LLM-Driven Synthesis of Concurrent Data
Structures with SMR under Weak Memory

Alexandru Dumitriu

Thesis submitted in partial fulfillment of the requirements for the degree of
MASTER OF SCIENCE
in

COMPUTER SCIENCE

Thesis committee:

Chair: Prof. dr. Arie van Deursen
Supervisor: Dr. Soham Chakraborty
Committee Member: Dr. Andreea Costea

Programming Languages Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, Netherlands

Delft
e t University of
Technology

Abstract

Developing correct concurrent data structures under weak memory models presents significant
challenges due to subtle concurrency errors arising from relaxed ordering guarantees and com-
plexities in Safe Memory Reclamation. Existing synthesis methods largely assume sequential
consistency, overlooking critical reorderings allowed by realistic architectures.

This thesis introduces a synthesis-verification pipeline that iteratively generates concurrent data
structures from partial code specifications using Large Language Models. The pipeline is ex-
panded by integrating an advanced model checker, GenMC, enhanced specifically to verify SMR
correctness under weak memory through automaton-based hazard pointer verification. This
integration provides memory safety guarantees across diverse execution scenarios.

We evaluate our approach using established concurrent data structure benchmarks, demonstrat-
ing rapid convergence to correct implementations, outperforming state-of-the-art methods. These
results highlight the pipeline’s effectiveness and scalability, illustrating its potential to support
researchers in developing novel, reliable concurrent data structures under weak memory models.

Acknowledgements

I would like to express my deepest gratitude to all the people who have supported me throughout
this journey. First and foremost, I thank Soham Chakraborty, my daily supervisor, for his
guidance and constant availability whenever I needed feedback or advice. I am also extremely
grateful to my thesis advisor, Arie van Deursen, whose insightful suggestions challenged me to
do my best work. A special thanks goes to Andreea Costea for serving on my thesis committee.

To my parents, Elena Simona Dumitriu and Eugen Dumitriu, thank you for your love, sacrifices,
and unwavering support. I could not have wished for better parents. Thank you for teaching me
that true achievement requires hard work and dedication.

Finally, to those closest to me, thank you for your love, encouragement, and for always being
there for me over the years. Your presence in my life has always been a constant source of
happiness and motivation to be the best version of myself.

This thesis would not have been possible without each of you. Thank you.

Table of Contents
[I_Introduction

|12 Background|

2.1 From Sequential Consistency to Weak Memory.

2.2 Ezecution Graphs

(2.3 C/C++ Concurrency (C11) Essentiald

2.4 Lock-free Data Structures
2.5 Safe Memory Reclamation

3 Related Worki

|8.1 Sketch-Based Synthesis with PSKETCH|

|5.2 ASP-Based Reasoning-Driven Synthesis oo

3.3 Summary

|4 Enhancing GenMC with SMIR Verification for Weak Memory Models|

14.1 Weak Memory Program Verification|

4.2 GenMO
4.3 Adapted GenM(.

4.4 Formalising SMR Correctness with Automatal

4.5 Further Extending GenMC: Integrating SMR Automata Checks (RQ1)

/.6 FEvaluation (RQI).

|15 Synthesis & Verification Pipeline
[5.1 Program Synthesis (RQ2, RQ3) . .
5.2 Functionality Testing
[5.5 Concurrency Verification (RQ4) . .
5.4 Pipeline EBvaluation|

6 Results

6.1 LLM Synthesis Accuracy (RQ3) . .
6.2 Verifier Feedback Impact (RQ4) . .
6.5 End-to-End Synthesis Performance|

(Z__Conclusion

23
23
27
28
29

30
30
31
32

36

1 Introduction

Developing concurrent data structures with specific properties presents significant challenges due
to complexities in ensuring thread safety, synchronisation, and correctness [I]. Modern hardware
architectures frequently operate under weak memory models, where reordering of memory opera-
tions invalidates assumptions commonly made under Sequential Consistency (SC) [2, 3, 4]. As a
result, even well-designed structures could have hidden race conditions or performance anomalies
that appear only under particular interleavings. Additionally, lock-free (non-blocking) designs
face difficulties in safely reclaiming memory from deleted dynamic nodes [5]. These challenges
considerably slow development processes, as researchers must rigorously verify designs across
diverse execution behaviours.

Despite advancements in automated synthesis techniques, existing approaches largely assume
sequential consistency, thereby overlooking subtle yet critical reorderings allowed under weak
memory semantics. Separately, they often fail to account for Safe Memory Reclamation (SMR),
missing opportunities for memory reuse and ABA prevention using techniques that require no
operating system support [5]. Lastly, traditional methods rely heavily on exhaustive search
or manual refinements, becoming computationally impractical for nontrivial structures involv-
ing complex memory operations. This gap reveals a significant research opportunity: efficient
synthesis of correct concurrent data structures leveraging SMR under realistic weak memory
settings. To address this opportunity, we adopt an efficient approach proven to excel at program
synthesis, namely Large Language Models (LLMs) trained on massive text and code corpora [6].

We choose Large Language Models (LLMs) trained extensively on vast text and code reposi-
tories because they inherently capture complex coding patterns, including subtle concurrency
mechanisms and memory-ordering usages [7]. These models encode both syntactic structures
and semantic behaviours from concurrent programming examples encountered during training.
Leveraging statistical inference, LLMs generate plausible code completions without explicitly
evaluating each possible permutation. By implicitly encoding realistic weak memory behaviours
through exposure to relevant concurrent code, LLMs efficiently synthesise implementations con-
sistent with weak memory semantics, significantly reducing computational complexity.

This thesis investigates the following central question:

How can Large Language Models and advanced verification tools integrate effectively to
synthesise concurrent data structure implementations targeting weak memory models?

We investigate four sub-questions to address this:

e RQ1: How can stateless model checking be adapted to verify against a specification con-
current data structures that employ SMR techniques under weak memory models?

e RQ2: What prompting techniques for LLMs should researchers use to generate functionally
correct C code?

e RQ3: How effectively can LLMs synthesise low-level concurrent C code in a zero-shot
setting?

e RQ4: How does incorporating structured verifier feedback into LLM prompts affect con-
vergence to correct concurrent data structure implementations?

To bridge this gap, we introduce a pipeline, as shown in Figure [1} that unites LLM-based
synthesis with an SMR-aware extension of a model checker to form an agentic feedback loop
tailored for weak memory. Instead of relying solely on exhaustive search or manual refinements,
our pipeline utilises the generative capabilities of LLMs to complete partially specified code. We
use GenMC, a specialised stateless model checker that we extend with SMR support, to verify

all potential program behaviours and memory reclamation operations, thus providing robust cor-
rectness guarantees under weak memory models [8]. Far from acting as a static verifier, GenMC
operates as an autonomous agent, reflecting the recent development of agentic Al in software
analysis, by monitoring synthesised code, detecting concurrency violations, and providing struc-
tured feedback via an Execution Graph for iterative improvement [9]. By combining synthesis
and verification, our pipeline substantially speeds up convergence times compared to traditional
manual or exhaustive approaches, enabling rapid exploration of novel concurrent data structures.
The full source code of the pipeline is available as an open-source artifact[]

SMR Free from |
Enhancement reclamation errors
Safe under Correct
Weak Memory Implementation

Functlonally |
Correct

Model Checker gy

Execution
Graph

Incomplete Large
Data Language swg:::écc?uy Unit Testing
Structure Model

Error or
Failure

Figure 1: Overview of the proposed program synthesis & verification pipeline.

The remainder of this thesis unfolds as follows. Chapter [2] provides background on weak memory
concurrency, focusing on the memory accesses in C/C++. Chapter [3 surveys prior work on
concurrent data structure synthesis, highlighting sketch-based and ASP-based methods and their
limitations under weak memory models. Chapter[daddresses RQ1 by detailing the enhancements
made to GenMC for verifying SMR via automaton-based reasoning, demonstrating correctness
checks on implementations like Michael and Scott Queue and Harris List [10) [I1]. Chapter
details our synthesis—verification pipeline, including LLM-based prompt strategies (RQ2) and
iterative refinement mechanisms. This chapter also defines evaluation metrics for model accuracy
and convergence rate and speed. Finally, Chapter [6] presents the empirical results: evaluating
LLM synthesis accuracy (RQ3) and measuring the impact of structured verifier feedback (RQ4),
and benchmarking our pipeline’s end-to-end performance against state-of-the-art solvers. The
thesis concludes in Chapter [7]with a summary of findings, limitations discussion, and suggestions
for future research in automated concurrent data structure design.

*https://github.com/Alexandru-Dumitriu/ProgramSynthesisVerifier

https://github.com/Alexandru-Dumitriu/ProgramSynthesisVerifier

2 Background

This section discusses the foundations upon which the remainder of this work is built. We
begin by reviewing sequential consistency and emphasising how performance-driven compiler
optimisations led to weak-memory models. Subsequently, we present execution graphs and utilise
them in a two-threaded program, showcasing both SC and non-SC behaviours. Expanding
upon this visual framework, we describe the fundamentals of the C11 model and examine a
Treiber-stack pop operation to exemplify release, acquire and relaxed synchronisations in real-
life applications. Lastly, we examine non-blocking structures and the ABA problem prior to
formalising Safe Memory Reclamation approaches that address it and their limitations. These
foundations provide the reader with the necessary terminology and formal tools to comprehend
the verification and synthesis methods presented in subsequent sections.

2.1 From Sequential Consistency to Weak Memory

Modern computer systems exploit thread-level parallelism to meet ever-growing performance and
responsiveness requirements. In concurrent programming, multiple threads execute simultane-
ously, often interacting through shared variables in memory. The interactions between these
threads can result in subtle and complex behaviours, making the correctness verification of
concurrent programs a challenging task, especially when these interactions are influenced by
hardware caches and compiler optimisations.

Sequential Consistency The simplest and most intuitive theoretical model for reasoning
about concurrent programs is sequential consistency, first formalised by Lamport, and it remains
the conceptual baseline used in most introductory texts [I2]. Under sequential consistency, the
memory operations of all threads can be understood as occurring in a single, global total order
consistent with the program order of each individual thread. Therefore, verifying a concurrent
algorithm reduces to checking one total order rather than many possible reorderings. This
makes reasoning about correctness relatively straightforward, as programmers can reason about
one interleaved sequence of operations, without having to account for the reorderings that real
machines may perform.

Weak Memory Models However, practical considerations and performance optimisations in
modern hardware and compilers typically relax these strong ordering guarantees, resulting in
weak memory models. Under weak memory, different threads can observe memory operations in
different orders, due to various forms of allowed reordering and buffering at both the hardware and
compiler levels. Examples of weak memory models include TSO (Total Store Order, used by Intel
architectures), ARMv8, POWER, and more abstract models used for language standards such
as the C/C+-+ memory model (C11/RCI11) [3, 4, 2, [13]. Such models bring further complexity,
as concurrent programs may display erroneous behaviours that are impossible under SC. We
formalise these relaxed behaviours and illustrate their consequences with an example program
in the following subsection.

2.2 Execution Graphs

Execution graphs provide a visual representation of a concurrent program’s behaviour under a
particular interleaving and memory model. Each graph shows the execution as a set of events
(reads and writes) together with edges that capture the ordering between those events. By
inspecting the shape of the graph, whether edges form cycles or whether a read observes a given
write, we can decide if a behaviour is allowed or forbidden by the chosen memory model.

Execution Graph Semantics An ezecution graph G is a pair G = (E, R).
e [is a finite set of events. We write an event as (i,n,{) where
— i € N is the thread identifier,
— n € N is the position of the event in that thread’s program order,

— £ is a label such as W (X, 1) for a write of value 1 to X or R(Y,0) for a read of value
0 from Y.

e R is a set of binary relations over F. In this section we use only po and rf, described in
Table [T, reserving additional relations for Section [£.3]

Relation Meaning

po Program order preserves the order in which events appear in the same thread’s
source code, drawn as a grey arrow.

rf Reads-from links a read to the write whose value it observes, drawn as a green
arrow.

Table 1: Execution graph relations used in this section. Other relations will be introduced in
the subsequent sections as required.

Weak Memory Program Example Figure [2] shows a weak-memory program on the left.
The program consists of two threads: thread tA writes to X and then reads from Y, while thread
tB writes to Y and then reads from X. The surprising result a = 0 A b = 0, shown on the right, is
impossible under sequential consistency (SC), as it would require that both reads occur before
their corresponding writes in a way that cannot be linearised. Specifically, for a = 0, the read
from Y must happen before B1, and similarly for b = 0, the read from X must happen before A1,
which creates a cyclic dependency. However, under a weak memory model, such as C11, compilers
and processors are allowed to reorder instructions across different memory locations [13]. This
makes the outcome a = 0 A b = 0 possible if, as in the depicted example, the write and read in
tA and tB are reordered.

0: [X =Y =0]
00 X=Y=0
tA tB
A2:a=Y B2: b=X TP‘? PO

A2: R(Y,0) «—— B2: R(X,0)

Figure 2: Weak Memory Program Example (left) and a Non-SC Execution Graph (right). tA and
tB represent two concurrent threads. 0, A1, A2, B1, B2 represent executed events. Program
order (po) edges are drawn as grey arrows, while reads-from (rf) edges are rendered in green to
emphasise data dependencies. Solid black arrows indicate the execution order. We write W(X,
1) for a write of value 1 to X and R(Y, 0) for a read of value 0 from Y.

