads to a rela-
tively small increase in computation time, so that the radius can safely taken quite
large. This leads to the level of accuracy of the L-EKF being equal to that of the
G-EKF.

All applications combined

• This research shows that the Bayesian framework is applicable to a variety of prob-
lems in the field of road traffic.

• In each application, it has been shown that the framework hasbenefits that are
specific to the problem at hand, such as the quantification of inter-driver differences
in car-following modeling.

1.7.2 Practical contributions

Practical contributions are contributions that answer thequestion: “what can be done
based on the research presented in this thesis that couldn’tbe done before?”.

Car-following behavior

• Using the Bayesian data assimilation framework this thesishas paved the road for
a heterogeneous microscopic simulation, where multiple car-following models are
used in a single simulation environment. The framework can be used to quantify
the distribution of optimal3 models for a given group of drivers.

• This thesis shows that the Bayesian framework for data assimilation can be used to
find the optimal car-following model(s) for a single driver,so that for that driver the
vehicle position can be accurately predicted with error bars, which can be useful for
vehicle-to-vehicle or vehicle-to-roadside infrastructures.

3What is optimal depends on the error function that the user chooses.



1.7 Contributions of this thesis 15

Travel time prediction

• In this contribution it has been shown that the Bayesian evidence can be used to
choose between a set of available models. Therefore, users no longer have to choose
based on experience or gut-feeling, but based on a numericalmeasure that expresses
the user’s belief in the model.

• It has been shown that instead of choosing between models, the evidence can also
be used to form a committee of models so that multiple models’predictions are
made in parallel and are combined into one single prediction.

• This research shows that the uncertainty due to the simplifications made by the
models, due to noise in the data and possibly due to disagreement between different
models can be quantified in the form of error bars on the predictions (prediction
intervals).

Network-wide state estimation

• Using the L-EKF that has been developed in this thesis, largescale networks can
be simulated on a single computer. This allows for accurate,possibly nation-wide
state estimation and prediction.

• In this thesis a method is developed to automize the process of calibrating the pa-
rameters of the Extended Kalman Filter.

All applications combined

• In this research the applicability of the same Bayesian framework for data assim-
ilation is shown for a large variety of models describing a myriad of phenomena
observed in road traffic, such as car-following models, travel time prediction and
network-wide traffic state estimation.
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Chapter 2

Bayesian calibration and comparison of
car-following models

This chapter is an edited version of van Hinsbergen, C. P. I.,van Lint, J. W. C., Hoogen-
doorn, S., and van Zuylen, H. J. (2010f). A unified framework for calibration and com-
parison of car-following models. Submitted for publication to Transportmetrica.

Recent research has revealed that there exists large heterogeneity in car-following behav-
ior such that different car-following models best describedifferent drivers’ behavior. A
literature review reveals that current approaches to calibrate and compare different mod-
els for one driver do not take the complexity of the model intoaccount or are only able
to compare a specific set of models. This contribution applies Bayesian techniques to
the calibration of car-following model. The resulting evidence measure can be used to
quantitatively assess any set of models and describes how well different models explain
the car-following behavior of a single driver. When considered over multiple drivers the
evidence can be used to describe the heterogeneity of the driving population. In a test
case on actual data the Bayesian evidence indeed reveals heterogeneity and it is shown
how these differences can quantitatively be assessed with the Bayesian framework.

17
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2.1 Introduction

The longitudinal driver behavior of drivers in a traffic stream determines for a large part
the dynamics of the flow of traffic. This important role of longitudinal driver behavior has
resulted in a multitude of mathematical models to predict the longitudinal driving behavior
of individual drivers, such as the CHM model (Chandler et al., 1958), the IDM model
(Treiber et al., 2000), the OVM model (Bando et al., 1995) and the models proposed by
Helly (1959), Bexelius(1968), Gipps(1981), Addison and Low(1998), Lenz et al.(1999)
and Tampère(2004). Brackstone and McDonald(1999) present a historical review of
these and other car-following models.

In recent microscopic traffic modeling research, a number ofstudies have revealed
that there are large inter-driver differences in car-following behavior, such that different
car-following models may apply to different drivers (Brockfeld et al., 2004; Ossen et al.,
2006; Hoogendoorn et al., 2007a). Additionally, intra-driver differences (the fact that in-
dividual drivers may change their behavior over the data collection period) can cause
some car-following models to produce erroneous predictions during certain episodes of
the driver’s car-following behavior (Hoogendoorn and Ossen, 2005; Hamdar et al., 2008).
The effects of such heterogeneity of car-following behavior on the macroscopic prop-
erties of traffic are important (Hoogendoorn et al., 2007b). One possible solution is to
model traffic heterogeneously, i.e. using multiple car-following models in one simula-
tion. To achieve such a heterogeneous microscopic simulation, from all available models
the most likely best-performing models need to be identified. Ideally, this identification
process should be performed based on data, that is also used for calibration of the models.
This contribution describes both the calibration and identification process of car-following
models.

2.1.1 State of the art in model calibration and comparison

First, an extensive literature study has been carried out toinvestigate current calibration
and model selection methods. Four methods have been identified: using default parame-
ters, using the calibration error, using the validation error or using the Likelihood-Ratio
Test. Below, each of these methods is described.

Default parameter settings

One study was found where the default manufacturer parameters are used to evaluate the
performance of different models (Panway and Dia, 2005), even though they recognize the
importance of the parameter values on the performance of themodel. It is clear that these
default parameters cannot be used in every case, and that data should be used to calibrate
and compare the models.
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Calibration error approach

The second and most commonly used approach is to select models based on the outcomes
of the calibration procedure (Aycin and Benekohal, 1999; Chakroborty and Kikuchi,
1999; Rakha and Crowther, 2003; Ranjitkar et al., 2004, 2005; Ossen and Hoogendoorn,
2005; Ossen et al., 2006; Punzo and Tripodi, 2007; Kesting and Treiber, 2008). In most
cases these studies conclude that models containing more parameters perform better than
simpler models. However, the calibration error approach does not take the model com-
plexity into account. In many cases more complex models willnot make better predic-
tions, due to ‘overfitting’ of the complex models. The modelswith many parameters then
start predicting the noise rather than the underlying system. The use of calibration error
as a basis to select models should therefore be rejected.

Validation error approach

Instead of using the same data set to calibrate and compare the models, also a separate data
set can be used to make a selection from a set of models. The validation set approach is a
theoretically sound way to compare models in case the validation data set is representative
for the phenomenon that one is trying to model. Interestingly, different studies confirm
that more complex models do not always perform better (Wu et al., 2003; Brockfeld et al.,
2003, 2004; Punzo and Simonelli, 2005). For example, inBrockfeld et al.(2003) the
model with 20 parameters performs worse on the validation set compared to simpler mod-
els, a confirmation of the overfitting problem of overly complex car-following models.

Unfortunately, this approach requires two data sets to be available for one single driver.
Such data can usually only be collected under controlled conditions, where the same
drivers are asked in an experimental setup to perform the car-following task. This has two
major drawbacks: the results of experiments in controlled conditions may not always be
portable to a real-life’ situation, and usually only a smalldata set is available because of
the expenses that have to be made to equip vehicles and to attract participants. More data
may be collected monitoring the regular’ traffic system (using for example cameras or a
helicopter), but in those cases usually the data set of each single driver is too small to be
split in half. Therefore, a method that allows for all data tobe used for calibration, while
still preventing overfitted models to be selected, should inmost cases be preferred.

Likelihood-ratio test

The Likelihood-Ratio-Test (LRT) is a method that allows alldata to be used for calibra-
tion and model selection in parallel, while still preventing overfitted models to be selected
(Hoogendoorn et al., 2006, 2007a,b). More complex models receive a penalty, while mod-
els that fit well on data are promoted. This balances the goodness-of-fit to the data with
the model complexity.
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However, this method is only valid when used to comparehierarchically nestedmod-
els. This means that the simple model must be a special case ofthe more complex model
by setting one or multiple parameters to zero. Therefore,Hoogendoorn et al.(2006) for-
mulated first a general equation in which several car-following models could be fitted.
However, as not all car-following models that have been developed over the years may be
fitted into one general equation, this will not be possible when a modeler is interested in
trying many different car-following models.

Therefore, in this chapter a novel method is proposed to calibrate and compare car-
following models. It is an extension to the LRT method, and allows for the comparison
of any car-following model.

2.1.2 Structure of this chapter

In the Methodology section a Bayesian approach to calibrateand compare car-following
models is developed, after which it is applied to two relatively simple car-following mod-
els in order to show its workings: the CHM model and the linearHelly model. Next,
the result of the Bayesian ‘evidence’ as a selection mechanism is shown, after which a
discussion, a conclusion and recommendations are presented.

The Bayesian approach is a generalization of the LRT approach (Hoogendoorn et al.,
2007a). Prior probabilities are transformed into posterior probabilities for each parameter
in the car-following model, for which Bayes’ rule is used. Inthe Methodology section the
exact formulation of this new method for calibration and model selection will be presented
and it will be shown that this approach has several advantages over existing mechanisms:
(1) the most important feature is that it leads to a probabilistic approach to compare dif-
ferent models on the basis of posterior distributions of their parameters. This allows a
modeler to select the model that most probably best describes a certain driver’s behavior,
taking into account both the calibration error as well as themodel complexity. The main
contribution of the Bayesian approach compared to the LRT approach is that any model
can be used; (2) just as with the LRT approach prior information can be included when
calibrating the parameters of car-following models to ruleout unrealistic estimation re-
sults due to the fact that too little information is present on certain parameters within data;
(3) the approach can be used to combine the predictions of several models in a so-called
committee or ensemble of models in which different models predict the behavior of one
single driver, which may lead to a decrease in the error due tointra-driver differences; (4)
error bars (prediction intervals) can be constructed on thepredictions of the car-following
models.

In this chapter the focus will be on the methodology. To remain focussed, the workings
of the proposed procedure are then demonstrated using two relatively simple models and
using some simplifications. Although these simplificationsdo influence the results, they
do not prevent the illustration of the benefits of the Bayesian framework itself.
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2.2 Methodology

2.2.1 Bayesian Inference: from prior to posterior

For the Bayesian analysis, the interest is in finding the posterior probability density func-
tion of a parameter vectorθ = (θ1, . . . , θN )

T which contains allN parameters of a car-
following model under investigation after having used somedata setD for calibration.
This data set contains for example positions (lateral and longitudinal) and speeds of dif-
ferent vehicles, from which car-following models can be calibrated. This posterior prob-
ability is denoted byp(θ|D), e.g. the probability density function of the parametersθ

given the data setD. Bayes’ rule can be applied to find an expression for this posterior:

p(θ|D) =
p(D|θ)p(θ)

p(D)
(2.1)

wherep(D|θ) represents the distribution of noise on the data and corresponds to the
likelihood function,p(θ) is a prior probability of the parameters, which represents prior
knowledge of possible values for each parameter in our model, and wherep(D) is a
normalization factor.

Now define the prior probability as a multivariate Gaussian with meanθ and covari-
ance matrixΣ:

p(θ) =
1

(2π)N/2|Σ|1/2 exp
(

−1

2
(θ − θ)TΣ−1(θ − θ)

)

(2.2)

whereN equals the number of parameters of the model. A Gaussian shape is chosen
in this study because it simplifies the calculations and enables analytical expressions for
the posterior distribution of the parameters. Note that this assumption can be relaxed and
other distributions are possible.

If it is assumed that the noise of the data is Gaussian distributed as well with mean zero
and standard deviationσl, the likelihood functionp(D|θ) can be defined as a uni-variate
Gaussian (Hoogendoorn et al., 2007b):

p(D|θ) = 1

(σ2
l 2π)

K/2
exp

(

− 1

2σ2
l

K
∑

k=1

(vpred(k, θ)− vobs(k))
2

)

(2.3)

wherevpred(k, θ) is the predicted vehicle speed at time instantk with the parameter setθ,
vobs(k) is the observed (measured) vehicle speed at time instantk, and whereK equals the
number of observations of vehicle speed and position. Note that in this study the models
are calibrated on speeds alone, but that other likelihood functions which incorporate for
example the predicted positions of the vehicles are also possible.
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2.2.2 Description of posterior distribution of parameters

Substituting (2.2) and (2.3) into (2.1) results in an expression for the posterior distribution
of the parameters:

p(θ|D) =
1

Zpσ
K
l |Σ|1/2 exp

(

− 1

2σ2
l

K
∑

k=1

(vpred(k, θ)− vobs(k))
2

)

× exp

(

−1

2
(θ − θ)TΣ−1(θ − θ)

)

(2.4)

whereZp is a constant that originates fromp(D) and the ‘2π-constants’ in (2.2) and
(2.3). This posterior distribution of the parameters can be described by the most probable
parameter vectorθMP (the maximum of the posterior), and its covariance matrixΘ (the
width of the posterior), with the knowledge that it has a Gaussian shape.

The maximum of the posterior is denoted by the vectorθMP , and can be found by
maximizing the logarithm of (2.4):

θMP = argmax
θ

ln (p(θ|D)

= argmax
θ

−E(θ)
= argmin

θ

E(θ) (2.5)

whereE(θ) is defined as

E(θ) = K ln(σl) + Ep(θ) + El(θ) (2.6)

with El andEp defined by:

Ep(θ) =
1

2

(

θ − θ
)T

Θ
−1
(

θ − θ
)

(2.7)

El(θ) =
1

2σ2
l

K
∑

k=1

(vpred(k, θ)− vobs(k))
2 (2.8)

Notice that in (2.6) the expressions resulting fromZp and |Σ|1/2 have been omitted, as
these do not influence the solution of (2.5) and becomes zero for the derivatives that
are defined next. For the minimization of (2.6) (so to findθMP ), there is the condition
(Hoogendoorn et al., 2007a):

∇θE(θ) = Σ
−1
(

θ − θ
)

+∇θEl(θ) = 0 (2.9)

which needs to be solved for the model under consideration.
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The covariance matrixΘ of the posterior distribution (not to be confused with the
covariance matrixΣ of the prior) can be approximated using:

Θ(θMP ) = −
(

A(θMP )
)−1

(2.10)

whereA(θ) is the Hessian, given by:

A(θ) = ∇2
θ
E(θ) = Σ

−1 +∇2
θ
El(θ) (2.11)

Finally, for the description of the posterior a value for thestandard deviation of the likeli-
hood functionσl needs to be found, for which the derivative∂E/∂σl is set to zero. This
leads to

σ2
l =

1

K

K
∑

k=1

(vpred(k, θ)− vobs(k))
2 (2.12)

2.2.3 Bayesian framework for model comparison

Consider a certain car-following modelm with a set of assumptionsHm, and another
modeln with a different set of assumptionsHn. To compare these two models in how
well they describe the car-following behavior of a certain driver, the posterior probability
of a modelq ∈ (m,n) as a whole after it has been calibrated with dataD for this driver,
which is denoted byP (Hq|D), can be derived by again applying Bayes’ rule:

P (Hq|D) =
p(D|Hq)P (Hq)

p(D)
(2.13)

The termP (Hq) represents the prior probability of the modelq. If a priori there is no
preference of one type of model over the other (so there is belief that the assumptionsHm

are as likely asHn), then the priorP (Hq) is equal for allq. As the denominator of (2.13)
is independent of the modelsHq, the posterior probabilities of the modelsm andn can
in that case be compared by only investigating the termp(D|Hq), which is termed the
evidencefor the modelq (Mackay, 1995):

P (Hq|D) ∼ p(D|Hq) (2.14)

This evidence can be recognized as the denominator of (2.1) if the conditional dependence
on the model assumptionsHq is made explicit. The expressions used for deriving the
posterior distribution for the parameterscan therefore be used to derive expressions for
theevidence for the entire model. From (2.1) the evidence can be written in the form

p(D|Hq) =

∫

p(D|θ, Hq)p(θ|Hq)dθ (2.15)
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Because this term would require integration (marginalization) over the entire parameter
space, calculating it analytically is only possible in caseof very simple models, and even
then requires elaborate calculations. Although a numerical approximation could be used,
in this study an analytical approximation is chosen to be able to analytically describe the
evidence. Assuming that the posterior distribution is sharply peaked around its maximum,
the evidence is approximated as the value at this maximum times the width of the peak,
which in the multivariate case leads to the expression (Mackay, 1995):

p(D|Hq) ≈ p(D|θMP , Hq)×
p(θMP |Hq)

√

det
(

A(θMP )/2π
)

(2.16)

Together with (2.2), (2.3) and (2.11) a solution (approximation) is now found for the
evidence. Note that values for the prior covariance matrixΣ and the prior meanθ are
needed for this; the way the prior is defined will be treated later.

The evidence of (2.16) can be interpreted as consisting of two elements:

Evidence= Best-fit likelihood× Occam factor (2.17)

A higher best fit likelihood favors models that can explain the data well, i.e. that have a
low prediction error

∑

(vpred − vobs)
2. However, if only this would be investigated the

overfitting problem would occur as when the calibration error is used for model selection.
Therefore, the model’s performance is penalized by the Occam factor, which is always
smaller than 1 and is named after Occam’s Razor (Blumer et al., 1987). A model that has
more parameters, so which is more complicated, has a lower Occam factor and therefore
receives lower evidence. The evidence thus naturally reflects the trade-off between a good
fit and overfitting. Extensive literature is available on theimportance of this trade-off and
other features of the evidence (Thodberg, 1993; Mackay, 1995; Bishop, 1995; Sivia, 1996;
Mackay, 2003; van Hinsbergen et al., 2008a,d).

In the remainder of this contribution, the evidence is used to rank different car-
following models for individual drivers. This is achieved by determining the evidence
after the posterior distribution of its parameters has beenfound, after which a conclu-
sion can be drawn to which model probably describes which driver’s behavior best. The
Bayesian analysis will be applied here to two simple car-following models, for which the
evidence can be derived analytically.

2.2.4 Evidence for CHM model

To illustrate the derivation of the evidence for a car-following model, consider the CHM
model (Chandler et al., 1958). This stimulus-response model describes the delayed accel-
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eration of a vehicle as a function of the relative speed with respect to its leading vehicle:

a(t + τ, θ) = γ∆v(t) (2.18)

wherea(t + τ, θ) is the acceleration of the following vehicle at timet + τ given the
parameter setθ and∆v(t) the speed difference between the leader and the follower at time
t. In this study, one-step-ahead predictions are made, wherethe observed speeds of the
follower and its leader in the previous time step are used in the calculations. An explicit
time stepping scheme is used to solve the model, resulting inthe following numerical
scheme for the speed at timet:

vpred(t, θ) = vobs(t−∆t) + a(t−∆t, θ)∆t (2.19)

with vobs(t−∆t) the observed speed at timet−∆t, and∆t the size of the time step which
should be sufficiently small. The acceleration is in this scheme determined by:

a(t−∆t, θ) = γ∆vobs(t−∆t− τ) (2.20)

The model has only one parameter that needs to be calibrated with data:

γ response parameter (1/s) (2.21)

For this model, the parameter vector is denoted asθ = γ. For the sake of this example,
the reaction timeτ is chosen to be a constant with a value ofτ = 1s, and not as a pa-
rameter. This heavy simplification is made to keep the discussion focussed on illustrating
the Bayesian framework and its benefits; the (complex) derivation of the derivatives to
τ is not required to show the workings of the framework. In a real world application,
the reaction timeτ does need to be calibrated with data, and derivatives for it would be
needed.

To analytically derive the evidence for the CHM model, first the gradient of (2.9)
needs to be computed:

∂E(θ)

∂γ
=

1

σ2
prior

(

γ − γprior
)

+
∆t

σ2
l

K
∑

k=1

vq(vp + γvq∆t− vs) (2.22)

whereγprior is the mean of the prior distribution andσ2
prior is the prior variance (previously

θ andΣ, but now for the one-dimensional case because the model onlycontains one
parameter), and wherevq, vp andvs are all observations at different time steps, defined
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by:

vs = vobs(k) (2.23)

vp = vobs(k −∆t) (2.24)

vq = vobs(k −∆t− τ) (2.25)

The Hessian of (2.11) is given by:

∂2El(θ)

∂γ2
=

1

σ2
prior

+
∆t2

σ2
l

K
∑

k=1

v2q (2.26)

To calculate the evidence, the most probable parameterγMP is required, for which (2.9)
needs to be solved. This is done numerically using standard Matlab optimization tools
as the analytical solution becomes rather complex. ThenσMP

l is calculated using (2.12),
γMP andσMP

l are substituted in (2.2), (2.3) and (2.11), and the resulting equations into
(2.16) together withγprior andσ2

prior, resulting in the evidence for the model.

2.2.5 Evidence for Helly model

As a second example of the derivation of the evidence for a car-following model, consider
the Helly model (Helly, 1959), another stimulus-response model with a higher complex-
ity. It is defined by:

a(t+ τ, θ) = α∆v(t) + β
(

∆x(t)−∆xdes(v(t))
)

(2.27)

∆xdes(v) = x0 + Tv (2.28)

wherea(t + τ, θ) is the acceleration of the following vehicle at timet + τ given the
parameter setθ, ∆v(t) the speed difference between the leader and the follower at time t,
∆x(t) the distance headway between the leader and the follower at timet and∆xdes(v(t))
the desired distance headway of the follower when driving atspeedv(t), the speed of
the follower at timet. Again, one-step-ahead predictions are made, where the observed
speeds and distances of the follower and its leader in the previous time step are used in the
calculations. The same numerical scheme as in (2.19) is used, but with the acceleration
now determined by:

a(t−∆t, θ) = α∆vobs(κ) + β
(

∆xobs(κ)−∆xdes(vobs(κ))
)

(2.29)

κ = t−∆t− τ (2.30)
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The model has the following four parameters that need to be estimated from data:

α response parameter(1/s) (2.31)

β response parameter(1/s2) (2.32)

x0 stopping distance(m) (2.33)

T minimum time headway(s) (2.34)

For this model, the parameter vector is denoted asθ = (α, β, x0, T ). Again, as with
the CHM model, the reaction time is chosen to be a constant with a value ofτ = 1s, and
not as a parameter.

The gradient and Hessian for the Helly model are derived analytically again, the result
of which will be omitted here as it involves quite lengthy equations. The most probable
parameter vectorθMP is estimated numerically using standard numerical tools inthe
Matlab software package, as the condition (2.9) is not easily solvable analytically. Then,
the same procedure as with the CHM model is used to calculate the evidence.

Prior distribution for CHM model parameter

The original work of Chandler, Herman and Montroll showed high variations between
subjects for the constantγ, between0.17s−1 and 0.74s−1 with a mean of0.37s−1

(Chandler et al., 1958; Brackstone and McDonald, 1999). A benchmarking study by
Ossen et al.(2006) conducted on a Dutch motorway using helicopter data showedthe
distribution of parameter values for the CHM model as shown in Figure2.1, more or less
confirming the spread of the original study of Chandler, Herman and Montroll. From the
results of these studies, a prior distributionN(γprior, σ

2
prior) = N(0.3, 0.04) is chosen.

Figure 2.1: The cumulative distribution of the parameterγ (denoted byc1 in the figure)
given byOssen et al.(2006)
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Prior distribution for Helly model parameters

Helly in his original work (Helly, 1959) estimated the mean parameter valuesα =
0.5s−1, β = 0.125s−2, x0 = 20m andT = 1s. The earlier mentioned benchmarking
study (Ossen et al., 2006) only presents CDFs for the parametersα andβ as shown in
Figure2.2, and not forx0 andT . Taking both these studies into account, the following
prior mean and covariance matrix are chosen (not taking intoaccount covariance between
the different parameter):

θ = (α, β, x0, T )
T = (0.25, 0.075, 20, 1)T

Σ =









0.1 0 0 0
0 0.01 0 0
0 0 40.0 0
0 0 0 0.4









(2.35)

Figure 2.2: The cumulative distribution functions ofα (c1) andβ (c3) given byOssen et al.
(2006)

Large variances are taken forx0 andT to reflect the fact that there is no reference study
available for estimates of the variance of these two parameters. However, the variances
are chosen in such a way that it is ensured that most of the mass(at least 95%) of the
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CDF is for values> 0, which is sensible in the light of the physical meaning of these two
parameters.

2.3 Experiment

To illustrate the workings of the Bayesian evidence the two models described in the
methodology section are applied to a vehicle trajectory data set of the A2 motorway
in the Netherlands, near the city of Utrecht, which was collected using helicopter data
(Hoogendoorn et al., 2003). The traffic state at the data collection period was congested
so that the drivers were mainly in car-following mode. The data covers approximately
500m of motorway stretch; the data interval is0.1s.

A selection was made in the dataset of drivers who were following one leader without
any lane changes of either follower or leader (229 drivers intotal). The posterior distribu-
tions of the parameters of the two models were then found after which the evidence was
calculated for each model for each driver. Note that the natural logarithm of the evidence
is used, as the denominator of (2.3) is taken to the power ofK, which means that the
likelihood becomes very large ifσl < 1 and very small ifσl > 1 in caseK ≫ 1. Given
that the number of measurements and predictions is in the order of 100 to 400 for each
driver, the log of the evidence is used to prevent numerical errors in the computations.

2.4 Results

Figure2.3 shows the log evidence for the two models for 9 of the 229 drivers. As can
be seen, the evidence assigns a preference over different models for different drivers:
for some, the Helly model is preferred, while for others the CHM model is preferred. To
illustrate why this happens, consider drivers 47 and 48. Figure2.4shows the actual speeds
versus the predicted speeds that followed from the calibration by both the CHM model
and the Helly model for these two drivers. The figure nicely illustrates the mechanism
of the Bayesian framework. After calibration for driver 47,the Root Mean Square Error
(RMSE) of the estimated versus the measured speed was0.140m/s for the CHM model,
while it was 0.085m/s for the Helly model. The larger calibration error of the CHM
model is dominant over its lower complexity. The log of the evidence for the CHM model
was therefore lower this case, 11.4 versus 44.0 for the Hellymodel.

In the case of driver 48, the two models perform almost equally well. Both the CHM
model and the Helly model had an RMSE of0.096m/s. The evidence in this case prefers
the simpler model over the more complex model, and assigns a log evidence of 118.5 to
the CHM model and 115.0 to the Helly model. The Helly model in this case is punished
for its higher complexity: the extra parameters do not lead to a lower calibration error.

The Bayesian evidence is a tool for ranking models for each individual driver. The
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Figure 2.3: The natural logarithm of the evidence for the twomodels for 9 of the 229
drivers

posterior probability of the entire model can also be expressed. Two assumptions then
need to be made. First, equal priors are assumed for both models q ∈ (chm, helly),
P (Hchm) = P (Hhelly) = P (H). Second, a closed world is assumed, i.e. the CHM
and Helly models are considered to be the only two possible models for explaining car-
following behavior, such thatP (∅) = 0. The normalization factorP (D) in (2.13) can
then be expressed as:

P (D) = P (H) (P (D|Hchm) + P (D|Hhelly)) (2.36)

The probability of one modelq then equals:

P (Hq|D) =
P (D|Hq)

P (D|Hchm) + P (D|Hhelly)
(2.37)

Aggregated over all drivers, this mechanism can be used to see how well models perform
relative to the other models for a group of drivers. By takingthe mean of (2.37) over all
individual drivers, an expression is found for the probability of a model compared to the
probability of both used models. In Table2.1such aggregate results are presented. Note



2.5 Discussion and conclusion 31

that the closed world assumption is not very realistic in this case, because from literature it
is known that there exist many more car-following models that are not used in this study.
As Mackay (1992a) notes, inference is normally open ended: in the scientific process
new models will be tested or developed to account for the datathat have been gathered.
Nevertheless, the closed world assumption here aids to express posterior probabilities for
each of the two models, which are meaningful in comparison toeach other. For a more
detailed discussion on this assumption, see1.4.

Table 2.1: Probabilities of the CHM and Helly model averagedover all 229 drivers
Model P (Hq|D)
CHM 31.0%
Helly 69.0%

2.5 Discussion and conclusion

The Bayesian evidence that has been developed for the car-following models in this con-
tribution is shown to be useful as a tool for quantitatively analyzing inter-driver differ-
ences. It can be used to find a distribution of model parameters, as well as to compare
models based on how well they fit and the relative complexity of the models.

As can be seen from the experiment the inter-driver differences are confirmed: for
some of the drivers the CHM model suffices and the additional parameters of the Helly
model do not contribute to explaining their car-following behavior, in which case the
Helly model is penalized for its higher complexity. For others the additional parameters
do lead to a better explanation of the car-following behavior in which case the Helly model
is rewarded for this. The Bayesian evidence thus acts as a natural selection mechanism
when choosing between different car-following models. Note that for the two models
chosen in this study the Likelihood Ratio Test could also be applied, but that the evidence
is favorable over the LRT in the general case, because the evidence can be used for any
model, while the LRT can only be applied to hierarchically nested models.

