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SUMMARY

MOTIVATION

After the Second World War, chemical warfare agents and munitions were dumped in
the Baltic Sea and the North Sea. Due to several decades of exposure to seawater, their
containers are corroding and their contents are being released into the water. To as-
sess the severity of the environmental consequences, it is important that the chemical
warfare agents are located and their condition is investigated as soon as possible. Un-
fortunately, searching both seas requires a significantly long time to perform. In order
to reduce this time, the search could be performed by Autonomous Underwater Vehicles
(AUVs) that search multiple areas in parallel. A disadvantage of using AUVs is that dur-
ing operation the communication with the AUVs is very limited due to the attenuation of
radio signals in seawater. This makes it hard to re-distribute their assigned areas when
an AUV malfunctions or has decreased scanning performance. The goal of this thesis is
to develop algorithms that can be applied during underwater operations to allow AUVs
to optimize their actions based on a global objective function without centralized com-
munications.

DCOP FRAMEWORK

The attenuation of radio signals in seawater severely impacts underwater communica-
tion capabilities. For this reason, a distributed approach is required to optimize the ac-
tions of the AUVs. The search problem can be modeled within the Distributed Constraint
Optimization Problem (DCOP) framework to be able to explicitly define both computa-
tional agents and their communications. Traditional DCOPs are not able to efficiently
model real-world applications because of the definitions of the domains of the vari-
ables. A domain defines all possible values that can be assigned to the variables. In a
DCOP, these domains are discrete, while real-world problems are typically characterized
by continuous domains. We model both benchmark problems and real-world problems
with continuous domains within the Continuous DCOP (C-DCOP) framework to apply
to AUV operations. This preserves the flexibility of modeling inherent in a DCOP while
removing the limitations imposed by the discrete domain definitions.

C-DCOP SOLVERS

Two C-DCOP algorithms are presented in this thesis. Both algorithms operate directly on
the C-DCOPs and do not require a priori discretization of the continuous domains of the
(scalar) variables. The Compression-DPOP (C-DPOP) algorithm discretizes the domain
of each of the variables at every iteration and compresses the domains. Compressing

IX
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refers to the procedure of updating the upper and lower bound of a domain centered
around an intermediate solution. This process focuses on regions of the search space
that have high utility values. To be able to adjust the communicational requirements of
the algorithm, the size of the messages exchanged during optimization is set through a
parameter. This property of the algorithm is beneficial for applications that suffer from
low communication bandwidths. The Distributed Bayesian (D-Bay) algorithm leverages
Bayesian optimization to solve C-DCOPs without any need for discretization. All agents
model the effect of their variables on the global utility as a Gaussian process. The prop-
erties of the utility functions are modeled by an appropriate selection of the kernels of
the Gaussian processes. The models are used to trade off exploration and exploitation
of the search space to efficiently solve C-DCOPs. When the Lipschitz constant of the
utility functions is known, the D-Bay algorithm is guaranteed to converge to the global
optimum.

SIMULATION AND EXPERIMENTAL RESULTS

In this thesis, besides benchmark problems, results from both high-fidelity simulations
and real-world experiments are given for real-world multi-agent search problems. A
mine countermeasures operation is simulated in which AUVs update their search areas
during the search based on sonar performance. The sonar performance is defined as the
effective scan range of the side-scan sonar sensors. Assigned areas are re-distributed to
optimize a global objective based on metrics relating to the expected time of completion
and the level of confidence that all mine-like objects within the area have been detected.
The results show the potential of in situ optimization of the search areas of the AUVs to
improve their efficiency. Moreover, real-world experimental results are presented for a
multi Unmanned Aerial Vehicle (UAV) search problem. The UAVs are equipped with a
low-bandwidth communication mesh network to mimic the communication capabili-
ties of underwater vehicles. The successful application of the D-Bay algorithm to real-
world autonomous vehicles shows the compatibility of the algorithm with underwater
operations.

CONCLUSIONS

The search for dangerous objects on the seabed should become more efficient to find
and assess these objects promptly. By improving the autonomy of AUVs, the search ef-
ficiency can be increased through the cooperative optimization of their actions during
the operation. The research in this thesis contributes to this strategy through the devel-
oped algorithms and their applicability to real-world problems. The simulated problems
show the increase of search efficiency of AUVs during mine countermeasure operations.
In addition, the real-world experiments with unmanned aerial vehicles demonstrate the
applicability to multi-agent systems that suffer from low communication bandwidths.



SAMENVATTING

MOTIVATIE

In de nasleep van de Tweede Wereldoorlog zijn er (onderdelen van) chemische wapens
en munitie in de Baltische Zee en de Noordzee gedumpt. De structurele integriteit van
de containers is aan het afnemen door decennialange blootstelling aan zeewater. Om
de gevolgen voor het milieu in kaart te brengen is het belangrijk om zo spoedig mogelijk
de containers terug te vinden en hun toestand te evalueren. Om beide zeeën in zo kort
mogelijke tijd af te zoeken, kunnen gebieden door meerdere Autonomous Underwater
Vehicles (AUVs) gezamenlijk worden afgezocht. Een nadeel van het gebruik van AUVs is
dat de communicatie met de AUVs zeer gelimiteerd is door de absorptie van radiosigna-
len in zeewater. Dit bemoeilijkt het aansturen van de AUVs als een AUV een storing heeft
of als de sensoren niet naar behoren werken. Het doel van dit proefschrift is om algo-
ritmes te ontwikkelen die gebruikt kunnen worden in autonome voertuigen. Met name
in AUVs om hun acties te kunnen optimaliseren op basis van een globale doelfunctie
zonder gecentraliseerde communicatie.

DCOP FRAMEWORK

De absorptie van radiosignalen in zeewater heeft een extreem negatieve invloed op on-
derwatercommunicatie. Hierdoor is een gedistribueerde aanpak nodig om de acties van
de AUVs te optimaliseren. Het zoekprobleem kan worden gemodelleerd binnen het Dis-
tributed Constraint Optimization Problem (DCOP) framework om zowel de computa-
tionele agenten als hun onderlinge communicatie expliciet te definiëren. Traditionele
DCOPs zijn niet in staat toepassingen in de echte wereld op een efficiënte manier te
modelleren door de definitie van de domeinen. Een domein beschrijft alle mogelijke
waardes die een variabele kan aannemen. In een DCOP zijn deze waardes discreet, ter-
wijl toepassingen in de echte wereld gekarakteriseerd worden door waardes die continu
zijn. In dit proefschrift zijn zowel benchmark problemen als echte wereld problemen
met continue domeinen gemodelleerd in het Continuous DCOP (C-DCOP) framework.
Hierdoor is de flexibiliteit van het modelleren, inherent aan een DCOP, behouden terwijl
de beperkingen van de discrete domeinen zijn weggenomen.

C-DCOP SOLVERS

Twee C-DCOP algoritmes zijn geïntroduceerd in dit proefschrift. Beide algoritmes ma-
ken direct gebruik van de C-DCOPs en vereisen geen a priori discretisatie van de conti-
nue domeinen van de (scalar) variabelen. Het Compression-DPOP (C-DPOP) algoritme
discretiseert het domein van elke variabele tijdens elke iteratie en comprimeert de do-
meinen. Comprimeren is de procedure van het aanpassen van de boven- en ondergrens

XI



XII CONTENTS

van een domein op basis van een tussentijdse oplossing. Via dit proces focust het al-
goritme zich op gebieden van de zoekruimte met hoge waarde. Om de benodigde hoe-
veelheid communicatie van het algoritme aan te kunnen passen, kan de grootte van de
berichten (die worden uitgewisseld tijdens optimalisatie) worden bepaald door middel
van een parameter. Deze eigenschap van het algoritme maakt het geschikt voor toe-
passingen met beperkte communicatie bandbreedte. Het Distributed Bayesian (D-Bay)
algoritme gebruikt Bayesiaanse optimalisatie om C-DCOPs op te lossen zonder discreti-
satie van de domeinen. Alle agenten modelleren de effecten van hun variabelen op het
globale resultaat op basis van Gaussische processen. De eigenschappen van de lokale
functies worden gemodelleerd door een selectie van de kernels van deze Gaussische pro-
cessen. De modellen worden gebruikt om exploratie en exploitatie van de zoekruimte
tegen elkaar af te wegen. Het D-Bay algoritme convergeert naar het globale optimum als
de Lipschitz constanten van de lokale functies bekend zijn.

SIMULATIE EN EXPERIMENTELE RESULTATEN

In dit proefschrift zijn, naast resultaten van benchmark problemen, resultaten van high-
fidelity simulatieomgevingen en echte wereld experimenten gegeven voor multi-agent
zoekproblemen. Een zoekoperatie naar zeemijnen is gesimuleerd waarbij AUVs hun
zoekgebied aanpassen op basis van de reikwijdte van de sonar. De reikwijdte van de
sonar is gedefinieerd als de afstand waarop objecten kunnen worden gedetecteerd. Het
globale doel is gerelateerd aan de verwachtte eindtijd van de operatie en het zekerheids-
niveau dat alle zeemijn-achtige objecten in het zoekgebied zijn gevonden. De toegewe-
zen zoekgebieden van de AUVs werden herverdeeld om het globale doel te optimalise-
ren. De resultaten laten een toename van efficiëntie zien van in situ optimalisatie van de
zoekgebieden van de AUVs. Hiernaast zijn echte wereld experimenten uitgevoerd voor
een multi Unmanned Aerial Vehicle (UAV) zoekprobleem. De UAVs waren uitgerust met
een laag-bandbreedte communicatie mesh-netwerk om de communicatiemogelijkhe-
den van onderwatervoertuigen na te bootsen. Tijdens de experimenten werd het D-Bay
algoritme gebruikt om de toepasbaarheid van het algoritme op autonome voertuigen in
de echte wereld aan te tonen, in het bijzonder op onderwatervoertuigen.

CONCLUSIES

Het zoeken naar gevaarlijke objecten op de zeebodem moet efficiënter worden om deze
objecten te kunnen vinden en te beoordelen in afzienbare tijd. Door de autonomie van
AUVs te verbeteren kunnen de zoekgebieden via coöperatieve optimalisatie efficiënter
worden afgezocht. Het onderzoek in dit proefschrift draagt bij aan deze strategie door de
ontwikkeling van algoritmes en hun toepasbaarheid op echte wereld problemen. De ge-
simuleerde problemen laten de AUVs een toegenomen efficiëntie zien tijdens een zoek-
operatie naar zeemijnen. Daarnaast laten de echte wereld experimenten met UAVs de
toepasbaarheid zien op problemen met multi-agent systemen met beperkte communi-
catie bandbreedte.







1
INTRODUCTION

1.1. BACKGROUND

T here is a lurking threat beneath the waves of the North Sea that puts both the an-
imals living in the sea and the people living around it in danger. This threat dates

back to the end of the Second World War when approximately 13000 metric tonnes of
Chemical Warfare Agents (CWAs) were discarded at sea [10]. Even though these CWAs
were not used during the Second World War, they were stockpiled in large quantities.
After the Second World War ended the Allied forces decided to dispose of these types of
weapons. To neutralize these CWAs it was decided to dump the CWAs into the Baltic sea,
the Skagerrak Strait, and the North Sea by either throwing the CWAs overboard or sink-
ing old ships filled with CWAs [2]. At that time it was considered a suitable manner of
disposal as it was thought that the oceans would either neutralize or absorb the CWAs.
However, it is now known that these effects were overestimated and a large part of the
CWAs remain harmful up to the present day. Partly as a result of these facts, the final
report of the NATO task group AVT-115 [18] concluded that the disposal of weapons at
sea is no longer acceptable.

Recognizing the severity of the problem, the Chemical Munitions Search and Assess-
ment (CHEMSEA) project was started to produce detailed maps of several known dump-
sites, assess the toxicity of CWA degradation products to aquatic life, and develop a
model to predict the magnitude and direction of leakage events. The findings have been
released in an extensive report [3] after the project ended in 2014. In the report, it is
described that Denmark registered 44 incidents related to CWAs in the years between
2003 and 2012. Additionally, Andrulewicz [2] and Knobloch et al. [10] describe reports of
white phosphorus (from incendiary munitions) found on beaches, encounters of fisher-
men and maritime workers with chemical warfare materials, and serious injuries related
to CWAs in Sweden, Germany, and Poland. Andrulewicz [2] adds that when the CWAs
are moved from the seabed either accidentally (after being washed up on a beach) or
intentionally (during bottom trawling) these agents do pose a significant risk. While this
problem will remain a hazard for a long time, despite the high amounts of CWAs, it will
only pose local threats if the current levels of corrosion and leakage remain constant.

1
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2 1. INTRODUCTION

However, if the leakage increases (due to the extensive corrosion of the containers) the
problem regarding CWA concentrations becomes severe. As detailed by Jurczak et al.
[9], there is a high chance that this second scenario will become a reality as it has been
70 years since the dumping actions, while the expected durability of the containment
barrels is estimated at 50-60 years. To assess the risk to the marine environment and
coastal communities, the detection and classification of the dumped CWAs was an im-
portant first step. Based on these findings, by CHEMSEA, the effects of the CWAs (and
their derivatives) found within the water column and the seafloor sediments were inves-
tigated. The CHEMSEA project focused its surveys on the Gotland Deep. This official
dumpsite covers an area of 1760 km2. The area was partitioned into 40 subareas of 13
by 3-5 km. The surveys classified 17000 pieces of munition (of which 50 % containing
CWAs) and 33 wrecks that potentially contain CWAs. An example of a side-scan sonar
image of a wreck is shown in Figure 1.1.

Figure 1.1.: Sonar image of a wreck in the Bornholm Basin (MERCW 2006; personal communica-
tion, V. Paka, via Knobloch et al. [10]. All rights are reserved).

Most dumpsites contained derivatives or oxidation products of CWAs. These degrada-
tion products retain similar toxic properties while having lower breakdown rates and are
therefore considered persistent pollutants. The CHEMSEA report notes that one-third of
all samples that were collected, contained at least one trace of CWAs and at one site two
thirds of the samples contained arsenic.

In addition to these alarming findings, CHEMSEA has confirmed that munitions were
thrown overboard during transit toward dumpsites. During surveys, Bełdowski et al. [4]
found an undocumented dumpsite at the Gdańks Deep. This means that an unknown
quantity of CWAs remains to be discovered in addition to the large amount of CWAs at
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the official dumpsites. Both CHEMSEA and Andrulewicz [2] advise performing sonar
surveys using side-scan sonars, multibeam echo sounders and sub-bottom profilers to
search for these undocumented sites. Knobloch et al. [10] propose periodical (sampling
and scanning) surveys of the suspected dumpsites to monitor CWA concentration within
the water column.

The mapping of the (un)documented dumpsites and creating a global database are goals
of the International Dialogue on Underwater Munitions (IDUM)1 organization. The
IDUM states it is paramount to eradicate the point-source emitters of pollution because
the pollution plumes of these point sources could merge and cause great problems to
the ecosystem. This concern is shared by Jānis Kuzins (SDK Dzimtene) in a recent pe-
tition2 sent to the European Parliament in which he urges for the removal of all chem-
ical weapons from the Baltic Sea to prevent another Chernobyl. Currently, most of the
surveys are done through the towing of a side-scan sonar behind a (support) vessel, as
shown in the illustration in Figure 1.2.

Multibeam
echosounder

Towed side
scan sonar Magnetometer

GPS satellite

Figure 1.2.: Illustration of the survey equipment configuration used within the CHEMSEA project
(image adapted from Bełdowski et al. [3]).

The benefit of this scanning method is that the data can be collected in real-time. A
major disadvantage is that this requires large amounts of time to scan the documented
dumpsites. For this reason, scanning all areas with a high probability of containing un-
documented dumpsites is unfeasible.

A promising alternative is the usage of Autonomous Underwater Vehicles (AUVs) to au-
tonomously scan the seabed and to record the sensor information for later processing
on a support vessel. At present, various commercial companies exist that offer AUVs
equipped with side-scan sonars and other environmental sensors. One example is the
Lightweight Autonomous Underwater Vehicle (LAUV) of OceanScan3 which is shown in
Figure 1.3.

1https://underwatermunitions.org/
2https://www.europarl.europa.eu/doceo/document/PETI-CM-658942_EN.docx
3https://www.oceanscan-mst.com/

https://underwatermunitions.org/
https://www.europarl.europa.eu/doceo/document/PETI-CM-658942_EN.docx
https://www.oceanscan-mst.com/
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Figure 1.3.: Lightweight Autonomous Underwater Vehicle of OceanScan-MST.

Ideally, such AUVs would operate without human intervention for extended periods of
time (8 hours or more) and multiple AUVs would be launched simultaneously to search
in parallel. Not only would this decrease the amount of time required to survey an area,
but it also increases the safety of the crew on board the support vessel.

Objects found by the AUVs can be revisited by the support vessel and classified by a hu-
man operating through visual inspection. These visual inspections are often performed
by specialized underwater vehicles that are remotely controlled. Despite the obvious
benefits, the usage of AUVs has its challenges. The environment in which the AUVs op-
erate is largely unknown and the communication between the support vessel and the
AUVs is very limited. This requires a certain level of autonomy from the AUVs concerning
navigation, obstacle avoidance, information sharing, and cooperation with other AUVs.
Advances in any of these aspects of autonomy can significantly increase the capabilities
and efficiency of the AUVs. Especially in terms of the efficiency of the AUVs, there is
much to be gained. Typically, the trajectories of the AUVs are defined before the AUVs
are launched from the support vessel. An illustration of an AUV scanning after being
launched from a support vessel is shown in Figure 1.4.

Support vessel

side scan sonar

Figure 1.4.: Illustration of an AUV executing a scan while traversing a trajectory.

After the AUVs finish these trajectories, they are reclaimed by the support vessel and
the sensor information is downloaded and assessed. When the sensor performance of
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an AUV is less than expected, this will result in gaps within the high-resolution seabed
maps. These high-resolution maps are used to determine whether the area contains any
objects such as barrels containing CWAs or even sea mines. Depending on the size of
these gaps, the commander of the support vessel will need to trade off the time required
to (re)visit these gaps (by relaunching an AUV) and the risks of undiscovered objects on
the seabed.

An increase in the autonomy of the AUVs can overcome this problem by setting a goal of
the operation for all AUVs, such as ‘scan the area as fast as possible and localize objects
with sufficient accuracy’. During operation, all AUVs could assess their performance and
adjust their search trajectories accordingly. While this will decrease the number and
size of the gaps, this will not result in a time-efficient solution as the AUV will still have
to scan the entire assigned area by itself. Cooperation between the AUVs would allow
for redistribution of their assigned subareas based on their actual sensor performance.
AUVs with good sensor performance could scan a larger area compared to AUVs that
have a decreased performance. In conclusion, close collaboration between the AUVs
would ensure time-efficient trajectories for adequately scanning the entire area.

