
T
h
e
 p

ro
c
e
s
s
 o

f
d
e
s
ig

n
 a

ir
c
ra

ft
 s

y
s
te

m
s
 is

 b
e
c
o
m

in
g
 m

o
re

 a
n
d
 m

o
re

 c
o
m

p
le

x
,
d
u
e
 t
o
 a

n

in
c
re

a
s
in

g
 a

m
o
u
n
t

o
f

re
q
u
ir
e
m

e
n
ts

.
M

o
re

o
v
e
r,

 t
h
e
 k

n
o
w

le
d
g
e
 o

n
 h

o
w

 t
o
 s

o
lv

e
 t

h
e
s
e

c
o
m

p
le

x
 d

e
s
ig

n
 p

ro
b
le

m
s
 b

e
c
o
m

e
s
 l

e
s
s
 r

e
a
d
ily

 a
v
a
ila

b
le

,
b
e
c
a
u
s
e
 o

f
a
 d

e
c
re

a
s
e
 i

n

a
v
a
ila

b
ili

ty
 o

f
in

te
lle

c
tu

a
l

re
s
o
u
rc

e
s
 a

n
d
 r

e
d
u
c
e
d
 k

n
o
w

le
d
g
e
 t

ra
n
s
fe

r
o
p
p
o
rt

u
n
it
ie

s
.

A
e
ro

s
p
a
c
e
 c

o
m

p
a
n
ie

s
 n

e
e
d
 t
o
 c

a
p
it
a
lis

e
 o

n
 t
h
e
 k

n
o
w

le
d
g
e
 a

v
a
ila

b
le

 w
it
h
in

 t
h
e
ir
 c

o
m

-

p
a
n
ie

s
,
in

 o
rd

e
r

to
 d

e
a
l
w

it
h
 t
h
e
 c

h
a
lle

n
g
e
s
 o

f
in

c
re

a
s
in

g
 c

o
m

p
le

x
it
y
 a

n
d
 c

o
m

p
e
ti
ti
o
n
.

T
h
e
 r

e
s
e
a
rc

h
 p

re
s
e
n
te

d
 i
n
 t

h
is

 t
h
e
s
is

 c
o
n
tr

ib
u
te

s
 t

o
 t

a
c
k
lin

g
 t

h
e
 a

b
o
v
e
 c

h
a
lle

n
g
e
s
.
A

k
n
o
w

le
d
g
e
 b

a
s
e
d
 m

e
th

o
d
 f
o
r

s
o
lv

in
g
 c

o
m

p
le

x
 d

e
ta

ile
d
 d

e
s
ig

n
 p

ro
b
le

m
s
 i
s
 p

re
s
e
n
te

d
.

T
h
e
 p

ro
c
e
s
s
 o

f
s
e
tt
in

g
-u

p
 a

 s
o
lu

ti
o
n
 f

in
d
in

g
 a

p
p
ro

a
c
h
 i

s
 d

is
c
u
s
s
e
d
 b

y
 m

e
a
n
s
 o

f
a

d
e
s
ig

n
 p

ro
b
le

m
 i
n
 t

h
e
 d

e
ta

ile
d
 d

e
s
ig

n
 o

f
fi
b
re

 m
e
ta

l
la

m
in

a
te

 (
F

M
L
)

fu
s
e
la

g
e
 p

a
n
e
ls

.

T
h
e
 p

ri
n
c
ip

le
s
 o

f
k
n
o
w

le
d
g
e
 b

a
s
e
d
 e

n
g
in

e
e
ri
n
g
 (

K
B

E
)

a
re

 u
s
e
d
 t

o
 s

e
tu

p
 a

 s
o
ft
w

a
re

a
p
p
lic

a
ti
o
n
 f
o
r

fi
n
d
in

g
 s

o
lu

ti
o
n
s
 t
o
 t
h
e
 d

e
ta

ile
d
 d

e
s
ig

n
 p

ro
b
le

m
 i
n
 F

M
L
.

A
 m

e
th

o
d
 f

o
r

s
o
lv

in
g
 c

o
m

p
le

x
it
y
 i
n
 d

e
s
ig

n
 p

ro
b
le

m
s
 i
s
 p

re
s
e
n
te

d
.
T

h
e
 m

e
th

o
d
 u

s
e
s
 a

s
tr

u
c
tu

re
d
 a

p
p
ro

a
c
h
 o

f
tr

a
n
s
fo

rm
in

g
 t
h
e
 r

e
a
l
w

o
rl
d
 p

ro
b
le

m
,
v
ia

 a
n
 e

x
p
e
rt

 v
ie

w
 o

n
 t
h
e

p
ro

b
le

m
,

to
 a

 m
a
th

e
m

a
ti
c
a
l

m
o
d
e
l

o
f

th
e
 p

ro
b
le

m
.

F
in

a
lly

 a
 s

o
lu

ti
o
n
 f

in
d
in

g
 s

tr
a
te

g
y

is
 t
a
ilo

re
d
 f
o
r

th
e
 p

ro
b
le

m
 a

t
h
a
n
d
,
b
y
 c

o
m

b
in

in
g
 a

v
a
ila

b
le

 s
o
lu

ti
o
n
 f
in

d
in

g
 k

n
o
w

le
d
g
e

w
it
h
 e

x
p
e
rt

 p
ro

b
le

m
 s

o
lv

in
g
 k

n
o
w

le
d
g
e
 f
ro

m
 d

if
fe

re
n
t
k
n
o
w

le
d
g
e
 d

o
m

a
in

s
.

2
1
8
2
3
6

7
8
9
0
9
0

9

I
S
B
N

9
7
8
-
9
-
0
9
0
2
1
8
2
-
3
-
6

B. Vermeulen Knowledge Based Method for Solving Complexity in Design Problems

B
.
V

e
rm

e
u
le

n

K
N

O
W

L
E

D
G

E
 B

A
S

E
D

 M
E

T
H

O
D

F
O

R
 S

O
L
V

IN
G

 C
O

M
P

L
E

X
IT

Y

IN
 D

E
S

IG
N

 P
R

O
B

L
E

M
S

B. Vermeulen Knowledge Based Method for Solving Complexity in Design Problems

P
ro

m
o

ti
o

n
 o

f
B

.

V
e
rm

e
u

le
n

W
e
d

n
e
s
d

a
y

J
u

n
e
 2

0
th

,
2
0
0
7

In
tr

o
d

u
c
ti

o
n

1
2
:0

0
-1

2
:2

5

D
e
fe

n
c
e

1
2
:3

0
-1

3
:3

0

R
e
c
e
p

ti
o

n

1
4
:0

0
-1

5
:3

0

D
in

n
e
r

&
 D

ri
n

k
s

1
7
:3

0
-2

4
:0

0

KNOWLEDGE BASED METHOD

FOR SOLVING COMPLEXITY

IN DESIGN PROBLEMS

KNOWLEDGE BASED METHOD

FOR SOLVING COMPLEXITY

IN DESIGN PROBLEMS

Proefschrift

ter verkrijging van de graad van doctor

aan de Technische Universiteit Delft,

op gezag van de Rector Magnificus prof. dr. ir. J.T. Fokkema,

voorzitter van het College voor Promoties,

in het openbaar te verdedigen op 20 juni 2007 om 12:30 uur

door

Brent VERMEULEN

ingenieur in de luchtvaart en ruimtevaart

geboren te Woerden

Dit proefschrift is goedgekeurd door de promotoren:

Prof. dr. ir. M.J.L. van Tooren

Prof. dr. ir. R. Benedictus

Samenstelling promotiecommissie:

Rector Magnificus voorzitter

Prof. dr. ir. M.J.L. van Tooren Technische Universiteit Delft, promotor

Prof. dr. ir. R. Benedictus Technische Universiteit Delft, promotor

Prof. dr. ir. C. Roos Technische Universiteit Delft

Prof. dr. Z. Gurdal Technische Universiteit Delft

Dr. S. Ahmed Technical University of Denmark

Dr. ir. T.J. de Vries Airbus Germany GmbH

Ir L.J.B. Peeters Stork Fokker AESP

ISBN: 978-90-90218-23-6

Keywords: Fibre Metal Laminates, Knowledge Based Engineering, Constraint Program-

ming, Heuristics, Engineering Ontologies

Copyright © 2007 by B. Vermeulen

All rights reserved. No part of this publication may be reproduced, stored in a retrieval

system or transmitted in any form or by any means, electronic, mechanical, photocopying,

recording or otherwise, without the prior written permission of the author B. Vermeulen,

Delft University of Technology, Faculty of Aerospace Engineering, P.O. Box 5058, 2600

GB Delft, The Netherlands.

Printed in The Netherlands.

Cover: The problem of climbing a mountain is comprised of analysing the elements of

the mountain’s surroundings, and setting up a strategy for the ascent. Photos by Dirk

Samson: Salbitschijen (2981), Switzerland.

This research has been funded by Stork Fokker Aerospace and

Delft University of Technology

voor mijn lieve Essie

Contents

Acknowledgements v

Summary vii

Nomenclature xi

1 Introduction 1

1.1 The challenge in dealing with complexity 3

1.2 Objective . 3

1.2.1 Developing a solution system to the FML design problem 4

1.2.2 Implementing the solution system in the real world 5

1.2.3 Formalising a method for finding solutions to design problems . . . 5

1.3 Thesis outline . 6

2 Knowledge-based Solution for Detailed Design Problems 9

2.1 Information flow in the detailed design process 10

2.1.1 General design process . 10

2.1.2 Relations in information . 12

2.1.3 Iterative generation of information 13

2.2 Principles of knowledge based engineering 14

2.3 The design process using KBE . 16

2.4 State-of-the-art . 18

2.5 Methodology for developing KBE applications 19

i

ii Contents

2.6 Conclusions . 20

3 Complexity in Detailed Design of Fibre Metal Laminate Structures 25

3.1 Introduction to FML fuselage structures 26

3.2 Current FML detailed design process . 27

3.2.1 Required input information . 28

3.2.2 Perform detailed product design . 29

3.2.3 Output information needed for production 30

3.3 Design Case Study . 31

3.3.1 Splice design at the three cross-sections 32

3.3.2 Conclusions on the design process 34

3.4 Expert view on the design problem . 35

3.4.1 The design process . 35

3.4.2 Solution approach used by the experts 36

3.4.3 The product model . 38

3.4.4 Requirements on the KBE system 39

3.5 Conclusions . 41

4 Heuristic Solution Finding Algorithm Based on Expert Knowledge 45

4.1 Mathematical model based on the expert view on the problem 46

4.1.1 Design variables . 46

4.1.2 Constraints . 47

4.1.3 Objective function . 49

4.1.4 Computational complexity of the solution finding algorithm 50

4.2 Theory on finding solutions to a constraint satisfaction problem 51

4.2.1 Mathematical knowledge . 51

4.2.2 Engineering knowledge . 53

4.3 Knowledge based solution system for the FML detailed design problem . . 55

Contents iii

4.3.1 Solution finding process using a Design Engineering Engine 55

4.3.2 The product model . 56

4.3.3 Propagation phase . 57

4.3.4 Exploration phase . 57

4.4 Evaluation of the efficiency of the solution algorithm 60

5 Activation of the Solution System in the Engineering World 65

5.1 Implementing the solution system in a KBE application 66

5.2 Usefulness of solutions generated by ADDET 66

5.2.1 Solutions generated for the mathematical problem 66

5.2.2 Implementing the multi-level constraint in the engineering world . . 67

5.2.3 Trade-off between different solutions 70

5.3 Implementing ADDET in the engineering process 71

5.3.1 Documentation of the KBE application 72

5.3.2 Redefinition of the process flow . 75

5.4 Conclusions . 78

6 Method for Finding Solutions to Complex Design Problems 81

6.1 Applicability of ontologies for the reuse of problem solving knowledge . . . 82

6.2 Task-object ontology of the knowledge based solution method 84

6.2.1 Problem ontology of complex engineering problems 85

6.2.2 Inference ontology of solution finding knowledge 87

6.2.3 Mapping the task ontology onto the problem ontology 88

6.2.4 Solution system ontology . 89

6.3 Activity ontology for the knowledge based solution method 92

6.4 Conclusions . 94

7 Conclusions 97

iv Contents

A Software Architecture of ADDET 99

A.1 Product model classes as primitives . 100

A.2 Design process model steps as implemented in the code 100

A.3 General software architecture . 105

B Efficiency and Effectiveness of the Solution Algorithm 109

B.1 Test problem P1 . 114

B.2 Test problem P2 . 116

B.3 Test problem P3 . 118

B.4 Test problem P4 . 120

Samenvatting 123

About the Author 127

Acknowledgements

The support and trust of five persons created the right conditions for the foundation of my

research, and my first words of thanks are to these persons. Tjerk de Vries, Leo Peeters

and Robert Jan de Boer, thank you for your vision and help in setting-up this research.

Jan de Jonge and Michel van Tooren, thank you for your decisiveness, which resulted in

the long awaited start of the research.

My research was supported by two research groups of Delft University of Technology:

Aerospace Materials and Design, Integration and Operation of Aircraft and Rotorcraft.

A multi-disciplinary committee was formed, in which I presented my developments every

two months. I truly appreciated these sessions, during which we discussed both my

research and the latest developments at Airbus, Fokker and TU Delft. Michel helped me

in formalising my line of reasoning (that seemed so obvious to me!). Leo represented the

interests of Stork Fokker AESP by addressing the practical implication of the research.

Tjerk provided a neutral view on the progress, being able to both use the Airbus and TU

Delft ’hat’. Jos Sinke repeatedly provided me with practical how-to-do-research advice.

Rinze Benedictus, being the new professor of Aerospace Materials, helped me to better

formulate and defend my work by our every now and then philosophical discussions on

my research.

I would like to thank my roommates at TU Delft, Mario Vesco and later on Rik Jan

Lemmen, who showed me that my PhD-struggles were nothing but standard procedures;

the staff of Aerospace Materials, Rene Alderliesten, Johannes Homan, Maarten Bakker

and Kees Sudmeijer, for the lunch-time discussions on what the world should look like; the

PhD-students at Design, Integration and Operation of Aircraft and Rotorcraft, Gianfranco

La Rocca, Giampietro Carpentieri, Jochem Berends, Marco Nawijn, Joost Schut and Ton

van der Laan, for the helpful domain related discussions; my fellow ’halbewoners’ without

whom the three o’clock coffee wouldn’t have been something to look forward to; the

master students I have been privileged to supervise, Martijn, Michel, Joeri en Stefan; and

the most important person at the TU Delft, Gemma van der Windt, for the personal talks

and interest, yelling across the corridor and always finding the time to help out.

v

vi Acknowledgements

The knowledge of the experts has been invaluable to this research. Therefore I would like

to thank the engineers at Stork Fokker AESP, Bart Beusmans, Wilbert Brouwer, Onno

Verschoof, Ben Versluis and Max Markestein, for their willingness to share their knowledge

with me, despite the prospect of losing their job while doing so. You were a great team

and I fully enjoyed the on and off the job time spent together. Besides Stork Fokker

AESP, Airbus engineers also participated: Arthur Tillich and Fred Pellenkoft shared

their knowledge on FML design, and gave invaluable feedback during various validation

sessions. The beer tastes great in Hamburg as well!

Of course there is live besides work. What is a better way to unbend one’s mind than

to go out in nature and enjoy freedom while climbing, mountain biking, running, or a

combination thereof. The climbing trips with Ruben, Eelco, Michiel van den E, Stefan,

Michiel and Maayke or Court, replenished my energy. So does running in the swamps of

Delft with MarkO, Dirk, Marjan, Hanneke, Court and, maybe in the future, Nannette. I

am very privileged to be able to spend weekends out with my Yeti family.

A special thanks to the family whose love and support I couldn’t have done without. My

parents were always available to share their knowledge of live with me. Everything in life

is grace, but it also takes passion, focus and hard work to make the best of it. It is always

a joy to meet Martijn, Judith and big-smile Casper. Make sure that we will have your

promotiefeest soon! I loved philosophising with Tycho and Gaby on the deeper things in

life, and see how that life flourishes in Kieran and Hannah. Perhaps you all will make a

family man out of me one day.

Summary

KNOWLEDGE BASED METHOD

FOR SOLVING COMPLEXITY

IN DESIGN PROBLEMS

by Brent Vermeulen

The process of design aircraft systems is becoming increasingly complex, due to an in-

creasing amount of requirements that have to be fulfilled. Moreover, the knowledge on

how to solve these complex design problems becomes less readily available, because of a

decrease in availability of intellectual resources and reduced knowledge transfer oppor-

tunities. In order to deal with the challenges of increasing complexity and competition,

aerospace companies need to capitalise on the knowledge available within their companies.

The research presented in this thesis contributes to tackling the above challenges. A

knowledge based solution method dealing with complexity in finding solutions to detailed

design problems is presented. The process of setting-up a solution approach is discussed

by means of a design problem in the detailed design of fibre metal laminate (FML) fuselage

panels. The principles of knowledge based engineering (KBE) are used to setup a software

application for finding solutions to the detailed design problem in FML.

Challenges in detailed design

The iterative character of the design process results in changes that have to be imple-

mented in the design. Because of these changes it is imperative to have control both on the

flow of information between disciplines involved in the process, and on change propagation

between elements in the aircraft (sub)system. Transferring information is complicated,

because disciplines use different product models for their analysis, requiring a redefinition

of the information. Furthermore, during each design cycle the time consuming process of

generating the required design outputs has to be repeated.

KBE is the science of identifying, capturing, storing and re-using expert knowledge. Once

the knowledge on executing a process step is formalised, it can be re-used in a software

vii

viii Summary

application to automate the process step. In a KBE application, using expert product

and process knowledge, a generative product model is defined. Generative means that

it can instantiate different discipline specific views on the product, depending on the

information needed by the discipline for their analysis process. Automatic generation of

the design outputs can also be facilitated, providing the knowledge on how to execute

this step is made explicit. The possibility to automate time consuming and often error

sensitive process steps, will reduce the cost of iterations.

Detailed design problem in FML

The detailed design of FML fuselage panels is governed by a large amount of requirements

from different disciplines. Detailed information on how the back-up structure of the

fuselage is joined to the laminate is needed, to such an extend that the location of each rivet

needs to be checked for compliance with the requirements. Implementing all requirements

in a feasible product definition asks for a large knowledge of the engineering principles, and

results in an iterative and time consuming process. Expert knowledge on the product,

design process and solution funding strategy has been captured in entity and activity

diagrams. An entity diagram describes the product elements, the relations between the

elements and the constraints that act on each element. An activity diagram can be used to

graphically represent the activities in a process, identify the relations between the process

steps and the rules that apply to the execution of the process step.

Mathematical model

A well-defined mathematical model of the FML design problem is defined, based on

the expert view of the problem. Well-defined means the model consists of at least one

objective function, and a sequence of design variables whose solution domain is limited by

constraints. The variables in the model determine the laminate built-up, the constraints

consist of restrictions on rivet positions, so-called no-riveting areas in the laminate, and

constraints on the laminate built-up. The design problem can be typified as a constraint

satisfaction problem (CSP), having hard and weighted constraints. A solution to the

problem complies with all hard requirements. The objective function of the mathematical

model is the summation of the cost of violating the weighted constraints, and should be

minimised.

A solution finding algorithm is tailored for the mathematical model, based on heuris-

tic solution finding techniques. Heuristics reduce the complexity of the solution finding

process, by limiting the solution domain, without simplifying the problem. Both expert

and mathematical solution finding knowledge of the problem is used to limit the solution

Summary ix

domain. The efficiency of the solution finding algorithm, in terms of reduction of the

solution finding complexity, is evaluated using four test problems. A significant reduction

in the number of evaluation of the algorithm is shown, proving the complexity reduction

capability of the algorithm.

Implementation in the engineering world

The knowledge based solution system is based on the concepts in a design and engineering

engine (DEE). The DEE concepts are software applications performing the necessary steps

in the design process. The process starts at the initiator, who collects the required input

information, and defines what the product variables are. Next step is to generate product

models and export the product and process information to the discipline specific analysis

tools. These analysis tools determine the state of the product in terms of objective

function value and constraint satisfaction. An evaluator assesses if the product state is

in compliance with the requirements, and if not, a search engine will scan the solution

domain and export a best solution to the initiator.

An Automated Detailed DEsign Tool (ADDET), containing the knowledge based solution

system, is implemented in the engineering world. The effectiveness of ADDET is evaluated

in terms of the possibility to generate solutions to the design problem and reduce design

time. It is concluded that it is possible to generate solution to the design problem using

ADDET. A reduction in process lead-time of 60% for the detailed design of FML fuselage

skins is shown. When implementing ADDET in the design process, this reduction in lead-

time will result in a large amount of design output being generated in a relative shorter

time span. This could lead to bottlenecks in the other departments, since they should

check the design outputs in a shorter time span. A process wide re-design is needed to

prevent these bottlenecks from causing inefficiencies and cancel out the time saved by

implementing ADDET.

Knowledge based solution method

To be able to re-use the problem solving knowledge described in this thesis, a formal

model of the applied method is presented using an ontology. An ontology is an explicit

description of concepts in a specific domain, defining a formal domain vocabulary. An

ontology defines relations between the concepts in the domain, and adds attributes to

further specify a concept, making it a suitable means of capturing and re-use knowledge.