) [X =Y =0] 0: [X =Y =0] 0: [X =Y =0]

N / /

Al: W(X,1) Bl: W(YV,1) | AL/W(X,1)Bl: W(Y,1) Al: W(X,1) > Bl: W(Y,1)
rf
l)po) M@” lpo%@o

: R(X,0) A2: R(Y,0) X, 1) < B2

Figure 3: The Execution Graphs of the program depicted in Figure [2| resulting in the 3 possible
outcomes under Sequential Consistency. The semantics used are the same as in Figure @

By contrast to the previously explained execution graph in Figure [2| which reflects non-SC be-
haviour, Figure [3] shows three valid execution graphs under SC, corresponding to the outcomes
a=1Ab=0,a=0Ab=1and a =1Ab=1. Each of these preserves the thread-local program
order and adheres to a global execution order that avoids cycles. These examples illustrate how
execution graphs can capture both allowed and disallowed behaviours depending on the memory
model, highlighting the importance of verification in weak memory settings.

2.3 C/C++ Concurrency (C11) Essentials

This subsection clarifies the necessary concepts for understanding the ordering guarantees in-
volved in the synthesised implementations, as the code generated with the assistance of LLMs
is reliant upon C11 memory-order semantics. We begin by defining atomic operations and the
memory-order tags, subsequently applying these concepts to the Treiber-stack pop implementa-
tion outputted by our pipeline.

Atomicity & RMW Operations In C11, an atomic operation on a shared variable behaves
as a single, indivisible event: no other thread can observe a partial result. A common example
is a read-modify-write (RMW) instruction, such as

atomic_compare_exchange_strong_explicit(&x, &expected, desired, mo, moFail),

where:

x is the target atomic variable.

expected holds the value we believe x currently has.

desired is the new value we want to store if x equals expected.

e mo and moFail are memory-order tags that specify ordering guarantees on success or failure.
These tags will be explained in the following paragraph.

Conceptually, an RMW event executes in three logical stages:

read old value — compute new value — write new value.
—_— —_———

step 1 st(;[,) 2 step 3

To every other thread, these three steps appear to occur simultaneously, preventing any inter-
leaving that could observe a half-update. As a result, once the RMW operation completes, either
the old value remains (if the comparison failed) or the new value is fully in place, with no in-
termediate state visible. This indivisibility is the basis for building higher-level synchronisation
guarantees using memory orders.

Release
Non-Atomic —— Relaxed Release-Acquire —— SC

Acquire

Figure 4: Memory-access orderings under C11, from weakest to strongest guarantees.

Memory Accesses In concurrent C programming, threads communicate through shared mem-
ory using operations such as reads and writes. Each atomic operation sets a memory order that
controls how its effects are seen by other threads, an essential aspect for ensuring correctness
in lock-free data structures. Figure [4] outlines the C11 memory orders, which can be further
described from the weakest to the strongest as follows:

Relaxed: enforces only atomicity of the single operation, with no ordering or visibility
guarantees beyond preventing incomplete reads or writes.

e Acquire: prevents any subsequent memory accesses (reads or writes) in the same thread
from being reordered before this acquire operation; it synchronises with a matching Re-
lease store in another thread, ensuring visibility of prior writes.

e Release: prevents any preceding memory accesses (reads or writes) in the same thread
from being reordered after this release operation; it ensures that all prior writes become
visible to any thread that performs a matching acquire load.

e Acquire-Release: combines acquire semantics on load and release semantics on store in
one operation that prohibits reordering of memory accesses around it.

e Sequentially Consistent: provides the strongest guarantee by enforcing a single global
order of all SC-ordered operations across all threads, making the execution appear as if
every operation took effect in some interleaved total order consistent with program order.

Concurrent Data Structure Implementation Example In our pipeline, the user can sup-
ply a partial Treiber-stack pop implementation with holes (marked in yellow) where operations
with important memory-order annotations belong. The synthesis tool then fills these holes
(shown in orange) with the correct atomic operations and memory-order tags. Algorithm [1] il-
lustrates one such input/output pair: the initial part marks with “7 77 the unknown code, and
the following lines showcase how our tool populates the hole.

Algorithm 1: Treiber-stack pop with a user-provided “hole” () and synthesised

operations with memory-order annotations ().
1 Function pop
2 s : mystack_t*
3 pointer oldTop, newTop, next;
4 node_t *node;
5 bool success;
6 int val;
7 while true do
// hole: missing memory operations (marked with ?27%)
8
// hole filled: acquire load from top
9 acquire);
10 if then
11 ‘ return 0;
12 ;
// hole filled: relaxed load from node->next
13 relaxed);
14 ;
// hole filled: compare-exchange with release and relazed
15
release, relaxed);
16 if then
17 ‘ break;

18 val = node->value;

// Reclaim the used slot
19 reclaim(get_ptr(oldTop));
20 return val;

Next, we deep dive into the specific justifications for each memory-order tag in the loop, ex-
plaining how each annotation affects the visibility of shared variables, enforces proper ordering
of operations, and ultimately ensures a correct pop function call in C/C++.

1. Acquire load on top:

acquire

We use acquire here to ensure that, if another thread has performed a corresponding release
store to top, then all writes that preceded that release are visible in this thread. This can be
translated into the following behaviours:

e If Thread A successfully published a new head pointer newHead (e.g., fully executing
atomic_store_explicit(&s->top, newHead, release)), then Thread B’s execution of
atomic_load_explicit(&s->top, acquire) is guaranteed to observe newHead (or a later
pointer). Without acquire, Thread B could read an outdated or partially updated node,
leading to incorrect data retrieval or even undefined behaviour.

e The acquire semantics introduce a synchronisation point: no memory access in the current
thread can be reordered before this load. This guarantees that subsequent lines (such as
reading &node->next) occur only after the correct pointer is obtained.

2. Relaxed load on node->next:
relaxed

Once we have performed the acquire load on top, we already know that all writes to node->next
made by the thread that inserted the node are visible, leading us to:

e A relaxed load suffices to read node->next because no further inter-thread ordering is
required due to the earlier acquire having already synchronised with the publisher’s release,
guaranteeing visibility.

e Using relaxed here avoids imposing extra memory-fence overhead, improving performance.

3. Compare-and-exchange on top with release/failure-relaxed:

release, relaxed

In this final step, we attempt to atomically “pop” the node by replacing the head pointer 0o1dTop
with newTop. We choose:

e release on the successful store. This ensures that all memory writes that occurred before
this compare-and-exchange become visible to any thread that later performs an acquire
load on top. Additionally, the release prevents any preceding memory operations from
being reordered past the successful store, therefore sharing the popped state with the
other threads.

e relaxed on failure. If the compare-and-exchange fails (because another thread popped the
node first), we do not require any additional ordering and we just retry the loop. Using
relaxed in the failure case minimises unnecessary fences.

By filling the hole with precisely these memory orders: acquire for the head load, relaxed for
reading the next pointer, and release (with relaxed on failure) for the compare-and-exchange,
we guarantee that each pop operation synchronises correctly with concurrent push or pop oper-
ations on other threads. This input/output example highlights the complexity of the task our
synthesis pipeline approaches, transforming a partial Treiber-stack pop function into an C11-
correct implementation.

2.4 Lock-Free Data Structures

A shared object is considered lock-free (or non-blocking) if, when multiple threads concurrently
attempt operations on the object, the system as a whole ensures that at least one thread com-
pletes its operation in a finite number of steps, even if other threads experience arbitrary delays
or failures [14]. This property prevents lock-free objects from deadlocking, since at least one
thread always makes headway regardless of others’ states. Furthermore, lock-free implementa-
tions often deliver strong performance under high contention, as delayed or stalled threads do
not block overall progress. In the dynamic setting, lock-free data structure implementations for
stacks or queues combine the non-blocking properties with the flexibility of being unbounded,
and several designs have been proposed to realise these benefits in practice [10, 111 [15].

The ABA Problem Most lock-free objects rely on the atomic compare-and-swap (CAS)
instruction, such as atomic_compare_exchange_strong in Cl1, to perform updates without
locks [16]. CAS, a specific type of RMW, atomically reads a value, compares it to an expected
value, and only writes a new value if the comparison succeeds. However, CAS is susceptible to

the ABA problem: if a location which reads value A is changed to B by another thread, and then
changed back to A before the original CAS, the operation will erroneously succeed, considering
no change occurred [I7]. One case in which this issue arises is when removing an item from a
lock-free list: the node is deallocated, and a new node is later allocated at the same address (due
to most-recently-used memory allocation). In that scenario, a pointer to the new item equals
the pointer to the old one, causing an ABA failure. Consequently, even though lock-free designs
avoid deadlock and provide system-wide progress, they must address ABA to prevent subtle
correctness violations.

write B write A Thread 2
read A compare } Thread 1
A B A A
t1 t2 t3 b4 Time

Figure 5: Timeline of the ABA scenario on a shared pointer. Thread 1 reads A at t1, Thread 2
changes A—B at to, then B—A at t3, and Thread 1’s compare at t4 still sees A.

To help paint a clearer picture, Figure [5] illustrates a typical ABA situation on a shared pointer
ptr. Thread 1 examines the pointer at time t; and sees the value A. Thread 2 performs two
modifications before Thread 1 continues to do a CAS. At time to, it changes ptr to B, and at
time t3, it changes it back to A. Thread 1 resumes at time t4 and does its CAS. It still sees A, so
it thinks that ptr was never changed. The pointer has actually changed twice, which could mean
that Thread 1 may access a node that has already been removed or repurposed. This hidden
change can lead to memory corruption or logical errors in the data structure, since Thread 1
operates under the false assumption that no other thread intervened.

2.5 Safe Memory Reclamation

As previously mentioned, the design of lock-free data structures offers robustness in the face
of concurrent operations and thread failures. However, these benefits come at a significant cost
regarding dynamic memory management. In contrast to lock-based designs, where mutual exclu-
sion ensures safe node reclamation, lock-free algorithms must coordinate memory reuse without
relying on external synchronisation. The fundamental challenge is ensuring that memory re-
claimed by one thread is no longer accessible to others. This is the domain of SMR, techniques,
which provide mechanisms to safely reuse memory without introducing use-after-free memory er-
rors (dereferencing a pointer whose memory has already been freed) caused by ABA sequences [5].

An effective SMR technique must ensure that no node is reclaimed while it may still be accessed.
In lock-based algorithms, this guarantee is trivial: only the thread holding the lock can safely free
removed nodes. In lock-free algorithms, however, the lack of mutual exclusion means there may
be a delay between when a node is removed from the shared structure and when other threads
stop accessing it. A thread might have read a reference to the node just before it was removed,
potentially leading to a use-after-free memory error if reclamation is not properly coordinated.
SMR schemes address this by delaying reclamation until safety can be established. However,
designing SMR mechanisms that are both correct and performant is notoriously difficult and
remains an active field of research [18| [19] 20, 21].

Hazard Pointers Among the earliest and most influential practical SMR schemes is Michael’s
hazard pointer algorithm [5]. Hazard pointers allow threads to explicitly publish the addresses
they intend to access, preventing those nodes from being reclaimed prematurely. The protocol
follows a well-defined lifecycle, illustrated in Figure [6} a node is allocated, then the thread
protects it by storing its address in a hazard pointer; once the node is unlinked from the shared
structure, it is unprotected and retired. Only after a global scan confirms that no thread’s
hazard pointer protects it can the node be reclaimed. While hazard pointers effectively prevent
ABA by delaying reuse, they have limitations in more complex lock-free designs. In particular,
optimistic traversal can break the assumptions needed for safe reclamation.

[Allocate]—)[Protect]—)[Access]—)[UnproteCtH Retire]—)[Scan]—)[Reclaim]

Figure 6: Lifecycle of a hazard pointer-protected memory access. Memory is only reclaimed after
a full scan of all thread-local hazard pointers to ensure it is no longer protected.

Limitation - Harris List One data structure using optimistic traversals is the hazard-pointer
variant of the Harris linked list, a widely studied lock-free set that uses pointer marking for
logical deletion [I1]. Although hazard pointers are intended to ensure memory safety, the original
Harris design allows nodes to be traversed even after being logically marked for deletion, but
before being physically unlinked. As shown in Figure [7 if one thread traverses into a chain
of logically deleted nodes while another thread retires and reclaims those same nodes, the first
thread may access reclaimed memory, causing the previously described use-after-free error. Prior
work identified this issue and proposed fixes that make use of other techniques alongside hazard
pointers, highlighting the limitations of this SMR algorithm [22]. The verification component of
our tool detects this violation, and an in-depth investigation is conducted in Section 4.6

Thread 1 (Traversal)

N\

N1

Y
\4

N2

N4

Thread 2 (Retire & Reclaim N3)

Figure 7: Concurrent traversal and reclamation in a Harris list: Thread 1 accesses N3 during
optimistic traversal after Thread 2 has retired and reclaimed it being a logically deleted node.