The evidence, when normalized, represents a a probability of a certain modelq’s prob-
ability to describe one driveri’s behavior, as expressed in (2.37). If this probability is
averaged over all driversi of a certain dataset, an approximation of the best perform-
ing models for an entire population of drivers can be made, asis indicated in Table2.1.
Such probabilities can serve as a basis for a heterogeneous microscopic simulation: first
a model is drawn based on the posterior probabilities of the models, after which parame-
ters are drawn from the posterior distribution of the parameters of the drawn model. The
trajectories of the car are then predicted with the chosen model with the chosen param-
eter set. Future study will need to reveal if such a heterogeneous microsimulation better
describes reality.
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Other benefits of the Bayesian approach that have not been illustrated in this study
are the possibility to use the evidence to create a committee, and to construct prediction
intervals. A committee may improve the description of individual behavior (because it
may deal with intra-driver differences), while the prediction intervals may become useful
when predicting the trajectory of a single driver, in for example vehicle-to-vehicle or
vehicle-to-roadside architectures. Future studies will need to investigate these benefits of
the Bayesian calibration framework.
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Figure 2.4: The actual versus predicted speed for driver 47 and 48
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Chapter 3

Bayesian committee of regression
models to predict travel times

This chapter is an edited version of van Hinsbergen, C. P. I.,van Lint, J. W. C.,
and van Zuylen, H. J. (2008a). Bayesian combination of travel time predic-
tion models. Transportation Research Record: Journal of the Transportation Re-
search Board, 2064:73–80. Copyrightc© 2008 National Academy of Science,
http://pubsindex.trb.org/view.aspx?id=847531.

Short-term prediction of travel time is a central topic in contemporary intelligent trans-
portation system (ITS) research and practice. Given the vast number of options, selecting
the most reliable and accurate prediction model for one particular scientific or commer-
cial application is far from a trivial task. One possible wayto address this problem is to
develop a generic framework that can automatically combinemultiple models running in
parallel. Existing combination frameworks use the error inthe previous time steps. How-
ever, this method is not feasible in online applications because travel times are available
only after they are realized; it implies that errors on previous predictions are unknown.
A Bayesian combination framework is proposed instead. The method assesses whether a
model is likely to produce good results from the current inputs given the data with which
it was calibrated. A powerful feature of this method is that it automatically balances a
good model fit with model complexity. With the use of two simple linear regression mod-
els as a showcase, this Bayesian combination is shown to improve prediction accuracy for
real-time applications, but the method is sensitive in the event that all models are biased
in a similar way. It is therefore recommended to increase thenumber and the diversity of
the prediction models to be combined.

35
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3.1 Introduction

Advanced Traffic Information Systems (ATIS) are widely acknowledged to have the po-
tential to increase the reliability of road networks and to alleviate congestion and its neg-
ative environmental and societal side effects. However, for these beneficial collective ef-
fects to occur, reliable and accurate traffic information isrequired (van Lint et al., 2005).
One valuable and objective piece of traffic information is travel time. Real-time travel
time predictions can be used in dynamic traffic management (DTM) applications and in
commercial applications for pre-trip planning or en-routenavigation. Reliably and accu-
rately predicting travel time for ATIS is a complex task thathas been the subject of many
research efforts over the past few decades.

In the international literature, many studies have focusedon short-term travel time
prediction. Invan Hinsbergen et al.(2007) an overview of prediction methods is given.
Many types of prediction models can be distinguished. However, every prediction model
q has some set of assumptions (Hq) that can be physical, mathematical or statistical and
a parameter vectorθ that must be determined from a certain data setD; a travel time
prediction of modelq can be written asyq = G(x, θ)|Hq, wherex represents the current
input(s).

Given the myriad of prediction models and the complexity of travel time prediction, it
is a far-from-trivial task to select the prediction model that is most reliable, most accurate,
or both for a particular application. One possible way to approach this problem is to
develop a generic framework that can automatically combinemultiple models that run in
parallel.

Prior attempts to combine multiple prediction models all use the error the models
made in the previous time interval(s) (Petridis et al., 2001; Kuchipudi and Chien, 2003;
Zheng et al., 2006). However, predicting travel time in real time, a necessityfor most
DTM and commercial applications, has one major complication: it takes time (the travel
time, in fact) for the actual travel times to realize. Therefore, the actual travel time of the
previous time step often is not yet revealed, especially in congested situations in which
travel time prediction is most valuable. Using the error in the previous interval(s) when
combining travel time prediction models hence must be considered a theoretical exercise
and inapplicable to most real-time applications. Another approach is needed.

The goal of this study is to develop an alternative approach to the online combination
of travel time predictions. A model’s prediction and the probability that a model predicts
the travel time correctly are used for this approach (Figure3.2.1). For real-time appli-
cations, the probability must be calculated without looking at the errors in previous time
intervals; only ‘internal’ information about the models can be used, with errors that have
been revealed. In the model layer, multiple models simultaneously predict travel times,
and the probability that a model is right about its prediction is computed for each model.
The revealed prior prediction errors are stored in the data layer, which also provides in-
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formation about current traffic conditions. In the combination layer, Bayes’ theorem is
used to combine the predictions, using the output of the model layer and of the data layer.

Figure 3.1: Framework for combining prediction models

3.2 Methodology

In this section it is shown how to combine multiple prediction models using the frame-
work presented in Figure3.2.1. These efforts are based on the Bayesian framework for
model fitting and model comparison presented byMackay(1995), providing a principled
formalism that allows the ranking of the appropriateness (likelihood) of the model pre-
dictions, given the current inputsx, the parametersθ, the dataD with which these were
calibrated, and all the other assumptionsH underlying the model. The framework is the
same framework that has been described in Chapter2. Its derivation will be repeated here
so that this chapter is individually readable.

3.2.1 Bayesian framework for model fitting and comparison

AssumeM models in which a modelq ∈ M has underlying assumptionsHq (e.g., linear
and contains 2 parameters, or nonlinear and contains 10 parameters) and is calibrated on
a particular data setD. Using Bayes’ theorem, the posterior probability that a model is
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correct can be written as (Mackay, 1995, 2003):

P (Hq|D) =
P (D|Hq)P (Hq)

P (D)
(3.1)

P (D) =
∑

q∈M

P (D|Hq)P (Hq) (3.2)

The numerator of (3.1) can be interpreted as the evidence for modelHq (more formally,
P (D|Hq) denotes the probability of generating dataD using modelHq) times the prior
probability of modelq, P (Hq), which could be based on belief or expert knowledge or
statistics. Because the normalization constant in the denominator of (3.1) will be equal for
all hypotheses tested, one can compare the posterior probabilities of different hypotheses
on the basis of the numerator only. If it is further assumed that a priori each model is
equally probable (P (Hq) is equal for allq), then the different models can be evaluated
and ranked on the basis of the evidenceP (D|Hq) only. The question is, how does one
calculate this evidence?

Recall that most (travel time) prediction models are parameterized by means of some
parameter vectorθ, which is calibrated on some data setD, which in turn is assumed to
be representative of the problem at hand. This process of model fitting usually entails
minimizing some cost or objective functionE:

θMP
q = argmin

θq

(E(θq, D,Hq)) (3.3)

which reflects the sum of squared errors on the calibration dataD, for example, or some
other goodness-of-fit measure. Mackay convincingly arguesthat model fitting should be
viewed as probabilistic inference, in which the task is to find the maximum probable
parameter vectorθMP

q , given the available dataD and all our other assumptionsHq

(Mackay, 1995, 2003). That is,

θMP
q = argmax

θq

(P (θq|D,Hq)) (3.4)

In this case, Bayes’ theorem yields

P (θq|D,Hq) =
P (D|θq, Hq)P (θq|Hq)

P (D|Hq)
(3.5)

in which the denominator

P (D|Hq) =

∫

P (D|θq, Hq)P (θq|Hq)dθq (3.6)

now equals the evidence from (3.1). Because this term would require integration
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(marginalization) over the entire parameter space, calculating it analytically is possible
only in simple models and even then requires elaborate calculations. In practice, it must
be approximated.

To this end, first note that the model evidence (the denominator of (3.5)) does not de-
pend on the parameters; they are integrated out of the equation. As a result, the parameter-
fitting problem reduces to

θMP
q = argmax

θq

(P (D|θq, Hq)P (θq|Hq)) (3.7)

The first term in (3.7), P (D|θq, Hq), equals the likelihood of the data arising from
a modelHq with parametersθq, whereas the second term, the priorP (θq|Hq), can be
viewed as a term that bounds the parameter space to certain regions reflecting the prior
belief on (or the known or desirable statistics of) these parameters. For example, if param-
eters have physical meaning (e.g., capacities or critical speeds in traffic models), then the
prior enables us to incorporate these restrictions. In the Bayesian framework, model fit-
ting thus leads to a posterior distribution of the parametersp(θq|D,Hq) with a maximum
atθMP

q and varianceΘq, rather than one particular parameter vectorθMP
q .

3.2.2 Approximating the model evidence

Bayesians rank models on the basis of the evidenceP (D|Hq) for a certain modelq after
observing data.Mackay (1995, 2003), Bishop(1995), Sivia (1996) andMinka (2001)
put forward clever approximations to quantify this evidence on the basis of the quantities
calculated in the model fitting phase. Figure3.2 shows the concept for a simple model
with a one-dimensional parameter space. Letp(θq|Hq) be the prior accessible volume by
the model before fitting to the data (solid line). After the model is fitted to the data, the
accessible volume collapses top(θq|D,Hq) (dashed line). The evidence of (3.6) equals
the integral under this posteriorp(θq|D,Hq). Because this posterior usually is sharply
peaked atθMP

q , this integral can be approximated by the height of its peak (at θMP
q )

times its width,σθq |D, marked by the gray area on the right side:

P (D|Hq) ≈ P (D|θMP
q , Hq)× P (θMP

q |Hq)σθq|D (3.8)

If the prior is (approximately) uniformly distributed (meaning each value ofθ within
a particular range is equally probable), then (3.8) reduces to

P (θMP
q |Hq) ≈

1

σθq|D

→ P (D|Hq) ≈ P (D|θMP
q , Hq)×

σθq|D

σθq

(3.9)

The first term of the right side of (3.9) can be interpreted as the best-fit likelihood of the
model, which equals the height of peak of the dashed line in Figure3.2. A model with
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Figure 3.2: The evidence for the one-dimensional case. Adapted from (Mackay, 1995)

a higher peak is ‘secure’ about its fit. A higher best-fit likelihood therefore promotes
models with a good fit. The second term of Equation (3.9) penalizes models that either
have a large prior or a small posterior; it is called the Occamfactor. Occam’s razor is
the concept of preferring the simpler model over the complexmodel if they predict the
data equally well. Overly complex models with many parameters that are allowed to vary
over a large parameter space tend to overfit the data and generalize poorly. The second
term automatically penalizes a model that is overly complex, overfits the data, or both.
Equation (3.9) therefore can be written as

Evidence= Best-fit Likelihood× Occam factor (3.10)

The evidence automatically balances a good fit on the data, overfitting, and model com-
plexity. Recall that this same result was obtained in equation (2.17).

3.2.3 Normalizing the likelihood

In case the models that are to be compared do not all use the entire data setD, a problem
possibly occurs: how can two models be compared if the data setsD in P (Hq|D) are not
equal? Of course, when the data sets are completely different, such a comparison will
not be possible. However, when one model uses only a subset ofthe data setD while
another uses the entire data set, then a heuristic can be applied and the comparison can
still be made. If the models do not have equal numbers of data points which are used
for calibration, then this discrepancy can be corrected by taking the log likelihood and
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dividing over the number of data points. The corrected log likelihood for modelq equals

L̃q =
lnLq

Nq

(3.11)

The corrected log likelihood then can be converted back to a likelihood in the range of
[0, 1]. The evidence of (3.10) alters to the normalized likelihood times the Occam factor
Oq:

Evq ∝ exp(L̃q)× Oq (3.12)

Note that this heuristic will only work if all data comes fromthe same data setD but
when one of the models uses not all data fromD while another does.

3.2.4 The Occam factor for the multidimensional case

If a model has more than one parameter and the posterior distribution of the parameters
can locally be approximated by a (multi-dimensional) Gaussian distribution, then the gen-
eralized variance (the determinant of the covariance matrix Σq) can be used to describe
the ‘width’ of the distribution (Mackay, 1995). Note thatΣq is the covariance of the like-
lihood function, and not the covarianceΘq of the posterior distribution.The Occam factor
Oq of a modelq then equals

Oq = P (θMP
q |Hq)det

1/2(Σq) (3.13)

If the optimal parameters are found by using a cost function that is efficient (i.e., that
minimizes error variance such as the maximum likelihood estimate (MLE)), then the co-
variance matrix can be estimated as the inverse of the negative HessianAq of the log
likelihood functionlnLq (Greene, 2000):

Σq = (−Aq)
−1 =

(

−∂
2 lnLq

∂θ2
q

)−1

(3.14)

3.2.5 Combination strategies

The models can be combined using their evidence. Two combination strategies are pro-
posed:

• Winner Takes It All (WTIA)
Mackay proposes to evaluate the evidence to rank the models:the model with the
highest Evidence is chosen as the predictor (Mackay, 1995):

y(t) = yq(t) whereq = argmax
q

(Evq(t)) (3.15)
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• Weighted Linear Combination (WLC)
It was investigated whether the evidence can be used as a weight. All M models’
predictions are used but are multiplied by factors that add up to 1. If two models
have an equal probability, then the truth intuitively will lie between the two predic-
tions. A weighted linear combination is proposed in which evidence is normalized
and used as a weight for a model’s prediction:

y(t) =
∑

q∈M

wq(t)yq(t) (3.16)

wq(t) =
Evq(t)

∑

r∈M Evr(t)
(3.17)

3.3 Proof of concept: two simple models

To demonstrate how the above theory can be applied in practice, two linear regression
models where the evidence can be analytically solved are chosen: a linear regression
(LR) model and a locally weighted linear regression (LWLR) model. For the sake of
simplicity, a prediction horizon of 0 min ahead is chosen; predictions are made for the
travel time on a route for vehicles that leave in the current time window.

Rice and van Zwet(2004) demonstrate that there is an approximate linear relation-
ship between instantaneous travel time (ITT) and predictedtravel time at a time interval
t. Both models use the ITT, here denoted by the symbolζ , in which traffic conditions
(and therefore the speeds reported by loop detectors) are assumed to be constant for the
whole trip. The vehicle speed is considered linearly increasing or decreasing between two
detectors:

ζ(t) =
d1
u1(t)

+
X
∑

x=2

(

2(dx − dx−1)

ux(t) + ux−1(t)

)

+
L− dX
uX(t)

(3.18)

where

X = number of loop detectors on the route, (3.19)

dx = distance from loop detector to the beginning of the route, (3.20)

ux = speed reported by loop detectorx, and (3.21)

L = length of the route (3.22)

The first and last terms of (3.18) calculate the travel time from the beginning of the route
to the first detector and the travel time from the last detector to the end of the route. Using
the ITT, a simple linear model of the travel time equals

y(t) = α + βζ(t) + ε(t) (3.23)
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where

y(t) = travel time prediction at time windowt, (3.24)

ζ(t) = instantaneous travel time at time windowt, (3.25)

α, β = parameters to be estimated from data, and (3.26)

ε(t) = random error that is normally distributed, ε = N(0, σ2). (3.27)

MLEs of the parametersα, β andσ2 are desired. Both linear regression models use a two-
dimensional parameter vector, with parametersα andβ. If these parameters are chosen
to be drawn from the same parameter space, then the prior probability P (θq|Hq) is equal
for both models. Therefore, the Occam factorOq of (3.13) reduces to

Oq ∝ det−1/2 (−Aq) (3.28)

For this two-dimensional case, the HessianAq of the log likelihood function (so not the
Hessian of the posterior) equals

Aq =

[

∂2 lnLq

∂α2

∂2 lnLq

∂α∂β
∂2 lnLq

∂β∂α
∂2 lnLq

∂β2

]

(3.29)

whereL is the likelihood function, which is Gaussian because the parameters are assumed
to be normally distributed.

One assumption for the Bayesian framework is that the modelsare unbiased (i.e.,
the error distribution has0 mean). To achieve this, the biases of the two models of prior
predictions are incorporated into the predictions. It can be seen as the connection between
the data layer and the combination layer in Figure3.2.1: knowledge of prior errors is
included in the Bayesian framework by subtracting the mean of the (revealed) prior error
distribution of a certain model from the model’s prediction.

3.3.1 Model 1: Linear Regression

Assume that a prediction is to be made at time stepτ . Rice and van Zwet(2004) perform
a linear regression on a data set of ITTs and actual travel times that were measured before
time τ . Of the data set, only those points in history that have the same time of day are
used for regression. For example, if one wishes to predict the travel time at 8 a.m., the
model is fitted to a data set consisting of all pairs of TT and ITT at 8 a.m. in the data set.
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Best fit likelihood

For a linear regression, the least squares estimate equals the MLE and satisfies the objec-
tive function

min

τ
∑

t=1

(y(t)− α− βζ(t))2 (3.30)

whereτ is the current data interval. In total, betweent = 1 andt = τ there areN data
points that are used for fitting the linear function; in this case, only those points are used
of the same time of day. As stated before, the joint PDF ofy(t) is the product of the
marginal PDFs (Casella and Berger, 1990). Because the parameters are assumed to be
Gaussian distributed, the likelihood function equals

LLR(τ) =
τ
∏

t=1

1

σ
√
2π

exp

(

−(y(t)− α− βζ(t))2

2σ2

)

(3.31)

The most probable parameters are estimated by the followingequations
(Casella and Berger, 1990):

β̂(τ) =

∑τ
t=1(ζ(t)− ζ̄)(y(t)− ȳ)
∑τ

t=1(ζ(t)− ζ̄)2
(3.32)

α̂(τ) = ȳ − β̂ζ̄ (3.33)

σ̂2(τ) =
1

N

τ
∑

t=1

(

y(t)− α̂− β̂ζ(t)
)2

(3.34)

whereζ̄ is the meanζ andȳ is the meany. The best-fit likelihood is found by substituting
the estimated parameters in the likelihood function of (3.31).

Occam factor

First, the log-likelihood function must be obtained from (3.31):

lnLLR(τ) = −N
2
ln(2π)− N

2
ln(σ2)−

∑τ
t=1 (y(t)− α− βζ(t))2

2σ2
(3.35)

The HessianA(τ) is the second derivative of this log likelihood to the parameters (see
(3.29)). The negative value of the Hessian equals

−ALR(τ) =

[

−N
σ2 −

∑
ζ

σ2

−
∑

ζ
σ2 −

∑
ζ2

σ2

]

(3.36)
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The varianceσ2 can be obtained from (3.32). Substituting equation (3.36) in (3.28) gives
the Occam factor:

OLR(τ) ∝
(

N
∑τ

t=1 ζ(t)
2 − (

∑τ
t=1 ζ(t))

2

σ4

)−1/2

(3.37)

3.3.2 Model 2: Locally Weighted Linear Regression

Locally weighted linear regression (LWLR) is a ‘memory based’ method, where model
fitting is postponed until the moment of prediction (Atkeson et al., 1997; Zhong et al.,
2005; Nikovski et al., 2005). The input vector, consisting of all measurements before the
current point, is weighted by the proximity to the current measurements. This way, points
in history that are close to the current situation are weighted more heavily in the regression
than points farther away (Figure3.3). ITT is used as input for the LWLR, analogously to
the LR model described earlier.

Figure 3.3: In locally weighted regression points are weighted by the proximity to the
current point (x)

Best fit likelihood

The same linear model as in (3.23) is used, but the parameters are found by optimizing a
weighted least squares (Atkeson et al., 1997):

min
τ
∑

t=1

µ(t) (y(t)− αζ(t)− β)2 (3.38)
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with τ the current time interval. In contrast to the LR model, not only points at the same
time of day but all points in history for which the ITT and travel time are known are used
for regression. The termµ(t, τ) is a weight that is put on the input vector. Although
no substantial empirical evidence prefers a certain weighting function over all others, a
Gaussian kernel is often used (Atkeson et al., 1997; Zhong et al., 2005):

µ(t, τ) = exp(−δ(t, τ)2) (3.39)

δ(t, τ) =
|ζ(t)− ζ(τ)|

K
(3.40)

where

ζ(t) = an instantaneous travel time at timet some time in history, (3.41)

ζ(τ) = current instantaneous travel time at timeτ , and (3.42)

K = kernel width, which determines how quickly weights decline (3.43)

The prediction performance of the LWLR model was insensitive to theK value. The
cost function of (3.38) was flat, with values ofK between50 and150. Therefore, it was
decided not to varyK in optimizing the objective function but to set it as a fixed value of
100s(K = 100). Using the objective function of (3.38), the likelihood function becomes

LLWLR(τ) =
τ
∏

t=1

1

σ
√
2π

exp

(

−µ(t, τ)(y(t)− α− βζ(t))2

2σ2

)

(3.44)

and the most likely parameter estimates become

β̂(τ) =

∑τ
t=1 µ(t, τ)(ζ(t)− ζ̄)(y(t)− ȳ)
∑τ

t=1 µ(t, τ)(ζ(t)− ζ̄)2
(3.45)

α̂(τ) = ȳ − β̂ζ̄ (3.46)

σ̂2(τ) =
1

N

τ
∑

t=1

µ(t, τ)
(

y(t)− α̂− β̂ζ(t)
)2

(3.47)

Occam factor

The Occam factor can be determined by substituting the log likelihood in (3.29) and
substituting the result in (3.28), resulting in

OLWLR(τ) ∝
(

∑τ
t=1 µ(t, τ)

∑τ
t=1 (µ(t, τ)ζ(t)

2)− (
∑τ

t=1 µ(t, τ)ζ(t))
2

σ4

)−1/2

(3.48)
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3.4 Results

For this study, two data sets were available: one from license plate recognition cameras
at the beginning and end of the route, and one from 19 double loop detectors along the
whole route. The layout of the network is shown in Figure3.4.

Figure 3.4: The A12 network from Zoetermeer to Voorburg, theNetherlands

The selected route is a 8.5-km (5.3-mi) stretch on the A12 motorway in the Nether-
lands, from an on ramp (Zoetermeer) to an off ramp (Voorburg). License plate cameras
were placed at both ramps to record vehicle license plates, but only four of six charac-
ters were recorded because of privacy legislation. Individual travel times based on the
four-character matches were recorded for 95 days in the winter and spring of 2007. The
data were filtered for outliers, which are considerable, mainly because of coincidental
matches between the four recorded license plate characters. After the data were filtered
and visually inspected, the travel times of the vehicles leaving in the same 5-min period
were aggregated. The selected motorway has a considerable morning peak but rarely an
evening peak. Therefore, only the morning peaks between 7:00 and 10:00 a.m. were
selected from the data sets.

For the same periods, double loop detector data were available that allow for the cal-
culation of ITTs, used in both models. The loop detector datawere available in 1-min
arithmetic mean speeds for all vehicles that were recorded (i.e., time mean speeds). To
smooth out large variances, five ITTs were calculated for each 5-min period using (3.18)
and aggregated using the arithmetic mean.

The data sets were split in two: a training set of 80% (76 days)and a test set of 20%
(19 days). To correct for bias, for the second half of the training set (38 days), predictions
were made by the two models and the prediction errors were stored by model. Predictions
were then made for each 5-min period in the test set, and the mean of the prior error
distribution was subtracted from each prediction. For eachperiod, the predictions also
were combined using the two Bayesian combination strategies described earlier. This
way, 681 predictions of 5 min were made. The models and the Bayesian framework were
programmed in Microsoft Visual J#. The 681 predictions tooka total time of 410 s per
combination strategy on an Intel Pentium M 1.60 GHz, which included reading data files
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of previously stored ITTs and actual travel times and storing the results. Of this time, only
1.0 s was spent on calculating the evidence.

Table3.1lists the prediction results and three performance indicators: the root-mean-
square error (RMSE), which indicates the overall error; thebias, which shows a structural
difference between the actual and predicted travel time andthe root residual error (RRE),
which is the remaining error after correcting for bias. Notice that

RMSE2 = Bias2 +RRE2 (3.49)

Table 3.1: Results of the different prediction models
Prediction model RMSE (s) Bias (s) RRE (s)
LR 50.5 +1.6 50.5
LWLR 48.5 -2.5 48.4
Bayesian WTIA 48.0 -2.3 48.0
Bayesian WLC 47.9 -1.5 47.9

Table3.1shows that the Bayesian combined model has the best performance overall
and that the WLC strategy is slightly better then the WTIA strategy. Using only internal
information, calculated while calibrating the models, thecombined predictions show a
lower RRE and lower bias. However, on one day (Friday, April 13), the two models
largely underestimated travel time. It is hypothesized that an accident occurred on that
day, but no data are available to validate this theory. Nevertheless, this type of congestion
apparently was not present in the training set, causing bothmodels to perform badly.
April 13 data therefore were deleted from the results, because the Bayesian combined
model will never be able to create a good prediction from two bad predictions.

As an example of how the Bayesian framework combines the models, April 16 is
considered (Figure3.5). Especially at the peak of congestion, the Bayesian model can
minimize errors. For most periods of this day, the evidence factor follows the model with
the lowest prediction error. It especially can be seen at thepeak of congestion, between
8:25 and 8:50 a.m. The single models show large peaks in the absolute error, but the
combined model shows a more flat error, cutting off those peaks. Between 8:55 and 9:15
a.m., the Bayesian framework is sensitive to bias; the congestion dissolves rapidly. Both
models lag behind and overestimate the travel time (i.e., both have a positive bias). The
Bayesian combined model is bounded by the two prediction lines and therefore also shows
a positive bias. Moreover, the evidence wrongly approves the LWLR model over the LR
model. Although the lines of the two single models are close to each other, because of the
steep descent of the travel times the vertical distance between the prediction and the actual
travel time (the prediction error) is large. The effect of pointing out the wrong model is
therefore large on these occasions.
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3.5 Discussion and conclusion

Using the Bayesian framework, the LR and LWLR prediction models were successfully
combined, slightly improving prediction accuracy and reliability. Even though some sim-
plifications were made, such as the errors and the posterior of the parameters being nor-
mally distributed, using the evidence as a ranking mechanism or as a weight improved
results with limited extra effort. Additional research is needed to determine which com-
bination strategy generally is preferable. The Bayesian framework for combining predic-
tion models can be used for online DTM or commercial applications, because the often
unrevealed error in previous interval(s) is not needed. Only ‘internal’ information on the
models’ probabilities is needed, and it can be calculated after the parameters of the models
have been fitted to the data. This result is promising for bothscientists and practitioners
and encourages future research in this direction.

As the results show, the evidence was not always right about which model performed
best, having consequences on performance. One way of overcoming this problem could
be to introduce prior knowledge about the models’ performance under certain conditions.
It was assumed that every model is equally probably a priori (P (Hq) is equal for allq);
however, from prior predictions of the models, one may know which model performs
better under which conditions. For example, the LR model maygenerally outperform the
LWLR model in dissolving congestion. The Bayesian framework then balances model fit,
overfitting, model complexity, and prior model performance.

As the results indicate, the Bayesian combined model is sensitive to bias. It is bounded
by the minimum and maximum predictions of all models. If all models have a bias with
the same sign, then the Bayesian framework will have a largerprediction error than the
best of the single models. Therefore, it is recommended to increase the number and
diversity of the models inside the model layer of the framework. Doing so will decrease
the chance of all models having the same bias. More advanced prediction models, such as
neural networks or dynamic traffic assignment models, have shown promising prediction
results in different circumstances (van Hinsbergen et al., 2007). Adding these models to
the Bayesian framework can be expected to improve results.
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(a)

(b)

(c)

Figure 3.5: Data from April 16, 2007: (a) actual versus predicted travel times for the two
single models and the WLC combined model, (b) normalized evidence, and (c) absolute
errors of the two models and the combined model



Chapter 4

Bayesian committee of neural networks
to predict travel times

This chapter is an edited version of van Hinsbergen, C. P. I.,van Lint, J. W. C., and van
Zuylen, H. J. (2009d). Bayesian committee of neural networks to predict travel times with
confidence intervals.Transportation Research Part C: Emerging Technologies, 17:498–
509.