Different types of ontologies are used to describe the method domain. The first type

describes the experts knowledge on the problem, called a problem ontology. It defines the

concepts in the domain, their relations, the task set and the solution domain applicable.

x Summary

The second type is the inference knowledge, describing rules of inference based on the

expert and mathematical knowledge of finding solutions to the problem. The third type

describes the knowledge on the sequence of deploying the rules of inference in order to

most efficiently find solutions to the problem, contained in a so-called problem solving

method (PSM). This level of knowledge can be represented using a task ontology.

A problem-independent PSM has been defined for the engineering domain, which is made

problem specific by tailoring its solution finding strategy for the problem at hand. The

method uses a structured approach of transforming the real world problem, via an expert

view on the problem, to a mathematical model of the problem, for which solution finding

knowledge is present or can be defined using expert problem solving knowledge from

different knowledge domains. Finally, the usefulness of the solution system for solving the

real world problem should be assessed, by implementing the system in the real engineering

world.

Nomenclature

Symbols
a distance between rivet position and joggle position

c free edge distance

C set of constraints imposed on X

C constraint imposed on X

d distance between two adjacent rivets

D set of domains for X

D domain for variable X

f function

h constraint type

L length

N quantity

NoRivetArea area where no rivet can be positioned

P stringer datum

P a constraint satisfaction problem

Q set of domains for X after constraint propagation and discretisation

R solution sequence to the decomposed problem

R rivet location

S solution sequence to a constraint satisfaction problem

S element of S

u, v panel coordinate

x, y, z cartesian coordinate

X sequence of design variables

X design variable

Z zone location

Z copy of Q

σ stress

xi

xii Nomenclature

Indices

1, 2, 3, 4 index

bn blunt notch

C constraint

cluster design variables in a sub-problem

h hard constraint

h1 constraint type 1, see section 4.1.2

h2 constraint type 2, see section 4.1.2

i, j, k, m index

irb inter rivet buckling

max maximum

min minimum

pattern pattern of rivets

R rivet

u u-direction

v v-direction

var variable

w weighted constraint

Z zone element

Abbreviations

ADDET Automated Detailed DEsign Tool

API application programming interface

bn blunt notch

CSP constraint satisfaction problem

DEE design and engineering engine

ES expert system

FAESP Stork Fokker aerospace

FEM finite element modeling

FML fibre metal laminate

GA genetic algorithm

GUI graphical user interface

ICARE illustrations constraints activities rules entities

irb inter-rivet buckling

Nomenclature xiii

KBE knowledge based engineering

KBS knowledge based system

MDO multidisciplinary design optimisation

MOKA methodology and software tools oriented to knowledge based

engineering applications

MOO multiple objective optimisation

NR zone in the laminate where no riveting is allowed

OCSP over-constraint satisfaction problem

PSM problem solving method

SQP sequential quadratic programming

UML unified modeling language

RF reserve factor

RP pattern of rivets at equidistance

UDF user-defined feature (CATIA V5 entity)

VB visual basic (object-oriented programming language)

xiv Nomenclature

Chapter 1

Introduction

The aerospace industry has entered a phase where the emphasis of aircraft development

is on safety, noise reduction, cheaper and faster development[1]. Instead of innovations

on the product to improve flight performance such as higher or farther, a process focus is

required to achieve the envisioned goals. This process focus is intensified because of the

increasing complexity of designing aerospace systems. Figure 1.1 shows an exponential

increase in design requirements on aerospace vehicles, from the very first motorised flight

till the 1990s.

Figure 1.1: Design requirements on aerospace vehicles[2].

1

2

Aside from the high goals set for the future, aerospace companies are facing less eco-

nomic and intellectual resources, increased competition because of globalisation and less

knowledge transfer between consecutive programs. This final issue is illustrated in figure

1.2, showing the start of military aerospace projects and a typical career length of an

engineer. The same can be identified for the commercial aerospace industry, for instance

when looking at the fact that the only new jet powered large transport aircraft developed

in the US in the 1990s has been the Boeing 777.

Figure 1.2: New US military project and typical career length of an engineer[3].

Facing these challenges, aerospace companies are looking for ways to keep an edge over

the competition, by improving their processes. Since most process improvement tech-

niques, such as lean principles, are widely available to most companies, the only way

they can differentiate is by focussing on the knowledge available inside the company. Be-

sides managing the knowledge already available, a knowledge creating company should

be promoted.

The research presented in this thesis will contribute to answering the question of how

to deal with the increasing complexity of the design problems aerospace companies are

facing, and how to manage the knowledge inside a company. A knowledge-based approach

for dealing with complex problems in the detailed design phase will be promoted, using

the design of fibre metal laminate (FML) fuselage panels as a case study.

Introduction 3

1.1 The challenge in dealing with complexity

The increasing complexity of aircraft results in further specialisation of disciplines. The

challenge of complying with more and more requirements asks for a multidisciplinary

approach, where the disciplines involved work in a concurrent way. How to efficiently

come to an optimum solution to a design problem is the research field of Multidisciplinary

Design Optimisation (MDO). However, successful representing a design problem in a

mathematical format, which can be solved by optimisation algorithms, has been prevented

by the high complexity of real world design problems[4]. Finding solutions to real world

problems relies on capturing the way engineers decompose and solve problems.

Figure 1.3: Method for the development of a solution to design problems.

Ackoff[5] discusses the importance of defining a problem, not just as a separate problem,

but seen in its real-world where it is linked to other processes. The solution approach

should not merely focus on finding the optimum for the isolated problem, but also on the

efficiency of the solution within this real-world. Therefore, the first step is to describe

the problem in the context of the multi-disciplinary environment it is situated in, see

figure 1.3. Next step is to create an expert view of the problem, giving an explicit

description of the problem in terms of system elements and their attributes, activities,

relations, objectives and solution domain. The expert view has to be transformed into

a well-defined mathematical model. Well-defined means that solutions can be expressed

in a set of design variables, evaluated and given a score (using an objective function),

and constraints define a feasible solutions space. Finally, a solution approach to the

mathematical model is to be developed and implemented in the real world.

1.2 Objective

The challenges facing the aerospace industry can be summarised as follow: increasing

complexity of systems, in combination with a decrease in availability of intellectual re-

sources and reduced knowledge transfer opportunities. A case study encompassing the

above challenges is the detailed design of FML fuselage panels. Objective for this research

4 1.2 Objective

is to develop and activate a knowledge based solution system for this design problem, re-

ducing required intellectual resources, design process lead-time, and promoting the storing

and reuse of engineering knowledge. A method for solving complex design problems will

be presented, by formalising the approach for the development of the solution system

(figure 1.4).

Figure 1.4: Thesis objective: capture and store problem solving knowledge, to be able to reuse

it.

1.2.1 Developing a solution system to the FML design problem

The development of the solutions system starts with a formal description of the design

problem. A formal model of a design problem in general consists of a process and a

product view. The process view is needed to state the objective of the solution system,

and to define requirements with respect to the way this objective is achieved. The product

view is used to define the solution domain, and it contains requirements that limit the

possible number of solutions. Both the process and product view are based on expert

domain knowledge, to guarantee that the solution is effective in solving the real world

problem. For the FML design problem, an expert view on the problem itself and how he

solves the problem are defined. When captured in a formal way, the expert knowledge

can be stored in a solution finding system, based on the principles of knowledge based

engineering.

Questions to be answered:

� What are the challenges faced in the detailed design of products, and in specific of

FML fuselage panels

� What are the steps in defining a solution system for the detailed design problem

Introduction 5

1.2.2 Implementing the solution system in the real world

The efficiency and effectiveness of the knowledge based solution system to find solutions to

the complex design problem has to be evaluated. Efficiency can be expressed in the time

needed to generate results, effectiveness in the ability to achieve the goals set. Efficiency

is evaluated by looking at the solution system’s ability to reduce the complexity of the

solution finding process, i.e., how fast can the system generate solutions. Effectiveness

can be expressed in the ability of the system to find useful solutions to the problem, and

in the possible lead-time reduction of the total design process. The evaluation of both

efficiency and effectiveness should be done by activating the solution system in the real

world situation. Practical issues when activating the system in the engineering world

should be identified and dealt with.

Questions to be answered:

� What are critical issues that need to be addressed in order to successfully activate

the knowledge based solution system in the real engineering world.

� How can these issues be dealt with.

1.2.3 Formalising a method for finding solutions to design problems

To be able to reuse the knowledge on how to setup an efficient and effective solution sys-

tem, the approach presented should be formalised and stored in a method. The elements

that compose the solution system and the relations between the elements should be dis-

cussed. Critical element in the solution system is the solution finding strategy, contained

in a so-called problem solving method, which should be able to deal with the complexity

of real world design problems.

Questions to be answered:

� Can a problem solving method be used to store and re-use problem solving knowl-

edge.

� How to define a problem solving method for complex design problems, independent

of the problem at hand.

6 1.3 Thesis outline

1.3 Thesis outline

The different steps in the development of KBE applications, see figure 1.5, will be discussed

in the thesis. Chapter 2 identifies the challenges faced in the detailed design process, and

shows how KBE can be used to deal with these challenges. As case study, a complex

design problem in the detailed design of FML fuselage panels is presented in chapter 3.

An expert view on the design problem is discussed in terms of product entities, design

process activities and knowledge on how the expert currently solves the problem. Chapter

4 shows how the expert knowledge on the design problem is formalised to define a well-

defined mathematical model. By combining mathematical solution finding knowledge

with the expert view on how to solve the problem, a solution finding algorithm is setup.

The efficiency of the algorithm, in terms of reducing the complexity of the solution finding

process, is assessed. Chapter 5 discusses the final steps in the development of a solution

system, where the solution system should be packaged in a KBE application and activated

in the real world situation, i.e., the design process. Effectiveness of the application, in

terms of finding solutions and reducing engineering resources and/or process lead-time,

will be discussed. Furthermore, chapter 5 presents how issues, involving the activation of

the KBE application in the real engineering world, can be dealt with. In order to store

and re-use the problem solving knowledge obtained in the research, a problem solving

method for complex design problems is presented in chapter 6.

Figure 1.5: Lifecycle of the development of KBE applications [6].

Bibliography

[1] ACARE; European Aeronautics: A vision for 2020. (http://acare4europe.com, white

paper, 2001)

[2] AIAA Technical Committee on MDO; Current State of the Art on Multidisciplinary

Design Optimization. (AIAA, ISBN 1-56347-021-7, 1991)

[3] Hernandez C.: Intellectual Capital. (The California Engineering Foundation, White

Paper, 1999)

[4] Alexandrov N.: Editorial-Multidisciplinary Design Optimization. (Optimization and

Engineering, Vol 6., pp. 5-7, 2005)

[5] Ackoff R.L.: Optimization + objectivity = opt out. (European Journal of Operational

Research, Vol. 1, pp. 1-7, 1977)

[6] Stokes M. (on behalf of the MOKA consortium): Managing Engineering Knowledge -

MOKA: Methodology for Knowledge Based Engineering Applications. (Professional

Engineering Publishing Limited, Bury St Edmunds, UK, 2001)

7

8 1.3 Thesis outline

Chapter 2

Knowledge-based Solution for

Detailed Design Problems

Design of aerospace systems is becoming more and more complex, because of the increasing

number of requirements as shown in the previous chapter. In order to define solutions to

these complex engineering problems, a process focussed approach is required. The flow of

information between the different disciplines involved and between the various elements

in the (sub)systems must be closely examined, to a priori identify and resolve issues in

the process. The focus of this chapter will be on the detailed design process, and how the

principles of knowledge based engineering (KBE) can help to improve the process flow.

First the challenges in the current design process are identified in section 2.1, followed

by a justification of why KBE can help to deal with these challenges. This justification

part consists of an explanation of the general principles of KBE (Section 2.2), of what the

future design process will look like (2.3), and of a state-of-the-art of KBE (2.4). The need

for a systematic approach for developing KBE applications will be discussed in section

2.5, followed by an overview of such an approach discussed in literature.

The following statements will be addressed:

� Implementing KBE will reduce the cost of design iterations by automating non-

creative design process steps

� KBE turns knowledge into a company asset, by capturing, storing and re-using

expert domain knowledge

To be able to correctly interpret the reasoning in this chapter, definitions of data, in-

formation and knowledge are given. Data consists of non-related facts, for instance

9

10 2.1 Information flow in the detailed design process

{a, b, 1, 3}. Information gives a meaning to data by specifying relations between data:

{a + b = 1, b > 3}. Finally, knowledge is understanding information, the ability to see

patterns in information and to react on that: if a + b = 1 and b > 3 then a < −2.

2.1 Information flow in the detailed design process

2.1.1 General design process

Before discussing the detailed design process, the design phases preceding will be briefly

presented. A general approach for finding a solution to a design problem is to first explore

different concept solutions, based on a list of requirements, see figure 2.1. This is called the

conceptual design phase and has a diverging character. Following, during the preliminary

design phase, more information on the performance of the concept solutions is obtained

through multi-disciplinary analysis, resulting in a best solution by making a trade-off

between the different concepts.

Figure 2.1: Diverging - converging character of the design process.[1]

The output of the preliminary design phase is used to setup a list of requirements for the

detailed design process. Having defined a best solution, more detailed information needs

to be obtained in order to be able to produce the design solution. This phase is called the

Knowledge-based Solution for Detailed Design Problems 11

detailed design process. Figure 2.2 shows an schematic overview of the design process, as

implemented traditionally at engineering companies.

Figure 2.2: Traditional Product Design process.

The process starts with the data and information generated in the previous phases of

the design process, i.e., conceptual and preliminary design. Based on the list of require-

ments and using knowledge on how to perform design tasks, different design outputs are

generated. The design outputs consist of data files, describing the values of the prod-

uct attributes, and discipline specific product models. The design outputs will have to

be communicated between the different disciplines. In this transfer of information some

challenges can be identified, since information stored in a product model of the submitting

discipline cannot a priori be read by the receiving discipline. Different disciplines create

different models for their analysis tasks. Often the information is manually transferred,

in order to be useful as input for the next discipline. Furthermore, the generation of the

design outputs is often a time consuming process, and is repeated during each cycle in

the design process.

12 2.1 Information flow in the detailed design process

2.1.2 Relations in information

A further complicating factor in detailed design is the process of designing a system,

consisting of different related system elements. A relation defines a link between the

attributes of two entities or system elements. A change in attributes of one element can

propagate a change in attributes of the other element. Figure 2.3 shows an N2 matrix

of different elements in a system and four possible ways of change propagation inside the

system.

Figure 2.3: N2 matrix of a system.

Propagation can be direct, where a change in element 1 causes a change in element 2, or

indirect, where a change in element 2 cause a change in element 4 that impacts element

3. The indirect propagation in this example is cross-coupled if element 3 in figure 2.3 also

impacts element 2. Finally, a relation can result in a multi-path coupling, if a change

triggers two or more separate series of changes, intersecting again at a certain element.

Relations can be unidirectional, an attribute of element 1 impacts one attribute of element

2, bidirectional, an attribute of element 1 impacts one attribute of element 2 and viceversa,

or multidirectional, attributes of element 1 impact multiple attributes of element 2 and

viceversa. Note that bi- or multidirectional relations between elements constitute a cross-

coupled change propagation. A different relation generalisation is by the nature of the

change propagated, and Riviere[2] identified the following four relation types:

Knowledge-based Solution for Detailed Design Problems 13

I Formal. A change in a system element requires a renewed release of the element

and of the system it is part of.

II Functional. System elements are functionally related if a change in element 1 re-

quires an engineer to assess if the related element can still fulfill its function, or

needs to be redefined. For instance if the thickness of the skin is reduced, an engi-

neer needs to assess if the selected rivet type can still fulfill the requirements.

III Feature based. A change in element 1 can directly induce a change in element

2 based on a feature relation. For instance changing a splice location requires the

joggles in the back-up structure to change accordingly.

IV Derivative. A representation of element 1 needs to be updated if element 1 is

changed. For instance the design outputs need to be updated if the product at-

tributes are changed.

2.1.3 Iterative generation of information

The four types of relations are graphically represented in figure 2.4, showing the design

process of a system consisting of three elements. Element three is a stringer, which is

joined to the skin (element 2) by means of rivets (element 1). When changing for instance

the thickness of the skin, an engineer will have to assess if the rivets still comply with the

requirements. This relation is bidirectional, since a change in rivets because of for instance

limited installation space, will require a re-evaluation of the skin. The information created

for the skin serves as input information for the stringer 3 via a feature based relation.

Shifting a thickness step in the skin will result in a change in the stringer. An issue arising

is the format in which output information from one process can be transferred to the next,

resulting in additional work for the engineers. A concurrent process flow is often selected,

in order to reduce lead-time and identify conflicting requirements in an early stage of the

design. However, since the detailed design process of element 2 has not been completed,

the information that is used for the design of element 3 is not final. This will result in

rework to implement the changes.

One of the attributes of efficient engineering is to minimise waste, in engineering terms

reduce the amount of rework. This can be facilitated by providing the right input at

the right time and right quantity. In order to ensure that requirements from the differ-

ent disciplines are identified and implemented in an early stage, a concurrent process is

14 2.2 Principles of knowledge based engineering

Figure 2.4: Exemplary design process of a stiffened skin system without KBE.

implemented. Expensive rework at the very end of the process can be prevented this

way. However, in some cases the information used by an engineer to execute a task is

not yet final, given the iterative character of the engineering process. In the case of a

unidirectional relation between two system elements, the right input at the right time

would require a more sequential process, where a final set of information is passed on

between different engineering groups. In a concurrent process, one should always clearly

differentiate between simultaneous involvement and simultaneous activities.

The iterative character of a design process results in a repetition of various tasks. These

repetitive tasks, once a good practice has been established, need little to no creativity from

the engineer. Automating these tasks reduces the cost of iterations and the time required

for the design process, freeing more time for the creative part of the design process.

2.2 Principles of knowledge based engineering

Knowledge based engineering is the science of identifying, capturing, storing and re-using

expert knowledge. The objective of KBE is to automate engineering process steps, once

the knowledge needed to execute the step is captured and stored in a consistent format.

Expert knowledge is a combination of both problem specific information and knowledge,

for instance best practices or design rules. According to Luger[3], expert knowledge can

be defined as a combination of a theoretical understanding of the problem and a collection

of heuristic problem-solving rules that experience has shown to be effective in the domain.

The origin of KBE is in the field of knowledge based systems (KBS) or expert systems

(ES). KBE can be seen as a sub-set of expert systems, focussing on implementation in

the field of engineering. General philosophy for generating expert systems is to establish

rules of inference, offering public paths for drawing intelligent conclusions from existing

knowledge[4]. Expert systems are designed to find solutions to complex problems by

Knowledge-based Solution for Detailed Design Problems 15

combining formalised expert knowledge, stored in a knowledge base, with an ’inference

engine’ to find solutions to the problem.

KBE systems differ from expert systems because they combine engineering knowledge with

geometrical capabilities, needed in the engineering environment. The KBE application is

aiming at storing product and process knowledge, in order to model the design process

and automate the different tasks within the process. In an object-oriented environment,

objects can be instantiated using a knowledge base and input data specified by a user,

forming a model of the product. The product model represents the engineering intent

behind the design, containing a high level of information and knowledge on both process

and product, see figure 2.5.

Figure 2.5: The product model containing process and product information[5].

The product model can contain for instance physical information on what materials are

used, geometry of the different parts, and knowledge relating to how the different dis-

cipline tasks are executed. From the product model for instance, various models can

automatically be derived, containing information for a specific process step, such as FE

modeling, detailed design, and production. The information stored in the product model

can be used to evaluate the performance of the product, and compare it to the require-

ments. An external inference engine or the user then alters the input data until the

product performance is according to requirements.

16 2.3 The design process using KBE

2.3 The design process using KBE

This section discusses how the implementation of KBE effects the design process. Since

information and knowledge on the design process and product attributes are stored in the

product model, the process of performing the product design (see figure 2.2) and the cre-

ation of the design output can be automated. Figure 2.6 shows a schematic representation

of the design process using KBE.

Figure 2.6: Design process using the principles of knowledge based engineering[6].

Using input data specified by an initiator (either a user or software application) and

the expert knowledge base, the product model can be instantiated. Using the process

knowledge, different report files are created, which serve as input for the discipline specific

analysis tools. The needed design outputs, such as drawings, 3-D models, bill of materials,

cost reports, are generated automatically. Finally the performance of the product has to

be compared to the initially stated list of requirements, in order to assess if the design is

a solution to the design problem.

A high level of process automation in the detailed design can reduce lead-time consider-

ably. All disciplines are working concurrently using the same product model, eliminating

Knowledge-based Solution for Detailed Design Problems 17

the issues of transforming information from one discipline to the next. Using the formal

expert knowledge, every discipline can extract its own set of information from the product,

perform an analysis and export its design outputs if needed.

Implementing the principles of KBE in the process of designing a system, more benefit can

be achieved. As discussed in the example system design process in section 2.1, the output

information of element 2 is needed as input information for element 3. By making use

of generative product models, a consistent way of sharing information can be achieved,

reducing the amount of work needed to transfer the information from one process to the

next. Furthermore, the cost of iterations in the design process of the individual elements

is reduced by automation, and a reduction in lead-time can be achieved, see figure 2.7.

This figure shows a schematic representation of the design process of a system of elements

when implementing KBE. Because of the reduction in lead-time of the design process

for element 2, the start of the design process for element 3 can be postponed until all

information needed is available. This statement is only valid if the relation between

element 2 and 3 is of a unidirectional type. The lead-time for element 3 will not only be

reduced by a high level of automation, but also because of a reduction in design cycles,

which were required as a result of incorrect input information in the traditional system

design process. A more sequential process will be the result, where a complete set of

information is transferred from one process to the next.