10

3 Related Work

Automating the synthesis and verification of concurrent data structures has been approached
from multiple angles, each aiming to reduce the extensive manual effort typically required to en-
sure thread safety, synchronisation, and correctness. Existing techniques can be broadly grouped
into traditional methods, such as sketch-based concurrency synthesis, exemplified by PSKETCH,
and reasoning-driven synthesis via Answer Set Programming (ASP), as well as more recent Al-
based approaches using LLMs [23, 24, [9]. Both PSKETCH and ASP-based methods focus on
concurrency guarantees under SC, and cannot synthesise implementations with the memory or-
derings shown in Algorithm [I] due to the explosion of the search space in terms of the number
of possible interleavings. By contrast with both approaches, our work specifically targets con-
currency design under weak memory models, and, to the best of our knowledge, no existing tool
currently specifically addresses the synthesis of concurrent data structures in this setting.

3.1 Sketch-Based Synthesis with PSKETCH

PSKETCH extends the original SKETCH language and synthesis framework to handle concur-
rency by allowing developers or concurrency researchers to write partial programs (sketches) in
which critical operations, such as atomic updates, lock placements, and pointer manipulations,
remain unspecified [23]. These deliberately incomplete portions of code are called holes, and
each hole indicates a missing expression, statement ordering, or memory-access pattern that the
synthesis engine must resolve. Rather than forcing the user to fully explain where and how
concurrency is enforced, the PSKETCH language provides additional constructs for automat-
ically filling in these holes. This mechanism relieves the programmer from detailing low-level
synchronisation at every step, while retaining control over the rough outline of the algorithm.

Once a sketch is provided, PSKETCH systematically completes the holes via counterexample-
guided inductive synthesis (CEGIS). The user defines a high-level concurrency structure (such as
a lock-free queue) without specifying the precise ordering or arrangement of operations. In each
iteration, the system enumerates candidate completions for the holes and checks them against
an SC-based correctness specification using a model checker. If a candidate fails due to a data
race, memory corruption, or deadlock, the model checker returns a counterexample execution
trace. PSKETCH uses this trace to prune large parts of the search space and refine subsequent
attempts, converging on a valid solution in relatively few iterations.

Several key innovations make this feasible. First, reqular-expression generators let users specify
families of pointer expressions or synchronisation steps as a bounded grammar. Second, reorder
blocks allow statement sequences to be permuted in any order the synthesiser deems correct,
which is particularly useful when deciding the exact order in which locks, unlocks, or atomic
instructions should appear. Third, concurrency primitives (e.g. threads, lock/unlock) are com-
piled into guarded atomic regions that the model checker analyses for concurrency errors. These
constructs can collectively represent extremely large candidate spaces (10% order or more).

Limitations While this approach drastically reduces the manual burden of enumerating con-
currency strategies, particularly in designs like lock-free queues, it also has recognised limita-
tions. PSKETCH assumes sequential consistency when verifying each candidate, thus omitting
reorderings permitted by weaker memory architectures. Moreover, although CEGIS prunes fail-
ing candidates, the initial candidate pool can still be immense, and generating or compiling the
resulting verifiers for each iteration may become expensive in large-scale sketches. Nonetheless,
PSKETCH has demonstrated an ability to synthesise challenging concurrent data structures
from concise partial descriptions, highlighting the power of holes: developers specify only the
high-level concurrency insights and rely on the synthesiser to fill in crucial details.

11

3.2 ASP-Based Reasoning-Driven Synthesis

A second branch of work explores how reasoning frameworks such as Answer Set Programming
(ASP) can synthesise thread-safe code directly from sequential data structure definitions. In
the methodology of Varanasi et al., the user encodes structural invariants (e.g., reachability
or acyclicity) and concurrency axioms (e.g., when a node must be locked before modification)
as first-order logic rules [24]. These axioms capture both the sequential semantics of the data
structure and the thread-interference scenarios that arise when multiple operations are executed
in parallel. ASP solvers, which can efficiently explore large combinatorial spaces under logical
constraints, use these axioms to infer synchronisation strategies, such as lock placements or
atomic updates, that uphold the specified invariants under SC-based interleavings.

A key insight is that every sequential step (e.g., linking a new node into a list) can be lifted into
a concurrent step that incorporates additional logic. If the solver identifies that an update risks
being broken by concurrent mutations, it prescribes lock acquisition or RCU-style validation to
safeguard the data structure invariants. In essence, this framework systematically emulates the
expert reasoning required to ensure that a pointer-based structure can withstand overlapping
inserts, deletes, and lookups. Tools like Locksynth automate these reasoning tasks by taking
high-level knowledge about pointer representations, concurrency axioms, and sequential code
blocks, then outputting a correct concurrent variant that acquires the right number of locks or
performs the right validations.

Limitations While ASP-based synthesis can thereby uncover delicate concurrency flaws and
prove correctness for highly optimised data structures, creating the encodings demands con-
siderable low-level expertise. Detailed axioms must describe pointer reachability, permissible
reorderings of node modifications, and potential concurrency hazards such as stale references
or concurrent deallocations, all of which require a deep understanding of both concurrency the-
ory and the target data structure. Moreover, as with sketch-based techniques, the default ASP
solver operates under sequential consistency assumptions and does not automatically account for
weaker memory models. Although extending the axioms could incorporate additional reorder-
ings, it increases the complexity of the logical specification and requires further architectural
knowledge. Nonetheless, for researchers aiming to develop novel data structures, ASP reasoning
offers a powerful way to derive concurrency safety without manually enumerating or verifying
every possible synchronisation scheme.

3.3 Summary

Sketch-based and ASP-driven concurrency methods lead to a decrease in the manual effort in-
volved in designing sophisticated data structures, but their reliance on sequential consistency
leaves them vulnerable to reordering issues on real hardware. Moreover, these frameworks typi-
cally employ exhaustive or combinatorially large explorations whose complexity escalates drasti-
cally for more advanced designs, despite pruning heuristics. By contrast, our approach integrates
a weak memory model verifier to overcome the SC limitation and ensures correctness under re-
alistic reorderings, while an LLM drives a dynamic exploration of the search space. Rather than
exhaustively enumerating thousands of partial programs or carefully crafting specialised axioms,
we iteratively refine designs based on discovered concurrency violations, thereby avoiding the
exponential increase in search and making the synthesis pipeline more scalable and broadly
accessible.

12

4 Enhancing GenMC with SMR. Verification for Weak
Memory Models

In order to thoroughly address our first research question (RQ1): How can stateless model
checking be adapted to verify against a specification concurrent data structures that employ SMR
techniques under weak memory models?, this chapter is structured to provide a clear progres-
sion from foundational concepts to specific implementations and results. The following sections
comprehensively explore the background of program verification under weak memory, the ca-
pabilities and architecture of GenMC and of the adapted GenMC model checker, formalising
SMR through automata, and our novel integration of this automaton into GenMC |8, 25| [18].
Finally, we conclude with experimental validations that demonstrate the effectiveness of our
enhancements.

4.1 Weak Memory Program Verification

Verifying concurrent programs under weak memory models is challenging due to the relaxed
ordering guarantees these models offer. Traditional SC assumptions no longer hold, as previously
detailed in Section requiring sophisticated automated verification approaches.

Fuzzing Automated verification primarily involves fuzzing and model checking. Fuzzing exe-
cutes the program numerous times with random inputs or thread schedules, efficiently discovering
certain types of errors [26, 27]. However, fuzzers provide no exhaustive guarantees and may miss
infrequent or subtle concurrency issues.

Stateful vs. Stateless Model Checking In contrast, model checking systematically explores
all potential program behaviours under a specified memory model, guaranteeing exhaustive veri-
fication [2,128]. Model checkers can be categorised as stateful or stateless. Stateful model checkers
maintain explicit records of previously explored states to avoid redundancy. Although effective,
their applicability is severely limited by state space explosion, especially under weak memory
conditions, making them impractical for large-scale verification tasks.

Stateless model checkers address this issue by systematically enumerating executions without
explicitly storing the state [29, B0]. They utilise execution graphs, which represent program
behaviours through nodes (events such as loads and stores) and edges (relations like po and rf),
as outlined earlier in Section Stateless model checkers efficiently navigate these graphs to
thoroughly explore allowed interactions under weak memory models.

4.2 GenMC

GenMC is an advanced stateless model checker explicitly developed for weak memory concurrency
verification [§]. It incrementally constructs execution graphs from concurrent C/C+-+ programs,
continuously verifying the consistency of each execution under the chosen weak memory model
(e.g., RC11). GenMC keeps track of alternative execution scenarios arising from different rf
choices, maintaining these alternatives in a structured work queue. Rather than storing separate
graphs for every possible execution, GenMC records only the read—write pairs that must be
revisited, significantly reducing memory overhead. Its revisit-based exploration uses the work
queue to record read—write pairs and distinguishes forward revisits (triggered by new reads) from
backward revisits (arising from writes), marking the latter as explored to prevent redundant
execution. By pruning redundant revisits, GenMC achieves optimality (each execution is visited
exactly once) while maintaining soundness and completeness in its verification [§].

13

Verification Algorithm GenMC begins with a graph containing only the initial writes and
memory state. At each step, it chooses the next program event (a write or a read) and adds it
to the graph, checking consistency under RC11. Whenever a load can legally observe multiple
prior writes, GenMC leaves the current rf edge in place and enqueues any alternative write(s) as
revisits. Each revisit is tagged as a forward or backward revisit. Forward revisits, once processed,
are removed from the queue; backward revisits are marked “explored” but remain in the queue
until all intervening events have been revisited to avoid duplicate exploration. This loop repeats
until the work queue is empty (all rf choices have been tried) or a protocol violation is detected.

1 [X

l

Q: W(X,1); Q: W(X,1);W(X,2);

3: [X =0] 4: [X =0]
W(X,1) W(X,2) W(X,1) W(X,2)
Q: W(X,2); Qo

Figure 8: Step-by-Step Example of GenMC building an Execution Graph. Each stage is num-
bered (1-4), the new events or changes are highlighted with orange and the exploration queue is
continuously updated.

Step-by-Step Example To illustrate how the verification algorithm works in practice, we
now examine a simple three-thread example operating on a single shared variable z, as shown in

Figure [8}

1. Initially, only the write W (x, 0) is present in the graph. Thread T1 issues W (z, 1), and then
Thread T2 performs R(z). Under the default rf edge, T2’s read observes W (x,0). Because
W (z,1) is also a legal source for that read, GenMC enqueues the pair (R(z), W(z,1)) as
a forward revisit.

2. Next, Thread T3 performs W (z,2). Since this new write can also satisfy T2’s earlier read,
GenMC enqueues (R(x), W(x,2)) as a backward revisit.

3. GenMC then dequeues the first revisit, (R(x), W(x,1)). It updates T2’s rf edge to point
to W(xz,1) and re-executes all events that follow T2’s read under this modified rf. No
additional revisits arise from this schedule, so (R(x), W (x, 1)) is removed from the queue.

4. Finally, GenMC dequeues (R(z), W (z,2)), switches T2’s rf to W (z, 2), and re-executes the
suffix once more. At this point, the work queue is empty, and all three possible read-from
choices W(z,0), W(x,1), and W(z,2) have been explored exactly once.

This example demonstrates how GenMC systematically explores every possible rf choice without
revisiting the same execution twice. By enqueuing only the read—write pairs that represent alter-
native observations, GenMC bounds memory usage and avoids unnecessary graph duplication.

14

4.3 Adapted GenMC

Building on the stateless execution model earlier described, Henkes extended GenMC to support
high-level verification of concurrent data structures [25]. This adaptation introduced function-
level reasoning on top of the original instruction-level semantics of GenMC. By lifting verification
to the level of function calls, Henkes’s tool made it possible to express and check behavioural
properties like mutual exclusion and exclusive communication patterns between threads. These
properties are particularly relevant for verifying the correctness of data structures such as mu-
texes, stacks, and queues under weak memory models, whilst unlocking the possibility for future
improvements such as SMR Verification.

Function-Level Semantics. The key insight in Henkes’ approach is composing instruction-
level relations, such as reads-from (rf) and program order (po), to define abstract function-level
relations. These include communication order (com), synchronization order (so), and local
happens-before (lhb). To construct these, the checker tracks the start and end of function calls
using synthetic marker instructions. It then builds execution graphs in which each function call
is treated as a distinct node. Table [2] summarizes these function-level relations alongside the
original po and rf, illustrating how com, so, and |hb extend the base instruction-level semantics.

Relation Meaning

po Program order preserves the order in which events appear in the same thread’s
source code.

rf Reads-from links each load (read) event to the specific store (write) event whose
value it observes, drawn as a green arrow.

com Communication order connects function-call events that exchange data or hand
off ownership. It links a call that publishes a result to a call that consumes it.

so Synchronization order is the union of po and com restricted to function-call

events. It captures the cross-thread happens-before relationships induced by com-
munication. In practice, any path consisting of po and a com edge contributes to so.

lhb Local happens-before captures causal order between function-call events via po
or so; it is the transitive closure of po U so.

Table 2: Extended set of execution-graph relations after introducing function-level semantics.

