<]
TUDelft

Delft University of Technology

Privacy-Preserving Cycle-Based Arrival Profile Estimation Based on Cross-Company
Connected Vehicles

Tan, Chaopeng; Yao, Jiarong; Tang, Keshuang; Liang, Jinhao; Yin, Guodong

DOI
10.1109/TCE.2025.3525847

Publication date
2025

Document Version
Final published version

Published in
IEEE Transactions on Consumer Electronics

Citation (APA)

Tan, C., Yao, J., Tang, K., Liang, J., & Yin, G. (2025). Privacy-Preserving Cycle-Based Arrival Profile
Estimation Based on Cross-Company Connected Vehicles. IEEE Transactions on Consumer Electronics.
https://doi.org/10.1109/TCE.2025.3525847

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.


https://doi.org/10.1109/TCE.2025.3525847
https://doi.org/10.1109/TCE.2025.3525847

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!’ - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.



This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCE.2025.3525847

SUBMITTED TO IEEE TRANSACTIONS ON CONSUMER ELECTRONICS

Privacy-Preserving Cycle-based Arrival Profile

Estimation Based on Cross-company Connected
Vehicles

Chaopeng Tan, Jiarong Yao*, Keshuang Tang, Jinhao Liang*, Guodong Yin

Abstract—Cycle-based arrival profiles can describe temporal
demand distribution within a signal cycle for signalized inter-
sections, which can be used to calculate indicators such as
traffic volume, queue length, and facilitate fine-grained signal
control. However, few studies address cycle-level arrival profile
estimation based on connected vehicles (CVs). Besides, studies
addressing privacy issues for cross-company collaboration in
traffic management are still in their infancy. To fill these research
gaps, this study proposes a data-driven method for privacy-
preserving cycle-based arrival profile estimation using cross-
company CV data. The cyclic arrival curve is discretized as an
arrival rate vector whose elements are calculated using sampled
CV trajectories, thus transforming the arrival profile estimation
into a matrix completion problem. Considering cross-company
collaboration, a privacy-preserving technique, secure multi-party
computation, is used to encrypt initial arrival rate matrices of
multiple companies. In particular, a perturbation approach is
combined to enhance protection against inference attacks with
prior knowledge of the matrix construction process. Then, matrix
completion is realized through a singular value thresholding
(SVT) algorithm, meanwhile achieving denoising. Empirical eval-
uation shows that the estimation accuracy of traffic volume and
queue length derived from the proposed arrival profile estimation
method can reach 87.6% and 78.4%, respectively, meanwhile
protecting the privacy of multiple participating companies and
outperforming existing methods. Simulation evaluation on a
large-scale network further demonstrates the reliability of the
proposed method considering ever-changing demand scenarios.
A comprehensive sensitivity analyses exhibit its robustness to CV
sample size, number of participating parties and data disparity,
showing wide popularization and application prospects.

Index Terms—Privacy preservation, arrival profile estimation,
matrix completion, secure multi-party computation, singular
value thresholding, connected vehicle
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RAFFIC volume plays a significant role in urban traffic

management, which provides valuable insights into the
traffic flow patterns and contributes to traffic signal evalua-
tion and optimization at signalized intersections [1]], [2] . In
contrast to hourly traffic volume, which is usually an input of
the design of fixed-time signal timing schemes and reflects the
average level of traffic arrivals, cyclic traffic volume describes
the fluctuation of traffic demand during a specific period and
can serve for real-time traffic signal control. Recently, the
study of Tan et al. [3] pointed out that the traffic signal
performance can be further improved by considering the arrival
distribution during the cycle, i.e., the cyclic arrival profile. In
addition, in the context of fine-grained traffic management,
the cyclic arrival profile depicts the operation of the traffic
flow in more detail and can be further used to estimate
more cycle-based parameters such as traffic volume, queue
length, delay, and the utilization of green time. Therefore,
accurate restoration of cycle-level arrival profiles at signalized
intersections is crucial for the current refined urban traffic
management.

With the advancement of connected technologies, connected
vehicles (CVs) are becoming more and more popular, includ-
ing floating cars, probe vehicles (PVs), autonomous vehicles
(AVs), etc. Such connected vehicles can be utilized to infer
traffic information while cruising around the roadway net-
works, thus bringing new opportunities for traffic flow param-
eter estimation, e.g., traffic arrival estimation [4]—[8]], queue
length estimation [9]-[|14]], and total delay estimation [15]-
[17]. However, there are challenges in applying CV data, i.e.,
CVs only account for a portion of the total population, and we
need to restore the operation of the traffic flow based on these
sampled data [18]]. Specific to the object of this study, i.e.,
traffic arrival estimation based on CVs, early studies focused
on estimating aggregated volume over a relatively long period,
ranging from 15 min to 60 min. For instance, Zheng and Liu
[6]] aggregated CV trajectories into a common cycle to obtain
fixed vehicle arrival patterns, based on which a maximum
likelihood estimator was formulated for the average arrival rate
of a certain period. Later, to obtain the traffic variations during
the period, studies have been devoted to estimating cycle-based
traffic volume based on CV data, utilizing model-based [8]],
[19]-[21] or data-driven approaches [7]. For example, Yao et
al. [21] developed a mode-based hybrid method integrating
shock-wave theory and maximum likelihood estimation for
queued volume and non-queued volume, respectively. Tan et
al. [8] proposed a maximum a posteriori method to jointly
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estimate multi-stream traffic demands cycle by cycle. As a
pioneer study using data-driven approaches, Tang et al. [7]
formulated the cycle-based volume estimation into a tensor
completion problem and solved it efficiently with Tucker
decomposition. These studies have demonstrated promising
estimation accuracy of traffic volume, especially when the
penetration rate is above 20%.

To the best of our knowledge, the most detailed traffic
arrivals estimated by existing studies based on CVs are cycle-
based. While cycle-based arrivals can reflect traffic variations
from cycle to cycle during the period, it does not reflect
the vehicle arrival patterns within the cycle, i.e., the arrival
profile during the cycle. Such arrival profiles can be used
to further calculate parameters such as queue length and
vehicle delay, which pave the way for refined evaluation and
optimization of signalized intersections. For instance, Tan et al.
[17] developed a CV-based cumulative flow diagram method
to profile the period average traffic flow operations in the scale
of a signal cycle, which is further extended to a cumulative
flow diagram model for fixed-time traffic signal optimization
[3]l. Nevertheless, these studies focus on the period average
arrival profile and do not achieve cycle-based arrival profile
estimation.

On the other hand, while the overall penetration rate of CVs,
which are mainly operated by mobility companies including
ride-hailing companies such as Uber and Wejo, and navigation
companies such as Amap and TomTom, in the current transport
network has exceeded 20%, the penetration rate of CV data
available to an individual company may not exceed 10% in
practical applications. This is because CV data is precious to
every company and contains commercial secrets, so compa-
nies have concerns about sharing CV data with others from
a privacy-preservation point of view. Currently, although a
few studies have attempted to protect personal-level privacy
in the context of traffic systems to resolve potential legal
and ethical considerations associated with CV data sharing
[22]-[24], studies explicitly addressing the privacy issue that
arise between the collaboration of different companies are in
infancy, let along studies focusing on traffic state estimation
based on CVs from multiple parties.

In summary, we conclude two research gaps among existing
studies: (i) few studies have achieved detailed cycle-based
arrival profile estimation based on CVs; (ii) few studies
have considered company-level privacy protection in CV-based
traffic state parameter estimation. To fill these research gaps,
this study proposes a privacy-preserving matrix completion
method for cycle-based arrival profile estimation at signalized
intersections based on cross-company CV data. The proposed
method transforms the cycle arrival profile estimation problem
into a matrix completion problem and efficiently solves it with
the Singular Value Thresholding (SVT) algorithm. Considering
privacy-preserving, a secure multi-party computation (SMPC)
technique and a perturbation approach are integrated to col-
laboratively generate the incomplete initial matrix without
revealing the privately held CV data of the participating
companies. Given such a detailed arrival profile, the cycle-
based traffic state parameters, e.g., traffic volume and queue
length, can be further estimated.

The major contribution of this study is three-fold.

o We transform the cycle-based arrival profile estimation
problem into a purely data-driven matrix completion
problem that is free from the assumption of arrival
distribution/pattern or prior historical information. Such
a data-driven approach is simple to implement and can
be easily scaled to large-scale road networks.

o To the best of our knowledge, we achieve the most de-
tailed arrival profile estimation sorely based on CV data,
which can be further used to estimate traffic volumes or
other traffic state parameters. The proposed method also
shows its capability in oversaturated situation and real-
time application, which is crucial for refined evaluation
and optimization of signalized intersections.

o This study integrates SMPC and a perturbation method
that resists inference attacks in third-party untrustworthy
scenarios, which is among the pioneering work that
considers privacy issues at the company level for traf-
fic management based on CV data. The study can be
effective in facilitating collaboration between mobility
companies to better exploit all available sampled CV
data from the road network for more accurate traffic state
estimation.

II. PROBLEM STATEMENT

We consider the following scenarios where several mobility
companies operate their own CVs, and the traffic signal
operation center (TSOC) requires these companies to share
their CV data in a certain form for traffic arrival estimation
at signalized intersections. Motivated primarily by their com-
mercial interests, all involved companies are considered honest
but curious, which means that they are legitimate participants
who will faithfully follow the communication protocol but may
attempt to infer sensitive information about other companies
from intermediate results exchanged during the collaboration.
Second, TSOC is considered untrusted. This implies that the
TSOC may be subject to attacks or attempts to access the
private data of the participating companies.