1.2. PROBLEM FORMULATION

The problem of coordinating multiple autonomous vehicles to survey an area of interest
is commonly modeled as a coverage path planning problem [6]. Within this problem, a
path for every sensor is planned to cover a certain area. The coverage path planning
problem is related to various other problems. Examples of similar problems include
task scheduling [21], mobile sensor coordination [25], hierarchical task network map-
ping [22], and cooperative search [1]. Typically, in order to solve a coverage path plan-
ning problem, the search area is divided into discrete segments, as was done in the work
of Zhang et al. [24]. A similar approach is taken by Popa et al. [20] for multiple AUVs.
Both approaches require the discretization of the search area. A common problem of
discretization is the exponential memory requirement of the algorithms when the total
survey area increases [12]. This problem can be alleviated by the use of specific methods,
as shown by Low et al. [13] and Meliou et al. [16] through approximation and a dynamic
programming approach [5].

An important factor to take into account in solving the path planning problem for AUVs
is the communication restriction. This restriction is caused by the attenuation of ra-
dio signals in seawater and severely limits both communication range and bandwidth
[8]. Due to the dangers involved in the search for CWAs or sea mines a support vessel is
typically located at a significant distance from the search area. The limited communica-
tion range is therefore often the leading factor in the infeasibility of in-situ centralized
optimization by a support vessel. Communication between AUVs is considered to be
sufficient for cooperation because the distance between the AUVs is not as extensive
during the operation. However, a centralized approach where a single AUV receives all
information and optimizes the actions of all AUVs is considered impractical due to the
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low data rates of the underwater modems. For these reasons, in this Ph.D. thesis, cen-
tralized optimization approaches are considered infeasible and distributed approaches
are investigated. Applying a distributed approach in practice is often problematic due to
complications that arise from limitations in communication and/or computation. Espe-
cially in a cooperative search performed by AUVs, these complications become apparent
as the computational hardware needs to be small and lightweight to avoid negative ef-
fects on the endurance of the AUVs.

The Distributed Constraint Optimization Problem (DCOP) framework is well suited to
model the above-mentioned distributed problems (as detailed in Gershman et al. [7],
Meisels [15], Modi et al. [17], Petcu et al. [19], and Yeoh et al. [23]). This is because the
DCOP framework explicitly considers both computational agents and inter-agent com-
munication. Within the DCOP framework, a problem is defined by variables and utility
functions that are aggregated into a single objective function. Within the DCOP frame-
work, variables are constrained by their domains making it suitable for problems that are
(input) constrained. In other words, a domain of a variable is the set of all values that are
allowed to be assigned to that variable. These domains are considered to be finite and
discrete within a DCOP, while real-world problems are typically characterized by finite
continuous domains. For that reason, real-world problems should be modeled within
the Continuous DCOP (C-DCOP) framework, which is an extension of DCOP for finite
continuous domains.

This thesis focuses on developing C-DCOP solvers that can be deployed on real-world
problems and actual hardware that is subject to computational and communicational
constraints.

1.3. RESEARCH OBJECTIVES

In this section, the research goals and the research approach are elaborated. The re-
search described in this thesis is funded by the Netherlands Defence Academy (NLDA).
The research is done in close collaboration between the Delft University of Technology,
the Netherlands Organization for Applied Scientific Research (TNO), and the Nether-
lands Defence Academy (NLDA).

1.3.1. RESEARCH GOALS AND APPROACH

This thesis focuses on the cooperation between autonomous vehicles to efficiently and
effectively complete an objective. The application focus of the research is on autono-
mous vehicles for real-world problems. This involves taking limitations (such as compu-
tational and communicational limitations) into account that are caused by real-world
situations. Especially, the communication requirements of the algorithms should be
taken into careful consideration to reduce their negative impact on the execution of the
algorithms.
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The focus of the research is to further develop C-DCOP solvers that can be applied to
various real-world problems. The goal of the research is to quantify the expected vehicle
performance via utility functions. Research questions to be answered in this thesis are:

• Can an autonomous platform quantify the global utility of local actions through
collaboration?

• How can multi-vehicle performance functions be derived from a high-level perfor-
mance function? Can these functions be integrated in terms of utility with respect
to desired performance?

• What are suitable optimization strategies for in-mission replanning to reach the
mission goals?

• What are the relevant methods for evaluating the research results?

1.3.2. CONTRIBUTIONS OF THIS THESIS

This thesis contributes to the state-of-the-art in modeling and cooperative optimization
of multi-agent systems. The main contribution is the further development of C-DCOP
solvers. These solvers can be applied to numerous C-DCOPs and are well-suited to be
applied to real-world problems thanks to their focus on computational and communi-
cational efficiency. The contributions can be summarized as:

• The Compression-DPOP (C-DPOP) algorithm is presented to solve C-DCOPs while
taking the computation time and memory requirement into account. Especially
in problems in dynamic environments and close collaboration between agents,
these bounds need to be taken into account to ensure effective cooperation. In-
stead of discretizing the continuous domains into discrete domains and applying
the traditional DCOP solvers, C-DPOP discretizes the domains iteratively. A major
benefit is that the size of the discrete domains can be selected through a param-
eter, thereby explicitly limiting the computational and memory requirements of
the algorithm. Combined with the any-time property (which yields an improved
solution after each iteration) this algorithm is highly suitable for application to
real-world problems.

• The C-DPOP algorithm is applied to a Mine Counter-Measures (MCM) operation.
Within this operation, multiple AUVs cooperatively search an area for sea mines
at a large distance from the support vessel. Due to the large distance, the com-
munication between the AUVs and the support vessel is limited. Commonly, the
division of the total search area over the AUVs is fixed at launch. If the sonar per-
formance of one of the AUVs is less than expected, this will not be noticed until all
AUVs have returned to the support vessel. This can lead to severe degradation of
the total scanned area and strongly increase the chance of undetected mines. By
modeling the MCM operation as a C-DCOP and dynamically assigning subareas
to the AUVs using the C-DPOP algorithm, the AUVs cooperatively update their tra-
jectories accordingly and increase the utility of the entire operation. Simulation
results from a high-fidelity UUV simulator [14] are also given.
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• The Distributed Bayesian (D-Bay) algorithm is presented. This algorithm lever-
ages Bayesian optimization to solve C-DCOPs without the need for discretization
completely. It operates directly on the continuous domains through a process re-
ferred to as sampling of the domains. Every sample is used to estimate the ef-
fects of the local utility functions on the global utility. The effects are modeled as
Gaussian processes. Bayesian optimization is used to select the next sample in a
sample-efficient manner based on all previously sampled values and a kernel. The
kernel captures all a priori knowledge about the utility functions. When the Lips-
chitz constant of the local functions is known, the D-Bay algorithm is guaranteed
to converge to the global optimum.

• Application of the D-Bay algorithm to a real-world problem. Analogous to the
MCM operation, a search with Unmanned Aerial Vehicles (UAVs) is presented.
UAVs are selected because they have similar properties to AUVs concerning their
constraints and limitations. Both deviate from their course by wind/currents and
scan an area with downward-facing sensors. Communication constraints are im-
posed through the use of low-bandwidth communication modules. Computation
constraints are similar between UAVs and AUVs as both have embedded comput-
ers that limit the available computational power. Experiments with real UAVs are
used to show that the D-Bay algorithm is suitable for real-world problems and
can efficiently find high-quality solutions. Furthermore, the experiments are used
to validate a simulation environment [11] in which additional (simulated) exper-
iments are executed. In these experiments, various configurations of UAVs are
tested.

1.4. THESIS OUTLINE

In this section, the outline of the thesis is given. This thesis is presented as a collection of
papers, either published, accepted for publication, or under review. For this reason, the
reader will encounter several repetitions, which allows all chapters to be read indepen-
dently. The reader is advised to consider the definitions within the chapters as separate
from the other chapters. The chapters describe various elements of the development of
efficient solvers for C-DCOP problems. In Chapter 2, the Compression-DPOP (C-DPOP)
algorithm is presented and applied to a sensor coordination problem. The algorithm is
compared to DPOP and is found to outperform DPOP with uniform discretization re-
garding both computational resource requirement and performance in terms of utility.
In Chapter 3, the C-DPOP algorithm is used within a high-fidelity UUV simulator for
multiple AUVs for an MCM operation with online optimization of the survey trajecto-
ries based on sonar performance. Chapter 4 presents the Distributed Bayesian (D-Bay)
algorithm. In this chapter, optimality guarantees are presented and comparisons with
state-of-the-art DCOP and C-DCOP solvers are given. In Chapter 5, the D-Bay solver
is applied on a real-world distributed search problem with UAVs. The experiments are
additionally used to validate a simulation environment. The D-Bay algorithm can find
high-quality solutions efficiently. Finally, Chapter 6 summarizes the results given in the
thesis and presents topics for future work.
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2
DISTRIBUTED CONSTRAINT

OPTIMIZATION FOR CONTINUOUS

MOBILE SENSOR COORDINATION

DCOP (Distributed Constraint Optimization Problem) is a framework for representing
distributed multi-agent problems. However, it only allows discrete values for the deci-
sion variables, which limits its application for real-world problems. In this chapter, an
extension of DCOP is investigated to handle variables with continuous domains. Addi-
tionally, an iterative any-time algorithm Compression-DPOP (C-DPOP) is presented that
is based on the Distributed Pseudo-tree Optimization Procedure (DPOP). C-DPOP itera-
tively discretizes the search space to handle problems that are restricted by time and mem-
ory limitations. The performance of the algorithm is examined through a mobile sensor
coordination problem. The presented algorithm outperforms DPOP with uniform dis-
cretization regarding both resource requirements and performance.

This chapter has been published in the proceedings of the European Control Conference (ECC), 2018 [5].
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2.1. INTRODUCTION

A wide range of real-world problems can be modeled as a Multi-Agents-Systems (MAS):
scheduling problems [14], mobile sensor coordination [18], hierarchical task net-

works mapping [16], and control of modern robotics such as RoboCup Rescue [12]. Real-
world problems often involve agents that are bound by inter-agent constraints (commu-
nication, movement) and by limited resources (memory, processing power). Likewise,
bounded computation time is important to ensure safety when operating in an (uncer-
tain) dynamic environment, for example, obstacles can only be avoided when the reac-
tion is executed on time. The main challenge of MAS is to coordinate the actions of the
agents by a distributed process, since a centralized process would become intractable
for a large number of agents.

The distributed constraint optimization problem framework has been introduced to rep-
resent problems that are naturally distributed [11]. A DCOP is typically represented as
a constraint graph, where nodes represent the variables of the problem, and edges rep-
resent a constraint or utility relation between the variables. The agents coordinate their
actions by exchanging messages about the utility of their interactions. The utility val-
ues represent the differences in the cost and benefits of the actions for the individual
agents. By using the utility, individual goals and internal dynamics are abstracted and
hidden from other agents, which makes modeling of real-world problems less complex,
since not all interactions need to be modeled in great detail. This results in modeling
versatility and simplicity.

DCOP defines control variables with finite discrete domains, which limits its use for
problems with continuous variables and utility functions. Within the DCOP framework,
the latter type of problems are less studied [12]. For continuous path planning and multi-
robot coordination/collision avoidance, specific solutions exist. In the work of Viseras et
al. [17], a set of rapidly-exploring random trees is used as a discrete domain for the tra-
jectories. An alternative approach is presented by Stranders et al. [15], where the utility
functions are approximated as piecewise linear functions. These methods assume that
the utility tables are readily available or can be computed beforehand. In real-world
situations, this is often not the case, and the calculation of these values could be sub-
ject to large computational requirements. A generic solution transforms the continuous
domains into discrete domains by uniform discretization for the desired resolution (dis-
tance between domain values). However, this would result in rapid growth in computa-
tional complexity. The complexity growth is due to the exponential growth of the size of
the search space with respect to the interconnectivity and the size of the domains of the
variables.

Numerous solvers for DCOP have been proposed; for a detailed overview of the taxon-
omy of DCOP algorithms, the reader is referred to the work of Cerquides et al. [3] and
Leite et al. [7]. In this chapter, the focus is on the DPOP algorithm [11], since it requires a
fixed number of communication steps. This property makes it suitable for real-world
problems since it bounds the interactions between the agents. DPOP uses dynamic
programming elements to communicate accumulated information among agents, such
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that every new message enables a more informed selection of the optimal control vari-
ables. To reduce the complexity growth, DPOP has been extended in numerous man-
ners. These approaches can be divided into complete and approximate solvers. Com-
plete solvers are guaranteed to find the (global) optimal solution, approximate solvers do
not. Optimally solving DPOP is NP-HARD, which makes providing real-time guarantees
unattainable [9]. Therefore, approximate solutions are considered to be a valid option
for a problem with limited resources.

In local optimal solutions the computational requirements are reduced in three predom-
inant methods:

1. Reducing the number of interconnections by iteratively adding interactions and re-
evaluating the problem (I-DCOP [14]) until an acceptable solution is found. This
reduces the maximum size of the message but could lead to infeasible solutions
when the constraints of the problem are neglected.

2. Restricting the number of variables in the messages by dropping a set of variables
from the message when the maximum message size is violated. This trades solu-
tion quality against computational complexity (A-DPOP [10]) based on lower and
upper utility bounds. For memory-restricted agents, this could lead to arbitrarily
poor performance.

3. Limit the growth of the messages by filtering inferior solutions based on global
lower and upper utility bounds. This method is used to improve DPOP (MB-DPOP
[2]), in combination with the Generalized Distributive Law [12] or max-sum algo-
rithms [13]. This method can achieve a major reduction in communication how-
ever, this cannot be guaranteed. The benefits will depend greatly on the specific
problem at hand.

In this chapter a fourth option is explored:

4. Restricting the search space by considering subsets of the (continuous) domains and
iteratively applying DPOP while focusing the (continuous) domains around inter-
mediate (local) solutions. Consequently, (continuous) domains can be discretized
effectively based on local optima and limiting the need for computational resources.

The remainder of this chapter is organized as follows. First, Section 2.2 defines the DCOP
model and its extension towards continuous domains. Then, Section 2.3 elaborates on
the DPOP algorithm, which is extended in Section 2.4 by the proposed algorithm. Next,
Section 2.5 defines the continuous mobile sensor coordination problem that is used to
compare the performance and memory and computation time requirements of DPOP
and the proposed algorithm. The implementation of the mobile sensor coordination
problem is detailed and the results are analyzed. Finally, Section 2.6 summarizes the
results and defines the future work.
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2.2. DCOP DEFINITIONS & NOTATION

A distributed constraint optimization problem [12] is defined by a tuple 〈A, X ,D,F,G 〉,
where:

A is a set of agents, i.e. A = {a1, a2, . . . , anA } and nA ∈N is the number of agents.

X is a set of decision variables, i.e. X = {Xi | ∀ai ∈ A}. Xi = {xi ,1, . . . , xi ,nXi
} is the set

of variables of agent ai , and nXi ∈ N is its number of variables. The number of
elements in set Xi is denoted as |Xi |.

D is a set of all domains of all variables, i.e. D = {Dp | ∀xp ∈ X } and the domain of
variable xp is defined as Dp = {dp,1,dp,2, . . . ,dp,nDp

}, where nDp ∈ N defines the
number of elements within in the domain Dp .

F is a set of utility functions, i.e. F = { fk : V( fk ) →R∪ {−∞}}. Utility functions can be
used to model hard constraints by returning a value of −∞ upon violation. Each
function fk ∈ F is defined over a subset V( fk ) ∈ X , also referred to as the scope
of the function. The scope of Fi is similarly defined as V(Fi ) = {V( fk )|∀ fk ∈ Fi }.
Every agent ai knows the utility functions that involve its own decision variables
Xi . Formally, agent ai knows the subset Fi ⊆ F , Fi = { fk ∈ F | V( fk )∩Xi ̸= ;}.

G is the global objective function that captures the aggregated utility of a complete
allocation of all variables, denoted as X. An allocation X maps each variable x ∈ X
to a value in its domain D . Formally, X : X → D . The projection of an allocation
X over a set of variables Xp ⊆ X , written X[Xp ], is a new allocation Xp formed by
the values that X assigns to the variables in Xp . The goal of a DCOP is to find an
optimal allocation X∗ = argmaxXG(X), where G(X) =∑

fk∈F fk (X[V( fk )]).

For example, with F = { f1}, f1(x1) = x1
2, V( f1) = {x1}, D1 = {1,2}, and X1 = {x1 = 2},

then G(X1) = f1(X1[V( f1)]) = f1(X1[x1]) = f1(2) = 4.

The search space (all possible allocations of the variables) X = ∏
xp∈X Dp defines

each combination of all elements in the domain for the variables in set X , where∏
is the set Cartesian product.

A DCOP is distributed in the sense that agents only interact through variables coupled
by a utility function. The function set that is shared by agents ai and a j is denoted as
Fi , j = { fk | fk ∈ Fi ∩F j }. Likewise, the set of functions of agent ai that are not shared by
other agents is denoted as F−i = { fk | V( fk )∩V( f j ) =;, ∀ f j ∈ F \ Fi }.
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2.2.1. THE C-DCOP MODEL

The Continuous DCOP (C-DCOP) model extends the DCOP model towards variables
with continuous domains. Formally, it is a tuple 〈A, X ,D,F,G 〉, where:

A,F,G are equal to their definition in DCOP.

X is a set of decision variables X = (X d , X c ), where all variables with a discrete do-
main xd belong to set X d = {xp | p = 1,2, . . . ,nxd } and all variables with a conti-
nuous domain xc belong to set X c = {xq | q = 1,2, . . . ,nxc }. The number of discrete
variables and continuous variables is denoted as nxd ∈N and nxc ∈N, respectively.

D is a domain set D = (Dd ,Dc ), where Dd = {Dd
p | ∀xp ∈ X d } and Dc = {Dc

q | ∀xq ∈ X c }.
The continuous domain of variable xq is defined by its lower and upper bound as

Dc
q = (d c

q ,d
c
q ) indicating the domain over which the variable xq can take a value.

2.3. DISTRIBUTED PSEUDOTREE OPTIMIZATION PROCEDURE

(DPOP)

Distributed Pseudotree Optimization Procedure (DPOP) [11] is a solver for the DCOP
framework. DPOP operates over a pseudo-tree [6], which is a rooted directed spanning
tree, where connected nodes fall in the same branch. Every edge of the pseudo-tree
is represented by a parent/child (direct) relation or by a back edge for a pseudo par-
ent/pseudo child (indirect) relation. This representation allows for separating the main
problem into sub-problems (between branches) and solving these independently before
merging into the global assignment [8]. To create a pseudo-tree from a constraint graph,
a depth-first search traversal can be executed. In this chapter, the Distributed Depth-
First-Search (DFS) algorithm [1] is used, since it performs traversals along back edges
in parallel, thereby reducing the time complexity. A DFS is defined by assigning the fol-
lowing properties to every node/agent ai in the tree: the descendant/ancestor agents
that are directly connected through a tree edge are indicated by Ci , and Pi , respectively.
Descendant/Ancestor agents, that are indirectly connected through a back edge are in-
dicated by PCi , and PPi , respectively. The set of all connected agents to agent ai or to its
descendants excluding the agent ai itself is defined as Ji =∪a j ∈Ci J j ∪Pi ∪PPi \ {ai }.