Verification Capabilities This adaptation is particularly interesting for our context due to
its correctness guarantees and its flexibility. Henkes demonstrates that, with minimal overhead,
the tool can accommodate an extensive range of concurrent implementations, from basic mutexes
to complex dynamic queues, without any additional modifications to the verification logic. These
data-structure specifications, such as mutual exclusion or exclusive communication, are defined
directly in terms of the function-level relations (com, so, lhb), allowing high-level properties to be
verified. Our tool will leverage these formal specifications extensively when verifying each data
structure under weak memory, ensuring that correctness is enforced through the same relation
framework. This generality, coupled with the extensibility of the function-level abstraction,
positions the tool as a versatile backend for verifying not just classic safety properties but also
more domain-specific attributes. For example, the ability to retain function boundaries through
inlining is crucial for analyses that depend on whole-function reasoning, such as SMR, which
we explore later in this chapter. Integrating Henkes’ adaptation into our pipeline provides us
with a verification framework that is easily expandable and sufficiently robust to support the
verification of intricate behaviours across various concurrency scenarios. For further details on
the specifications, the reader is referred to Henkes’ thesis [25].

15

<0, 1> threadW:
(1, 1): Rna (param[0], 4) [(5, 6)] main.c:53
(1, 2): Wrlx (x[4]1, 46) main.c:57
push3 (1, 3): F_CALL
push3 (1, 4): Rna (free_lists[4][0], 0) [(5, 5)] my_stack.c:35
<0, 2> threadW:
<0, 3> threadR:
<0, 4> threadR:
<0, 5> threadRW:
(6, 1): Rna (param([4], 4) [(0, 48)] main.c:80
(5, 2): Wrlx (x[4], 46) main.c:84
push2 (5, 3): F_CALL
push2 (5, 4): Rna (free_lists[4][0], 17) [(O, 32)] my_stack.c:35
push2 (5, 5): Wna (free_lists[4][0], O) my_stack.c:38 ‘
push2 (5, 6): Wna (param[0], 4) my_stack.c:93 ‘

Listing 1: GenMC output trace for the Treiber-stack implementation which detects a non-atomic
race. The highlighted events (1, 4) and (5, 5) are conflicting.

GenMC Trace & Function-Level Execution Graph Example To illustrate how Casper’s
adaptation detects weak-memory conflicts at the function level, consider the Treiber-stack im-
plementation [15]. In Listing GenMC’s execution trace for this implementation is shown, with
the two conflicting events (1,4) and (5,5) highlighted in yellow. These highlighted lines reveal
that the read in push3 (thread 1, event (1,4)) observes a write performed by push2 (thread
5, event (5,5)), thereby exposing a non-atomic race on free_lists[4][0]. In particular, this
conflict arises because event (5,5) is a non-atomic write (Wna) while event (1,4) is a non-atomic
read (Rna) on the same memory location without any synchronisation.

com
Thread 5! \Thr\oad 1!
push2 push3
(thread RW, event (5,3)) lhb (thread W, event (1,3))
; § / |

Figure 9: Function-level Execution Graph depicting the GenMC trace of Listing |l} Each node
represents a function-call event. The grey dotted arrows represent the threads the functions
were executed on, red arrows are com, light-blue arrows are so, and deep-blue arrows are |lhb, all
flowing from push2 to push3.

Figure [0 translates this trace into a function-level execution graph: each node corresponds to
a F_CALL event (push2 and push3), and the com edge from push2 to push3 directly reflects
the function-level read—from relationship in the trace. The so arrow follows because the com-
munication enforces a happens-before ordering between these function calls to ensure correct
functionality, and the lhb edge is simply the transitive closure of po U so at the function level.
The data structure was being checked against the weak-stack specification in terms of the previ-
ously mentioned relations, and no issues were discovered up to the point of this non-atomic race
in terms of respecting the data-structure-specific rules defined by Henkes [25].

16

4.4 Formalising SMR Correctness with Automata

The correctness of SMR techniques can be expressed as a property over execution traces: a mem-
ory address may only be reclaimed once it is provably unreachable and unprotected by any thread
[18]. Verifying this property under relaxed memory models requires a formal representation that
can track the reclamation-relevant lifecycle of each memory address.

To this end, Wolff adopts a finite-state automaton formalism that models the admissible state
transitions of memory addresses within SMR protocols [I§]. Each address is associated with an
instance of the automaton, and transitions are triggered dynamically during program execution
in response to key operations such as pointer protection, retirement, and reclamation. This
approach enables compositional and scalable verification by separating data structure logic from
SMR safety enforcement.

Automaton Model To express the correctness criteria for Safe Memory Reclamation (SMR),
each dynamically allocated memory address is tracked using a finite-state automaton. The
automaton serves as a monitor: it consumes a stream of SMR-relevant events and rejects only
those traces where memory is not reclaimed safely. Each address is associated with a separate
automaton instance that records which threads have protected, retired, or attempted to free the
address over time.

Formally, an SMR automaton is a labeled transition system A4 = (Q, %, 0, qo, F'), where:

e (is a finite set of abstract states representing the lifecycle of a memory address (e.g.,
ALLOCATED, RETIRED, PROTECTED)).

3 is the event alphabet, consisting of SMR actions: Protect;, Unprotect; and Retire.

0 C @ x X x @ is the transition relation.

qo € @ is the initial state, typically ALLOCATED.

F C @ is the set of accepting (safe) states, often defined implicitly.

Event Semantics The SMR automaton events are generated by instrumentation inserted at
relevant program points:

e Protect;(n) — issued when hazard pointer i stores n.
e Unprotect;(n) — issued when hazard pointer i clears or overwrites store.
e Retire(n) — issued when a node n is removed from a shared data structure.

These events form a trace 7 € ¥* per address, per thread, and A accepts 7 iff the SMR usage of
the address is correct. Any trace that leads to an illegal operation (e.g., a retire operation while
a thread still protects the node) is rejected.

Example of SMR Automaton Trace To illustrate how the SMR automaton in Figure
enforces safety under weak memory, consider a single address n and this sequence of SMR events:

1. From the initial state ALLOCATED = sg, a Protecty(n) operation drives the automaton to
PROTECTED(= s19.

2. Next, an Unprotecty(n) moves the automaton from s;9 to UNPROTECTED = sq1.

3. Then, a Protect;(n) transitions from s1; into PROTECTED; = s13.

17

At this point, n is still unretired but protected by HP1. Under sequential consistency, no further
Protecty should occur until n is unprotected by HP1 or has been retired. However, under a weak
memory model, a second Protecty(n) call (from a later function invocation) might be reordered to
execute before the Unprotect;. Since the automaton has no transition from s;3 on input Protecty,
attempting that operation in state s13 is undefined. Consequently, the automaton immediately
rejects the trace, signaling an unsafe pattern where HPO tries to protect an address held by HP1.

Thread teurrent
Address acurrent —— — 1Protectd. ™ —
- ~
P ~

- S~
/ \
Ve P ~ IProtect0 T~ L N

—

L ~

_1-> S9 S10 s1 - S12
Protect0 Retire

Protectl

Protectl

Protectl

o Yo "c

Unprotectl

Unprotectl

Protectl

S16 - s17
Retire
I I
| !Protect0 | !Protect0
Unprotectl |
s18 m »{ S20
Unprotectl Retire
\
\
Protect0 Protect0 Protect0 \
\
, \
ProteclU
|
s21 523
Unprotectl \\J | Retire I
/
/ /
/ /
/ /

/

‘ /

Figure 10: SMR Verification Automaton for two Hazard Pointers implementations designed by
Wolff [18]. The automaton models the state evolution of a memory address in one thread. Each
state has a state of accepted transitions Protect;, Unprotect; and Retire marked through
labeled arrows of different colours. Each state can also have Protect;!, marked with dotted
lines, as an accepted transition which signals that the memory address can be protected again
with the respective HP.

18

4.5 Further Extending GenMC: Integrating SMR Automata Checks (RQ1)

To verify SMR correctness under weak memory models, we extend GenMC with support for
SMR automata checks. This integration enables the model checker to enforce memory safety
properties over dynamically reclaimed nodes by observing protection and reclamation operations.

Extending Function-Level Semantics Our approach builds on the function-level abstrac-
tion introduced by Henkes, which lifts GenMC’s semantics from instruction-level events to struc-
tured function invocations [25]. This abstraction is crucial for SMR verification: hazard pointer
operations such as protect, unprotect, and reclaim typically occur within larger functions.
Tracking these operations at the function level allows us to directly interpret program behaviour
as automaton transitions, using the SMR model introduced earlier.

Each dynamically allocated memory address is associated with an instance of the SMR automa-
ton. As the program executes, GenMC monitors SMR-relevant function calls and generates
corresponding events (Protect;, Unprotect;, Retire). These events are grouped by memory
address and by thread. For each address, we reconstruct a per-thread trace and evaluate it
against the automaton, ensuring that all transitions are legal and reflect safe memory usage.

Implementation Sketch To integrate SMR automaton verification into GenMC, we proceed
in three main phases: identifying SMR events at the function level, grouping those events by
memory address, and then simulating each address’s event sequence against the automaton from
Figure Below we explain each step, referring back to the SMR automaton.

1. Collecting Function-Level SMR Events. To enable precise event capture, we ex-
tended GenMC’s inlining and function-tagging infrastructure by introducing a dedicated
set of SMR-aware function identifiers (e.g., FN_Protect0, FN_UnprotectO, FN_Protectl,
FN_Unprotectl, FN_Retire). During execution-graph construction, we inline and tag all
wrapper functions that perform SMR operations. Each time GenMC schedules a call to
one of these tagged wrappers, it records the function entry and exit as a single SMR event
in the trace. This ensures that every operation appears exactly once in the event list.

2. Grouping by Address. Once all SMR-tagged calls have been recorded for a particular
GenMC execution, we partition the list of event records by addr. Each unique address n
then has its own sequence of SMR events. This grouping corresponds to instantiating one
automaton A, per address n. Because the SMR safety property must hold independently
for each reclaimed node, we verify each address in isolation.

3. Simulating the Automaton. For each address n, we use its sorted event records to obtain
a trace of SMR actions. We then simulate the finite-state automaton A = (Q, X, 4, sg, F')
from Figure [I0] where sg = ALLOCATED is the initial state. Concretely:

(a) Initialize the current state g := sg.
(b) For each o event, check if §(q, o) is defined:

o If defined, update g := 0(q,0). For example, if o = Protecty and ¢ = sg, then ¢
becomes s;g = PROTECTEDq.

e If 6(q,0) is undefined (e.g., trying Protecty from s;3 = PROTECTED;), the au-
tomaton rejects immediately. We record the violation and report the execution
graph and the trace of automaton states our address has been in.

If all events are consumed without hitting an undefined transition, 4, accepts, meaning
that address n was used safely under SMR.

19

Putting these pieces together yields Algorithm [2] with comments indicating how each line cor-
responds to the steps above:

Algorithm 2: SMR Verification Algorithm. FEach address is validated against the
transition rules of the automaton depicted in Figure

1 Function checkSMRTraces

// 1. Collect SMR FEvents
2 functionCalls = tag_smr_events(Q);
// 2. Group function calls by address (value) passed as first arqgument
3 foreach f in functionCalls do
4 val = f.getVal(0);
5 grouped [val] .push_back(f);
6 foreach (addr, calls) in grouped do
7
8
9

addrs = {};
foreach f in calls do

foreach label in f.labels do

10 addr = getReadValue(readAt(label + 1));
11 addrs.insert(addr);

// 8. Simulate each distinct address against automaton
12 foreach a in addrs do
13 state = initial_state;
14 foreach f in calls do
15 if f.accesses(a) then
16 event = f.getEvent();
17 if transition(state, event) is invalid then
18 reportViolation(addr, state, event);
19 break;
20 state = transition(state, event);

Soundness Proof Sketch We formally establish the soundness of our SMR automaton-based
verification approach integrated within GenMC. Soundness guarantees that any trace rejected
by our checker represents a violation of the SMR correctness criteria as defined in Section [4.4]

Claim. (Soundness) Let T be an execution trace generated by GenMC and let .4 be the SMR
automaton as defined in Figure If the integrated GenMC-SMR, checker rejects 7, then 7
contains an SMR safety violation.

Proof. We prove soundness by contradiction. Assume the checker rejects a trace 7, but 7 is
actually SMR-safe. Rejection occurs if and only if the automaton encounters an event e for
which the transition from the current state ¢ is undefined.

Formally, the automaton is defined as A = (@, %, 0, qo, F'), where:

0:Q XX —Q

is a partial transition function encoding precisely the allowed SMR, transitions.

A rejection happens if, given a state ¢ € () and event e € 3, we have:

d(q, e) is undefined.

20

Since the automaton construction in Figure[I0|strictly encodes permissible event orderings, every
undefined transition represents explicitly disallowed SMR behavior (e.g., attempting to protect
a node already protected by a different hazard pointer without proper unprotection, or retiring
a node still under protection).

Given our assumption that trace 7 is SMR-safe, all events in 7 must match defined transitions in
0, by the construction of A. This directly contradicts our assumption that a rejection (undefined
transition) occurred.

This contradiction arises precisely because our instrumentation, implemented through GenMC’s
function-level semantics, accurately reflects SMR operations, and the automaton explicitly en-
codes correctness constraints.