Short-term prediction of travel time is one of the central topics in current ITS research
and practice. Among the more successful travel time prediction approaches are neural
networks and combined prediction models (a ‘committee’). However, both approaches
have disadvantages. Usually many candidate neural networks are trained and the best per-
forming one is selected. However, it is difficult to select the optimal network. In commit-
tee approaches a principled and mathematically sound framework to combine travel time
predictions is lacking. This contribution overcomes the drawbacks of both approaches
by combining neural networks in a committee using Bayesian inference theory. An ‘evi-
dence’ factor can be calculated for each model, which can be used as a stopping criterion
during training, and as a tool to select and combine different neural networks. Along with
higher prediction accuracy, this approach allows for accurate estimation of prediction in-
tervals. When comparing the committee predictions to single neural network predictions
on the A12 motorway in the Netherlands it is concluded that the approach indeed leads to
improved travel time prediction accuracy.

51
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4.1 Introduction

The widely acknowledge potential of traffic information to alleviate congestion and to
decrease negative environmental and societal side effectshas led to a surge of research
into reliable and accurate traffic and travel time prediction models in the past few decades
(van Lint et al., 2005).

Among the most applied types of traffic prediction models areARIMA-
like time series approaches (Nihan, 1980; Lee and Fambro, 1999), Kalman filter-
ing (Okutani and Stephanedes, 1984), local weighted regression (Sun et al., 2003;
Zhong et al., 2005; van Hinsbergen et al., 2008a) (see also Chapter3), nearest
neighbor techniques (Smith and Demetsky, 1996; Clark, 2003), neural networks
(Dougherty and Cobbett, 1997; Zhang, 2000; Dharia and Adeli, 2003; van Lint et al.,
2005; Innamaa, 2005) and so called committee or ensemble approaches, in which mul-
tiple model-predictions are combined (Petridis et al., 2001; Kuchipudi and Chien, 2003;
Zheng et al., 2006; van Hinsbergen et al., 2008a). The last two approaches, neural net-
works and committees, have shown a high accuracy for prediction of traffic conditions
(van Hinsbergen et al., 2007). However, these two approaches exhibit some imperfec-
tions when applied in real-time applications, as will be shown in sections4.1.1and4.1.2.

One valuable and objective piece of traffic information is the travel time. Real-time
travel time predictions can be used in dynamic traffic management applications and in
commercial applications, such as pre-trip planning or en-route navigation. In Chapter
3 two simple regression models were applied for the task of travel time prediction, and
their predictions were combined using the Bayesian data assimilation framework. This
contribution presents a neural network-based committee approach as an alternative for
online travel time prediction, because, based on literature, their predictions are expected
to be more accurate. The same Bayesian framework that has been applied in Chapters2
and3 will also be applied to these neural networks.

4.1.1 Committees of prediction models

One way of improving prediction accuracy and reliability isto combine multiple pre-
diction models in a committee, where the outcomes are a weighted combination of the
outcomes of its members. Previous attempts to combine traffic prediction models typi-
cally use the errors the models make in the previous time intervals (Petridis et al., 2001;
Kuchipudi and Chien, 2003; Zheng et al., 2006). However, when applied to predicting
travel time, one major complication occurs: it takes time (in fact the travel time) for the
actual trip to be realized and consequently for a travel timeto become available. There-
fore, in most practical situations the actual travel time isnot available within one dis-
crete time step, especially in congested situations where accurate travel time prediction is
most valuable. Using the error in the previous intervals to combine travel time prediction
models must thus be considered a theoretical exercise and inapplicable to most real-time
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applications (van Lint, 2008).
In Chapter3 an alternative committee approach using Bayesian inference theory was

applied to the travel time prediction problem. In this theory, a model’s prediction as
well as the probability that a model predicts the travel timecorrectly (theevidencefor a
model) is used. The relative probabilities of the models arethen used to combine their
predictions. This approach does not involve evaluating theprediction error of the last
prediction(s) made, which makes it appropriate for online applications. In the chapter it
is demonstrated that prediction accuracy can be improved using this approach.

4.1.2 Artificial neural networks

It is common practice in the application of (artificial) neural networks for travel time
prediction to train many different candidate networks and then to select the best, based
on the performance on an independent validation set, to makepredictions. Although this
might intuitively make sense, there are a number of serious drawbacks to this approach.
In the first place, this implies that much effort involved in training networks is wasted.
More seriously, the fact that one neural network model outperforms all other models on
one particular validation data set does not guarantee that this neural network model indeed
contains the optimal weights and structure, nor that this model has the best generalization
capabilities. This completely depends on the statistical properties of the training and
validation set (e.g. the amount of noise in the data), the complexity of the problem at
hand and most importantly on the degree to which the trainingand validation set are
representative for the true underlying process which is modeled. The network performing
best on the validation set may therefore not be the one with the best performance on new
data (Bishop, 1995).

These drawbacks can be overcome by combining all (or a representative selection
of) trained neural network models in a committee. The Bayesian framework that is ap-
plied in Chapter3 can be used for this purpose. The theory of Bayesian inference to
train and combine a committee of feed-forward neural networks has been described in
Bishop(1995) andMackay(1992b, 1995) and has been applied in various fields of study
(Thodberg, 1993; Mackay, 1994; Penny, 1999; Baesens et al., 2002; Chua and Goh, 2003;
Lisboa et al., 2003). To the authors’ knowledge this approach has not yet been applied to
travel time prediction or traffic prediction in general.

4.1.3 Objective of this study

In this study the Bayesian approach for neural network basedtravel time prediction will
be used and its workings will be demonstrated on real data from the A12 motorway in
the Netherlands. In this approach two intrinsic and informative quantities are calculated,
which allow for real time model comparison and combination.First, during training, the
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so-called model-evidence is calculated, which ranks the models on the basis of the fit
on the training data taking into account the degree of over-fitting (inducing variance) or
under-fitting. Second, in actual operation the approach also allows the estimation of error
bars on each prediction, which indicate the degree in which the currently presented input
pattern matches with the input patterns seen during training. The committee approach
is compared to individual neural networks to show that the committee provides a more
accurate prediction of travel times and has better generalization performance.

As traffic systems are highly dynamic, it is expected that in order to make highly
accurate travel time predictions, neural networks that areable to incorporate these dy-
namics are needed, such as recurrent neural networks or state-space neural networks
(van Lint et al., 2005). However, to maintain focus on the workings and powerful proper-
ties of the Bayesian framework, relatively simple feed-forward neural networks are used
in this study.

4.2 Methodology

In this section first the general approach to Bayesian model fitting is presented. Subse-
quently, the construction of a committee of neural networksand the derivation of error
bars on each committee member’s predictions are discussed.

4.2.1 Feed forward neural networks for travel time prediction

Figure4.1 shows a typical feed-forward neural network topology with an input layer, a
hidden layer and an output layer. The input layer consists ofd input elements, the hidden
layer ofM hidden nodes and the output layer ofc outputs.

Figure 4.1: A neural network withd input elements, one hidden layer withM hidden
nodes andc outputs, where the biases are represented as an extra node (in gray)
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Mathematical description of a neural network

An outputyk, k = (1, . . . , c) can be described by the following equations:

yk(x) = f2

(

M+1
∑

j=1

θkjzj

)

(4.1)

zj = f1

(

d+1
∑

i=1

θjlxi

)

(4.2)

whereθji andθkj are calledweightswhich are adjustable and whose values need to be
estimated from data. Thebias weights(biases) are represented by an extra node in a
layer to the left (the gray nodes in Figure4.1) which have a constant output of1, so
xd+1 = 1 andzM+1 = 1. The functionsf1 andf2 are calledactivation functionsand apply
transformations to the weighted sum of the output of the units to the left. Common forms
of the activation of the hidden nodes are thelogistic sigmoidand thehyperbolic tangent
functions. In practice, the latter is found to give rise to faster convergence (Bishop, 1995).
A linear activation function is commonly used for the outputunits.

f1(a) = tanh(a) (4.3)

f2(a) = a (4.4)

The weights and biases together form a weight vectorθ with a total ofW weights (param-
eters). The input vectorxn = (xn1 , . . . , x

n
d) is drawn from a data setX = (x1, . . . ,xN)

of N data points. The output values of the networky(xn) = (y1(x
n), . . . , yc(x

n))
can be compared to target valueson = (o1, . . . , oc), drawn from a target data set
D = (o1, . . . ,oN). Only networks with a single output,c = 1, are considered in this
study, so the indexk will be omitted from now on.

Neural network training (model fitting)

The values of the weight vectorθ of the network need to be learned from data, which is
usually referred to as neural network training. Typically this learning mechanism is based
on a maximum likelihood approach, equivalent to the minimization of an error function
such as the sum of squared error:

ED =
1

2

N
∑

n=1

(y(xn, θ)− on)2 (4.5)

Preferably, a regularizer term is added to4.5 to avoid overfitting of the networks to the
training data. A commonly used regularizer is thepartitioned weight decayerror term
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which has empirically been found to improve network generalization (Krogh and Herts,
1995) and is invariant to transformations to the input or output data (Bishop, 1995). Let
us briefly explain this regularizer. DefineV groups of weightsθv, e.g. one for each layer
and one for the biases, and define the regularizer by:

EW =

V
∑

v=1

αvEW,v (4.6)

EW,v =
1

2

∑

θ∈θv

θ2 (4.7)

where the parametersαv control the extent to which the regularizer influences the solution.
The regularized performance (error) function then becomes

E(θ) = ED + EW (4.8)

The minimum of this performance function can be found by regular back-propagation
or one of its many variations such as gradient descent (Rumelhart et al., 1986) or the
(scaled) conjugate gradient algorithm (Williams, 1991; Johansson et al., 1991; Møller,
1993; Press et al., 2007). In the current study the scaled version of the latter algorithm is
used.

In the conjugate gradient algorithm, a series of search directionsdj through weight
space is constructed using the negative gradient−g = −∇E(θ), which can be found by
back propagating the errors (Hecht-Nielsen, 1989). A new search direction is set to always
beconjugateto or non-interferingwith all previous search directions, which ensures fast
convergence to a minimum. After having found a search direction, the length of the step is
determined using the HessianA = ∇∇E(θ), which can be exactly evaluated by a back
propagation approach (Bishop, 1992). In the scaled version of the conjugate gradient
algorithm, a Levenberg-Marquardt technique is added to ensure that the quadratic error
approximation that is used in the approach is valid for the step under consideration.

However, instead of using maximum likelihood techniques, neural network training
can be viewed from a Bayesian inference perspective (Bishop, 1995; Mackay, 1995).
This has some major advantages in the application of the neural networks. First, error
bars can be assigned to the predictions of a network. Second,an automatic procedure for
weighing the two error partsED andEW of the error function can be derived; the values
of these weights can be inferred simultaneously from the training data without the need
of a separate validation data set. Because all data is used for training, better models will
result. Third, theevidencemeasure emerging from the Bayesian analysis can be used as
an early stopping criterion in the training procedure. Finally, different networks can be
selected and combined in a committee approach using this evidence measure.
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4.2.2 Bayesian trained neural networks for travel time prediction

From a Bayesian inference perspective, the parameters in a neural network (or any model
for that matter) should not be conceived as single values, but as adistributionof values
representing various degrees of belief. The goal is then to find the posterior probability
distribution for the weights after observing the datasetD, denoted byp(θ|D).

Neural network training formulated as Bayesian inference

This posterior can be found using Bayes’ Theorem:

p(θ|D) =
p(D|θ)p(θ)

p(D)
(4.9)

wherep(D) is the normalization factor,p(D|θ) represents a noise model on the target
data and corresponds to the likelihood function, andp(θ) is the prior probability of the
weights. Although many forms of the prior and the likelihoodfunction are possible, often
Gaussian forms are chosen to simplify further analyses:

p(θ) =
1

Zw(α)
exp

(

−
V
∑

v=1

αvEW,v

)

(4.10)

p(D|θ) = 1

ZD(β)
exp

(

−β
2

N
∑

n=1

(y(xn, θ)− on)2
)

(4.11)

whereZW andZD are normalizing functions andα = (α1, . . . , αV ) andβ are called
hyperparametersas they control the distributions of other parameters, the weights w of
the network. The prior has zero mean and variances1/αv for every group of weights, the
likelihood function has zero mean and variance1/β. It can be seen that the exponents in
4.10and4.11take the form of the error functionsEW andED already introduced in4.8.
Substituting4.10and4.11in 4.9results in an expression for the posterior:

p(θ|D) =
1

ZS(α, β)
exp (−E(θ)) (4.12)

E(θ) = βED +

V
∑

v=1

αvEW,v (4.13)

whereZS(α, β) is a normalizing function. Consider now the maximum of the posterior
distribution,θMP (the most probable value of the weight vector). This can be found
by minimizing the negative logarithm of4.12, which is equivalent to minimizing4.13.
Because this equation is similar to4.8 (except for an overall multiplicative factor), the
maximum of the posteriorp(θ|D) can be found by simple and well-established back-
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propagation techniques (see section4.2.1).

Approximation of the posterior distribution of the weights

Although the most probable values for the weights (the peak of the posterior distribution)
can be found using normal back-propagation, the entire posterior distribution needs to be
evaluated to generate for example error bars on the predictions or to construct a committee
of networks, as will be shown later. A complication here is that the normalizing coefficient
ZS(α, β) of 4.12in most cases cannot be evaluated analytically. Therefore,the posterior
needs to be approximated, for example by a Taylor expansion (Mackay, 1992b), which
results in the posterior

p(θ|D) =
1

ZS
exp

(

−E(θMP )− 1

2
∆θTA∆θ

)

(4.14)

whereA is the Hessian given by

A = ∇∇E(θ) = β∇∇ED +
V
∑

v=1

αvIv (4.15)

whereED is the error function of equation4.5 andIv is a matrix with all elements zero
except for the elementsIii = 1 wherei corresponds to a weight from a groupv. This
estimation of the posterior distribution of the weights canbe used to construct error bars
and to create a committee of networks.

Approximation of the posterior distribution of the hyperpa rameters

In order to evaluate4.13, the values (distributions) of the hyperparametersβ andα in 4.13
need to be found. These can be approximated by the same Bayesian inference framework
that is used to approximate the posterior distributions of the weights. The posterior distri-
bution ofα andβ given the dataD is given by:

p(α, β|D) =
p(D|α, β)p(α, β)

p(D)
(4.16)

It can be shown (Gull, 1989; Mackay, 1992a; Bishop, 1995) that the maximum of this
posterior can be approximated with the following values forα andβ:

αMP
v =

γv
2EW,v

(4.17)

βMP =
N − γ

2ED
(4.18)
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whereγ =
∑V

v=1 γv is the so-called number of well-determined parameters, theelements
of which are given by:

γv =

W
∑

j=1

(

ηj
ηj + αj

(

V TIvV
)

jj

)

(4.19)

whereηj is thejth eigenvalue of the HessianA, V is the matrix of eigenvectors of the
HessianA andIv was defined when explaining equation4.15. In this summation negative
eigenvalues are omitted (Thodberg, 1993).

In practice, the optimal values forα andβ as well as the optimal weight vectorθMP

need to be found simultaneously. A simple heuristic is to usea standard iterative training
algorithm (i.e. the scaled conjugate gradient algorithm) to find θMP while periodically
re-estimating the values ofα andβ using4.17and4.18.

The initial values of the hyperparameters depend on the typical values of the input
(e.g. speeds, flows) and outputs (e.g. travel times). The data are transformed to ensure
that all of the input and target variables are of order unity,in which case it is expected
that the network weights also are of order unity, and thus thehyperparameters can be
initialized to one. If the variables are treated as independent, they can be transformed by

x̃ni =
xni − x̄i
σi

(4.20)

wherex̄i is the mean of theith variable andσi its standard deviation.

4.2.3 The evidence framework for committees of neural networks

In the next sections the Bayesian evidence framework for neural network training and
model comparison will be discussed.

Calculating the evidence for a single neural network

Consider a certain neural networkq with a set of assumptionsHq, such as the number of
layers and the number of hidden units. The posterior probability of this model given the
training dataD, P (Hq|D), can be determined using Bayes rule:

P (Hq|D) =
p(D|Hq)P (Hq)

p(D)
(4.21)

whereP (Hq) is the prior probability of modelHq andp(D|Hq) is called theevidence
for modelq. The evidence is a measure which intuitively and consistently combines a
model’s ability to fit the data with its complexity (Mackay, 1992a). It naturally embodies
Occam’s Razor, which states to prefer a simpler model over a more complex one given
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it predicts the data sufficiently well and can be used to for example compare different
models after they are trained. The evidence equals the denominator of 4.16 if the prior
P (Hq) is taken equal for all models and the conditional dependenceon the modelHq are
made explicit. Therefore, the evidence can be found using

p(D|Hq) =

∫ ∫

p(D|α, β,Hq)p(α, β|Hq)dαdβ (4.22)

If the same Gaussian approximation introduced in deriving4.16is assumed and the sym-
metries of neural networks with equal structures but different initial weights, correspond-
ing to for example exchanges of weights or sign-flip’ symmetries, are accounted for, the
following logarithm of the evidence for a two-layer neural network modelHq emerges:

ln p(D|Hq) =

V
∑

v=1

(

Wv

2
lnαMP

v +
1

2
ln

2

γv
− αMP

v EMP
W,v

)

− βMPEMP
D

−1

2
ln |A|+ N

2
ln βMP + lnM ! + 2 lnM +

1

2
ln

2

N − γ
(4.23)

where terms which are equal for all modelsHq are omitted, as only the relative values
of the log evidence of the different models are of interest aswill be shown later. For the
exact derivation of this equation, the reader is referred to(Thodberg, 1993; Bishop, 1995).

As the determinant of the HessianA in equation (18) is a product of the eigenvalues
it is sensitive to errors in small values of the eigenvalues.Therefore, eigenvalues smaller
than a certain cutoff valueǫ should be excluded when determining|A| to avoid numerical
problems (Bishop, 1995).

Using the evidence as a stopping criterion

The evidence can be used as a stopping criterion or as a guide for pruning, due to its
abilities to balance between model fit and model complexity (Thodberg, 1993). In this
study, the development of the evidence is monitored during training. It is found by looking
at many examples that the evidence flattens around the point when there is little to be
gained in the generalization performance.

Figure4.2 shows an example of this behavior for a case of predicting travel times
where a dataset of 59 days was randomly split in two parts: 80%was assigned to a training
set and the remaining 20% was used as a set to test the generalization performance. The
log evidence, calculated using4.23, of a network with 12 inputs and 15 hidden nodes
hardly increases after epoch 100. Around the same time, the error of the network on the
test set does not decrease anymore, although the training error does decrease if training is
continued. The training can therefore be stopped once the increase in the evidence falls
below a certain threshold valueς.
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Figure 4.2: Evidence and test error during training of a network with 12 inputs and 15
hidden units

Constructing a committee on the basis of the evidence

The evidence that was derived in section4.2.3can also be used to select promising net-
works and to construct a committee. In a committee, the predictions of multiple models
are combined. It has been shown that committees can lead to improved generalization
(Thodberg, 1993; Bishop, 1995). In this study, neural networks with different structures
and different weight distributions are combined.

Consider a generalized committee given by a weighted combination of predictions of
itsL members of the form (Perrone, 1994):

yGEN(x) =

L
∑

q=1

µqyq(x) (4.24)

The bestL committee members may be selected based on their evidence. Different types
of weightsµq are possible, but in this study a simple average over all committee members
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is considered,µq =
1
L
∀q (Thodberg, 1993; Mackay, 1994):

yGEN(x) =
1

L

L
∑

q=1

yq(x) (4.25)

Note that in Chapter3 the evidence was used as a weighting factor of the committee
members. Initial experiments that were performed indicatethat this did not result in
different outcomes. Therefore, a simple average was used here.

4.2.4 Error bars on each committee member’s predictions

If it is assumed that the output distribution arises from Gaussian noise on the output
variables, that the distributions on the weights are Gaussian, and that the posterior distri-
bution of the weights is sufficiently narrow so that it can be approximated by its linear
expansion aroundθMP , then the output distribution of a single neural network is given by
N(yMP , σt) whereyMP is the output of the network with the parameters set toθMP , and
the standard deviationσt can be found by (Bishop, 1995):

σ2
t = σ2

D + σ2
W =

1

β
+ kTA−1k (4.26)

whereA is the Hessian andk is defined by:

k ≡ ∇θy|θMP (4.27)

This standard deviation4.26has two contributions: the first term reflects the spread (the
uncertainty) in the target data, whereas the second term reflects the width of the posterior
distribution of (and thus the uncertainty in) the network weights. The standard devia-
tion can be used to construct error bars, for example 95% prediction intervals (twice the
standard deviation).

A third and additional source of output variance is in the spread of the predictions
between members of a committee. If the committee members’ predictions are combined
using the simple average of4.25, it can be shown that the combined error bar for a pre-
diction becomes (Thodberg, 1993):

σ2
total = σ̄2

D + σ̄2
W + σ2

C (4.28)

whereσ̄2
D is the average over allσ2

D, σ̄2
W the average over allσ2

W andσ2
C is the committee
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variance (the disagreement among the networks) given by:

σ2
C =

1

L

L
∑

q=1

(yGEN(x)− yq(x))
2 (4.29)

In the next section all ingredients discussed so far are summarized and presented in a
step-by-step description of the Bayesian committee approach.

4.2.5 Step-by-step procedure: committee of neural networks

To summarize all key concepts, below a step-by-step procedure is presented for making
the committee predictions.

1. Construct many different neural networks with differentnumbers of hidden units
and with different initial weight values.

2. For a model, draw initial weight values for the hyperparameters from their priors.

3. Train the networks by the scaled conjugate gradient algorithm.

4. Every step of the algorithm, re-estimate values forα andβ using4.17and4.18.

5. Calculate the evidences for each network every few epochs. If the increase in the
evidence relative to the previous epoch it was calculated falls below a certain thresh-
old ς, stop, otherwise go to step 3 and repeat the procedures.

6. After all networks are trained, choose a selection of the better networks on the basis
of their final evidences and construct a committee using4.25.

7. Combine the error bars using4.28and draw 95% prediction intervals by adding and
subtracting twice the standard deviation from the committee predictions.

4.3 Experiment

The theory of a committee of neural networks to predict travel times is applied to an
8.5 km (5.3 mi) long route of the A12 motorway in the Netherlands, from an on ramp
(Zoetermeer) to an off ramp (Voorburg) (see Figure4.3). This is the same network on
which the regression models were tested in Chapter3. On this route, 84 neural networks
with the number of hidden nodes varying from 3 to 14 and with different initial weight
values were trained, after which the networks with the highest evidence were selected
and combined. To investigate the effects of early stopping discussed in section4.2.3, the
networks were also trained using a fixed number of 400 epochs,using the same structure
and initial weight values as when trained with early stopping.
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Figure 4.3: The A12 motorway from Zoetermeer to The Hague

4.3.1 Data

At both the on ramp and the off ramp license plate cameras are placed that record each
vehicles’ license plate. Individual travel times based on matches of license plates were
available for 95 days in the winter and spring of 2007 (as in Chapter3). The data were
filtered for outliers, which were a considerable number, mainly due to the fact that only
four characters out of six are recorded due to privacy legislations. After filtering the data
and inspecting them visually, the travel times of the vehicles leaving in the same 5-minute
time period were averaged. A total of 47 peak periods of about3.5 hours each were
selected from the data set. These peak periods were randomlysplit over two subsets: 37
peak periods with which the networks were initially trainedand 10 peak periods on which
the performance of the individual networks and of the committee was validated.

As input to the neural networks, 12 double loop detectors, evenly spread over the
route, are available, reporting speeds and flows every minute. The speed data are avail-
able in one minute arithmetic mean speeds of all vehicles that are recorded (i.e. time
mean speeds). Due to the inherent bias in time mean speeds when used as a proxy for
space mean speeds, the speeds were corrected to space mean speeds using an estimate
for the variance of the speeds in the one minute interval described in van Lint (2004);
van Hinsbergen et al.(2008a).

4.3.2 Parameters

Initial values for the hyperparameters (section4.2.2) were set toαv = 1∀v andβ = 1.
The cutoff value when calculating the determinant of the Hessian (section4.2.3) was set
to ǫ = 10−10. The early stopping criterionς (section4.2.3) was set to 1%, where the
evidence was evaluated every 10 epochs.
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4.4 Results

Figure4.4shows the log evidence versus the test errors. A negative trend can be seen from
this graph: the lower the error, the higher the log evidence;the fitted linear line has anR2

of 0.52. As theR2 deviates from zero, the graph shows that the evidence is informative
about the accuracy of the predictions on a new data set, although the correlation does
show imperfections. Figure4.5shows the effect of varying the size of the committee on
the prediction error of the combined models. It shows that the optimal size is 4 for this
case, and that after that point there is no gain in increasingthe size of the committee.

Figure 4.4: The log evidence versus MAPE on the test set for 84different neural networks
shows a negative trend

Figure 4.5: The MAPE versus the committee size shows an optimal size of 4
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Table4.1 shows the Mean Absolute Percentage Error (MAPE) of the committee of
4 networks compared to the 4 individual networks’ predictions on the test set. It can be
seen that the committee leads to a small gain in accuracy: a decrease of almost 0.3% in
the error, compared to selecting the single network with thehighest evidence, is achieved
by retaining multiple networks and combining their predictions.

Table4.2presents the effects of the early stopping criterion discussed in section4.2.3
on the training time for all 84 neural networks and the mean committee prediction error.
The number of epochs when stopping early varied between 50 and 300, with a mean of
134 epochs. It can be seen that the total training time of the networks is much lower when
using the early stopping criterion, at the cost of only a small decrease in performance.

Table 4.1: The performance of the individual networks compared to the committee pre-
diction
Predictor Log evidence MAPE
#1 827.3 8.11%
#2 781.0 8.51%
#3 771.3 8.39%
#4 771.0 8.89%
Committee - 7.82%

Table 4.2: The effect of early stopping on training and on theprediction results for 84
networks
Stopping criterion Training

time (min)
Mean
epochs

Optimal
committee
size

Committee
MAPE

< 1% evidence increase 475 134 4 7.82%
400 epochs 1415 400 21 7.72%

Figure4.6 shows a particular day where the error bars are plotted together with the
committee predictions. The error bars are larger in the peakof the day, where the pre-
dictions are indeed deviating more from the actual travel times. It was found that 97.4%
of the actual travel times fell within the calculated 95% committee prediction intervals.
However, the prediction intervals are found to be too pessimistic on occasions, where the
first factor of4.26, 1/β, appears to be dominant. This is due to the fact that the errorterm
ED is relatively large for all networks, as they show oscillating behavior around the actual
travel times in some peak periods of the training days. This can be explained by the fact
that relatively simple neural network architectures, which are not capable of capturing all
traffic dynamics, are chosen in this study, as was already noted in the introduction (section
4.1.3).
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Figure 4.6: Prediction of travel time with prediction intervals. In congested situations,
the error bars are larger than in free flow situations

4.5 Discussion

As is shown in Figure4.4, the evidence is found to be informative on the generalization
performance of the neural networks. It can therefore be usedto select high performance
neural networks from all models that are trained, without having to split the training set
in two and using a part to test the generalization performance. The evidence framework
provides a convenient and simple way to select high performance networks, leaving all
training data to be used to train the networks. The correlation between the evidence and
the test error does show imperfections, as is reported by other authors as well (Mackay,
1992b; Thodberg, 1993; Bishop, 1995). Apart from the fact that the calculation of the
evidence involves several simplifications and assumptions, Mackay (1992b) notes that
a poor correlation between evidence and generalization error may be an indicator for the
limitations of the models. The neural networks used in this study all have one hidden layer
and use only one time period of flows and speeds as input; in other words, the predictive
power of these networks is limited due to their relatively simple input structures. It is
expected that if some of these limitations are overcome, forexample by using recurrent
or state space networks (van Lint et al., 2005), the correlation between the evidence and
the generalization error can become stronger. Furthermore, the test error is measured on a
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finite data set and therefore is a noisy quantity, causing part of the scatter in Figure4.4. It
is expected that the correlation becomes stronger when the networks are tested on a larger
data set.

The error of the committee is 0.3% lower than that of the individual neural network
with the highest evidence. This means that the effort in training many candidate networks
is not lost, but can be used to improve predictions. Besides this being positive for the
modeler, the gain in prediction accuracy will benefit the road user, as they will have more
accurate information available about the travel time they will experience. This may be
beneficial to alleviate congestion and to decrease negativeeffects on the environment and
the society.