The objective of this study is to estimate the cycle-based
vehicle arrival profiles at the signalized intersection. As pre-
sented in Fig. [T} with signal timing parameters and CV trajec-
tories as input, we can derive the arrival rate between queued
CVs given their queuing position and expected arrival time.
Nevertheless, vehicle arrivals after the last queued CVs are still
unknown. Then our task is to utilize the incomplete arrival
profile to estimate the complete arrival profile. Essentially,
the arrival profiles in all cycles can be regarded as arrival
rate vectors in terms of time in cycles with vacant elements.
Therefore, for a specific analysis period, an incomplete arrival
rate matrix can be modeled and our task is to complete this
matrix. Note that, in the context of the scenarios with CVs
operated by several mobility companies, a privacy-preserving
mechanism is required for these companies to collaboratively
generate the incomplete arrival rate matrix without revealing
their private data. Then, upon receiving the incomplete arrival
rate matrix, the TSOC assumes the responsibility for cycle-
based arrival profile estimation by completing the matrix. In
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Fig. 1. Research scenario and problem statement.

particular, although the construction of the initial matrix is
done by the companies, we assume that TSOC has a priori
knowledge of the initial matrix construction process.

III. METHODOLOGY

The core of the proposed method is to construct an initial
incomplete arrival rate matrix for all the cycles in the time-
of-day (TOD) period based on cross-company CV data in
a privacy-preserving manner, and then use the SVT matrix
completion algorithm to obtain a complete arrival rate matrix.
The advantage of the proposed data-driven method is that
it eliminates the need for traffic flow assumptions required
by model-based methods and is easy to apply by traffic
engineers. Note that although a similar data-driven method by
[7] implemented cycle-based volume estimation using tensor
decomposition, the method cannot be further extended for
more detailed cyclic arrival profile estimation in this study.
In addition, privacy issues and oversaturated traffic conditions
were not considered in [7]].

Specifically, the proposed method comprises three major
steps. In Section [[II-A]l each company first exploits CVs to
construct the initial incomplete arrival rate matrix, which
is privately held by the companies. Then, in Section [[II-B]

Position
Cycle 1 Cycle2

t/ﬂ; 17s
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........

e >
Cycle 1 1 Cycle 2 ! Cyclej |
' 1

«
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Fig. 2. Known arrival rate derived from stopped CVs.

all companies apply perturbation approaches to encrypt their
private arrival rate matrices and use SMPC for aggregation to
obtain an incomplete arrival rate matrix which is sent to TSOC.
Finally, in Section [[Il-C} TSOC applies the SVT algorithm to
complete the incomplete arrival rate matrix aggregated in a
privacy-preserving manner, thus achieving cycle-based arrival
profile estimation.

A. Initial arrival rate matrix construction based on CVs

We assume that there are M (M > 2) companies op-
erating CVs, indexed by superscript m, involved in traffic
arrival profile estimation. The given analysis period consists
of J(J > 2) cycles, indexed by subscript j. For the j-th
cycle, KJ"* denotes the total number of queued CVs operated
by company m, indexed by subscript k. Specifically, we use
j\gnk to denote the arrival rate of the interval between the
expected arrival time of two consecutive CV k and CV k'
operated by company m in cycle j. p, and t7" denote the
corresponding queuing position (measured from the upstream
of the link) and the expected arrival time (i.e., arrival time
assuming no delay will be experienced). Note that in the
context of oversaturated intersections, CVs may stop multiple
times. For ease of methodology introduction, we assume that
the CV is queued up at most twice within the scale of the
studied intersection. In particular, for a twice-queued CV, p}’fk
denotes the first-time queuing position while pf,;s specifically
denotes the second-time queuing position. Given the above
critical parameters extracted from CVs, for each company m
with privately operating CV trajectories, we can construct a
privately held arrival rate matrix as follows.

As presented in Fig. 2] for each queued CV trajectory
observed during the analysis period, we can classify it into
four cases based on its own and previous CV trajectory types
as below,

Case 1: The subject CV £k is the first queued CV during
the cycle. In this case, the subject CV has no previous queued
CV, then the arrival rate before this CV is calculated as

\m | fm — Psb—Pj% 1
7,k k t;’}kftj,rs Lg> (1)
m o _ 4m 4.
g,k — tj’k; tj,rsa
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where S\;Tfk | Tm
period T i 18 )\’]”k m denotes the corresponding interval of
the amval rate, whose physical meaning is the time interval
[tjrs t%]. Ls is the average spacing headway of queued
vehicles. pg;, denotes the position of the stop bar. ¢; ., denotes
the start time of the red phase.

Case 2: The subject CV k is a once-queued CV following
a once-queued CV k', In this case, we can easily calculate the
arrival rate between these two consecutive queued CVs as

indicates that the arrival rate during the

m
— Jk/ “Pik 1

|
ki T T @
T3, = tj,k t s

Case 3: The subject CV k is a twice-queued CV following
a once/twice-queued CV k’. In this case, the calculation of the
arrival rate is the same as Eq. (Z), where only the first-time
queuing positions of CV k and &’ are used.

Case 4: The subject CV k is a once-queued CV following
a twice-queued CV k’. In this case, the twice-queued CV &’
is a residual vehicle from the last cycle, then its second-time
queuing position is used for arrival rate calculation as below

m

“Pik 1
Tt L 3)

m
1k

PJ k’

\m rmo
A | T3k =

.

— 4mM
J, *tjkk

In particular, Tﬁ overlaps two cycles in Case 4, as t;-”_Lk,
in this case is typically smaller than t;,, and t77 is greaAter
than ¢; ,.;. Thereby, for each cycle j, an arrival rate vector )\}”
can be obtained by queued CVs as below

= {{S\Tk \ Tﬁ}k:nzm,fqn , “4)

Note that, the number of queued CVs of different companies
in different cycles varies, resulting in a different size K" of
the arrival rate vectors. In order to construct the arrival rate
matrix for later matrix completion algorithm and to pave the
way for privacy-preserving aggregation of such arrival rate
matrices of different companies, a standardization process is
applied to normalize the size of A as presented in Fig.
Here we use A; to denote a unit time period of cycle j (e.g.,
5 s or 10 s), which makes [C;/A;] = I. C; denotes the cycle
length of cycle 5 and I denotes the number of columns of the
standard arrival rate vector (the same for all cycles and all
participating companies). The normalized arrival rate vector
A7 is written as

A= [N Y12, 1] (5)

where AT, is the initial arrival rate of the i-th time period 77"}
in cycle 7 of company m, which is calculated as

m
B ZéeTM )‘j,65

AT (6)
Tji = Tji— Tji-1, (7N
Tji = tj,rs + ZA] (8)

where ¢ is the minimum time unit after discretization of time
(e.g., 0.5sor 1s). 7;; is the right bound of the unit time period
i in cycle j of company m. AT is the corresponding arrival

I i]'v"}(: arrival rate before standardization Afly: arrival rate after standardization

? - .
tzlrs [le [C?,lrs tJ'T,'; S [I?,q tfrmz
Standardization
? ?

m
tors

Fig. 3. Standardization of initial arrival rate matrix.

rate according to Eq. (). Note that for those time periods that
only partially overlap time units with known arrival rates, the
weighted value of the arrival rates for these overlapping time
units is used directly as the estimate. Besides, for those time
periods located in the late cycle where no queued CVs are
observed, whose 7;%_; > t7" K the number of overlapping
time units is 0, maklng AT
In this way, the arrlval rate vectors of different cycles,
whose cycle length may vary, can be normalized into the same
size, which is however incomplete. Therefore, given these
normalized arrival rate vectors of J cycles in the analysis
period, an incomplete arrival rate matrix A™, privately held
by company m, with size J x I can be obtained as below

unknown

Am:[ Tv ?»"‘;AT}T» (9)

It is worth noting that, A™ is constructed using queued
CVs only, while non-queued CVs also provide certain arrival
information of the traffic flow. Here we further use non-queued
CVs to estimate some unknown A’"; in the arrival rate matrix
A, ’

For each cycle j, we can first estimate a prior penetration
rate pj* as below,

Km

m o __ J
m m
le 1 )\j kT

where [ is the number of lanes of the studied movement.

Then, for each time period 77, of the arrival rate matrix
whose value is unknown, we can count the number N e of
non-queued CVs arriving within this period and obtaln an
estimate of the arrival rate of this period as below,

(10)

m
m o ],

AT —
75t lp;”Aj

(1)

Note that for those steps whose N]ml = 0, their corre-
sponding arrival rate values in the arrival rate matrix are still
unknown, thus the incomplete arrival rate matrix A™ privately
held by company m is constructed using the information of
all CV trajectories it has, no matter queued or non-queued.
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B. Privacy-preserving aggregation of cross-company matrices

In the context of multiple mobility companies collaborating
for arrival profile estimation, each company privately held an
initial incomplete arrival rate matrix based on its operating
CV data. We aim to aggregate these arrival rate matrices
into one for arrival profile estimation by matrix completion
methods, which makes fuller use of cross-company CV data
than the matrix of a single company, without compromis-
ing confidential information of each company. This section
presents a privacy-preserving aggregation method based on
SMPC and perturbation techniques for cross-company arrival
rate matrices.

1) Adding perturbations against inference attacks: In par-
ticular, from Fig. [2] we can find that, the moment of arrival of
the CV trajectory corresponds exactly to the moment when the
arrival rate changes. Although the subsequent standardization
process presented in Fig. 3] can blur out this exact moment, we
can still locate the unit time period at which the CV arrives
through the relative magnitude relationship of the values
in the initial matrix. Note that aggregating initial matrices
from different companies in Eq. does not change this
phenomenon, even if additive secret sharing is used, because
it does not change the aggregation result. Of course, when
there are many CVs and the unit time period is large, almost
every unit time period has a different value, which does not
compromise privacy. But, when CVs are very limited and
the unit time period is small, it is easy to infer which unit
time periods have CVs passing through. For example, given
a vector of arrival rates [0.1,0.05,0.05,0.05,...] with 5 s for
each time unit, adversaries with a priori knowledge of the
initial matrix construction process can infer that there is a CV
arriving around the moment of 5 s. In such a case, although
we cannot know which company the CV belongs to so as
not to compromise the privacy of companies, it still discloses
personal privacy.