Thus, our initial assumption is false. Therefore, if the automaton checker rejects trace 7, trace
7 must contain an SMR usage violation, proving the soundness of our checker. O

4.6 Evaluation (RQ1)

This extension directly answers our first research question (RQ1): How can stateless model
checking be adapted to verify against a specification concurrent data structures that employ SMR
techniques under weak memory models? By integrating automaton-based SMR reasoning into
GenMC'’s stateless checking loop, we demonstrate that it is feasible to verify SMR safety across
relaxed memory executions. In this section, we evaluate the effectiveness of this integration
across multiple concurrent data structures. We show that our enhanced model checker can
verify memory safety in known-correct implementations and reproduce well-known SMR, bugs,
providing strong evidence for the applicability of our approach.

Validating Correct Implementations We first consider the Michael and Scott dynamic
queue, an efficient lock-free queue that employs two hazard pointers per thread to ensure memory
safety [I0]. This implementation has been rigorously studied and is widely recognized as correct
under weak memory models when hazard pointers are applied properly [31]. Our enhanced
GenMC verifies the correctness of this queue without reporting any violations.

No errors were detected.

Number of complete executions explored: 28902
Number of blocked executions seen: 759830
Total wall-clock time: 413.42s

Listing 2: GenMC verification output for the Michael and Scott queue showing no SMR viola-
tions.

Listing [2] shows a successful verification run. The absence of violations across extensive search-
space exploration provides compelling evidence of the tool’s effectiveness in confirming SMR
correctness.

Catching Well-Known Bugs Next, we evaluate our tool on a hazard-pointer-augmented vari-
ant of the Harris linked list, as introduced previously in Section Although hazard pointers
are intended to ensure memory safety, the original Harris design permits traversal into logically
deleted nodes, as depicted in Figure[7] This behaviour leads to subtle use-after-free errors in the
presence of concurrent unlinking and reclamation. Our enhanced GenMC model checker suc-
cessfully reproduces this known issue, capturing violations caused by improper synchronisation
of reclamation and traversal under weak memory conditions. Listing [3] provides the shortened
output from the failing run:

21

<0, 3> threadR:
(3, 11): Rna (succ, 0x70) [(0, 15)]
(3, 26): THREAD_END

<0, 5> threadRW:
(56, 14): F_CALL protecti5
(56, 15): Racgq (, 0x70) [(2, 21)]
(56, 16): Rna (hp_next, 0x2000000000000040) [(0, 15)]
(6, 17): HP_PROTECT
(56, 18): F_Ret
(unprotect and retire 0x70)

Hp: Found one or multiple modelviolations
State 20

Listing 3: Shortened GenMC output showing the SMR calls and use-after-free on 0x70.

Analysis of the Detected SMR Violation The erroneous execution from Listing [3| uncov-
ered by GenMC using the SMR automaton in the Harris List can be further analysed with the
help of Figure [[I} GenMC explores an interleaving where a logically deleted node is reclaimed
too early due to an imprecise hazard pointer scan. Specifically, writer thread T5 physically re-
moves the marked node at address , freeing it after confirming that no other thread currently
protects them. However, reader thread T3, which is mid-traversal, is protecting H (its current
node) and 0x50 (the node immediately after), but not the following node , which it will
dereference next.

As a result, although the hazard pointer scan appears safe to the writer, the reader’s next
dereference accesses , a node that has already been freed. GenMC’s automaton-based SMR
check detects this invalid access and reports a violation precisely at state 20 after having done
the following transitions: Protect; (0x270), Unprotect, (0x70), Retire(0270), and not being able to
complete another Protect; (0x70) according to the automaton specification in Figure This
confirms a concrete use-after-free scenario in the execution trace.

A

y
. S S
@ > 0x50 > . > 0x90

T5 retire scan

Figure 11: Simplified interleaving: reader T3 needs for traversal, but writer T5 freed

Summary (RQ1) These results demonstrate our improved GenMC’s ability to correctly use
SMR and identify errors in concurrent data structures under weak memory models. By in-
tegrating automaton-based reasoning into a stateless model checker, we validate the safety of
correct implementations, such as the Michael and Scott queue, while also uncovering bugs in
hazard-pointer-based designs, as exemplified by the Harris linked list [I0, 1I]. This confirms
that stateless model checking, enhanced with domain-specific automaton reasoning, offers strong
verification capabilities for SMR techniques. In doing so, we provide a definitive, positive re-
sponse to RQ1 and make our integration an essential backend for verifying correctness under
various specifications and memory models.

22

5 Synthesis & Verification Pipeline

To generate and verify concurrent data structures, we developed a comprehensive pipeline that co-
ordinates program synthesis, functionality testing, concurrency verification, and feedback-driven
refinement. This process is depicted in Figure [1| (first introduced in Chapter . The process
begins with program synthesis, in which an LLM produces candidate implementations from in-
complete specifications. Each candidate is then subjected to two types of verification. First,
functionality testing checks basic correctness properties by running a suite of unit tests. Sec-
ond, concurrency verification analyses the candidate using a specialised model checker (GenMC),
ensuring correctness in the face of weaker memory ordering behaviours and unsafe memory recla-
mations. If either step uncovers a deficiency, such as a failed unit test or an incorrect execution
graph, the pipeline’s feedback integration translates these diagnostic outcomes into guidance for
the LLM, prompting a revised candidate that addresses the discovered errors. The iteration
continues until no functionality or concurrency flaws remain, or until a configurable limit on
refinement steps is reached.

5.1 Program Synthesis (RQ2, RQ3)

Program synthesis refers to the automated generation of source code that satisfies a given spec-
ification, often expressed as a combination of natural language descriptions, user-provided test
cases, or formal constraints. This field has been characterised by symbolic and deductive meth-
ods designed to prune vast search spaces or to systematically construct programmes that are
correct-by-construction |23 24]. However, the recent breakthrough of LLMs trained on mas-
sive corpora of both natural language and code data has dramatically altered the landscape of
program synthesis. Models like Codex and CodeGen have showcased striking capabilities in gen-
erating working solutions for relatively complex tasks, sometimes rivalling the performance of
human programmers in certain controlled settings [6, [32]. The following paragraph provides an
overview of key insights in the current literature on LLM-based program synthesis and is followed
by our approach to selecting an optimal prompt design and locally hosted model combination
for low-level C program synthesis.

LLMs for Program Synthesis: A Brief Survey Although neural models have been inves-
tigated for code generation and comprehension for several years, it was the advent of large-scale
transformers trained on massive corpora that unlocked the potential of fully automated code-
writing systems [33]. By framing code generation as a next-token prediction task, similar to
standard language modelling, these systems learn both syntactic patterns (e.g., indentation,
variable naming) and higher-level semantics (e.g., how to perform certain computations). Key
contributors to this include:

e Codex, a GPT-based model further fine-tuned on a large Python code corpus, demon-
strating the ability to generate functionally correct code for short prompts [6].

e CodeGen, trained on a blended dataset of natural language and code from various pro-
gramming languages, achieving competitive performance on zero-shot Python tasks [32].

e GPT-Neo, open-source LLMs trained on The Pile, which includes a notable fraction of
GitHub data, also show nontrivial code-writing capacities |34} 35].

Empirical evidence suggests that an LLM’s capacity for program synthesis arises naturally from
large-scale training, as the model is exposed to interleavings of natural language comments and
code [34]. Consequently, even zero-shot prompts can produce coherent and often correct solutions
for a variety of typical tasks, ranging from string manipulation to basic data structures [32].

23

Prompting Strategies and Effective Code Generation (RQ2) In this section, we inves-
tigate RQ2 by discussing a range of prompting strategies that may help to improve zero-shot C
code generation for concurrent data structures. It is recommended to take into account several
design techniques since the correctness of the produced code can depend on the clarity and struc-
ture of the prompts. Although minimal prompts occasionally suffice, more structured techniques
have emerged in the literature:

e Few-shot prompting: Including a small number of examples, such as input—output map-
pings or function signature snippets, within the prompt can help the model better grasp
domain-specific conventions and expected formats [36]. In zero-shot scenarios, this method
can give the model extra context.

¢ High-Level Instruction-based prompts: Providing explicit instructions regarding cod-
ing style or performance considerations (e.g., "Implement a lock-free queue with hazard
pointers") can help reduce the search space and minimise suboptimal outputs [37]. These
instructions may not always produce correct code, but they guide the model toward ap-
propriate implementation patterns.

e Iterative refinement: In this approach, code is generated in several stages and intermedi-
ate outputs are subjected to verification. If errors are detected, the prompt is adjusted and
resubmitted, therefore simulating a back-and-forth dialogue until the final version reaches
correctness [32]. This approach allows us to progressively fix mistakes that could arise in
a single-shot generation even if it can cause more latency.

e Fill-in-the-middle (FIM): By marking specific segments in an existing code skeleton
(e.g., using tokens like <|fim_prefix|>), the model is directed to focus on filling a partic-
ular hole in a larger code structure. Prior studies suggest that this can yield more accurate
results for isolated code fragments compared to normal generation, though its effectiveness
may vary across model sizes and domains [3§].

o System—User—Assistant roles: Treating code generation as a multi-party conversation,
where a system message defines high-level objectives (e.g., "You are a concurrent pro-
gramming assistant”), a user message gives the problem statement, and an assistant
responds with the generated code. Although this architecture can help to provide clearer
direction and feedback, it may also need more prompt engineering to properly control role
transitions [39)].

In practice, combining more strategies may yield more consistent results than relying on a sin-
gle technique. For instance, combining few-shot examples with high-level instructions and an
iterative refinement process can help counter the limitations of each method. As outlined in
Algorithm [3| our pipeline uses elements from all five prompting techniques to promote correct
code generation. Later, Section empirically supports that this combination of prompting
strategies provides a reasonable baseline across different models and concurrent data structures,
thereby also addressing RQ2: What prompting techniques for LLMs should researchers use to
generate functionally correct C code?

Importance of Model Size and Training Regime (RQ3) We now investigate the primary
factors known to affect zero-shot code generation quality in order to subsequently address RQ3 in
Section A recurring theme in recent literature is that both model size and training approach
have a strong influence on code-generation effectiveness, and larger parameter counts tend to
yield better code quality [6]. For instance, smaller GPT-Neo variants trained on partial code
corpora show substantially lower performance compared to multi-billion-parameter models such
as CodeGen [34] [32].

24

In addition, whether a model is used in a zero-shot capacity or further refined on more specialised
code data can cause significant changes in pass rates for functional correctness. Fine-tuning on
domain-specific or tightly curated data aligns the model distribution to produce code that more
closely matches a desired style or domain constraints. Empirical studies reflect:

e Zero-shot models (e.g., a code-trained LLM like CodeLlama [40]) can still generate
workable solutions without additional fine-tuning, even for relatively challenging tasks.
Nonetheless, more domain-heavy situations (like concurrency under weak memory models
in C) can pose difficulties if the model’s training data did not explicitly emphasise those
patterns.

e Specialised fine-tuning (e.g., supervised or reinforcement learning—based [6]) often achieves
higher correctness scores, primarily because it exposes the model to code distributions and
correctness requirements that directly match the target usage.

In our context, we aim to evaluate a code-generation pipeline for generating new concurrent data
structures. While specialised training might boost performance in concurrency scenarios, we opt
not to fine-tune the model for this narrower objective. Our rationale is twofold: first, we
plan to use well-known data structures as an evaluation set to assess the pipeline’s capabilities
without relying on memorised solutions from highly specialised data; and second, we envision a
tool that generalises to novel data structures beyond those explicitly seen during training.

Additionally, we choose smaller, locally hosted models because our hardware constraints (32 GB
of RAM) are insufficient for the largest-scale language models, and because we favour an offline
approach over reliance on cloud-based APIs. In an early feasibility experiment, we observed that
certain online services seemed to reference external data structures during inference, confound-
ing any assessment of their intrinsic generation capabilities. By maintaining local deployments,
we mitigate the influence of external resources, thus relying solely on a model’s inherent apti-
tude for synthesising concurrency-related code. These decisions do, however, come with certain
drawbacks, which are discussed in detail in the Limitations paragraph of Chapter [7]

Algorithm 3: Original Prompt for generating the pop function for the Treiber-stack
implementation.

Function pop
s : mystack_t*
pointer oldTop, newTop, next;
node_t *node;
bool success;
int val;
while true do

val = node->value;

// Reclaim the used slot

10 reclaim(get_ptr(oldTop));
11 return val;

12

© W N, TR W -

// High-Level Instructions:

// - Implement a thread-safe pop operation for a lock-free stack.

// - Handle the edge case where the stack is empty.

// - Ensure atomic operations correctly update both the pointer and the counter to
maintain consistency.

25

Experimental Setup

Step 1: Original Generate Prompt We begin by presenting the model with a partial C
code snippet, as depicted in Algorithm [3] containing a clearly delimited gap, indicated using
Fill-in-the-middle (FIM) tokens: <|fim_prefix|>, <|fim_suffix|>, and <|fim_middle|>.
Alongside this code context, we provide concise high-level instructions outlining the required
behaviour, while leaving flexibility for the model to determine the specific implementation details.

Notably, we intentionally avoid specifying detailed atomic memory orderings (e.g., acquire, re-
laxed, release) in the provided instructions. The reasoning behind this decision is that explicit
memory concurrency primitives are typically familiar only to concurrency experts, whereas our
goal is to make this synthesis tool accessible to a broader audience of programmers, including
those without specialised expertise in concurrent memory semantics. By abstracting away these
low-level concurrency details, we aim to leverage the model’s implicit understanding, thereby
facilitating usability without compromising correctness.