The DPOP algorithm solves DCOP in three phases:

1. Pseudo tree construction: The agents distributively create the pseudo-tree struc-
ture, by a distributed pseudo-tree construction algorithm. Each agent ai labels all
its neighbors as either parent, pseudo parent, child, or pseudo child.

2. Bottom-up utility propagation: From the leave agents (agents without children) of
the pseudo-tree, the agents pass a utility message U to their parents.

A utility message U i
j is sent by agent a j to agent ai based on the shared utility

function set Fi , j ⊆ F , defined as U i
j ∈Rn1×n2×···×nk,p , where nk,p ∈N is the num-

ber of elements in Dp of variable xp ⊂ V(Fi , j ). In words, it is a multidimensional
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matrix with one dimension for each variable within the scope of the shared utility
functions. Parents receive utility matrices U i

j from all their children indicating the

combined utility for coupled variables between the agents.

All child matrices are combined as U i
Ci

=⊕
a j ∈Ci

U i
j , where the messages are com-

bined by a join operator (⊕) as U i
1,2 =U i

1 ⊕U i
2 such that the scope is the union of

both scopes, i.e. V(U i
1,2) = V(U i

1)∪V(U i
2). The value of the elements of U i

1,2 is the

sum of the elements of U i
1 and U i

2 for all combinations of V(U i
1) and V(U i

2).

For example, U i
1 = [

1 3
]
, with V(U i

1) = {x1} and U i
2 = [

3 4
]
, with V(U i

2) = {x2}. Com-
bining these matrices results in U i

1,2 =U i
1 ⊕U i

2 = [
4 5
6 7

]
with, V(U i

1,2) = {x1, x2}.

The utility matrices of the children are combined with the local utility matrix U (F−i )
and the utility matrices of the (pseudo) parents of the agent to form the total utility

matrix U i of agent ai as U i =U i
Ci

⊕U (F−i )⊕⊕
a j ∈{Pi∪PPi } U j

i .

The resulting matrix U i is optimized over the local variables of the agent ai . This
operation is defined by a projection operator (⊥) and assigns the maximal utility
of allocation of the local variable set Xi . The result is a matrix of lesser cardinality
based on Xi , in words, for all values within the search space of ai , the optimal
value is chosen for the allocation Xi .

Formally, U i ⊥ Xi = maxXi∈Xi U i [Xi ], and the scope V(U i ⊥ Xi ) = V(U i ) \ Xi . For
example, when U i = [

4 5
6 7

]
with V(U i ) = {x1, x2}, the resulting projection is U i ⊥

{x1} = [
6 7

]
and X1 = {{x1 = 2, x2 = 1}, {x1 = 2, x2 = 2}}.

After the projection, the matrix is sent toward its parent, U Pi
i =U i ⊥ Xi . After the

root agent of the pseudo-tree (agent without a parent) has finished this procedure,
the value propagation phase is initiated.

3. Top-down value propagation: The root agent has accumulated the combined util-
ity values U i and can choose the optimal assignment of its local variable set Xi ,
X∗

i = argmaxXi
(U i ⊥ Xi ). The allocation of these values is sent to all the children

of the root agent. Based on these values the children allocate their own variables,
X∗

j = argmaxX j
(U j ⊥X∗

i ⊥ X j ).

Every agent repeats this process until the leave agents are reached, completing the
assignment X∗ for all variables within the DCOP.

A graphic representation of the DPOP algorithm can be seen in Figure 2.1, where a simple
problem is shown during the execution of the algorithm.
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Figure 2.1.: A simple DCOP problem, adapted from [9].
Left: a pseudo-tree representation where the agents A = {a1, a2, a3, a4} are repre-
sented as nodes. The edges represent the utility relations between the variables of the
agents F = { f1, f2, f3}. For example, the utility relation between a1 and a2, f1(a1, a2)

yields the utility matrix U 1
2 =

[2 2 3
5 3 7
6 3 1

]
. The variables X = {X1, X2, X3, X4}, where Xi =

{xi } for i = 1,2,3,4. All variables have identical domains D = {D1,D2,D3,D4}, where
D1 = D2 = D3 = D4 = {a,b,c}.
Right: the message flow starts from the leaves of the tree (a3, a4) based on the pro-
jection of their utility matrices over their decision variables. The utility messages are
depicted as colored arrows. These messages are combined by agent a2 by the join op-
eration (⊕) before projecting out x2 and sending the result to agent a1. Afterwards,
agent a1 calculates the optimal assignment for x1 and sends it to its child (a2). The
value messages are depicted as green arrows. Based on the value message of a1, a2 as-
signs the optimal value for x2 before sending the combined assignment to its children
(a3 and a4). Lastly, agents a3 and a4 assign their local values.
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2.4. COMPRESSION-DPOP (C-DPOP)

To efficiently discretize the continuous domains of the variables within the C-DCOP
framework, the Compression-DPOP (C-DPOP) algorithm is proposed. C-DPOP is an ap-
proximate any-time iterative algorithm that extends DPOP by dynamic discretization of
the continuous domains by a fixed number of values per variable, nsq ∈N for all xq ∈ X c .
After every iteration, the width of the domain of variable xq , wq is decreased according
to a compression factor (0 < cq < 1), which results in an increased domain resolution rq

(value distance). This process can be stopped at any time if the allowed computation
time has expired.

C-DPOP consists of five phases which are iteratively executed by all agents:

1. Domain discretization: All continuous domains of agent ai are discretized based
on its upper and lower bound (d q ,d q ) so to generate discrete domains. Based on
the number of values per domain nsq , the domain is uniformly discretized Dc

q →
Dd

q such that, Dd
q = {dq,1, . . . ,dq,nsq

} and dq,r = d q + (r −1)
wq

nsq −1 .

2. Utility tables creation: Based on the search space of the discrete domains the utility
functions are used to calculate the utility values. Every agent calculates the local

utilities U (F−i ), and the utilities of the (pseudo) parents U j
i ∀ j ∈ Pi ∪PPi .

3. Bottom-up utility propagation: After the utility tables are generated, the leaves of
the tree start by sending their utility matrices to their parents. These matrices are
combined with the local utility matrices, which are then projected over the local
variables before being sent to the parents. This phase is identical to DPOP.

4. Top-down value propagation: The root of the tree initiates the value propagation,
after which all children allocate their local variables before sending it to their chil-
dren. This phase is identical to DPOP.

5. Domain compression: After a (local) optimal allocation for the local variables X∗
i is

found, the upper and lower bounds of the domains are updated. This is done by
compressing the width of the domain w+

q = wq cq , where wq := d q −d q and cen-
tering the domain around the allocated values X∗

i [xq ]. The new domain is defined

as Dc
q = (d c

q ,d
c
q ), where d c

q =X∗
i [xq ]− w+

q

2 , and d
c
q =X∗

i [xq ]+ w+
q

2 .

The compression of the domain is a key part of the algorithm since it iteratively refines
the domains. The proposed restriction strategy is based on a contracting grid search.
Through this strategy, the discretization of the continuous domains is focused around
the (local) optimal value (exploitation of the found solution), while the compression of
the domains reduces the exploration after every iteration. An overview of the strategy for
a one-dimensional domain can be seen in Figure 2.2.

If the resources to solve the C-DCOP are time and/or memory constraints, the execu-
tion of C-DPOP can stop after a fixed number of iterations. The permitted number of
iterations can be calculated explicitly based on the available memory and computation
time. The memory requirement is a function of the size of the domain per variable. The
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Figure 2.2.: An overview of the domain compression strategy. The domain is represented as a hori-
zontal black line on which the values {dq,r }4

r=1 are shown. Domain Dc
q is updated over

three iterations (A, B, C) by reducing the width of the domain w+
q = wq cq and center-

ing around the optimal value (represented as vertical arrows). The optimal value at
every iteration is indicated by a star.

total required memory by agent ai can be calculated as mi = |Xi |m1, where |Xi | is the
size of the search space for all variables in Xi , and m1 is the required number of bytes to
store the utility of a single assignment (typically 8 bytes for a float). The required time
can be calculated based on the number and execution time of all function evaluations.
The number of evaluations is equal to the size of the search space of all variables in the
scope of the function, ne fk

= |X fk
|. It is a property of the number of variables in the scope

and the size of their domains, since X fk
= ∏

xq∈V( fk ) Dq . The evaluation time of a func-
tion fk is a property of that function and is denoted as t fk

. This property is assumed to
be known for all functions fk ∈ F . Based on these two properties the required computa-
tion time for agent ai can be defined as ti =∑

t fk
ne fk

for all fk ∈ F−i ∪Fi , j∀ j ∈ Pi ∪PPi .

The achievable resolution r i
q of agent ai for variable xq can be calculated based on the

chosen compression factor cq , the initial width of the domain wq , the number of values

within the domain nsq , and the number of iterations nIq ∈N, as r a
q = c

nIq −1
q

wq

nsq −1 .

2.5. SENSOR COORDINATION PROBLEM

2.5.1. PROBLEM STATEMENT

A mobile sensor coordination problem is used to evaluate the performance and compu-
tational requirements of the C-DPOP algorithm. The problem is adapted from Zivan
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et al. [19] where a team of mobile sensors with limited sensing range needs to coor-
dinate their positions (from initial locations) to minimize the number of unobserved
targets in an area. The problem is extended for agents with limited memory and com-
putation time, and the agents can select positions over continuous domains within a
two-dimensional plane.

The problem is described within the C-DCOP framework where the position of agent ai

is defined within the variable set Xi = {pax
i , pay

i }. The available resources are defined as
t max

i for time and mmax
i for memory of agent ai . The utility functions of the problem are

defined as F = {FT ,FA}. FT = { ft ,l }nT
l=1 is the utility function set for sensing the targets,

where nT ∈N is the number of targets. A target Tl is defined as a point (ptx
l , pty

l ). The
utility function of target l is described as,

ft ,l =
{

1 if d(Tl , X j ) ≤ s j

0 if d(Tl , X j ) > s j
,

where s j is the sensing distance of the closest agent (a j ), and d(Tl , X j ) is the Euclidean
distance between the location of the target and the position of the agent. The utility
function set for the movement is represented as FA = { fa,i }nA

i=1, where

fa,i =−d(Xi , Ii )

and Ii = (pax0
i , pay0

i ) is the initial location of agent ai .

The resulting goal function is defined as

G(X) = ∑
fk∈F

fk (X[V( fk )])

= ∑
ft ,l∈FT

ft ,l (X[V( ft ,l )])+ ∑
fa,i∈FA

fa.i (X[V( fa.i )]).

In other words, the goal function defines the difference in utility gain from targets in the
sensor range and the cost of moving to a new location for all agents.

2.5.2. IMPLEMENTATION

The performance of the proposed C-DPOP algorithm is compared to DPOP with a uni-
form discretization of the continuous domains. The DPOP method discretizes the con-
tinuous domains only once, while C-DPOP iteratively discretizes the domains as de-
scribed in Section 2.4. An example of the operation of C-DPOP can be seen in Figure
2.3. The two methods are compared for randomly generated mobile sensor coordination
problems. In every problem, the initial location of the agents I and the location of the
targets T are chosen at random. The agents can choose any position within a bounded
normalized area and therefore the domains of the variables are all equal, Dc

x,i = Dc
y,i =

(0,1) for all ai ∈ A. Since all variables have equal domains and all agents have similar
variables, the agent subscript and variable subscripts will be neglected for brevity. All
agents are assumed to have an equal amount of available memory and computation
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(b) Intermediate values.
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(c) Final values.

Figure 2.3.: Selecting and compressing domains during C-DPOP for a three-agent, ten-target ex-
ample. The initial positions of the agents are shown as red markers, their search space
(domains) as blue markers, and their optimal value as green markers. The agents are
identified by markers (square, plus, pentagon). The targets are indicated as black cir-
cles. Additionally, the transparent blue circles around the intermediate solutions in-
dicate the sensing distance and the dotted lines indicate the required movement from
the initial position to the intermediate solution. Snapshots from three iterations are
shown. Initially, in Figure 2.3a, the domains can be seen to overlap, seemingly only
showing the search space of a single agent. After six iterations, in Figure 2.3b, the do-
mains of the agents are compressed and centered around their found (local) optima.
At this time the domains partially overlap but can be seen to concentrate on distinct
areas. Finally, in Figure 2.3c, the domains do not overlap and the distance between the
intermediate solutions is converging.

time. Based on these resources, the maximum achievable number of values within the
domain will be limited by either the memory or the computation time. For DPOP, the
maximum achievable size of the domains within the available resources is used.

The C-DPOP algorithm requires a fixed domain size and a compression factor as pa-
rameters to calculate the required number of iterations. The domain sizes and the com-
pression factor can be selected based on the properties of the underlying problem. In
the case of mobile sensor coordination, the domain size can be selected to correspond
to a minimum resolution. In this case, it is defined with relation to the sensor range
(si = 0.2) to achieve overlap within the initially sensed areas. Based on the area size, the
domain size for C-DPOP is therefore set to 5. The compression factor should be chosen
based on the properties of the underlying problem. A compression factor close to 0 will
compress the domain relatively fast, excluding large segments of the domain at every it-
eration. Thereby, converging to a (local) optimum rapidly, which is not preferable for all
problems since this can exclude segments that hold the global optimum. A compression
factor close to 1 will be able to escape a local optimum more easily when a new local op-
timum is found, however, it will require more iterations to converge. Correspondingly, a
factor close to 0 has less chance to escape a local optimum but will converge within fewer
iterations. For the problem at hand, this trade-off was made based on the sensor range
of the agents. Since the compression factor is relative to the (current) domain width, at
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the first compression, the size of the domains is reduced by the greatest absolute value.
By choosing a compression factor c of 0.9 at most half of the sensor range of the agents
is not sampled. A comparison of achieved utility for a three-agent, ten-target problem is
shown in Figure 2.4.

During the evaluation of the performance of DPOP and C-DPOP, it was found that the
utility was highly dependent on the achievable resolution (distance between domain
values) of the algorithms. A high resolution will result in accurate positioning, which
induces the least amount of movement cost and achieves higher sensing utility by being
able to sense multiple targets simultaneously. This property can be seen in Figure 2.5
where the computation time and memory requirements to achieve a certain resolution
are compared. Showing that given the same amount of resources, C-DPOP can achieve
a higher resolution.
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Figure 2.4.: A comparison of achieved utility for a three-agent, ten-target problem based on avail-
able resources. Left: the utility of the DPOP algorithm, where the increase in resources
(and domain size) can be clearly seen to increase the performance. Right: the utility
of the C-DPOP algorithm, where the effect of the constant domain size can be seen
in the memory invariance. The performance can be seen to gradually increase when
more iterations are possible within the available time.
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Figure 2.5.: Required time and memory comparison between DPOP approach and the C-DPOP al-
gorithm for a three agent, ten target problem. It can be seen that the time and memory
requirements for DPOP grow exponentially when the resolution is improved.
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2.6. CONCLUSION

In this chapter, an extension of the Distributed Constraint Optimization Problem (DCOP)
called Continuous DCOP (C-DCOP) is presented to represent variables with continu-
ous domains. The modeling simplicity and versatility of DCOP are hereby extended to
include problems with continuous variables. Many real-world problems contain inter-
agent constraints and limited resources, such as limited computation time and memory.
Especially in dynamic environments and close collaboration, these bounds need to be
taken into account. For this reason, a solver for the C-DCOP model has been presented
that takes these constraints into account explicitly. The presented Compression-DPOP
(C-DPOP) algorithm is an extension of Distributed Pseudotree Optimization Procedure
(DPOP) that iteratively discretizes the continuous domains and dynamically updates the
domains after each iteration based on the found (local) optimum.

A mobile sensor coordination problem was used to compare the performance of C-DPOP
and DPOP. Here it was found that the C-DPOP algorithm outperforms DPOP for resource-
constrained agents. The higher utility was achieved by using the available resources
more effectively.

In future work, the discretization method of the continuous domains will be extended
from uniform to utility-based, where the utility values of the previous iteration will be
used to predict regions of high utility. The prediction is then refined at every iteration by
incorporating the gained information from the solution. Furthermore, we will compare
the performance between C-DPOP and other approximate DCOP solvers such as DSA
[4]. Additionally, the convergence properties of the C-DPOP algorithm will be investi-
gated with regard to the compression factor.
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3
DISTRIBUTED CONSTRAINT

OPTIMIZATION FOR AUTONOMOUS

MULTI AUV MINE

COUNTER-MEASURES

In this chapter, Mine Counter-Measures (MCM) operations with multiple cooperative Auto-
nomous Underwater Vehicles (AUVs) are examined within the Distributed Constraint Op-
timization Problem (DCOP) framework. The goal of an MCM operation is to search for
mines and mine-like objects within a predetermined area so that ships can pass through
the area within a safe transit corridor. Performance metrics, such as the expected time of
completion and the level of confidence that all mine-like objects within the area have been
detected, are used to quantify the utility of the operation. The AUVs coordinate their search
segments in a distributed manner to maximize global utility. The segmentation is opti-
mized by the Compression-DPOP (C-DPOP) algorithm, which allows explicit reasoning
by the AUVs about their actions based on the performance metrics. After initial segmenta-
tion of the mine threat area, subsequent optimizations are triggered by the AUVs based on
the variations in sonar performance. The performance of the C-DPOP algorithm is com-
pared to a static segmentation approach and validated using the high-fidelity Unmanned
Underwater Vehicle (UUV) simulation environment based on the Gazebo simulator.

This chapter has been published in the proceedings of the OCEANS conference, 2018 [8].

29



3

30 3. DISTRIBUTED CONSTRAINT OPTIMIZATION FOR AUTONOMOUS MULTI AUV MCM

3.1. INTRODUCTION

T he operational objective of a naval mine mission is a reduction of the risk that ships
hit a mine while transiting through a particular body of water. Such risk reduction is

achieved by conducting a Mine Counter-Measures (MCM) operation. An overview of a
multi Autonomous Underwater Vehicle (AUV) MCM operation can be seen in Figure 3.1.