The key to resisting such an inference attack is to
perturb consecutively identical arrival rate values (e.g.,
[...,0.05,0.05,0.05, ...] in the example), in this way the arrival
rate varies from unit to unit and therefore the arrival time
of CVs cannot be inferred. In this study, we propose a
perturbation approach below.

Assuming that a sequence of Z arrival rates [ay, ag, ..., az]
is extracted from a row of arrival rate matrix by company m
and a, =a >0 (z=1,2,---,7). For brevity, the company
index is omitted. The corresponding perturbed sequence is
denoted as [p1,p2,...,pz|. The proposed approach requires
that

12)
13)

Pz = Gz + 1Nz, Z:172a"'7Za
UP NL(Zp(f), Z:172a"' 7Z'

where 7, is a randomly added perturbation following the

Laplace distribution Lap(e), whose probability density func-

o Ln
tion is f(n) = se~ ¢ . Therefore, we have

A Z
> p.=Za+ Y n.~ Lap(Za,Ze)  (14)
z=1 z=1

Z zZ
where E[Y p.] = Za and V[ _p.] = 22%.

z=1

(15)
z=1

This suggested that the expected summation of perturbed
arrival rates is the same as the real one. This is desired
because this sum indicates the number of vehicle arrivals
between neighboring CVs and the value is reliable. As for the
specific arrival rate for each time unit, the initial matrix itself
is making an approximation with the average value, which is
not always accurate. Here we add the perturbation which is
actually equivalent to a randomized approximation method.

2) SMPC based on additive secret sharing: Since we have
normalized the incomplete arrival rate matrix of each company
into the same size, without considering privacy, the final arrival
rate matrix should be aggregated by TSOC as follows,

_A1+A2+~-~+A]w

A° % (16)
Element-wise, we have
M
AT
0 _ Zm:l 7,2
)\jﬂ- == a7n

Note that, Eq. only involves the summation of arrival
rate values as the number of participating companies M
is a known value to the TSOC. Therefore, we can apply
an SMPC technique, additive secret sharing [23]], [25], to
achieve privacy-preserving summation of private data from
participating companies. Note that additive secret sharing is a
randomly-shared secure summation protocol. In practice, there
are many similar protocals that can be used as alternatives
to achieve the same effect, such as basic secure summation,
encrypted secure summation, distributed secure summation,
etc. A detailed review can be referred to [26]. The basic idea
of additive secret sharing is shown in Fig. 4] and presented as
follows. Recall that there are M companies in our cases and
one company wants to share a secret value A with the others.
Instead of directly disclosing the value of A, this agent creates
N shares si, S3, ..., spr out of A such that

A= Z Sm  (mod p) (18)

where shares si,S2,...,sp7—1 are chosen independently and
uniformly at random from the set {0,1,2,...,p — 1}; pis a
given large prime integer; s, is determined by

M-—1
sM=A— Y sm (modp) (19)

m=1

Then, each share s, (m =1,2,--- , M) is sent to company
m. To reconstruct A, M companies, or the third party TSOC,
can simply add all shares modulo p together since we have
Eq. (I8). Note that additive secret sharing can withstand
any collusion of up to M — 1 agents since colluded agents
only have random values that do not depend on A. Besides,
the additive secret sharing protocol maintains the accurate
summation result. Note that, in our cases, private data A,
indicating the arrival rate, is smaller than 1. Thus we can let
all companies and third parties agree to share the integer part
of 10,000\, and the third party can divide the result by 10,000
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Fig. 4. Tllustration of privacy-preserving aggregation of arrival rate matrices
from companies.

after reconstructing it. Such a multiplier can be larger to obtain
higher calculation accuracy.

In summary, we can apply Algorithm [I| to achieve Eq.
based on additive secret sharing protocol without compromis-
ing any private data of participating companies.

Algorithm 1 Privacy-preserving aggregation of arrival rate
matrices by additive secret sharing

1: INPUT: Arrival rate matrices A, A2, .- AM of M
participating companies (multiplied by 10,000 already)
with size J x I; a big prime p;
Fori=1,2,--- .1 do
For j=1,2,---,J do
For m=1,2,--- , M do

Company m uniformly and randomly samples s,
from {1,2,...,p — 1} and sends data s,,, to company n
forn=1,2,--- /M and n # m;

6: Company m calculates s,,,,, = )\;”z — Zn £m Smn
mod p;
end
: Company n calculates S, = Y 15 . 1/ Smn
mod p and sends it to TSOC for n =1,2,- - ,M,
9: TSOC calculates \},; = Thoo(zm:m,m 2 Sm
mod p)
10:  end
11: end

122 RETURN: A°

C. Matrix completion for arrival profile estimation

In this step, TSOC has received the arrival rate matrix
calculated from cross-company CV data, which is however in-
complete and noisy. Therefore, estimating cycle-based arrival
profiles is transformed into a noisy matrix completion problem.
In this section, a popular numerical algorithm, SVT algorithm

[27], is adopted for matrix completion, which can excavate
the temporal correlation of intra-cycle arrival and inter-cycle
difference of arrival fluctuation, finally obtaining a complete
arrival rate matrix after iterative convergence of the nuclear
norm of the matrix. Specifically, the SVT algorithm decom-
poses the matrix into its singular values and corresponding
vectors, then isolates and thresholds these singular values. This
approach filters out noise by shrinking the smaller singular
values, which are more susceptible to noise, while preserving
the larger, more significant singular values that represent the
true underlying arrival patterns.

According to [27]-[29], low-rank matrix recovery problems
such as matrix completion can be transformed into solving
nuclear norm minimization, as given by Eq. 20) -2I),

mgn | Al (20)
s.it. Po(A) = Po(AY), 1)
where A is the completed arrival rate matrix. || - ||« denotes

the calculation of the nuclear norm, i.e., the summation of
singular values of the matrix. € is the set of indices of
known elements obtained by Section P, is the operator
selecting elements according to set £.

Then, starting with X° = 0 € R7*, the SVT algorithm
[27] gives the iterative equations below to solve the problem
with high quality and efficiency,

a a—1
{ e ) o e @2)
X=X+ pPo(A” — A%),
where the superscript a denotes the number of iterations. -y is a
constant comparison threshold value and v > 0. p is the step
size at the iteration a. D, is the soft-thresholding operator,
which is defined as

D,(X) =UD,(Z)V7”,
Dy (%) = diag({(or — )+ }i=1,2, ,R);

where we use R to denote the rank of the matrix X. {o, —v}4
is an operation that filters positive numbers, i.e., {o,. — v} =

(23)
(24)

max{0, 0, — v}. According to singular value decomposition
(SVD), we have
X=UxVvT, (25)
Y= diag({ai}izl,gy... ,R)- (26)

where U € R7*f and V' € R!* ¥ are matrices with orthonor-
mal columns. o; (¢ = 1,2, --- , R) are positive singular values.
That is to say, when we apply the soft-thresholding operator
D,(X) to a matrix X as presented in Eq. (23), we actually
only need to perform the soft-thresholding operator D () on
its SVD-decomposed diagonal matrix 32, and then restored the
matrix by integrating U and V. This property is what makes
the SVT algorithm so efficient.

When the iteration reaches predefined stopping criteria, the
final solution of Eq. is the approximated solution of Eq.
(20), namely, the completed matrix A can be obtained. The
implementation process of the SVT algorithm is summarized
in Algorithm [2]

In Algorithm [2| || - || indicates the Frobenius norm. [-]g
indicates the first 8 columns/elements for a matrix/vector. As
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Algorithm 2 Matrix completion by SVT algorithm

1: INPUT: Incomplete arrival rate matrix A" with size J x
I; the set of indices of known element (), comparison
threshold value +, step size p, maximal iteration number
am, stopping criteria e.
Set the iteration number a = |(|)Par(1§1( 3nilt\i(z})lli|ze X0
Calculate the residual res = W
While (res > € and a < a,,) do
Apply singular value decomposition to X using Eq.
and obtain U, X, V.
Extract the diagonal elements of 3 as a vector o.
¢ Set f=max{j:o0; >~}
8:  Apply singular value thresholding to U, X, V' as below,
ie.,
U + [U]g,
V «+ [V]g,
o<+ [olg —7,
Y « diag(o).
9:  Compute AT =UXVT, X+l = X4 1 Po(A° —
Aa+1).
10: a<+a+1.
11:  Calculate res
12: end While
13: RETURN: A «+ UxZVT

_ NPa(X* T —A%)||r
[1Pa(A0)[|r

suggested by [27]], i can be determined based on the size of
the matrix to be completed, shown as below

12xJx1
= ——5"">
€]

which determines the convergence speed. v is a parameter to
threshold singular values, which shrinks the smaller singular
values by Eg. thus filtering out noises, i.e., Laplace
perturbations in this study. According to [30], v is suggested
to be greater than rv/J * I to filter out noises and 7 is the root
mean square error of the noisy data which can be calibrated
using a data-driven method by [31]] (or standard deviation of
added noise if known). In our cases, we use 7y suggested by
[27]:

27

y=5VJ I,

which satisfies the threshold criterion by [30] considering
the magnitude of the matrix values. As for ¢ and a,y,, it is
common knowledge that a smaller € and a larger a,, can take
longer time to reach convergence, although the accuracy can
be improved. In this study, we let ¢ = 0.0001 and a,,, = 1000.
Further, X© can be initialized as below to save work,

1% pPo(A°).

(28)

0 _ " v
1l Po(A%)[|2
where [-] indicates rounding toward positive infinity.
With the estimated complete arrival rate matrix, each row

vector of the completed A can be used to calculate the arrival
profile as presented by Eq. (30).