The prediction interval provides a convenient way to informthe road user about the
uncertainty of the predictions. It is desirable to avoid giving the road user a false sense
of certainty when in fact the travel time proves hard to be predicted (by the selected pre-
diction models). The users’ trust of the information is an important factor for the impact
of ATIS applications (Kantowitz et al., 1997), as providing inaccurate traffic information
causes drivers to distrust the information and the possiblebeneficial effects of ATIS to
decrease. The estimation of the error bars appeared to be toopessimistic on occasions,
due to oscillating behavior of the models causing relatively large errors on training data.
When more powerful models are used, the data error termED is expected to decrease,
and asβ ∼ 1

ED
, from equation4.26it follows that the prediction intervals will decrease

as a result.

4.6 Conclusion

In this study two successful approaches to traffic prediction have been fused: combined
prediction and neural networks. The Bayesian framework forneural networks, which
is applied to traffic prediction for the first time, introduces a way of dealing with noisy
input data when training neural networks and naturally leads to prediction intervals. A
new stopping criterion using the evidence factor calculated for each neural network was
introduced in the contribution. Furthermore, the evidenceproved to be useful as a measure
to select high performance networks and to form a committee of travel time predictors.

The predictions of the committee with the selected high-evidence networks proved to
be more accurate than those of the individual networks. Thisleaves the modeler with a
procedure to construct a more accurate prediction with verylittle additional effort, but
more importantly, the end user with more accurate information. Together with the error
bars that follow from the Bayesian analysis, the end user does not only receive more accu-
rate traffic information, but also receives information on the reliability of the information
and of the traffic conditions. This leads to more useful information for commercial as
well as dynamic traffic management applications.

Future research will focus on the application of the theory on other traffic variables,
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such as traffic flow, which can serve as an input to Dynamic Traffic Assignment (DTA)
models. The DTA models can then be used to predict traffic conditions on entire road
networks or as a dynamic traffic management tool.

If the Bayesian learning of the network weights is applied tonetworks with more
powerful structures, such as recurrent networks, or with for example Bayesian pruning,
and if the analysis is applied to larger training and test sets, it is expected that the evidence
becomes more informative and the error bars become more accurate.
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Chapter 5

Bayesian committee of state space
neural networks to predict travel times

This chapter is an edited version of van Hinsbergen, C. P. I.,van Lint, J. W. C., and
van Zuylen, H. J. (2009e). Bayesian training and committeesof state space neural net-
works for online travel time prediction.Transportation Research Record: Journal of the
Transportation Research Board, 2105:118–126. Copyrightc© 2009 National Academy
of Science, http://pubsindex.trb.org/view.aspx?id=880488.

This chapter presents the Bayesian framework that enables aunified way of constructing
committees of an arbitrary number of models. The main contribution is that this frame-
work is expanded for recurrent neural networks, which involves deriving the gradient and
the Hessian of the network. State Space Neural Networks (SSNN), a special type of re-
current neural networks, are compared to Feed Forward Neural Networks (FFNN) and
the effect of the Bayesian framework on both types is investigated on a freeway in the
Netherlands. From a cross-validation procedure it can be concluded that for a short time
horizon, both Bayesian training and recurrence do not lead to improvements, but that for
a longer horizon both techniques are beneficial. It is shown that the use of a committee
leads to improved performance and the correlation between the evidence factor, which
follows from Bayesian model-fitting, with the generalization performance is compared
versus the training error and the generalization performance. It is found that the evidence
has lower correlation, which is an indication that (1) the dataset may be too small, (2) the
used models require improvement and (3) the approximation of the evidence is imperfect.
Future research will need to resolve these issues. However,the Bayesian framework will
already be beneficial to more complex problems, and leads to estimations of error bars on
the predictions, which may be useful for many applications.

71
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5.1 Introduction

In Chapter4 neural networks were applied for the task of online travel time prediction. A
Bayesian framework was used to train and combine neural networks of different structures
and sizes with a large data set. It was shown that this framework not only leads to better
selection between models, but that theevidencemeasure that follows from the framework
can also be used for early stopping, that accurate error barscan be constructed using the
Bayesian analysis and that multiple models could be combined in a so-calledcommittee
leading to lower errors.

The neural networks used in Chapter4 are feed forward neural networks. However,
the traffic processes are highly dynamic. Therefore, it is expected that travel time predic-
tions models which incorporate a dynamic component could further improve the predic-
tion accuracy. Good candidate models are Elman Networks or State-Space Neural Net-
works (SSNN) (van Lint et al., 2005), which have been shown to produce good results in
numerous studies (Yun et al., 1998; Dia, 2001; van Lint et al., 2002; Alecsandru, 2003;
Ishak et al., 2003) and has been applied to freeways as well as urban streets (van Lint,
2004; Liu et al., 2005). Therefore, in this chapter the framework of Chapter4 is applied
to SSNN. To the authors best knowledge, the evidence theory for Bayesian model fit-
ting and comparison, as described in (Mackay, 1992b; Thodberg, 1993; Mackay, 1995;
Bishop, 1995) has so far only been applied to Feed Forward Neural Networks(FFNN).

The main contribution of this chapter is the application of the previously used
Bayesian theory to recurrent neural networks, which has so far only been applied to feed-
forward neural networks. The SSNNs are then compared to FFNNs and the effect of using
the Bayesian theory is investigated.

5.2 Methodology

In this section first a brief general description of the SSNN is given. For a more elaborate
description of the mathematics, see Chapter4. Next, the Bayesian approach to fitting
the parameters of the SSNN is described. It is then shown thatthis yields an automatic
procedure for ranking and combining the SSNNs in a committee.

5.2.1 State Space Neural Networks for travel time prediction

Figure5.1shows a State Space Neural Network (SSNN) topology. It consists of an input
layer, a hidden layer, a context layer and an output layer. The input layer consists ofd
input elements, the hidden layer and context layer ofM hidden nodes and the output layer
of c outputs. The inputs are grouped by road section; every hidden node represents one
road section of the route under consideration and can be connected to a few or all inputs
of the route under consideration. The context layer, which effectively represents a short
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term memory of the internal states of the network, is fully connected to the hidden layer
to allow the model to learn the different (upstream and downstream) dynamics of traffic.

Figure 5.1: Topology of a state space neural networks, obtained fromvan Lint et al.
(2005)

Mathematical description of the SSNN

An outputyk, k = (1, . . . , c) can be described by the following equations:

yk,t(x) = f2(ak,t) = f2

(

M+1
∑

j=1

θkjzj,t

)

(5.1)

zj,t = f1(aj,t) = f1

(

d+1
∑

i=1

θjixi +

M
∑

l=1

+θjlzl,t−1

)

(5.2)

whereθji are the weights from the inputs to the hidden layer,θjl are the weights from
the context layer to the hidden layer andθkj are the weights from the hidden layer to the
output layer. Note that (5.1) is equal to (4.1) but that (5.2) now contains an additional term
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compared to (4.2). Also note that now the time step of the datat is explicitly included
as an index to all variables, because values of botht as well ast − 1 are used in the
computations. In the SSNN, the input layer may not be fully connected to the hidden
layer but the context layer is fully connected to the hidden layer. Also note that in the first
time step,t = 1, zl,t−1 = zl,0 will not exist, and that a constant valueC for zl,0 will be
chosen to initialize the context units with. The bias weights (biases) are represented by
an extra node in the input layer and hidden layer which have a constant output of 1, so
xd+1 = 1 andzM+1 = 1. The functionsf1(a) andf2(a) are called activation functions
and apply transformations to the weighted sum of the output of the connected units. A
logistic sigmoid is used for the hidden layers and a linear activation function is used for
the output units, just as in (4.3) and (4.4):

f1(a) = tanh(a) (5.3)

f2(a) = a (5.4)

All weights (parameters) together form a weight vectorθ of sizeW . The same definitions
for the input vectorxn, output vectory(xn) and target valueson as in Chapter4 is kept.
Note that in order for the context layer to remain consistent, the data set needs to consist
of a continuously chronological set of values, in which casethe time step indexk is equal
to the data indexn.

In matrix notation, the SSNN can be written in a state space form, hence the name
State Space Neural Network (van Lint et al., 2005):

yt = f2(θkzt)

zt = f1(θjxt + θlzt−1) (5.5)

The vectorsθj , θl andθk contain the weights from input to hidden, context to hidden and
hidden to output layers respectively.

Neural network training (model fitting)

The same training algorithm as in4.2.1is used for the SSNN. A slightly different defini-
tion will be used for the data errorED:

ED =
1

2

N
∑

t=1

C
∑

k=1

(yk,t − ok,t)
2 (5.6)
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The same regularizer is used:

EW =

V
∑

v=1

αvEW,v (5.7)

EW,v =
1

2

∑

w∈θv

w2 (5.8)

where the hyperparametersαv control the extent to which the regularizer influences the
solution. Adding also a hyperparameterβ for the data error, the regularized performance
(error) function then becomes

E(θ) = βED + EW (5.9)

The minimum of this performance function is found using the scaled conjugate gradient
algorithm (Williams, 1991; Johansson et al., 1991; Møller, 1993; Press et al., 2007).

5.2.2 Neural network training formulated as Bayesian inference

Just as in4.2.2the training can also be viewed from a Bayesian inference perspective. The
parameters in the SSNN are no longer conceived as single values, but as a distribution of
values representing various degrees of belief. The posterior distribution of the parameters
is given by

p(θ|D) =
p(D|θ)p(θ)

p(D)
(5.10)

Again, Gaussian forms are chosen for the prior and for the likelihood:

p(θ) =
1

Zw(α)
exp

(

−
V
∑

v=1

αvEW,v

)

(5.11)

p(D|θ) = 1

ZD(β)
exp

(

−β
2

N
∑

t=1

c
∑

k=1

(yk,t − ok,t)
2

)

(5.12)

Substituting5.11and5.10into 5.10results in an expression for the posterior:

p(θ|D) =
1

ZS(α, β)
exp (−E(θ)) (5.13)

E(θ) = βED +

V
∑

v=1

αvEW,v (5.14)
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The maximum of the posterior distributionθMP is found by minimizing the negative
logarithm of5.13, which is equivalent to minimizing5.14. As in Chapter4 simple and
well-established back-propagation techniques are used for this. Finally, the same approx-
imation for the hyperparameters as in4.17and4.18is used and the input and output data
is transformed using4.20.

5.2.3 Determination of the gradient

For training and for the Bayesian framework, the gradient ofthe error function towards the
weights needs to be known. In contrast to the feed-forward neural networks, where well-
established algorithms exist for the exact calculation of the gradient (Rumelhart et al.,
1986) and Hessian (Bishop, 1992) through back-propagation there exist no exact defi-
nitions for recurrent neural networks for these first and second derivatives yet. In this
section, the gradient is determined for each weight in the State Space Neural Network; in
the next section the same will be done for the Hessian.

To determine the derivative of the error function to the weights at a certain epoch,
consider the data errorED and the regularizer errorsEW,v separately, so:

∇E(θ) = β∇ED +∇
V
∑

v=1

αvEW,v (5.15)

The derivative of the second term is straightforward:

∇
V
∑

v=1

αvEW,v =

V
∑

v=1

αvIvθv (5.16)

whereIv is a matrix with all elements zero except for some diagonal elementsI ii = 1
wherei is the index in the weight vectorθ of a weight belonging to a groupv.

The gradient ofED is more complex. Because this term is a sum over allN
input patterns, the gradient of the error over one patternn (which is equivalent to
the error at time stept as noted before) will be considered first, which is defined as
ED,t = 1

2

∑

k (yk,t − ok,t)
2, and later be summed over all patternsN to obtain the full

gradient. Define the part of the error from one outputk asED,k,t =
1
2
(yk,t − ok,t)

2. For
an arbitrary weightθq in any layer of the network, it holds that it only influencesED,t

through the outputsyk, so the chain rule for partial derivatives can be applied:

∂ED,t

∂θq
=
∑

k

∂ED,k,t

∂yk

∂yk
∂θq

=
∑

k

δk,t
∂yk
∂θq

(5.17)
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whereδk,t = ∂ED,k,t/∂yk = (yk,t − ok,t). Substituting5.1, 5.2, 5.3 and5.4 in 5.17,
the derivatives for the weights in each layer are found. The exact derivation is given in
AppendixA; here, only the resulting equations are given:

∂ED,t

∂θkj
= δk,tf

′
2(ak,t)zj,t (5.18)

∂ED,t

∂θji
=
∑

k

δk,tf
′
2(ak,t)hkji,t (5.19)

∂ED,t

∂θjl
=
∑

k

δk,tf
′
2(ak,t)gkjl,t (5.20)

whereθkj is a weight in the output layer,θji a weight in the hidden layer andθjl a weight
in the context layer,δk,t = (yk,t − ok,t) and where the auxiliary variableshkji,t andgkjl,t
are defined by:

hkji,t =
∑

j′

θkj′f
′
1(aj′,t)ωj′ji,t (5.21)

ωj′ji,t = ∆j′jxi,t +
∑

l

θj′lf
′
1(al,t−1)ωlji,t−1 (5.22)

gkjl,t =
∑

j′

θkj′f
′
1(aj′,t)ηj′jl,t (5.23)

ηj′jl,t = ∆j′jzl,t−1 +
∑

l′

θj′l′f
′
1(al′,t−1)ηl′jl,t−1 (5.24)

where ∆ is the Kronecker delta symbol. Finally, the starting conditions ηjjl,1 =
∆jjC∀j, j, l andωjji,1 = ∆jjxi,1∀j, j, i hold. What should be noted is that the recur-
sive variables (of timet − 1) in an actual application can be kept in memory for the next
iteration, and can be overwritten at the end of each time stepto be used later.

The total gradient of the error termED can now be obtained by concatenating all
values into a vector of sizeW (the total number of weights in the network), summing
over all t and multiplying the resulting vector byβ. The gradient term of5.16 is then
added to obtain the entire gradient for a certain epoch.

5.2.4 Determination of the Hessian

To determine the step size in the conjugate gradient algorithm and to calculate the
Bayesian evidence, the HessianA is required for the State Space Neural Network. As
with the gradient, no procedure for finding the exactA exists yet; here it will be derived.
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Again, two error partsED andEW,v are considered separately:

A = ∇2E(θ) = β∇2ED +∇2

V
∑

v=1

EW,v (5.25)

The second term again is straightforward:

∇2

V
∑

v=1

αvEW,v =

V
∑

v=1

αvIv (5.26)

The first term, the error partED is first considered per patternn (time stept), ED,t, and
later summed over alln to obtain the full value. If two arbitrary weightsθq andθr of any
two layers are considered, the previously derived first derivatives (see5.2.3) can be used:

∂2ED,t

∂θq∂θr
=

∂

∂θq

(

∂ED,t

∂θr

)

(5.27)

The appropriate expression for∂ED,t/∂θr can then be substituted and the second deriva-
tives can be constructed from the result. As this procedure is very lengthy but only in-
volves straightforward algebra, the complex-looking outcomes are omitted but the results
again only contain recursive variables from one time step back, t−1, which in an applica-
tion can be kept in memory and overwritten at the end of each time step. The final Hessian
A is obtained by concatenating all the values into a matrix of sizeW byW , by summing
over all t, multiplying the obtained matrix byβ and by adding the part of equation5.26.
The exact derivation is given in AppendixA.

However, in a final application, the above procedure becomesvery slow, especially
due to the presence of three recurrent variables which require 6-fold loops for each input
vector. Therefore, an approximation of the Hessian is useful to speed up calculations per
iteration. If the sum-of-squares error function is considered, the elements of the Hessian
can be written in the form (Bishop, 1995):

∂2ED

∂θq∂θr
=

N
∑

t=1

c
∑

k=1

∂yk,t
∂θq

∂yk,t
∂θr

+

N
∑

t=1

c
∑

k=1

(yk,t − ok,t)
∂2yk,y
∂θq∂θr

(5.28)

As the quantity(yk,t − ok,t) is a random variable with zero mean (if the biases in the
network are well-trained), uncorrelated with the value of the second derivative term, this
whole term will tend to average to zero in the summation overt (Hassibi and Stork, 1993).
This term can therefore be neglected, resulting in the so-called outer-product approxima-
tion:

∂2ED

∂θq∂θr
≈

N
∑

t=1

c
∑

k=1

∂yk,t
∂θq

∂yk,t
∂θr

(5.29)
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As this term only involves first derivatives of the outputs tothe weights, which were
already derived when solving equation5.17 for the different layers in the network, the
evaluation is much easier and faster than the exact procedure. Extensive tests on various
SSNN topologies with exact and approximate Hessians show that the use of the approxi-
mate Hessian leads to similar prediction accuracy, and thatthe approximate procedure is
much faster. The use of the outer product approximation is therefore preferred over the
exact Hessian procedure in this study.

5.3 Experiment

The same 8.5 km (5.3 mi) long route of the A12 motorway in the Netherlands, from an on
ramp (Zoetermeer) to an off ramp (Voorburg) was investigated for this study (see Figure
5.2)), the same network that was used in Chapter3 and Chapter4. Four different types
of neural networks were trained to predict travel times on this route: Bayesian SSNN,
Bayesian FFNN, non-Bayesian SSNN and non-Bayesian FFNN. For the non-Bayesian
procedure, constant hyperparameter values were chosen (see equation5.9) for the entire
training procedure. Extensive experiments were carried out to find optimal values for the
fixed hyperparameters for these networks, resulting inβ = 1.5 andαv = 1∀v. In total 70
FFNN and 70 SSNN, with different structures (varying from 4 to 10 hidden nodes) and in
the case of SSNN some networks having fully and others partially connected input layers,
were trained on a small random training set. After testing all networks on the rest of
the dataset, 5 FFNN and 5 SSNN were selected that showed low error. These promising
networks were then used for further comparison.

The SSNN needs to learn weights for the context layer from thedata. In that light,
each whole day only represents one data point to the memory layer. Therefore, the training
set needs to be as large as possible in order to obtain good results from the SSNN. The
dataset was therefore randomly split in 33 days for trainingand 6 days for performance
testing. To ensure that the results do not heavily depend on the random component in
dividing the dataset, a cross-validation approach was used. The procedure of splitting the
dataset, training and testing was repeated 5 times to investigate the generalization ability
of the different types of neural networks.

Then, the networks were ranked to form a committee. In case ofthe Bayesian net-
works, the evidence was used as a ranking mechanism; for the non-Bayesian networks,
the data error ED was used. The highest ranking networks werethen combined using
equation4.25to produce a committee prediction for different committee sizes. Two pre-
diction horizons were used: a 5-minute-ahead (one step) anda 15-minute-ahead (3 step)
prediction, to investigate the different types of networksin different applications.
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Figure 5.2: The A12 motorway from Zoetermeer to The Hague

5.3.1 Data

At both the on ramp and the off ramp license plate cameras are placed that record each
vehicles license plate. Individual travel times based on matches of license plates were
available for 95 days in the winter and spring of 2007, the same data set that was also
used in Chapter3 and Chapter4. After filtering the data for outliers the travel times were
aggregated to 5-minute time periods. A total of 39 morning peak periods of 3.5 hours
each were selected from the data set, discarding those days that either were absent of
congestion or contained failing loop detectors.

As input to the neural networks, 19 double loop detectors areavailable, reporting
arithmetic mean speeds (i.e. time mean speeds) and total flows every minute. Due to the
inherent bias in time mean speeds when used as a proxy for space mean speeds, these
were corrected to space mean speeds using an estimate for thevariance of the speeds in
the one minute interval, as described in (van Lint, 2004; van Hinsbergen et al., 2008a).
The input data were then aggregated to 5-minute periods.

To warrant a proper functioning of the context layer, the context layer in the SSNNs
was reset to its initial values,C = 0, whenever a new day started in the data set, and it
was ensured that the last data points of a previous day as wellas the first points in a new
day were all in free flow conditions.

5.3.2 Stopping criterion

When training the SSNNs, a stopping criterion needs to be formulated. For this purpose,
the evidence can be used as was discussed in4.2.3. However, to be able to make a fair
comparison between the Bayesian and the non-Bayesian networks, a stopping criterion
based on the training errorED was used. After conducting extensive experiments, it was
found as a rule of thumb that if the decrease of the data error part ED relative to the
starting value ofED with random initial weights in 10 epochs dropped below 0.2%,the
network was close to its minimum test error (and has approximately the best possible
generalization performance).
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5.4 Results

Table5.1shows several results for the two prediction horizons. The first column shows the
average number of epochs. The total training time in the second column is the total time
required to train all networks for all cross validations. Itcan be seen that the SSNN need
considerably more training time due to the fact that they require more epochs to obtain
a good fit and due to the more complex gradient and Hessian computations. The next
two columns show the cross-correlation coefficients averaged over all 5 cross-validations
between the test error (in RMSE) and the training errorED (also in RMSE) and the test
error and the Bayesian evidence. It can be seen that for the case under investigation the
correlation between the training and test error is strongerthan that between the evidence
and the test error. The last two columns show the average MeanAverage Percentage Error
and Root Mean Square Error of the 5 networks over all cross validations. It can be seen
that the prediction error for the 5-minute-ahead prediction is very similar for all types of
networks. On such a short term prediction, the recurrent nature of the SSNN does not add
to the prediction accuracy; even a slight decrease of accuracy can be seen, which can be
explained by the fact that the SSNNs contain more parametersand therefore are harder
to train. For the 15-minute-ahead prediction, the recurrent layer does have effect on the
prediction accuracy, resulting in lower MAPE and lower RMSE.

Table 5.1: Results with 5-minute ahead prediction and 15-minute ahead prediction
Method Mean

epochs
Training
time (s)

Correlation
RMSE/ED

Correlation
RMSE/Ev.

Mean
MAPE

Mean
RMSE
(S)

5 minute prediction horizon
FFNN 43 1409 0.85 - 12.4% 104.3
SSNN 85 11499 0.79 - 12.5% 108.4
Bayes FFNN 44 4665 0.8 -0.59 12.7% 106.0
Bayes SSNN 80 21265 0.61 -0.42 12.7% 110.1

15 minute prediction horizon
FFNN 47 2009 0.86 - 17.6% 141.6
SSNN 93 19598 0.46 - 16.7% 141.0
Bayes FFNN 50 6468 0.82 -0.50 17.6% 140.0
Bayes SSNN 86 29322 0.57 -0.53 16.4% 139.6

Table5.2 shows the effect of forming a committee on the prediction accuracy. Two
ranking mechanisms were used: the training error and the evidence. To investigate the
effectiveness of the evidence versus that of the training error, a committee size of 3 net-
works was chosen. It can be seen that all committee errors areconsiderably lower than
the average errors of the individual predictions (compare with Table5.1). The ranking
based on the training error performs slightly better than when the evidence is used as a
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ranking mechanism. This is expected, because the correlation between training error and
test error is higher than the evidence and test error.

Table 5.2: Committee errors
Method Committee ranked onED Committee ranked on Evidence

MAPE RMSE (s) MAPE RMSE (s)
5 minute prediction horizon

FFNN 10.8% 92.8 - -
SSNN 10.6% 95.1 - -
Bayes FFNN 11.2% 95.0 11.3% 96.6
Bayes SSNN 11.1% 97.4 11.3% 98.6

15 minute prediction horizon
FFNN 16.2% 133.2 - -
SSNN 14.8% 129.4 - -
Bayes FFNN 16.1% 132.6 16.4% 135.0
Bayes SSNN 14.8% 126.8 14.7% 127.1

5.5 Discussion and conclusion

In this research, the Bayesian framework for neural networks has been adapted to recur-
rent neural networks, and State Space Neural Networks in particular. With this result,
recurrent neural networks and feed-forward neural networks can now both be applied in
the Bayesian framework. The Bayesian evidence that resultsfrom this framework equips
the modeler with a natural way to select high-accuracy neural networks from a large pool
of trained networks without the use of additional validation data sets. Moreover, on each
prediction an error bar can be calculated which provides an estimation of the prediction
uncertainty. With this approach, the networks can also be combined into a committee
of prediction models, which results in lower test error (seeTable5.2) and more accurate
error bars (Bishop, 1995).

The adaptation scheme of the hyperparameters, resulting from the Bayesian analysis,
did not prove to be beneficial for the prediction results on the 1-step-ahead prediction,
and did show a slight improvement in the 3-step-ahead prediction over the use of a fixed
set of hyperparameters. This is an indication that the Bayesian adaptation of the hyper-
parameters becomes more important when the system under investigation becomes more
complex. It is expected that on larger datasets that containmore diverse and complex
circumstances, the effect of more advanced smoothing (by continuously adapting the hy-
perparameters) will be positive in terms of prediction accuracy.

It is clear from the results that there are still issues to be resolved in the Bayesian
framework. Table5.1 shows that the cross-correlation between the model-evidence and
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the test error is reasonable, but worse than that of the training error. As noted byBishop
(1995), the weighting coefficientµq in equation4.24theoretically represents the posterior
probability of the modelq, which can be obtained through the evidence factors calcu-
lated for all models. Using this evidence-based weighting mechanism is only expected to
improve results if the evidence and test error (a proxy for the generalization error) show
high correlation. A second and related concern is that with alower correlation between
model evidence and test-error the optimal committee size isexpected to increase, which
leads to large calculation times. Clearly, improving the correlation between evidence and
test error would lead to both better performance as well as smaller and hence more prac-
tical committees. Fortunately, there are various ways to improve the correlation between
evidence and the generalization error, the most important being:

• Increasing the sizes of both the training and the test sets, which has two possible
beneficial effects: it would increase the probability that the training and test set
have identical statistical properties and that the test error is indicative of the true
generalization error (the error on the entire population).Only 6 days were used for
testing in the cross-validation approach.

• A moderate / weak correlation between evidence and generalization error is an indi-
cation of inconsistencies in the models. The evidence provides a quantitative tool to
assess possible improvements, such as weight pruning to improve the models struc-
ture (Thodberg, 1993), different types of input data, other transfer functions or even
completely different mathematical structures. These improvements are expected to
not only improve the evidence/generalization error relationship but also to improve
overall prediction results.

• In this study the outer product approximation was used for training and for evi-
dence determination to speed up the calculations. The use ofthe exact Hessian may
improve the estimation of the evidence.

Finally, error bars, which can prove to be very useful for various applications, can only be
obtained through Bayesian analysis. Now that the Bayesian framework can be applied to
both FFNN and SSNN, future studies will focus on the accuracyof the error bars and its
value for the individual road user.

Other directions for future research include the application of Bayesian combined NNs
on more complex situations, such as travel time prediction on shorter and longer freeway
sections and in urban networks. More technically, the relevance of the exact versus the
outer product approximation of the Hessian (needed to calculate model evidence) should
be more thoroughly investigated. Furthermore, it will be worthwhile to implement other
neural network structures or other types of prediction models into the Bayesian frame-
work, to increase the heterogeneity of the committee, whichis expected to benefit the
generalization results (van Hinsbergen et al., 2008a).
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Chapter 6

Bayesian calibration of the Extended
Kalman Filter

This chapter is an edited version of van Hinsbergen, C. P. I.,Schreiter, T., van Lint, J.
W. C., Hoogendoorn, S. P., and van Zuylen, H. J. (2010b). Online estimation of kalman
filter parameters for traffic state estimation. InProceedings of the Seventh Triennial Sym-
posium on Transportation Analysis (TRISTAN VII). Tromso, Norway.

Online traffic state estimation, which can be used to inform road users or as input to traffic
state prediction or route guidance, has been the subject of study for many researchers in
recent years, for various applications in the fields of advanced traffic information systems
or dynamic traffic management. Online state estimation requires two components: traf-
fic data, and a traffic simulation model. When combining thesetwo, it is important to
consider that both the data collection and the model are imperfect and thus contain noise.
The Extended Kalman Filtering (EKF) provides a convenient formalism to use such traf-
fic models to estimate (partially) unobserved state variables from observed sensor data.
One of the difficulties in applying the EKF for this purpose ischoosing appropriate (and
possibly time varying) values for the noise parameters which govern how well the EKF /
traffic model is able to track state variables from observed data. In this chapter a two-stage
Bayesian framework is proposed which enables simultaneousrecursive estimation of both
state variables and the noise parameters. First, a posterior distribution of state variables
is calculated using the Extended Kalman Filter equations. Second, optimal values for the
measurement and process noise parameters are found using the results of the first step. In
a small-scale simulation study the approach is verified. These preliminary results suggest
that this approach potentially leads to superior state estimation results compared to ad hoc
setting of the noise parameters.