Step 2: Iterative Refinement Using Conversational Roles Should the initial generation
fail to meet predefined structural checks, we proceed with an iterative, conversation-based refine-
ment phase. In this stage, we leverage the system—user—assistant roles to enable structured,
dynamic interactions and feedback. The process begins by taking a snapshot of the current
conversation, which includes the initial prompt and the model’s response. From there, we issue
a new system message that employs few-shot prompting to provide clear guidance on the
desired output format and structure.

Next, we invoke the conversational API using the accumulated conversation history. This history
includes the few-shot system message, the most recent user message reiterating the code context
and the specific gap to be filled, and the previous assistant message containing the candidate
code snippet. Upon receiving a new candidate, we perform a series of automated checks. We
extract the candidate code from the model’s response, verify that it is enclosed within a proper
"c..." code block, confirm that no placeholder symbols such as remain, and ensure that
the code conforms to the predefined output template through structural validation. This final
check guarantees that no pre-existing code outside the intended gap has been modified.

If any of these checks fail, we automatically generate a new user message providing targeted
feedback, such as requesting the removal of placeholders or adherence to the formatting template.
This refinement loop continues until a valid code completion is produced or a predefined iteration
limit is reached.

Evaluation Metrics To systematically evaluate different models, we make use of the pre-
viously described experimental setup to generate candidate solutions, adapting prompts only
to include the specialised tokens required by each specific model. To ensure practicality and
usability, we set a maximum acceptable threshold for conversational iterations at 10 iterations.

This threshold was chosen primarily based on efficiency and usability considerations. Allowing
unlimited refinement iterations would significantly increase synthesis time and reduce the prac-
ticality of the tool in interactive or time-sensitive settings. In our experience, the 10-iteration
cap represents a reasonable balance between resource usage, responsiveness, and the likelihood
of success within a bounded search space. That said, the optimal iteration limit may vary de-
pending on the complexity of the target program, the model’s generalisation ability, and the
prompt design. Further empirical investigation is needed to determine how these factors interact
in different synthesis scenarios [41].

26

Consequently, only candidate solutions requiring fewer than or equal to 10 iterations to achieve
structural correctness are considered for evaluation. For these solutions, we compute the Final
BLEU Score using the SacreBLEU implementation, which quantifies lexical and structural sim-
ilarity against a canonical reference implementation [42]. BLEU has become a widely adopted
metric in the program synthesis and code generation literature, serving as one of the main meth-
ods for evaluating surface-level similarity and syntactic alignment [0, 43]. In our context, BLEU
serves as the primary quantitative measure for comparing the performance of different models. A
higher BLEU score indicates that the model not only produces compilable and syntactically valid
code, but also closely follows idiomatic implementation patterns used in low-level concurrent C
programs.

The BLEU score is calculated as follows:

N
BLEU = BP - exp (Z wy, log pn) (1)

n=1

where:
e p, denotes the precision of n-grams up to order N,
e w, is a typically uniform weight factor,
e BP = min(l, 6(1_7"/6)) is the brevity penalty,
e 7 and c represent reference and candidate lengths, respectively.
Therefore, to comprehensively assess model performance in our pipeline, we report four metrics:
1. BLEU score: Measuring lexical similarity to reference implementations.
2. Compile pass rate: The proportion of final outputs that compile successfully.

3. Iterations to correctness: The average number of refinement steps required to produce
a valid output within the iteration limit.

4. Verified solutions: The number of candidates that pass concurrency verification.

These metrics, averaged over multiple runs, provide a well-rounded view of each model’s capabil-
ities in terms of lexical quality, syntactic validity, convergence efficiency, and correctness under
weak memory.

5.2 Functionality Testing

Generative LLMs trained to translate high-level instructions or pseudocode into code can pro-
duce syntactically valid programs of substantial length yet still fail to execute the intended
computation, especially when a significant intermediate state is involved. Recent work on syn-
thesising programs from pseudocode demonstrates that coupling natural language guidance with
input—output test cases, by searching over multiple candidates until one passes all tests, greatly
improves functional correctness [44].

Motivated by these findings, we introduce a dedicated functionality testing stage in our pipeline:
each structurally valid candidate is executed within an isolated Docker container against a pre-
defined suite of unit tests. Any solution that fails is immediately returned to the LLM along with
the captured error messages for automated refinement. This early filtering mechanism prevents
fundamentally incorrect implementations from reaching the subsequent concurrency verification
phase, thereby enhancing the efficiency of our synthesis workflow.

27

Technical Details Once a candidate solution passes all structural checks, the synthesised code
is inserted into the data-structure template by filling the designated code hole. The complete
source is then compiled and executed inside an isolated Docker container. We run a suite of
unit tests that exercise the core operations of the data structure (e.g., push/pop for a stack) in
a one-threaded environment. This step focuses exclusively on basic functional correctness. Any
implementation that fails a unit test is considered a non-viable candidate and removed from
further consideration.

Iterative Feedback and Context Management When a candidate solution fails one or
more unit tests (for example, due to incorrect return values or runtime errors), the error diag-
nostics produced by the test are collected and sent back to the LLM. To streamline refinement,
we clear almost all prior context, retaining only the latest structurally valid code and the specific
error messages. This ensures the model’s next attempt addresses only the current functional
defects, rather than revisiting earlier generation details that are no longer relevant.

5.3 Concurrency Verification (RQ4)

To address RQ4, we integrate concurrency verification into our pipeline by invoking the enhanced
GenMC described in Chapter[d] While unit tests (Section[5.2)) validate single-threaded behaviour,
covering only trivial execution scenarios, they cannot reveal problems arising from concurrent
interleavings under weak-memory models.

Our pipeline performs a unified verification pass using the adapted GenMC backend. Each can-
didate implementation, together with its driver programme, is analysed directly by the stateless
model checker. This process consists of:

e Weak-memory interleaving checks: We exhaustively explore all RC11-consistent ex-
ecutions and validate them against the data-structure specifications defined by Henkes,
expressed in terms of po and com relations [25].

e SMR hazard pointer checks: Through our hazard-pointer automaton (Section |4.4)), we
detect memory reclamation issues such as use-after-free.

Whenever GenMC identifies a violation, whether a broken control-flow invariant (e.g., FIFO
(first-in, first-out) / LIFO (last-in, first-out) ordering) or an SMR fault, it produces a minimal
execution-graph counterexample. This diagnostic is then used as structured feedback to guide
the next synthesis iteration.

Technical Details After passing unit tests, each candidate is submitted to GenMC for con-
currency verification. To maintain consistency with the functionality-testing stage, we execute
GenMC within the same Docker container used for unit testing. GenMC systematically explores
every weak-memory interleaving of the candidate under RC11, checking each execution against
the function-level specification. Simultaneously, SMR checks ensure that memory reclamation
follows the hazard-pointer rules. Any detected violation produces a minimal counterexample
trace, which we convert into structured feedback for prompt refinement.

Iterative Feedback and Context Management The feedback loop follows the same pat-
tern as in the functionality-testing stage. Whenever GenMC emits a violation, we include its
execution-graph counterexample output in the next prompt. We reset earlier context to retain
only the latest valid C source code and the GenMC diagnostics. By focusing the LLM’s attention
on the specific concurrency or SMR issue, we streamline the refinement process.

28

Evaluation Metrics To assess how the inclusion of GenMC feedback alters the performance
of our synthesis pipeline, we track two key measures: the verified success rate, defined as
the proportion of runs that yield a GenMC-verified implementation within ten iterations, and
iterations to correctness, which denotes the average number of generate—verify cycles required
to produce a verified candidate. These metrics are shown and interpreted in Section [6.2]

We conduct a side-by-side comparison of two distinct pipeline configurations to demonstrate
the advantages obtained by incorporating structured feedback. In the baseline (no feedback)
configuration, each candidate is regenerated without using any GenMC counterexample infor-
mation. In the feedback-driven configuration, GenMC counterexamples are injected into the
LLM prompt, enabling targeted fixes based on precise verification results.

An increase in the verified success rate, alongside a possible reduction in the average number of
iterations for the feedback-driven configuration, provides clear evidence that embedding GenMC’s
diagnostic information into the synthesis loop materially improves both convergence speed and
overall correctness, thereby directly addressing RQ4.

5.4 Pipeline Evaluation

This section evaluates the end-to-end synthesis—verification loop and demonstrates how our ap-
proach integrates LLM-based generation with GenMC verification to produce correct concurrent
data structures under weak memory. We begin by presenting absolute performance metrics for
each benchmark and then compare against PSKETCH to quantify performance improvements.

We base our evaluation on an extended version of the GenMC benchmark suite originally pro-
posed by Henkes [25]. That suite includes driver programmes for validating concurrent stacks,
queues and mutexes. We have further extended it with additional driver programmes that
exercise SMR operations, covering data structures not previously verified, such as the hazard-
pointer-based Harris linked list [IT]. All benchmarks are compiled with identical optimisation
flags and executed in a controlled environment on a 32 GB, 6-core workstation with an i7-9750H
processor with 12 virtual threads.

As in Chapter [each implementation is checked against Henkes’s function-level data-structure
specifications, defined in terms of the po and com relations. For full details on those specifications,
the reader is referred to Henkes’ thesis [25].

Absolute Results For each benchmark, we measure three key metrics over multiple indepen-
dent runs: the success rate, defined as the proportion of synthesis runs that produce a fully
GenMC-verified implementation within a ten-iteration limit; the time to convergence, which
is the wall-clock time required to synthesise a verified solution, measured in seconds and aver-
aged over the runs that succeed; and the iterations to correctness, representing the average
number of generate—verify cycles needed before a candidate passes all GenMC checks. These
absolute results provide a clear picture of how the pipeline behaves in isolation.

Comparison with Prior Work To contextualise our pipeline’s performance, we compare it
against the synthesis tools from the literature that operate under sequential consistency and
encounter smaller solution spaces. Specifically, we contrast against PSKETCH, which uses
counterexample-guided inductive synthesis (CEGIS) to complete partial programs [23)].

For the comparison, we match our benchmark complexity (e.g., while loop within a dequq func-
tion) to templates of comparable complexity as described in the original papers. This enables a
fair assessment of how well our feedback-guided, weak-memory-capable pipeline performs relative
to solver-based, SC-oriented baselines.

29

60 Results

This chapter presents the empirical evaluation of the synthesis—verification pipeline described in
Chapter[f] Its purpose is to quantify the pipeline’s ability to generate low-level concurrent C data
structures that are both functionally correct and free from weak-memory and SMR violations.
All experiments are conducted on benchmark programs drawn from the Henkes suite, extended
with additional SMR~dependent implementations [25]. We employ the evaluation metrics earlier
introduced, namely BLEU for assessing structural similarity, iterations-to-correctness and time
for measuring refinement effort, and success rate to capture overall convergence.

The chapter is structured around the remaining research questions. RQ1 is addressed via the
GenMC extensions in Chapter 4] and RQ2 through the prompt design analysis in Section [5.1]
Section answers RQ3 by evaluating how effectively LLMs can synthesise correct concurrent
implementations in a zero-shot setting, guiding our model selection. Section investigates
RQ4, measuring the effect of structured verifier feedback on convergence. Finally, Section
provides an end-to-end evaluation of the complete synthesis—verification loop to answer the over-
arching research question.

6.1 LLM Synthesis Accuracy (RQ3)

This section answers RQ3: How effectively can LLMs synthesise low-level concurrent C' code
in a zero-shot setting? Our goal is to assess LLMs’ suitability for integration into a synthesis-
verification pipeline and to identify a strong default model. Since concurrent data structures
require precise handling of atomic operations and memory orderings, understanding an LLM’s
raw ability to produce syntactically correct C code without any task-specific training is critical.

We evaluate three publicly available LLMs using a shared natural language prompt and identical
decoding settings with Ollama. Each model is tasked with synthesising candidate implementa-
tions for one benchmark instance in the Henkes suite, the Treiber-stack, without any task-specific
examples or fine-tuning [15]. The generation process includes a lightweight feedback loop in which
outputs are checked for structural template conformance and compilation validity; candidates
failing these checks are rejected, and feedback continues to be provided until a valid candidate
is found or a maximum of 10 iterations per candidate is reached. A detailed description of this
module’s setup can be found in Section [5.1]

We measure performance across four dimensions: (i) BLEU score, quantifying lexical similarity
to a canonical implementation; (ii) Compile pass rate, the proportion of final outputs that
compile successfully; (iii) Iterations to correctness, the average number of attempts required
to generate a compilable and structurally valid output; and (iv) Verified solutions, the number
of candidates that pass formal verification using GENMC.

Model BLEU Compile Pass Rate Iterations Verified Solutions
gwen2.5-coder:7b 84.44 100% 3.5 2
codellama:7b-instruct ~ 78.94 60% 5.3 0
deepseek-coder-v2 78.59 10% 8.0 0

Table 3: Zero-shot synthesis performance on the Treiber-stack benchmark. For each model, we
report the average BLEU score, compile pass rate, average iterations to generate a compilable
and structurally valid output, and the number of candidates that passed GENMC verification,
computed over ten runs.