(29)

Qj,i = l * Aj * >\j,i (30)

where ¢, ; is the arrival flow of interval 7 in cycle j (veh).

Arrival curve

Departure curve,

y:

Aja

Aj-1d |

4 Cyclej—1 Cycle j

Fig. 5.
profiles.

Illustration of traffic state parameters estimation based on arrival

D. Traffic state parameter estimation based on arrival profiles

Combining signal timing information, we can further es-
timate the cycle-based traffic demand as well as the queue
length based on these detailed arrival profiles, as illustrated in
Fig. [5] Note that here traffic demand refers to vehicle arrivals
during the cycle, which are different from throughput volume
limited by green length. Traffic demand is independent of the
signal timings and can describe traffic flow operations in both
undersaturated and oversaturated scenarios. For cycle-based
traffic demand, it is calculated as the sum of the products of
the unit time period with the corresponding arrival rate based
on the estimated arrival profile,

I

Vi=1x0;% Y A, (31)
i=1

where V; is the traffic demand of cycle j (veh).

Regarding the queue length, the real-time queue length can
be estimated as the difference between the arrival curve, i.e.,
the integral of the arrival profile, and the dissipation curve that
starts from the green start time with the saturated departure
rate. For the sake of brevity, we represent the arrival profile
as a continuum, A;; (0 <t < ().

t

t
Qj (t) = max{O, Qj (O) + / /\j,t dt — / Oéj,tAj,d dt}, (32)
0 0

if t < g3

33
if ¢ > gj 53

where g7 is the green start time of cycle j. A; 4 is the saturated
departure rate of cycle j. Q;(0) is the initial queue of cycle
7, which can be estimated by the arrival profile of the last
cycle based on the flow conservation law, ie., Q;(0) =
maX{O, Qj—l(o) + focj71 /\j—Lt dt — focj71 aj—l,t>\j—1,d dt}

Then, for undersaturated conditions where the queue can
be cleared, the maximum back of queue (BOQ), namely
the cumulative vehicles arriving before the moment that the
physical queue is cleared, is estimated as

td

QU1 = Q,(0) + /0 "\ dt, i Qj(C5) =0

where ¢7 is the minimum solution of solving Q;(t) = 0. Note
that, in the case that the cycle is oversaturated, i.e., Q;(t) > 0

(34)
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always holds, the queue length will continue to accumulate
into the next cycle. At this point, all vehicles arriving during
this cycle are stopped and accumulated in the queue, then we
have

QU= Q0 + 7, i Q(Cy) > 0

In particular, based on the detailed arrivals, we can further
obtain other traffic state parameters such as total delay
and achieve fine-grained traffic signal timing optimization [3]],
which will not be discussed here.

(35)

IV. EVALUATION

The proposed method is evaluated through one empirical
case and one simulation case. The empirical case is used
to evaluate the performance of arrival profile estimation by
assessing the accuracy of traffic demands and queue lengths
derived from arrival profiles. Then, the impact of the privacy-
preserving mechanism on the arrival profile estimation and the
capability of the proposed method in real-time estimation is
also evaluated. In the simulation case, the proposed method is
implemented on a large-scale network to show its applicability
under various traffic conditions. Sensitive analysis in terms
of the penetration rate of CV and the unit time period for
matrix completion is also conducted to test the robustness of
the proposed method.

A. Empirical Case

The study site of the empirical case is the intersection of
Fuzhong Road and Huanggang Road in downtown Shenzhen,
China, where the four through lanes in the southbound ap-
proach are chosen as the study object, as shown in Fig. [6]
The analysis period started from 9:30 to 14:30 on April 13,
2017, comprising five signal schemes operated by SMOOTH
adaptive signal control, as presented in Table [ Note that
the actual signal timing varies from cycle to cycle and is
averaged here. Video data were recorded to obtain the actual
cycle-based traffic flow and back of queue during the analysis
period, as shown in Fig. [f(b). The connected vehicle data, as
shown in Fig. [(c), of the straight-through flow were provided
by DiDi Chuxing, a ride-sharing company. Preprocessing of
the raw CV data is conducted through two steps. First, the
position of the stop-line is determined using the most forward
queuing position of the sample CVs, which is set to the spatial
origin (coordinates increase in the direction of travel). Then,
the initial and final positions of the trajectory were used to
determine whether the trajectory was complete, i.e., passed
the stop line, as illustrated in Fig. [[(d). If the initial position
is greater than O, then the trajectory starts at downstream
of the stopline and is recognized as an anomaly. If the last
position is less than 0, then the trajectory ends upstream of the
stopline and is also recognized as an anomaly. Such anomalies
or outliers are removed before the CV data are input to the
proposed method. Some general statistics of the CV data after
preprocessing are given in Table I} from which we can find
that, although the average penetration rate of the study period
was 8.57%, the average number of samples captured in each

10:16:40 10:25:00 103320

104140 Time

Fig. 6. Study site of the empirical case: (a) intersection layout, (b) screenshot
of video data, (c) example CV trajectories, and (d) anomalies in raw CV data

TABLE I
SIGNAL TIMING SCHEMES AND CV DATA INFORMATION
TOD period ! 2 3 4 >
9:30- 10:30- | 11:30- | 12:30- | 13:30-
10:30 11:30 12:30 13:30 14:30
Cycle length, Cyy, (s) 200 176 157 151 169
Green time (s) 105 83 80 79 84
Period volume (veh) 2677 2420 2148 1889 2376
Number of CVs 250 188 193 153 202
Penetration rate, p (%) | 9.34 7.77 8.99 8.10 8.50
CVs per cycle (veh) 13.9 9.0 8.4 6.7 9.6

cycle was 9 veh as there are four lanes, which is a relatively
good data quality from the perspective of absolute sample size.

Though the cycle-based arrival profile cannot be extracted
and evaluated from the video data, its estimation accuracy can
be evaluated laterally by traffic flow indicators derived from it,
i.e., cycle-based traffic demand and queue length. Therefore,
the mean absolute error (MAE) and mean average percentage
error (MAPE) are used to evaluate the estimation accuracy of
traffic demand and queue length derived from arrival profiles
as below

MAE = (36)

xR

1 N
MAPE—NZ::

Y —

x 100%, (37)

where N is the number of estimates of traffic demand or queue
length, Y (veh/cycle) denotes the estimates, and Y (veh/cycle)
denotes the corresponding ground truth values.

1) Comparison with different existing methods:

Considering that the traffic demand level and pattern of
vehicle arrivals vary over TOD periods, we implement the
proposed matrix completion method separately for each TOD
period for arrival profile estimation. For each TOD period, we
let [I =Cy,/A,,] for the standardization of the incomplete
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TABLE 11
OVERALL ESTIMATION ACCURACY OF CYCLE-BASED TRAFFIC DEMAND AND QUEUE LENGTH
MAE, veh (MAPE, %) TOD
Traffic state 1 2 3 4 5 Overall
Method
SMPC-SVT 9.9 (6.6) 12.8 (11.2) 114 (12.4) 6.1 (7.6) 11.5 (10.8) 10.3 (9.8)
Traffic demand Ban’s [16] 42.8 (29.9) 44.6 (38.7) 34.2 (36.9) 32.4 (40.4) 45.5 (42.9) 38.5 (37.2)
Zheng’s 6] 39.7 (28.8) 23.4 (20.0) 22.2 (24.6) 32.0 (40.5) 30.0 (27.9) 29 (28.5)
Hybrid [21] 31.2 (21.0) 22.5 (19.9) 17.9 (19.4) 18.3 (22.1) 11.2 (10.3) 19.8 (18.6)
SMPC-SVT 2.28 (11.30) | 2.25 (11.18) | 2.14 (13.42) | 2.59 (25.06) | 3.04 (11.97) | 2.48 (14.87)
Queue length Yin’s [14] 6.17 (29.96) | 3.29 (16.69) | 3.03 (18.95) | 1.83 (17.72) | 3.20 (12.26) | 3.37 (18.68)
Cheng’s [10] 2.93 (14.99) | 3.72 (19.47) | 8.18 (60.93) | 9.49 (91.60) | 5.11 (19.42) | 6.30 (47.49)

arrival matrix. In this case, we set A,, = 5. For example, [
of the first TOD period is calculated as [200/5 = 40].

For traffic demand estimation, three representative methods
were chosen for comparison.

e Ban’s method [16]: A deterministic method using delay
pattern of CVs. This method assumes that the vehicle
arrival within a cycle obeys uniform arrival and volume
can be deduced as a time-dependent function of the delay
pattern of CVs based on the shockwave theory.

e Zheng’s method [6]: A stochastic method based on
maximum likelihood estimation. This method considers
vehicle arrivals to be a time-dependent Poisson process
and formulates the arrival rate estimation into a maximum
likelihood estimation problem based on vehicle arrivals
that are derived between consecutive queued CVs.

o Hybrid method [21]]: A hybrid method integrating shock-
wave theory and probability theory. This method first
uses shockwave theory to estimate the queued volume
(i.e., queue length) and then uses maximum likelihood
estimation for non-queued volume.

While for queue length estimation, two representative meth-
ods were chosen for comparison.

e Cheng’s method [[10]: A deterministic method using
shockwave theory. This method first extracts critical
points of CV trajectories and then estimates the queue
length by fitting shockwaves.

e Yin’s method [14]: A stochastic method using Kalman
Filter to fit the queue accumulation process. This method
considers the positioning errors of CVs and uses the
Kalman Filter to handle such errors when fitting the queue
shockwave.