85
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6.1 Introduction

Online traffic simulation models have been subject of study for many researchers in the
last years, for various applications in the field of advancedtraffic information systems
(ATIS) or dynamic traffic management (DTM) (Lebacque, 1996; Ben-Akiva et al., 2001;
Mahmassani, 2001; Wang and Papageorgiou, 2005; Zuurbier et al., 2006; Barceló et al.,
2007; van Hinsbergen et al., 2008f). One of these applications is online state estimation.
In those applications, the current state of traffic is estimated using two components: traffic
data from online data collection equipment at certain points in the network, and a traffic
simulation model that estimates the state of traffic everywhere in the network based on
these data and based on fundamental laws that describe how traffic progresses over the
network. Online estimates of the traffic state can be used to inform road users about the
current state to allow them to anticipate, or can be used as input to the prediction of the
future traffic state or for route guidance applications suchas inZuurbier(2010).

To be able to accurately estimate the current state of traffic, a traffic model has to be
chosen. In this study, the first order model is chosen as a modeling paradigm, as it has
proven to perform well without introducing too many parameters, opposed to second- or
higher-order models (Daganzo, 1995b). The first order traffic flow model is based on the
kinematic wave theory ofLighthill and Whitham(1955) andRichards(1956) and mainly
applies to modeling freeway networks, although extensionshave been proposed to be able
to apply it to urban networks (van Hinsbergen et al., 2009b). One common numerical so-
lution of this model is to discretize the network into segments or cells and model the traffic
in discretized time steps. The state estimation problem then consists of finding the state,
which is uniquely described by the density in each cell, at each time step; other variables
such as speed and flow in each cell can be obtained through a fundamental diagram. At
each time step, a numerical scheme is used to calculate the fluxes between two cells, usu-
ally by applying the Godunov scheme (Lebacque, 1996), or as recently proposed, using
Lagrangian coordinates (Leclerq et al., 2007). As the Godunov scheme is one of the most
widely applied numerical solution, in this study it is also applied. Application of the ideas
proposed in this contribution to other numerical schemes isstraightforward.

One of the challenges in estimating the traffic state in an online setting is how to use
traffic data to correct the estimates made by the model. One important point to consider is
that both the data contains noise (the measurement equipment is imperfect) as well as the
model (the model describes the traffic process imperfectly). Any solution for combining
the model with measurements has to be able to deal with these noise processes. Specifi-
cally, there must be a balance between the trust placed on themodel and the trust placed
on the measurements for the estimates to be accurate and smooth. The Extended Kalman
Filter (EKF) framework as described byWang and Papageorgiou(2005) is an appropriate
solution, as it is fast and results in smooth estimates of thestate, taking into account both
the error distribution of the measurements as well as the error distribution of the model.
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The EKF has been successfully applied to the first order traffic model (Zuurbier et al.,
2006; Tampère and Immers, 2007; van Hinsbergen et al., 2008f).

However, one of the great difficulties of applying the EKF is that choices have to
be made for the noise parameters: the covariance of the measurement noise and of the
process noise. The values of the noise parameters heavily influence the accuracy of the
estimates produced by the model with the EKF. Although in some cases, through speci-
fications of the manufacturer, the noise distribution produced by the measurement equip-
ment may be known, the size of the process noise is never knownbeforehand. Up to now,
assumptions are usually made based on trial and error or experience.

In this study a consistent methodology is proposed to set thesize of the covariances
of both noise models, using Bayesian inference theory. The work is based on a similarity
between training neural networks (specifically the work ofBishop(1995) andMackay
(1995)) and Kalman filtering; for more information on these similarities, seeHaykin
(2001). To derive expressions for the noise parameters, first the Kalman Filter needs
to be assessed from a Bayesian point of view, where it is shownto be equal to a Bayesian
Maximum A Posteriori (MAP) approach. Next, a Bayesian choice can be made for the
values of the covariance matrices using the outcomes of the MAP approach. This is the
main contribution of this chapter. In a small-scale experiment it will then be shown that
these choices lead to good performance when compared to choosing fixed values. Finally,
the discussion and conclusion are presented.

6.2 Methodology: Bayesian estimation of noise parame-
ters

Define the state-space equation that describes the state vector x[k] of sizeN × 1 as a
function of the previous statex[k − 1] and a noise vectorw[k]:

x[k] = f(x[k − 1]) +w[k] (6.1)

and the measurement (observation) equation that describesthe measurement vectorz[k]
of sizeM × 1 as a function of the statex[k] with measurement noisev[k]

z[k] = h(x[k]) + v[k] (6.2)

In this contribution, the state vectorx[k] equals a vector of all densities in all cells of
the discretized model; the functionf equals the first order model solved by the Godunov
scheme; the measurement vectorz[k] consists of speed and/or flow measurements that
can be translated to densities (and vice-versa) using the fundamental diagram, which is
represented by the functionh. This is similar to the approach in (Wang and Papageorgiou,
2005), except that here the parameters of the fundamental diagram are not included in the
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state but are taken a fixed value for the sake of simplicity.
The process noisew[k] and measurement noisev[k] are assumed zero mean white

Gaussian noise with covariance matrixQ[k] andR[k] respectively and are assumed to
be independent of each other. Furthermore, each element of the state or measurement
vector is assumed to be coming from a single distribution with variance1/α[k] and1/β[k]
respectively, such thatQ[k] = 1/α[k]IN whereIN is the identity matrix of sizeN × N ,
andR[k] = 1/β[k]IM whereIM is the identity matrix of sizeM×M . These assumption
are plausible in cases where the state is described everywhere in the same quantity (for
example density in veh/km) as is the case in this contribution, and if all measurements are
of the same quantity (for example speed in km/h) and are produced by the same type of
measurement equipment.

If a traffic simulation model is operated in an online mode, data is obtained sequen-
tially over time. Each timek when new data arrives, the state vector can be updated given
the previous estimate of the state atk−1, denoted bŷx[k−1] , and the data obtained so far,
denoted byZ[k] = (z[k], z[k−1], . . . , z1). In further derivations, the matrixZ[k] is split
into two parts:Z[k−1] to denote all data used up to time stepk−1, andz[k] to denote the
last vector of measurements. This is done to reflect the fact thatz[k−1], z[k−2], . . . , z[1]
have already been used to estimate the state atk−1 and only the last data vectorz[k] will
be used to update the traffic state, as is reflected by (6.1) and (6.2).

This methodology section consists of two parts. In the second part, the main contribu-
tion of this chapter is presented: a methodology to choose values for the noise parameters
of the EKF (i.e. the values of the covariance matrices of the process and measurement
noise). To be able to do so, in the first part the Extended Kalman Filter (EKF) will be
shown to be equal to a Bayesian Maximum A Posteriori (MAP) approach.

6.2.1 Bayesian derivation of the EKF

In (Ho and Lee, 1964; Chen, 2003) it is shown that the EKF can be given a Bayesian
interpretation. In this section the Bayesian interpretation is briefly repeated, as it is a
necessary starting point for the derivation of the Bayesianchoice for the process and
noise covariance matrices which is the main goal of this contribution.

Consider the state estimate at timek, denoted bŷx[k], that is based on the first order
model and the data vectorz[k] that was retrieved at timek. In probabilistic terms, the
interest is in finding the probabilityp(x[k]|z[k],Z[k − 1]). This probability is called the
posterior probability of the state vector, and describes the probability of the statex[k]
given all dataz[k], Z[k − 1] that were obtained so far. In order to obtain this posterior,
Bayes rule can be applied:

p(x[k]|z[k],Z[k − 1]) =
p(z[k]|x[k],Z[k − 1])p(x[k]|Z[k − 1])

p(z[k]|Z[k − 1])
(6.3)
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The right hand side of (6.3) consists of three terms: a likelihood function
p(z[k]|x[k],Z[k−1]), a priorp(x[k]|Z[k−1]) and a normalization termp(z[k]|Z[k−1]).
Note that all terms have been conditioned on all dataZ[k−1] that have already been used
in the sequential process prior to obtainingz[k]. It will now be shown that by defining
equations for the prior and the likelihood an expression forthe posterior can be obtained.

Definition of the prior p(x[k]|Z[k − 1])

As a starting point, consider the fact that at timek − 1, the available knowledge about
x[k − 1] is the previous estimate of the statex̂[k − 1] and an estimate of its covariance
matrix, denoted bŷP [k−1]. For bothx̂[k−1] andP̂ [k−1] equations will be determined
later (note that at the first time stepk = 0, initial estimateŝx[0] and P̂ [0] need to be
defined; in the experiment section, it will show that the Bayesian procedure for finding
amongst otherŝP [k] is insensitive to these initial values). Moving one time step forward,
an estimate ofx[k] without any new data available yet equals

x̂−[k] = f(x̂[k − 1]) (6.4)

This is the prior estimate of the state. The prior ofx[k] is defined to be a Gaussian, i.e.:

p(x[k]|Z[k − 1]) =
1

Zp
exp

(

−1

2

(

x[k]− x̂−[k]
)T
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P̂
−
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)−1
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)

)

(6.5)

with Zp given byBishop(1995)
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(6.6)

whereP̂
−
[k] is an estimate of the prior covariance, which can be approximated by lin-

earizingx[k] around the mean of the prior̂x−[k] (Haykin, 2001), i.e.

x[k] ≈ x̂−[k] + J [k − 1] (x[k − 1]− x̂[k − 1]) +w[k] (6.7)

whereJ [k] is the Jacobian∇x[k]f |x̂[k]. Substitution of (6.7) into (6.5) leads to an estimate
for the prior covariance matrix (Chen, 2003):

P̂
−
[k] = J [k − 1]P̂ [k − 1]J [k − 1]T +Q[k] (6.8)
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Derivation of the likelihood p(z[k]|x[k],Z[k − 1])

The likelihood essentially determines the overall measurement noise model. As the mea-
surement noisev[k] has already been assumed to be Gaussian with mean 0 and covariance
matrixR[k], the likelihood can be described by:

p(z[k]|x[k],Z[k − 1]) =
1

Zl
exp

(

−1

2
(z[k]− h(x[k]))T (R[k])−1 (z[k]− h(x[k]))

)

(6.9)
with Zl given by

Zl =

∫

exp

(

−1

2
(z[k]− h(x[k]))T (R[k])−1 (z[k]− h(x[k]))

)

dx[k]

= (2π)
M
2 |R[k]| 12 (6.10)

Derivation of the posterior p(x[k]|z[k],Z[k − 1])

Substituting (6.5) and (6.9) into (6.3), the posterior can now be written as

p(x[k]|z[k],Z[k − 1]) =
1

Zs

exp (−E(x[k])) (6.11)

with E(x[k]) defined as

E(x[k]) = Ep(x[k]) + El(x[k]) (6.12)

Ep(x[k]) =
1

2
(x[k]− x̂[k])T

(

P̂
−
[k]
)−1

(x[k]− x̂[k]) (6.13)

El(x[k]) =
1

2
(z[k]− h(x[k]))T (R[k])−1 (z[k]− h(x[k])) (6.14)

and withZs given by

Zs =

∫

exp (−E(x[k])) dx[k] (6.15)

The maximum of this posterior can be found by maximizing the logarithm of the posterior,
i.e. a MAP approach (Chen, 2003):

x̂[k] = argmax
x[k]

ln (p(x[k]|z[k],Z[k − 1]))

= argmin
x[k]

E(x[k]) (6.16)

Note that in (6.16), the normalizing constantZs has been omitted as it is independent
of x[k] and therefore does not influence the solution. In order to findthe minimum for
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E(x[k]), the condition
∇x[k]E(x[k]) = 0 (6.17)

needs to be solved. Substituting (6.12) into (6.17), and approximating the measurement
equation by its linearization around the prior estimatex̂−[k], i.e.

h(x[k]) ≈ ẑ−[k] +H [k]
(

x[k]− x̂−[k]
)

+ v[k] (6.18)

whereH [k] is the Jacobian∇x[k]h|x̂−[k] andẑ−[k] = h(x̂−[k]), and solving forx[k] leads
to the expression (Chen, 2003):

x̂[k] = x̂−[k] +K[k]
(

z[k]− ẑ−[k]
)

(6.19)

K[k] = P̂
−
[k]H [k]T

(

R[k] +H [k]P̂
−
[k]H [k]T

)−1

(6.20)

which is exactly the EKF (Kalman, 1960; Haykin, 2001); x̂[k] equals the estimated mean
of the posterior, while the estimate of the covariance matrix P̂ [k] of the posterior equals

P̂ [k] = (IN −K[k]H [k]) P̂
−
[k] (6.21)

whereIN is the identity matrix of sizeN × N . This equation can be obtained by sub-
stitution of (6.19) in the posterior (6.11) and rearranging the resulting terms such that the
posterior covariance matrix appears (Ho and Lee, 1964; Chen et al., 2003).

Note that the posterior of timek is used to determine the prior at timek + 1, in
equations (6.4) and (6.8). This indicates the recursive (state-space) nature of theEKF
procedure. Moreover, only the previous state vector and covariance matrix need to be
retained in memory; all previous estimates can be discarded, which is a desirable property
for any computational implementation.

6.2.2 Bayesian derivation ofα[k] and β[k]

In common applications, suitable values for the noise levels R[k] = 1/β[k]IM and
Q[k] = 1/α[k]IN are chosen based on experience or trial and error. However, using
the same Bayesian framework of the previous section, propervalues forα[k] andβ[k] can
be found. For this, the posterior distribution ofx[k] is used. The noise parametersα[k]
andβ[k] are sometimes called hyperparameters (Mackay, 1995; Bishop, 1995) or scales
(Thodberg, 1993), as their distribution controls other distributions (those of the state).

The correct Bayesian treatment for parameters such asα[k] andβ[k], whose values are
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unknown, is to make their dependency explicit and integratethem out of any predictions

p(x[k]|z[k],Z[k − 1]) =

∫ ∫

p(x[k], α[k], β[k]|z[k],Z[k − 1])dα[k]dβ[k]

=

∫ ∫

p(x[k]|α[k], β[k], z[k],Z[k − 1])

× p(α[k], β[k]|z[k],Z[k − 1])dα[k]dβ[k] (6.22)

If it is assumed that the posterior probability distribution p(α[k], β[k]|z[k],Z[k − 1]) is
sharply peaked around its most probable valuesα̂[k] and β̂[k] , then (6.22) can also be
written as (Mackay, 1995; Bishop, 1995):

p(x[k]|z[k],Z[k − 1]) ≈p(x[k]|α̂[k], β̂[k], z[k],Z[k − 1])

×
∫ ∫

p(α[k], β[k]|z[k],Z[k − 1])dα[k]dβ[k]

=p(x[k]|α̂[k], β̂[k], z[k],Z[k − 1]) (6.23)

Equation (6.23) states that the valueŝα[k] and β̂[k] should be found that maximize the
posterior probability, and the remaining calculations should be performed withα[k] and
β[k] set to these values.

In order to find these most probable valuesα̂[k] andβ̂[k], the Bayesian MAP can be
applied a second time at the level of the hyperparameters. For this, the posterior distribu-
tion ofα[k] andβ[k] is evaluated. This posterior can be found using Bayes rule again:

p(α[k], β[k]|z[k],Z[k − 1]) =
p(z[k]|α[k], β[k],Z[k − 1])p(α[k], β[k]|Z[k − 1])

p(z[k]|Z[k − 1])
(6.24)

In (6.24), the likelihood term can be recognized as the denominatorp(z[k]|Z[k − 1]) of
(6.3) conditioned onα[k] andβ[k]. This is a very important feature, as it allows for the
derivation of the values forα[k] andβ[k] using the current posterior distribution of the
state at timek. In Bayesian inference, the denominator of (6.24) is called the evidence for
α[k] andβ[k].

Considering the fact that there is very little knowledge of suitable values forα[k] and
β[k], a flat prior is chosen forα[k] andβ[k] . Therefore only the evidence is used to assign
a preference to alternative values forα[k] andβ[k] (Bishop, 1995; Mackay, 1995).
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Derivation of the evidence forα[k] and β[k]

Using Bayesian inference, in this section it will be shown that the value forβ[k] can be
updated at each stepk by the expression

β̂[k] =
M

(

z[k]− h( ˆx[k])
)T (

z[k]− h( ˆx[k])
)

+ Tr(A[k]−1H [k]TH [k])
(6.25)

The value forα[k] can be chosen fixed, as (6.25) expressesβ[k] as a function ofα[k]
through the HessianA (see (6.29)); β̂[k] will therefore be optimal for a given value of
α[k]. Becauseα[k] andβ[k] depend on each other, one of the two can be fixed while
the other can be estimated using6.25, which thus provides a solution for the problem of
finding appropriate values forQ[k] andR[k].

Equation (6.25) can be interpreted as follows. The term(z[k] − h(x̂[k])) represents
a value for the difference between the measurement and the mapping of the posterior
estimate of the state to the measurement. As the estimatex̂[k] is optimal (in the sense of
MAP) in case the model is linear (a Kalman Filter) and is the best estimate that be made
in case the model is linearized (an Extended Kalman Filter),this difference can be seen
as an estimate of the noise in the data. A larger value for(z[k]−h(x̂[k])) leads to smaller
β[k] and thus larger values of the elements ofR[k] = 1/β[k]IM . A largerR[k] in turn
causes the Kalman gain to become smaller, leading to smallercorrections. This is a very
intuitive result: the higher the estimated noise on the data, to lower the trust in the data
should be and the more trust should be placed on the model, andvice versa.

It will now be shown how the key result (6.25) was obtained. First, consider the fact
that the evidence forα[k] andβ[k] equals the denominator of (6.3), and that the evidence
can thus be written as

p(z[k]|Z[k − 1], α[k], β[k]) =

∫

p(z[k]|x[k],Z[k − 1], α[k], β[k])

× p(x[k]|Z[k − 1], α[k], β[k])dx[k]

(6.26)

where the knowledge that the likelihoodp(z[k]|Z[k − 1],x[k]) is independent ofα[k]
and that the priorp(x[k]|Z[k− 1]) is independent ofβ[k] is used. Using (6.6), (6.10) and
(6.15) this is equal to

p(z[k]|Z[k − 1], α[k], β[k]) =
Zs

ZpZl
(6.27)

Expressions forZp andZl were already found in (6.6) and (6.10); the integralZs still
needs to be evaluated. As this cannot easily be evaluated analytically, an approximation
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of the posterior distribution is made that will allow for a solution. Considering the Taylor
expansion ofE(xk) around its minimum valuêx[k] where terms up to second order are
retained

E(x[k]) ≈ E(x̂) +
1

2
(x[k]− x̂[k])T A[k] (x[k]− x̂[k]) (6.28)

with A[k] the Hessian

A[k] = ∇∇x[k]E(x[k])|x̂[k]
= ∇∇x[k]Ep(x[k])|x̂[k] +∇∇x[k]El(x[k])|x̂[k]
=
(

P̂
−
[k]
)−1

+ β[k]H [k]TH [k] (6.29)

Substituting (6.28) into (6.15) leads to a Gaussian form, for which the integral can easily
be evaluated (Bishop, 1995)

Zs ≈
∫

exp

(

−E(x̂[k])− 1

2
(x[k]− x̂[k])T A[k] (x[k]− x̂[k])

)

dx[k]

= exp (−E(x̂[k])) (2π)N
2 |A[k]|− 1

2 (6.30)

Now that expressions have been found forZp, Zl andZs, an expression for the evidence
is found

p(z[k]|Z[k − 1], α[k], β[k]) = exp (−E(x̂[k])) (2π)S
2 |A[k]|− 1

2

∣

∣

∣

∣

1

β[k]
IM

∣

∣

∣

∣

− 1

2
∣

∣

∣
P̂

−
[k]
∣

∣

∣

− 1

2

(6.31)
The evidence can be used to determine the most probable values ˆα[k] and ˆβ[k] by applying
the MAP principle, i.e. by solving the conditions∇α[k] ln p(z[k],Z[k−1], α[k], β[k]) = 0
and∇β[k] ln p(z[k],Z[k − 1], α[k], β[k]) = 0 respectively. To do so, first the log of the
evidence is evaluated:

ln p(z[k]|Z[k−1], α[k], β[k]) = −E(x̂[k])−S
2
ln(2π)−1

2
ln |A[k]|+M

2
ln β[k]−1

2
ln |P̂−

[k]|
(6.32)

The derivatives of (6.32) for all parts dependent onβ[k] to β[k] are

∇β[k]E(x̂[k]) =
1

2
(z[k]− h(x̂[k]))T (z[k]− h(x̂[k])) (6.33)

∇β[k] ln |A[k]| = Tr
(

A[k]−1∇β[k]A[k]
)

= Tr
(

A[k]−1H [k]TH [k]
)

(6.34)

∇β[k]
M

2
ln β[k] =

M

2β[k]
(6.35)
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whereTr equals the Trace operator. Putting everything together nowyields

∇β[k] ln p(z[k]|Z[k − 1], α[k], β[k]) =
1

2
(z[k]− h(x̂[k]))T (z[k]− h(x̂[k]))

− 1

2
Tr
(

A[k]−1H [k]TH [k]
)

+
M

2β[k]
(6.36)

Setting (6.36) to zero and solving forβ[k] results in

β̂[k] =
M

(z[k]− h(x̂[k]))T (z[k]− h(x̂[k])) + Tr(A[k]−1H [k]TH [k])
(6.37)

which is the result of (6.25) that was presented earlier.
Finally, the choice of a value forα[k] needs to be considered. The derivative

∇α[k] ln p(z[k]|Z[k − 1], α[k], β[k]) cannot be solved forα[k] as was done forβ[k] be-
cause of the difference in nature in the appearance of the hyperparameters in the terms
1
2
ln |P̂−

[k]| andM
2
ln β[k] respectively. However, the value ofα[k] depends onβ[k] and

vice versa. As a heuristic, a fixed value forα[k] is chosen andβ[k] is varied. Asβ[k] is
expressed as a function ofα[k] (through the term of the HessianA[k]), over time,β̂[k]
will thus become optimal given the chosen fixed value forα[k].

6.3 Experiment

To illustrate the impact of the Bayesian choice for the EKF parameters, a small-scale
case study is performed. The traffic network as shown in Figure 6.1 is simulated with
JDSMARTwith a time step of two seconds with link capacities as shown in Figure6.1a.
A total of 600 time steps are simulated, with four different demand levels at the two origins
O1 andO2 and four different turn fractions at the nodeA. Each time step the speeds in
all cells are stored as the ground truth. Then, the network issimulated again with the
same demands and turn fraction, but with random changes applied to the capacities of
the links as shown in Figure6.1b; this represents the presence of process noise. The
speeds at four different cells, indicated by the arrows in Figure6.1a, are then used as
measurements to correct the state in the altered network. Zero mean Gaussian noise is
added to these measurements, representing measurement noise. The states in the noisy
network are then corrected using the EKF every five time steps. The resulting speeds in
all cells are compared to the cell speeds in the original network.

For all simulations1/α[k] was set to4veh2/km2∀k, while the initial value1/β[0]
was varied from0.01 to 20km2/u2, both with the Bayesian adaptation scheme as well as
without. Figure6.2 shows the resulting Mean Absolute Percentage Error (MAPE) that
was calculated for all cell speeds for all time steps. It can be seen from Figure6.2that for
constant1/β[k], the error shows a clear minimum. Left of the minimum the noise of the
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Figure 6.1: The ground truth network (a) and the network with‘process noise’ (b). Num-
bers indicate the link capacities in veh/hr and arrows indicate measurement locations

measurements is hardly filtered, while right of it the measurements are hardly used at all.
In the case of the Bayesian choice for1/β[k] very little variation can be seen for different
initial values1/β[0]. Moreover, in this case the error for the Bayesian parameters is nearly
equal to the minimal possible error for constant parameters.

Figure 6.2: The errors for both constantβ[k] and continuously adapted Bayesianβ[k]

6.4 Discussion and conclusions

This contribution has proposed a methodology for setting a value for the noise parameters
(measurement and process covariances) in the Extended Kalman Filter using a two-stage
Bayesian inference framework. First, the posterior distribution of the state is found, of
which the maximum is found using a Maximum A Posteriori (MAP)approach. Second,
the posterior distributions of the process covariance matrix Q[k] and of the measurement
covarianceR[k] are found from the posterior of the state. The maximum of the posterior
for R[k] is found using MAP as well. As a heuristicQ[k] is held constant, leading to
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optimal choices forR[k] for a given fixed value ofQ[k]. At the next time stepk + 1, the
calculations are made with the new most probable estimate for the state and forR[k].

It is shown that the Bayesian choice for the measurement covariance leads to robust-
ness with respect to a high or low initial choice of the process and measurement noise
covariance-ratio. Using the two-stage Bayesian inferenceprocess, the modeler is given
the tools for more robust Kalman filtering, also in cases where no ground truth is avail-
able. Especially in those cases, it is expected to be hard to choose appropriate values for
the covariances as trial and error is not a feasible option then.

It is found that the Bayesian framework is sensitive to biased measurements, as the
measurement noise covariance is in those cases overestimated. An overestimation of the
measurement noise covariance leads to too small corrections of the state. Such bias will
especially occur in congested conditions, where the noise distribution on the data often is
not zero-mean Gaussian as negative flows or speeds do not occur. This issue will need to
be further investigated.

Future work will need to resolve several other issues. Firstof all, adapting the process
covariance as well may lead to better results. That will at least have the benefit that the
results will become less sensitive to the initial value ofQ[k]. For this, approximations
will be needed for the derivative of the log evidence toα[k], as an analytical solution for
α[k] that sets this derivative to zero cannot be found. Which approximation is best suited
will be the topic of future studies.

Furthermore, it was assumed that each element of the state ormeasurement vector is
drawn from a single distribution with a single variance1/α[k] or 1/β[k]. However, if for
example measurements are obtained from different types of equipment, or from equip-
ment that measures different quantities (for example occupancies from one detector and
speeds from another), than this assumption is not valid. In that case, the Bayesian frame-
work will need to be adapted to be able to incorporate different values on the diagonal of
R[k]. The foundations for this have already been laid inBishop(1995).

In the next chapter, Chapter7, the Extended Kalman Filter is used again in combina-
tion with the LWR model. In that chapter, one major problem that occurs when applying
an EKF in real-time is solved: the EKF generally becomes too slow when applied to large
networks with many measurements.
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Chapter 7

The Localized Extended Kalman Filter
for fast traffic state estimation

This chapter is an edited version of van Hinsbergen, C. P. I.,Schreiter, T., Zuurbier, F. S.,
van Lint, J. W. C., and van Zuylen, H. J. (2010d). The localized extended kalman filter for
scalable, real-time traffic state estimation. Submitted for publication in IEEE Transactions
on Intelligent Transportation Systems.

Current or historic traffic states are essential input to Advanced Traveler Information,
Dynamic Traffic Management and Model Predictive Control systems. As traffic states are
usually not measured perfectly and everywhere, they need tobe estimated from local and
noisy sensor data. One of the most widely applied estimationmethod is the LWR model
with an Extended Kalman Filter (EKF). A large disadvantage of the EKF is that it is
too slow to perform in real-time on large networks. To overcome this problem the novel
Localized EKF (L-EKF) is proposed in this chapter. The logicof the traffic network
is used to correct only the state in the vicinity of a detector. The L-EKF does not use
all information available to correct the state of the network; the resulting accuracy is
however equal in case the radius of the local filters is taken sufficiently large. In two
experiments it is shown that the L-EKF is much faster than thetraditional Global EKF
(G-EKF), that it scales much better with the network size andthat it leads to estimates
with the same accuracy as the G-EKF, even if the spacing between detectors is up to 5
kilometers. Opposed to the G-EKF, the L-EKF is hence a highlyscalable solution to the
state estimation problem.

99
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7.1 Introduction

Advanced Traveler Information Systems (ATIS) and Dynamic Traffic Management
(DTM) usually require some estimate of the current traffic state as an input. The esti-
mated state can also be used in a Model Predictive Control (MPC) approach (Hegyi et al.,
2005) to optimize traffic conditions. In general, ATIS/DTM/MPC applications need the
traffic states in real-time.

Usually, the traffic state cannot be directly measured (everywhere), but needs to be es-
timated (interpolated) from incomplete, noisy and local traffic data. Commonly, volumes
or average vehicle speeds are measured at certain locationsin the traffic network, for
example by double induction loop detectors or by floating cardata. To estimate the total
traffic state from these point measurements interpolation between the sensors is necessary.