30

Summary LLMs exhibit varying levels of effectiveness when synthesising low-level concurrent
C code in a zero-shot setting, directly addressing RQ3. While all models can produce structurally
plausible code, only Qwen2.5-Coder consistently generates compilable candidates and produces
verified solutions. These results also support our findings for RQ2 regarding prompt design,
demonstrating that even without fine-tuning, careful prompting enables reliable synthesis. Based
on its superior compile reliability, lexical similarity, and verification success, we choose Qwen2.5-
Coder as the synthesis component in our pipeline [45].

6.2 Verifier Feedback Impact (RQ4)

This section answers RQ4: How does incorporating structured verifier feedback into LLM prompts
affect convergence to correct concurrent data structure implementations? Our aim is to deter-
mine whether embedding GenMC counterexample information into each prompt leads to faster
convergence and higher final correctness in the synthesis—verification loop.

We compare two pipeline configurations, both of which perform structural and functional checks
followed by GenMC verification at each iteration. In the baseline (no feedback) configuration,
when a candidate fails concurrency verification, the next candidate is generated without any in-
formation from the counterexample. In the feedback-driven configuration, the minimal execution-
graph counterexample produced by GenMC (as described in Chapter [4)) is injected into the LLM
prompt before generating the next candidate. This added diagnostic context helps the model
understand exactly which interleaving or SMR rule was violated, guiding it to correct the spe-
cific conflict rather than just retrying. By focusing each revision on concrete errors identified by
GenMC, we aim to escape faulty implementations.

Each configuration is tested on the Treiber-stack benchmark using the same fixed prompt, identi-
cal decoding parameters, and an unchanged runtime environment. We perform ten independent
runs for each setup, measuring both the proportion of runs in which a fully verified solution is
found within ten iterations (verified success rate) and, for those runs that do succeed, the average
number of generate—verify cycles required to reach a GenMC-verified implementation (iterations
to correctness).

Configuration Verified Success Rate Iterations to Correctness
Baseline (no feedback) 30% 2.3
With GenMC Feedback 70% 3.9

Table 4: Effect of GenMC counterexample feedback on the Treiber-stack synthesis process.
Verified success rate indicates the percentage of runs that produced a verified implementation
within ten iterations, while iterations to correctness shows the average number of generate—verify
cycles among successful runs.

Summary Incorporating structured verifier feedback into LLM prompts substantially improves
the model’s ability to converge to verified concurrent implementations. The feedback-enabled
configuration achieves a 7T0% success rate within 10 iterations, more than double the baseline’s
30%. Although the average iteration count is higher (3.9 vs. 2.3), this increase reflects the
model’s ability to make progress on harder problems, specifically, resolving concurrency and
functional correctness issues that arise after compilation succeeds. In contrast, the baseline’s
lower iteration count is often due to two distinct behaviours: either it gets lucky and generates
a correct implementation immediately after passing compilation checks, or it becomes stuck,
repeatedly generating variants that fail verification without meaningful improvement.

31

In a follow-up stress test where both configurations generated a solution containing a concur-
rency error and allowed unlimited iterations, the baseline failed to converge after 100
attempts and 900+ seconds, while the feedback-enabled version synthesised a correct and
verified solution in just 6 iterations and 54.97 seconds. These findings confirm that structured
GenMC feedback not only increases convergence success but also enables the model to escape
faulty implementations that static prompting alone cannot overcome, providing an affirmative
answer to RQ4.

6.3 End-to-End Synthesis Performance

This section provides a comprehensive evaluation of the full synthesis-verification loop and an-
swers the main research question: How can Large Language Models and advanced verification
tools integrate effectively to synthesise concurrent data structure implementations targeting weak
memory models? We evaluate our tool’s efficiency and correctness in synthesising full implemen-
tations, compare its performance to the state of the art, and report results across a diverse set
of data structures and memory models.

Algorithm 4: The Dequeue Implementation synthesised against PSKETCH

1 Function dequeue

q : queue_t*, retVal : unsigned intx*
int success = 0;
pointer head, tail, next;
while !success do
acquire);
relaxed);

acquire);

© O N o R W

if relazed then
if then
assert(get_ptr(next) != POISON_IDX);
if then

‘ return false;

I
AW N = O

15
16

17 release, release);

18 else
19
20

21
22

23 release, release);
24 __VERIFIER_assume (success);
25 reclaim(get_ptr(head));

26 return true;

32

Comparison with Prior Work To contextualise our tool’s performance, we compare it with
PSKETCH, a solver-based synthesis tool for concurrent data structures. In their evaluation,
synthesising a deque function with a non-trivial while loop under sequential consistency took
147.07 seconds [23]. In contrast, our tool synthesised a more complex deque variant (shown
in Algorithm , which includes weaker memory accesses in an average of 39.46 seconds over
10 attempts. Despite differences in the experimental setup, this indicates a significant speedup
over the state of the art, even on more challenging inputs, and highlights the effectiveness of
combining LLM synthesis with verifier-guided feedback. Furthermore, because our benchmark
includes realistic weak-memory and SMR verification requirements, this comparison underscores
the practical advantages of our pipeline in handling real-world concurrency complexities.

Absolute Results To assess the general effectiveness of our pipeline, we evaluate its ability
to synthesise complete function implementations across a range of concurrent data structure
implementations. Each benchmark is tested under multiple data structure models, as defined
by Henkes and further extended with SMR where applicable [25]. For each task, we record the
verification success rate over a maximum of ten iterations, the total synthesis time, and the
average number of iterations required for convergence. These metrics collectively illustrate how
quickly and reliably the pipeline produces verified implementations when operating in isolation.

Implementation Model Success Rate Time (s) Iterations

mutex mutex 100% 12.12 5.5
alt-mutex mutex 100% 13.52 4.5
spinlock mutex 60% 7.73 3.8
ttaslock mutex 90% 4.09 2.0
ttaslock-opt mutex 60% 6.82 2.5
ticketlock mutex 100% 8.51 3.3
twalock mutex 100% 7.44 2.5

Table 5: End-to-end synthesis results for the lock (or acquire) function across various mutex
implementations. For each implementation, we report the underlying data structure model, the
percentage of runs that produced a verified solution within ten iterations, the average wall-clock
time to convergence (in seconds), and the mean number of generate—verify iterations

Mutex Results A mutex (mutual exclusion object) ensures that only one thread can hold the
lock at a time, preventing concurrent threads from entering critical sections simultaneously. The
simplest version, labelled mutez, uses a basic lock/unlock protocol; alt-mutez is a variant with
minor optimisations in acquisition order. A spinlock busy-waits until the lock becomes available,
while a test-and-test-and-set lock (ttaslock) first checks a flag before attempting an atomic test-
and-set, reducing memory traffic; ttaslock-opt further minimises contention by optimising cache
usage. A ticketlock grants access in FIFO order using ticket counters, ensuring fairness, and
twalock (test-and-wait-and-acquire) uses a two-phase check to reduce spinning overhead.

Table [5| shows that all variants achieve rapid synthesis: mutez, alt-mutex, ticketlock and twalock
each reach a 100% success rate, converging in around 7 to 14 seconds. Spinlock and ttaslock-
opt, despite their simplicity, still achieve 60% percent success within very short runtimes (under
8 seconds), demonstrating that a wide range of locking schemes can be synthesised efficiently
by our pipeline. Synthesising each variation highlights the generality of our tool: from basic
lock /unlock idioms to more sophisticated fairness and contention-reduction strategies, all can be
handled within our tool without any additional modifications to the verification logic.

33

Implementation Model Success Rate Time (s) Iterations

ms-queue weak-q 80% 39.46 3.6
ms-queue-d weak-q & smr 50% 42.24 2.6
ms-queue-d hw-q & smr 70% 18.25 2.3
qu weak-q 60% 7.50 1.7
qu hw-q 60% 10.52 2.7
qu-opt hw-q 50% 8.54 2.0

Table 6: End-to-end synthesis results for the deque function across various queue implementa-
tions and data structure models. For each implementation and model pair, we report the success
rate (percentage of runs that produced a GenMC-verified solution within ten iterations), the
average wall-clock time to convergence (in seconds), and the mean number of generate—verify
iterations, all averaged over multiple independent runs.

Queue Results A concurrent queue allows multiple threads to enqueue and dequeue items
safely without locks, using atomic operations and specific memory-order guarantees. The ms-
queue implementation refers to the Michael-Scott non-blocking queue, which uses two atomic
pointers (head and tail) and requires careful ordering to maintain FIFO behaviour under weak
memory [L0]. The ms-queue-d variants extend this design with Safe SMR support: under the
weak-q model, the SMR automaton enforces hazard-pointer rules, while under hw-q (hardware-
queue) the model reflects memory guarantees present on actual hardware. The gu implementation
is a simpler queue that uses weaker atomic primitives, and qu-opt is an optimized version that
further reduces atomic overhead through caching and fewer memory barriers.

Table [6] shows good performance, though with somewhat reduced success rates and longer run-
times, reflecting the increased complexity of the deque function compared to the mutex lock or
acquire functions. The ms-queue achieved a notable success rate of 80%, while the integration
of Safe Memory Reclamation (SMR) lowered the success rates slightly, as seen with ms-queue-d
(50% to 70%). The qu and qu-opt implementations also demonstrated consistent performance.
Despite these slightly lower success rates and longer synthesis times compared to the mutex
implementations, the results remain impressive, confirming the tool’s capability to handle more
complex concurrent data structures effectively.

Implementation Model Success Rate Time (s) Iterations
dq weak-s 100% 25.21 3.2
dg-opt weak-s 100% 17.66 2.4
ste weak-s 50% 20.50 2.4
stc-opt weak-s 40% 29.29 4.0
treiber-stack weak-s 70% 18.32 3.9
treiber-stack-d weak-s & smr 50% 20.77 4.4
treiber-stack-d c-s & smr 40% 20.30 4.0

Table 7: End-to-end synthesis results for the pop function across various stack implementations
and data structure models. For each implementation and model pair, we report the success
rate (percentage of runs yielding a GenMC-verified solution within ten iterations), the average
wall-clock time to convergence (in seconds), and the mean number of generate—verify iterations,
all averaged over multiple independent runs.

34

Stack Results A concurrent stack allows multiple threads to push and pop items in a last-
in, first-out (LIFO) order without locks, using atomic operations to maintain consistency under
weak memory. The dg implementation represents a basic deque-based stack, while dg-opt is
an optimized version that reduces atomic overhead through caching and fewer memory barri-
ers. The stc implementation employs a split-cache design, separating push and pop pointers
to reduce contention; stc-opt further refines this approach by optimising memory barriers and
pointer updates. The treiber-stack is the classic Treiber lock-free stack, which relies on an atomic
compare-and-swap on the head pointer; treiber-stack-d extends this design with Safe Memory
Reclamation (SMR) to safely reclaim nodes. Under the weak-s model, hazard pointers are en-
forced solely by the SMR automaton, whereas under the c¢-s model stronger memory orders of
real hardware are assumed alongside SMR.

Table [7] reinforces the positive pattern of results, with strong success rates and efficient con-
vergence for the dq (100%) and dg-opt (100%) implementations. Notably, for the dq imple-
mentation, previously identified by Henkes as containing a concurrency error, we successfully
synthesised a version incorporating operations with stronger concurrency rules that passes the
model checking stage of our pipeline [25]. Although this does not necessarily imply an im-
provement of the data structure itself, it showcases the tool’s versatility and potential for future
work. Other stack implementations presented lower success rates but still demonstrate solid
performance considering their complexity and the use of SMR.

Summary We successfully synthesised 20 implementation and model combinations, demon-
strating fast convergence and strong success rates in generating correct concurrent data struc-
ture implementations under weak memory models. Compared to prior solver-based approaches,
specifically PSKETCH, our synthesis-verification loop significantly outperforms it, achieving
faster convergence even on more complex structures. These findings affirmatively answer the
primary research question: LLMs, when guided by structured feedback from advanced verifica-
tion tools like GENMC, can be effectively integrated into a feedback-driven synthesis loop to
efficiently generate verified concurrent data structure implementations for weak memory models.

35

7 Conclusion

This work addressed the significant challenge of synthesising correct concurrent data structures
under weak memory models, an area traditionally affected by subtle concurrency errors and by the
limitations of exhaustive search-based approaches. Recognising that concurrent data structures
greatly benefit in performance from using SMR techniques, we developed our synthesis and
verification tool with a forward-looking perspective to support future data structures with SMR
integrated. A significant innovation was our extension of GenMC to incorporate automaton-based
verification of Hazard Pointers. Consequently, our primary contribution is integrating LLMs
into an advanced synthesis and verification pipeline, specifically tailored for concurrent data
structures operating under weak memory semantics. By combining the generative capabilities
of LLMs with the specialised verification strengths of an enhanced GenMC, we established an
iterative refinement loop capable of efficiently synthesising verified low-level concurrent C code.
Empirical evaluation demonstrated substantial improvements in synthesis speed and the ability
to generate a large range of well-known data structure implementations compared to existing
state-of-the-art tools such as PSKETCH, highlighting the scalability and practicality of our
approach for automated concurrent data structure design.