The proposed method is referred to as the SMPC-SVT
method, which can provide estimates of both traffic demand
and queue length as the detailed arrival profile is estimated.

e SMPC-SVT method: the proposed privacy-preserving
matrix completion method for arrival profile estimation.
In the case that the privacy of mobility companies is
considered, a perturbation approach and additive secret
sharing are applied to protect the private CV data of
each company for initial incomplete arrival matrix con-
struction. Then, the SVT method is adopted to solve the
matrix completion problem efficiently, thus estimating
arrival profiles.

(a) Number of samples ——Ground truth
’

——SMPC-SVT method

Hybrid method
-+ Ban’s method

—Zheng's method

[
1621 26 31 36 41 46 51 s6 61 66 71 96 101 106

1
i Cyele No.
930 TOD1 1%:30 TOD 2 1130 TOD 3 1230 TOD 4 13,30 TOD 5 1430

i ) 1

Cheng's method —~SMPC-SVT method

76 81 86 91

(b) —Ground truth of BOQ ~-Yin's method

1621 26 31
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Cycle No.
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Fig. 7. Cycle-based traffic demand and queue length estimates by different
methods: (a) traffic demand estimates and (b) queue length estimates

Overall performance: The comparative analysis of the
proposed SMPC-SVT method and five existing methodologies
on traffic volume and queue length estimation is summarized
in Table [lI} Regarding traffic volume estimation, the SMPC-
SVT method demonstrates superior performance compared
to three other methods, achieving an MAE and MAPE of
10.3 veh/cycle and 9.8%, respectively, over the entire 5-
hour analysis period. For specific TOD periods, the SMPC-
SVT method excels in four out of five periods, exhibiting
significantly smaller MAE values compared to alternative
traffic volume estimation methods. Concerning queue length
estimation, the proposed SMPC-SVT method attains the most
favorable overall performance, yielding an MAE and MAPE
of 2.48 veh and 14.87%, respectively, surpassing all other
queue length estimation methods. These results underscore the
efficacy of the SMPC-SVT approach in both traffic volume and
queue length estimation tasks and provide a side note on the
effectiveness of the method in estimating cycle-based arrival
profiles.

Cycle-based performance: In order to have a more in-
tuitive understanding of the ability of the proposed SMPC-
SVT method to cope with dynamically varying traffic flows,
Fig. [7] presents the cycle-based estimates of traffic volume
and queue length by different methods. Note that, Zheng’s
method can only estimate the arrival rate for a longer time
period. As is shown, for traffic demand estimation, the overall
trends of different methods are consistent with the ground
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TABLE TII TABLE IV
TRAFFIC DEMAND ESTIMATION UNDER DIFFERENT CV SAMPLE SIZE TRAFFIC DEMAND ESTIMATION UNDER DIFFERENT A
M O]
Reduction 0 20% 40% 60% A Indicator TOD Overall
» 8.6 6.7 5.0 3.4 1 2 3 4 5

No. of CVs 9.0 72 54 36 s | MAE veh [ 994 | 1281 [ 1135 | 613 | 1152 | 103

Mook MAE, veh (MAPE. %) MAPE, % | 6.56 | 1124 | 1238 | 7.59 | 10.79 | 938
SMPC-SVT | 103 (9.8) | 115 (10.6) | 14.7 (13.5) | 245 (23.3) los | MAE, veh | 8.17 | 12.00 | 9.87 | 7.13 | 1157 | 9.8
Ban's [16] | 385 (37.2) | 340 (34.1) | 363 (36.7) | 39.1 (39.7) MAPE, % | 547 | 1046 | 1092 | 9.58 | 1028 | 9.5
Zheng's 16] | 290 (285) | 395 (372) | 549 374) | 386 (399) Iss | MAE veh | 956 | 1033 | 583 | 365 | 1252 | 82
Hybrid [21] | 19.8 (18.6) | 449 (39.4) | 57.5 (40.1) | 68.7 (46.7) MAPE, % | 629 | 933 | 661 | 466 | 1077 | 7.5

truth, but the fluctuation amplitudes of the four methods are
different. Specifically, Ban’s method has the greatest degree
of volatility, followed by Zheng’s method and the Hybrid
method, and finally the proposed SMPC-SVT method that is
most consistent with the ground truth. Regarding queue length
estimation, the proposed SMPC-SVT method also shows the
best fit to the ground truth, while Yin’s method overestimates
in TOD 1 and Cheng’s method overestimates in both TOD 3
and 4, respectively.

2) Impact of the number of CV samples:

In order to give a more comprehensive insight into the
reliability of the proposed method, sensitivity analysis is
conducted in terms of the number of CV samples. Here the
traffic demand estimation is used for sensitivity analysis. As
we mentioned, four lanes exist for the straight-through flow of
the empirical case, and despite a penetration rate of only 8.4%,
its average number of trajectories still reaches 9.0 veh per
cycle, which is relatively friendly to all methods. Therefore,
here we test the effectiveness of the proposed SMPC-SVT
method in the cases of less CV trajectories by further randomly
reducing CV trajectories.

As shown in Table 20% — 60% reduction cases are
further tested. Three parallel experiments are conducted to
remove the influence of the stochastic sampling process. The
MAE and MAPE values of each method here are the average
values of three parallel experiments. The proposed method
shows the best accuracy among the four methods, even when
the penetration rate is about 3.4% (the 60%-reduction case), an
estimation accuracy (i.e., | —-MAPE) of 76.7% can be obtained.
In terms of the growth rate of estimation error, the proposed
method presents a slow increase when the sample reduction is
no larger than 40% and an obvious increase while only 40% of
the samples are used for estimation. It may be due to the fact
that the increasing sparsity of the incomplete matrix actually
lost some property of the original matrix, which limited the
filling ability of the proposed method to some extent. Thus, the
penetration of 5.0% can be regarded as the critical minimum
penetration rate for the empirical case.

3) Impact of the unit time period:

Regarding the unit time period A used for matrix construc-
tion, two more cases, A = 10s and A = 15s were tested
for the analysis period. With a greater A, the matrix size is
reduced to a smaller number of matrix columns.

As shown in Table the estimation errors, MAE and
MAPE, gradually decrease as A increases from 5s to 15 s,
although such decreases are slight. This may be due to the fact

that the sparsity of the incomplete arrival rate matrix may be
less severe with a greater A, as the matrix size is reduced with
a smaller number of matrix columns. In addition, considering
the randomization of CV observations, known values over
longer A are also relatively more accurate. Nevertheless, the
other side of the coin is that a larger A makes the estimated
arrival profile smoother and provides less detailed time-varying
arrival information during the cycle.

4) Impact of privacy-preserving mechanism:

Note that the privacy-preserving mechanism used in this
study, SMPC, may have an impact on the estimation of
arrival profiles by matrix completion method. This is because,
in the scenario where company privacy is considered, each
company holds only a portion of CV trajectories, constructs
the initial arrival rate matrix separately, and builds the final
matrix by privacy-preserving aggregation. Such a matrix is
different from the directly generated matrix in the scenario
where the companies share trajectories without considering
privacy. Therefore, in this section, the impact of the privacy-
preserving mechanism on arrival profile estimation accuracy is
evaluated. For the initial arrival rate matrix provided by each
party, a Laplacian perturbation with a coefficient of variation
(COV) of 0.1 is added to the consecutively identical arrival
rate values.

Number of parties: We first present the cycle-based traffic
demand and queue length estimation results in Fig. [§] using
the same total number of CV trajectories as the input of
the SMPC-SVT method but considering the different number
of participant companies, i.e., single party, two-party, and
three-party. As is shown, for both traffic demand and queue
length estimation, the results of all three different scenarios are
practically consistent with trends of the ground truth, while
the estimates of two-party or three-party may have larger
fluctuations. Specifically, the gap of MAE values for both
traffic demand and queue length estimation is not greater than
1 veh for each additional participant company while the total
sample size remains unchanged. In particular, even though the
multi-company collaboration scenarios degrade the accuracy
of the traffic demand and queue length estimates slightly,
the MAPE values, 12.4% for traffic demand and 23.4% for
queue length, are still superior to existing methods selected
for horizontal comparison, except for the state-of-the-art queue
length estimation method by Yin et al., [14].

To dive deeper into the impact of privacy-preserving mecha-
nism on arrival profile estimation, Fig.[9]shows the comparison
of arrival profile estimation in TOD Period 5 under different
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scenarios of multi-party collaboration. The consistency of the
overall trend supports the conclusion that the estimation accu-
racy of arrival profiles can still be guaranteed through privacy
protection, taking into account multi-party collaboration. The
differences between them, in turn, are indicative of the impact
that privacy-preserving methods can have on the performance
of the proposed arrival rate matrix completion method. Noted
that the later periods of the cycle, where the missing values of
the incomplete arrival rate matrix are clustered, have a more
significant difference in arrival rate estimation, which makes
sense as the contribution of non-queued CVs to infer arrival
information is relatively modest as compared with the queued
CVs.

Different from the sensitivity analysis on CV sample size,
here an analysis is further conducted to demonstrate the
marginal benefit of the participation of more companies con-
sidering privacy preservation. The three-party case in Fig.
where each privately holds one of three pieces of CV
data, is used here to compare with cases of removing one
party and two parties respectively. Thus a total of three
scenarios are considered, i.e., only one company performs the
estimation (using 33.3% CV data), two companies collaborate
on the estimation (using 66.6% CV data), and three companies
collaborate on the estimation (using all CV data). As shown
in Fig. [I0], the estimation accuracy increases with the partici-
pation of more parties, by about 2% in both traffic demand
and queue length estimation. Specifically, the single-party
scenario, despite not requiring privacy concerns, has estimates
that significantly deviate from the ground truth value in many
cycles due to the small number of CVs they can provide. As
the number of participants increases, the number of significant
deviations decreases, while our privacy-preserving mechanism,
SMPC, protects the private data of each company from being
revealed. These results demonstrate that, with an effective
privacy-preserving mechanism, our method can allay concerns
about privacy leakage across companies and facilitate more
companies to participate in collaborations to increase the data
size of available CV for more accurate and reliable traffic
management.