Figure 2.7: Exemplary design process of a stiffened skin system using KBE.

Concluding, the implementation of KBE in the design process will have the following

implications on the issues stated in section 2.1:

1. Formalising knowledge acquired during other projects to be able to store it for re-use

during future projects.

2. Reduction of the cost of iterations in the design process, making it possible to quickly

incorporate input changes and resulting in a decrease in lead-time.

18 2.4 State-of-the-art

3. Reduction in resources by postponing engineering tasks until a complete set of

information is available.

2.4 State-of-the-art

KBE applications are being developed in an increasing scale, especially in large companies

in the automotive and aerospace industry. The first KBE development software became

available in the 1980s, and steadily the number of applications is increasing. Main reasons

for developing KBE applications are reduction in engineering time and cost, and improve-

ments in performance and quality of the products[5]. Main fields of KBE application

are the detailed design and manufacturing[7]. KBE applications can also facilitate the

conceptual design phase, by moving detailed knowledge from the end to the start of the

design process. This approach is especially important because the cost of a product is to

a large extend determined in the conceptual design phase, given its irreversible impact on

the detailed design and production phase[8]. Table 2.1 shows some examples of reductions

in lead-time which have been achieved for different product ranges.

Table 2.1: Industry examples of KBE applications and achieved lead-time reduction

Application Lead-time reduction /

Improved concept exploration

Conceptual aircraft design 60 more concepts [5]

Windscreen wiper system weeks → min [5]

Jaguar bonnet design 8 weeks → 20 min [9]

Wingbox redesign 8000 hrs → 10 hrs [9]

Airfoil shape optimisation 2 months → 4 days [10]

Compressor design 10 days → 1 day [10]

Besides aircraft integrators, also suppliers could benefit from KBE applications, because

they supply similar components to different companies. Nevertheless, KBE hasn’t been

implemented as widespread as for instance traditional CAD systems. KBE application

have been developed as pilots, proving the potential for the business on the short run.

Often the large investments in development and expensive resources has scared man-

agement from implementing KBE as a company design standard. Nevertheless, the

larger companies envision future KBE developments to result in integrated product design

applications[11].

Knowledge-based Solution for Detailed Design Problems 19

2.5 Methodology for developing KBE applications

KBE applications are often developed on an ad hoc basis, as soon as a need is identified.

The application is the main deliverable, and an immediate return on investment should

be the result. This approach disregards the need for thorough capturing and documenting

of the product and process knowledge. Indeed, a formalised approach of capturing, stor-

ing and re-using knowledge will increase the efficiency of the KBE development since the

knowledge is in a consistent format, understandable for every discipline involved. Further-

more, knowledge loss because of incorrect modeling of the knowledge or misinterpretation

can be prevented. A consistent format will also make maintenance of the application more

transparent. Finally re-use of the knowledge is facilitated, without having to go through

the code of the application to retrieve the knowledge.

A methodology focussing on the development of KBE applications is MOKA: ’Method-

ology and software tools Oriented to Knowledge based engineering Applications’[9]. The

definition of KBE, shown in section 2.2 already contains the four general phases in the

development of a KBE application: Identify, Capture, Store and Re-use. Figure 2.8 shows

the different phases in the development of a KBE application as defined in MOKA.

The Identify phase is intended to scout opportunities for KBE development or main-

tenance, and to evaluate if the investments can be justified. The actors in this phase

are the program manager and the engineers involved in the design process, who are in

general the intended users. The program manager is able to make a decision on whether

to proceed and how to implement the application in the process. The users specify re-

quirements on functionalities the application should have. Next phase is the Capture

phase, where the knowledge required for the application is captured and formalised in a

knowledge repository. This phase is crucial in assuring that knowledge becomes an asset

of the company, because it is expressed in an explicit and consistent manner. The actors

in this phase are the domain expert, providing the required knowledge, and the knowledge

engineer, responsible for extracting and formalising the knowledge. Having incorporated

the knowledge in a repository, the next phase is to Store the knowledge in the actual

KBE application. Two actors are involved in this phase, i.e., the knowledge engineer

and the developer. Here the multi-disciplinary role of the knowledge engineer becomes

evident. Besides an engineering background to be able to communicate with the domain

expert, the knowledge engineer should also be able to formalise the knowledge in such a

way that it can be coded by the developer. Finally in the Re-use phase, the KBE system

is implemented in the design process. The actors here are again the program manager,

20 2.6 Conclusions

Figure 2.8: The KBE development lifecycle according to MOKA[12].

responsible for implementing the application as efficient as possible in the design process,

and the user operating the system.

2.6 Conclusions

The design process of aircraft is becoming more and more complex because of the increas-

ing amount of design requirements. Implementing all requirements demands for control

on the flow of information between different disciplines and between different elements

in aircraft (sub)systems. Information transfer of a submitting discipline to the receiving

is often complicated, because different product models are used for analysis, requiring a

Knowledge-based Solution for Detailed Design Problems 21

redefinition of the information. Furthermore, the time consuming process of generating

design outputs has to be repeated at each design cycle.

Knowledge based engineering (KBE) is the science of identifying, capturing, storing and

re-using expert knowledge. KBE proposes that engineering steps can be automated once

the knowledge needed to execute the step is captured and stored in a consistent format.

A generative product model is defined, based on input information and expert domain

knowledge. The different disciplines involved receive a set of information needed for their

analysis from the product model, making the redefinition of information superfluous.

The cost of iterations in the process is reduced by automation, making it possible to

quickly incorporate input changes and decreasing the lead-time. In addition to lead-time

reduction, implementing a KBE application in an efficient way will also result a reduction

in resources by postponing engineering tasks until a complete set of input information is

available.

22 2.6 Conclusions

Bibliography

[1] Tooren M.J.L. van: Sustainable Knowledge Growth, Inaugural speech. (Delft, Delft

University of Technology, 2003)

[2] Riviere A.: Aircraft Component Impact Analysis: State of the Art. (Vivace, 6th

Framework Project, www.vivaceproject.com, 2006)

[3] Luger G.F.: Artificial Intelligence: Structures and Strategies for Complex Problem

Solving. (Addison-Wesley, 5th edition, 2005)

[4] Rhem A.J.: UML for Developing Knowledge Management Systems. (Auerbach Pub-

lications, 2006)

[5] Cooper S., Fan I., Li G.: Achieving competitive advantage through Knowledge-

Based Engineering -A best practice guide. (White paper prepared for the Department

of Trade and Industry, University Cranfield, U.K., 2001)

[6] Tooren M.J.L. van, Schut E.J., Berends J.P.T.J.: Design Feasilisation using Knowl-

edge Based Engineering and Optimisation Techniques. (44th AIAA Aerospace Sci-

ences Meeting and Exhibit, Reno, USA, 2006)

[7] Haas R., Sinha M.: Concurrent engineering at Airbus - a case study. (Int. journal of

manufacturing technology and Management, Vol. 6, Nos. 3/4, 2004)

[8] Chapman C.B., Pinfold M.: Design engineering to rethink the solution using knowl-

edge based engineering. (Knowledge-Based Systems, Vol 12, p257-267, 1999)

[9] Stokes M. (on behalf of the MOKA consortium): Managing Engineering Knowledge -

MOKA: Methodology for Knowledge Based Engineering Applications. (Professional

Engineering Publishing Limited, Bury St Edmunds, UK, 2001)

[10] Information obtained from the Engineous website. (www.engineous.com, october

2006)

23

24 2.6 Conclusions

[11] Mohaghegh M.: Evolution of Structures Design Philosophy and Criteria. (45th AIAA

Structures, Structural Dynamics & Materials Conference, Palm Springs, USA, 2004)

[12] Oldham K., Kneebone S., Callot M.: Moka - A methodology and tools Oriented to

Knowledge-based engineering applications. (Advances in Design and Manufacturing,

Vol. 8, Proceedings of the Conference on Integration in Manufacturing, Göteborg,

Sweden, 1998)

Chapter 3

Complexity in Detailed Design of

Fibre Metal Laminate Structures

The detailed design of aerospace structures is executed in a multidisciplinary environment.

Each department has its own set of requirements, for instance with respect to airworthi-

ness or producibility. During the detailed design process, a product definition must be

created fulfilling these requirements. Given the high complexity of aerospace structures,

these requirements can become conflicting. Resolving these conflicts requires an iterative

solution finding approach, in combination with a large knowledge of the material specific

design and manufacturing principles.

This chapter will discuss a design problem in the detailed design of Fibre Metal Laminate

(FML) structures. First an introduction to the FML structure built-up and production

process is presented in section 3.1. Next an overview of the real world in which the problem

is situated will be given. This is done in section 3.2 by describing the different design

process steps and the flow of information between these steps. To better understand the

challenges faced during the detailed design, section 3.3 presents a case study of a double

curved FML panel. Following, an expert view on the design problem will be presented in

section 3.4, needed to be able to define a solution approach to the problem.

The following statements will be addressed:

� Creating a feasible FML product model is an iterative process in itself.

� Unified Modeling Language (UML) can be used to formalise expert knowledge in

the engineering domain.

25

26 3.1 Introduction to FML fuselage structures

3.1 Introduction to FML fuselage structures

Fibre Metal Laminates (FML) are a family of hybrid materials, developed for aerospace

applications. Today FML are applied in large upper sections of the front and aft fuselage

of the Airbus A380. Strong point of these laminates are the improved damage tolerance

characteristics compared to monolithic aluminium. FML consist of alternating metal and

fibre reinforced polymer layers, placed in a single or double curved mould and bonded to-

gether by curing in an autoclave. The thin flat aluminium sheets are placed in the mould

without preforming, called the free forming technique[1]. Placing such flat metal sheet in

a double curved mould, can result in unallowable wrinkling of the sheet in combination

with springback (figure 3.1). Decreasing the width of the sheet will eliminate sheet wrin-

kling and reduce the amount of springback. However, to reduce part count in a fuselage

structure, the dimensions of the individual panels should be increased. To achieve larger

panels, the aluminium sheets are joined in so-called splice areas using adhesive film, see

figure 3.1.

Figure 3.1: Increasing the width of FML panels by splicing the metal sheets.

A typical fuselage structure consists of a relative thin skin, which is joined to a backup

structure consisting of frames and stringers, see figure 3.2. The joining techniques are

either bonding or riveting for the stringers and riveting for the frames. The fuselage

structure is divided in several panels, which are joined in circumferential direction by

means of lap-joints and in longitudinal direction using butt-joints.

From an engineering point of view, FML structures are like composite structures, where

besides the structure also the material (the laminate) itself has to be designed. Given the

fact that FML contain various layers with a specific material type and/or orientation, the

laminate properties can be tailored locally to achieve an optimum structure.

Complexity in Detailed Design of Fibre Metal Laminate Structures 27

Figure 3.2: Description of a general fuselage structure.

3.2 Current FML detailed design process

The current detailed design process at Stork Fokker Aerospace (FAESP) for Glare panels

is schematically represented in figure 3.3 as a standard input-process-output model. The

required input consists of the output of the preliminary design phase, and of documents

containing engineering requirements. The output of the process are documents and com-

puter models, containing sufficient information for the production department to be able

to prepare the production definition dossier, which is needed at the production site. The

three parts in the process model will be discussed in more detail in this section.

Figure 3.3: Flowchart of the current FML engineering process at FAESP.

28 3.2 Current FML detailed design process

3.2.1 Required input information

The required input information consists of the output of the preceding preliminary design,

and requirements gathered from all disciplines involved. During the preliminary design of

the fuselage, the positions and dimensions of the longitudinal and circumferential joints

of the fuselage structure are determined, dividing it into individual panels. Furthermore,

the material for each structural component is determined in a global optimisation of the

fuselage.

The discipline specific requirements are summarised in the sizing, design and manufac-

turing principles. These principles contain guidelines for the detailed design phase, which

are based on hard requirements ensuring airworthiness, producibility and product quality.

A deviation from a guideline is allowed on a case to case basis, and only if the underlying

hard requirement is not violated. The guidelines are obtained through testing or based

on good practice / experience. The sizing principles describe, for instance, the material

allowables that are needed for the structural sizing of the panels. The design principles

contain information on structural details such as longitudinal and circumferential panel

joints. Furthermore, the design principles discuss additional Glare specific guidelines, for

instance shown in figure 3.4, indicating the minimum dimensions of the aluminium sheet

overlaps in a splice area. The manufacturing principles describe requirements to ensure

producibility. An example is a limitation on the width of the aluminium sheets in the

laminate, because of sheet-wrinkling and spring-back from the mold in the case of double

curved shapes.

Figure 3.4: Design requirements on a typical splice area. a, b1, b2 and c are minimum

dimensions

Complexity in Detailed Design of Fibre Metal Laminate Structures 29

3.2.2 Perform detailed product design

Figure 3.5 shows an activity diagram of the product detailed design process. The first

step in the process is the sizing of the structural components, executed by the stress

department (see figure 3.3). For this purpose a FE model of the fuselage is made, and

using an optimisation procedure, the dimensions of the structure resulting in minimum

weight are determined. The following detailed information is determined:

� Minimum required skin thickness in terms of number of metal and fibre reinforced

polymer layers

� Frame and stringer types

� Rivet types and pitches

� Minimum number of rivets in the frame-skin joint

The output of the structural sizing is called the theoretical panel design, summarising the

above stated information.

Figure 3.5: Activity diagram of the detailed product design process.

Next step in the process is to create the detailed product model, implementing the re-

quirements from the disciplines involved. The production department has requirements

with respect to producibility, the interface management group ensures that the different

panels can be joined according to requirements. Creating the detailed product model

step is done by the design department. During this step the laminate built-up is defined,

30 3.2 Current FML detailed design process

resulting in a detailed definition of the dimensions, location and stacking sequence of

the laminate constituents. The ’create detailed product model’ step can be split in the

following consecutive steps, see figure 3.6:

Figure 3.6: Activity diagram of the ’create detailed product model’ process step in figure 3.5.

The first four steps result in a practical panel design, where general splice and doubler

locations are determined, according to the stress, production and interface requirements.

The theoretical design, generated by the stress department, is used as input. It is up to

the designers skill to convert this theoretical design into a design that can actually be

produced. Next the practical design has to be converted into a detailed design, defining

the exact splice and doubler dimensions and locations. The dimensions are restricted

by the design principles, like for instance requirements on the riveting of the skin to the

back-up structure. Section 3.3 will give some examples of these requirements.

As indicated in figure 3.3, the stress and design department work concurrently, together

with the production and interface departments. The iterative character of the design

process results in changes in the sizing data, requiring a loop in the detailed product

design process. Finally, all departments involved check the detailed product model in

order to evaluate if their requirements are fulfilled. If so, then the design outputs needed

for the production department can be generated.

3.2.3 Output information needed for production

The output information is stored in the product definition dossier. This dossier contains

documents and computer models of the product, and contains all information needed by

the production department to be able to generate the production definition dossier. The

product definition dossier consists of:

� 3D solid model for digital mock-up and machining

Complexity in Detailed Design of Fibre Metal Laminate Structures 31

� A composite model, containing a definition of all the layers in the laminate. In-

formation in this model is used for cutting the layers from the raw material and

directing the Laser Projection System (LPS)

� 2D laminate cross-sections to get a good insight in the built-up of the laminate.

These cross-sections will be used by the departments to evaluate if the design is

acceptable, and for the definition of future repairs.

3.3 Design Case Study

To get more insight in the complexity of the detailed design problem, a design case study

of a double curved fuselage panel is presented (figure 3.7). Different types of requirements

are discussed, and by means of the case study it is demonstrated how they can become

conflicting.

Figure 3.7: Practical layout of the panel.

The laminate consists of a basic laminate and interlaminar doublers to locally increase

the thickness. Interlaminar indicates that the additional layers are located inside the

laminate, see figure 3.10. Because of the fact that the panel is joined in longitudinal

direction by lap joints and in circumferential direction by butt joints, thickness steps are

not preferred. The minimum thickness of the panel in these joining areas is defined by

the interface requirements. If needed, layers are added at the butt- and lapjoint areas.

Limitations on the width of the aluminium sheets result in a minimum of four longitudinal

splices required, shown in figure 3.7.

32 3.3 Design Case Study

First a practical design of the panel is made, showing general splice and doubler dimen-

sions. Next the back-up structure and accompanying joint information has to be imported,

determining exact dimensions of splices and doublers. To get a good understanding of

the laminate built-up and to be able to determine the exact dimensions of splices and

doublers, cross-sections are made at every frame station. Combining these cross-sections

with the topview of the panel, a kind of 2.5D image of the panel is created. When chang-

ing the laminate lay-up at one cross-section, it should be noted that the cross-sections at

other locations in the panel will also change. For instance when changing the location of

a splice area at the start of the panel, the splice area will change throughout the panel,

influencing all related cross-sections.

3.3.1 Splice design at the three cross-sections

Three cross-sections at different frame stations are made (figure 3.7) for this case study.

The topview of the panel in figure 3.7 shows that an interlaminar doubler is inserted to

increase the thickness of the laminate, going from A-A to B-B. Furthermore, additional

doublers are required to increase the thickness of the laminate towards the butt strap

areas at C-C. Since the thickness of the laminate is increased at the location of a splice

area, see figure 3.4, one of these doublers has to be split, ensuring a constant thickness

distribution along the edge in circumferential direction (flattening doubler in figure 3.11).

The stringer locations are fixed, the dimensions and locations of the doublers and the

splices are to be shifted until the requirements with respect to the back-up structure are

met.

Many requirements described in the design principles refer to the riveting of the skin to

the back-up structure. For a splice area they can be summarised as follows:

� In general the distance between a rivet and a free aluminium edge in the laminate

should be no less than the edge distance c, depending on the rivet diameter.

� The allowable rivet pitch is limited by a minimum dmin and maximum dmax value

also relative to the rivet diameter.

� Rivets should be placed at a certain distance a from joggle edges, see figure 3.8.

Complexity in Detailed Design of Fibre Metal Laminate Structures 33

Figure 3.8: Requirements on the rivet positions.

Figure 3.9: Regular splice geometry at A-A.

At cross-section A-A a splice is located at a stringer, called Pi+1, see figure 3.9.

The requirements with respect to the riveting are fulfilled for these splice dimensions.

However, the riveting requirements at B-B and C-C should also be evaluated. For this

reason two additional cross-sections have been made, section B-B (figure 3.10) and section

C-C (figure 3.11). Cross-section B-B shows how the interlaminar doubler is added inside

the laminate and is being spliced in de splice area. Cross-section C-C shows the additional

flattening doublers for ensuring a flat circumferential joint area.

Both figures show that not all design requirements with respect to the riveting of the

back-up structure can be fulfilled. In cross-section B-B the rivet pitch between the rivets

marked with an ’x’ is too large. The splice layout in cross-section C-C indicates an edge

distance ’y’ which is too small. In order to comply with the riveting requirements, the

dimensions and location of the splice area and interlaminar doublers should be altered.

However, altering the dimensions of the splice area at section B-B influences the splice

dimensions at the other cross-sections, resulting in possible requirement violations at these

cross-sections.

34 3.3 Design Case Study

Figure 3.10: Laminate cross-section at B-B.

Figure 3.11: Laminate cross-section at C-C.

The splice area and joggles constitute areas in the laminate where no rivets can be in-

serted, so-called no-riveting areas. The splice area has a minimum width because of

strength requirements. The distance between consecutive rivets has a minimum and a

maximum value, depending on the their diameter. Finally, the distance between consecu-

tive thickness steps (joggles) has a minimum because of production requirements. It is up

to the designers skill to make the back-up structure fit to the laminate, without violating

the stated design rules. Solving this problem of often related requirements asks for an

iterative approach. Not always can conflicts be prevented and solved in a straightforward

manner, which asks for creative solutions. It cannot always be avoided that some conces-

sions to the engineering principles have to be made, as long as airworthiness, producibility

and quality are assured.

3.3.2 Conclusions on the design process

The detailed design process for FML fuselage panels is a multidisciplinary process, gov-

erned by a large amount of requirements, which have to be implemented during the

Complexity in Detailed Design of Fibre Metal Laminate Structures 35

detailed product design phase. Because of the high complexity of the product, this im-

plementation often results in conflicts between different requirements. Resolving these

conflicts requires an iterative procedure, where detailed information on back-up structure

and rivet locations is needed in an early stage of the design process. Finding one solution

for the lay-up is difficult enough, leaving little room for further optimisation.

3.4 Expert view on the design problem

Having identified the design problem, and having described the real world it is situated in,

the expert domain knowledge of the design problem now has to be formalised. This step

is crucial for setting up a well-defined mathematical model of the problem, and for storing

the knowledge in the company knowledge repository. First it is discussed where the design

problem is situated in the detailed design process. For this purpose, the process of creating

the detailed product model will be represented using an activity-relation diagram. In this

diagram process steps that can be automated are indicated, as are the process steps that

must be done manually. Next a solution approach as developed by the experts to deal

with the design problem is formalised. Finally the different entities that constitute the

structure and the relations between these entities are described using an entity-relation

diagram. Formalising the structural entities and their relations is needed to be able to

generate a model of the product. Finally requirements from the different departments

on a KBE system, which implements the solution approach, are summarised by means of

defining several use-cases.

The Unified Modeling Language (UML) is used to formalise the expert view on the prob-

lem. To create a formal model of engineering knowledge, the concepts of entities and

process activities, rules and relations, attributes and values, can be used[2]. UML is a

modeling language that can be used to graphically represent the expert knowledge based

on these concepts, making it possible to capture, store and share the knowledge.