Limitations Nevertheless, our approach is not without limitations. First, the synthesis quality
is connected to the limitations, tendencies, and training artefacts of the underlying LLM. Since
models like Qwen2.5-Coder are trained on general-purpose code corpora, they may lack sufficient
exposure to specialised patterns in concurrent C programming, particularly those involving sub-
tle memory orderings and synchronisation primitives. This can result in low-quality generations
or the inability to synthesise novel solutions when the model’s training data does not reflect the
desired concurrency behaviour. Second, there exists a delicate balance in prompt engineer-
ing: excessive specificity can overly constrain the model, limiting creativity, while insufficient
guidance may lead to incorrect outputs. Moreover, the success of our iterative refinement loop is
sensitive to the feedback integration from GenMC, where ineffective prompt injection can lead
to stagnation in the refinement process. Third, the computational constraints of our setup
led us to rely on smaller locally hosted models. This choice helped mitigate the risk of data
leakage from benchmark implementations the model may have seen during pre-training, but it
also restricted our ability to explore the synthesis capabilities of larger models. Finally, while
our pipeline successfully synthesised a variety of data structure implementations, its ability to
generalise to complex novel data structures remains an open question.

Future Work Our work can be extended by synthesising novel data structure implementa-
tions, while also exploring its application in automatically repairing weak-memory bugs in exist-
ing concurrent code. This transition from generation to repair would validate the pipeline’s
utility and flexibility. Additionally, experimenting with larger LLMs and specialised fine-tuned
variants could unlock more sophisticated concurrency patterns and, if used as judges, replace
the formal verifier to accelerate the feedback loop. Another important direction is refining how
GenMC feedback is injected into the prompts: exploring semantically enriched representations of
execution graph counterexamples may help LLMs identify and resolve concurrency violations
more effectively. Expanding the verification backend to support additional memory reclamation
techniques, such as Epoch-Based Reclamation (EBR), could further extend the pipeline’s ap-
plicability to a broader class of concurrent systems. Looking ahead, these directions collectively
represent a compelling roadmap for advancing synthesis research in the context of weak mem-
ory concurrency, where traditional tools struggle with scalability. By pushing the boundaries of
automated generation, our approach opens a path toward more efficient and accessible design of
concurrent data structures under realistic memory models.

36

References

1]

2]

3]

[4]

[5]

(6]

7]

8]

9]

[10]

[11]

[12]

[13]

[14]

[15]

Jacob Austin, Augustus Odena, Maxwell Nye, Maarten Bosma, Henryk Michalewski, David
Dohan, Ellen Jiang, Carrie Cai, Michael Terry, Quoc Le, et al. Program synthesis with large
language models. arXiv preprint arXiw:2108.07732, 2021.

Jade Alglave, Luc Maranget, and Michael Tautschnig. Herding cats: Modelling, simulation,
testing, and data mining for weak memory. ACM Transactions on Programming Languages
and Systems (TOPLAS), 36(2):1-74, 2014.

Scott Owens, Susmit Sarkar, and Peter Sewell. A better x86 memory model: x86-tso. In
Theorem Proving in Higher Order Logics: 22nd International Conference, TPHOLs 2009,
Munich, Germany, August 17-20, 2009. Proceedings 22, pages 391-407. Springer, 2009.

Christopher Pulte, Shaked Flur, Will Deacon, Jon French, Susmit Sarkar, and Peter
Sewell. Simplifying arm concurrency: multicopy-atomic axiomatic and operational mod-
els for armv8. Proceedings of the ACM on Programming Languages, 2(POPL):1-29, 2017.

Maged M Michael. Safe memory reclamation for dynamic lock-free objects using atomic
reads and writes. In Proceedings of the twenty-first annual symposium on Principles of
distributed computing, pages 21-30, 2002.

Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde De Oliveira Pinto,
Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evalu-
ating large language models trained on code. arXiv preprint arXiv:2107.03374, 2021.

Chongzhou Fang, Ning Miao, Shaurya Srivastav, Jialin Liu, Ruoyu Zhang, Ruijie Fang,
Ryan Tsang, Najmeh Nazari, Han Wang, Houman Homayoun, et al. Large language models
for code analysis: Do {LLMs} really do their job? In 33rd USENIX Security Symposium
(USENIX Security 24), pages 829-846, 2024.

Michalis Kokologiannakis and Viktor Vafeiadis. Genmec: A model checker for weak mem-
ory models. In International Conference on Computer Aided Verification, pages 427—440.
Springer, 2021.

Dong Huang, Jie M Zhang, Michael Luck, Qingwen Bu, Yuhao Qing, and Heming Cui.
Agentcoder: Multi-agent-based code generation with iterative testing and optimisation.
arXw preprint arXiw:2312.13010, 2023.

Maged M Michael. High performance dynamic lock-free hash tables and list-based sets. In
Proceedings of the fourteenth annual ACM symposium on Parallel algorithms and architec-
tures, pages 73-82, 2002.

Timothy L Harris. A pragmatic implementation of non-blocking linked-lists. In International
Symposium on Distributed Computing, pages 300-314. Springer, 2001.

Lamport. How to make a multiprocessor computer that correctly executes multiprocess
programs. [EEFE transactions on computers, 100(9):690-691, 1979.

Ori Lahav, Viktor Vafeiadis, Jeechoon Kang, Chung-Kil Hur, and Derek Dreyer. Repairing
sequential consistency in c¢/c++ 11. ACM SIGPLAN Notices, 52(6):618-632, 2017.

Maurice Herlihy. A methodology for implementing highly concurrent data objects. ACM
Transactions on Programming Languages and Systems (TOPLAS), 15(5):745-770, 1993.

R Kent Treiber et al. Systems programming: Coping with parallelism. International Business
Machines Incorporated, Thomas J. Watson Research ..., 1986.

37

[16]

[17]

[18]

[19]

[20]

[21]

[22]

23]

[24]

[25]

[26]

[27]

28]

[29]

[30]

[31]

Maurice Herlihy. Wait-free synchronization. ACM Transactions on Programming Languages
and Systems (TOPLAS), 13(1):124-149, 1991.

Damian Dechev, Peter Pirkelbauer, and Bjarne Stroustrup. Understanding and effectively
preventing the aba problem in descriptor-based lock-free designs. In 2010 15th IEEE inter-

national symposium on object/component/service-oriented real-time distributed computing,
pages 185—192. IEEE, 2010.

Sebastian Wolff. Verifying Non-blocking Data Structures with Manual Memory Management.
PhD thesis, Dissertation, Braunschweig, Technische Universitdt Braunschweig, 2021, 2021.

Trevor Alexander Brown. Reclaiming memory for lock-free data structures: There has to
be a better way. In Proceedings of the 2015 ACM Symposium on Principles of Distributed
Computing, pages 261-270, 2015.

Nachshon Cohen. Every data structure deserves lock-free memory reclamation. Proceedings
of the ACM on Programming Languages, 2(OOPSLA):1-24, 2018.

Ruslan Nikolaev and Binoy Ravindran. Universal wait-free memory reclamation. In Pro-
ceedings of the 25th ACM SIGPLAN Symposium on Principles and Practice of Parallel
Programming, pages 130-143, 2020.

MD Arovi and Ruslan Nikolaev. Fixing non-blocking data structures for better compatibility
with memory reclamation schemes. arXiv preprint arXiv:2504.06254, 2025.

Armando Solar-Lezama, Christopher Grant Jones, and Rastislav Bodik. Sketching concur-
rent data structures. In Proceedings of the 29th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 136-148, 2008.

Sarat Chandra Varanasi, Neeraj Mittal, and Gopal Gupta. Generating concurrent programs
from sequential data structure knowledge using answer set programming. arXiv preprint
arXiv:2109.08298, 2021.

C. L. W. Henkes. Verifying weak memory concurrent data structure implementations. Mas-
ter’s thesis, Delft University of Technology, Delft, The Netherlands, 2024.

Weiyu Luo and Brian Demsky. Clltester: a race detector for ¢/c++ atomics. In Proceed-
ings of the 26th ACM International Conference on Architectural Support for Programming
Languages and Operating Systems, pages 630646, 2021.

Koushik Sen. Effective random testing of concurrent programs. In Proceedings of the 22nd
IEEE/ACM international conference on Automated software engineering, pages 323-332,
2007.

Michalis Kokologiannakis, Azalea Raad, and Viktor Vafeiadis. Model checking for weakly
consistent libraries. In Proceedings of the 40th ACM SIGPLAN Conference on Programming
Language Design and Implementation, pages 96-110, 2019.

Parosh Abdulla, Stavros Aronis, Bengt Jonsson, and Konstantinos Sagonas. Optimal dy-
namic partial order reduction. ACM SIGPLAN Notices, 49(1):373-384, 2014.

Jeff Huang. Stateless model checking concurrent programs with maximal causality reduction.
ACM SIGPLAN Notices, 50(6):165-174, 2015.

Maged M Michael. Hazard pointers: Safe memory reclamation for lock-free objects. IEEE
Transactions on Parallel and Distributed Systems, 15(6):491-504, 2004.

38

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

[45]

Erik Nijkamp, Bo Pang, Hiroaki Hayashi, Lifu Tu, Huan Wang, Yingbo Zhou, Silvio
Savarese, and Caiming Xiong. Codegen: An open large language model for code with
multi-turn program synthesis. arXiv preprint arXiv:2203.13474, 2022.

Aakanksha Chowdhery, Sharan Narang, Jacob Devlin, Maarten Bosma, Gaurav Mishra,
Adam Roberts, Paul Barham, Hyung Won Chung, Charles Sutton, Sebastian Gehrmann,
et al. Palm: Scaling language modeling with pathways. Journal of Machine Learning
Research, 24(240):1-113, 2023.

Sid Black, Stella Biderman, Eric Hallahan, Quentin Anthony, Leo Gao, Laurence Golding,
Horace He, Connor Leahy, Kyle McDonell, Jason Phang, et al. Gpt-neox-20b: An open-
source autoregressive language model. arXiv preprint arXiv:2204.06745, 2022.

Leo Gao, Stella Biderman, Sid Black, Laurence Golding, Travis Hoppe, Charles Foster,
Jason Phang, Horace He, Anish Thite, Noa Nabeshima, et al. The pile: An 800gb dataset
of diverse text for language modeling. arXiv preprint arXiv:2101.00027, 2020.

Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neu-
big. Pre-train, prompt, and predict: A systematic survey of prompting methods in natural
language processing. ACM Computing Surveys, 55:1 — 35, 2021.

Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Be-
yond the few-shot paradigm. In FExtended abstracts of the 2021 CHI conference on human
factors in computing systems, pages 1-7, 2021.

Mohammad Bavarian, Heewoo Jun, Nikolas Tezak, John Schulman, Christine McLeavey,
Jerry Tworek, and Mark Chen. Efficient training of language models to fill in the middle.
arXw preprint arXiw:2207.14255, 2022.

Aobo Kong, Shiwan Zhao, Hao Chen, Qicheng Li, Yong Qin, Ruiqi Sun, Xin Zhou, Enzhi
Wang, and Xiaohang Dong. Better zero-shot reasoning with role-play prompting. arXiv
preprint arXiw:2308.07702, 2023.

Baptiste Roziere, Jonas Gehring, Fabian Gloeckle, Sten Sootla, Itai Gat, Xiaoqing Ellen Tan,
Yossi Adi, Jingyu Liu, Romain Sauvestre, Tal Remez, et al. Code llama: Open foundation
models for code. arXiv preprint arXiv:2308.12950, 2023.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-
Guang Lou, and Weizhu Chen. Repocoder: Repository-level code completion through iter-
ative retrieval and generation. arXiv preprint arXiv:2303.12570, 2023.

Matt Post. A call for clarity in reporting bleu scores. arXiv preprint arXiv:1804.08771,
2018.

Yujia Li, David Choi, Junyoung Chung, Nate Kushman, Julian Schrittwieser, Rémi Leblond,
Tom Eccles, James Keeling, Felix Gimeno, Agustin Dal Lago, et al. Competition-level code
generation with alphacode. Science, 378(6624):1092-1097, 2022.

Sumith Kulal, Panupong Pasupat, Kartik Chandra, Mina Lee, Oded Padon, Alex Aiken,
and Percy S Liang. Spoc: Search-based pseudocode to code. Advances in Neural Information
Processing Systems, 32, 2019.

Binyuan Hui, Jian Yang, Zeyu Cui, Jiaxi Yang, Dayiheng Liu, Lei Zhang, Tianyu Liu,
Jiajun Zhang, Bowen Yu, Kai Dang, et al. Qwen2. 5-coder technical report. arXiv preprint
arXiv:2409.12186, 2024.

39

	Introduction
	Background
	From Sequential Consistency to Weak Memory
	Execution Graphs
	C/C++ Concurrency (C11) Essentials
	Lock-Free Data Structures
	Safe Memory Reclamation

	Related Work
	Sketch-Based Synthesis with PSKETCH
	ASP-Based Reasoning-Driven Synthesis
	Summary

	Enhancing GenMC with SMR Verification for Weak Memory Models
	Weak Memory Program Verification
	GenMC
	Adapted GenMC
	Formalising SMR Correctness with Automata
	Further Extending GenMC: Integrating SMR Automata Checks (RQ1)
	Evaluation (RQ1)

	Synthesis & Verification Pipeline
	Program Synthesis (RQ2, RQ3)
	Functionality Testing
	Concurrency Verification (RQ4)
	Pipeline Evaluation

	Results
	LLM Synthesis Accuracy (RQ3)
	Verifier Feedback Impact (RQ4)
	End-to-End Synthesis Performance

	Conclusion