Figure 3.1.: An overview of a multi Autonomous Underwater Vehicle (AUV) Mine Counter-
Measures (MCM) operation, adapted from [5].
The goal is to clear the transit corridor for shipping traffic by detecting all mines within
the operation area. The AUVs are launched from a support vessel and during the
search, they traverse lawnmower search paths.

As defined in [6], the MCM operation consists of several sub-tasks:

1. Detection: detect mine-like objects as mine-like echos (MILECs) by scanning the
MCM area with a larger sonar range yet a lower resolution;

2. Classification: revisiting MILECs and scanning with a higher resolution yet lower
sonar range to classify them as a mine-like contact (MILCO) or a false positive
(NON MILCO);

3. Identification: revisiting MILCOs to acquire optical images that are assessed by a
human operator to identify the MILCO as a mine or a false positive;

4. Disposal: revisiting all mines to perform disposal.

In this chapter, the focus is on the segmentation of the MCM area within the detec-
tion task for multiple cooperating AUVs. In the near future, the detection task will be
performed by multiple AUVs in an autonomous manner [2]. The segmentation will be
performed based on nominal sonar performance indicators such as the effective sonar
range [24]. After the segments are scanned by the AUVs, the results are assessed at the
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support vessel [4]. In case of unsatisfactory results due to variations in the achieved
sonar performance, the operation could be extended to cover the regions that are not
adequately scanned [23]. This iterative process increases the total operation time con-
siderably. To reduce the total required time, the search segments could be adapted dur-
ing the operation through interaction between the AUVs.

There exists a wide range of related work involving an adaptive search for both AUVs
and Unmanned Surface Vessels (USVs). Most works focus on the coverage path plan-
ning problem in which a path needs to be optimally planned for a sensor to cover a
certain area [9]. In the approach of [26], the search area is discretized based on equal
information gain of the discrete segments. USVs are assigned to explore segments yield-
ing the least amount of cost for the individual USVs. A similar approach is taken in
[20] with multiple AUVs for optimal resource assignment based on motion costs, un-
certainty reduction, and optimization over secondary objectives such as communica-
tion bandwidth and energy consumption. These approaches require the discretization
of the search area. A common problem of discretization is the exponential memory re-
quirement when the total survey area increases [13]. This problem is alleviated in [14]
and [16] through approximation and a dynamic programming [3] approach based on in-
formation gain. These centralized optimization approaches, where the support vessel
optimizes the segmentation of all AUVs in-situ, are considered infeasible for the MCM
operation due to communication constraints on both range and bandwidth [10]. Com-
munication between AUVs is considered viable since during the operation their distance
is not as extensive. Furthermore, the AUVs could form a communication network in
which messages can be passed between AUVs that have no direct connection. However,
a centralized approach, where an AUV receives all information and optimizes the actions
of all AUVs, is considered impractical due to the low processing power of the AUVs.

For these reasons, in this chapter, the coverage path planning is modeled and solved in a
distributed manner by the Compression-DPOP (C-DPOP) algorithm [7]. The distributed
approach allows for in-situ adaption of the search segments through inter-AUV commu-
nication without (a priori) discretization of the search area. The C-DPOP algorithm is
applied to the MCM problem modeled within the Distributed Constraint Optimization
Problem (DCOP) framework.

The remainder of this chapter is outlined as follows. Section 3.2 defines the MCM detec-
tion task problem as a coverage path planning problem. Afterward, the DCOP framework
and the C-DPOP algorithm are detailed and the detection task is modeled as a DCOP in
Section 3.3. In Section 3.4, the performance of the C-DPOP algorithm is compared to
a static approach within a high-fidelity simulation environment. Finally, the results are
discussed in Section 3.5.
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3.2. PROBLEM STATEMENT

The detection task is based on two local performance metrics of the AUVs:

1. Expected time of Completion (EoC): expected time for completing the search seg-
ment of the agent;

2. Probability of Detection (PoD): the level of confidence that all mine-like objects
within the segment have been detected as a mine-like echo (MILEC).

The task is completed when the PoD of the search area is higher than the required PoD
(P req) within a maximum operation time t max, which are both set by an operator. The
MCM search area is modeled as a monotone rectilinear polygon, s = (x, y, w,h), where x
and y indicate the center of the area and w,h denotes the width and height, respectively.
The scan segment of AUV i is defined similarly to the MCM area as si = (xi , yi , wi ,hi ).
The combined segments of all AUVs is denoted as S =⋃

i=1,...,n si , where n is the number
of AUVs. An example of segmentation for two and three AUVs can be seen in Figure 3.2.
The total operation time defined as T = max

i=1,...,n
Ti , where Ti is the EoC of AUV i .

(a) Segmentation example for two AUVs. (b) Segmentation example for three AUVs.

Figure 3.2.: Example of segmentation of an MCM search area. The covered segments of the AUVs
are presented as colored areas. The lawnmower patterns of the AUVs are shown as
contrasting colored lines starting from and finishing in a colored circle. These circles
indicate the initial and rendezvous position, respectively. The green and red circles
mark the start and finish of the lawnmower pattern.

The AUVs are equipped with a pair of Side-Scan Sonars (SSS) (mounted on the port and
starboard side) in order to scan according to a lawnmower pattern consisting of several
legs. Legs are defined as straight lines within the pattern. The AUVs are actively scanning
the seabed while traversing the legs.

The lawnmower pattern is optimal for rectangular search areas where the turn radius of
the AUV (d turn

i ) is smaller than the distance between the legs, which is determined by the
sonar range (ri ) [1]. For AUVs the sonar range is typically several factors higher than the
turn radius, therefore only lawnmower patterns are considered in this chapter.

The sonar range is defined as the distance over which the sonar achieves a particular
PoD. It is based on the properties of the SSS, the environment, and the height over the
seabed during scanning. Sailing close to the seabed results in a short sonar range and a



3.2. PROBLEM STATEMENT

3

33

high PoD since the Signal-to-Noise Ratio (SNR) of the sonar will be high. An increase in
height will increase the sonar range, but consequently decreases the SNR and thereby the
PoD. Based on this trade-off the height over the seabed is fixed during scanning based on
the required PoD for the MCM search area. Additional AUV properties which are taken
into account are the velocity during travel (v transit

i ), and the velocity during scanning
(vscan

i ).

The EoC for agent i (Ti ) is a function of the scan segment si and the transit time based
on the initial position of the agent,

Ti = t initial
i + t scan

i + t return
i

where t initial
i is the initial transit time towards the scan segment, t scan

i is the time spent
scanning, and t return

i is the rendezvous time from the scan segment back to the initial
position.

The transit times depend on the Euclidean distance d(·) and the transit velocity of the
AUV as,

t initial
i = d(p initial

i , pstart
i )/v transit

i

t return
i = d(p initial

i , pfinish
i )/v transit

i

where p initial
i = (x initial

i , y initial
i ), pstart

i = (xstart
i , ystart

i ), and pfinish
i = (xfinish

i , yfinish
i ) indicate

the position of the initial location, start of the first leg, and the finish of the final leg,
respectively. Note that, since the depth is considered a constant, it is neglected from the
notations.

The time spent scanning (t scan
i ) depends on the total length of the legs and the number

of turns within the lawnmower pattern. In order to minimize the number of turns, the

longest side of the scan segment (d long
i = max(wi ,hi )) is taken as the scan direction of the

AUV. As a result, the shortest side (d short
i = min(wi ,hi )) is used to determine the number

of required legs li within the lawnmower pattern according to the sonar range of the
agent. The size of the turns is determined by the turn radius of the AUV (d turn

i ) and the

distance between the legs (d leg
i ). Consequently, the time spent scanning is defined as

t scan
i = li d long

i

vscan
i

+
(
2d turn

i +d leg
i

)
(li −1)

vscan
i

,

li =
⌈

d short
i

2ri

⌉
,

d leg
i = d short

i

li
,

where ⌈·⌉ denotes the ceiling function. Note that the number of legs li depends on the
combined range of the port and starboard side SSS systems of the AUV.
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The global goal function G is defined as the utility relation between areas covered with
sufficient PoD and the EoC, formalized as a rectangular Gaussian distribution,

G = exp

−(
(Rcoverage −1)2

(σcoverage)2

) f coverage

−
(

(R time)2

(σtime)2

) f time
 ,

Rcoverage = λ(S)

λ(s)
, R time = T

t max ,

where λ(·) denotes the Lebesgue measure [12] indicating the area of a segment, Rcoverage

is the ratio of the MCM area that is covered to the required PoD, R time is the time ratio of
the required time over the maximum allowed time t max. An operator can tune the rela-
tive significance between coverage and required time through the scale factors σcoverage,
σtime, f coverage, and f time. Using these factors, the relative importance can be indicated
between the coverage and time ratio, as well as the slopes of the utility function with re-
gard to coverage and required time. A graphical overview of the global utility is depicted
in Figure 3.3.

coverage ratio [-] 0

1

time ratio [-]

0

0.75
1

ut
ilit

y 
[-]

0

1

Figure 3.3.: An overview of the global utility function that is based on the ratio of the area of
the covered segment Rcoverage and the required time ratio Rtime for σcoverage = 0.25,
σtime = 0.75, f coverage = 0.5, and f time = 50. Note the steep drop at the time ratio
equal to 0.75, indicating that (almost) no utility is gained when the required time ex-
ceeds the maximum available time.

The global goal function, as described above, is iteratively optimized throughout the de-
tection task. After the initial optimization, the AUVs start to traverse their lawnmower
patterns and, after every leg, their achieved sonar range is assessed. Due to seabed con-
ditions and environmental conditions such as current, the achieved sonar range could
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deviate from their nominal sonar range. If an AUV detects a variation from the nominal
sonar range ri , it sends a trigger to all AUVs to reinitialize the optimization. If there
is no variation, it will continue to traverse the remaining legs without informing the
other AUVs. This decreases the required level of communication, which is beneficial
for communication-constrained underwater search operations.

When the optimization is triggered, the remaining MCM area is updated by subtracting
the segments that have been sufficiently covered. After the solution is found, the AUVs
resume their search based on the updated solution. This process is repeated every time
an AUV triggers the optimization.

3.3. DISTRIBUTED CONSTRAINT OPTIMIZATION PROBLEM

In this chapter, the MCM detection operation is modeled as a Distributed Constraint Op-
timization Problem (DCOP), which is a generalization of a Distributed Constraint Satis-
faction Problem (DCSP) [25].

A DCOP is defined by a tuple 〈A, X ,D,F,G〉 [21] where;

A is a set of agents,
X is a set of decision variables,
D is a set of domains for all variables,
F is a set of utility functions,
G is the global objective function.

A DCOP is distributed in the sense that agents only interact with agents that are coupled
through their variables by a utility function. This allows for the modeling of the problem
as a constraint or function graph, thereby deconstructing the problem into an ordered
pseudo-tree, making it possible to optimize various subproblems in parallel, such as the
calculation of the EoC for all the AUVs within the MCM detection task. The nodes of the
graph represent the local actions of the AUVs while the edges represent a constraint or
utility relation between the actions. An example of a conversion from a constraint graph
into a pseudo-tree can be seen in Figure 3.4.

This deconstruction makes the DCOP framework especially suitable for modeling multi-
AUV operations because the global performance of the AUVs can be described by the
interactions of their local actions. For example, the total scanned area is the union of all
the segments scanned by the agents.

The goal of a DCOP is to optimize the global utility function by assigning values for all
variables in a distributed manner. The complete assignment of all variables is denoted
as X = ⋃n

i=1 Xi . The variables can be assigned a value from within a bounded domain,
denoted as the action space D=⋃n

i=1 Di . Within the detection task, this indicates the as-
signment of segments to the AUVs within the MCM search area. AUVs coordinate their
actions by exchanging messages about the utility of the interactions between their vari-
ables. The cost (in time) and benefit (in coverage) of the segments are expressed in terms
of utility towards the global goal.
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Figure 3.4.: An example of the conversion of a DCOP problem as a constraint graph into a pseudo-
tree. The nodes represent variables or actions. The edges represent a constraint or
utility relation between the nodes. Indirect or pseudo-connections are illustrated as
dotted edges.

These variables are optimized in situ by the Compression-DPOP (C-DPOP) algorithm
[7]. C-DPOP is based on the Distributed Pseudo-Tree Optimization Procedure (DPOP)
[19], which is a DCOP solver that uses dynamic programming elements to communi-
cate accumulated information about the global utility. DPOP requires a fixed number of
communication steps during optimization, which is beneficial for MCM since underwa-
ter communication is subject to severe constraints.

A drawback is that the message size increases exponentially for large domains. This
drawback is especially unfavorable for variables with continuous domains (Dcont) that
are discretized to a high resolution, for example, the subdivision of the search area into
a grid of predefined squares. C-DPOP eliminates this drawback by iteratively creating
discrete domains (Ddisc) by discretizing the continuous domains. At every iteration, the
discrete domains and the (local) optimum are used to compress the continuous domains
around this optimum. The compression decreases the size of the continuous domains,
which results in discrete domains of increasing resolution after every iteration. The al-
gorithm terminates when the resolution of all discretized domains is smaller than a pre-
defined threshold. An overview of the C-DPOP algorithm is given in Figure 3.5.

The MCM detection task is represented within the DCOP framework as

A = (a1, . . . , an) ,

X = (X1, . . . , Xn) , where Xi = {si },

D = (
Dcont

1 , . . . ,Dcont
n

)
, where Dcont

i = {s} ,

F = {T1, . . . ,Tn ,λ(s1), . . . ,λ(sn)},

G = exp

−(
(Rcoverage −1)2

(σcoverage)2

) f coverage

−
(

(R time)2

(σtime)2

) f time
 .

Note that the domains of the search segments are bounded by the MCM search area
s = (x, y, w,h).
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DPOPUniform 
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Local 
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Initialize Resolution reached

Figure 3.5.: An overview of the C-DCOP algorithm, where the discrete domains of AUV i , Ddisc
i (t )

at time t are iteratively created from the continuous domains Dcont
i (t ). After the op-

timization, the (locally) optimally assigned values of AUV i (X∗
i ) are used to compress

the continuous domains. The algorithm terminates when the resolution of all discrete
domains is smaller than a predefined threshold.

3.4. SIMULATION ENVIRONMENT

The performance of the C-DPOP algorithm for the MCM operations is validated through
the high-fidelity Unmanned Underwater Vehicle (UUV) simulation environment [15].
The simulator is based on the Gazebo simulator [11] and Robotic Operating System
(ROS) [22] and includes hydrodynamics, (underwater) current, underwater sensor func-
tions, and various AUV types. In this chapter, the AUVs are modeled after the A9-S of the
ECA Group1 as it is designed for seabed imagery operations. Figure 3.6 shows a render-
ing of the A9-S AUV as modeled2 within the UUV simulator [15].

Figure 3.6.: A rendering of the A9-S AUV of the ECA Group.

Within the simulation environment, all AUVs are considered to be identical and there-
fore share all parameters such as maximum scan and transit velocities, sonar range, and
turn radius. The parameters are chosen following the operational specification of the
ECA A9-S AUV. The required PoD is set such that the sonar range is equal to 150 m, as de-
fined within the specifications of the ECA A9-S. The maximum time is set corresponding
to the time a single AUV would require to cover the entire MCM search area.

1https://www.ecagroup.com/en/solutions/a9-s-auv-autonomous-underwater-vehicle
2https://github.com/uuvsimulator/eca_a9

https://www.ecagroup.com/en/solutions/a9-s-auv-autonomous-underwater-vehicle
https://github.com/uuvsimulator/eca_a9
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Two approaches are compared to assess the performance of the dynamic application of
the C-DPOP algorithm. The first is a static approach in which the C-DPOP algorithm is
executed once (at the start of the operation). The resulting segmentation is not updated
during the operation. The second is a dynamic approach in which the segmentation is
updated based on the triggers of the AUVs.

3.4.1. SIMULATION RESULTS

The performance of C-DPOP is assessed and compared to a static segmentation for mul-
tiple AUVs based on the nominal sonar performance. The performance is measured ac-
cording to the global utility function based on the achieved covered area and required
operation time. Two scenarios are evaluated in which the sonar range is less than nom-
inal. The first scenario involves two AUVs, of which the sonar performance decreases
gradually, and the MCM area covers 2km× 1km. The second scenario involves three
AUVs, of which one has severely decreased sonar performance, and the MCM area cov-
ers 4km×4km. In both scenarios, the AUVs start at the rendezvous location to mimic
the deployment by a support vessel.

In the first scenario, the reduction in sonar performance is not compensated by the static
approach, which results in a loss of coverage over the entire width of the MCM area.
By incorporating the information from the AUVs about their performance decrease, the
search segments are optimized by the dynamic approach based on the remaining avail-
able time to maximize the global utility.

Figure 3.7 shows the covered segments and trajectories of both approaches. The results
in terms of the global utility, time and coverage ratios are shown in Table 3.1.

(a) Results of static approach. (b) Results of the dynamic approach.

Figure 3.7.: Results for the first scenario of the static and dynamic C-DPOP approaches. The MCM
area is indicated by a white rectangle, the covered segments are color-coded based
on the individual AUVs. Within the segments, the lawnmower pattern is shown as
lines with contrasting colors. As can be seen in Figure 3.7a, the static approach leaves
several sections uncovered, while in Figure 3.7b most of the area is covered by the
updated search pattern. Note that, during turns the scanned areas are incomplete,
indicating the decreased probability of detection.
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Table 3.1.: Results of the first scenario.

Approach time ratio coverage ratio global utility

Static 0.58 0.95 0.93

Dynamic 0.83 0.98 0.98

Figure 3.8 shows the results for the static and dynamic approach in terms of the cover-
age segments and the trajectories of the AUVs for the second scenario. The results are
summarized in Table 3.2. The higher utility is achieved by the dynamic approach as the
performance loss of one AUV is compensated by the others. In the static approach, the
lack of additional optimization leaves large segments not covered, which increases the
risk of undetected mines within that area.

(a) Results of static approach. (b) Results of the dynamic approach.

Figure 3.8.: Example of the results for the second scenario of the static and dynamic C-DPOP al-
gorithm. The MCM area is indicated by a white rectangle, the covered segments are
color-coded based on the individual AUVs. Within the segments, the lawnmower pat-
tern is shown as lines with contrasting colors. As can be seen in Figure 3.8a, the sonar
range of the AUV in the bottom left corner (shown in blue) is severely decreased. In
Figure 3.8b, the result of the dynamic optimization can be seen as the AUV decreases
the distance between the legs and the other AUVs adjust their trajectories. Note that,
the dynamic approach covers several locations multiple times due to the change in
orientation of the scan segments.
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Table 3.2.: Results of the second scenario.