Data disparity of parties: In practical application, it is
common that data imparity may exist in the participating
parties. The impact of the unevenness of data size on the
effectiveness of the SMPC-SVT method is further explored
using the three-party collaboration scenario where the par-
ticipating parties are assumed to have a data size ratio of
1:2:3 to simulate the uneven data contribution of participants
(hereinafter referred to as MPUC scenario). Comparison is
conducted with the results of the multi-party collaboration
scenario considering even contribution (hereinafter referred
to as MPEC scenario) in Fig. 8 and Section IV-A (4). The
dataset of each participant in MPEC scenario is 33.3% of the
CV dataset, while the data sizes of each participant in MPUC
scenario are 50%, 33.3%, and 16.7%, respectively.

As shown in Fig. [IT], the estimation accuracy of the SMPC-
SVT method is still robust under MPUC scenario and slightly
better than that under MPEC scenario. It makes sense that the
estimation of Party 1 (50% of CV data) and Party 2 (33.3%
of CV data) may slightly dominate in the aggregation process

Scenario MAE (veh) MAPE (%)

(@)

Single party data provider 103 98

‘Two-party collaboration 11.0 12.2

Three-party collaboration 13.5 124

- vil
i V\M P “"dM k/\ My gt ~ﬁ

L6 1116 21 26 31 36 41 46 5156 61 66 71 76 81 8 91 96 101 106

9:30 1op1 10:30 oD 2 11:30 oD 3 12:30 oD 4 13:30 TOD 5 14:30

Scenario MAE (veh) MAPE (%)

Single party data provider 248 14.87 ]
W 4

(b)

Two-party collaboration 3.56 23.40
Three-party 3.40 21.63

ﬁ/f*/f \/” a/ «/y \>\

Fig. 8. Impact of SMPC on arrival rate matrix completion: (a) traffic demand
estimation and (b) queue length estimation

conducted by TSOC. It can be further inferred that as long
as the dataset of each party meets the minimum data size to
realize a relatively accurate estimation, the unevenness in data
size has little impact on the estimation accuracy.

Laplace perturbation: A sensitivity analysis is conducted
here to test the robustness of the SMPC-SVT method to
Laplace perturbations. A series of parallel experiments using
different Coefficient of Variation (COV) values for Laplacian
perturbation, ranging from O to 2, are done for the cyclic
traffic demand estimation of both the two-party and three-party
collaboration scenarios. The results of MAEs and MAPEs
are shown in Fig. with the previous test using a COV
of 0.1. As shown in the figure, when the COV of Laplacian
perturbation is not more than 1, the estimation error shows
a slow wavelike increase, which is about 2 veh and 2% for
MAE and MAPE, respectively. As the COV of perturbation
increases from 1 to 2, the estimation error increases obviously.
Besides, the growth of estimation error of the three-party
scenario is a bit larger than that of the two-party scenario,
which may be due to the accumulation of more perturbation
with the increase of participating parties. As COV is actually
the ratio of standard deviation to mean value, the results
of sensitivity analysis imply that the proposed SVI-SMPC
method is relatively robust to the added Laplacian perturbation
for privacy preservation when the COV of the perturbed initial
arrival rate is not more than 1.

5) Extension to real-time estimation:

Although the above validation is conducted offline, real-time
application is also feasible as long as the sample CVs from
different participating parties within a cycle are obtained in
time to input into the method, then the cyclic arrival profile
can be estimated when the next cycle just starts. The CV data
in the empirical case study are used to explore the capacity
of real-time estimation here. Instead of using the CV data
of the whole TOD period as input and estimating the cyclic
arrival profile of all the cycles at one time, in this test, the
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Fig. 9. An example of estimated arrival profile in scenarios with different
numbers of parties (same sample size)
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Fig. 10. Results for different numbers of participating companies (different
amounts of CV data)

Fig. 11. Traffic demand estimation comparison of three-party collaboration
between MPEC and MPUC
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Fig. 12. Impact of different perturbance degrees on traffic demand estimation

TABLE V
TRAFFIC DEMAND ESTIMATION COMPARISON BETWEEN OFFLINE
ESTIMATION AND REAL-TIME ESTIMATION SCENARIOS

Real-time estimation
13.69 veh (14.40%)
13.76 veh (14.42%)

Offline estimation
11.04 veh (12.24%)
13.53 veh (12.43%)

Scenario
Two-party collaboration
Three-party collaboration

proposed SMPC-SVT method is used once every cycle when
the sampled CV data from multiple parties within the cycle are
obtained when the cycle ends. Regarding the input data, the
CV data of the past cycles counting from the start of the TOD
period are used to construct the arrival rate matrix, thus the
cyclic arrival profile estimation is carried out in an incremental
pattern, as the matrix size will increase (in the row number)
with every cycle operated, so will the number of sampled CVs.

The scenarios of two-party collaboration three-party are
evaluated for real-time estimation, with a unit time step of
A = 55s. As shown in the results in Table a comparison
is conducted between the real-time estimation and offline
estimation. It is noted that both the MAE and MAPE are
listed in the table, with the values of MAPE shown in the
parenthesis. The estimation accuracy of real-time estimation
decreases by about 2.16% and 1.99% for two-party and
three-party collaboration scenario, respectively, which is still
satisfactory for cyclic traffic demand estimation. The reason
of the increase in estimation error when changing from offline
estimation to real-time estimation can be explained by Fig.
[I3] showing the trend of cyclic demand estimation accuracy
with the increasing number of cycles in TOD period 1. It is
obvious that the MAPE decreases sharply with an increasing
number of cycles, which means more available sample CVs
and more information implying inner-cycle arrival pattern with
the size of the constructed arrival rate matrix increasing. When
the number of available cycles is larger than 4, the estimation
accuracy becomes relatively stable. This also implies the
minimum number of cycles required by the proposed matrix
completion method, requiring more than four cycles to be
estimated together. In practice, the real-time estimation of such
first several cycles can be improved using historical data in the
same period in the past days.

As for the computation efficiency of real-time estimation,
the computation cost increases with the growth of the matrix
size. Considering that the proposed method was encoded in
Matlab and run using a desktop with a 2.50 GHz 8-core
i7-11700 CPU and 16 GB RAM, an average cost of less
than 0.1s can be obtained for the real-time estimation of
the cyclic arrival profile. In short, the proposed SMPC-SVT
method shows prospects in real-time estimation with relatively
satisfactory performance and computation efficiency.

B. Simulation Case

As a data-driven method using connected vehicle data, one
advantage of the proposed SMPC-SVT method is that the
application scale can be enlarged as long as adequate data are
available. Thus, to further explore the ability of the proposed
method in large-scale applications, a simulation model is set up
in a network scenario to evaluate its performance by estimating

Authorized licensed use limited to: TU Delft Library. Downloaded on January 28,2025 at 14:10:23 UTC from |IEEE Xplore. Restrictions apply.

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCE.2025.3525847

SUBMITTED TO IEEE TRANSACTIONS ON CONSUMER ELECTRONICS

100% 0.12
2 party-computation cost 3 party-computation cost

80% | =4=2 party-MAPE 3 party-MAPE or
008 &
w 60% 5
) 0.06 £
= 40% E
004 2
[=}
, =& Q

20% 0.02

- \\-
g "‘*'“-“’\...;ﬁ.a
1 23 45 6 7 8 91011121314 151617 18
Cycle No.

0

Fig. 13. Performance in real-time estimation.
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Fig. 14. Simulation of large scale road network

the total demand of all the controlled flows. The total demand
here is calculated by summing up the cycle-based demand
of all the cycles in a TOD period. To objectively assess
the performance of the proposed method by removing the
influence of the difference in the orders of magnitude, the
weighted mean absolute percentage error (WMAPE) is further
selected, as given by (38)

Zzzzl D}z B YZ|
zZ

z=17"%

WMAPE = x 100 (38)
Here, Z is the total number of controlled flows in the network.
}}Z, Y, (veh) are the estimated demand and ground truth
demand, respectively.

The simulation case study site is a roadway network in Shi-
nan District, Qingdao, Shandong Province, China. As shown
in Fig. [[4] there are 25 intersections in the study site, among
them 18 intersections are signalized (denoted by blue circles),
including 14 typical crossroads and 4 T-type intersections.
In the network, 12 intersections are installed with license
plate recognition (LPR) detectors in the field, and LPR data
was collected from March 1 - March 12, 2019, from 7:00 -
9:00 p.m. to calibrate the simulation model. Two simulation
models were built using the software VISSIM and VISUM.
Based on the built-in TFLOWFUZZY model of the VISUM
model, the path set and OD flow matrix are inversely estimated
using the section passing flow obtained from the LPR detector
data. With the calibrated OD flow matrix and route choice,

the VISSIM model was loaded with traffic flow restoring
the ground truth, and the signal timing data in March 2019
were also input into the model. Under the calibrated demand
input, the mean absolute error between the actual network
flow and the simulated network flow after a simulation run
of the VISSIM model was about 5.64 veh/h, while the mean
average percentage error was no more than 9%, which implies
a satisfactory calibration performance to restore the actual
network traffic flow operation.

For the total demand estimation, there are 88 controlled
flows for all 18 intersections in the network to be estimated.
The simulation period was set as 9000s in the VISSIM
model, taking the first 1800s as the warm-up period while
the remaining 7200s was the study period, namely the total
demand of this 2-hour will be evaluated. After a simulation
run, the vehicle trajectory data were extracted from the study
period and sampled as input into the proposed method in
order to simulate the connected vehicles in the mixed traffic
flow in practical application. The penetration rates were set
as 5%, 10%, 15%, 20%, 30%, 40% and 50% for parallel
group experiments. Under each penetration rate scenario, three
parallel experiments were done to guarantee the generality of
the results.