3.4.1 The design process

The activity diagram shown in figure 3.12 indicates two swimlanes, i.e., a manual and an

automated, indicating whether a specific activity can be automated or should remain a

manual activity. The process of creating a detailed product model is split into two separate

process steps, i.e. define practical design and define detailed design, as discussed in section

3.2.2. The process of defining the practical design will have to be done manually, given

36 3.4 Expert view on the design problem

the fact that this is the creative part of the process, where the design engineer defines

different concepts for the laminate built-up.

Figure 3.12: Activity-relation diagram of the design process.

The challenge in the detailed design of FML structures, as presented in section 3.3 is

in the ’determine exact splice and doubler dimensions’ step. Besides the fact that this

individual step is iterative, it can be clearly seen that the total process can be iterative.

This is caused either by changes in input (stress or back-up data) or requirements (design

principles), or by disapproving of the design by the different disciplines involved.

3.4.2 Solution approach used by the experts

In order to develop an efficient solution approach, the expert knowledge on how to find

solutions has to be analysed and formalised. For this reason a simple design problem is

chosen, consisting of a number of rivets between two consecutive no-riveting areas, see

figure 3.13. As discussed, the distance between adjacent rivets has a minimum value

dmin and a maximum value dmax, depending on the the diameter. Figure 3.13 shows the

number of rivets that can be instantiated between the two no-riveting areas, located at a

distance Lpattern.

Lpattern has to be set to such a value that the riveting requirements are fulfilled. To this

Complexity in Detailed Design of Fibre Metal Laminate Structures 37

Figure 3.13: Number of rivet instantiations for a given distance Lpattern between two no-

riveting areas. Red indicates that the rivet requirements are violated, green that they are

fulfilled

end the design engineer can increase the width of the splice area or alter the location of

the splice area relative to the stringer. Doing so, the no-riveting area related to the splice

area will move. The stringer constitutes a no-riveting area for the frame rivet pattern,

and since the location of the stringer is fixed, this no-riveting area is fixed.

As shown in the case study, rivet patterns at different cross-sections need to be analysed

at the same time, to get a solution for the splice dimensions. Figure 3.14 shows an N2

diagram of the different no-riveting zones (NR) and riveting patterns (RP) in the case

study example of section 3.3. The feedforward relation between for instance NR1 and the

RP1 is a feature based relation, where changing the location of NR1 will directly change

attributes of RP1. A feedback signal is given by RP1, containing information on whether

the riveting requirements are fulfilled, and what change is needed in the attributes of

NR1 to accomplish this. The feedforward / feedback signals thus define a bidirectional

functional relation, stating that a change in a NR1 attribute induces a change in a

RP1 attribute, and it should be verified if the RP1 can still function according to the

requirements. Furthermore a cross-coupled change propagation exists between NR1 and

NR3. The relation between the two NRs is a functional relation, since it should be

evaluated if the distance between the NRs is according to engineering principles.

38 3.4 Expert view on the design problem

Figure 3.14: N2 diagram of relations between no-riveting areas (NR) and rivet patterns (RP).

The design engineer decomposes the problem, not to have to analyse all the rivet patterns

in the panel at once. The problem can be decomposed by grouping the patterns that

have a relation to the same no-riveting area, and solving for this single no-riveting area.

Combining the solutions for the decomposed problems is then an iterative process of trial

and error.

3.4.3 The product model

The entity diagram in figure 3.15 shows the different structural entities, that should be

implemented in the product model, and their relations and requirements. As discussed, a

FML fuselage product consists of a skin (the laminate), the backup structure and rivets

for joining the backup structure to the skin. The backup structure is composed of frames

and stringers, and both can be joggled. The laminate is composed of a basic laminate

entity, entities describing the additional layers added to increase the thickness, and finally

the splice area entities.

The three entities of which the laminate is composed, can be represented as a general zone

entity. This zone entity describes a rectangular section of the laminate with a specific

number of layers and a specific type of build-up, e.g. basic laminate or splice area. These

Complexity in Detailed Design of Fibre Metal Laminate Structures 39

Figure 3.15: Entity-relation diagram of a general FML fuselage product.

rectangular zones together form a grid, describing the properties of the laminate at each

specific location, see figure 3.16. The larger the amount of zone entities, the more complex

the laminate built-up is.

Figure 3.16: Laminate representation using different zone entities.

3.4.4 Requirements on the KBE system

Once a solution approach has been developed, it can be implemented in a KBE sys-

tem, which will be used by different actors from different disciplines. Each discipline has

requirements with respect to functionalities available in the KBE system. These require-

ments can be mapped using so-called use-cases, describing how a certain actor would

make use of the system to achieve his goal, see figure 3.17.

40 3.4 Expert view on the design problem

Figure 3.17: Requirements on the KBE system are extracted by defining use-cases.

The design engineer use-cases focus on the task of defining a product complying to all

requirements, and generating design outputs. First he needs to generate a product model

of the FML panels, and adapt the product variables in order to comply with the re-

quirements. The desired design outputs consist of laminate cross-sections, needed for the

other departments to be able to evaluate if their requirements are fulfilled. Finally the

design engineer should be able to assess the values of the product attributes structural

weight and recurring cost. The other discipline engineers involved in the process, i.e.,

stress manufacturing and interface management, need to evaluate if their requirements

are fulfilled, and write a report containing the results of this evaluation. The KBE system

needs to generate information that enables them to do so. The laminate cross-sections

for instance are used by the disciplines to assess if the design meets their requirements.

Finally, important for the re-usability of the KBE system is the possibility to update the

knowledge base and to be able to define new requirements, represented in figure 3.17 by

a use-case for all departments.

Complexity in Detailed Design of Fibre Metal Laminate Structures 41

3.5 Conclusions

The detailed design of FML fuselage structures is dominated by a large amount of detailed

requirements from the different disciplines involved. Implementing all requirements in a

feasible product definition asks for a large knowledge of the engineering principles, and

detailed information on laminate built-up, back-up structure and rivet locations.

An expert view on the design problem is presented, showing the entities of the product

and the way they are related. The expert solution approach is to first define areas where

no rivets are allowed, so-called no-riveting areas. Next rivets are grouped in rivet patterns

and inserted in between two no-riveting areas. By moving a no-riveting area, the designer

makes sure that the design principles acting on the rivet patterns will be fulfilled. Finding

a solution for the entire panel requires an iterative solution finding procedure.

First step in automating the solution finding is to fill in the N2 matrix of no-riveting

areas and rivet-patterns, and to identify the type of relation between the elements in the

matrix. Next a solution finding algorithm is needed to set the locations of the no-riveting

areas, complying with all requirements.

42 3.5 Conclusions

Bibliography

[1] Vlot A., et al.: Fibre Metal Laminates, an introduction. (Dordrecht, Kluwer Aca-

demic Publishers, 2001)

[2] Stokes M. (on behalf of the MOKA consortium): Managing Engineering Knowledge -

MOKA: Methodology for Knowledge Based Engineering Applications. (Professional

Engineering Publishing Limited, Bury St Edmunds, UK, 2001)

43

44 3.5 Conclusions

Chapter 4

Heuristic Solution Finding

Algorithm Based on Expert Domain

Knowledge

In order to develop a solution algorithm to the design problem, a well-defined mathe-

matical model needs to be set up. With the mathematical representation of the design

problem, a solution algorithm can be developed, specially tailored for solving the specific

problem. For the tailoring of the algorithm, knowledge on mathematical optimisation

techniques is used in combination with expert knowledge on how to efficiently find so-

lutions to the problem. Efficiently in this chapter is expressed in terms of reduction in

computational complexity of finding solutions to a design problem. The computational

complexity of an algorithm is defined as a measure of how many evaluations are required

in the worst-case in order to find a solution to a given problem [1].

Section 4.1 presents the mathematical model, based on the expert view on the problem

presented in chapter 3. Next the mathematical knowledge needed to define a solution

algorithm is presented in section 4.2, and the current expert solution approach is presented

in a mathematical format. Both knowledge domains are then used to develop a solution

algorithm, capable of finding solutions to the problem (section 4.3). Finally the efficiency

of the solution algorithm in terms of computational complexity reduction is evaluated in

section 4.4.

The following statements will be addressed:

� The FML design problem can be characterised as a Constraint Satisfaction Problem.

45

46 4.1 Mathematical model based on the expert view on the problem

� Heuristics can be used to reduce the complexity of the solution finding procedure,

without simplifying the problem.

4.1 Mathematical model based on the expert view on the prob-

lem

Chapter 3 showed an entity-relation diagram of the design problem. The complexity of

finding a solution to the design problem is determined by the number of entities, since

they determine the number of design variables and constraints. Table 4.1 shows the order

of magnitude of the structural entities involved.

Table 4.1: Order of magnitude of the structural entities

Entity Order of magnitude

Zone O(200)

No-riveting area O(30)

Frame O(15)

Stringer O(15)

Rivet O(1000)

This section discusses what the design variables in the problem are, how the requirements

discussed in chapter 3 can be represented as constraints to the variable domains, and

what the objective function is.

4.1.1 Design variables

The design variables are the coordinates of all the rivets and the coordinates determining

the locations of the quadrilateral zones, see figure 4.1. The location of a rivet is determined

by three coordinates in for instance a cartesian system. Since the rivet will be positioned in

the panel, a transformation into panel coordinates can be made, resulting in two variables

for each rivet location Ri (also see figure 4.1):

Ri(x, y, z) = Ri(u, v) (4.1)

The location and dimensions of a quadrilateral zone is determined by a set of four lines,

which have a constant offset with respect to a stringer or frame datum. Thus the zones

Heuristic Solution Finding Algorithm Based on Expert Knowledge 47

Figure 4.1: Definition of panel coordinates (u,v) and the zones placed in a grid.

are defined by four offset values and accompanying reference datum, see equation 4.2. Zi

describes the location and dimensions of a zone i in the panel:

Zi = Z

{(
ui

Pk

)
,

(
ui+1

Pl

)
,

(
vi

Cm

)
,

(
vi+1

Cn

)}
l ≥ k, n ≥ m (4.2)

P and C are given as input by the user, and represent the reference stringer and frame

datum respectively. As discussed the zones are forming a grid, describing the laminate

properties at each location. The grid has NZu zones in the u and NZv zones in the v

direction.

4.1.2 Constraints

The constraints on the design variables consist of a minimum and maximum distance

between two rivets (eq-4.3 h1), limitations on the distance between two edges of a zone (eq-

4.3 h2), and limitations on the position of the rivet within the laminate, with respect to the

no-riveting areas (eq-4.3 h3). They can be formalised as follows, where NoRivetAreaj

describes a surface constituted by a no-riveting area j, and dmin and dmax define the

minimum and maximum rivet pitch respectively:

h1 dmin ≤ |Rj −Ri| ≤ dmax, where j 6= i

h2.1 const ≤ |uk − ui|
h2.2 const ≤ |vk − vi|

 abs(k − i) = 1

h3 |Ri −NoRivetAreaj| > 0

(4.3)

To be able to select an appropriate solution approach to the design problem, a more

48 4.1 Mathematical model based on the expert view on the problem

detailed analysis of the constraints is needed. Constraints can be either unidirectional,

bidirectional or multidirectional. A unidirectional constraint creates a relation between

two variables, where one is determined by the other in a master-slave relation. Having set

a value for the master variable, the value of the slave variable will be adjusted in order

to comply with the constraint. Bidirectional constraints and multidirectional constraints,

involving multiple variables, do not have this master-slave behaviour. These types of

constraints can lead to an ambiguous definition of the problem, resulting in several domain

sets that satisfy the constraints. Opposite to this possibility is the situation where no

solution can be found at all. This can occur when two or more master variables share

the same slave variable. Satisfying the constraint for one master variable can result in a

violation of the constraint(s) between the slave variable and the other master variable(s),

see bold constraints in figure 4.2.

Figure 4.2: Directions of constraints in mathematical model.

Constraint type h1 is a multidirectional constraint on the distance between two rivets.

Constraints of type h2 are bidirectional constraints, limiting the distance between the

edges of the same or two different zones by a minimum. A zone edge can indicate a

thickness step in the laminate, requiring a joggle in the back-up structure. As indicated

in chapter 3, the distance between two consecutive joggles is limited due to production

requirements. Hence the distance between two zone edges of the same or different zones

can be limited by a minimum. Finally, constraint type h3 is a unidirectional constraint,

indicating that a rivet should not be positioned in a no-riveting area.

Heuristic Solution Finding Algorithm Based on Expert Knowledge 49

4.1.3 Objective function

As stated in chapter 3, the main challenge in the detailed design of FML products is to find

a laminate definition, i.e., assign values to the design variables, fulfilling all requirements.

Therefore the design problem can be qualified as a constraint satisfaction problem (CSP),

where the goal is to find values to a sequence of variables satisfying all constraints. A

CSP, called P, is mathematically denoted as P = (X,D,C), where[2]:

X = {X1, X2, ..., Xn} sequence of design variables

D = {D1, D2, ..., Dn} set of domains for X, where Xi ∈ Di

C = {C1, C2, ..., Cm} set of constraints imposed on X, Ci = gi(X)

(4.4)

A constraint Cj on a sequence of variables {X1, X2, ..., Xi} specifies a relation on the

allowed combination of values of the variables, resulting in a feasible domain for {X1, X2, ...

..., Xi}. A sequence of values S= {S1, S2, ..., Sn} is called a solution, if all constraints in

C are satisfied, where S ∈ ∏
i=1..n Di [3].

Constraints can be either of an equality type g(X) = Const, or inequality type g(X) ≤
Const. A different constraint differentiation is based on the nature of the constraint: in the

real-world some constraints can be violated without discarding the sequence of values in S

[2]. A constraint is hard if it has to be satisfied. A fuzzy constraint allows for a lower degree

of satisfaction. Soft or relaxable constraints can be violated by a solution. Constraints

can be weighted, meaning that the constraint can be violated, but at a certain cost.

Finally, constraints can have a multi-level character, which is a combination of the above

types. For instance the design principles, discussed in chapter 3, are weighted constraints

(guidelines), based on underlying hard constraints (e.g., airworthiness). Implementing this

type of constraint involves programming an if-then statement, where the hard constraint

becomes activated and a cost is added, if the initial weighted constraint is violated, see

eq-4.5. This concept of multi-level constraints is common practice in the engineering

world, as will be explained in chapter 5.

Cj = {Cjw , Cjh
} w = weighted constraint, h = hard constraint

cost[Cj(X)] = 0 If Cjw is satisfied for X

cost[Cj(X)] = wj If Cjw is violated for X ∧ Cjh
is satisfied for X

cost[Cj(X)] = ∞ If Cjw is violated for X ∧ Cjh
is violated for X

(4.5)

50 4.1 Mathematical model based on the expert view on the problem

A special type of CSP is the over-constrained CSP (OCSP), whose solution best complies

to the set of constraints. Note that a solution to this type of CSP exists only if not

all constraints in C are hard constraints. The solutions found depend on the definition

of ’best compliance’. Various approaches are discussed in literature [2], all resulting in

functions that have to be optimised for ’best compliance’. The approach selected for this

specific problem is the weighted approach, where the sum of the cost related to constraint

violation has to be minimised:

f(C,S) = MIN
n∑

j=1

cost[Cj(S)] (4.6)

where f can be seen as a dynamic objective function, having a state that is the summation

of the cost of constraint violation. A way of dealing with minimising an objective function

in a CSP is to define an additional constraint, stating that the next found solution S should

result in a lower or equal value of the objective function f :

f(Sn+1) ≤ f(Sn) (4.7)

4.1.4 Computational complexity of the solution finding algorithm

The order of magnitude of the number of entities in the problem is combined with the

above equations to derive the order of magnitude of the variables and constraints in the

mathematical representation, see table 4.2. NZu and NZv are assumed to be order
√

NZ :

Table 4.2: Order of magnitude of the number of variables and constraints

Estimation Order of magnitude

rivet variables NR · 2 O(2 · 103)

zone variables (NZu + 1) + (NZv + 1) O(30)

h1: rivet constr. NR

2
· (NR − 1) O(5 · 105)

h2.1: zone constr. typical O(20)

h2.2: zone constr. typical O(10)

h3: rivet location constr. NR ·NNoRivetArea O(3.0 · 104)

Heuristic Solution Finding Algorithm Based on Expert Knowledge 51

4.2 Theory on finding solutions to a constraint satisfaction prob-

lem

As stated in the mathematical description of the design problem, the number of variables

is in the order of magnitude O(2 · 103), and the number of constraints is O(5 · 105).

The problem can be typified as a CSP, containing hard and multi-level constraints. This

section presents both mathematical and engineering knowledge on how to find solutions to

the design problem. The mathematical knowledge consists of techniques on how to solve

a CSP, and how to make the solution finding procedure efficient. By formalising and

implementing engineering knowledge on how to solve the design problem, the efficiency

of the solution finding algorithm can be improved.

4.2.1 Mathematical knowledge

The solution approach for CSPs can be divided into two general phases, i.e. the propaga-

tion and exploration phases. The propagation phase is characterised by removing values

from the variable domain D that do not a priori contribute to a solution to C. This

phase is called constraint propagation. In this way the CSP becomes locally consistent,

indicating that the remaining values in the propagated domain Dp are such that they

constitute a solution for the variables in each constraint individually [3]. It should be

emphasized that the solution is not a global solution. The second phase is the exploration

phase, where one or all possible solutions to the CSP are searched for. The propagated

domain Dp is scanned for possible solutions. A tree-search strategy is defined, combining

techniques from the field of Operations Research (OR) and heuristics to limit the search

without simplifying the problem.

Heuristics

According to Streim[4], heuristic methods use non randomly selected decision operators,

which accomplish that potential solutions are ignored. The following general definition

of heuristic solution methods is given by Silver[5]: Heuristic solution methods seem likely

to yield a reasonable solution to a problem, using experience or judgement, but they

cannot be guaranteed to produce the mathematically optimal solution. Both definitions

emphasize that when using a heuristic method, it cannot be proven that an optimal

solution will be the result.

A general reason for implementing a heuristic solution approach is to better represent the

real-world problem, without having to use restrictive assumptions to get to a solution.

52 4.2 Theory on finding solutions to a constraint satisfaction problem

Heuristics are hard to be avoided in the case of an explosion of possible combinations

of variables, or if an objective function is difficult or very time consuming to evaluate,

or when the solution is highly time dependent [5]. By using experience gained during

the solution approach or during the solving of other similar design problems, and by

judgment or educated guessing whether a chosen direction will yield good results, an

efficient problem solving algorithm can be programmed, tailored for the specific problem

at hand.

The general approach for finding solutions to a CSP consists of a constructive tree-search.

In order to make the search more efficient, several basic types of heuristics are implemented

in the search algorithm, i.e. Solution space reduction, decompositioning and constraint

relaxation.

Solution space reduction

Basic principle is to reduce the number of solutions that have to be evaluated, without

ignoring optimal solutions. Although a very efficient heuristic, this method requires good

knowledge of the real-world problem, in order to assess if eliminated solutions will not

contain promising results. Some approaches for solution space reduction are [5]:

� Eliminate solutions that don’t comply with constraints, for instance through con-

straint propagation

� Tightening constraints or increasing number of constraints

� Finding patterns in optimal solutions obtained from several numerical instantiations

of the problem. Such a pattern can be for instance a variable that always has the

same value or a constraint that should always be satisfied.

Problem decompositioning/partitioning

Decompositioning is the division of a complex problem into several more easy to solve

sub-problems. The decompositioning can be based on the hierarchy or chronology of de-

cisions/activities, or on the level of influence of different decision variables [5]. Having

defined sub-problems, they can be solved in a concurrent, consecutive or iterative manner.

With the concurrent approach, the sub-problems are solved independently, and the sepa-

rate solutions are combined in a feasible solution for the original problem. The consecutive

approach uses the output of the first sub-problem as input for the next. The iterative

solution approach is a combination of both previous approaches. A sub-problem is solved,

keeping the remainder of the problem fixed. The solution found for the sub-problem is

Heuristic Solution Finding Algorithm Based on Expert Knowledge 53

implemented in the complete problem, and a new sub-problem is selected and solved.

After one loop, this procedure is repeated. An example of this approach is the bottleneck

algorithm, ordering the sub-problems in terms of their influence on the objective function

[6].

Approximation methods

Approximations can be used to simplify the mathematical model, find solutions for this

simplified model, and evaluate the true model using these solutions. Constraint relaxation

is an example of an approximation method. In general, relaxation produces a solution,

which for a minimisation problem gives a lower/upper bound on the objective function

value of the optimal solution [5]. Constraints can be relaxed by approximation (linear

representation of non-linear constraints), or by complete ignoring the constraint. Fur-

thermore, a popular form of relaxation is Lagrange relaxation, where the constraints are

multiplied by Lagrange multipliers, and added to the objective function. By doing so, the

constraints are implemented in the mathematical model by adding a penalty to the ob-

jective function per unit violation of the constraint. The resulting solution to the relaxed

problem has to be worked back to a solution to the original problem, either by restoring

the constraints in steps or all at once [7].

4.2.2 Engineering knowledge

The expert solution approach presented in chapter 3 can be summarised as follows:

1. Group the rivets in rivet patterns. The rivet patterns have as attributes their length

Lpattern and rivet type. Various number of rivets in the pattern can be selected,

and fulfilment of the design requirements can be evaluated using the rivet pattern

attributes.

2. Decompose the problem by grouping rivet patterns, whose attributes are influenced

by the same no-riveting area, and solve this decomposed problem.