Approach time ratio coverage ratio global utility

Static 0.88 0.87 0.83

Dynamic 0.95 0.99 0.99

3.4.2. DISCUSSION

In both scenarios, the dynamic C-DPOP approach achieves a higher global utility. The
utility increase depends on the size of the sonar performance loss during operation and
the maximum available time of the operation. When the performance loss is moderate as
in the first scenario, only slight gains can be achieved. However, in the second scenario,
considerable performance loss can be overcome when the maximum operational time
allows for additional legs within the MCM area. When the available remaining time is
limited, this improvement is reduced, since no time is available for additional legs.

The results of the two scenarios can be extended towards larger MCM areas without ad-
ditional computational resources since no a priori discretization of the MCM area is re-
quired. Furthermore, due to the assumption that the longest edge of the MCM area is
used as scan direction, these results are analogous to MCM areas with other height-to-
width ratios. For example, the segmentation for an MCM area of 2km×4km is similar to
the segmentation for an area of 4km×2km. This assumption does not hold in practice
for every height-to-width ratio, due to several aspects. Two of the most important as-
pects are the environmental properties and the positional uncertainty of the AUVs. Im-
portant environmental properties are underwater currents and ocean topography since
both can severely deteriorate the sonar performance. Positional uncertainty is defined
as the error between the actual and estimated position. The source of this uncertainty
is due to the attenuation of Global Positioning System (GPS) signals underwater. AUVs
are required to estimate their position during scanning instead of interpolating from the
GPS signals. The estimation is typically performed through the use of inertial sensors,
however, the position error for this estimation method is unbounded [18]. Therefore,
the maximum leg length is often restricted based on the growth of the position error. In
order to cope with this increasing error, the AUVs interrupt the scanning to acquire a
GPS fix by surfacing when the error crosses a (predefined) threshold.

3.5. CONCLUSIONS AND FUTURE WORK

This chapter presents a method to segment a search area of multiple cooperative Auto-
nomous Underwater Vehicles (AUVs) in a distributed manner based on global perfor-
mance metrics set by an operator. The application of the distributed constraint opti-
mization problem framework is extended towards autonomous operations of multiple
AUVs without the need for the discretization of the Mine Counter-Measures (MCM) ar-
eas, which allows for flexible modeling and optimization. The optimization of scan seg-
ments of the AUVs is initially performed based on nominal sonar performance and re-
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peated when an AUV triggers a re-optimization during the operation. The performance
of the Compression-DPOP (C-DPOP) algorithm is compared against static segmenta-
tion, which is the de facto standard for current multi-AUV operations. Results show
higher achieved utility for the dynamic approach based on the C-DPOP algorithm.

Future work includes adding the position uncertainty of the AUVs during the operation
as this results in significant operational limitations in practice [18]. Based on the posi-
tion uncertainty the scanning trajectories can be adjusted such that the risk of collision
between AUVs is minimized. Additionally, to reduce the position uncertainty the imple-
mentation of cooperative simultaneous localization and mapping (SLAM) [17] methods
will be investigated.
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4
DISTRIBUTED BAYESIAN: A

CONTINUOUS DISTRIBUTED

CONSTRAINT OPTIMIZATION

PROBLEM SOLVER

In this chapter, the novel Distributed Bayesian (D-Bay) algorithm is presented for solv-
ing multi-agent problems within the Continuous Distributed Constraint Optimization
Problem (C-DCOP) framework. This framework extends the classical DCOP framework
towards utility functions with continuous domains. D-Bay solves a C-DCOP by utilizing
Bayesian optimization for the adaptive sampling of variables. We theoretically show that
D-Bay converges to the global optimum of the C-DCOP for Lipschitz continuous utility
functions. The performance of the algorithm is evaluated empirically based on the sam-
ple efficiency. The proposed algorithm is compared to state-of-the-art DCOP and C-DCOP
solvers. The algorithm generates better solutions while requiring fewer samples.

This chapter has been submitted to JAIR, 2021 [15].

47



4

48 4. DISTRIBUTED BAYESIAN: A CONTINUOUS DCOP SOLVER

4.1. INTRODUCTION

M any real-world problems can be modeled as multi-agent problems in which agents
need to assign values to their variables to optimize a global objective characterized

by a utility function. Examples include scheduling [48], mobile sensor coordination [65],
hierarchical task network mapping [51], and cooperative search [1]. Even though nu-
merous algorithms exist that solve these problems, applying them in practice is often
problematic, as complications arise from limitations in communication, computation,
and/or memory.

The Distributed Constraint Optimization Problem (DCOP) framework is well suited to
model the above-mentioned problems (as detailed in Gershman et al. [19], Meisels [33],
Modi et al. [40], Petcu et al. [43], and Yeoh et al. [63]). Within the DCOP framework, a
problem is defined based on variables and on utility functions that are aggregated into
an objective function. Additionally, agents assign values to all the variables that are al-
located to them. Agents are considered neighbors if their variables are arguments of the
same utility function. Neighbors cooperatively optimize their utility functions through
the exchange of messages. Within the DCOP framework, variables are constrained by
their domains. In other words, a domain defines all possible value assignments of a vari-
able. This explicit definition of the domains of the variables is suitable for real-world
problems that are (input) constrained. These domains are considered to be finite and
discrete within a DCOP, while real-world problems are typically characterized by finite
continuous domains. Problems with finite continuous domains can be modeled as a
Continuous DCOP (C-DCOP), which is equal to a DCOP except for the domain defini-
tion. A common approach to solve a C-DCOP with a DCOP solver is to use equidistant
discretization of the domains, such as using a grid overlay to define all possible posi-
tions of an agent in an area. This process converts the continuous domains into discrete
domains. When discretizing a continuous domain, the quality of the solution will de-
pend on the distance between the values, where a smaller distance will allow for a better
solution. This results in a trade-off as more values will increase the cardinality of the dis-
crete domains. The increase in cardinality will result in polynomial growth of the search
space where the degree of the polynomial is equal to the number of agents. From the
overview articles of Leite et al. [27] and Fioretto et al. [14], it is clear that the cardinal-
ity of the domains is a major restriction to DCOP solvers. Therefore, solving a C-DCOP
by discretization can become intractable for DCOP solvers despite a small number of
variables.

The underlying reason for the increase in problem size is that DCOP solvers (implicitly)
consider all values within a domain as unrelated to each other. Because of this assump-
tion, it is not possible to efficiently sample the search space. In problems with continu-
ous domains, this assumption does not hold since the utility of values that are close is
often similar. By explicitly taking such a relation into account, a C-DCOP solver based
on efficient sampling methods can be constructed.
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Several C-DCOP solvers (CMS [50], C-CoCoA [47], PFD [11], AC-DPOP [22]) have been in-
troduced that, based on initial discretization of the continuous domains, update the dis-
cretized values within an iterative optimization method such as local gradient descent.
In this chapter, Bayesian optimization [37] will be used as it focuses on efficient sampling
during optimization, thereby requiring relatively few iterations to closely approach the
optimum. This method eliminates the need for the discretization of the domains.

Overall, the contributions of this chapter are threefold. Firstly, we introduce an efficient
algorithm that uses methods found in Bayesian optimization to solve C-DCOPs called
Distributed Bayesian (D-Bay). Secondly, we provide theoretical proof of the convergence
of the proposed algorithm to the global optimum of the C-DCOP for utility functions
with known Lipschitz constants. Lastly, simulation results are given for randomly gen-
erated graphs and sensor coordination problems to compare the sample efficiency of
D-Bay to state-of-the-art DCOP and C-DCOP solvers.

The remainder of this chapter is organized as follows. Firstly, in Section 4.2 background
information about the DCOP framework is given. In Section 4.3 relevant literature re-
garding DCOP solvers is discussed. The Bayesian optimization algorithm is provided
in Section 4.4. Afterward, we present the novel sampling-based C-DCOP solver called
D-Bay in Section 4.5. The theoretical properties of D-Bay are analyzed in Section 4.6.
Evaluation of D-Bay for sensor coordination problems and random graphs are included
in Section 4.7. Finally, Section 4.8 summarizes the results and defines future work.

4.2. DISTRIBUTED CONSTRAINT OPTIMIZATION PROBLEMS

The DCOP framework originates from an extension and generalization of Constraint Sat-
isfaction Problems (CSPs) [53] towards distributed optimization. A solution for a CSP is
defined as the assignment of all variables from (finite) discrete domains such that all
hard constraints are satisfied. The CSP framework has been extended from a centralized
problem framework to an agent-based distributed problem framework in the work of
Yokoo et al. [64]. Within the Distributed-CSP framework, the variables are allocated to
agents and the agents coordinate the value assignments among each other.

Additionally, CSP has been generalized into the Constraint Optimization Problem (COP)
framework, where the hard constraints are replaced with soft constraints expressed as
utility functions. Utility functions return a cost or reward based on the value assign-
ments. Hard constraints are enforced by the utility functions by returning infinite cost
(or infinite negative reward). Instead of constraint satisfaction, the goal of a COP is to
find assignments that optimize an objective function.

A final extension is the Distributed Constraint Optimization Problem (DCOP) frame-
work, which provides a unified framework that includes a large class of problems by
combining the generalization of Distributed-CSP and the extension of COP. A graphical
overview of the relations between the problem frameworks can be seen in Figure 4.1.

In the DCOP framework, the domains are considered to be discrete, which limits its ap-
plication to problems with continuous domains. In the current chapter, the Continuous
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COP

CSP Dist-CSP
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Figure 4.1.: Graphical overview of the relations between the problem frameworks. Adapted from
Fioretto et al. [14].

DCOP (C-DCOP) framework will be used to overcome this restriction to include real-
world problems such as cooperative search.

A DCOP is a problem in which an objective function needs to be optimized in a dis-
tributed manner through value assignments for all variables. The objective function
consists of the aggregate of utility functions, which define a utility value for the value
assignments of the variables. All variables within the DCOP are exclusively allocated to
agents. An agent is responsible to assign values to all the variables that are allocated to
it. Typically, the number of variables is equal to the number of agents, i.e. every agent
is allocated a single variable. The agents cooperate by sending messages to agents with
whom they share a utility function. A utility function is shared between agents if their
variables are in the arguments of that function. An important aspect of a DCOP is the
definition of the domains of the variables. A domain defines all possible values that a
variable can be assigned to. In other words, the value assignments are restricted by the
domains of the variables.

Following the notation of Fioretto et al. [14], a DCOP is defined by D= 〈A,X,D,F,α,η〉
where,

• A = {a1, . . . , aM } is the set of agents, where M is the number of agents.

• X = {x1, . . . , xN } is the set of discrete variables, where N ≥ M is the number of vari-
ables.

• D = {D1, . . . ,DN } is the set of domains of all variables, where Di ⊆ R is the finite
discrete domain associated with variable xi . The search space of the DCOP is de-
fined by all possible combinations of all values within the domains as Σ=∏N

i=1 Di ,
where

∏
is the set Cartesian product. The search space of a set of variables (V ⊆ X)

is defined as ΣV = ∏
i : xi∈V

Di .

An assignment denotes the projection of variables onto their domain as ρ : X →Σ.
In other words, for all xi ∈ X if ρ(xi ) is defined, then ρ(xi ) ∈ Di . An assignment of a
subset of variables is denoted by ρV = {ρ(xi ) : xi ∈ V}.

• F = { f1, . . . , fK } is the set of utility functions, where K is the number of utility func-
tions. The scope of fn is denoted as Vn ⊆ X, where xi ∈ Vn when xi is an argu-
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ment of fn . The optimum of fn is denoted by y∗
n = maxx∈ΣVn

fn(x) with input
x∗

n = argmaxx∈ΣVn
fn(x), where ΣVn denotes the domain of the utility function.

• α : X → A is a mapping from variables to agents. The agent to which variable xi is
allocated is denoted as α(xi ). A common assumption is that the number of agents
is equal to the number of variables, such that ai = α(xi ) for i = 1, . . . , N . Likewise,
the set of agents associated with fn is denoted by α(Vn) = {α(x) ∈ A | x ∈ Vn}.

• η is an operator that combines all utility functions into the objective function.
Common options are the summation operator (

∑
(·)) and the maximum opera-

tor
(

max(·)). The objective function is defined by G(ρ) =
fn∈F
η

(
fn(ρVn )

)
. The optimal

value assignment is denoted by ρ∗ :=
ρ∈Σ

argmaxG(ρ).

Analogous to the DCOP definition, a Continuous DCOP (C-DCOP) can be defined as a
tuple 〈A,X,D,F,α,η〉. The definitions of A, F, α, and η are identical to their definitions in
a DCOP. The differences between a DCOP and a C-DCOP are the definition of the domain
set and the variables. All variables in the variable set of a C-DCOP, X, are continuous. The
corresponding domain set is defined as D = {D1, . . . ,DN }, where the domain for variable
xi is defined by a lower bound d i and an upper bound d i as Di = [d i ,d i ].

The relation between the variables and the utility functions is typically represented as a
constraint graph. In this representation, the agents are defined as nodes and the edges
implicitly represent the utility functions. A constraint graph is often converted into a
pseudo-tree to introduce a hierarchy to the agents. A pseudo-tree is a rooted spanning
tree where the subproblems are contained in separate branches. All agents are assigned
a single parent, which is an agent higher in the hierarchy. The only exception is the agent
on top of the hierarchy, which is denoted as the root of the tree, this agent has no parent.
An agent can have multiple children and the agents without children are denoted as the
leaves of the tree.

In addition to parent/child relations, the pseudo-tree defines pseudo-parent/pseudo-
child relations to indicate relations between agents over multiple hierarchy levels. Typi-
cally, the pseudo-tree is used as a communication structure, where agents only commu-
nicate between parent and child. In these cases, the pseudo relation allows for (indirect)
interaction between pseudo-parent and pseudo-children. A graphical example of the
two DCOP representations is given in Figure 4.2.

Producing a pseudo-tree from a constraint graph was introduced in the work of Freuder
et al. [16]. Various methods exists for the generation of a pseudo-tree (e.g. pseudo-tree
ordering [9], MLSP tree generation [31], and BFS construction [10]). A commonly used
method is to produce a depth-first search (DFS) tree from the constraint graph by a DFS
traversal. A DFS tree [43] is a special case of a pseudo-tree where the number of edges
is equal to the number of edges in the constraint graph. This property ensures that all
agents within the DFS tree are also connected in the constraint graph. If the DFS tree is
used as a communication structure, this property ensures that agents only communicate
if they share a utility function. Various algorithms exist in the literature that creates a DFS
tree through a distributed procedure. The interested reader is referred to the works of
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Figure 4.2.: Graphical example for two representations of the same DCOP. A node represents an
agent ai and the edges indicate the utility functions fn based on the variables xi . In
Figure 4.2a the nodes are unstructured. In Figure 4.2b the hierarchy is indicated by
horizontal layers. The agent at the top (a1) is the root of the tree, and the bottom
agents (a2, a4, a5) are the leaves. The edge (dotted line) between a1 and a4 specifies a
pseudo-parent/pseudo-child relation.

Gallager et al. [17], Barbosa [4], Hamadi et al. [21], and Awerbuch [3] for implementation
details.

4.3. BACKGROUND OF DCOP SOLVERS

In the literature numerous solvers for DCOPs have been proposed; for a detailed overview,
the reader is referred to Cerquides et al. [8] and Leite et al. [27]. As noted by Modi et al.
[40], optimally solving a DCOP is NP-hard with regard to the number of variables and
the cardinality of their domains. For this reason, complete (optimal) DCOP solvers are
often not used in practice. In the literature, a diverse range of incomplete (near-optimal)
DCOP solvers exist that trade off solution quality against computational requirements.
Such solvers perform well for benchmark problems with domains with low cardinalities,
such as graph coloring problems [40].

DCOP solvers are unable to directly solve C-DCOPs due to the definition of the domains.
However, a C-DCOP can be discretized into a DCOP. One typically discretizes all domains
of the C-DCOP using a grid-based approach that converts the continuous domains into
discrete domains. This process can arbitrarily increase the cardinality of the domains,
thereby rendering the use of DCOP solvers intractable.

For this reason, the development of C-DCOP solvers has recently gained a lot of atten-
tion within the literature. Initially, Stranders et al. [50] introduced the extension of the
DCOP framework towards continuous variables (and domains) and proposed a conti-
nuous max-sum based (CMS) algorithm to solve C-DCOPs with continuous piecewise
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linear utility functions. The motivation behind this class of functions was that it can
approximate all continuous functions arbitrarily close. In this approach, the domain
discretization is replaced with a function approximation that has the same trade-off be-
tween resolution and solution quality. In a follow-up paper, Voice et al. [60] proposed
a hybrid continuous max-sum (HCMS) algorithm without the function approximation.
The HCMS algorithm extends the max-sum algorithm by incorporating a continuous
non-linear optimization method. Within the algorithm, the domains are discretized and
during optimization, the values are updated at every iteration based on a gradient de-
scent method that depends on local utility values. An important parameter of the al-
gorithm is the step size or learning factor with which the values are updated. The au-
thors note that the step size parameter of the algorithm must be adjusted for the given
problem, as small values will require numerous iterations while high values could result
in overshooting of the optimum.

The concept of discretization of the continuous domains and the iteratively updating of
their values is used to extend DCOP solvers of various classes. Based on the taxonomy
introduced by Yeoh et al. [62] DCOP solvers can be divided into three classes:

Search-based solvers perform a distributed search over the local search space of the
agents. These solvers are based on centralized search techniques such as best-first
and depth-first to reduce the search space of the problem by exchanging messages
between the agents. Examples are ADOPT [40], CoCoA [54], AFB [19], DSA [24],
and DBA [61].

Inference-based solvers communicate accumulated information among agents to re-
duce the problem size after every message through dynamic programming meth-
ods. Well-known examples of this class of solvers are DPOP [43], the max-sum
based algorithm [45], and action GDL [59].

Sampling-based solvers coordinate the sampling of the global search space guided by
probabilistic measures. The probabilistic measures are calculated based on (all)
preceding samples to balance exploration and exploitation of the global search
space. At the time of writing, two sampling-based solvers are found in the liter-
ature: DUCT [42] and Distributed Gibbs [41].

The inference-based DPOP algorithm [43] is extended by Hoang et al. [22] into several al-
gorithms, where AC-DPOP and the memory-limited variant CAC-DPOP can be applied
to C-DCOPs without requirements on the utility functions. The search-based CoCoA al-
gorithm [54] is extended in a similar manner by Sarker et al. [47] into C-CoCoA. Both
Stranders et al. [50] and Sarker et al. [47] note that the local gradient descent approach
cannot guarantee convergence to a global optimum. Initial domain discretization thus
remains an important factor in the solution quality. An alternative approach to gradient-
based optimization is presented by Choudhury et al. [11]. The proposed Particle Swarm
Based F-DCOP (PFD) is based on Particle Swarm Optimization (PSO) [23]. PSO is a
stochastic optimization technique in which multiple particles are assigned a random
position and velocity. The positions represent domain values and the velocities contain
implicit derivative information. The PFD algorithm guarantees convergence to a local
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optimum when the velocity of the best particle is reduced to zero. In conclusion, lo-
cal gradient-descent-based and PSO-based algorithms will arguably find higher quality
solutions compared to their discrete counterparts, but they remain dependent on the
initial discretization of the domains and do not guarantee convergence to the global op-
timum.