In current state of practice often very simple methods are used to perform such a task,
such as the Piece-wise Constant Speed-Based (PCSB) method and the Piece-wise Linear
Speed Based (PLSB) method (van Lint and van der Zijpp, 2003). These simple methods
assume that the behavior of traffic is always equal in all traffic conditions. In reality, the
direction in which information travels through the networkdepends on traffic conditions:
in free flow conditions information travels downstream, butin congested conditions in-
formation travels upstream. Therefore, these simple methods exhibit considerable bias
(van Hinsbergen et al., 2008f). One reason for their continuous use in practice is that the
alternatives are up to now too slow to perform in real-time.

One way to take the information direction into account is using a spatio-temporal
interpolation method. The Adaptive Smoothing Method (Treiber and Helbing, 2002) is
such a method that is able to interpolate traffic conditions correctly between detectors
taking the information direction into account, but it cannot be used for prediction which
makes it less appropriate for ATIS/DTM/MPC. A second approach that does allow for
prediction is to use a traffic flow model, such as the LWR model (Lighthill and Whitham,
1955; Richards, 1956) or second order or higher order traffic flow models (Payne, 1971;
Hoogendoorn and Bovy, 2001). The traffic flow models with increasing order are of in-
creasing complexity, which comes at the cost of more parameters which makes calibration
more difficult, and at the cost of larger computation times. The choice for a model thus
should be based on the balance between model complexity and model abilities. In this
chapter it is chosen to use the LWR model, but the presented theories are easily portable
to higher order models.

What remains when a model is chosen is a method to combine local traffic data with
the chosen model. One popular method that does so is the Extended Kalman Filter (EKF).
This not only provides a way to use traffic data to correct the model state, but also allows
for filtering of measurement noise. The latter is especiallyimportant when dealing with
induction loop data because these detectors are infamous for their noisy performance.
One disadvantage of the EKF is that it contains expensive matrix operations, which cause
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the computation times to become very high in large scale applications. Therefore, until
now it has been very hard to apply the LWR model with the EKF in real-time on large
networks.

Another disadvantage of the EKF is that it is at least theoretically sensitive to the non-
linearity of traffic. For the EKF a Taylor expansion is used, which is inaccurate around
capacity: the derivative of the fundamental diagram that isused in the EKF shows a
sudden sign change around this point, which potentially causes higher order errors (due
to so-called flip-flop-behaviour). Alternatives exist, such as the Unscented Kalman Filter
(UKF), which can overcome this problem by not using a Taylor expansion but by comput-
ing the covariance numerically. However,Hegyi et al.(2006) finds no considerable dif-
ference in accuracy in a freeway traffic state estimation example, while the computation
times of UKF is reported to be considerably higher in one study (St-Pierre and Gingras,
2004). Because the goal of this chapter is to enable real-time filtering for online appli-
cations, the EKF is applied here. Over the last decades the EKF has been applied to
traffic modeling with satisfying results (Sun et al., 2004; Wang and Papageorgiou, 2005;
Tampère and Immers, 2007; Wang et al., 2007; van Hinsbergen et al., 2008f). The same
ideas are believed to be portable to the UKF, just as they are portable to other models or
other numerical solutions of the LWR model.

To create an EKF which is still fast enough for large scale real-time applications, in
this chapter a new EKF implementation is proposed called theLocalized EKF (L-EKF).
In the methodology section it is shown that the L-EKF is able to rapidly combine traffic
data with model information. In an experiment it is then shown that this method is not
only much faster than the traditional Global EKF, but that the accuracy of the estimates
is equal given an optimal radius of the L-EKF, and that the L-EKF scales much better in
network size. Finally, a discussion and a conclusion are presented.

7.2 Methodology

In this section first a brief description of the first order model with the Godunov scheme
is presented, along with a description of the (traditional)Extended Kalman Filter. Then,
the newly proposed L-EKF is described.

7.2.1 The LWR model solved by the Godunov scheme

The basis of any macroscopic model is given by two relations:first, a partial-derivative-
equation (PDE) called the conservation equation that states that no traffic can be created
without external influences (Lighthill and Whitham, 1955; Richards, 1956):

∂r

∂t
+
∂q

∂x
= 0 (7.1)
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Figure 7.1: Example of the Smulders fundamental diagram

wherer is the density,t the time,q the flow andx the road space, and second a relationship
between density and space-mean-speed, which is given by

v =
q

r
(7.2)

Given this system of two independent equations with three unknown variables a third
relationship is needed. This third relation is the source ofthe differences in macroscopic
traffic flow models. So-called second order models specify a second PDE that determines
the dynamics of speed such as the Payne model (Payne, 1971), or improved versions
thereof remedying problems related to isotropy and unrealistic speeds such as the models
proposed byRascle(2002) andZhang(2002). In even higher order models a third PDE
is added that governs the variation of speeds (Helbing, 1996).

The LWR model, as almost simultaneously proposed byLighthill and Whitham
(1955) and Richards(1956) is called a first-order model because it only contains one
PDE: that of the conservation equation (7.1). The simplicity of the LWR model lies in
the fact that it introduces a third relation in the form of an equilibrium relationq(r) that
specifies for each density an average flow. This relationshipis usually known as the Fun-
damental Diagram. In this chapter the Smulders fundamentaldiagram is used (Smulders,
1990).

Figure7.1shows the shape of this fundamental diagram, which containsfour param-
eters that are specific to a linkj: the free flow speedvfreej , the critical speedvcritj , the
critical densityrcritj and the jam densityrjamj . These parameters also define the capacity
of the link, Cj = vcritj rcritj , and the jam wave speedλj which equals the slope of the
congested branch of theq(r)-plot. The flowqj of a link j as a function of the densityr is
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given by:

qj(r) =











r

(

vfreej − rij [k]
vfreej − vcritj

rcritj

)

if r ≤ rcritj

Cj + λj(r − rcritj ) otherwise

(7.3)

Additional to modeling traffic on a link, a model needs to be chosen to propagate traffic
over a node. In this chapter Daganzo’s merge and diverge nodemodel is used. Details of
this node model are omitted here but can be found in (Daganzo, 1995a).

Given this fundamental diagram there are three independentequations with three un-
known variables and the model can be solved. In order to applythe EKF a numerical solu-
tion is needed that allows formulating the LWR model in termsof a state-space equation.
Several stable numerical solutions exist to the LWR model, such as the Godunov scheme
(Lebacque, 1996) or methods based on the Lagrangian formulation (Leclerq et al., 2007).
Because it is the most widely applied solution, the Godunov scheme is used as a numer-
ical solution in this chapter. The methods developed in thischapter are easily applied to
the alternatives.

The numerical solution is found using a finite volume method where each linkj in
the network is discretized into cells with homogeneous conditions of length∆lj and time
is discretized into intervals with length∆t during which the conditions are considered
stationary. The length∆lj of cells on a linkj are chosen based on the Courant-Friedrichs-
Lewy condition so that the numerical solution is stable (Courant et al., 1928):

∆lj = vfreej ∆t (7.4)

wherevfreej is the free flow speed of linkj. Because the free speed on different links
may vary (due to for example different speed limits), the cell length is allowed to vary
between links, but all cells on one link are of equal length. Given this discretization, the
conservation equation can be rewritten in state-space form:

rij [k + 1] = rij [k] +
∆t

∆lj

(

F in
ij [k]− F out

ij [k]
)

(7.5)

whereF in
ij [k] [veh/h] denotes the flux into celli of link j at timek andF out

ij [k] that out
of the cell. For adjacent cells the flux-out of the upstream cell is equal to the flux-in of
the downstream cell. To calculate these fluxes the well understood, simple and stable Go-
dunov scheme is used (Lebacque, 1996). Note that there exist other solution methods of
the first order model, for example those based on Lagrangian coordinates (Leclerq et al.,
2007), and that here an explicit time stepping scheme is used, butthat also be an implicit
scheme could be applied (van Wageningen-Kessels et al., 2009). Application of the theo-
ries presented in this chapter to other numerical solutionsis thought to be straightforward,
but application to an implicit time stepping scheme is not.
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The fluxesFij[k] (in veh/hr) between cell borders are determined by comparing the
available supplySij[k] (the maximum flow that can still enter a certain celli) and the
prevailing demandDi−1j [k] (the maximum flow that wants the exit the upstream cell
i− 1) (Lebacque, 1996). These demand and supply functions read:

Dij [k] =











rij[k]

(

vfreej − rij [k]
vfreej − vcritj

rcritj

)

if rij [k] ≤ rcritj

Cj otherwise

(7.6)

Sij [k] =

{

Cj if rij[k] ≤ rcritj

Cj + λj(rij [k]− rcritj ) otherwise
(7.7)

7.2.2 Extended Kalman Filter

The Kalman Filter is a recursive filter that estimates the state of a linear model based
on the last estimate of the state and a number of normally distributed observations
(Kalman, 1960; Maybeck, 1979). When made applicable to non-linear models, an Ex-
tended Kalman Filter (EKF) can be used where a linearizationof the non-linear model
around its current state is used (Jazwinsky, 1970).

The traffic state in the network at timek is uniquely described by the vectorrk of all
densitiesrij[k] of all cell i on all links j. The EKF is based on a non-linear state space
equation, which in this case expresses the density vector asa function of the density
vector in the previous time step plus a zero-mean Gaussian noise vectorw[k] which has
a covariance matrixP [k]:

r[k] = f(r[k − 1]) +w[k] (7.8)

The functionf(r[k − 1]) here represents the state space equation (7.5) for each cell.
The EKF furthermore uses a measurement equation describingthe measurement vector
z[k] as a function ofr[k] with zero-mean Gaussian measurement noisev[k] which has a
covariance matrixR[k]:

z[k] = h(r[k]) + v[k] (7.9)

The functionh(r[k]) expresses a function that maps the density to a variable in the
same dimension as the measurements;z[k] denotes the vector of all measurements. In this
chapter speeds are used as measurements; the fundamental diagram (7.3) together with
(7.2) is used to map the density in a certain cell to a speed. Note that the EKF is derived
from Gaussian assumptions on both the distributions of the data and the model. Generally,
Gaussian distributions are not found in practice in traffic.However, the EKF can still be
applied when distributions are non-Gaussian, in which caseit becomes a meta-heuristic
approach. The value of the EKF has been shown in the many caseswhere it has been
applied successfully for traffic state estimation (Sun et al., 2004; Wang and Papageorgiou,
2005; Tampère and Immers, 2007; Wang et al., 2007; van Hinsbergen et al., 2008f).
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The EKF algorithm consists of two steps: a prediction and a correction step. In the
prediction step, the model under consideration is used to predict a new state vector along
with an error variance-covariance matrix. The prediction step is defined by:

r−[k] = f(r[k − 1]) (7.10)

P−[k] = J [k]P [k − 1]J [k]T +Q[k] (7.11)

whereQ[k] is the error covariance matrix of the model and the matrixP−[k] equals an
a priori estimate of the error variance-covariance matrix of the state vector that describes
the noise vectorw[k]. Finally, the matrixJ [k] is used for the linearization of the model;
it equals the derivative of the model to the state:

J [k] = ∇r[k]f(r[k])|r+[k−1] (7.12)

wherer+[k − 1] is the a posteriori state vector of the previous time step which will be
introduced later. Note that there only exist non-zero derivatives between adjacent cells,
either on a link or when a node connects two cells.

In the second step, the correction step, measurements are used to make corrections to
the state. For the EKF, the measurements also need to be linearized around the current
state. For this, defineH [k] to be the derivative of the measurement mapping function to
the state:

H [k] = ∇r[k]h(r[k])|r−[k] (7.13)

The second step of the EKF is now given by

K[k] =
P−[k]H [k]T

H [k]P−[k]H [k]T +R[k]
(7.14)

r+[k] = r−[k] +K[k]
(

z[k]− h(r−[k])
)

(7.15)

P [k] = (I −K[k]H [k])P−[k] (7.16)

whereI is an identity matrix andK[k] is called the Kalman gain which indicates how
much the state should be corrected based on the relative values of the uncertainties of the a
priori state estimate (throughP−[k]) and of the measurements (throughR[k]). The result
of the EKF is an a posteriori state vectorr+[k], which is a balanced estimate of the traffic
state given both the estimate of the model and the measurements, and an a posteriori esti-
mate of the error covariance matrixP [k]. A more detailed description of the EKF and its
application to traffic are found in (Wang and Papageorgiou, 2005; Tampère and Immers,
2007).

The EKF contains two parameters: the values of the measurement covariance matrix
R[k] as well as the process covariance matrixQ[k]. These parameters may be state depen-
dent, but the way to determine these is a discussion too long for this chapter. In Chapter
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6 a method is proposed to adapt the EKF parameters dynamically. Here it is chosen to
keepQ andR constant to keep the discussion focused. Also, as is common,bothQ and
R are taken to be diagonal matrices, assuming independence. Note thatP [k] will not
be a diagonal matrix but will have non-zero elements off the diagonal as well, indicating
covariance between the errors in different cells.

7.2.3 Global Extended Kalman Filter

Usually, the EKF is applied at once to the entire network, so that the state vectorr[k]
represents all cells in the entire network andP [k] contains estimates of the covariance
of the errors between all cells (Gosh and Knapp, 1978; Wang and Papageorgiou, 2005;
Zuurbier et al., 2006). Each time when measurements become available somewhere in
the network the densities in all cells are corrected at once.This process, which is termed
Global EKF (G-EKF) here, uses the available data to its maximum potential, as all den-
sities in all cells are corrected using the error covariancebetween all measured cells and
all non-measured cells. However, this procedure has one major concern: the calculation
times can become very high.

The EKF contains two expensive operations: the inverse operation in equation (7.14)
that scales in the number of measurements and the matrix multiplications of (7.16) that
scales in the number of cells in the network. Theoretically,both of these operations
scale at best in the order ofO(M2.8074) with the Strassen algorithm (Strassen, 1969). For
larger networks (containing more than say a few hundred measured cells) the complexity
of these operations will make real-time calculations impossible on a normal computer,
rendering the G-EKF infeasible for large-scale online applications.

7.2.4 Localized Extended Kalman Filter

In this section, a new EKF implementation is proposed that ismuch faster on larger net-
works because it simplifies the inverse operation. First, itis important to notice that the
error covariance matrixP [k] generally contains many values that are close to zero.

Progression of covariance over the network

Over time a non-zero error covariance can exist between the errors of any two cell states.
In this subsection it will be shown that the covariance undermost conditions decrease as
the distance between two cells increases.

Through (7.11) and (7.16) it can be seen that the covariance is influenced by the lin-
earization of the fundamental diagramH [k], the linearization of the modelJ [k] and the
Kalman GainK[k]. Because of the non-linearity of the system and the stochasticity of the
model and the data, it is very hard to analytically prove under which conditions the covari-
ance will decrease with increasing distance. However, through extensive experimentation
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Figure 7.2: The error covariance values of the first cell of the 21-cell link and all other
cells on the link in three different conditions: (a) free flow, (b) congestion and (c) a state
change from free flow to congestion. A dark color indicates a high covariance. The
gradient indicates that the covariance decreases the further the two cells are apart. Note
that different scales apply to the different figures

on different networks with different sizes it has been observed that under most conditions
the error covariance between two cells further away are smaller than between two cells
close to each other. This is a very intuitive result: only a very small portion of traffic on a
certain location will travel to another location for example 100 km away; therefore, it can
be expected that the error covariance between these two locations is nearly zero.

Figure7.2 shows the error covariance between the cells on a certain route. For this
result the small network as will be presented later (see Figure7.4) was simulated for 600
time steps. The demand and supply of the origins and destination were varied in order
to cause state transitions to occur. In most cases the covariance between two cells are
smaller the further they are apart; only in the third case thecovariance between cell 1
and cell 9 is larger than before during a few time steps. However, further downstream the
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error covariance is again very close to zero. Similar results were obtained on different
networks with other structures and other congestion patterns.

The fact that the covariance values are usually smaller further away from a certain cell
means that in the G-EKF the matrixP [k] will contain many values close to zero for cells
far apart in the network. Corrections to states based on these very small covariance values
will be negligible.

It is important to note that the non-zero values will not always be close to the diagonal
of the matrix, because cells that are spatially close in a network cannot be guaranteed to
be close to each other in the matrix. Also, experimentation has shown thatP [k] is not
always diagonally dominant. These two issues prevent more efficient algorithms to be
applied for the inverse operation, and an alternative is required.

In this chapter it is therefore proposed to use the logic of the network topology in the
corrections and to use a measurement of a detector to correctonly the states of cells in
the vicinity of that detector. The resulting scheme is namedLocalized Extended Kalman
Filter (L-EKF) to indicate the local nature of the corrections.

The L-EKF algorithm

In the L-EKF, many local EKFs are called sequentially for each cell that contains measure-
ments, instead of constructing one large EKF for the entire network. Local measurements
are no longer used to correct the errors of cells far downstream or upstream, but are only
used to correct the state of cells within a certain radiusζ of the measurement. Figure
7.3 shows the principle of the L-EKF withζ = 2. Note thatζ can be taken constant
throughout the simulations or dynamic based on the prevailing traffic conditions. In order
to remain focused, in this chapter it is chosen to keepζ constant; future work needs to
validate if a dynamicζ can improve the results.

In the local EKF scheme, first a global estimate of the state vectorr−[k] and of the er-
ror covariance matrixP−[k] is made using fully-sizedJ [k], P [k] andQ matrices. These
global vectors and matrices are indicated by a superscriptG and can be calculated quickly
because the required matrix operations are relatively light:

rG[k] = f(rG[k − 1]) (7.17)

PG[k] = JG[k]PG[k − 1](JG[k])T +QG (7.18)

Then, a local EKF is constructed for the first measured cell. Anew, local a priori density
vectorrL−[k] is created by copying all elements within the filter radiusζ from rG[k]
and a local a priori error covariance matrixP L−[k] is obtained by copying the relevant
values fromPG[k]. Finally, a new derivative matrixHL[k] is created substitutingrL−[k]
in (7.13). Now, new estimates of the densities and of the (co)variances in the vicinity of
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Figure 7.3: The principle of the Localized EKF on a 7-cell link with measurements in
cell 3 and 5. On top a 7-cell link is shown. First the global a priori state vectorrG[k]
and a priori error covariance matrixPG[k] are computed using(7.17) and (7.18). The
7x7 matrix representsPG[k]. Then an L-EKF is constructed for cell 3 which extracts a
P L−[k] matrix (the dark gray 5x5 square). This L-EKF corrects the states of cells 1-5;
the resulting estimates ofr andP are copied back into the global matrices; then an EKF
is constructed for cell 5 (light gray square) and the processis repeated for cells 3-7



110 7 The Localized Extended Kalman Filter for fast traffic stateestimation

the measurement are determined using

KL[k] =
P L−[k](HL[k])T

HL[k]P L−[k](HL[k])T +RL
(7.19)

rL+[k] = rL−[k] +KL[k]
(

zL[k]− h(rL−[k])
)

(7.20)

P L[k] =
(

IL −KL[k]HL[k]
)

P L−[k] (7.21)

The procedure now continues by substituting the state estimatesrL+[k] and error covari-
ance estimatesP L+[k] back into the global vectorrG[k] and the global matrixPG[k] at
the correct coordinates. Then, the above process is repeated for the next measurement us-
ing the new values of the state and of the covariance whereverthere is overlap (the center
3 cells of the link and the center 9 cells in theP -matrix in Figure7.3).

Note that the order in which the local filters are called is notof importance in case
the model is linear. The Kalman Filter (so not the Extended Kalman Filter that is an
approximation) is a Bayesian optimal estimator that finds the maximum of the posterior
of the state of a celli on a linkj at timek given the data vectorz[k] :

p(rij[k]|z[k]) =
p(z[k]|rij[k])p(rij [k])

p(z[k])
(7.22)

Consider the case where two sequential corrections are made, one with the data pointz1
and one with the data pointz2, and where the posterior of the first correction is the prior
of the second correction. Note that here the indicesi, j andk will be omitted to simplify
notations. In the case wherez1 is first used to correct, then the first correction step of the
Kalman Filter can be written as:

p(r|z1, z2) =
p(z1|r, z2)p(r|z2)

p(z1|z2)
(7.23)

The second correctionp(r|z2) can also be found using the KF, and using Bayes rule can
be written as

p(r|z2) =
p(z2|r)p(r)
p(z2)

(7.24)

Substituting (7.24) into (7.23) and using the fact thatp(a|b)p(b) = p(a, b) the following
result is obtained:

p(r|z1, z2) =
(p(z1|z2, r)p(z2|r)p(r)

p(z1|z2)p(z2)

=
p(z1, z2|r)p(r)
p(z1, z2)

(7.25)

It can now be seen that the same result would be obtained ifz2 was first used, and then
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z1. Because the LWR model is non-linear, it can be expected thatthe order does influence
the solution; however, no a priori knowledge is present on what order to follow. In case
the state of the model is close to the actual state, i.e. if themodel is well calibrated and
previous corrections have lead to the state being approximately correct, then the lineariza-
tion is more accurate; in that case, the order in which the corrections are applied will less
influence the solution. In this chapter it is chosen to apply the filters in the order of which
data arrives in the estimation processing computer.

The L-EKF process has two major advantages compared to the G-EKF. First of all,
the measurement error covariance matrix R in (7.19) is of size1× 1. This means that the
inverse operation becomes scalar and is thus very fast. Second of all, the matrix multi-
plications (7.21) are performed on much smaller matrices which again resultsin a gain in
computation time. The L-EKF procedure scales linearly in the number of measurements;
for each available measurement, equations (7.19)- (7.21) need to be carried out one more
time, but each of these operations is very light. Opposed to the G-EKF, the L-EKF is
therefore suitable for large-scale and real-time applications.

Opposed to the G-EKF, in the L-EKF the states of cells far awayare not corrected.
This leads to a potential loss of accuracy because not all covariance values are used for
correction. However, as the error covariance between cellsfurther apart is generally very
small, the loss in accuracy is expected to be negligible in case the L-EKFs have a suffi-
ciently large radius and in case of a sufficiently dense measurement network.

It is important to note that the radius of the L-EKF is taken symmetric. The number
of cells upstream that are corrected is equal to the number ofcells downstream. Because
the error covariance matrix is symmetric, the covariance between cellA andB is equal
to the covariance betweenB andA. A measurement inA can thus equally well be used
to correct the state in cellB as a measurement inB can be used to correctA. Because a
fixed radius is used throughout the simulation and a priori nothing can be said about the
values of the covariance between the center cell and the upstream cells relative to those
between the center cell and the downstream cells, the radiusis taken symmetric.

To show the difference between the L-EKF and G-EKF both in accuracy and in com-
putation time two separate experiments are conducted: one on a small scale with synthetic
data, and one on a large scale with real-world data.

7.3 Experiment 1: synthetic data

To illustrate the accuracy of the L-EKF compared to the G-EKF, first an experiment on a
small-scale network is conducted. The Localized and GlobalEKF have been programmed
in the software package JDSMART which is a Java-based implementation of the LWR
model solved by the Godunov scheme. For the Matrix operations, the fast UJMP Java-
library has been used (UJMP, 2010). All computations are performed on a Windows XP
machine with a 3.0 GHz dual core processor and with 2GB of memory.
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Figure 7.4: The experimental network on which the LocalizedEKF was verified. The
vertical arrows indicate the four measurement locations

Figure 7.4 shows the network of this experiment. Arrows indicate the driving di-
rection. The network is discretized into cells using (7.4) with a time step of 2 seconds,
resulting in 59 cells. First, a ground-truth simulation is performed, with a certain demand
pattern on Origin 1 and Origin 2 and a different set of fundamental diagram parameters
for each link as shown in Table7.1, which together caused a complex congestion pattern
on the network. Each time step the densities of all cells werestored as the ground truth.
The speeds in four cells throughout the network indicated bythe vertical arrows in Figure
7.4 are stored each time step, which are distorted with zero-mean Gaussian noise with a
standard deviation of 5 km/h.

Table 7.1: Parameters of all links in the synthetic data experiment
Link number vfree [km/h] vcrit [km/h] C [veh/h] rjam [veh/km]
1 100 80 3000 125
2 100 80 2000 125
3 100 80 2000 125
4 100 80 2000 125
5 100 80 1000 125
6 100 80 1500 125
7 100 80 2000 125
8 100 80 2000 125
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The network is then simulated again, with the same fundamental diagrams but with
zero-mean Gaussian noise added to the demands at the two origins (standard deviation
of 200 veh/hr) and the turn fractions of node 1 (standard deviation of 20%). This causes
the resulting congestion pattern to be considerably different from the ground-truth experi-
ment. Using the (noisy) speed measurements from the ground-truth simulation, the states
can be corrected (the intentionally added noise removed) using either the L-EKF or the
G-EKF. The process of adding noise to the speed measurementsand to the demand and
turn fractions is repeated 25 times in order to be able to generalize the results.

Figures7.5and7.6show an example of the ground-truth, distorted and corrected cell
densities for one of the 25 simulations at the four selected locations. For the corrected
densities the best performing G-EKF and L-EKF are plotted. It can be seen that the
estimated densities are much closer to the ground truth densities when compared to the
simulation without EKF, and that the L-EKF and G-EKF overlapfor almost all time steps
for all locations.

The parameters of the L-EKF and G-EKF (the matricesR andQ and the L-EKF
radiusζ) were set as follows. The values on the diagonal ofR are set to25km2/h2 for
both the L-EKF and the G-EKF, because the measurement error has a standard deviation
of 5 km/h. For each of the 25 simulations, the EKFs are tested with different values on the
diagonal ofQ, and the best scoring values are chosen; for the L-EKF, the radiusζ is also
varied (but taken equal for all filters in one simulation) between 0 and 59, the network
size.

Figure7.7(a) shows the average Root Mean Square Error (RMSE) between the cor-
rected states and the ground-truth states for all time stepsfor all 25 simulations, along
with the average computation times. As can be seen from the figure, both EKFs result in
lower errors than when no correction is applied. It can also be seen that the L-EKF with a
small radius (< 5) performs worse compared to the G-EKF, because not all data is used to
its full potential; however, with sufficiently large radii (> 5) the same level of accuracy is
obtained. This result confirms that corrections made by the G-EKF to cells far away are
indeed negligible. Also, the results of the L-EKF with full radii (59 cells) confirm that the
order in which the filters are used are in this case not important, as the sequentially called
filters are as accurate as the G-EKF.

Figure7.7(b) shows that even for this small network the L-EKF is fasterthan the G-
EKF for ζ < 20. Performing 4 individual corrections on a small radius is thus already
faster than doing 1 large correction. For largerζ the calculation times start to increase
beyond the average computation times for the G-EKF, becauseof the overhead in copying
the data back and forth and because of the other matrix operations (7.19)-(7.21).
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Figure 7.5: The resulting density patterns from one of the 25simulations for the locations
indicated by vertical arrows in Figure7.4. The black solid line is the ground truth. The
resulting ‘wrong’ pattern is shown in light gray, and the corrected densities using G-
EKF/L-EKF in darker gray. For almost all time steps, the densities from G-EKF and
L-EKF are almost equal
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Figure 7.6: The resulting density patterns from one of the 25simulations for the locations
indicated by vertical arrows in Figure7.4
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(a)

(b)

Figure 7.7: Comparison of accuracy in terms of RMSE (a) and ofcomputation times (b)
for the different filters. The L-EKF (dark solid line), is compared for different horizons to
the base simulation without EKF (dashed lines) and G-EKF (light solid line)
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Figure 7.8: The freeway network around the city of Rotterdamhas a total length of 272
km

7.4 Experiment 2: real data

To show the gain in computation time and the comparative accuracy of L-EKF versus
G-EKF on a large real-world network the two EKFs are applied to the freeway network
around Rotterdam, the Netherlands as shown in Figure7.8.

This freeway network has a total length of 272 km. A time step of 5s is chosen,
after which the links are discretized using (7.4) leading to a total size of the network of
1911 cells with an average cell length of approximately 142m. Throughout the network
531 double loop detectors are placed, which corresponds to an average spacing of about
500m, of which each minute speed data is available.

The fundamental diagrams are roughly calibrated using a heuristic approach that uses
three years of historic data of all detectors in the network.The free speed and critical
speed are found sorting the speeds of each detector in a cumulative curve as shown in
Figure7.9. The figure shows two points of sharp curvature. The curvature at the com-
plete right of the graph is a point where only few vehicles drive faster and can thus be
interpreted to be the free flow speedvfree. The second curve from the right indicates
a point where suddenly few speed measurements are availabledue to traffic breakdown
and can thus be interpreted to bevcrit. The estimation procedure of these two speeds is a
heuristic based on two other empirical observations: (1) speeds are approximately evenly
distributed between the critical and free flow speed so that the line between the two points
is always a straight line and (2) no detector was found where more than 70% of the mea-
surements are congested. The two speed parameters are foundby taking the slope of the
line at 70% of the total number of points and by finding the point right and left to it where
the cumulative curve deviates more than a threshold from theslope. If multiple detectors
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Figure 7.9: Sorted speeds of one detector. The horizontal lines indicate the free flow speed
and critical speed. The dashed line indicates the linear nature of the cumulative curve in
free flow conditions

exist for one link, the median of all estimates forvfree andvcrit are taken for the link; if
no detectors exist of a link the parameters of the surrounding links are used. The remain-
ing two parameters of the fundamental diagram are taken constant for all links based on
experience:rcrit = 25veh/km andλ = −18km/h.