The rivet patterns are instantiated between two no-riveting areas, automatically fulfilling

the constraints of type h3. The start of the rivet pattern is linked to a no-riveting area,

the end of the pattern is linked to a following no-riveting area. The distance between these

two no-riveting areas determines the length of the rivet patterns, see figure 4.3. Since the

start and end of a rivet pattern are linked to a no-riveting area, changing a zone variable

and thus moving the accompanying no-riveting area, will change the length of the rivet

54 4.2 Theory on finding solutions to a constraint satisfaction problem

Figure 4.3: Change in rivet patterns, because of changing zone variables and accompanying

no-riveting areas.

pattern. The value of the zone variable has to be varied until the design requirements are

fulfilled. The aggregation of mutual rivet variables into rivet patterns and aggregation of

rivet patterns to zone variables, eliminates all rivet variables. Furthermore, the number

of h1 constraints is dramatically reduced by the fact that the total length of the rivet

pattern Lpattern determines whether the distance between the individual rivets satisfies

this constraint. The total number of variables for the design problem is reduced to O(30),

see Table 4.1. The number of h1 constraints is reduced from O(5 · 105) to the number of

rivet patterns, which is typically O(850)! A new system of variable / constraint relations

is obtained, see figure 4.4.

Figure 4.4: Reduced system of variables and constraints, when applying expert solution finding

knowledge.

Heuristic Solution Finding Algorithm Based on Expert Knowledge 55

4.3 Knowledge based solution system for the FML detailed de-

sign problem

The above described mathematical model and accompanying solution finding approach

will be implemented in a knowledge based solution system, whose process flow is described

in general in section 2.3. The solution system is based on a modular environment, facil-

itating a multi-disciplinary approach to deal with complex engineering problems. This

approach has been captured in a so-called Design and Engineering Engine (DEE) [8]. The

following sections will discuss the solution finding process of a DEE, the generation of the

product model and the solution finding phases as programmed in the search engine.

4.3.1 Solution finding process using a Design Engineering Engine

The concepts in the DEE are an input generator, which can be either a designer or

a software application or both, a product model generator, different analysis tools, an

evaluator and a search engine, see figure 4.5.

Figure 4.5: FML detailed design process using the concepts from the DEE environment.

56 4.3 Knowledge based solution system for the FML detailed design problem

The input generator assigns values to the design variables, and stores this data in an

input file. This input consists of a zone-wise description of the practical design, manually

generated by the design engineer, and detailed backup structure information, see section

3.2.2. Combining engineering knowledge of the product with the information from the

input file in an object-oriented software environment, a discipline specific view on the

product model is instantiated. This generative character of the product model means

that one or more discipline specific views on the product can be instantiated. Section

4.3.2 shows the different steps in instantiating the product model. The product model

generates different report files containing product and process information, needed by

the discipline specific product analysis tools. The analysis tools analyse the state of the

product, describing the behaviour of the product. The evaluator evaluates the state of the

product in terms of objective function (f in section 4.1) and constraint satisfaction. If the

state is not in compliance with the requirements, the search engine will start looking for

solutions to the problem, based on the information exported by the generative product

model. Finally the input generator will use the best solution exported by the search engine

to change the input file, and the process will start again. The input generator in this

design process model is the system user, but he can also decide to allow a coded initiator

to automatically alter the variable values according to the best solution generated by the

search engine. A more detailed description of the above DEE concepts as implemented

in the KBE application for the detailed design of FML panels is given in appendix A.

4.3.2 The product model

The generative product model is build in CATIA V5, a product modeling environment

commonly used in aerospace, using visual basic coding and the knowledgeware work-

benches available in CATIA V5. Knowledge on how to instantiate a specific panel is

stored in the generative model. Given an initial input file of a specific panel, the steps

below are followed to create an instantiation of the panel:

1. Instantiate zone primitives, describing the laminate built-up

2. Implement back-up information, such as type of frames

3. Define no-riveting areas in the laminate

4. Instantiate rivet patterns

Heuristic Solution Finding Algorithm Based on Expert Knowledge 57

Appendix A contains a more detailed description of the instantiation of a model of a panel

in CATIA. Important in the instantiation process is to notice that the no-riveting areas

in the laminate are defined. Furthermore, instead of instantiating individual rivets, they

are grouped in so-called rivet patterns, see figure 4.3. Knowing the no-riveting areas, the

rivet patterns will not be instantiated in locations where they are not allowed. Therefore

the constraint h3 is automatically fulfilled, as stated in section 4.2.2.

4.3.3 Propagation phase

First step in the solution finding process is to apply constraint propagation. Instantiating

the rivets in a pattern also influences the riveting constraints h1, since they will no longer

apply to individual rivets but to rivet patterns. The new constraints h1 are determined

by the total length of the rivet patterns in the panel. Given the fact that the distance

between individual rivets is limited by a minimum dmin and a maximum dmax, ranges of

the pattern length where these constraints are fulfilled can be defined, as shown figure

3.13. Constraint h1 can be reformulated according to eq-4.8.

h1 = TRUE if: Lpattern = 0

dmin ≤ Lpattern ≤ dmax

2dmin ≤ Lpattern ≤ 2dmax

3dmin ≤ Lpattern

(4.8)

Knowing dmin and dmax of the specific rivet pattern, the ranges for complying with con-

straint h1 can be calculated. Values for variable Xi for which h1 is not satisfied, are

subtracted from the domain Di. This is done for all rivet patterns and all variables.

By applying constraint propagation, the domain Di for each variable will be reduced,

reducing the amount of evaluations during the exploration phase.

4.3.4 Exploration phase

Having applied constraint propagation, the reduced variable domains can be further re-

duced by selecting a limited number of values within the propagated domain. Instead of

evaluating the four continuous domains for a single rivet pattern as shown in figure 3.13,

the domain is discretised using 20 values. This results in a large reduction in the number

of values that have to be evaluated in the tree-search. Nevertheless, on average 25 rivet

patterns are linked to each zone variable. Although the domain Di for each variable is

58 4.3 Knowledge based solution system for the FML detailed design problem

reduced, its dimension is still in the order of 20 · 25 = O(500). The number of evaluations

of the possible solution vectors is |Di|NZ = 50030 = O(1081), which still results in an

impossible evaluation.

To further reduce the number of evaluations, a second heuristic method is implemented,

i.e. decompositioning/partitioning of the problem. Figure 4.4 shows constraints h1 ap-

plying to different zone variables, creating a bidirectional relation between two variables.

Thus in order to correctly evaluate the state of the objective function, these variables

should be varied simultaneously. By evaluating the rivet constraints h1, groups of vari-

ables that have to be evaluated simultaneously can be defined. These groups are called

clusters (also see figure 4.6). The problem is now decomposed, reducing the number of

evaluations, Nevaluation, in the tree search:

Nevaluation =
NC∑

i=1

|Dj|NZ.i =
15∑

i=1

(500)2 = O(4 · 106) (4.9)

where NC is the number of variable clusters typically O(15), and NZ.i determines the

number of zone variables inside cluster i, which is typically O(2). As can be seen the

reduction in evaluations is significant, speeding up the algorithm without leaving out

feasible solutions.

Figure 4.6: Reduced system of variables and constraints as implemented in the solution

method.

The above discussed reduction in the number of evaluations due to decompositioning of

the problem is only valid in combination with an approximation method called constraint

relaxation. As can be seen in figure 4.6, constraints h2 are bidirectional, thus creating

relations between the different variables. The relaxation approach taken, is to first ignore

constraints h2, making it possible to decompose the problem. When composing the

problem, the constraints h2 should be reapplied to the solution vectors of the decomposed

problem.

Heuristic Solution Finding Algorithm Based on Expert Knowledge 59

Figure 4.7: Tree search by backtracking the branches of the tree.

The tree search approach shown in figure 4.7 is programmed. Let Q contain the possible

values of the variables, determined by constraint propagation and discretisation of the sub-

domains Di. For each cluster of variables, the following backtrack approach is used for

finding solutions to the accompanying decomposed problem. Assume a solution sequence

to the decomposed problem R = {r1, r2, ..}, having a length |R|. The values in Q1 are

candidates for r1, and are stored in Z1 (line5). The smallest element of Z1 is selected as

candidate for the candidate solution sequence {r1} (line10) and removed from Z1 (line(11).

The candidate solution sequence is evaluated if it is a solution to the problem (line12)

and if so the sequence is stored (line13). Next a sequence of candidate values Q2 for r2

is stored in Z2 (line17), and the minimum value from Q2 is selected as candidate for the

candidate solution sequence {r1, r2}. This procedure is repeated until Zk = ∅. Then we

backtrack by refilling Zk with the values from Qk (line 18) and go one step back (k=k-1,

line 19). Next the minimum value of Zk−1 is selected as candidate (line 10), removed from

Zk−1 and evaluated if the candidate solution sequence is a solution to the problem, etc.

60 4.4 Evaluation of the efficiency of the solution algorithm

1 For i=1 To ncluster

2 ’Apply constraint propagation on constraints h1 of the decomposed problem
3 Q=ConstraintProp(Pi)

4 ’Perform the tree search
5 Z1 = Q1

6 k=1
7 m=1
8 While k > 0 Do
9 While Zk 6= ∅ Do

10 {rk} = MIN(Zk)
11 Zk = Zk − {rk}
12 If IsSolution[r1, r2, .., rk] = True Then
13 Rm = [r1, r2, .., rk]
14 m=m+1
15 If k<|R| Then
16 k=k+1
17 End
18 Zk = Qk

19 k=k-1
20 End
21 Next i

21 ’Compose the problem by applying constraints h2 to R
22 S=ComposeProblem(P,R)

4.4 Evaluation of the efficiency of the solution algorithm

In order to evaluate the efficiency of the solution algorithm, four different test problems

are defined and the accompanying computational complexity reduction of the algorithm

is determined. The four problems are discussed in appendix B.

Table 4.3: Structural entities of four sample problems

Rivet patterns Zones Frames Stringers NoRivet Areas
[#] [#] [#] [#] [#]

P1 439 54 16 12 20
P2 623 104 16 17 34
P3 492 110 7 18 31
P4 771 214 16 18 33

As stated in the introduction of this chapter, the number of evaluations required to find a

solution to a given problem is reflected by the computational complexity of an algorithm.

Table 4.3 shows the order of magnitude of the structural entities involved. The resulting

number of variables and constraints when instantiating the product model are shown in

table 4.4. The complexity of the solution algorithm is calculated in terms of constraint

Heuristic Solution Finding Algorithm Based on Expert Knowledge 61

evaluations. The complexity is calculated as a worst-case scenario for the specific problem,

without constraint propagation and decompositioning of the problem. A high complexity

for the solution finding procedure is the result, see table 4.4.

Table 4.4: Complexity of the solution algorithm for four sample problems

|X| |C| Ncluster Complexity
[#] Satisfy C

P1 9 129 6 4.7 · 1016

P2 14 215 12 3.8 · 1032

P3 12 180 9 5.9 · 1024

P4 15 245 11 3.2 · 1026

The efficiency of the selected solution approach can be measured by the actual number of

evaluations when solving the problems compared to the worst-case complexity, see table

4.5 (see appendix B for data generation). A large reduction in complexity of the solution

finding algorithm is achieved, mainly due to the fact that a large reduction in variable

domain size | D | is accomplished by constraint propagation and domain discretisation.

Table 4.5: Worst-case versus actual complexity of the solution finding algorithm for the four
sample problems.

Worst-case Complexity Actual Complexity
constraint optimise compose

Satisfy C propagation decomposed problems problem
P1 4.7 · 1016 1.2 · 105 680 1.7 · 103

P2 3.8 · 1032 5.1 · 105 138 5.8 · 105

P3 5.9 · 1024 3.6 · 105 414 6.5 · 103

P4 3.2 · 1026 3.7 · 105 724 1.3 · 103

62 4.4 Evaluation of the efficiency of the solution algorithm

Bibliography

[1] Hall L.: Computational Complexity. In (Encyclopedia of Operations Research and

Management Science, 2nd edn., Gass S.I., Harris C.M., Kluwer Academic Publisher,

pp. 119-122, 2001)

[2] Meseguer P., et al.(2003).: Current approaches for solving over-constrained problems.

Constraints, Vol. 8, pp. 9-39

[3] van Hoeve W.J.: Operations research techniques in constraint programming. (ILLC

Dissertation Series DS-2005-02, Amsterdam, 2005)

[4] von Streim H.: Heuristische Lösungsverfahren; Versuch einer Begriffsklärung.

(Zeitschrift für Operations Research, Vol. 19, pp. 143-162, 1975)

[5] Silver E.A.: An overview of heuristic solution methods. (Journal of the Operational

Research Societ, Vol. 55, pp. 936-956, 2004)

[6] Morton T.E., Pentico D.W.: Heuristic Scheduling Systems. (New York, Wiley Inter-

science, 1993)

[7] Patterson R., Rolland E.: The cardinality constrained covering traveling salesman

problem. (Computers and operations research, Vol. 30, pp. 97-116, 2003)

[8] La Rocca G., van Tooren M.J.L.: Development of Design and Engineering Engines

to Support Multidisciplinary Design and Analysis of Aircraft. In (Delft Science in

Design - A congress on Interdisciplinary Design, Faculty of Architecture, ISBN 90-

5269-327-7,2005)

63

64 4.4 Evaluation of the efficiency of the solution algorithm

Chapter 5

Activation of the Knowledge Based

Solution System in the Engineering

World

A knowledge based solution system for the detailed design of FML fuselage structures has

been developed, based on the modular approach of a design engineering engine (DEE). The

process model of the DEE is discussed in section 4.3. For the user to be able to activate

the solution system, a KBE application called ADDET (Automated Detailed DEsign

Tool) has been developed. The way the solution system is implemented in ADDET will

be discussed in section 5.1. This chapter will furthermore discuss the implementation of

the ADDET in the real world, evaluating its effectiveness within the engineering practice.

Effectiveness is evaluated by comparing the results with the goals set at the start of the

development. First implicit goal of the KBE application is to generate solutions that are

useful in the real engineering world, being discussed in section 5.2. Second goal is to

reduce lead-time of the engineering process, and reduce the amount of engineers needed,

that have the knowledge level required for the design of FML fuselage shells. These

goals are being discussed in section 5.3 by means of implementation of ADDET in the

engineering process. This section also discusses issues involving the activation of KBE

applications in the engineering world.

The following statements will be addressed:

� ADDET generates multiple solutions to the real world design problem.

� A reduction in lead-time and resources can be achieved by implementing ADDET

in the design process.

65

66 5.1 Implementing the solution system in a KBE application

5.1 Implementing the solution system in a KBE application

A KBE application called ADDET has been programmed in an object-oriented language,

necessary to capture the data structure (attributes) and behavior (operations) of the

knowledge objects discussed in the previous chapters. CATIA V5 has been chosen as

graphical modeler, and Visual Basic (VB) as programming language, since an application

programming interface (API) is available for VB within CATIA V5. Figure 5.1 shows

that the application is composed of a graphical user interface (GUI), the VB code and a

primitive library. The GUI layout is based on the use cases of the solution system described

in section 3.4.4. The VB code contains the the classes defined in the product model, see

section 3.4.3, and contains the different activities described in the design process model,

section 4.3.1. More information on the software code and the instantiation of an FML

panel in CATIA V5 is given in appendix A.

Figure 5.1: Class diagram of the KBE application ADDET.

5.2 Usefulness of solutions generated by ADDET

When evaluating the performance of ADDET, a focus on the usefulness of the generated

solutions within the engineering world is needed. This section discusses the solutions

generated for the mathematical model of the problem, additional requirements consti-

tuted by engineering practice, and whether ADDET can comply with these additional

requirements.

5.2.1 Solutions generated for the mathematical problem

A sequence of variable values is a solution for the mathematical problem, if all constraints

are satisfied. As presented in chapter 4, some constraints are hard, meaning that the

Activation of the Solution System in the Engineering World 67

variable values should be set to satisfy this type of constraint. However, some constraints

are weighted, meaning that a violation is allowed but at a certain cost. The objective

function in the mathematical model is the summation of the cost of violating the weighted

constraints. Table 5.1 shows the number of variables |X| and constraints |C|, the number

of variable clusters Ncluster, the number of weighted constraint violation Nviolation and the

corresponding value of the objective function.

The four sample problems presented in appendix B are used to evaluate if ADDET indeed

generates solutions to the mathematical problem. As discussed in chapter 4, the problem

is first decomposed and solutions to the sub-problems are searched. Next the problem is

composed, meaning that the solutions to the sub-problem are composed and it is evaluated

if they are solutions to the total problem. After composing the problem, different non-

related sub-problems can still be identified. The variables in these sub-problems have

the same dimension of the solution vector, and are not related to variables in the other

sub-problems. Mathematically spoken, the number of solutions of the composed problem

would be all possible variable value combinations that are a solution to the problem, i.e.,

a multiplication of the number of solutions for each sub-problem. From an engineering

point of view, however, combining all possible local solutions will not result in significantly

different global solutions. Therefore, the number of solutions is given as the maximum of

the number of solutions for the sub-problems after composing the problem, see appendix

B. Table 5.1 shows the number of solutions Nsolution generated.

Table 5.1: Results of four sample problems in terms of number of weighted constraints violated,
objective function value and number of solutions generated

|X| |C| Ncluster Nviolation Objective Function Nsolution

P1 9 129 6 0 0 7
P2 14 215 12 6 1.4 13
P3 12 179 9 10 6.1 24
P4 15 244 11 20 12.7 10

5.2.2 Implementing the multi-level constraint in the engineering world

Chapter 4 presented a mathematical concept of a multi-level constraint. Often hard re-

quirements such as airworthiness or producibility are captured in engineering principles or

guidelines. These guidelines help to speed up the engineering process, since the engineers

do not have to evaluate all hard requirements, as long as the decisions made comply with

68 5.2 Usefulness of solutions generated by ADDET

the engineering principles. As stated in chapter 4, an engineering principle can be rep-

resented as a weighted constraint, which can be violated but at a certain cost. The cost

of constraint violation can be given as a function of the level of violation. This function,

from hereon called penalty function, is specified by the engineer and represents a desired

value of a design variable based on experience and/or best practice. The concept of a

weighted constraint and accompanying penalty function allows the engineer to influence

the solution domain, tailoring it for each specific real world design problem.

Four different combinations of hard and weighted constraints can be identified, see figure

5.2. The minimum concept consists of an absolute minimum and a function stating that

a larger value of the design metric is desirable. The maximum concept is the opposite

of the minimum concept, since it consists of an absolute maximum value and a function

indicating that a smaller value of the design metric is wanted. The other two concepts, i.e.,

subtract and add combination, are combinations of the first two concepts. The subtract

combination has a range between the extremes of the weighted functions, whereas the

add combination combines the ranges of the weighted functions.

Figure 5.2: Classification of different combinations of hard and weighted constraints.

An example of a design metric that is important for the airworthiness of the FML structure

is the rivet pitch. A minimum rivet pitch is defined by the (pin-loaded) blunt notch failure

criterion, whereas inter-rivet buckling or the maximum allowable load per rivet constitute

an upper limit. The stress department calculates for both criteria and for various load-

cases the reserve factor (RF), which is the allowed stress level divided by the applied

stress level, see eq. 5.1.

Activation of the Solution System in the Engineering World 69

RF =
σallowed

σapplied

≥ 1 (5.1)

The design principles state a minimum and maximum rivet pitch dmin and dmax. The

value of the penalty function is zero if the rivet pitch is between these two values, see

figure 5.3. Decreasing the rivet pitch is allowed, as long as its value doesn’t become less

than dbn, which is the rivet pitch associated with (pin-loaded) blunt notch (bn) failure.

dbn is calculated by setting RF in eq. 5.1 to be equal to 1. The same procedure is applied

for the upper limit of the rivet pitch, which is determined by inter-rivet buckling (irb) or

the maximum allowable load per rivet. If the rivet pitch is smaller than dmin or higher

than dmax, a new RF should be calculated based on the new applied stress levels. If

the resulting RF is larger than 1, the cost of violating the weighted riveting constraint

is expressed by the penalty function in figure 5.3. The stress department favours larger

over smaller rivet pitches, being expressed in the penalty function by a steeper slope for

rivet pitches smaller than dmin. If the resulting RF is smaller than 1, then the cost of

constraint violation becomes infinite.

Figure 5.3: Penalty function for the rivet pitch.

Figure 3.12 already showed the number of rivets that can be instantiated according to

design principles within a certain distance Lpattern. Figure 5.4 shows the penalty function

for a varying rivet pattern distance. It is a combination of the four penalty function

concepts shown in figure 5.2. RFold indicates the reserve factor for a design in compliance

with the design principles, i.e., a rivet pitch larger than dmin and smaller than dmax. The

dashed lines show that there is no room for deviation from these limits, since this will

result in RF < 1. In other words dbn = dmin and dirb = dmax. However, if the old RF is

larger than 1, for instance 1.1 as shown in figure 5.4, than there is room for deviation from

the limits stated in the design principles. Recalculating dbn and dirb results in a larger

feasible domain, at a certain cost however.

70 5.2 Usefulness of solutions generated by ADDET

Figure 5.4: Example of a series of penalty functions for constraints on the length of a riveting

pattern.

Because of the high importance of the rivet pitch design metric for airworthiness approval,

deviations from the design principles should not be accepted without approval from the

stress department. In other words, the design engineer can deviate from the design prin-

ciples when defining the product model, but needs approval from the stress department

on each deviation. It should be made explicit by ADDET where a deviation from the

design principles is located, and how much this deviation is.