In the literature, alternative approaches exist that are capable of extending the inference-
based or search-based solvers toward continuous domains. A prominent example is the
adaption of dynamic programming for Markov Decision Problems (MDPs) with conti-
nuous domains toward C-DCOPs. The interested reader is referred to the work of van
Hasselt [55], and the references therein, for a reinforcement learning approach for learn-
ing policies for MDPs with continuous state and action spaces. Additionally, the work of
Vianna et al. [58] extends symbolic dynamic programming techniques to solve discrete
and continuous state MDPs.

Sampling-based solvers coordinate the sampling of the global search space guided by
probabilistic measures, where samples are referred to as (partial) value assignments.
Note that in the field of stochastic optimization samples are typically only defined in the
context of functions perturbed by noise. The probabilistic measures are used to quan-
tify the probability of finding samples that correspond with function outputs with high
utility values. Sampling-based solvers iteratively select samples while taking previous it-
erations into account to balance exploration and exploitation of the global search space.
Sampling-based solvers have not been extended towards the application to C-DCOPs,
however, the iterative process allows for the selection of a sample from a continuous do-
main directly. The elimination of the discretization of the domains combined with the
balanced search of the global search space makes sampling-based solvers highly promis-
ing to efficiently solve C-DCOPs. Therefore, in Section 4.4, the sample selection for C-
DCOPs is addressed and a novel sampling-based solver for C-DCOPs is introduced in
Section 4.5.

4.4. SAMPLE SELECTION FOR CONTINUOUS DCOPS

As mentioned in Section 4.3, a sampling-based solver will be introduced such that the
relation between the value assignment and the corresponding utility will be taken into
account within the optimization process. During the optimization process, a sample is
defined as a value assignment of a variable. Samples of agents are combined and used as
inputs for the utility functions to calculate the corresponding utility values. Within the
literature several methods exist for sample generation:

• Upper Confidence Bound (UCB) sampling [2], developed for the reduction of re-
gret for K-armed bandit problems [5].

• Gibbs sampling [18], constructed to approximate joint probability distributions in
a Markov random field.

• Bayesian sampling [38], designed for the optimization of utility functions that are
computationally expensive to evaluate.
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UCB sampling has been applied to DCOPs by Ottens et al. [42] based on the UCB Applied
to Trees (UCT) [25] and HOO [7]. The resulting algorithm, Distributed UCT (DUCT), gen-
erates samples based on previously returned values and the uncertainty (or confidence)
over these values. All possible values (of the discrete domains) are sampled at least once
before sampling is based on the confidence bounds. Gibbs sampling has been extended
by Nguyen et al. [41] for the optimization of DCOPs based on the mapping of a DCOP
to a maximum a posteriori (MAP) estimation problem. The MAP is found by approxi-
mating a joint probability distribution over all the variables. Samples are generated to
approximate the joint probability distribution in a distributed manner. Note that several
initial samples are required to accurately represent the desired distribution.

Both UCT and Gibbs sampling share a drawback compared to Bayesian sampling: these
methods do not allow for the inclusion of a priori knowledge about the utility functions.
This allows for Bayesian sampling to generate samples more efficiently than UCT and
Gibbs. For this reason, in this chapter, Bayesian sampling is extended toward the appli-
cation of C-DCOPs.

Bayesian sampling is based on Bayesian optimization which is a method to find the
global optimum of a function in a sample-efficient manner, i.e. it minimizes the num-
ber of required samples. Bayesian optimization consists of two elements: a probabilis-
tic model to approximate a (utility) function f (·), and an acquisition function q(·) to
optimally select a new sample xs , where s denotes the sample index. These two ele-
ments are discussed in more detail in Sections 4.4.1 and 4.4.2. Every input/output pair,
Os = (xs , ys ), is included in the ordered observations set OS = {O1, . . . ,OS }, where S is the
number of observations and ys = f (xs ) is the function (utility) value. The observations
are used to update the probabilistic model, such that after every new observation the
approximation is refined. Based on observations, the probabilistic model is used to es-
timate a mean function µ(x,O ) = E[

f (x)|O]
and the corresponding variance function

σ2(x,O ) =E
[(

[ f (x)|O ]−µ(x,O )
)2

]
. An overview of the Bayesian optimization algorithm

is given in Algorithm 1.

4.4.1. PROBABILISTIC MODEL

The Gaussian process (GP) is a widely used probabilistic model to represent acquired
knowledge about a function. More elaborate models exist, but these will often not share
the computational benefit of the Gaussian process (GP) model. Using the Gaussian pro-
cess (GP) model, a function f (·) is modeled based on a prior mean function m(x) =
E

[
f (x)

]
and a kernel κ(x, x ′) =E

[(
f (x)−m(x)

)(
f (x ′)−m(x ′)

)T
]

. The kernel represents

the cross-correlation between two values of a variable x, x ′. The prior mean function and
the kernel contain all (prior) knowledge of f (·). Typically, no prior information about the
function is available and the zero function (m(x) = 0 for all x) is used as the prior mean
function. In such cases, the modeling of the function depends mostly on the choice of
the kernel.
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Algorithm 1: Bayesian optimization [38]

Input : f (·), q(·), S
Output: µ(x,O ), σ2(x,O )
/* Initialize the observation set */
O0 :=;;
for s = 1, 2, . . . , S do

/* Select the next sample based on acquisition function */
xs := argmaxx q(x|Os−1);
/* Sample the utility function */
ys := f (xs );
/* Augment (and reorder) the observation set */
Os :=Os−1 ∪ {(xs , ys )};
/* Calculate the mean function and the variance function */
µ(x,O ) =E[

f (x)|O]
;

σ2(x,O ) =E
[(

[ f (x)|O ]−µ(x,O )
)2

]
;

end

The Gaussian process (GP) model is combined with the observations to construct the
joint Gaussian distribution over the function. From the joint Gaussian distribution, the
posterior (distribution) can be found by using the Sherman-Morrison-Woodbury for-
mula [49]:

P ( f (x)|O ) =N
(
µ(x|O ),σ2(x|O )

)
, (4.1)

where

µ(x|O ) = k(x|O )TK −1(O )y(O ) (4.2)

σ2(x|O ) = κ(x, x)−k(x|O )TK −1(O )k(x|O ) (4.3)

and N denotes the normal distribution, K (O ) is the Gramian matrix of the kernel, de-
fined by (K )i , j = κ(xi , x j ) for all i , j ∈ {1, . . . ,S}, k(x|O ) = [κ (x1, x) , . . . ,κ (xS , x)]T denotes
the cross-correlation vector between the observations and x, and y(O ) = [y1, . . . , yS ]T de-
notes the observation value vector. The (posterior) mean and variance functions of the
probabilistic model are denoted as µ(·) and σ2(·), respectively. Note that the posterior
distribution contains the estimate of the function based on both the prior knowledge
and the observations.

A wide range of kernels for Gaussian processes exist in the literature and the interested
reader is referred to the work of Duvenaud et al. [13] for an overview of constructing ker-
nels. An important kernel property is the ability to estimate every continuous function
up to a required resolution given a sufficient number of observations. A kernel that pos-
sesses this property is called a universal kernel. In the work of Micchelli et al. [34], the
conditions for a kernel to be universal in terms of properties of its features are given.
The most commonly used universal kernel is the squared exponential kernel. A general
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description of the kernel and its properties is given by Vert et al. [57]. A drawback of
the squared exponential kernel is that it can result in over-smooth approximations. For
this reason, the Matérn kernel [35] is often used, since it can trade off differentiability
and smoothness. In practice, the choice for a kernel depends on the properties of the
function that needs to be approximated. All kernels have parameters that can be used
to adjust their properties, such as smoothness and scaling. If information about f (·) is
available, this should be incorporated in the selection of the kernel and its parameters.
Typically, it is assumed that no information about f (·) is available, and then, as noted
by Rasmussen et al. [44], the selection of the parameters is non-trivial. For this reason,
the selection of parameters is often treated as a separate optimization problem [29]. It is
commonly solved by using the maximum likelihood problem for which automatic rele-
vance detection [30] is a widely used algorithm.

4.4.2. ACQUISITION FUNCTION

The selection of the next sample is the result of the optimization of an acquisition func-
tion q(·), defined by

xs = argmax
x

q(x|O ).

The acquisition function depends on the posterior distribution in Equation (4.1) and
thereby on all previous observations. Two commonly used acquisition functions are the
probability of improvement function [26] and the expected improvement function [39].
The probability of improvement function considers the probability of finding a sample
of which its value is larger than the maximum observed value. The maximum observed
value is defined as

y+ = max{ys : (xs , ys ) ∈O }.

The corresponding maximum sample is defined as x+ = {xs : (xs , ys ) ∈ O |ys = y+}. As
noted by Brochu et al. [6], the probability of improvement function focuses solely on the
exploitation of already observed samples. To balance the exploration of the search space
and exploitation of the observations, the expected improvement function will be used
in this chapter. The expected improvement function chooses the sample based on the
expected value of the next observation. The interested reader is referred to Brochu et al.
[6] for a comparison of the two acquisition functions and more details. The expected
improvement function can be written in closed form in terms of the mean and the devi-
ation function of the probabilistic model as

qEI(x,ξ|O ) =
{

z(x,ξ|O )Φ
(

z(x,ξ|O )
σ(x|O )

)
+σ(x|O )φ

(
z(x,ξ|O )
σ(x|O )

)
if σ(x|O ) > 0

0 if σ(x|O ) = 0
(4.4)

z(x,ξ|O ) =µ(x|O )− (
y++ξ) (4.5)

where Φ(·) is the Gaussian cumulative distribution function, φ(·) is the Gaussian proba-
bility density function, and ξ is a design parameter. The design parameter can be used
to trade off exploration and exploitation. As noted by Lizotte et al. [28], even a value as
low as ξ= 0 will not result in a solely exploiting sampling behavior.
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4.5. THE DISTRIBUTED BAYESIAN ALGORITHM

In the previous sections, background information has been given about the DCOP frame-
work and Bayesian optimization. In this section, the novel sampling-based C-DCOP
solver Distributed Bayesian (D-Bay) is presented. This solver is capable of directly solv-
ing C-DCOPs without discretization of the domains. D-Bay uses Bayesian optimization
as the probabilistic measure to optimize the sample selection. The overall procedure is
similar to state-of-the-art sampling-based solvers, e.g. DUCT [42] and Sequential Dis-
tributed Gibbs (SD-Gibbs) [41].

Sampling-based solvers coordinate the sampling of the global search space guided by
probabilistic measures to balance exploration and exploitation. The general outline of
sampling-based solvers is as follows. Based on a pseudo-tree representation of the C-
DCOP, the variables and utility functions are allocated to the agents. Afterward, two con-
secutive phases are iteratively repeated until a termination condition is satisfied. The
first phase, the sampling phase, is top-down and starts from the root agent. The root
starts the sampling phase by selecting a sample for all its variables. A sample can be
viewed as a temporary value assignment of a variable. The sample is sent as a sample
message to all the children of the agent. Upon receiving this message, an agent sam-
ples its variables and adds these samples to the sample message before sending it to its
children. This process continues until the leaf agents are reached.

When the leaf agents are reached, the utility phase is initiated. This second phase is
bottom-up and starts from the leaf agents. Based on the allocated utility functions, the
agents calculate the utility (value) based on the sample message and the assignments of
their variables. This utility is encoded within a utility message and sent to the parent of
the agent. Upon receiving a utility message, an agent calculates the utility of its allocated
utility functions. The resulting utility value is aggregated with the utility value of the re-
ceived message before sending a utility message to its parent. This phase finishes when
the root agent received a utility message from all its children. This moment marks the
end of a single iteration. At this time, all agents have obtained the utility value associated
with the sample of their variables. This information is used by the agents to update their
probabilistic models and thereby the selection of their sample at the next iteration.

The main difference between sample-based solvers is in the method of selecting addi-
tional samples. The probabilistic measure in DUCT is based on confidence bounds of
the utility of the samples and selects samples to improve these bounds. The agents store
the utility for all previous samples during optimization. The Distributed Gibbs algorithm
selects samples based on joint probability distributions and only keeps track of the dif-
ferences between the utility values of the samples as a termination criterion. This makes
Distributed Gibbs more memory efficient compared to DUCT.

Both algorithms are DCOP solvers and have a runtime complexity that is linear in the car-
dinality of the largest domain [14, Table 4]. Therefore, both Distributed Gibbs and DUCT
suffer from the discretization of continuous domains and are not suitable for continuous
DCOPs.
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An additional disadvantage of both solvers is the non-determinism with regard to the
utility value of a sample. This is caused by the consecutive sampling and utility phases
since within an iteration all agents sample a single value from their local search space.
In other words, the same sample message can result in different utility messages when
the children of an agent select different samples for their variables.

To remove the non-determinism, the sampling and utility phase in D-Bay will be re-
stricted to parents and children instead of the entire pseudo-tree. To be more precise,
when a child receives a sample message it will first iterate between its children before
sending a utility message to its parent. This will guarantee that the utility message in
response to a sample message will always be identical.
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D-Bay as described in Algorithm 2 (Appendix A) involves four phases:

(1) Pseudo-tree construction: The agents create a pseudo-tree from the constraint
graph of the C-DCOP. Afterwards, every agent ai knows its parent/children sets
(Pi /Ci ) and pseudo-parents/pseudo-children sets (PPi /PCi ), where Pi ,PPi ,Ci ,PCi ⊂
A. The pseudo-tree is used as the communication structure in which agents only
communicate with agents with whom they share a parent/child relation. Note that
the agents only have local information on the pseudo-tree.

(2) Allocation of utility functions: Similar to the allocation of variables, all utility func-
tions in F are exclusively allocated to the agents. Every agent ai constructs two
separate function sets based on the variables of the agent and the variables of
its (pseudo-)parents. Firstly, the utility function set Fai = { fn ∈ F : α(Vn) = {ai }},
which only depends on the agent itself. Secondly, the shared utility function set,
FPi = { fn ∈ F : (ai ∈α(Vn)) ∧ (α(Vn)∩ (Pi ∪PPi ) ̸= ;)}, involves the agent and its
(pseudo-)parents. These two function sets are combined as Fi = Fai ∪FPi .

(3) Sample propagation: In this phase, every agent optimizes its variables through
the Bayesian optimization method and exchanges sample and utility messages.
By doing so, the assignments of the variables will converge to the global optimum
of the objective function as will be shown in Section 4.6.2. The variables of ai are
defined as Xi = {x j ∈ X | ai ∈ α(x j )}. The variables are optimized based on the ag-
gregate utility of all functions in set Fi and the functions of its children ( fn ∈ Fk for
all ak ∈ Ci ). Consequently, the aggregate utility values obtained by the root agent
hold the utility values of the objective function.

Since a sample from (pseudo-)parents is required to calculate the utility of the
functions in FPi , every agent ai waits for a sample message from its parent. The
phase is therefore initiated by a sample message from the root agent. The sample
propagation phase finishes when a convergence threshold is reached by the root
agent. Upon receiving sample message S j from its parent a j , agent ai samples its
variables with respect to the functions in set Fi . The samples are selected through
the optimization of an acquisition function. Note that the acquisition function de-
pends on both a kernel and all preceding samples. If the agent is a leaf agent, the
agent can optimize its variables without considering the impact of its assignments
on other agents. The agents with children augment the sample message of their
parent with their sample asSi =S j ∪{ρXi } and send this message to their children.

The agent then waits until it has received all utility messages from its children.
Only then is the agent able to compute the aggregate utility and return a utility
message to its parent. Note that the aggregate utility represents the optimal utility
for the sample of the agent and all its (pseudo-)children. A utility message is de-

fined as U j
i = η

(
Ui , Ûi

)
, where Ui = min

ρ∈ΣXi

η
fn∈Fi

(
fn(ρVn |S j )

)
and Ûi = η

ak∈Ci

(
Ui

k

)
de-

fine the utility and the aggregated child utility, respectively. A graphical overview of
the sample propagation phase is shown in Figure 4.3. Additionally, a partial trace
of the Bayesian optimization is shown in Figure 4.4.
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(4) Assignment propagation: The final phase is the assignment propagation phase,
in which the root agent a1 sends the final assignment of all its variables to its chil-
dren as a final message Ŝ1 = {ρ̂X1 }. Based on these assignments, the children as-
sign their variables to the value corresponding to the optimal utility value. After-
wards, every agent adds its assignments to the final message as Ŝi = {ρ̂Xi }∪ Ŝ j .
After the leaf agents have received a final message, all agents have completed their
local assignments ρ̂Xi . Note that typically no agent has information of the com-
plete assignment, ρ̂ = {ρ̂Xi : i = 1, . . . , M }.

Proposition 1. The memory complexity of each agent in D-Bay is O(S), where S is the
number of samples at every iteration.

Proof. The optimization of the variables of an agent is restarted every time a sample
message from the parent is received. An agent only needs to store the utility of the values
based on the current (local) iteration to send the best utility value back to its parent,
thereby restricting the memory requirement per agent to O(S).

Proposition 2. The maximal message size for all messages in D-Bay is O(t ), where t is
the maximal depth of the tree.

Proof. The utility message has a fixed size of O(1) as it contains a single utility value re-
lated to the current sample message S. Both the sample message and the final message
are appended with the sample of the agent before it is sent to the children of the agent.
This limits the size of these messages to O(t ).

Proposition 3. The total number of messages sent by an agent in D-Bay is O(cS t ), where
t is the depth of the tree, S is the number of samples and c denotes the largest number
of children.

Proof. When agent ai receives a sample message from its parent it generates S samples
that are sent to all its children Ci . This process continues until the leaves of the pseudo-
tree are reached and will bind the number of messages for an agent to O(cS t ).

Proposition 4. The maximal runtime complexity of each agent in D-Bay is O(S t ), where
t is the depth of the tree.