For the experiment a regular Monday morning peak period is selected, 10 March
2008 from 6AM to 10AM. The 531 detectors are split in two: one part which is used
for estimation, and another part which is used for validation. The validation detectors
are used to compute the Root Mean Square Error (RMSE) betweenthe estimated speeds
and the modeled speeds. Four different scenarios are made with increasing scarcity of
detectors used for estimation: 25%, 50%, 75% and 90% validation detectors, where it
is always ensured that the remaining estimation detectors are evenly distributed over the
network. With fewer detectors used for estimation, computation times are expected to
decrease while the RMSE is expected to increase.

Each scenario the network is simulated, feeding data into the network each minute;
the prediction step of the EKFs is performed each time step, while the correction step is
performed only once when new data is loaded into the network (every 12 time steps). The
4-hour simulation is performed with the L-EKF with fixed radii varying between 1 and 30
and with the G-EKF. For both filter types, 8 different values of Q were tested on a large
range from 0.01 (almost no correction) to 100,000 (a lot of correction)veh2/km2 with a
fixed value ofR = 25km2/h2.

Table7.2 shows the results for the different filters for the simulations without any
EKF and the best performing L-EKF and G-EKF. For all four scenarios the number of
validation detectors is given, as well as the average spacing between detectors. The last
column shows the RMSE of the L-EKF. It can be seen that with a sufficiently large radius
the RMSE for the L-EKF is always at least as low as the G-EKF. Both filters result in
more accurate estimates of the speeds compared to no correction.
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A very large difference between the computation times of thetwo types of filters is
visible: the L-EKFs are between 12 and 51 times faster, depending on the radius and the
number of detectors used for estimation. As expected, the computation time increases
with more detectors used for estimation and fewer for validation. However, the computa-
tion times of the G-EKF steeply increase when more detectorsare used for estimation, as
shown in Figure7.10.

Table 7.2: Best results of L-EKF versus G-EKF on a large scalenetwork with 1911 cells
for different numbers of detectors used for validation
Method Optimal

Q2[veh2/km2]
Computation
time [s]

× Real-Time RMSE [km/h]

25% (133) validation detectors; spacing = 0.7 km
No EKF - 24 605.0 33.3
L-EKF (ζ = 1) 100 730 19.7 17.6
L-EKF (ζ = 10) 1000 876 16.4 17.3
L-EKF (ζ = 20) 100 1067 13.5 16.9
L-EKF (ζ = 30) 100 1566 9.2 16.8
G-EKF 100 37150 0.4 16.7

50% (264) validation detectors; spacing = 1.0 km
No EKF - 20 720.0 33.3
L-EKF (ζ = 1) 100 653 22.4 17.8
L-EKF (ζ = 10) 100 723 19.9 17.6
L-EKF (ζ = 20) 100 857 16.8 17.5
L-EKF (ζ = 30) 10 1138 12.7 19.4
G-EKF 100 21813 0.7 17.8

75% (398) validation detectors; spacing = 2.0 km
No EKF - 24 590.2 33.1
L-EKF (ζ = 1) 100 711 20.3 23.3
L-EKF (ζ = 10) 1000 1002 14.4 21.8
L-EKF (ζ = 20) 100000 1021 14.1 21.5
L-EKF (ζ = 30) 1000 910 15.8 21.7
G-EKF 1000 13779 1.0 22.1

90% (478) validation detectors; spacing = 5.1 km
No EKF - 66 217.5 32.9
L-EKF (ζ = 1) 100 681 21.1 28.1
L-EKF (ζ = 10) 10 797 18.1 27.9
L-EKF (ζ = 20) 10 792 18.2 27.8
L-EKF (ζ = 30) 100 964 14.9 27.7
G-EKF 10 11670 1.2 27.9
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Figure 7.10: Computation times as a function of the number ofdetectors used for estima-
tion. The L-EKFs show hardly an increase in computation time, while the G-EKF shows
a rapidly increasing computation time

In Table7.2 it can also be seen that the G-EKF is slower than real-time when more
than 25% of the detectors are used for estimation. However, the L-EKF is still at least
9 times faster than real-time, even if 75% of the detectors are used for estimation. This
means that even for a large network with hundreds of kilometers of road, such as the one
used in this experiment, the L-EKF still is able to perform all necessary computations for
the state estimation of the next minute within one minute.

7.5 Discussion and conclusion

In this chapter the Localized Extended Kalman Filter (L-EKF) has been proposed, op-
posed to the traditional Global EKF (G-EKF). The L-EKF is based on the observation
that in the error covariance matrixP of a G-EKF many values are generally close to zero,
leading to very small corrections which can be neglected. The L-EKF uses only local data
in the physical vicinity of the measurement location, correcting only the states of the cells
that have a considerable error covariance with the measuredcell. The radius of the cor-
rections is user-defined and influences the accuracy of the estimates on the one hand, and
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the required computation time on the other hand. In two experiments, one with synthetic
data and one with real data, it is found that for a sufficientlylarge radius, the accuracy of
the L-EKF is equal to that of the G-EKF.

In the same experiments it has been shown that the order in which the local filters
are used appears not to be important; in case the linearizations of the Extended Kalman
Filter are accurate, it has been shown that the order in fact does not matter; otherwise
a stochastic and unpredictable component exists in the calling order. Future study will
need to validate if the calling order indeed never influencesthe accuracy to a considerable
extend.

The L-EKF overcomes the major issue that has prevented the G-EKF being applied
on a large scale: the calculation times of the G-EKF are very high on large-scale networks
because the EKF procedure requires two expensive matrix operation, which scale to the
power of 2.8 in the number of measured cells or the total number of cells in the network.
In this chapter it has been shown that the complexity of the L-EKF scales linearly in the
network size. Furthermore, in a real-world experiment on a large network it has been
shown that the L-EKF was between 12 and 51 times faster, ensuring that it can still run
within real-time, making it now possible to use the first order traffic flow model for real-
time state estimation in large traffic networks, a task that was until now only possible
on small-scale networks or corridors. This computation speed difference will be even
larger when the size of the network or the number of measurements increases. Real-
time application is therefore now possible, leaving time for additional computations for
ATIS/DTM/MPC applications.

Based on the two experiments it can be stated that the L-EKF isalways preferable
over the G-EKF because it is faster and still delivers the same level of accuracy, even if
the data is scarcely distributed. In the worst case experiment the average spacing between
the detectors was 5.1 km. Even then the L-EKF delivered the same level of accuracy as
the G-EKF. Of course, with fewer detectors both filters perform worse than when more
detectors are used for estimation.

Increasing the radius of the L-EKF leads to higher computation times due to the over-
head in copying values from the global matrices to local matrices and back, and due to
the required matrix operations. However, when the network size is large, this overhead
becomes negligible. Therefore, the radius of the local filters can safely be taken large to
ensure a high accuracy, without increasing computation times considerably.

Future research needs to resolve several open questions. First of all, in this chapter
many simulations were run with different fixed radii. Futureresearch should investigate
the possibility of predefining the optimal radius based on the expected influence area of a
certain location, for example based on the shape and parameter values of the fundamental
diagram. Also, it is possible that a dynamic radius of the L-EKF based on prevailing
traffic conditions increases performance in accuracy and/or computation time. Finally, the
authors believe that the same idea of localization could be applied to Unscented Kalman
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Filter theory, other numerical solutions to the LWR models and other traffic flow models,
making it possible to apply those theories to large scale networks as well with possibly
higher accuracy than the LWR/EKF-combination used in this chapter.



Chapter 8

Conclusions and recommendations

In this thesis the Bayesian framework for data assimilationhas been described. It has
been applied to several problems in the traffic modeling domain, from an individual level
(microscopic modeling of car-following behavior) to an aggregated level (network-wide
state estimation). Furthermore, a fast new implementationof the Extended Kalman Filter
has been proposed. In this chapter, first the conclusions arepresented that are drawn
based on the research that has been performed. Next, the implications for practitioners
in the relevant fields of traffic modeling are treated. Finally, recommendations for future
research are presented.

8.1 Conclusions

In this section, the main conclusions are presented that aredrawn based on the studies that
have been performed. First, recall the goal of this thesis that was defined in Chapter1:

“to find a unified methodology for data assimilation for a widerange of mod-
els describing different road traffic phenomena, so that more accurate and
consistent predictions can be made of the road traffic system”.

To reach this goal, first in the introduction a probabilisticperspective was chosen on
the data assimilation problem. Then, a framework was found that uses Bayesian infer-
ence to develop equations for the validation & identification, calibration and estimation &
prediction steps, based on the seminal work ofMackay(1992a, 1995) andBishop(1995).
Each of these steps are strongly interrelated, where generally the calibration task is per-
formed first, after which the validation, identification, estimation and/or prediction can
take place. Throughout the chapters of this thesis, this framework has been applied to a
variety of traffic phenomena. In each chapter, the literature has been reviewed on the cur-
rent state of practice in data assimilation, and the framework that was defined in Chapter
1 has been applied as an alternative.
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The conclusions are organized in the following way. First, based on the literature
reviews of all chapters together conclusions will be drawn on the current state of practice
in data assimilation. Conclusions will be drawn on the Bayesian framework itself based
on the experience of applying it to several problems. Then, conclusions are drawn in
each field of traffic science individually to which the framework was applied. Finally,
conclusions will be drawn on the Localized Extended Kalman Filter.

8.1.1 Current state of practice

In each chapter, the current state of practice has been studied by investigating the scientific
literature for the specific problem at hand. As stated in the introduction, data assimila-
tion consists of three steps: model validation/identification, model calibration and predic-
tion/estimation. For the model identification step, the literature studies of each individual
problem have revealed that:

• Usually many different models exist for the description/prediction of the same traf-
fic phenomenon.

• Usually a model is chosen based on ‘gut feeling’ or experience, rather than based
on numerical evidence that the chosen model is better than all alternatives.

• In the case when models are numerically compared, the comparison is based on one
of the following indicators, each of which has issues:

– The prediction error of the last interval.This approach has two problems:
first, the prediction error of the last interval may not be available at the time a
new prediction needs to be made, for example if the variable to be predicted
is the travel time. Second, traffic is dynamic and stochasticso the prediction
error is dynamic and stochastic too. Looking at the recent past for information
on the current performance of models can thus be misguiding.

– The calibration error. Calibrating models usually entails minimization of
some performance measure. The values of these measures can be compared
after each model is calibrated using the same method and the same data set.
This approach tends to promote overly complex models because the absolute
value of the calibration error is generally lower for modelswith more param-
eters, and it can even reach zero in case the number of parameters equals
the number of data points. Comparing these values can therefore lead to the
choice for models with low generalization ability1 (‘overfitted’ models).

1The generalization abilityreflects the notion that a model is able to predict the traffic phenomenon
under consideration well, in all possible (likely) situations. A model that has a high generalization ability
will therefore not only perform well on the data set that was used for calibration, but will also perform well
in case new data is fed to the model.
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– The validation error. With this method, first a part of the data is used for
calibration, and the performance of the models is then tested on the other part
of the data. This requires the data set to be split in two leading to less data to
be available for calibration and thus poorer predictions.

– The Likelihood-Ratio Test (LRT). This method overcomes all previously men-
tioned problems, but has one problem on its own: it can only beused on
so-calledhierarchically nested models, i.e. models where one model is a spe-
cial case of the other. In general, the available models for description of traffic
phenomena are not hierarchically nested.

The Bayesian framework that is proposed in this thesis is a generalization of the
Likelihood Ratio Test and is able to overcome all problems mentioned above. It
balances the model fit with the model complexity, it allows all data to be used for
calibration while still allowing for a numerical comparison of models and it is thus
less sensitive to stochasticity and dynamics. It can be usedto compare any set of
models, also when they are not hierarchically nested.

• Usually only one model is studied or individual models are compared, but predic-
tions of models are hardly ever combined in a ‘committee’.

For the model calibration, the literature studies reveal that:

• Usually, single parameter values are found, while parameter distributionsbetter
represent the stochasticity of the traffic system.

• Prior information is hardly ever used in the calibration procedure. Because many
parameters in traffic models usually have a physical meaning, it is a missed op-
portunity to improve the outcomes of the calibration procedure. Furthermore, the
collected data does not always contain information on all parameters. In those
cases, using prior information can prevent the parameters taking up unrealistic val-
ues based on random noise in the data.

Finally, for prediction/estimation, the literature reveals that:

• Usually, single values are predicted such as the travel time, while it may make sense
to not only predict the most likely value, but also the prediction intervals. These
prediction intervals may be directly communicated to the end user in Advanced
Traffic Information Systems, but may also serve as an input toDynamic Traffic
Management systems. As the user’s trust in the information is essential for effective
management of traffic, this is an important missed opportunity.
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8.1.2 Bayesian framework for data assimilation

For the framework in general, the following conclusions canbe drawn:

• The Bayesian framework for data assimilation has proved to be a unified method
and has been shown to be applicable to a wide range of models describing different
road traffic phenomena.

• The application of the Bayesian framework for data assimilation generally leads to
better performance (i.e. more accurate and with higher generalization ability) of the
models that it is applied to.

• Assumptions need to be made explicit through the prior distributions on the pa-
rameters (model calibration) and the prior distributions of entire models (model
identification). Given the assumptions and the data, Bayesian inference leads to an
answer that is only as good as the assumptions and the data that were used as input.

One important feature of the Bayesian framework is that it leads to a numerical value
for how good a model is expected to be (its generalization ability). This is called the
evidencefor a model, which can be used to compare a model to another model. The ev-
idence balances how well a model fits on the data with the complexity of the model. A
model with more parameters will always better fit to a data set, but will not necessarily
make better predictions (have better generalization ability). A model with very few pa-
rameters may not be sophisticated enough to describe the problem at hand. The evidence
measure balances between these two extremes. The evidence is calculated based on cali-
brated models. All available data can be used for calibration, because the evidence does
not require the data set to be split up in two. In case data is scarce, this is a very beneficial
property. The following conclusions can be drawn for this evidence measure:

• The evidence is preferable over other numerical comparisonmethods such as the
Likelihood Ratio Test (LRT), because LRT requires models tobe hierarchically
nested while the evidence can be used to compare any set of models. In case the
models are hierarchically nested, the outcomes of the two procedures are identical.

• In order to use the evidence for choosing between models, thecorrelation between
evidence and the generalization ability needs to be strong.However, in studying
this correlation in Chapter5 it is found that this is not always the case because of
the following possible problems:

– The available data set that was used to represent the ‘groundtruth’, i.e. to test
the generalization ability, may be too small, i.e. the validation data set is not
representative (enough) for the problem at hand.
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– The used models do not contain ‘the perfect’ model (the Bayesian inference
framework makes a closed-world assumption, so that the probability that none
of the alternatives is correct is zero,P (∅) = 0). A weak correlation between
evidence and generalization ability is an indication that the models require
improvement.

– Related to the previous point: the system under consideration contains ‘system
noise’: not all explanatory factors will be present in the data. This can cause
all models to fail, and a weak correlation between evidence and generalization
ability.

– The evidence is estimated using several assumptions: usually Gaussian distri-
butions are assumed and some derivatives are approximated,such as the outer
product approximation of the Hessian, in order to speed up calculations. The
difference between generalization ability and evidence may be caused by a
difference between the approximated evidence and the ‘real’ evidence.

• The evidence is useful for selecting high-potential modelsfrom a set of alternatives.

• The evidence is useful as a selection criterion and/or a weight in a model committee.

• Possible improvements to models, such as pruning (removingparameters, thus de-
creasing complexity) or using additional or alternative types of input data, can be
evaluated using the evidence.

In several chapters of this thesis acommitteewas created: predictions of several mod-
els are combined. Concerning the committees, the followingconclusions can be drawn:

• In all cases the use of a committee leads to improved prediction accuracy. Although
the improvements are not spectacular, the additional effort to create a committee is
very low in case the user already has multiple models at hand.Of course, running
more models in parallel puts higher demands on computational power. The trade-
off between more computation power and higher accuracy needs to be made for
each application individually by the user.

• If all models have similar bias (for example, all models overestimate the quantity
to be predicted), the committee generally leads to worse predictions than the best
of the individual models. Increasing the heterogeneity of the available models very
likely decreases the probability of all models having the same bias and thus leads
to more accurate predictions.

In Chapter4 and5 error bars (prediction intervals) are constructed around the predic-
tions. These error bars naturally follow from the Bayesian inference framework, because
distributions are created on the data as well as on the parameters. A distribution thus
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exists on the outputs. This distribution can be used to construct prediction intervals. This
way, the end user receives information not only on the most likely traffic conditions, but
also on the reliability of the information and of the traffic conditions. This will be useful
in Advanced Traffic Information Systems, but also in case thepredictions serve as input
to Dynamic Traffic Management or Model Predictive Control systems.

8.1.3 Car-following behavior

The Bayesian framework for data assimilation has been applied to the problem of predict-
ing car-following behavior in Chapter2. Concerning this study, the following conclusions
are drawn:

• One major issue in car-following behavior is driver heterogeneity: there are large
inter-driver differences, so that one model may be best suited to one driver but
another model to another driver. The Bayesian evidence has proved to be a useful
tool for analyzing andquantifyingthese inter-driver differences. Using this tool,
the driver heterogeneity can now be explicitly modeled.

• The Bayesian framework can also be used to construct the probability of models in
an entire population (the distributionP (H|D)). This posterior distribution of the
models can serve as a basis for a heterogeneous microscopic simulation.

8.1.4 Travel time prediction

In Chapters3, 4 and5 the Bayesian framework has been applied to travel time prediction.
Concerning these studies, the following conclusions are drawn:

• There is a huge number of alternative models that have been used for travel time
prediction. In most studies that have been published about these models, the authors
compare in some way their model to a set of other models and conclude that the
new model outperforms ‘existing models’. However, in almost none of the studies
the data assimilation is treated explicitly or consequently, so that the conclusion of
better performance is at least dubious.

• Only a few studies exist where these models are combined in a committee. All of
these use the error of the previous interval, but this error cannot be known in real-
time because the travel time is only known after it has been realized. The Bayesian
evidence is a solution to this problem that has proved in all three chapters to lead to
improved prediction accuracy.

• In AppendixA the exact Hessian for recurrent neural networks is derived based
on back-propagation theory. In the case study that was presented in Chapter5 the
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outer product approximationof the Hessian, which is much faster to compute than
the exact Hessian, has proved to lead to well trained neural networks, but the exact
Hessian may be preferable in case the evidence needs to be calculated accurately.

• In the case study of Chapter5 it has been found that for a longer prediction hori-
zon a recurrent layer in neural networks leads to better predictions, but that for a
shorter horizon the added complexity of a recurrent layer does not help - in fact,
for a 5-minute horizon the added complexity leads to overfitting and slightly worse
predictions.

8.1.5 Extended Kalman Filter parameters

The same theories that were used for calibration of entire models have also been applied
to the problem of defining the parameters of an Extended Kalman Filter that is combined
with the LWR traffic model solved by the Godunov scheme. The derivation of equations
for these parameters is very similar to those of thehyperparametersof training algo-
rithms used with neural networks. Concerning this study, the following conclusions can
be drawn:

• In the presented case study, the dynamic adaptation of the EKF parameters leads to
almost equally accurate state estimates as when the optimalfixed EKF-parameters
are used.

• However, the Bayesian adaptation of parameters leads to robustness of initial es-
timate of parameter values, while a wrongly chosen fixed EKF-parameter set may
lead to a considerable loss in accuracy. This robustness is avery desirable property,
as it is usually very hard to make an initial estimate of the variance of the model
and of the data because no ground-truth is generally available.

• The Bayesian framework assumes Gaussian distributions on the data. The frame-
work has been found to be sensitive to the distribution of thedata not being Gaus-
sian. In case of for example speeds of 0 km/h, the distribution cannot be Gaussian
because negative speeds cannot exist. In that case, the covariance is overestimated
leading to too small corrections of the state.

8.1.6 Localized Extended Kalman Filter

In Chapter7 a new, fast and scalable implementation of the Extended Kalman Filter has
been described: the Localized EKF (L-EKF). The L-EKF is an alternative method to
compute the posterior distributions of the model state using the Kalman Filter equations.
The L-EKF has been compared to the traditional ‘Global EKF’ (G-EKF) using the LWR
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model solved by the Godunov scheme. Concerning this study, the following conclusions
can be drawn:

• In the G-EKF many negligible corrections are made because the error covariance
matrix contains many values close to zero. The L-EKF uses this fact, together with
the network topology, to make only relevant corrections. A measurement is only
used to correct the traffic state within the vicinity of the measurement location.

• The radius of the corrections is user-defined and influences the accuracy of the
estimates on the one hand, and the required computation timeon the other hand.

• In two experiments, one with synthetic data and one with realdata, it is found that
for a sufficiently large radius, the accuracy of the L-EKF is equal to that of the
G-EKF.

• This result validates that the order in which the local filters are used is not important.

• The L-EKF overcomes the major issue that has prevented the G-EKF being applied
on a large scale: the calculation times of the G-EKF are very high on large-scale
networks because it requires expensive matrix operations which scale to the power
of 2.8 in the number of cells or the number of measurements in the network. In the
study it has been shown that the complexity of the L-EKF scales linearly with the
network size.

• Because the L-EKF scales much better in the network size, it is now possible to use
the Extended Kalman Filter on a very large scale. Real-time application is possible,
leaving time for additional computations for Advanced Traveler Information Sys-
tems, Dynamic Traffic Management systems or Model Predictive Control systems.

• Based on the two experiments I have the opinion that the L-EKFis always prefer-
able over the G-EKF because it is faster while maintaining the same level of accu-
racy, even if the data is scarcely distributed over the network.

8.2 Implications for practitioners

This research has aimed to provide tools for practitioners and researchers in the field of
traffic information and traffic management that enable them to optimally use their models
in combination with data. One of the most important notions of this thesis is that models
and data go hand in hand and should always be treated together. The Bayesian inference
framework is one way of approaching this, which has been shown to have various benefits
as presented in the conclusions before.

For practitioners, the research has the following implications:
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• The Bayesian framework is a single framework for model validation, model identi-
fication, model calibration and estimation/prediction.

• In Bayesian inference, assumptions need to be made explicit. Whether or not this is
a good feature is part of a long debate between Bayesians and frequentists. In any
case, the outcomes of the model identification, calibrationand prediction steps are
only as good as the assumptions that were made and the data that was used for each
of the steps.

• This framework has been shown to be applicable to a variety ofproblems, such as
car-following prediction, travel time prediction and continuous calibration of EKF
parameters. The exact same ideas can be applied to any problem in traffic for which
one or more models are available.

• Using the evidence, models can be compared based on a numerical measure. The
comparison can be made while all data can still be used for calibration.

8.3 Recommendations and future research

In this final section of the thesis, several new applicationsand fields of study are identified
which may direct future research. These new fields of study fall outside the scope of
this thesis, but are deemed to be able to benefit from the Bayesian framework for data
assimilation. As with the conclusions, these questions arefirst stated for the framework
as a whole. Then, possible future research is defined for eachapplication separately.

8.3.1 Bayesian framework for data assimilation

During this thesis, the Bayesian framework has been appliedto a variety of problems: car-
following behavior, travel time prediction and data assimilation for macroscopic traffic
modeling.

In Chapters4 and5 the correlation between evidence and generalization ability was
found not to be perfect. As noted before, a weak correlation between the evidence and
the generalization ability is an indication that the modelsrequire improvement. Another
way to look at this is that the probability of the empty set maynot be zero: all models
that are used may be wrong, i.e. the selected set of models does not contain the ‘perfect’
model. Recall from1.4 that the Transferable Belief Model (TBM) explicitly takes this
possibility into account. Now that the Bayesian framework has proven to be very useful
in data assimilation in a wide variety of applications in traffic science, the TBM may be
applied in a similar fashion. Because the Bayesian framework is a special case of the
TBM, this thesis has laid the basis for such research.

Several ideas exist to apply the Bayesian framework to different problems, such as:
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• In modeling of pedestrian behavior, multiple models exist to describe walking be-
havior. Calibration of these models is a challenge because ground-truth data is gen-
erally scarce compared to the number of parameters of the models. The Bayesian
framework may lead to better answers to how well these modelsperform relative to
each other, even in the case when data is scarce.

• Using one or more (data-driven) models for prediction of other traffic variables
than travel time. The prediction of traffic flow, for example at an onramp, can
be useful as an estimate of the demand at origins in a network-wide traffic state
prediction. Also, predicted route choice, or aggregated route choice represented
by split rates or turn fractions can serve as a parameter in the same network-wide
traffic state prediction. Finally, there is often an interest to predict variables like
level-of-service, crash rates and incident duration for a variety of applications.

• Using the framework for OD-matrix prediction. As with the other traffic phenom-
ena, a multitude of models exist for the prediction of Origin-Destination matrices.
The Bayesian evidence can be used to put a number to how well each model per-
forms compared to the others. The OD-estimation problem is at the same time
one of the most underdetermined problems in the field of traffic. The inclusion of
prior knowledge may thus be a crucial factor in solving this problem. In the work
of Bell (1991), prior information is for example already included in a generalized
least squares approach, an approach that is easily extendedto the Bayesian one.
As an additional benefit, the Bayesian framework allows for estimation of the un-
certainty of the predictions, which is a very desirable feature if the problem is so
underdetermined.

8.3.2 Car-following behavior

In the application of the Bayesian framework to car-following behavior, the following
recommendations are made for future research:

• Besides of inter-driver differences there are also intra-driver differences: one driver
does not always behave according to the same model, but may change his behavior
stochastically or depending on conditions. The use of a heterogeneous pool of
models (a committee) for one single driver may increase the robustness towards
this changing behavior and may increase the accuracy with which driver behavior
can be predicted.

• Error bars have not yet been constructed on the predicted car-following behavior.
In some applications, it may make sense to do so: for example when predicting
the trajectory of a single driver in vehicle-to-vehicle or vehicle-to-roadside archi-
tectures.
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• As was proposed in Chapter2, the work that has been done has paved the road
for a heterogeneous microscopic simulation. In this simulation, different models
exist for the same task. Using a large data set, the Bayesian framework is used to
find a distribution of the probability of a model best describing a driver’s behavior.
Each time a new car is entered into the network, first a model isdrawn from this
distribution. Then, for this model parameter values are drawn from the posterior
distribution of the parameters. The vehicle can then be simulated through the net-
work using his model and his parameter set. Experiments should then investigate
if such a heterogeneous simulation better describes the traffic system than when a
single model is used for all drivers.

8.3.3 Travel time prediction

In the application of the Bayesian framework to travel time prediction, the following open
questions for future research have risen:

• In all applications the prior distributions of models have been taken equal (‘flat’)
for all models. However, inclusion of prior knowledge may improve results: better
assumptions to start with lead to better results from the Bayesian inference. Future
study should investigate ways to find prior knowledge, for example by investigating
literature comparatively.

• In Chapters3 - 5 the Bayesian framework was applied to at maximum twotypesof
models, although many neural networks with different structures have been trained
for Chapter4 and5. In literature, literally hundreds of models have been found that
have been used for prediction of traffic variables (van Hinsbergen et al., 2007). It
is an interesting research project to test a multitude of models in one or more large
scale experiments with the Bayesian framework. Such a studymay be used as the
basis for future practitioners to a priori select potentially well-functioning models,
so that they do not have to test all possible models that have been developed over
the last decades.

• It was found that for longer prediction horizons recurrent neural networks perform
better than feed-forward neural networks, while for shorter horizons this is the other
way around. Future study should validate if this result holds in general. If so, it is
an interesting feature that can perhaps serve in a priori model selection, which can
save work for practitioners.

8.3.4 Extended Kalman Filter parameters

In Chapter6 the Bayesian theories have been applied to the continuous estimation of the
parameters of the Extended Kalman Filter. The following open questions have risen:
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• In the current approach, only the data covariance matrix is continuously changed,
because the equations could not be solved for the model covariance. Future re-
search can possibly further improve results by trying to findalternative ways to set
the model covariance, for example by numerical estimates ofthe covariance or by
approximation of some of the equations.