5.2.3 Trade-off between different solutions

Figure 5.5 shows a sample design problem, where a thickness step in the laminate should

be positioned in between two stringers. The panel consists of two zones, two stringers and

a frame that is connected to the laminate using rivets. The stringer locations are fixed,

so the only design variable for this sample problem is the variable X defining the location

of the thickness step. The distance between a rivet and a free edge should be equal to

c, as discussed in section 3.3.1. The distance p is specified in the design principles. The

thickness step in the laminate constitutes a no riveting zone. Furthermore at the location

of the stringer-frame intersection no rivets can be inserted.

Activation of the Solution System in the Engineering World 71

Figure 5.5: Four different solutions to a sample design problem in FML.

The four design options shown in figure 5.5 are all solutions and have been generated

using ADDET. Solution 2-4 violate a weighted constraint, stating a minimum distance

between two rivets. Nevertheless, they comply with the underlying hard airworthiness

requirements, because the for the resulting rivet pitches RF > 1. Solution 1 has the

lowest weighted sum f(C,S) and is thus the preferred solution to the sample problem.

The other solutions need approval from the stress department, since requirements from

the design principles are violated. Using the information on the rivet pitches available

in the product model, a report file on the rivet pitches not complying with the weighted

constraints can be exported. This overview can be used by the stress department for

evaluation and approval.

5.3 Implementing ADDET in the engineering process

Having assessed the effectiveness of ADDET to generate solutions to the engineering prob-

lem, the application is activated in the engineering process. The success of the activation

depends on the user being able to operate ADDET, and the possibility to update the

software in the case of changes in the knowledge base or new required functionalities.

Both items require proper documentation of the software. Furthermore, the success of

activation is determined by the way ADDET is implemented in the design process flow.

72 5.3 Implementing ADDET in the engineering process

5.3.1 Documentation of the KBE application

A proper documentation of the KBE application consists of the following items:

� Knowledge base and software code documentation

– Informal model of the knowledge base

– Formal model of the knowledge base

– Additional comments in the code

� Activation documentation

– How to apply in the design process

– Output validation via a test session

– User manual

� Software configuration management

– Hardware and software requirements

– Software installation and maintenance

Knowledge base and software code documentation

Documenting the code inside ADDET is of critical importance for future use of the appli-

cation and re-use of the knowledge stored inside the application. During the development

of the KBE application, raw expert knowledge has been captured, formalised and finally

stored. The concepts defined in MOKA provide a link between raw knowledge, and

knowledge that is stored in a KBE application [1]. This transformation of knowledge is

facilitated by documenting the knowledge in a special format, suiting the needs of the

specific development step. During the capture phase, raw knowledge has to be structured

in such a way, that both expert and knowledge engineer can check the knowledge for

fitness of purpose. The format is called the informal model, and is designed in such a

way that it can be directly linked to the knowledge model used in the next development

step, i.e., formalise. The knowledge model used during the formalise phase is called the

formal model. The formal model should represent knowledge in such a way that both the

application programmer and knowledge engineer can understand the representation, pro-

viding a link to the actual computer code. Finally, during the store phase, the knowledge

is stored as objects in an object-oriented programming language, which is needed for the

computer to understand the knowledge.

Informal model

The concepts in the informal model, as specified in MOKA, are Illustrations, Constraints,

Activities, Rules and Entities, in short ICARE forms [1]. Entity forms contain knowledge

Activation of the Solution System in the Engineering World 73

on the product, activity forms contain knowledge on the design process, constraint forms

contain knowledge on limitations on the product entities, rule forms contain knowledge

governing design process activities and illustration forms hold examples, hints, additional

general information, etc. By defining relations between these five knowledge concepts, an

informal model of the knowledge base is setup. The relations can be represented using

different types of charts, e.g., hierarchy and process charts.

Formal model

The formal model consists of a design process model and a product model, based on a

refinement of the informal model knowledge concepts and relations. Concepts defined

in UML are used to create a formal model, describing a product model consisting of

class objects and a design process model consisting of activities. Figure 5.6 shows the

formal model consisting of a product and a design process model, and how the informal

knowledge units are related to the formal model

Figure 5.6: Informal knowledge units, used to generate components in the formal model.

Computer code

The classes and activities defined in the formal knowledge model are used to develop the

actual code for the KBE application. In order to facilitate comprehensibility and future

maintenance of the application, the software code contains detailed comments.

Activation documentation

The design process model contains a description of the new design process, having im-

plemented ADDET. The documentation for activation clearly describes when to apply

ADDET in the process, what steps are automated and who should operate ADDET. Sec-

tion 5.3.2 shows in more detail what the new process will look like, and how ADDET

should be implemented in the design process.

74 5.3 Implementing ADDET in the engineering process

In order to prove that ADDET does generate useful solutions to the engineering problem,

a test session is defined and documented. The test documentation describes what is

being tested, why the test is representative for the engineering problem, and the results

obtained.

The KBE application is generic, and is able to provide solutions for many known but

also unknown problems. For this reason, the user should be aware of the capabilities and

limitations of the application. Besides describing the sequence of steps for a user to take,

the user manual should clearly describe the capabilities and limitations of the application.

ADDET provides a platform for the detailed design of FML fuselage panels, as long as the

skin can be defined using quadrilateral zones. Panels containing a door cutout can be dealt

with, by decomposing the problem in an undisturbed panel and the door surrounding, and

then manually composing the problem. This approach is based on best practice, where the

laminate in the door surrounding is locally changed to comply with requirements. ADDET

is FML specific, since the design rules for FML structures are used; implementing rules

for other material families would result in a material independent design platform.

Software configuration management

Configuration management is the discipline of managing and controlling change in the

evolution of software systems[2]. An important step in configuration management is to

identify the software system elements called configuration items, their version and the

relations between the elements. The version identifies the state of a configuration item

at a defined point in time. If a version has been tested for consistency and quality, it is

made available to the user as a release, and stored in the software repository.

As for the engineering system, the relations define how a change will propagate to the

different system elements. Hardware and already installed software are also configuration

items. For instance ADDET uses CATIA V5R16 as graphical modeler for the product

model; a change in CATIA release can result in a change in API, requiring an update of the

VB code (see figure 5.7). Besides a change initiated from within the application, a change

can also be requested by a user or knowledge engineer, for instance if a new requirements

needs to be implemented, or a new functionality is needed or if the expert knowledge

needs updating. These changes will result in an update of the software, executed by the

developer. Whether or not all parts of the software needs to be updated depends on the

required changes.

If a change propagation results in a change in GUI and/or event handlers, an update in

CATSettings is required (see appendix A), resulting in the definition of a new version of

Activation of the Solution System in the Engineering World 75

Figure 5.7: Use cases of the configuration management for ADDET.

the software. Changes in VB-script or primitive can be easily implemented by updating

the content of the VB-repository or primitive repository respectively, resulting in a new

release called a revision. The definition of the new version or revision is the task of the

project manager. Finally the IT department installs the new version or uploads the new

repository for the revision.

5.3.2 Redefinition of the process flow

As described in chapter 3, the process of detailed product design is executed in a multi-

disciplinary environment. In order to identify and implement requirements in an early

stage of the process, a concurrent process flow is adopted. The stress department is re-

sponsible for the structural sizing of the product. The production department is involved

to report production requirements and to check if the design meets these requirements.

The interface department is in charge of defining interfaces between products in the as-

sembly and evaluates whether the design complies with these interface requirements. The

design department is responsible for the definition of the detailed product model, which

should comply with the requirements stated by the individual departments.

76 5.3 Implementing ADDET in the engineering process

Figure 5.8: Gantt chart of the design process, having implemented ADDET in the design

process.

Figure 5.8 shows a Gantt chart of the design process, when implementing ADDET for

the generation of the detailed product model of one product. Important difference with

figure 3.1 is the division of the generate-detailed-product-model step in two steps, i.e.,

define practical design and define detailed design. Compared to the traditional process,

a reduction in lead-time of 60% for the generation of the detailed product model can be

achieved, as is shown in figure 5.9. Besides a reduction in lead-time due to automation of

process steps, this reduction is also achieved because of the more sequential approach of

the new process. The most time consuming process step, i.e., define detailed design, will

start not before the FEM runs have been finalised and a practical design has been defined

and approved by all departments involved. This ensures that a complete and stable set

of information is used as input for the define-detailed-design step, reducing iterations.

Disadvantage of the Gantt chart representation of a process is the inability to present the

number of resources required during the process. For this reason figure 5.10 shows the

number of resources on the vertical axis for the different process steps and departments.

The number of resources required for the current process of generating a detailed design

is shown as a reference.

Two options for planning the amount of resources in the future process can be identified.

Option 1 has the same lead-time as the current process. Because of the design time

reduction shown in figure 5.9, a reduction in resources required can be achieved. Option

2 has a reduction in lead-time compared to the current process. Figure 5.10 indicates a

local increase in resources compared to the number of resources required for the current

process. The number of resources deployed depends on company policy for the project. If

Activation of the Solution System in the Engineering World 77

Figure 5.9: Possible reduction of the time to generate the detailed product model using KBE.

the number of design resources is limited, option 1 having a longer lead-time is preferred.

If lead-time is a driver for the project, option 2 of deploying more resources for a shorter

time frame is preferred. However, it should be noted that this last option also impacts the

number of resources required from the other disciplines, since more deliverables that have

to be checked will be generated in a shorter time frame. The deliverable release rate is

often represented as an S-curve, see figure 5.11. The new release rate will be characterised

by a large amount of deliverables being released in a short amount of time, as indicated

in figure 5.11.

Figure 5.10: Resource planning options when implementing ADDET in the design process.

78 5.4 Conclusions

Figure 5.11: Current and future released deliverables curve.

5.4 Conclusions

A knowledge based solution system for dealing with a design problem in the detailed design

of FML fuselage skins has been developed and stored in a software tool called ADDET.

When implementing ADDET in the real engineering world, it can be concluded that the

application is able to generate solutions to the design problem. The weighted constraints,

which are based on hard constraints from for instance airworthiness or production, can

be violated but at a cost. The cost is defined by the engineer, providing him with the

possibility to extend or limit the solution domain. A violation of a weighted constraint

is reported to and can thus be accepted by the responsible department on a case to case

base.

A reduction in process lead-time of 60% for the steps under consideration can be achieved.

When implementing ADDET in the design process this reduction in lead-time can be used

to reduce the maximum required amount of resources from the design department. A dif-

ferent option is to reduce the process lead-time, by increasing the amount of resources

from the design department. This second option, however, will result in a different deliv-

erable release rate, where a large amount of deliverables will have to be released at the

end of the project. This could lead to bottlenecks in the other departments, since they

should check a large amount of design outputs in a relative shorter time span. A process

wide re-design is needed to prevent these bottlenecks from causing inefficiencies and cancel

out the time saved by implementing ADDET. Whether to reduce the maximum amount

of resources or reduce the total process lead-time is a company decision, that should be

made for each project individually.

Bibliography

[1] Stokes M. (on behalf of the MOKA consortium): Managing Engineering Knowledge -

MOKA: Methodology for Knowledge Based Engineering Applications. (Professional

Engineering Publishing Limited, Bury St Edmunds, UK, 2001)

[2] Bruegge B., Dutoit A.H.: Object-Oriented Software Engineering, using UML, Pat-

terns, and JavaTM. (Pearson Prentice Hall, New Jersey, USA, 2004)

[3] Palmer G.: Java event handling. (Prentice Hall PTR, Upper Saddle River, USA,

2002)

79

80 5.4 Conclusions

Chapter 6

Method for Finding Solutions to

Complex Real World Design

Problems

A detailed design problem in Fibre Metal Laminate structures has been discussed and

a knowledge based solution system has been developed, stored in a software application

called ADDET, and implemented in the design process. The development process of the

solution system is based on a structured approach, starting with the description of the

real world design problem, as discussed in section 1.1. The solution system components

are based on the concepts in a design and engineering engine (DEE), presented in chapter

4. The development of the solution system requires a structured approach, combining

knowledge from different research areas, in order to tailor the solution system for the

complex design problem at hand.

This chapter will present a method for developing a knowledge based solution system,

based on a formalised view on the approach used for the development of the solution

system described in this thesis. This method will capture and formalise the problem solv-

ing knowledge used. A method can be defined as a systematic procedure to achieve an

objective. The objective of the method is to find solutions to complex real world design

problems. To be able to understand and communicate the steps in the method, a vocabu-

lary is needed. This vocabulary should furthermore help to better understand the objects

and relations in the domain, and promote the reusability of the knowledge contained in

the method. For these reasons, an ontology of the solution method is presented in this

chapter. First the applicability of ontologies for the reuse of problem solving knowledge

will be discussed in section 6.1. For the discussion of the ontology, a division of the con-

81

82 6.1 Applicability of ontologies for the reuse of problem solving knowledge

cepts of the ontology into objects and activities is made. The concepts of the ontology are

presented in section 6.2, focussing on formalising the objects in the solution system. The

concepts of the activity ontology describe the activities and actors in the development

of a solution system, and will be discussed in section 6.3. Finally, some statement with

respect to the usefulness of the method ontology will be presented in section 6.4.

The following statements will be addressed:

� Ontologies can be used to formalise knowledge contained in the engineering domain.

� A general problem solving method, applicable to the engineering domain, can be

tailored for a specific problem, by mapping its task ontology onto the problem

ontology.

6.1 Applicability of ontologies for the reuse of problem solving

knowledge

An ontology can be defined as an explicit formal description of concepts in a domain of

interest[1]. In general an ontology assigns a domain specific meaning or view to terms,

defining a formal domain vocabulary. Ontologies can also be used to formalise knowledge

in order to reuse the knowledge, as shown in chapter 3 for instance for the expert domain

knowledge. An ontology consists of concepts having attributes and relations between the

concepts. The concepts in the ontology are the objects that are present in the domain,

and can be for instance physical objects, theories, persons, numbers or process steps. The

attributes assigned to the concepts describe the state of the concept. Attributes have

a name and a value, and are used to store information on the concept they belong to.

Attributes of the concept aircraft for instance can be the range or maximum-take-off-

weight. Finally relations define how the concepts interact in the domain. The relation ’is

part of ’, for instance, indicates an aggregation of a sub-system to a system, like a wing

as sub-system is part of the aircraft system.

According to the KADS methodology[2], knowledge can be divided in different categories,

depending on the type of knowledge being formalised. For each type of knowledge a differ-

ent ontology typology can be used. First category is domain knowledge giving an expert

view on the problem. This type of knowledge is described using a problem ontology, and

defines the concepts in the domain, their relations, the task set and the solution domain

applicable. Second category is the inference knowledge, describing rules of inference based

Method for Finding Solutions to Complex Design Problems 83

on the expert knowledge of finding solutions to the problem. Reasoning steps from differ-

ent expert domains that can be useful for finding solutions to the problem at hand are also

contained in this level. This second level of knowledge is represented using an inference

ontology. The third category contains the knowledge on the sequence of deploying the

rules of inference in order to most efficiently find solutions to the problem, contained in

a so-called search engine or problem solving method (PSM). This level of knowledge can

be represented using a task ontology.

To be able to reuse the problem solving knowledge, a problem-independent PSM is

needed, which can be achieved by generalisation of different task ontologies. Critics state

that due to the presence of the interaction problem, it is not possible to define such a

generalisation[3]. This interaction problem states that[4]:

”Representing knowledge for the purpose of solving some problem is strongly

affected by the nature of the problem and the inference strategy to be applied

to the problem.”

The interaction problem undermines the applicability of a task ontology for developing a

PSM for a large array of different problems, since a solution finding method is dependant

on problem specific knowledge.

A possible approach for the development of PSM is to start at the problem ontology of the

problem at hand. In general a problem ontology consists of concepts having attributes,

relations between concepts and an objective or task. According to Reynaud[5] it is pos-

sible to define different possible PSMs for the problem by tracing the inference paths,

constituted by the relations between the concepts, starting at the objective.

Guarino[6] argues against the interaction problem, by stating that solution finding knowl-

edge is independent of expert knowledge. He states that once a domain has been defined,

for instance aircraft engineering, a large part of the solution finding knowledge is simi-

lar for various applications. Indeed, the concepts in the aerospace engineering domain,

e.g., the disciplines involved and the analysis tools used, are similar for a wide range of

problems.

O’Leary[7] states that it could be possible to reuse knowledge through task ontologies for

well-structured problems. This well-structured character, however, undermines the gain of

reusing knowledge, since a developer can manually setup a solution finding method. Nev-

ertheless, a library of well-structured problem solving methods could save the developer

time in setting up the solution system.

84 6.2 Task-object ontology of the knowledge based solution method

Fensel[8] redefines the interaction problem as a tradeoff between usability and reusability.

The more reusable a PSM is, the more effort is needed to map the PSM onto the problem

domain, in order to make it useful. Fensel states that it is possible to define a domain-

independent PSM, which can be reused by mapping its ontology onto the problem specific

ontology.

The above discussion clearly indicates the differences in opinion on whether or not it

is possible to define a problem-independent PSM, which can be applied to various pro-

blems based on its generic character. The knowledge based solution method promoted

in this chapter consists of improving the efficiency of inference by combining solution

finding knowledge from various disciplines. Selecting the appropriate rules of inference

and tailoring them for the problem at hand, is a problem-dependent process. The PSM,

defining the sequence of deploying these problem specific rules of inference, can however

be formalised in a problem-independent solution finding strategy in the domain of com-

plex engineering problems. In accordance with Fensel’s statement, it is possible to define

a problem-independent PSM, which can be made problem specific by tailoring it for the

problem at hand.

6.2 Task-object ontology of the knowledge based solution method

This section presents the object ontology of the problem-independent method for devel-

oping a solution finding system, by discussing the problem, inference and task ontology.

As stated in the previous section, it is possible to define a problem-independent PSM,

by mapping the task ontology onto the problem and inference ontology. This mapping is

translated by means of relations between the three ontologies, shown in figure 6.1. The

solution finding strategy (described by the task ontology) is based on the solution finding

knowledge (described in the inference ontology), and tailored for the problem at hand

(described by the problem ontology).

First the problem ontology of the domain of complex engineering problems is presented

in section 6.2.1. The concepts in the inference ontology are discussed in section 6.2.2.

The manner in which the task ontology is related to the problem and inference ontology

will be discussed in section 6.2.3. Section 6.2.4, finally, gives a definition of the solution

system and the concepts it is composed of.

Method for Finding Solutions to Complex Design Problems 85

Figure 6.1: Meta-model of the ontology for the solution finding method.

6.2.1 Problem ontology of complex engineering problems

Figure 6.2 shows the concepts of the problem ontology. Expert problem knowledge and

expert solution finding knowledge are formalised in a formal expert knowledge base. The

attributes of the expert knowledge base are set to be a representation of the real world

design problem. Based on information stored in the input file and using the formal expert

knowledge base, the product model generator provides the analysis tool with product

information. The execution of the analysis is based on knowledge in the formal expert

knowledge base. The analysis tool determines the state of the product in terms of objec-

tive function value and constraint satisfaction. The analysis tool next sets the attribute

values of both the objective function and constraint set accordingly. Besides an objective

function and a constraint set, a well-defined mathematical model of the design problem

is composed of a variable sequence. The variable sequence has the design variables and

their values as attributes, which are stored in the input file. The concepts and relations

in the formal expert knowledge base are used to setup a well-defined mathematical model

of the problem.

Concepts:

� Real world design problem. Informal description of the engineering problem, for

which the solution system should find solutions.

� Formal expert knowledge base. Formal representation of the expert domain knowl-

edge of the real world problem.

� Expert problem knowledge. Formal representation of the concepts and relations in

the real world problem.

� Expert solution finding knowledge. Formal representation of expert knowledge on

how to find solutions to the real world problem.

86 6.2 Task-object ontology of the knowledge based solution method

Figure 6.2: Ontology of the problem.

� Mathematical model of the problem. Mathematical representation of the expert view

on the problem, consisting of an objective function, a constraint set and a variable

sequence.

� Objective function. State variable of the product model.

� Constraint set. Set of equations, limiting the domains of the design variables.

� Variable sequence. Sequence of design variables of the design problem.

� Solution sequence. Sequence of variable values fulfilling all constraints, optimising

the objective function.

� Product model generator. Generates a model of the product, based on information

specified in the input file and expert product and process knowledge.

� Analysis tool. Algorithm calculating the state of the product model.

� Input file. Database containing product and process information.

Relations:

� is representation of. A manual transformation of knowledge. The relation is exe-

cuted manually since expert knowledge is not always available in an explicit form.

� transformation of. Transformation of knowledge that can be automated, since the

concepts and relations in the formal expert knowledge base constitute mathematical

equations.

Method for Finding Solutions to Complex Design Problems 87

� based on. A transformation of knowledge. Without this relation, the concept ’based

on’ the other cannot exist.

� provides product information. An information transfer relation. Automation is

possible.

� sets attribute value. A data transfer relation. Automation is possible.

� function of. A relation between the attribute values of the related concepts defined

by a mathematical function.

� aggregation. A part-of relation.

6.2.2 Inference ontology of solution finding knowledge

The concepts in the inference ontology are the inference steps contained in expert and

mathematical solution finding knowledge. The inference steps in mathematical knowledge

are problem-independent and can be for instance an optimisation algorithm, a heuristic or

a multiple objective optimisation (MOO) technique. These concepts represent a selection

of mathematical solution finding knowledge commonly used in the engineering domain.