Proof. For every sample message an agent receives it optimizes the value of its next sam-
ple through Bayesian optimization a total of S times. The runtime complexity of the
agents is greatest for the leaf agents and therefore the maximum number of samples for
an agent is O(S t ).
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Figure 4.3.: Graphical overview of the sample propagation phase of D-Bay. Agents are indicated
by circles labeled with an agent index, and utility functions are shown as black lines.
Starting from the root a1 (I), sample message S1 is sent to its children (a2, a3). Subse-
quently, agent a3 will send sample message S3 to its children (II). After iterating be-
tween its children and calculating its local utility (III), agent a3 combines all utilities
(IV) and checks its threshold (V). The check for the threshold is indicated by an an-
notated grey diamond. If the threshold is reached the agent a3 sends utility message
U1

3 to its parent (VI). This process is repeated when the root a1 sends another sample
message and finishes when a1 the convergence threshold or the number of samples
is reached (VII). Note that the interactions between a1 and a2 are not illustrated for
brevity.
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(a) Partial trace for simple DCOP during sample propagation phase. During the optimization, the children
sample their variables based on the sample message of a parent. This dependency is indicated by the curly
brackets, where the samples associated with a parent sample are contained within the curly bracket.
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(b) Detailed view for agent a5.

Figure 4.4.: Graphical examples of a partial trace of the Bayesian optimization process. The agent
associated with the trace is shown on the left. The trace consists of the utility function
approximation (top) and the acquisition function (bottom). The function approxima-
tion shows the samples ( ), the mean ( ), and the standard deviation ( ). The
acquisition function shows both the values ( ) and its optimum ( ). The optimum
of the acquisition function determines the next sample of the objective function.
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In the next section, the convergence of D-Bay to the global optimum of a C-DCOP is an-
alyzed. D-Bay utilizes Bayesian optimization for the sample selection within the sample
propagation phase. For that reason, the performance of D-Bay depends highly on the
properties of the Bayesian optimization method. As mentioned in Section 4.4, Bayesian
optimization consists of the combination of a kernel and an acquisition function. There-
fore, the analysis is focused on the selection of the kernel, the acquisition function, and
their parameters.

4.6. THEORETICAL ANALYSIS OF D-BAY

This section analyses the convergence of D-Bay to the global optimum of a C-DCOP in
two parts. Firstly, in Section 4.6.1, the convergence to the global optimum of the utility
functions within the sampling propagation phase is proven. It shows that if the Lipschitz
constant of the utility functions is known, the convergence to the global optimum can be
guaranteed through the appropriate selection of the kernel and the acquisition function.
In this chapter, all utility functions are assumed to be Lipschitz continuous with a known
Lipschitz constant. A utility function f (·) is Lipschitz continuous with Lipschitz constant
L f if

| f (xi )− f (x j )| ≤ L f |xi −x j | ∀xi , x j ∈ dom( f ) (4.6)

where dom( f ) denotes the domain of the utility function.

Secondly, in Section 4.6.2, the convergence of D-Bay to the global optimum of the objec-
tive function based on the global optima of the utility functions is proven. This analysis
focuses on the assignment propagation phase. The two parts of the analysis are com-
bined to prove the convergence of D-Bay to the global optimum of C-DCOPs with utility
functions with known Lipschitz constants.

4.6.1. CONVERGENCE OF BAYESIAN OPTIMIZATION BASED ON LIPSCHITZ

CONTINUOUS FUNCTIONS

As shown by Törn et al. [52], the convergence to the global optimum of a function by
Bayesian optimization can only be guaranteed through dense sampling of the domain
of the function. For this reason, within the Bayesian optimization method, the acqui-
sition function will need to produce dense samples. In the work of Vazquez et al. [56,
Theorem 6], the expected improvement acquisition function, given by Equation (4.4),
is proven to produce dense observations within its search region. The search region is
defined in Definition 4.1.

Definition 4.1. The search region of the acquisition function qEI(·) (based on f (·) and
O ) is defined by

S = {x ∈ dom( f ) : qEI(x,ξ|O ) > 0}.
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As a consequence of the dense sample generation property, S will converge to an empty
set when the number of samples goes to infinity. Therefore, since the next sample is
chosen from the search region (xs ∈ S ), the global optimum (x∗) will be sampled for
s →∞ if x∗ ∈S . In other words, if the optimum inclusion (x∗ ∈S ) property holds, then
global convergence is guaranteed.

Definition 4.2. The upper bound function f̄ (x|O ) of (a Lipschitz continuous) function
f (·) over all observations in O is defined by

f̄ (x|O ) = min{L f |x −xs |+ ys : (xs , ys ) ∈O } ∀x ∈ dom( f ).

Definition 4.3. The upper bound region of f (·) holds all values of x for which the upper
bound function f̄ (·) (Definition 4.2) is larger than the maximum observed value y+ and
is defined by

U = {x ∈ dom( f ) : f̄ (x|O ) > y+}.

To find the conditions for which the optimum inclusion holds, the upper bound region
set is introduced. The upper bound region set U (Definition 4.3) is based on the upper
bound function f̄ (·) (Definition 4.2). Note that by definition, f̄ (x) ≥ f (x) for all x and U

does not include any observations in O since f̄ (x|O ) = ys ≤ y+ for all xs . As shown in
Lemma 4.1, this region is guaranteed to include the global optimum if the optimum has
not already been observed. A graphical example of sets U and S , and f̄ (·) can be seen
in Figure 4.5.

Posterior distribution
µ

f̄

y+

µ + σ

(x̂, ŷ)

U
O

Acquisition function
q

S

Figure 4.5.: Graphical overview of the sets U , S , and the upper bound function f̄ (·) based on the
observations O .
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Lemma 4.1. The upper bound region U includes the optimum sample x∗ if it has not
been observed. Formally, if x+ ̸= x∗, then x∗ ∈U .

Proof. By Definition 4.2 and Equation (4.6), the value of the upper bound function at
the optimal sample is larger or equal to the optimal value. Formally, f̄ (x∗|O ) ≥ y∗. If
the optimal sample has not been observed (x∗ ̸= x+), then y∗ > y+. Consequently,
f̄ (x∗|O ) > y+. Therefore, by definition of the upper bound region (Definition 4.3) the
optimal sample is included (x∗ ∈U ).

Based on the definition of the upper bound region, the optimum inclusion is satisfied
when the set inclusion U ⊆ S holds. The conditions for the set inclusion are given in
two parts. Firstly, in Lemma 4.2 it is shown that if for all samples where the sum of the
mean and deviation function is greater or equal to the highest sampled value, the sam-
ple is included in the search region set. Secondly, by Definition 4.3, the upper bound
function defines all samples that are within the upper bound region set. By combining
both conditions, we find that if the sum of the mean and deviation function is greater
than the upper bound function, then U ⊆S , as shown in Lemma 4.3.

Lemma 4.2. If µ(x|O )+σ(x|O ) ≥ y++ξ and σ(x|O ) > 0 then x ∈S .

Proof. By Definition 4.1, x ∈ S if qEI(x,ξ|O ) > 0. Let σ(x|O ) > 0 and define w(x,ξ|O ) =
z(x,ξ|O )
σ(x|O ) and through substitution rewrite Equation (4.4) as

qEI(x,ξ|O ) = z(x,ξ|O )Φ
(
w(x,ξ|O )

)
+σ(x|O )φ

(
w(x,ξ|O )

)
. (4.7)

Since σ(x|O ) > 0, we find qEI(x,ξ|O ) > 0 if qEI(x,ξ|O )
σ(x|O ) > 0 where

qEI(x,ξ|O )

σ(x|O )
= w(x,ξ|O )Φ

(
w(x,ξ|O )

)
+φ

(
w(x,ξ|O )

)
.

Define h(w) = wΦ (w)+φ (w). Then sinceΦ′ (w) =φ (w) and φ (w) = 1p
2π

e−
1
2 w2

, we find

h′(w) =Φ (w)+wφ (w)−wφ (w) =Φ (w). Let µ(x|O )+σ(x|O ) ≥ y++ξ, then z(x,ξ|O ) ≥
−σ(x|O ) and w(x,ξ|O ) ≥−1. For w in the interval (−1,∞] we find

h(w) =
∫ w

−1
h′(v)dv +h(−1) =

∫ w

−1
Φ(v)dv −Φ(−1)+φ(−1) > 0,

since Φ(w) > 0 for finite inputs, and −Φ(−1)+φ(−1) > 0. Therefore, if µ(x|O )+σ(x|O ) ≥
y++ξ and σ(x|O ) > 0, then qEI(x,ξ|O ) > 0 and x ∈S .

Lemma 4.3. If µ(x|O )+σ(x|O ) ≥ f̄ (x|O )+ξ for all x ∈ dom( f ), then U ⊆S .

Proof. As shown in Lemma 4.2, if µ(x|O )+σ(x|O ) ≥ y++ξ and σ(x|O ) > 0, then x ∈ S .
By definition of U , for all x ∈ U we find f̄ (x|O ) > y+. Additionally, for all x ∈ U we
find σ(x|O ) > 0, since σ2(x|O ) = 0 only if x = xs and by definition xs ∉ U . Therefore, if
µ(x|O )+σ(x|O ) ≥ f̄ (x|O )+ξ, then x ∈S for all x ∈U .
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Note that µ(·) and σ(·) depend on the kernel and f̄ (·) depends on the Lipschitz constant.
This raises the question of which (type of) kernel is capable of explicitly associating its
mean function and variance function to the Lipschitz constant.

An answer can be found in the work of Ding et al. [12], where Markovian class kernels
are introduced as kernels that possess a Markovian posterior distribution. The value of
a Markovian posterior distribution for a certain input value only depends on the obser-
vations surrounding that value. This property is beneficial as the upper bound function,
which is directly related to the Lipschitz constant, possesses the same property. An ad-
ditional benefit of this class of kernels is that the elements of K −1(O ) can be expressed
analytically. This removes the need of inversion of a matrix of which the size grows with
the number of observations, since K (O ) ∈RS×S . As noted by Rasmussen et al. [44], this
inversion is considered a major restriction to the practical application of Bayesian opti-
mization. In general, a Markovian class kernel is defined by

κ(xi , x j ) =λ2
(
p(xi )g (x j )Ixi≤x j +p(x j )g (xi )Ixi>x j

)
for some function p(·) and g (·), where I(·) is the indicator function and λ is the kernel
scale parameter. The observations are (re)ordered after every new observation, such
that for scalar arguments x1 ≤ x2 ≤ ·· · ≤ xS . The mean function µs (·) and the variance
function σ2

s (·) of the posterior on the interval between observations for a kernel of this
class is defined by,

µs (x|O ) =κT
s (x,O )K −1

s (O )y s (O ) (4.8)

σ2
s (x|O ) = κ (x, x)−κT

s (x,O )K −1
s (O )κs (x,O ) (4.9)

for x ∈ [xs−1, xs ], where

κs (x,O ) = [
κ (x1, x) . . . κ (xs−1, x) κ (xs , x) κ (xs+1, x) . . . κ (xS , x)

]T
,

y s (O ) = [
y1 . . . ys−1 ys ys+1 . . . yS

]T
,

and K −1
s (O ) is a tridiagonal matrix of appropriate dimensions where the tridiagonal ele-

ments of K −1
s (O ), for S ≥ 3 and if K s (O ) is nonsingular, are given by

(K −1
s (O ))s,s =



λ−2p(x2)

p(x1)
(

p(x2)g (x1)−p(x1)g (x2)
) , if s = 1,

λ−2
(

p(xs+1)g (xs−1)−p(xs−1)g (xs+1)
)(

p(xs )g (xs−1)−p(xs−1)g (xs )
)(

p(xs+1)g (xs )−p(xs )g (xs+1)
) , if s ∈ {2, . . . ,S −1},

λ−2g (xS−1)

g (xS )
(

p(xS )g (xS−1)−p(xS−1)g (xS )
) , if s = S,

and

(K −1
s (O ))s−1,s = (K −1

s (O ))s,s−1 = −λ−2(
p(xs )g (xs−1)−p(xs−1)g (xs )

) , s = 2, . . . ,S.

All other elements of K −1
s (O ) are equal to zero.
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Next, we show that for the Dirichlet kernel, as introduced by Ding et al. [12], the inequal-
ity of Lemma 4.3 will hold for all observations if the kernel scale λ is chosen appropri-
ately. This kernel is selected over other Markovian class kernels because of its simplicity.
The Dirichlet kernel defined by

κd(xi , x j ) =λ2 min(xi , x j )(1−max(xi , x j )) (4.10)

for xi , x j ∈ [0,1]. Note that for κd, we find that p(x) = x and g (x) = (1− x). The mean
function, given by Equation (4.8), and the variance function, given by Equation (4.9),
corresponding to the Dirichlet kernel in the interval [xs−1, xs ] can be written as

µs (x|O ) = ys−1(xs −x)+ ys (x −xs−1)

xs −xs−1
, (4.11)

σ2
s (x|O ) =λ2 −(xs −x)(xs−1 −x)

xs −xs−1
. (4.12)

The derivation of Equations (4.11) and (4.12) can be found in Appendix B. It is important
to note that both the mean function and the variance function on the interval [xs−1, xs ]
only depend on the observations at the boundaries of the interval.

Based on Equations (4.11) and (4.12), the inequality of Lemma 4.3 holds if

µs (x|O )+σs (x|O ) ≥ f̄ (x|O )+ξ for x ∈ [xs−1, xs ] (4.13)

for all s ∈ {1, . . . ,S}, given x1 = 0 and xS = 1. In other words, by using the Dirichlet kernel,
instead of analyzing the inequality in Lemma 4.3 over the entire domain of the function,
it is sufficient to analyze Equation (4.13) on the intervals between the observations.

Now that the acquisition function and the kernel have been selected, we need to find
their parameters (ξ and λ) such that the inequality of Equation (4.13) holds. These pa-
rameters can be appropriately chosen based on the Lipschitz constant as given in Theo-
rem 4.4.

Theorem 4.4. For a function f (·) with known Lipschitz constant L f and dom( f ) = [0,1],
the Dirichlet kernel κd, and S ≥ 3, where x1 = 0 and xS = 1, will yield µ(x|O )+σ(x|O ) ≥
f̄ (x|O ) for all x ∈ dom( f ) if λ≥ L f .

Proof. Let the functions µs (·) and σs (·) be as defined by Equations (4.11) and (4.12), re-
spectively. At the observations (x = xs for s ∈ {1, . . . ,S}), the inequality µ(x|O )+σ(x|O ) ≥
f̄ (x|O ) is satisfied, since µs (xs |O )+σs (xs |O ) = f̄ (xs |O ) = ys . Therefore, by letting x1 = 0
and xS = 1, only the closed intervals x ∈ [xs−1, xs ] for all s ∈ {2, . . . ,S} need to be examined.
The proof will focus on these closed intervals next.

Based on Equations (4.11) and (4.12) the inequality µ(x|O ) +σ(x|O ) ≥ f̄ (x|O ) for the
Dirichlet kernel at the closed intervals can be rewritten as

µs (x|O )+σs (x|O ) ≥ f̄ (x|O ) where x ∈ [xs−1, xs ] for all s ∈ {2, . . . ,S}. (4.14)
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For the benefit of the analysis, we normalize the function input for every interval by
defining a normalized function argument as

τs (x|O ) = x −xs−1

∆xs
. (4.15)

Where ∆xs = xs − xs−1 is the size of the interval, and τs (x|O ) ∈ [0,1] for x ∈ [xs−1, xs ]. All
possible critical points of f̄ (·), τ̂s , can be written as a function of νs (O ) as

τ̂s (νs |O ) = 1

2
+

(
ys − ys−1

)
2L f ∆xs

(4.16)

= 1

2
(1+νs (O )) , (4.17)

where νs (O ) ∈ [−1,1] is defined as

νs (O ) = ys − ys−1

L f ∆xs
.

Likewise, the upper bound function f̄ (·) (Definition 4.2) can be rewritten based on the
normalized interval as

f̄s (x|O ) =
{

L f ∆xsτs (x|O )+ ys−1 if 0 ≤ τs (x|O ) < τ̂s (νs |O ),

L f ∆xs (1−τs (x|O ))+ ys if τ̂s (νs |O ) ≤ τs (x|O ) ≤ 1.
(4.18)

A graphical overview of the normalized interval and the corresponding functions can be
seen in Figure 4.6.

Figure 4.6.: Graphical overview of the normalized function argument τs (x|O ) over its domain
[0,1]. The domain corresponds to the interval [xs−1, xs+1] where µs (·) and σs (·) are
based on the Dirichlet kernel and f̄s (·) is based on L f and ∆xs . Based on the up-
per bound function, the domain can be divided into two intervals [0, τ̂s (νs |O )) and
[τ̂s (νs |O ),1].

After defining these variables, two separate intervals can be considered, [0, τ̂s (νs |O )) and
[τ̂s (νs |O ),1]. Both these intervals will be investigated next.
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Interval [0, τ̂s (νs |O )): Let τs (x|O ) ∈ [0, τ̂s (νs |O )). The mean function, given by Equa-
tion (4.11), on the interval can be rewritten based on the normalized function ar-
gument as

µs (x|O ) = ys−1(xs −x)+ ys (x −xs−1)

xs −xs−1

= ys−1(1−τs (x|O ))+ ysτs (x|O )

= ys−1 +τs (x|O )L f ∆xsνs (O ). (4.19)

Likewise, the variance function in Equation (4.12) can be rewritten as the deviation
function as

σs (x|O ) =λ
√

−(xs −x)(xs−1 −x)

xs −xs−1

=λ
√

(1−τs (x|O ))τs (x|O )∆xs . (4.20)

Substitution of Equations (4.18) to (4.20) into Equation (4.14) yields

µs (x|O )+σs (x|O ) ≥ f̄s (x|O )

λ≥ (1−νs (O ))

√
τs (x|O )

(1−τs (x|O ))
L f

√
∆xs . (4.21)

Note that Equation (4.21) gives an explicit expression of the value for the kernel
scale λ and all possible values of input/output pairs of the observations through
the auxillary variable νs (O ).

To analyze the values of λ for which the inequality of Equation (4.21) holds, the
upper bound of the right-hand side is determined.

Since
√
τs (x|O )/(1−τs (x|O )) is monotonically increasing with respect to τs (x|O ),

we find for τs (x|O ) in the interval [0, τ̂s (νs |O )),

(1−νs (O ))

√
τs (x|O )

(1−τs (x|O ))
≤ (1−νs (O ))

√
τ̂s (νs |O )

(1− τ̂s (νs |O ))

≤ (1−νs (O ))

√√√√ 1
2 (1+νs (O ))

(1− 1
2 (1+νs (O )))

≤
√

1−νs (O )2

≤ 1.

Furthermore, since∆xs ≤∆x ≤ 1, we find through substitution of the upper bounds
in Equation (4.21) that if λ ≥ L f , then Equation (4.21) is satisfied for all possible
observations.
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Interval [τ̂s (νs |O ),1]: For this interval the same approach is applied. Let τs (x|O ) ∈ [τ̂s (νs |O ),1];
then substitution of Equations (4.18) to (4.20) in Equation (4.14) yields

µs (x|O )+σs (x|O ) ≥ f̄s (x|O )

λ≥ (1+νs (O ))

√
(1−τs (x|O ))

τs (x|O )
L f

√
∆xs . (4.22)

Since
√

(1−τs (x|O ))/τs (x|O ) is monotonically decreasing with respect to τs (x|O ),
we find

(1+νs (O ))

√
(1−τs (x|O ))

τs (x|O )
≤ 1. (4.23)

Therefore, we conclude that for the interval [τ̂s (νs |O ),1] ifλ≥ L f then Equation (4.22)
is satisfied for all possible observations.