1) Results of large-scale road network applications:

Based on the above-mentioned computation configuration,
it took less than 10s for one parallel experiment to obtain
the estimated volumes of all the 88 flows in the network. As
shown in Table the standard deviation of estimation errors
across three parallel experiments decreases as the penetration
rate increases. At low penetration rates, the proposed method
exhibits instability. However, as the penetration rate increases
from 5% to 10%, the estimation error decreases by more than
half. With further increases in the penetration rate, the rate
of error reduction slows down. When the penetration rate is
10%, the WMAPE is 4.21%, and the MAE is 46.68 vehicles
over the 2-hour study period, equivalent to 23.34 vehicles
per hour. Even at a penetration rate of 5% (with an average
sample size of approximately 29 CVs per hour for each
controlled flow), the WMAPE remains at 9.14%, indicating
relatively satisfactory performance even in sparse scenarios.
When the penetration rate is larger than 10%, the estimation
is relatively robust, while the accuracy drops obviously when
the penetration decreases to 5%. Thus, the penetration rate of
10% can be regarded as the critical minimum penetration rate
for the simulation case.

Fig. [T3] presents the detailed estimates of each controlled
flow in terms of the ground truth values. The scatter dis-
tribution shows that the proposed method achieves accurate
estimation for both flows with larger and smaller volumes,
even for oversaturated flows, in the 10% penetration rate
scenario.

C. Privacy analysis

Here we further clarify how additive secret sharing protects
CV data in conjunction with Fig. [] First, the initial matrix of
each company is processed from its privately held CV data.
Sharing such processed matrix rather than CV data somewhat
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TABLE VI
PERFORMANCE OF THE PROPOSED METHOD IN A LARGE SCALE NETWORK
».% Indicator Parallel experiments Average
1 2 3
5 MAE, veh 142.52 | 104.52 | 92.76 113.27
WMAPE, % 11.48 8.45 7.5 9.14
10 MAE, veh 37.68 7130 | 47.34 52.11
WMAPE, % 3.04 5.76 3.83 4.21
15 MAE, veh 48.00 46.08 45.96 46.68
WMAPE, % 3.88 3.72 3.71 3.77
20 MAE, veh 47.17 24.72 37.97 36.62
WMAPE, % 3.81 2.00 3.07 2.96
30 MAE, veh 37.33 31.73 29.76 32.93
WMAPE, % 3.02 2.56 2.40 2.66
40 MAE, veh 38.19 25.90 29.51 31.20
WMAPE, % 3.09 2.09 2.68 2.62
50 MAE, veh 34.52 29.35 35.68 33.18
WMAPE, % 2.79 2.37 2.38 2.51
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----- Diagonal line
O Data points
_ 5000
%’ 4000
g 3000 A
E 2000 A
1000 4
¢ o lObO 20‘00 3060 4060 50b0 60‘00

Estimated movement flow (veh)

Fig. 15. Estimates versus ground truth values for all controlled flows

protects the CV data. However, this protection is vulnerable
because it is possible for a third party to further infer some in-
dividual CV information through the unencrypted initial matrix
in case of having prior knowledge of the matrix construction
process. For example, if two neighboring elements of the same
row of the initial matrix are different, it can be concluded
that there exists a CV whose expected arrival time is near the
corresponding time. Further, combined with the value of the
elements, the stopping location of the CV is possible to be
further inferred. So, adding perturbations and additive secret
sharing provide the second layer of protection for private CV
data. Adding perturbations can make all neighboring elements
of the same row different thus against the inference attack
mentioned in Section Additive secret sharing makes
the values of the initial matrix independent and randomly
generated while ensuring that the summation result remains
unchanged. In such a case, the adversary is unable to infer the
expected arrival time or stopping positions of the CVs based
on the relative changes of the values in the matrices shared by
each company.

In addition to secure multi-party computation, some studies
also incorporate differential privacy (DP) to further enhance
the protection of the output. The basic idea of DP is to add

carefully calibrated noise to the results of queries or computa-
tions performed on the dataset, in such a way that the presence
or absence of any individual’s data has a negligible impact on
the output. This ensures that the statistical properties of the
data remain intact while protecting the privacy of individuals.
In the case where the third party is not trustworthy, local
differential privacy or distributed differential privacy methods
can be used. However, in our problem, we protect the initial
matrices that have been processed by each mobility company
and aggregated by summation. It is also difficult to perform
a difference attack on the result of this operation to infer
information about any individual CV. Considering that DP will
perturb the summation result and thus degrade the performance
of the proposed model, the necessity of incorporating DP in
the proposed method to enhance privacy protection can be one
of the subjects of follow-up studies.

V. CONCLUSION

In this paper, a privacy-preserving matrix completion
method that uses cross-company CV data is proposed for
cycle-based arrival profile estimation at signalized intersec-
tions. Different from existing model-driven methods, the pro-
posed method transforms cycle-based arrival profile estimation
into a matrix completion problem and is free from arrival dis-
tribution assumption or parameter calibration using historical
data; hence it is purely data-driven. Modeling traffic arrivals
in a matrix form captures the temporal correlation of intra-
cycle arrivals and inter-cycle fluctuations while providing a
standardized format that enables crowdsourced CV data from
different companies to work together to reconstruct actual traf-
fic conditions. Combined with privacy-preserving techniques,
i.e., additive secret sharing with a perturbation approach,
such co-reconstruction process can effectively ensure that the
privacy of each company will not be compromised, even in the
face of inference attacks with prior knowledge of the model.

The proposed method is evaluated through an empirical case
and a simulation case. In the empirical case, we evaluate the
performance of the proposed method on cycle-based arrival
profile estimation by verifying the accuracy of the derived
estimates of traffic demand and queue length. The results show
that (a) In the scenario without considering privacy issues, the
proposed matrix completion method achieves the accuracies
of 90.2% and 85% for cycle-based traffic demand and queue
length estimation, respectively, given a penetration rate of
8.57%, which is superior to several existing methods. (b) The
number of CV samples has significant impacts on the proposed
matrix completion method as well as existing methods, while
the proposed method still performs best even at a generation
rate of 3.4%, where only 3.6 CVs are observed per cycle. (c)
A larger unit time period improves the performance of the
proposed matrix completion method but provides less detailed
time-varying arrival information. (d) With the same data size,
the collaborative estimation using data subsets considering per-
turbation of privacy-preserving mechanism and data disparity
only slightly degrades the performance of the proposed matrix
completion method. (e) Extending the proposed method to on-
line estimation still achieves satisfactory estimation accuracy
and efficiency.
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Through further simulation tests on road networks, we
demonstrate the reliability of the proposed matrix completion
method when applied to large-scale road networks. (f) The
method shows good estimation accuracy at both unsaturated
and oversaturated flows. (g) The sensitivity analysis of the
penetration rate shows that with more deployments of CVs,
the estimation accuracy of the proposed method can be further
improved, especially when the penetration rate is low.

Future research could work in the following directions.
First, this study only discusses scenarios in which multiple
companies hold homogeneous CV data, and future research
could consider scenarios in which multiple companies hold
heterogeneous data, such as CVs and detectors, to implement
traffic state estimation with privacy preservation of all parties.
Second, future research will continue to refine traffic signal
optimization based on estimated time-varying cycle-based
arrival rates.

CREDIT AUTHORSHIP CONTRIBUTION STATEMENT

Chaopeng Tan: Conceptualization, Methodology, Writing
- original draft, Writing - review & editing. Jiarong Yao:
Conceptualization, Methodology, Validation, Writing - original
draft, Writing - review & editing. Keshuang Tang: Funding
acquisition, Methodology, Writing - review & editing. Jinhao
Liang: Methodology, Writing - review & editing. Guodong
Yin: Methodology, Writing - review & editing.

REFERENCES

[1] M. Obayya, F. N. Al-Wesabi, R. Alabdan, M. Khalid, M. Assiri, M. L.
Alsaid, A. E. Osman, and A. A. Alneil, “Artificial intelligence for traffic
prediction and estimation in intelligent cyber-physical transportation
systems,” IEEE Transactions on Consumer Electronics, vol. 70, no. 1,
pp. 1706-1715, 2024.

[2] C. Dai, S. Lu, C. Ma, S. Garg, and M. Alrashoud, “An adaptive
rank-based tensor ring completion model for intelligent transportation
systems,” IEEE Transactions on Consumer Electronics, vol. 70, no. 1,
pp. 2235-2243, 2024.

[3] C. Tan, Y. Cao, X. Ban, and K. Tang, “Connected vehicle data-
driven fixed-time traffic signal control considering cyclic time-dependent
vehicle arrivals based on cumulative flow diagram,” IEEE Transactions
on Intelligent Transportation Systems, 2024.

[4] LU M.S.A.S.M. A. K. X.B.L. Q. A, Ali, “A resource-aware multi-
graph neural network for urban traffic flow prediction in multi-access
edge computing systems,” IEEE Transactions on Consumer Electronics,
pp- 1-1, 2024, (Early Access).

[5] X. Zhan, Y. Zheng, X. Yi, and S. V. Ukkusuri, “Citywide traffic volume
estimation using trajectory data,” IEEE Transactions on Knowledge and
Data Engineering, vol. 29, no. 2, pp. 272-285, 2016.

[6] J. Zheng and H. X. Liu, “Estimating traffic volumes for signalized
intersections using connected vehicle data,” Transportation Research
Part C: Emerging Technologies, vol. 79, pp. 347-362, 2017.

[71 K. Tang, C. Tan, Y. Cao, J. Yao, and J. Sun, “A tensor decomposition
method for cycle-based traffic volume estimation using sampled vehicle
trajectories,” Transportation research part C: emerging technologies,
vol. 118, p. 102739, 2020.