• The solution is found to be sensitive to bias in the data. One possible solution
is not to use a Gaussian distribution but another, non-symmetric distribution. An
analytical solution of the equations is in those cases probably harder, so assumptions
or numerical approximations may be needed.

• The continuous adaptation of the EKF parameters has been tested on the ‘Global’
EKF. Future study should see if the same good results are obtained if they are ap-
plied to the Localized EKF of Chapter7.

8.3.5 Localized Extended Kalman Filter

In Chapter7 the Localized EKF has been proposed as an alternative implementation of
the traditional Global EKF. The following future research topics are of interest:

• The order in which the L-EKFs are called are now based on the order in which data
arrives in the processing computer. Future research shouldtry to confirm the result
that the order in which the filters are called is not important. If this result is found
not to be general, ways should be proposed to optimally set the calling order of the
sequential filters.

• In the study many simulations were run with different fixed radii. Future research
should investigate the possibility of predefining the optimal radius based on the
expected influence area of a certain location, for example based on the shape and
parameter values of the fundamental diagram.

• Alternatively or additionally it is possible that a dynamicradius of the L-EKF based
on prevailing traffic conditions increases performance in accuracy and/or computa-
tion time.

• The same ideas of localization can be applied to other filters, for example the Un-
scented Kalman Filter. Furthermore, it is interesting to validate the localization with
other numerical solutions to the first order model or other models such as second or
higher order models.



Appendix A

Exact gradient and Hessian for
Recurrent Neural Networks

In this appendix the exact gradient and Hessian for recurrent neural networks are derived.
In this appendix the definitions as given in Chapter4 and5 are used as a basis. In Figure
5.1 the layout of a State Space Neural Network (SSNN) can be seen,which is a special
form of a general Recurrent Neural Network (RNN) with certain weights set to zero. The
derivation for the exact gradient and Hessian hold for both the RNN as well as the SSNN.

A.1 Determination of the gradient

To determine the direction for each step in the conjugate gradient algorithm, the gradient
of the error function to the weights is needed. The data errorED and the regularizer errors
EW,v will be considered separately, so:

∇E(θ) = β∇ED +∇
V
∑

v=1

αvEW,v (A.1)

The derivative of the second term, the gradient of the weighterrors (regularizers), is
straightforward:

∇
V
∑

v=1

αvEW,v =
V
∑

v=1

αvIvθv (A.2)

whereIv is a matrix with all elements zero except for some diagonal elementsI ii = 1
wherei is the index in the weight vectorθ of a weight belonging to a groupv.

The gradient ofED is more complex. Because this term is a summation over allN
input patterns, the gradient of the error over one patternn (which is equivalent to the
error at time stept as noted before) can first be considered, which is defined asEt

D =

135
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2, and later be summed over all patternsN to obtain the full gradient.
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whereδtk = (ytk − otk).

A.1.1 Determination of∂y/∂w

In this section, for each weight in the recurrent neural network the derivative (A.3) will
be determined.

For a weightθkj in the output layer, it holds that:
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with ∆kk the Kronecker delta function.
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For a weightθji in the hidden layer:
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Define:
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Equation (A.5) then becomes:
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The starting condition forω follows from the fact that ift = 1, the context layer contains
constant valuesC, so that
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For a weightθjl in the context layer:
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Defineη by:
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Equation (A.10) then becomes:
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The starting condition forη is:
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A.1.2 The gradients for each layer

Using (A.3), (A.4), (A.5) and (A.10) the gradient of the error function can now be con-
structed for each layer. For the output layer:
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For the hidden layer:
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For the context layer:
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Note that in an actual application the values forω andη have already been calculated in
the previous time step and can be kept in memory for referencein the next time step.

The total gradient of the error function can now be obtained by concatenating all
values into a vector of sizeW (the total number of weights in the network) and summing
over alln. The gradient term of (A.2) is then added to obtain the entire gradient.

A.2 Determination of the Hessian

To determine the step size in the conjugate gradient algorithm and to calculate the
Bayesian evidence the HessianA is needed, which is considered separately for the two
error partsED andEW :

A = ∇2E(θ) = β∇2ED +∇2

V
∑

v=1

αvEW,v (A.18)

The second term again is straightforward:

∇2

V
∑

v=1

αvEW,v =

V
∑

v=1

αvIv (A.19)

The first term, the error partED, is first considered per patternn (time stept), Et
D, and

later summed over alln to obtain the full value. Using the previously derived first deriva-
tives of (A.15) - (A.17), the second derivatives can be found one by one.
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A.2.1 Both output layer
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(A.20)

Note that if the output function is linear,f ′
2(a) = 1 andf ′′

2 (a) = 0, and the result reduces
to∆kk′z

t
j′z

t
j .

A.2.2 Output layer and hidden layer
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Note that in case of a linear output, the last term vanishes asin that casef ′′
2 (a) = 0.

A.2.3 Output layer and context layer
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Note that in case of a linear output, the last term vanishes asin that casef ′′
2 (a) = 0.
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A.2.4 Both hidden layer
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where the auxiliary variableψ is defined as:
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with χ given by:
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with the starting condition forχ:
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= 0 (A.26)
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A.2.5 Hidden layer and context layer
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with φ defined by

φt
kj′lji =

∂gtkj′l
∂θji

=
∂

∂θji

(

∑

j′′

θkj′′f
′
1(a

t
j′′)η

t
j′′j′l

)

=
∑

j′′

θkj′′

(

ηtj′′j′lf
′′
1 (a

t
j′′)
∂atj′′

∂θji
+ f ′

1(a
t
j′′)
∂ηtj′′j′l
∂θji

)

=
∑

j′′

θkj′′
(

f ′′
1 (a

t
j′′)η

t
j′′j′lω

t
j′′ji + f ′

1(a
t
j′′)υ

t
j′′j′lji

)

(A.28)

andυ by
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The starting condition forυ equals

υ1j′′j′lji =
∂

∂θji
(∆j′′j′C) = 0 (A.30)
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A.2.6 Both context layer
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with τ
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andς
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with the starting condition forς

ς1j′′j′l′jl =
∂

∂θjl
(∆j′′j′C) = 0 (A.34)
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The final Hessian is obtained by concatenating all the valuesinto a matrix of sizeW
byW , by summing over allt and by adding the part of equation (A.19).

A.3 Outer product approximation of the Hessian

Because the exact evaluation of the Hessian may become slow,an approximation of the
Hessian is sometimes required. Consider the sum-of-squares error function, which is
repeated here for convenience:
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(A.35)

then the second derivative ofED to two arbitrary weightsθq and θr anywhere in the
network can be written in the form
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As the quantity(ytk − otk) is a random variable with zero mean, uncorrelated with the
value of the second derivative term, this whole term will tend to average to zero in the
summation overt (Hassibi and Stork, 1993). This term can therefore be neglected:
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(A.37)

This approximation is known as the outer-product approximation. As this term only in-
volves first derivatives of the outputs to the weights, whichwere already derived in equa-
tions (A.4), (A.5) and (A.10), the evaluation is much easier and faster than the exact
procedure.
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Summary
Bayesian Data Assimilation for Improved Modeling of

Road Traffic

This thesis deals with the optimal use of existing models that predict certain phenomena
of the road traffic system. Such models are extensively used in Advanced Traffic Informa-
tion Systems (ATIS), Dynamic Traffic Management (DTM) or Model Predictive Control
(MPC) approaches in order to improve the traffic system. As road traffic is the result
of human behavior which is ever changing and which varies internationally, for each of
these phenomena a multitude of models exist. The scientific literature generally is not
conclusive about which of these models should be preferred.One common problem in
road traffic science is therefore that for each application achoice has to be made from a
set of available models. A second task that always needs to beperformed is the calibration
of the parameters of the models. A third and last task is the application of the chosen and
calibrated model(s) to predict a part of the traffic system.

For each of these three steps, generallydata(measurements of the traffic system) is re-
quired. In this thesis, all three uses of data are summarizedintodata assimilation, which is
defined as “the use of techniques aimed at the treatment of data in coherence with models
in order to construct an as accurate and consistent picture of reality as possible. It com-
prises the use of data for model validation and identification (choosing between models),
model calibration and estimation and prediction and specifically deals with the interac-
tions between all these tasks”. In this thesis, a Bayesian framework is used in which these
interactions can be treated consistently: solving one of these steps automatically leads to
the solution of the other steps. Throughout the thesis, the calibration task is always per-
formed first using standard optimization techniques such asregression or gradient-based
algorithms. Once all available models are calibrated, a choice can be made between them.
The selected model(s) can then be used to make an as accurate prediction as possible.

One very important feature of the Bayesian framework is thatit takes the complexity
of models into account in the model comparison step. More complex models generally
show a lower calibration error than more simple models, but they do not necessarily make
better predictions. This is known as the problem of overfitting. The Bayesian frame-
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work deals with overfitting by penalizing models which contain more parameters and are
thus more complex. The Bayesian assessment of models produces a measure called the
evidence, which balances between a goodness of fit to the calibration data set and the
complexity of the model. Besides this, the framework has more benefits. First, prior in-
formation can easily be included in each step of data assimilation. Second, error bars can
be constructed on the predictions. This may be beneficial to the performance or public
acceptance of ATIS, DTM or MPC systems. Third, acommitteecan be constructed, in
which predictions of multiple models are combined. Committees generally produce more
accurate predictions than individual models.

The Bayesian framework for data assimilation is applied to three different phenomena:
(1) car-following modeling, (2) travel time prediction and(3) traffic state estimation using
a first order traffic flow model (the LWR model) and an Extended Kalman Filter. Finally, a
part of the research is devoted to speeding up the EKF such that it can be applied together
with the LWR model in real time to large networks.

Car-following behavior

Recent research has revealed that there exists large heterogeneity in car-following behav-
ior such that different car-following models best describedifferent drivers behavior. The
choice of a car-following model thus has to be made for each individual driver. Current
approaches to calibrate and compare different models for one driver do not take the com-
plexity of the model into account or are only able to compare aspecific set of models.
Using the Bayesian framework for data assimilation the suitability of any set of mod-
els can be quantitatively assessed for each single driver. In this research the Bayesian
framework for data assimilation is applied to two simple car-following models, the CHM
model and the Helly model. The workings of the Bayesian framework are demonstrated
in a real-world experiment using 229 trajectories of drivers who were in car-following
mode. Aggregated over all drivers, the probabilities of each model relative to the prob-
ability of all used models can be computed. This can serve as input to a heterogeneous
microscopic simulation of traffic. The outcomes of this experiment show that averaged
over all drivers the CHM model has a probability of31% and the Helly model of69%.

Travel time prediction

In this research different types of models are applied to theproblem of travel time pre-
diction: linear regression models and neural networks. Three experiments are performed
on an 8.5 km long stretch of the A12 motorway in the Netherlands. Travel time data
was collected during a period of three months in early 2007. In every experiment the
Bayesian framework is applied to calibrate a set of available models, to make choices be-
tween models and to make predictions of the travel times. In all experiments acommittee
is used.
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In the first experiment two linear regression models are used. In this experiment the
framework is applied dynamically: each time step, the available measured travel times
and a set of historic loop detector data are used to recalibrate the models using standard
regression tools. After this regression (calibration) is finished, the evidence measure as-
signs a preference for one of the two models over the other. Two strategies are tested: (1)
the prediction of the model with the highest evidence is usedand (2) the weighted average
of the predictions of both models is used, where the evidenceis used as a weight factor.
The results show that both models perform similarly well, and that the committees show
a slight improvement of accuracy. A clear difference between the two strategies was not
found.

In the second experiment feed forward neural networks are used, with one hidden
layer with different numbers of hidden nodes. The Bayesian framework is used to train
(calibrate) 84 different neural networks, and the evidencemeasure is used to select high-
potential networks. Using a separate validation data set, the evidence is tested as a pre-
dictor of the true prediction error. It is found that there isa correlation between the two,
but that the evidence is not a perfect predictor of a well-performing neural network due to
several reasons: (1) the size of the data sets may be too smallso that the validation error
does not equal the true error, (2) the models that are used mayrequire improvement, such
as weight pruning and (3) several assumptions were made in order to solve the necessary
equations, such as the assumption that all distributions are Gaussian. In the same exper-
iment a committee was tested using a simple average of the outcomes of a selection of
models, ranked on the evidence. It was found that the averageprediction error decreased
from 8.1% of the best individual neural network to7.8% for the committee. Finally, in
the experiment the construction of error bars was tested, and it was shown that97.4% of
the true travel time fell within the95% prediction intervals. The discrepancy between the
two can be attributed to the relative simplicity of the used neural networks.

In the third and final experiment feed forward neural networks (FFNN) as well as
state-space neural networks (SSNN, a specific type of a recurrent or Elman neural net-
work) were applied. The SSNN generally contains more parameters than the FFNN, but
potentially are more accurate because they can take time dependencies into account: a
typical problem of the necessity of balancing complexity against the ability to fit to a data
set. For the Bayesian framework to be applied, the Jacobian and Hessian of the SSNN
were derived (see AppendixA). Then, the Bayesian framework could again be used to
compute the evidence for each model. In the experiments 70 FFNN and 70 SSNN were
trained. The evidence was then used to form a committee of neural networks to predict
the travel time on the selected motorway. The results show that the FFNN perform bet-
ter on a short prediction horizon (5 minutes ahead), while the SSNN perform better on a
longer horizon (15 minutes). The results also show that the use of a committee improves
the accuracy of the predictions. In this experiment the calibration error was found to be
a better predictor of the true error than the evidence. Nevertheless, the experiments show
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nearly no difference in performance of committees ranked onthe evidence or ranked on
the calibration error.

The first order model with an Extended Kalman Filter

In this research, two studies are performed on the application of a first order model (the
LWR model) in combination with an Extended Kalman Filter (EKF) to create a network-
wide estimate of the traffic state. The first study deals with the fact that the EKF it-
self contains parameters that require calibration. Using the Bayesian framework that has
also been applied to calibrate car-following models and travel time prediction models,
a method to calibrate the parameters of the EKF is derived. Using this result, the EKF
parameters can be dynamically adapted during simulation. In an experiment on a small
network it is then shown that the dynamic Bayesian choice forparameters leads to nearly
the same accuracy compared to the optimal choice of fixed parameter values. This result
is especially useful in large-scale applications, where itis impossible to test all possible
fixed parameter values of the EKF.

Finally, the last study overcomes a large disadvantage of the EKF: it is too slow to
perform in real-time on large networks. To overcome this problem the novel Localized
EKF (L-EKF) is proposed. The logic of the traffic network is used to correct only the
state in the vicinity of a detector. The L-EKF does not use allinformation available to
correct the state of the network; the resulting accuracy is however equal in case the radius
of the local filters is taken sufficiently large. In two experiments, one on synthetic data
and one on real-world data, it is shown that the L-EKF is much faster than the traditional
Global EKF (G-EKF), that it scales much better with the network size and that it leads to
estimates with the same accuracy as the G-EKF, even if the spacing between detectors is
up to 5 kilometers. Opposed to the G-EKF, the L-EKF is hence a highly scalable solution
to the state estimation problem.



Samenvatting
Nederlandse vertaling van Bayesian Data Assimilation for

Improved Modeling of Road Traffic

Dit proefschrift gaat over het optimaal inzetten van bestaande modellen die gebruikt wor-
den om bepaalde verschijnselen van het wegverkeerssysteemte voorspellen. Dergelijke
modellen worden uitvoerig gebruikt om het verkeerssysteemte verbeteren, bijvoorbeeld
in geavanceerde verkeersinformatiesystemen, dynamisch verkeersmanagementsystemen
of modelvoorspelde regelingssystemen. Voor de beschrijving van ieder onderdeel van het
verkeerssysteem bestaan er in de regel verschillende modellen, omdat verkeer het resul-
taat is van menselijk gedrag dat altijd aan verandering onderhevig is en bovendien sterk
varieert van land tot land. De wetenschappelijke literatuur is in het algemeen niet eendui-
dig over welk van deze modellen gebruikt zou moeten worden. Een algemeen probleem
binnen de verkeerskunde is daarom dat voor iedere toepassing een keuze gemaakt moet
worden uit een set van beschikbare modellen. Een tweede probleem is dat de parameters
van deze modellen gekalibreerd moeten worden. Een derde en laatste taak is het toepas-
sen van de gekozen en gekalibreerde modellen om een voorspelling te maken van een deel
van het verkeerssysteem.

Voor elk van deze drie stappen is in het algemeendata (metingen van het verkeers-
systeem) nodig. In deze dissertatie zijn alle drie de gebieden waarin data wordt gebruikt
samengevat alsdata assimilatie, dat gedefinieerd is als “het gebruik van technieken om
data in samenspel met modellen in te zetten voor een zo nauwkeurig en consistent moge-
lijke reconstructie van de werkelijkheid. Het behelst het gebruik van data om modellen te
valideren en te identificeren (het kiezen tussen modellen),modellen te kalibreren en om
schattingen en voorspellingen te maken en het gaat expliciet om met interacties tussen
deze stappen”. In dit proefschrift is een Bayesiaans raamwerk gebruikt waarin op een
consistente wijze met de interacties tussen elk van de drie stappen wordt omgegaan: het
oplossen van één van de drie problemen leidt automatisch tot het oplossen van de andere
twee. In het hele proefschrift vindt telkens eerst de kalibratie plaats, gebruik makend
van standaard optimalisatietechnieken zoals regressie engradient-gebaseerde algoritmes.
Nadat alle beschikbare modellen zijn gekalibreerd kan vervolgens daartussen een keuze
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worden gemaakt. Het gekozen model kan of de gekozen modellenkunnen vervolgens
worden gebruikt om een zo nauwkeurig mogelijke voorspelling te maken.

Een zeer belangrijk kenmerk van het Bayesiaanse raamwerk isdat het rekening houdt
met de complexiteit van modellen in de vergelijkingsstap. Meer ingewikkelde modellen
hebben in het algemeen een lagere fout na afloop van de kalibratie dan meer eenvoudige
modellen, maar zij maken niet noodzakelijkerwijs betere voorspellingen. Dit is bekend
als het probleem van ‘overfitten’. Het Bayesiaanse raamwerkgaat om met overfitten
door modellen te straffen die veel parameters bevatten en dus meer complex zijn. Bij het
Bayesiaans vergelijken van modellen wordt de ‘bewijsmaat’gebruikt, een maatstaf die
de complexiteit van een model balanceert met de laagte van defout tijdens de kalibratie.
Daarnaast levert het gebruik van het raamwerk een aantal andere voordelen op. Ten eerste
kan voorinformatie gemakkelijk in iedere stap van de data assimilatie worden verwerkt.
Ten tweede kunnen betrouwbaarheidsintervallen worden berekend bij iedere voorspelling.
Dit kan belangrijk zijn voor het presteren en de publieke acceptatie van verkeersinforma-
tiesystemen, dynamisch verkeersmanagementsystemen of modelvoorspelde regelingssys-
temen. Ten derde kan met behulp van het raamwerk eencomit́e worden geconstrueerd,
waarin voorspellingen van meerdere modellen worden gecombineerd. Comités leveren in
het algemeen meer nauwkeurige voorspellingen dan individuele modellen.

Het Bayesiaanse raamwerk voor data assimilatie is in dit proefschrift toegepast op
drie verschillende onderdelen van het verkeerssysteem: (1) voertuigvolgmodellen, (2)
reistijdvoorspelling en (3) toestandschatten met een eerste orde model en een Extended
Kalman Filter (EKF). Tot slot is een deel van het onderzoek gewijd aan het versnellen
van het EKF opdat het real time toegepast kan worden in combinatie met het eerste orde
model op grote verkeersnetwerken.

Voertuigvolgmodellen

Recent onderzoek heeft aangetoond dat er grote heterogeniteit bestaat in voertuigvolg-
gedrag, zodat verschillende modellen het beste het gedrag van verschillende bestuurders
beschrijven. De keuze voor een voertuigvolgmodel moet daarom per individu gemaakt
worden. Bestaande aanpakken om verschillende modellen te kalibreren en te vergelijken
voor een bestuurder houden geen rekening met de complexiteit van de modellen, of zijn
alleen in staat om met een specifieke set aan modellen om te gaan. Het Bayesiaanse raam-
werk kan gebruikt worden om de geschiktheid van alle soortenmodellen te kwantificeren
voor iedere individuele bestuurder. In dit onderzoek is hetraamwerk toegepast op twee
eenvoudige voertuigvolgmodellen: het CHM-model en het Helly-model. De werking
van het Bayesiaanse raamwerk is gedemonstreerd in een experiment met 229 werkelijk
gemeten trajectorieën van bestuurders die hun voorgangervolgden. Geaggregeerd over
alle bestuurders kan voor ieder model de waarschijnlijkheid worden berekend relatief aan
de waarschijnlijkheid van alle gebruikte modellen. Dit kandienen als invoer van een
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heterogene microsimulatie van verkeer. De resultaten van dit experiment laten zien dat
gemiddeld over alle bestuurders de waarschijnlijkheid vanhet CHM model31% is en van
het Helly model69%.

Reistijdvoorspelling

In dit onderzoek zijn verschillende soorten modellen ingezet om reistijden te voorspellen:
lineaire regressiemodellen en neurale netwerken. Er zijn drie experimenten uitgevoerd op
een 8,5 km lang stuk van de A12 tussen Zoetermeer en Voorburg.Op dat stuk snelweg
zijn reistijden gemeten gedurende een periode van drie maanden in 2007. In ieder expe-
riment is het Bayesiaanse raamwerk gebruikt om meerdere modellen te kalibreren, om
keuzes te maken tussen de modellen en om voorspellingen van de reistijd te maken. In
elk experiment is ook een comité ingezet.

In het eerste experiment zijn twee lineaire regressiemodellen gebruikt. In dit experi-
ment is het raamwerk dynamisch toegepast: iedere tijdstap zijn alle voorgaande gemeten
reistijden en een set van historische lusdetectordata gebruikt om beide modellen opnieuw
te kalibreren door middel van standaard regressietechnieken. Nadat de regressie (kalibra-
tie) was voltooid kon de bewijsmaat worden berekend om een voorkeur uit te drukken voor
één van de twee modellen. Twee strategie en om een comité te vormen zijn vervolgens
getest om tot een voorspelling te komen: (1) alleen het modelmet de hoogste bewijsmaat
wordt gebruikt om te voorspellen en (2) de voorspellingen van beide modellen worden ge-
wogen gemiddeld naar rato van de bewijsmaat. Het resultaat toont aan dat beide modellen
ongeveer even nauwkeurig voorspellen, en dat het gebruik van een comité de resultaten
iets verbetert ten opzichte van de individuele voorspellers. Een duidelijk verschil tussen
de twee strategie en is niet gevonden.

In het tweede experiment zijn feed-forward neurale netwerken gebruikt, met één tus-
senlaag met verschillende aantallen neuronen. Het Bayesiaanse raamwerk is gebruikt om
84 verschillende neurale netwerken te trainen (kalibreren). De bewijsmaat is vervolgens
gebruikt om een selectie te maken van kansrijke netwerken. Een aparte validatie-dataset
is gebruikt om de bewijsmaat te testen als voorspeller van dewerkelijke voorspellings-
fout. Het resultaat toont dat er een correlatie bestaat tussen de twee, maar dat de be-
wijsmaat geen perfect selectiemiddel is van nauwkeurig voorspellende modellen om een
aantal redenen: (1) de gebruikte dataset kan te klein zijn omrepresentatief te zijn voor de
werkelijke voorspellingsfout, (2) de gebruikte modellen dienen te worden verbeterd, bij-
voorbeeld door het verwijderen (‘snoeien’) van parametersen (3) verschillende aannames
zijn gemaakt om de benodigde vergelijkingen op te kunnen lossen, zoals de aanname dat
alle verdelingen Gauss-verdelingen zijn. In hetzelfde experiment is een comité getest door
simpelweg de voorspellingen van een selectie van modellen,gesorteerd op de bewijsmaat,
te middelen. De resultaten tonen dat de gemiddelde voorspellingsfout van8, 1% van het
beste individuele model daalt naar7, 8% door gebruikt te maken van een comité. Tot
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slot zijn in het experiment de betrouwbaarheidsintervallen getest. De resultaten laten zien
dat97, 4% van de werkelijke reistijden binnen de95%-betrouwbaarheidsintervallen lig-
gen. De discrepantie tussen de twee kan worden toegeschreven aan de relatief eenvoudige
structuur van de gebruikte neurale netwerken.

In het derde en laatste experiment zijn zowel feed-forward neurale netwerken (FFNN)
als state-space neurale netwerken (SSNN, een speciaal soort recurrent of Elman neuraal
netwerk) gebruikt. Het SSNN bevat in het algemeen meer parameters dan het FFNN,
maar kan potentieel ook nauwkeurigere voorspellingen maken omdat het rekening kan
houden met tijdsafhankelijkheden. Dit is daarom een typisch voorbeeld van de noodzaak
om het vermogen om een kalibratiedataset te beschrijven te balanceren met de complexi-
teit van het model. Om het Bayesiaanse raamwerk toe te kunnenpassen zijn eerst de
Jacobiaan en de Hessiaan van het SSNN afgeleid (zie AppendixA). Daarna is het raam-
werk gebruikt om voor ieder netwerk de bewijsmaat te berekenen. In het experiment zijn
70 FFNN’s en 70 SSNN’s getraind. De bewijsmaat is daarna gebruikt om een comité van
neurale netwerken te construeren om de reistijd te voorspellen. De resultaten tonen dat
de FFNN beter presteren bij een korte voorspellingshorizon(5 minuten vooruit), terwijl
de SSNN beter presteren bij een langere horizon (15 minuten). Ook tonen de resultaten
aan dat het gebruik van een comité de nauwkeurigheid van de voorspellingen verbetert.
In het experiment is gevonden dat de kalibratiefout in dit geval een betere voorspeller is
van de werkelijke fout dan de Bayesiaanse bewijsmaat. Desalniettemin tonen de experi-
menten nauwelijks verschil in nauwkeurigheid van de comit´es die gerangschikt zijn op de
kalibratiefout in vergelijking met een rangschikking op debewijsmaat.

Het eerste orde model met een Extended Kalman Filter

In dit onderzoek zijn twee studies verricht naar het toepassen van een eerste orde model
(het LWR-model) in combinatie met een Extended Kalman Filter (EKF) om een netwerk-
brede schatting te maken van de verkeerstoestand. De eerstestudie richt zich op het feit
dat het EKF zelf parameters bevat die moeten worden gekalibreerd. Het Bayesiaanse
raamwerk dat eerder werd gebruikt voor voertuigvolgmodellen en reistijdvoorspelling is
toegepast om een uitdrukking te vinden voor de parameters van het EKF. Gebruik makend
van deze uitdrukking worden de parameters van het EKF tijdens de simulatie voortdurend
aangepast. In een experiment op een klein netwerk is aangetoond dat de keuze voor
de dynamische Bayesiaanse parameterwaarden leidt tot bijna dezelfde nauwkeurigheid in
vergelijking met de optimale statische parameterwaarden.Dit resultaat is vooral bruikbaar
bij grootschalige toepassingen, waarin het onmogelijk is alle mogelijke statische waarden
van de parameters van het EKF te testen.

Tot slot richt de laatste studie zich op een groot nadeel van het EKF: het is te traag
om real time toegepast te kunnen worden op grootschalige verkeersnetwerken. Om dit
probleem te verhelpen is het nieuwe Lokale EKF (L-EKF) ontwikkeld. De logica van het
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verkeersnetwerk wordt gebruikt om alleen de toestand in de nabijheid van een detector
te corrigeren. Het L-EKF gebruikt niet alle beschikbare informatie om de toestand in het
hele netwerk te corrigeren; de resulterende nauwkeurigheid is echter gelijk in het geval de
radius van de lokale filters groot genoeg wordt genomen. In twee experimenten, een op
een synthetisch netwerk en een op een grootschalig werkelijk netwerk, is aangetoond dat
het L-EKF veel sneller is dan het traditionele Globale EKF (G-EKF), dat het veel gunsti-
ger schaalt met de grootte van het netwerk en dat het leidt totschattingen met dezelfde
nauwkeurigheid als het G-EKF, zelfs als de gemiddelde afstand tussen de detectoren 5
kilometer is. In tegenstelling tot het G-EKF is het L-EKF daarom een zeer schaalbare
oplossing voor het schatten van de verkeerstoestand.
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