The inference steps formalised in the expert solution finding knowledge are problem de-

pendent, and are for instance common engineering practice or educated guesses. The

relations between both expert and mathematical solution finding knowledge, and the

search engine are discussed in the task ontology (section 6.2.3), since these relations con-

stitute the actual mapping of the task ontology into the problem ontology. Figure 6.3

does show the search engine to indicate the relation between expert and mathematical

solution finding knowledge.

Figure 6.3: Inference steps applicable to the problem domain.

88 6.2 Task-object ontology of the knowledge based solution method

Concepts:

� Mathematical solution finding knowledge. problem-independent knowledge on how

to solve mathematical problems.

� Optimisation algorithm. algorithm to assign values to variables, within a domain

limited by constraints , resulting in an optimum value to an objective function.

� Heuristic technique. technique on how to reduce the complexity of the problem,

without simplification of the problem.

� Multiple Objective Optimisation (MOO) technique. technique on how to deal with

a simultaneous optimisation of multiple objectives.

Relations:

� read attribute value. A data transfer relation. Automation is possible.

� tailored for. A knowledge transfer relation. Execution of relation is manual, because

of the creativity involved.

6.2.3 Mapping the task ontology onto the problem ontology

The search engine is needed to find solutions to the mathematical model of the problem

at hand, and is based on both expert and mathematical solution finding knowledge. In

order to make the search engine applicable to the problem at hand, it has to be mapped

onto the problem ontology, see figure 6.4. The relation tailored-for expresses this mapping

function, where the control of inference step execution is adapted to most efficiently find

solutions to the problem. The variable sequence has the design variables and their values

as attributes, which are at first set by the information generated by the initiator. The

initiator can be either a software application or the system user. When the search engine

changes the variable sequence attributes, the initiator reads these new attribute values

and changes the input file attributes accordingly. An evaluator has to be defined to check

if the state of the product, in terms of objective function value and constraint satisfaction,

fulfills the requirements set in the real world design problem.

Method for Finding Solutions to Complex Design Problems 89

Figure 6.4: Task ontology of the problem solving method.

A problem-independent solution finding strategy is defined, by mapping its task ontology

onto the problem ontology. This mapping of ontologies is an activity, hence the relations

between the task and problem ontology consist of an activity. This mapping results in a

problem specific solution finding strategy, discussed in more detail in section 6.3.

Concepts:

� Initiator. Assigns values to the design variables, and reads the attributes of the

variable sequence.

� Search engine. A concept ’tailored for’ the specific mathematical model of the

problem to scan the solution domain and find solutions.

� Evaluator. Compares the state of the product with the requirements set in the real

world design problem.

6.2.4 Solution system ontology

The solution system ontology finally gives a definition of the system, by defining the parts

contained in the solution system (figure 6.5). The task of the solution system is to define

a solution sequence, whose attribute values constitute a solution to the design problem.

The concepts aggregated to the solution system are the same concepts as shown in the

DEE in figure 4.5. Finally, the solution system should be activated in the real world, to

90 6.2 Task-object ontology of the knowledge based solution method

assess its effectiveness in solving the real world problem. The solution system will become

part of the real world, replacing steps in the real world (design) process using the systems

input and output information.

Figure 6.5: Ontology of the solution finding system.

Relations:

� activated in. An information transfer relation of input/output information. A con-

cept becomes part of the concept that it is activated-in.

Method for Finding Solutions to Complex Design Problems 91

Figure 6.6: Ontology of the solution finding method.

92 6.3 Activity ontology for the knowledge based solution method

6.3 Activity ontology for the knowledge based solution method

An activity ontology is used to formalise the different steps in a domain-specific process,

aimed at simulating the activities[9]. The activity ontology is used to formalise the ac-

tivities and actors within the method. Figure 6.7 shows the different activity and actor

concepts in the process of developing a solution system, tailored to a real world problem.

Figure 6.7: Activity ontology of the solution method, describing the different activities and

actors involved.

Activity concepts

� Identify real world problem. in the real world a problem is identified that needs

solving. It has to be assessed if the benefits outweigh the cost of developing the

solution system.

� Create formal expert representation. the knowledge of the real world problem is

formalised by creating and capturing the expert representation of the problem.

� Setup mathematical model. This formal expert view is transformed in a well-defined

mathematical model, consisting of an objective function, constraints and variables.

� Develop solution system. a problem-dependent solution system, based on expert

and mathematical solution finding knowledge, is developed.

� Activate solution system in the real world. The solution system is activated the real

world.

� Assess performance of solution system in the real world. The effectiveness of the

solution system with respect to dealing with the real world problem is assessed when

activated in the real world.

Method for Finding Solutions to Complex Design Problems 93

Actor concepts

� Managers. Identify the design problem and justify the development of a solution

system. They are also in charge of the efficient activation of the system in the real

world.

� Users. Operate the solution system in order to solve the design problem.

� Experts. Have the knowledge on the problem domain, and define which knowledge

should be implemented in the solution system.

� Knowledge engineers. Investigate the design problem domain, learn what concepts

are important in that domain, and define a formal representation of the concepts

and relations.

� Developers. Transform the formalised domain knowledge in a solution system.

As discussed in the previous section, a problem specific solution finding strategy can

be tailored by mapping the task ontology onto the problem ontology. An example of a

resulting solution finding strategy is shown in figure 6.8, which is the solution finding

process captured in the design and engineering concept, discussed in chapter 4.

Figure 6.8: Activity diagram of the solution finding process.

94 6.4 Conclusions

6.4 Conclusions

The possibility to define problem-independent PSMs has been the topic of much discussion

in literature, achieving no consensus. Fensel[8] summarised the discussion by stating that a

tradeoff should be made between reuse of problem solving knowledge and the usefulness of

the resulting PSM. He stated that a problem-independent PSM can be defined for specific

domains, by mapping its task ontology onto the ontology of the problem. This mapping

of ontologies is a problem dependent activity, tailoring the solution finding strategy for

the problem at hand. There are numerous problem-independent PSMs used in practice,

such as Sequential Quadratic Programming (SQP) or Genetic Algorithms (GA), proving

the usefulness of the problem-independent PSM.

The different levels of ontologies, defined by the CommonKADS methodology[2], are

very useful for formally describing the concepts in a knowledge based solution system for

engineering problems. The mapping of concepts and relations at different ontology levels

is the creative part of building the system, and provides its developer with the possibility

to tailor the solution system for the problem at hand.

When developing a knowledge based solution system for complex design problem, the

following steps should be taken: Identify real world problem, create formal expert repre-

sentation, setup a mathematical model of the problem, develop solution system tailored

for the mathematical model, using available mathematical solution finding knowledge or

formal expert problem solving knowledge, and finally assess the usefulness of the solution

system by implementing the system in the real engineering process.

Bibliography

[1] Gruber T.R.: Toward principles for the design of ontologies used for knowledge

sharing. (International Journal of Human-Computer Studies, Vol. 43, pp. 907-928,

1995)

[2] Balder J.R., Akkermans J.M.: Formal methods for knowledge modelling in the Com-

monKADS methodology: a compilation. (Petten, Netherlands Energy Research Foun-

dation ECN, ECN-C-92-080, 1992)

[3] van Heijst G., Schreiber A.Th., Wielinga B.J.: Using explicit ontologies in KBS

development. (International Journal of Human-Computer Studies, Vol. 46, pp. 183-

292, 1997)

[4] Bylander T., Chandrasekaran B.: Generic tasks for knowledge-based reasoning: the

”right” level of abstraction for knowledge acquisition. (International Journal of Man-

Machine Studies, Vol. 26, No. 2, pp. 231-243, 1987)

[5] Reynaud C., Tort F.: Using explicit ontologies to create problem solving methods.

(International Journal of Human-Computer Studies, Vol. 46, pp. 339-364, 1997)

[6] Guarino N.: Understanding, building and using ontologies. (International Journal of

Human-Computer Studies, Vol. 46, pp. 293-310, 1997)

[7] O’Leary D.E.: Impediments in the use of explicit ontologies for KBS development.

(International Journal of Human-Computer Studies, Vol. 46, pp. 327-337, 1997)

[8] Fensel D., Motta E., Decker S., Zdrahal Z.: Using ontologies for defining tasks,

problem-solving methods and their mappings. published in Plaza E., Benjamins V.

R.: Knowledge Acquisition, Modeling and Management.(Springer-Verlag, pp. 113-

128, 1997)

[9] Mizoguchi R., Ikeda M.: Towards ontology engineering. (Osaka University, Technical

Report AI-TR-96-1, 1996)

95

96 6.4 Conclusions

Chapter 7

Conclusions

The design process of aircraft is becoming more and more complex, due to the increasing

amount of design requirements that have to be fulfilled. Implementing all requirements

demands for control on the flow of information between different disciplines and between

different elements in aircraft (sub)systems. Information transfer between disciplines is

often complicated, because different product models are used for analysis, requiring a

redefinition of the information. Furthermore, the time consuming process of generating

design outputs has to be repeated each design cycle.

The detailed design of fibre metal laminate (FML) fuselage panels is governed by a large

amount of requirements from different disciplines. Detailed information on how the back-

up structure of the fuselage is joined to the laminate is needed, to such an extend that

the location of each rivet needs to be checked for compliance with the requirements.

Implementing all requirements in a feasible product definition asks for a large knowledge

of the engineering principles, and results in an iterative and time consuming process.

Design steps can be automated once the knowledge needed to execute the step is captured

and stored in a consistent format. A generative product model is defined, based on input

information and expert domain knowledge. The different disciplines involved receive a set

of information needed for their analysis from the product model generator, making the

redefinition of information superfluous. The cost of iterations in the process is reduced

by automation, making it possible to quickly incorporate input changes and decreasing

the lead-time. In addition to lead-time reduction, implementing a knowledge based engi-

neering (KBE) application in an efficient way will also result a reduction in resources by

postponing engineering tasks until a complete set of input information is available.

A knowledge based system for solving a design problem in the detailed design of FML

fuselage skins has been developed and stored in a software tool called ADDET. The

97

98

application generates solutions to real world FML design problems, and reduces the time

needed for the detailed design by 60%. This reduction in lead-time can be used to reduce

the already limited amount of knowledgable resources needed.

The success of activating ADDET in the engineering world depends on the user being able

to operate ADDET, and the possibility to update the software in the case of changes in the

knowledge base or new required functionalities. Both items require proper documentation

of the software. Proper documentation consists of a formal model of the knowledge

base, commented software code, activation documentation and a description of software

configuration management.

Automating the generation of design outputs will result in the release of a large amount

of deliverables at the end of the project. This could lead to bottlenecks in the other

departments, since they should check a large amount of design outputs in a relative

shorter time span. A process wide re-design is needed to prevent these bottlenecks from

causing inefficiencies and cancel out the time saved by implementing ADDET.

Developing a knowledge based solution system for complex design problems consist of a

structured approach of transforming the real world problem, via an expert view on the

problem, to a mathematical model of the problem, for which solution finding knowledge is

present or can be defined using expert problem solving knowledge from different knowledge

domains. Finally the usefulness of the solution system for solving the real world problem

should be assessed, by implementing the system in the real engineering process.

A tradeoff should be made between reuse of problem solving knowledge and the usefulness

of the resulting problem solving method (PSM). A problem-independent PSM can be de-

fined for specific domains, by mapping its task ontology onto the ontology of the problem.

This mapping of ontologies is a problem dependent activity, tailoring the solution finding

strategy for the problem at hand.

The different levels of ontologies, defined by the CommonKADS methodology, are very

useful for formally describing the concepts in a knowledge based solution system for

design problems. The mapping of concepts and relations between each ontology level is

the creative part of building the system, and provides its developer with the possibility

to tailor the solution system for the problem at hand.

Appendix A

Software Architecture of ADDET

This appendix will present how the concepts in the design and engineering engine (DEE),

as discussed in chapter 4, are implemented in a KBE application. The application is called

an Automated Detailed DEsign Tool (ADDET). The application consists of a graphical

user interface (GUI), visual basic (VB) code and a primitive repository, see figure A.1.

The GUI is used by the software user to launch the different VB modules in the code.

These modules contain the steps in the DEE process model, discussed in section A.2, and

the product model classes presented in figure A.2. For each of the product model classes,

a so-called primitive is defined using the user-defined features (UDF) concept in CATIA

V5. A UDF is a pre-defined structural entity that can be instantiated in CATIA as often

as needed, based on geometrical and dimensional information. The primitives have the

attributes and behaviour (operations) of the classes in the product model.

Figure A.1: Class diagram of the KBE application ADDET.

99

100 A.1 Product model classes as primitives

A.1 Product model classes as primitives

Figure A.2 shows the product model classes. For each of these classes a primitive has been

programmed as a UDF. Another option for instantiating the product entities is to model

each entity as separate geometry, attribute and operation. For instance, instantiating a

zone entity would first require the definition of the surface based on four edges. Next

parameters and rules are defined separately, parameters to function as zone attributes

and rules for the behaviour of the zone. Finally, these parameters and rules should be

linked to the surface element, creating the desired zone entity. The advantage of UDF’s

is that attributes and operations are be assigned to a single entity within CATIA.

Figure A.2: Product model classes.

Figure A.3 shows the primitive defined for the riveting pattern. The geometric input

information is the plane defining the frame location, the start of the pattern (point A),

the end (point B), and the panel loft. The input dimensions are the rivet diameter,

edge distance and minimum reserve factor (RF). Using this input information, the rivet

primitive is instantiated in CATIA as shown in figure A.3, where the attributes are stored

as children of the entity. The behaviour of the primitive is not shown, but is implicitly

programmed in the primitive. For instance, if changing the rivet distance would result in

violation of the rivet rules, the colour of the rivets will change from black to red.

A.2 Design process model steps as implemented in the code

This section will discuss the different steps in the process model as implemented in AD-

DET.

Input generator

The required input information is stored in an excel sheet. Different sheets contain infor-

Software Architecture of ADDET 101

Figure A.3: Rivet primitive input geometry and attributes.

mation on requirements set for the design solution, laminate built-up, back-up structure

information and design rules. A zone-wise laminate description is presented, were initial

location, number of layers and zone-type are given. The initial location is defined by

specifying the zone variables and assigning a value and reference frame or stringer datum

(see section 4.1.1). Different sheets present the back-up information in terms of stringer

dimensions, frame type (mouseholes or clips), and required rivet diameter. A sheet dis-

cusses the constants in the riveting rules for the different no-riveting areas constituted

by joggles and splice areas. Since these constants may change for different projects, it is

decided to give them as an input rather than hard-code them. Finally a sheet is used to

specify at which frame stations the riveting pattern should be analysed.

For the first design loop the software user, in general a design engineer, will generate the

input. For further cycles, the user can choose to automate the generation of the input,

based on output from the search engine. Besides an excel input file, a CATIA model

containing loft, frame and stringer information is provided by the user.

Product model generator

Based on the information specified in the input file and CATIA input model, an instan-

tiation of the panel is generated in CATIA. First the zone edges are modeled as lines on

the panel loft, based on the initial values and reference frame/stringer datum for the zone

variables. Next the laminate is instantiated using the zone primitive (step 1, figure A.4).

Input for the zone primitive are its four edges, the number of layers and the zone-type.

Next the back-up structure is instantiated using the frame and stringer primitives. The

start and end of the frame/stringer intersection is indicated using a point, and a repre-

sentation of the intersection is instantiated using a frame primitive (step 2, figure A.5).

Based on the design rules and accompanying constants specified in the input file, the

102 A.2 Design process model steps as implemented in the code

no-riveting areas are indicated by instantiating a start and end point at frame stations

specified in the input file (step 3, figure A.6). Finally the rivet primitives are instantiated

between the points of the frame/stringer intersections and the points of the no-riveting

areas (step 4, figure A.7).

A report file is created by the product generator, containing a view on the product con-

sisting of variable and riveting information. Besides the attribute values of the rivet

primitives, information on its relation with zone variables is exported. Finally constraints

on the zone variables are exported.

Figure A.4: Step 1: Instantiation of the zone primitives.

Software Architecture of ADDET 103

Figure A.5: Step 2: Instantiation of the back-up structure primitives.

Figure A.6: Step 3: Instantiation of the no-riveting areas.

104 A.2 Design process model steps as implemented in the code

Figure A.7: Step 4: Instantiation of the rivet primitives.

Product analysis tool

The analysis tool uses an excel sheet to import the report file, which is exported by the

product model generator. The state of the product in terms of constraint satisfaction and

objective function value is determined. As discussed in chapter 4, the objective function

value is a function of the sum of the cost of constraint violation. The cost of constraint

violation is described using a penalty function, see chapter 5, and the analysis tool uses

these functions to calculate the objective function value.

A file containing the information specified in the report file, and the state of the product

is exported in a product property file, which is an excel file, by the analysis tool.

Evaluator

The evaluator compares the state of the product, as specified in the product property

file, with the initial requirements set. For this design problem the requirement is that no

hard constraints are violated. If this condition is not met, the product property file will

be transferred to the search engine.

Software Architecture of ADDET 105

Figure A.8: Process model of the KBE application ADDET.

Search engine

The information in the product property file is used by the search engine to explore the

solution domain and to find solutions to the design problem. One sheet in the product

property file contains a list of zone variables and their values. A different sheet contains

the rivet primitive data and the penalty functions to calculate the cost of constraint

violation. Since information on the relation between zone variables and rivet primitive

data is present in the product property file, changing a variable value will automatically

update the rivet data and the corresponding value of the objective function.

The procedure of finding an optimum for the objective function is discussed in chapter 4.

A list of variable values that result in a best solution is exported by the search engine,

and put at the disposal of the input generator.

A.3 General software architecture

ADDET contains a GUI, which is used by the user to initiate different events. An event is

an action or occurrence detected by the software[1], for instance the Click-On(OpenInputFile)

event. The events uses different event-handlers to launch the actual code in the core, see

figure A.9.

The general software architecture consists of a Graphical User Interface (GUI), event-

handlers, a core containing the actual VB software code, and a repository of the primitives.

The GUI of ADDET is created inside CATIA, using icons that are linked to event-handlers

defined internally in CATIA. This information is stored in the CATSettings of CATIA.

106 A.3 General software architecture

Figure A.9: Software architecture of ADDET.

The VB code in the core can be used to instantiate classes defined internally within

CATIA V5, using the application programming interface (API). The VB code can also

instantiate a primitive from the repository in CATIA.

Bibliography

[1] Palmer G.: Java event handling. (Prentice Hall PTR, Upper Saddle River, USA,

2002)

107

108 A.3 General software architecture

Appendix B

Efficiency and Effectiveness of the

Solution Algorithm

In order to evaluate the efficiency and effectiveness of the heuristic solution algorithm,

four different test problems are defined. Efficiency is evaluated in terms of the complexity

reduction of the solution finding process, effectiveness is evaluated in terms of the number

of solutions found. For each problem the number of structural entities is presented. The

number of design variables is discussed by means of a top-view of the panel, showing

changes in laminate lay-up. Only variables in circumferential direction are evaluated in

the test problems. Next the number of constraints on rivet positions (type h1), and the

number of constraints on zone dimensions (type h2) are given.

Figure B.1: Activity diagram showing the different steps in the solution finding algorithm.

109

110

Figure B.1 shows the different inference steps as programmed in the solution finding

algorithm. The input for the algorithm is the design problem P = (X,D,C), where the

variable domains Di have been discretised. First step, step I, is to propagate the rivet

constraints, reducing the discretised variable domains. The next step is the tree seacrh,

which is composed of step II to step IV. Step II is to decompose the problem by relaxing

the zone variables and grouping the design variables in clusters. Next the optimum for

the decomposed problems is calculated in step III, and finally in step IV the problem

is composed by evaluating the zone constraints. Based on these steps, the complexity

of the algorithm can be evaluated, by summing the number of evaluations for step I to

IV. Finally a worst-case scenario for the problem complexity is calculated to assess the

efficiency of the solution finding algorithm. This worst case-scenario follows the same

steps, but without constraint propagation and decompositioning of the problem. Eq-B.1

can be used to calculate the worst-case complexity of the solution finding process.

Nevaluation =

|X|∏

i=1

|Di| ·NC (B.1)

The steps in the solution finding algorithm, and the manner in which the accompanying

complexity can be calculated, will be illustrated using a sample problem, shown in figure

B.2.

Figure B.2: Sample design problem, having two design variables, i.e., X1 and X2.

Efficiency and Effectiveness of the Solution Algorithm 111

The problem has two design variables, i.e., X1 and X2, determining the location of the

splice area in the laminate. The green lines give a schematic representation of the alu-

minium layers in the laminate, the black dots indicate a rivet position. Variable X1 defines

the location of a no-riveting area NR1 and influences the length of rivet patterns 1 and

2. Variable X2 defines the location of a no-riveting area NR2 and influences the length of

patterns 3 and 4. The relations are shown in the N2 diagram in figure B.3.

Figure B.3: N2 diagram of the sample problem, showing the constraint relations.

The domains for the variables X1 and X2 are constituted by setting the length of the

related rivet patterns equal to the values indicated in the lower part of figure B.2: {0,

25, 34, 50, 68, 75}. These values correspond to the rivet pattern lengths where the

rivet requirements are fulfilled. This way, the problem becomes locally consistent with

constraints type h1. Table B.1 shows the values that the two variables must have in order

to comply with riveting constraint h1.