[8] C. Tan, J. Yao, K. Tang et al., “Joint estimation of multi-phase
traffic demands at signalized intersections based on connected vehicle
trajectories,” arXiv preprint arXiv:2210.10516, 2022.

[9] G. Comert and M. Cetin, “Queue length estimation from probe vehicle

location and the impacts of sample size,” European Journal of Opera-

tional Research, vol. 197, no. 1, pp. 196-202, 2009.

Y. Cheng, X. Qin, J. Jin, and B. Ran, “An exploratory shockwave

approach to estimating queue length using probe trajectories,” Journal

of intelligent transportation systems, vol. 16, no. 1, pp. 12-23, 2012.

G. Comert and M. Cetin, “Analytical evaluation of the error in queue

length estimation at traffic signals from probe vehicle data,” IEEE

Transactions on Intelligent Transportation Systems, vol. 12, no. 2, pp.

563-573, 2011.

[10]

[11]

[12]

[13]

[14]

[15]

(16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

[26]

(27]

(28]

[29]

[30]

[31]

C. Tan, J. Yao, K. Tang, and J. Sun, “Cycle-based queue length
estimation for signalized intersections using sparse vehicle trajectory
data,” IEEE Transactions on Intelligent Transportation Systems, vol. 22,
no. 1, pp. 91-106, 2019.

C. Tan, L. Liu, H. Wu, Y. Cao, and K. Tang, “Fuzing license plate
recognition data and vehicle trajectory data for lane-based queue length
estimation at signalized intersections,” Journal of Intelligent Transporta-
tion Systems, vol. 24, no. 5, pp. 449-466, 2020.

J. Yin, J. Sun, and K. Tang, “A kalman filter-based queue length
estimation method with low-penetration mobile sensor data at signalized
intersections,” Transportation Research Record, vol. 2672, no. 45, pp.
253-264, 2018.

W. Li, J. Wang, R. Fan, Y. Zhang, Q. Guo, C. Siddique, and X. J.
Ban, “Short-term traffic state prediction from latent structures: Accuracy
vs. efficiency,” Transportation Research Part C: Emerging Technologies,
vol. 111, pp. 72-90, 2020.

X. Ban and M. Gruteser, “Mobile sensors as traffic probes: addressing
transportation modeling and privacy protection in an integrated frame-
work,” in Traffic and Transportation Studies 2010, 2010, pp. 750-767.
C. Tan, J. Yao, X. Ban, and K. Tang, “Cumulative flow diagram estima-
tion and prediction based on sampled vehicle trajectories at signalized
intersections,” IEEE Transactions on Intelligent Transportation Systems,
vol. 23, no. 8, pp. 11325-11337, 2021.

H.A.F A-M. K. M. 0. A. A. S. A. M. A. H. G. P. M. M., Aljebreen,
“Enhancing traffic flow prediction in intelligent cyber-physical systems:
A novel bi-Istm-based approach with kalman filter integration,” IEEE
Transactions on Consumer Electronics, vol. 70, no. 1, pp. 1889-1902,
2024.

A. Emami, M. Sarvi, and S. Asadi Bagloee, “Using kalman filter
algorithm for short-term traffic flow prediction in a connected vehicle
environment,” Journal of Modern Transportation, vol. 27, pp. 222-232,
2019.

Z. Zhang, S. Zhang, L. Mo, M. Guo, F. Liu, and X. Qi, “Traffic volume
estimate based on low penetration connected vehicle data at signalized
intersections: A bayesian deduction approach,” IEEE Transactions on
Intelligent Transportation Systems, vol. 23, no. 8, pp. 10596-10609,
2021.

J. Yao, F. Li, K. Tang, and S. Jian, “Sampled trajectory data-driven
method of cycle-based volume estimation for signalized intersections
by hybridizing shockwave theory and probability distribution,” IEEE
Transactions on Intelligent Transportation Systems, vol. 21, no. 6, pp.
2615-2627, 2019.

C.-M. Chen, Z. Li, S. Kumari, G. Srivastava, K. Lakshmanna, and
T. R. Gadekallu, “A provably secure key transfer protocol for the fog-
enabled social internet of vehicles based on a confidential computing
environment,” Vehicular Communications, vol. 39, p. 100567, 2023.

C. Tan and K. Yang, “Privacy-preserving adaptive traffic signal control
in a connected vehicle environment,” Transportation research part C:
emerging technologies, vol. 158, p. 104453, 2024.

C.-M. Chen, Z. Li, A. K. Das, S. A. Chaudhry, and P. Lorenz, “Provably
secure authentication scheme for fog computing-enabled intelligent
social internet of vehicles,” IEEE Transactions on Vehicular Technology,
2024.

R. Talviste et al., “Applying secure multi-party computation in practice,”
Ph. D. dissertation, 2016.

T. Ranbaduge, D. Vatsalan, P. Christen et al., “Secure multi-party
summation protocols: Are they secure enough under collusion?” Trans.
Data Priv., vol. 13, no. 1, pp. 25-60, 2020.

J.-F. Cai, E. J. Candes, and Z. Shen, “A singular value thresholding al-
gorithm for matrix completion,” SIAM Journal on optimization, vol. 20,
no. 4, pp. 1956-1982, 2010.

B. Recht, M. Fazel, and P. A. Parrilo, “Guaranteed minimum-rank
solutions of linear matrix equations via nuclear norm minimization,”
SIAM review, vol. 52, no. 3, pp. 471-501, 2010.

E. Candes and B. Recht, “Exact matrix completion via convex opti-
mization,” Communications of the ACM, vol. 55, no. 6, pp. 111-119,
2012.

B. P. Epps and A. H. Techet, “An error threshold criterion for singular
value decomposition modes extracted from piv data,” Experiments in
fluids, vol. 48, no. 2, pp. 355-367, 2010.

B. P. Epps and E. M. Krivitzky, “Singular value decomposition of noisy
data: noise filtering,” Experiments in Fluids, vol. 60, 2019. [Online].
Auvailable: https://api.semanticscholar.org/CorpusID:199131035

Authorized licensed use limited to: TU Delft Library. Downloaded on January 28,2025 at 14:10:23 UTC from |IEEE Xplore. Restrictions apply.

© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.


https://api.semanticscholar.org/CorpusID:199131035

This article has been accepted for publication in IEEE Transactions on Consumer Electronics. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/TCE.2025.3525847

SUBMITTED TO IEEE TRANSACTIONS ON CONSUMER ELECTRONICS 16

Chaopeng Tan received his B.S. and Ph.D. de-
grees in traffic engineering from Tongji University,
Shanghai, China in 2017 and 2022, respectively. He
was also a visiting Ph.D. student at the University
of Washington (Seattle) from 2019 to 2021 and a
Postdoctoral Research Fellow with the Department
of Civil and Environment Engineering, National
University of Singapore from 2022 to 2024. He is
currently a Postdoctoral Research Fellow with the
Department of Transport and Planning, Delft Uni-
versity of Technology, The Netherlands. His main
research interests include intelligent transportation systems, traffic modeling
and control with connected vehicles, and privacy-preserving traffic control.

Jiarong Yao received the B.S. degree in traffic engi-
neering in 2016 and the Ph.D. degree in department
of comprehensive traffic information and control
engineering in 2021, both from Tongji University.
Now she is a research fellow in School of Electrical
and Electronic Engineering, Nanyang Technological
University. Her main research interest is traffic con-
trol and Intelligent Transportation Systems.

Keshuang Tang received his doctor’s degree in
traffic engineering from Nagoya University in 2008.
Afterward, he worked at The University of Tokyo as
a postdoctoral research fellow, and then at Tohoku
University as a Project Assistant Professor. He was
also a visiting scholar of the University of California,
Berkeley in 2010. He is currently a full professor at
the College of Transportation Engineering, Tongji
University, China. His main research interests in-
clude driver behavior, signal control, and Intelligent
Transportation Systems.

Jinhao Liang received the B.S. degree from School
of Mechanical Engineering, Nanjing University of
Science and Technology, Nanjing, China, in 2017,
and Ph.D. degree from School of Mechanical En-
gineering, Southeast University, Nanjing, China, in
2022. Now he is a Research Fellow with Department
of Civil and Environmental Engineering, National
University of Singapore. His research interests in-
clude vehicle dynamics and control, autonomous
vehicles, and vehicle safety assistance system.

Guodong Yin received the Ph.D. degree in mechan-
ical engineering from Southeast University, Nanjing,
China, in 2007. From August 2011 to August 2012,
he was a Visiting Scholar with the Department of
Mechanical and Aerospace Engineering, The Ohio
State University, Columbus, OH, USA. He is cur-
rently a Professor with the School of Mechanical
Engineering, Southeast University. He was the recip-
ient of the National Science Fund for Distinguished
Young Scholars and is a China-SAE Fellow. His
research interests include vehicle dynamics and con-
trol, automated vehicles, and connected vehicles.

Authorized licensed use limited to: TU Delft Library. Downloaded on January 28,2025 at 14:10:23 UTC from |IEEE Xplore. Restrictions apply.
© 2025 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



	Introduction
	Problem Statement
	Methodology
	Initial arrival rate matrix construction based on CVs
	Privacy-preserving aggregation of cross-company matrices
	Adding perturbations against inference attacks
	SMPC based on additive secret sharing

	Matrix completion for arrival profile estimation
	Traffic state parameter estimation based on arrival profiles

	Evaluation
	Empirical Case
	Comparison with different existing methods
	Impact of the number of CV samples
	Impact of the unit time period
	Impact of privacy-preserving mechanism
	Extension to real-time estimation

	Simulation Case
	Results of large-scale road network applications

	Privacy analysis

	Conclusion
	References
	Biographies
	Chaopeng Tan
	Jiarong Yao
	Keshuang Tang
	Jinhao Liang
	Guodong Yin