Table B.1: Constituting the discretised variable domains

Lpattern1 X1 Lpattern2 X1 Lpattern3 X2 Lpattern4 X2

0 157.8 0 46.5 0 29.6 0 140.1

25 132.8 25 71.5 25 54.6 25 115.1

34 123.8 34 80.5 34 63.6 34 106.1

50 107.8 50 96.5 50 79.6 50 90.1

68 89.8 68 114.5 68 97.6 68 72.1

75 82.8 75 121.5 75 104.6 75 65.1

Step I

When applying constraint propagation to the discretised variable domains, each variable

value should be evaluated with respect to the constraints (type h1) constituted by the rivet

patterns. The number of constraints of type h1 is equal to the number of rivet patterns

112

in the test problem. Therefore the number of evaluation for constraint propagation can

be calculated as follows:

Npropagation =

|X|∑

i=1

| Di | ·Npattern (B.2)

For the sample problem eq-B.2 becomes 12 · 8 + 12 · 8 = 192

Step II

The problem is decomposed by clustering the design variables. The cluster number is an

attribute of the design variables, and the appropriate cluster number is assigned to the

variables based on the decompositioning rules that are defined in the knowledge base.

This step doesn’t add to the solution finding complexity.

For the sample problem, X1 and X2 belong to different clusters, since they do not influence

the same rivet pattern and therefor need not be varied simultaneously.

Step III

Having decomposed the problem, an optimum value for the objective function is deter-

mined for each sub-problem. This is done by evaluating all possible sets of variable values

(the tree search). Eq-B.3 shows the resulting number of evaluations.

Noptimise =
Ncluster∑

i=1

dim [D1 ×D2 × · · · ×Dn]n=1..Nvar.i
(B.3)

Table B.2 shows the values in the variable domains and the corresponding values of the

objective function. The number of evaluation according to eq-B.3 becomes 12 + 12 = 24.

Step IV

Having determined the combination of variable values that result in an optimum value

for the objective function of the decomposed problem, the problem should be composed

by activating the zone constraints (type 2). The figures of each test problem will show

the design variables and the existing constraints of type h2. The number of evaluations

to assess if the zone constraints have been fulfilled are calculated using eq-B.4, where i

and j indicate the specific variables related by h2.

Ncompose =
Nh2∑

n=1

[|Di| · |Dj|]n (B.4)

Efficiency and Effectiveness of the Solution Algorithm 113

Table B.2: Finding an optimum for the objective function

X1 Score X2 Score

46.5 0 29.6 3.003

71.5 0 140.1 3.003

96.5 0 79.6 3.005

107.8 0 90.1 3.005

132.8 0 115.1 3.006

157.8 0 54.6 3.008

80.5 0.102 63.6 3.105

123.8 0.102 106.1 3.105

82.8 1.503 65.1 4.306

121.5 1.503 104.6 4.306

89.8 3.153 72.1 6.156

114.5 3.153 97.6 6.156

For the sample problem, the variable domains have been reduced to 8 values after optimi-

sation. Since the width of a splice is limited by a minimum, there is a constraint h2 acting

on the two variables that needs to be evaluated. The number of evaluation is according

to eq-B.4: 8 · 8 = 64.

Number of solutions

The problem is decomposed in several sub-problems by relaxing the constraint of type h2.

The resulting sub-problems are described by a cluster of design variable, related by riveting

constraint (type h1). After composing the problem and applying the zone constraints type

h2, different non-related sub-problems can still be identified. The variables in these sub-

problems have the same dimension of the solution vector, and are not related to variables

in the other sub-problems. The sample problem is composed of only one problem, but

the four test problems do have these sub-problems, as can be seen in tables B.8, B.14,

B.20 and B.26.

Having composed the problem, the total number of solutions is calculated. Mathemat-

ically spoken, the number of solutions of the composed problem would be all possible

variable value combinations that are a solution to the problem, i.e., a multiplication of

the number of solutions for each variable. From an engineering point of view, however,

combining all possible local solutions will not result in significantly different global solu-

tions. Therefore, the number of solutions is given as the maximum number of solutions

for the sub-problems after composing the problem.

114 B.1 Test problem P1

B.1 Test problem P1

Test problem descriptions Figure B.4 shows a topview of the laminate, and indicates

the design variables in circumferential direction and the zone constraints relating different

variables. The number of structural entities is shown in table B.3.

Figure B.4: Top-view of test problem P1.

Table B.3: Order of magnitude of the structural entities

Entity RivetPatterns Zones Frames Stringers NoRivet Areas

O[#] 123 54 16 12 20

Dimensions of the design variable domains Table B.4 shows the dimensions of the

discretised variable domains before and after constraint propagation. Using eq-B.2 the

number of evaluations is 1.2 · 105.

Table B.4: Dimensions of the design variable domains

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9

| D | 1 120 60 220 280 120 60 120 1 discretised

1 31 16 35 1 40 16 31 1 propagated

Find optimum of decomposed problem The problem is decomposed by clustering

the design variables, see table B.5. According to eq-B.3, the number of evaluations is 679.

Compose the problem Table B.6 shows the variable domain dimensions after opti-

mising the decomposed problem. Figure B.4 shows the design variables and the existing

constraints of type h2. The number of evaluations to assess if the zone constraints have

been fulfilled are calculated as follows:

Efficiency and Effectiveness of the Solution Algorithm 115

Table B.5: Decompose the problem by clustering of the design variables

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9

Cluster I I II III IV IV V VI VI

Ncompose =
∑6

n=1 [|Di| · |Dj|]n = (|X1|) + (|X1| · |X3|) + · · ·
+(|X4| · |X5|) + (|X4| · |X5|) + (|X7| · |X8|) + (|X7| · |X8|) = 1.7 · 103

Table B.6: Dimensions of the optimum design variable domains

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9

| D | 31 31 16 13 7 7 16 31 31

Calculate the solution finding complexity The complexity of the solution finding

algorithm, expressed in number of variable value evaluations, is calculated by summing

the number of evaluations of the previous steps:

Nevaluation = Npropagation + Noptimise + Ncompose = 1.2 · 105

Nevaluation = 4.7 · 1016 Worst-Case

Number of solutions Table B.7 shows the number of solutions for the different sub-

problems. After composing the problem and applying the zone constraints (type 2), the

number of possible values for each variable is given, and the total number of solutions can

be assessed as the maximum number of solutions for the sub-problems (bold number in

table B.8).

Table B.7: Number of solutions for the decomposed problem

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9

Decomposed 1 8 6 5 3 3 6 7 7

Table B.8: Number of solutions for the composed problem

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9

Composed 7 7 7 3 3 3 5 5 5

Nsolution = 7

116 B.2 Test problem P2

B.2 Test problem P2

Test problem descriptions Figure B.5 shows a topview of the laminate, and indicates

the design variables in circumferential direction and the zone constraints relating different

variables. The number of structural entities is shown in table B.9.

Figure B.5: Top-view of test problem P2.

Table B.9: Order of magnitude of the structural entities

Entity RivetPatterns Zones Frames Stringers NoRivet Areas

O[#] 207 104 16 17 34

Dimensions of the design variable domains Table B.10 shows the dimensions of the

discretised variable domains before and after constraint propagation. Using eq-B.2 the

number of evaluations is 5.1 · 105.

Table B.10: Dimensions of the design variable domains

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

| D | 100 100 60 280 220 60 300 220 60 340 340 100 100 180 discretised

15 5 2 4 11 3 8 24 3 13 14 9 8 4 propagated

Find optimum of decomposed problem The problem is decomposed by clustering

the design variables, see table B.11. According to eq-B.3, the number of evaluations is

138.

Compose the problem Table B.12 shows the variable domain dimensions after opti-

mising the decomposed problem. Figure B.5 shows the design variables and the existing

Efficiency and Effectiveness of the Solution Algorithm 117

Table B.11: Decompose the problem by clustering of the design variables

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

Cluster I II III III IV V V VI VII VIII IX X XI XII

constraints of type h2. The number of evaluations to assess if the zone constraints have

been fulfilled are calculated as follows:

Ncompose =
∑8

n=1 [|Di| · |Dj|]n = (|X2| · |X3|) + (|X2| · |X3| · |X5|) + (|X6|) + · · ·
+(|X6| · |X8|) + (|X9| · |X10|) + (|X9| · |X10| · |X11|) + · · ·

+(|X9| · |X10| · |X11| · |X12|) + (|X9| · |X10| · |X11| · |X12| · |X13|) = 5.8 · 105

Table B.12: Dimensions of the optimum design variable domains

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

| D | 23 23 6 6 12 6 6 19 16 11 12 16 16 2

Calculate the test problem complexity The complexity of the solution finding algo-

rithm, expressed in number of variable value evaluations, is calculated by summing the

number of evaluations of the previous steps:

Nevaluation = Npropagation + Noptimise + Ncompose = 1.1 · 106

Nevaluation = 3.8 · 1032 Worst-Case

Number of solutions Table B.13 shows the number of solutions for the different sub-

problems. After composing the problem and applying the zone constraints (type 2), the

number of possible values for each variable is given, and the total number of solutions can

be assessed as the maximum number of solutions for the sub-problems (bold number in

table B.14).

Table B.13: Number of solutions for the decomposed problem

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

Cluster 5 4 3 3 5 3 3 5 4 3 5 4 4 2

Nsolution = 13

118 B.3 Test problem P3

Table B.14: Number of solutions for the composed problem

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14

Cluster 7 7 5 5 5 13 13 13 4 4 4 4 4 4

B.3 Test problem P3

Test problem descriptions Figure B.6 shows a topview of the laminate, and indicates

the design variables in circumferential direction and the zone constraints relating different

variables. The number of structural entities is shown in table B.15.

Figure B.6: Top-view of test problem P3.

Table B.15: Order of magnitude of the structural entities

Entity RivetPatterns Zones Frames Stringers NoRivet Areas

O[#] 173 110 7 18 31

Dimensions of the design variable domains Table B.16 shows the dimensions of the

discretised variable domains before and after constraint propagation. Using eq-B.2 the

number of evaluations is 3.6 · 105.

Find optimum of decomposed problem The problem is decomposed by clustering

the design variables, see table B.17. According to eq-B.3, the number of evaluations is

414.

Efficiency and Effectiveness of the Solution Algorithm 119

Table B.16: Dimensions of the design variable domains

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

| D | 180 60 1 1 120 300 280 60 300 280 220 280 discretised

16 15 1 1 7 14 33 16 10 44 46 1 propagated

Table B.17: Decompose the problem by clustering of the design variables

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Cluster I II III IV IV IV V VI VI VII VIII IX

Compose the problem Table B.18 shows the variable domain dimensions after opti-

mising the decomposed problem. Figure B.6 shows the design variables and the existing

constraints of type h2. The number of evaluations to assess if the zone constraints have

been fulfilled are calculated as follows:

Ncompose =
∑7

n=1 [|Di| · |Dj|]n = (|X1| · |X2|) + (|X1| · |X2| · |X3|) + · · ·
+(|X6|) + (|X6| · |X7|) + (|X9|) + (|X9| · |X10|) + (|X11| · |X12|) = 6.5 · 103

Table B.18: Dimensions of the optimum design variable domains

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

| D | 16 15 1 96 96 96 33 61 61 44 46 1

Calculate the test problem complexity The complexity of the solution finding algo-

rithm, expressed in number of variable value evaluations, is calculated by summing the

number of evaluations of the previous steps:

Nevaluation = Npropagation + Noptimise + Ncompose = 3.7 · 105

Nevaluation = 5.8 · 1024 Worst-Case

Number of solutions Table B.19 shows the number of solutions for the different sub-

problems. After composing the problem and applying the zone constraints (type 2), the

number of possible values for each variable is given, and the total number of solutions can

be assessed as the maximum number of solutions for the sub-problems (bold number in

table B.20).

Nsolution = 24

120 B.4 Test problem P4

Table B.19: Number of solutions for the decomposed problem

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Decomposed 2 4 1 6 6 6 3 8 8 5 5 1

Table B.20: Number of solutions for the composed problem

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12

Composed 10 10 10 9 9 9 9 24 24 24 7 7

B.4 Test problem P4

Test problem descriptions Figure B.7 shows a topview of the laminate, and indicates

the design variables in circumferential direction and the zone constraints relating different

variables. The number of structural entities is shown in table B.21.

Figure B.7: Top-view of test problem P4.

Table B.21: Order of magnitude of the structural entities

Entity RivetPatterns Zones Frames Stringers NoRivet Areas

O[#] 239 214 16 18 33

Dimensions of the design variable domains Table B.22 shows the dimensions of the

discretised variable domains before and after constraint propagation. Using eq-B.2 the

number of evaluations is 3.7 · 105.

Efficiency and Effectiveness of the Solution Algorithm 121

Table B.22: Dimensions of the design variable domains

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

| D | 210 120 60 340 240 60 60 60 1 60 60 220 1 1 60 discretised

5 17 14 1 19 2 17 24 1 8 6 4 1 1 14 propagated

Find optimum of decomposed problem The problem is decomposed by clustering

the design variables, see table B.23. According to eq-B.3, the number of evaluations is

724.

Table B.23: Decompose the problem by clustering of the design variables

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

Cluster I II II II III III IV IV V VI VII VIII IX X XI

Compose the problem Table B.24 shows the variable domain dimensions after opti-

mising the decomposed problem. Figure B.7 shows the design variables and the existing

constraints of type h2. The number of evaluations to assess if the zone constraints have

been fulfilled are calculated as follows:

Ncompose =
∑6

n=1 [|Di| · |Dj|]n = (|X3|) + (|X4|) + · · ·
+(|X6| · |X7|) + (|X6| · |X7| · |X9|) + (|X11| · |X12|) + (|X13| · |X14|) = 1.3 · 103

Table B.24: Dimensions of the optimum design variable domains

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

| D | 5 16 16 16 14 14 46 46 1 8 6 4 1 1 14

Calculate the test problem complexity The complexity of the solution finding algo-

rithm, expressed in number of variable value evaluations, is calculated by summing the

number of evaluations of the previous steps:

Nevaluation = Npropagation + Noptimise + Ncompose = 3.8 · 105

Nevaluation = 3.2 · 1026 Worst-Case

Number of solutions Table B.25 shows the number of solutions for the different sub-

problems. After composing the problem and applying the zone constraints (type 2), the

122 B.4 Test problem P4

number of possible values for each variable is given, and the total number of solutions can

be assessed as the maximum number of solutions for the sub-problems (bold number in

table B.26).

Table B.25: Number of solutions for the decomposed problem

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

Decomposed 3 12 12 12 6 6 9 9 1 3 1 2 1 1 5

Table B.26: Number of solutions for the composed problem

Variable X1 X2 X3 X4 X5 X6 X7 X8 X9 X10 X11 X12 X13 X14 X15

Composed 3 1 1 1 10 10 10 10 10 3 1 1 1 1 5

Nsolution = 10

Samenvatting

KENNIS GEBASEERDE METHODE VOOR

HET OPLOSSEN VAN COMPLEXITEIT

IN TECHNISCHE PROBLEMEN

door Brent Vermeulen

Het ontwerpen van vliegtuig systemen wordt steeds complexer, vanwege het toenemende

aantal eisen waaraan voldaan dient te worden. Daarbij komt dat de kennis om dergelijk

complexe systemen te ontwerpen steeds minder beschikbaar is voor bedrijven. Dit vanwege

een afnemende beschikbaarheid van ingenieurs in de westerse wereld, en een reductie

van het aantal mogelijkheden om kennis te kunnen overdragen. Bedrijven zullen zich

moeten richten op het te gelde maken van de intern aanwezige kennis, om succesvol aan

bovenstaande uitdagingen het hoofd te kunnen bieden.

Het in dit rapport gepresenteerde onderzoek zal bijdragen aan het oplossen van boven-

staande uitdagingen. Een kennis gebaseerde methode voor het oplossen van complexiteit

in gedetailleerde ontwerpproblemen wordt gepresenteerd. Aan de hand van een gede-

tailleerd probleem in het ontwerpproces van vezelmetaal laminaat (VML) romppanelen,

zal het proces van het opzetten van een oplossingsstrategie wordt behandeld. De principes

van knowledge based engineering (KBE) worden gebruikt om een software systeem te on-

twerpen, dat oplossingen voor het ontwerpprobleem genereerd.

Gezien het creatieve karakter van een ontwerpproces zullen iteraties, en daarmee wijzig-

ingen in het ontwerp, onvermijdelijk zijn. Het doorgeven van wijzigingen tussen disciplines

wordt bemoeilijkt door het feit dat disciplines verschillende modellen van het product ge-

bruiken voor hun analyses, resulterend in het herdefiniëren van de informatie. Kijkend

naar het detail ontwerpproces van VML romppanelen, komt daar bij dat het definiëren

van een te realiseren product in zich zelf sterk iteratief is. Gedetailleerde informatie over

hoe het laminaat is bevestigd aan het geraamte waar de romp is nodig, en de positie van

elke klinknagel dient hierbij te worden gecheckt.

123

124 Samenvatting

Op het moment dat de kennis van de expert over hoe het ontwerpproces uit te voeren is

geformaliseerd, kan deze kennis hergebruikt worden om het proces te automatiseren. Dit

is het hoofdprincipe van KBE. KBE is de wetenschap van het identificeren, vastleggen en

hergebruiken van ontwerp kennis. De focus bij het ontwikkelen van KBE applicaties ligt op

het automatiseren van repetitieve en weinig creatieve ontwerpprocessen. De interpretatie

van het ontwerpproces door verschillende experts is geformaliseerd, met behulp van een

product en een proces model.

Een mathematisch model van het ontwerpprobleem, gebaseerd op de interpretatie van de

expert, is gedefinieerd. In het mathematische model dient er tenminste één doelfunctie

gedefinieerd te zijn, die beschreven wordt door een vector van ontwerp variabelen, wier

domein beperkt worden door randvoorwaarden. De variabelen in het model bepalen de op-

bouw van het laminaat, de randvoorwaarden komen uit de eisen aan de laminaat opbouw

en hoe het laminaat aan het geraamte van de romp verbonden wordt. Het mathemati-

sche probleem kan beschreven worden als een zogenaamd constraint satisfaction problem

(CSP), waarbij een oplossing gevonden is als aan alle randvoorwaarden voldaan is. Soms

is het toegestaan om niet aan een randvoorwaarde te voldoen; hier staat echter een penalty

tegenover. De doelfunctie in het model is de som van alle penalties, welke geminimaliseerd

dient te worden. Een heuristisch oplossingsalgoritme is toegesneden op het mathemati-

sche model, gebruikmakend van zowel de geformaliseerde expert kennis als van domein

onafhankelijke oplossingsstrategieën.

Een software systeem, voor het oplossen van het detail ontwerpprobleem in VML romp-

panelen, genaamd ADDET, is ontwikkeld en gëımplementeerd in het ontwerpproces. De

effectiviteit van ADDET met betrekking tot het genereren van oplossingen voor praktijk

problemen is geëvalueerd. Behalve dat ADDET praktische oplossingen genereert, is er

tevens een reductie in ontwerptijd van 60% geconstateerd. Vanwege deze reductie in ont-

werptijd zullen ontwerp resultaten in een korter tijdbestek gegenereerd kunnen worden.

Dit kan resulteren in knelpunten bij andere disciplines, bijvoorbeeld om dat zij de resul-

taten moeten checken in minder tijd. Een proceswijde optimalisatie is derhalve nodig, om

te voorkomen dat de winst door automatisering verspeeld wordt door het ontstaan van

dergelijke knelpunten.

Om de kennis van het ontwikkelen van een oplossingsstrategie te kunnen hergebruiken,

is er een formele beschrijving van de methode gepresenteerd. Hierbij is gebruik gemaakt

van een ontologie. Een ontologie is een expliciete beschrijving van de concepten en hun

relaties in een bepaald domein, waarmee een formele vocabulaire gedefinieerd wordt.

Samenvatting 125

Een probleem onafhankelijke oplossingsmethode voor technische problemen is ontwikkeld,

welke probleem specifiek gemaakt wordt door de strategie van het zoeken naar oplos-

singen toe te snijden op het probleem voor handen. Een gestructureerde aanpak wordt

voorgesteld, waarbij het probleem uit de praktijk, via een formele beschrijving van de

interpretatie van de expert, omgeschreven wordt tot een mathematisch model. De oplos-

sing strategie wordt vervolgens toegesneden op het mathematische model voor handen,

door domein onafhankelijke oplossingsmethoden te combineren met probleemspecifieke

kennis. Tenslotte dient het oplossingssysteem gëımplementeerd te worden in het ontwerp-

proces, om te kunnen verifiëren of er daadwerkelijk oplossingen voor het praktijk probleem

gegenereerd worden.

126 Samenvatting

About the Author

Brent Vermeulen

Born August the 20th, 1976 in Woerden, The Netherlands

1988-1994 Gymnasium (pre-university education) at the Dr. F.H. de Bruyne

Lyceum, Utrecht.

1994-2002 Aerospace Engineering at Delft University of Technology. Master

project at the Production Technology chair concerning a feasibility

analysis of an ellipsoid shaped airship, capable of lifting 200 tons of

cargo. A preliminary design has been presented, including market

analysis, aerodynamic, structural and stability analysis.

2002-2003 Benchmark study of aluminium alloys, comparing baseline Al2024 and

Al7075 with CFRP and new advanced aluminium alloys. Executed in

cooperation with Pechiney-Aerospace. This project included a lit-

erature study, design case study of a fuselage section and a market

analysis.

2003-2006 PhD research at Delft University of Technology, under the supervision

of prof. dr. ir. M.J.L. van Tooren. The research resulted in an Auto-

mated Detailed DEsign Tool (ADDET) for the automatic generation

of detailed designs of Fibre Metal Laminate fuselage panels, using the

principles of Knowledge Based Engineering.

2006-Now Knowledge engineer at Stork Fokker AESP.

127