In conclusion, if λ ≥ L f , we find that the inequality of Equation (4.14) will hold for the
intervals [xs−1, xs ] for s ∈ {1, . . . ,S}. Since x1 = 0 and xS = 1, Equation (4.13) hold for all
x ∈ (0,1). Subsequently, µ(x|O )+σ(x|O ) ≥ f̄ (x|O ) will holds for all x ∈ [0,1].

According to Theorem 4.4, if λ≥ L f we find µ(x|O )+σ(x|O ) ≥ f̄ (x|O ) for all x ∈ dom( f ).
Applying Lemma 4.3 and setting ξ = 0, yields U ⊆ S where x∗ ∈ S for all observa-
tions. Subsequently, the Bayesian optimization will converge to the global optimum of
the function. Note that for all functions without a normalized domain, the Lipschitz
constant should be scaled according to the scaling required for the normalization of the
domain.

4.6.2. CONVERGENCE OF D-BAY BASED ON GLOBAL OPTIMA OF UTILITY

FUNCTIONS

As shown in Section 4.6.1, all agents can find the global optimum of the aggregate util-
ity of their utility functions and the utility functions of their children through Bayesian
optimization. In this section, it will be shown that given the global optima of the utility
functions, D-Bay will find the global optimum of the objective function.

During the sample phase of D-Bay, none of the agents can optimize their variables with-
out interaction with other agents. The interaction involves the sending of (top-down)
sample messages S and (bottom-up) utility messages U. Therefore, for the leaf agents,
the optimization depends on their utility functions and the sample message of their par-
ent, S j , as

ρ̂Xi = argmin
ρ∈ΣXi

η
(
Ui

)
= argmin

ρ∈ΣXi

η

(
η

fn∈Fi

(
fn(ρVn |S j

))
∀ai : Ci =;. (4.24)
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When the kernel and acquisition function are selected as detailed in Section 4.6.1, the
assignment ρ̂Xi is optimal with respect to the assignments of the (pseudo-)parents of
agent ai , since S j = ρ̂Pi ∪ ρ̂PPi . Consequently, the optimal assignment results in the

optimal value for the utility message U
j
i given the sample message S j .

This optimal value is sent as a utility message to the parents of the leaf agents and results
in the following assignment for the other agents:

ρ̂Xi = argmin
ρ∈ΣXi

η
(
Ui , Ûi

)
= argmin

ρ∈ΣXi

η

(
η

fn∈Fi

(
fn(ρVn |S j

)
, Ûi

)
∀ai : Ci ̸= ;. (4.25)

The aggregated utility message Ûi = η
ak∈Ci

(
Ui

k

)
is the aggregate of the optimal utility

messages of all children given an assignment of ai . Therefore, agent ai can calculate
the optimal assignment with regard to its parent sample message.

This process is repeated until the root agent a1 has received all utility messages from its
children. As the root agent does not have any (pseudo-)parents, Equation (4.25) can be
rewritten as

ρ̂X1 = argmin
ρ∈ΣX1

η
(
U1, Û1

)
= argmin

ρ∈ΣX1

η

(
η

fn∈F1

(
fn(ρVn )

)
, Û1

)
= ρ∗

X1
. (4.26)

Note that Û1 holds the aggregate utility value of all other agents based on the sample of
the root agent. For that reason, if the root agent finds the optimal assignment ρ̂X1 it is
equal to the optimum of the objective function ρ∗

X1
.

After the root agent has found the optimal assignment of its variables it starts the final
phase of D-Bay. In this phase the root agent sends the optimal assignment as a final
message to its children, Ŝ1 = {ρ∗

X1
}. Based on that optimal sample all agents are able to

determine their optimal assignments, as shown in Equation (4.25), and append their op-
timal assignment to the final message before sending the final message to their children,
i.e. Ŝi = {ρ∗

Xi
}∪ Ŝ j . This process is repeated until the leaf agents are reached and all

agents have assigned the globally optimal values to their variables.

4.6.3. SUMMARY

In Section 4.6.1 it was shown that, based on the Lipschitz constant of a utility function (or
aggregate of functions), the kernel and acquisition function (and their parameters) can
be appropriately selected to guarantee convergence to the global optimum of the utility
function. Subsequently, Section 4.6.2 has shown that, if the agents can find the global
optimum of the aggregate of the utility functions, D-Bay will converge to the global op-
timum of the objective function. Combining these results proves the convergence of
D-Bay to the global optimum of the objective function for utility functions with known
Lipschitz constants.
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4.7. SIMULATION RESULTS

In this section, the performance of the D-Bay algorithm is compared to DCOP solvers
and C-DCOP solvers. The sampling-based DCOP solvers Sequential Distributed Gibbs
(SD-Gibbs) [41] and DUCT [42] are chosen to compare the performance of the D-Bay
algorithm with discrete solvers of the same class. Additionally, DPOP [43] is added to the
comparison to represent the optimal solution of the DCOP solvers, since these solvers
operate on the same domains and DPOP is a complete solver. The C-DCOP solvers AC-
DPOP [22] and PFD [11] are selected as both achieve higher performance than the HCMS
algorithm of Voice et al. [60].

The implementation of DPOP is included within the pyDCOP library [46]. All other al-
gorithms have been included in the pyDCOP library and made available publicly1. The
simulations are conducted on a 2.1 GHz Intel Xeon Gold 6152 CPU machine with suffi-
cient memory for the requirements of all solvers and the computation time is limited to
one hour. All algorithms are evaluated on two types of problems: random graphs and
sensor coordination problems.

The hyperparameters of the solvers are fixed for all experiments and their values are
listed in Table 4.1. If available, the values are taken equal to the listed values in the origi-
nal works.

Table 4.1.: Hyperparameters of DCOP solvers used during simulations.

Algorithm Hyperparameters

DPOP -
SD-Gibbs iterations = 20
DUCT ϵ= 0.6,δ= 0.1
AC-DPOP iterations = 100,δ= 0.001,α= 0.01
PFD particles = 2000, w = 0.9,c1 = 0.9,c2 = 0.1,max fc = 5,maxsc = 15
D-Bay λ = L f

4.7.1. RANDOM GRAPHS

For the generation of the random graph experiments, the NetworkX [20] generator, em-
bedded within the pyDCOP library, is used. Based on the randomly created graph, a C-
DCOP is generated by allocating a variable (and agent) to every node and defining utility
functions for all edges. The bi-modal Bird function [36] (shown in Figure 4.7) is used as
utility function. The Bird function was created as a test function for global optimization
and contains multiple local optima at different values.

The experiments are defined based on three parameters: number of constraint checks,
number of agents |A|, and density of the graph p1. The density of the graph is defined as

1https://gitlab.com/jfransman/pyDcop/

https://gitlab.com/jfransman/pyDcop/
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x1 x2

f(x
1,

x 2
)

Figure 4.7.: Combined view of the function values and a contour plot of the Bird function [36] on
the domain xi ∈ [−2π,2π] for i = 1,2.

the ratio between the number of edges and the maximal number of possible edges. The
number of constraint checks is used as a parameter to compare the DCOP and C-DCOP
solvers based on computational efficiency. The efficiency of the solver is an important
measure for problems for which the utility functions are computationally expensive to
evaluate. Note that when comparing solvers for problems in which communication is
the bottleneck non-concurrent constraint checks [32] are more suitable.

For all DCOP solvers, the continuous domains are uniformly discretized in a preprocess-
ing step to convert the C-DCOP into a DCOP. The domain cardinality of the generated
DCOPs is related to the constraint checks during the solving procedure. More values
within a domain will constitute more possible evaluations of the utility functions. The C-
DCOP solvers operate directly on the continuous domains; however, most solvers have
a parameter that is analogous to the domain cardinality. The AC-DPOP algorithm re-
quires the discretization of the domains within a preprocessing step. As Hoang et al. [22]
provides no method for defining the optimal level of discretization, the discretization is
set equal to that of the DCOP. The PFD algorithm initiates by selecting a random value
for every particle using a uniform distribution from the domains and updates the values
during every iteration. The D-Bay algorithm samples the continuous domains dynami-
cally without discretization.

Based on the three defined parameters, numerous experiments are conducted; the num-
ber of agents is varied from 3 to 10, and the graph density is varied from 0.1 to 0.4 with
increments of 0.02. All experiments are repeated 50 times and the median of the most
illustrious results are shown in Figure 4.8.

In Figures 4.8a and 4.8b the relative utility is calculated based on the utility found by a
centralized exhaustive search-based algorithm on densely discretized domains. The rel-
ative utility shows several important properties of the solvers. In Figure 4.8a all solvers
show an increase of relative utility that converges when the number of constraint checks



4.7. SIMULATION RESULTS

4

75

102 103 104 105

Number of constraint checks [-]

0.0

0.2

0.4

0.6

0.8

1.0
Re

la
tiv

e 
ut

ilit
y 

[-]

|A| = 6, p1 = 0.2

(a) Relative utility for varying numbers of constraint checks.

3 9 15 21 27 33 39 45 50
|Di|

0.0

0.2

0.4

0.6

0.8

1.0

Re
la

tiv
e 

ut
ilit

y 
[-]

|A| = 6, p1 = 0.2

(b) Relative utility for varying domain cardinality |Di |.
DPOP D-Bay AC-DPOP SD-Gibbs DUCT PFD

Figure 4.8.: Experimental results for the random graph problems.

is increased. The performance of the C-DCOP solvers differs significantly. The AC-DPOP
solver shows a nearly constant performance but requires a large number of constraint
checks. This is expected as the AC-DPOP solver initially starts with domain values that
are equal to that of the discrete solvers and then the agents update their values based on
a local gradient descent method. Upon further investigating the cause of the constant
performance, we found that most of the domain values converge to the same local op-
tima. This effectively reduces the number of domain values that are evaluated. During
optimization, the utility values at the local optima of the Bird function are sent to the
parents of the agents after which these values are interpolated. This (linear) interpola-
tion results in a large overestimation of the utility values between the optima, therefore
the solver does not escape the local optima and the performance does not improve when
the constraint checks in increased.
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The performance of the PFD solver steadily increases for larger numbers of constraint
checks. This behavior is expected since the domain values are updated during optimiza-
tion based on the shared particles. The particles represent (partial) allocations of the
variables within the C-DCOP. The relatively large number of particles (2000) increases
the chance of producing particles that represent high utility allocations. These particles
influence other particles during their value updates, thereby improving performance.
This effect also holds for particles that are initialized near local optima. These particles
influence other particles by driving them away from regions with high global utility.

Compared to other solvers, D-Bay shows the most consistent performance, in terms of
achieved relative utility. It shows a (near) monotonic increase in performance. This can
be explained by the property of the Bayesian optimization. Bayesian optimization com-
bined with the appropriate choice of the kernel based on the Lipschitz constant ensures
that all samples are selected such that the largest amount of information about the op-
tima is gained. This allows for the exclusion of large regions of the domains, which effec-
tively focuses the sampling on high-utility areas of the search space.

The results of the DCOP solvers (DPOP, SD-Gibbs, DUCT) show increasing utility that
approaches the optimum. Compared to the C-DCOP solvers, the utility does not in-
crease as smoothly when the number of constraint checks is increased. Upon further
investigation, the performance of the DCOP solvers shows a clear dependency on the
selection of the domain values. This is visible by the irregular increase of the relative
utility for increasing domain cardinality as shown in Figure 4.8b. For a domain cardi-
nality of 9, the discretization resulted in an excellent performance. This highlights a
drawback of solvers that are dependent on discretization, as increasing the cardinality
will not always guarantee better performance. In other words, there is no monotonic
relation between the cardinality of the domains and the performance. The results of the
DCOP solvers (DPOP, SD-Gibbs, DUCT) can be seen to overlap significantly. The DPOP
algorithm yields the optimal solution of the discretized C-DCOP. This indicates that both
SD-Gibbs and DUCT show close-to-optimal performance with high consistency. DUCT
outperforms SD-Gibbs for low values of the domain cardinality however, for all higher
values, SD-Gibbs achieves close to optimal performance. However, these algorithms re-
quire more constraint checks as can be seen in Figure 4.8a.

The performance of the D-Bay algorithm is very close to the optimum for 5×102 con-
straint checks. Similar performance is consistently achieved by the DCOP solvers at
1×104 constraint checks. To show D-Bay has a high sample efficiency independent of
the number of agents and the density of the graph, these values are used in the compar-
ison for the experiments with a varying number of agents and graph density. The results
are shown in Figure 4.9.

Figure 4.9a shows the results for problems with a graph density of 0.2, where the num-
ber of agents is varied from 3 to 10. In Figure 4.9b the results for a 6 agent problem are
shown, where the graph density is varied from 0.1 to 0.4 with increments of 0.02. Within
both figures, the performance for all solvers is shown to be closely related to the results
from Figure 4.8b. This demonstrates the fact that the sample efficiency of D-Bay holds
for numerous random graphs. In other words, D-Bay achieves high performance with
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Figure 4.9.: Comparison of performance based on a varying number of agents and graph density.

a limited number of samples and this performance is achieved by the compared algo-
rithms only for a larger number of (evaluated) domain values.
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4.7.2. SENSOR COORDINATION PROBLEM

The sensor coordination problem is an optimization problem in which every agent needs
to orient its sensor to observe targets as accurately as possible. A real-world analogy
would be the optimization of the orientation of multiple cameras based on image recog-
nition. This problem is modeled within the DCOP framework as a distributed problem.
The image recognition process can require significant computational effort depending
on the image quality and the type of target(s). It is therefore computationally intensive
to check every orientation of the camera, especially for a centralized approach. Even for
a relatively small number of agents, a DCOP representation of these problems will result
in a large search space.

Within the sensor coordination problem, all sensors are modeled identically in terms of
their sensor range l and angle of view β. These properties, combined with the position
of the sensor, determine the observation domain of the sensor. This domain defines all
locations that could be observed by the sensor. The orientationωi of the sensor of agent
ai determines the observed area within the observation domain. A target is detected
when it is located within this area. For every detected target, a (positive) utility value
is allocated to the agent. The maximum utility is allocated when the sensor is oriented
directly at the target. The utility value decreases linearly towards the edges of the obser-
vation area. The optimal utility is determined by the optimal solution of the centralized
optimization approach with 720 samples (0.5 degree resolution) for every domain. The
parameters of the problem are the number of targets T , the number of sensors N , the
sensor range l , the angle of view β of the sensors, and the arrangement of the sensors.
The sensors are arranged in an equally distanced rectangular grid. Various configura-
tions are simulated, where a configuration indicates the number of rows and columns of
the grid. The sensors are positioned such that the combined observation domains of all
sensors are maximized without allowing unobservable areas between the sensors. For
this reason, the distance between the sensors of the same row or column is

p
2l . The

locations of the targets t are uniformly distributed within the combined observation do-
mains of the sensors. In the experiments, the problems are generated with 6 sensors,
12 targets, and with identical sensor properties, where the sensor range is set to l = 1
and the angle of view is set to β = 36◦. A graphical example of the simulated sensor
coordination problems can be seen in Figure 4.10. The sensor coordination problem is
described within the C-DCOP framework as follows:

• A = {a1, . . . , aM } is the set of agents, where M is the number of agents. The position
of agent i is denoted as pi ∈R2.

• X = {ω1, . . . ,ωN } is the set of sensor orientations, where N = M .

• D = {D1, . . . ,DN }, where Di = (−180◦,180◦) for all i = 1, . . . , N indicating all possible
values of sensor orientation ωi .

• F = { fn}T
n=1 is the set of utility functions associated with the observation of the

targets. The number of targets is denoted by T ∈N. Target n is located at position
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tn ∈R2. The utility functions of the targets are described as fn = maxi=1,...,N
(

fn,i
)

for n = 1, . . . ,T , where

fn,i =
{

1−|ωi −∠
−−−→
pi tn |/β if ∥−−−→pi tn∥ ≤ l and |ωi −∠

−−−→
pi tn | ≤β

0 otherwise

and
−−−→
pi tn denotes the vector between the location of the target tn and the position

of the agent ai . Figure 4.11 shows an example of the utility value as a function of
the angle of view.

• α(ωi ) = ai for i = 1, . . . , N allocating a single sensor to every agent.

• η=∑
(·), resulting in the goal function G(·) =∑

fn∈F fn(·).
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Figure 4.10.: Graphical example of a sensor coordination problem with 6 sensors and 12 targets.
The sensors ai are arranged in an equally distanced rectangular grid. The distance
between the sensors is based on the sensor range l . The observation domain is in-
dicated by a dotted circle centered around the position of the sensor. The observed
area of the sensors is shown as shaded areas and is based on the angle of view β and
the orientation ωi . The targets are shown as annotated black circles.

In this section, the performance of D-Bay is empirically evaluated using the achieved rel-
ative utility as a function of the number of samples. This metric is important to consider
if the evaluation of the utility functions by the agents is computationally expensive. The
relative utility allows for the comparison of the results over various randomly generated
problems. The achieved relative utility is defined as the achieved utility divided by the
optimal utility generated by centralized exhaustive search based on densely discretized
domains. The number of samples is defined as the maximum number of domain values
checked by an agent and allows for a comparison based on sample efficiency per agent
instead of the algorithm as a whole. For the DCOP solvers, the number of samples (per
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Figure 4.11.: Utility function fn,i indicates the utility of agent ai for the observation of target tn if

the target is within the sensor range l ( ∥−−−→pi tn∥ ≤ l ). The angle of view of the sensor is
denoted asβ. On the horizontal axis the difference between the sensor orientationωi
and the angle between the position of the agent and the position of the target ∠

−−−→
pi tn

is given.

agent) is equal to the domain cardinality of the variables of the discretized C-DCOPs. The
C-DCOP solvers iteratively update the domain values by either local gradient descent
(AC-DPOP), particle velocity update (PFD), or sampling (D-Bay). In order to compare
these solvers, the number of updates of the value of the root agent is used.

The performance results of D-Bay compared to the DCOP and C-DCOP solvers are given
in Figure 4.12 for various configurations of the sensor coordination problem. Similar to
the results of D-Bay in Figure 4.8a, the sample efficiency of D-Bay enables it to outper-
form both the DCOP solvers as well as the C-DCOP solvers. The performance of PFD
slightly surpasses D-Bay for the 1x2 configuration but falls behind all other solvers for
the 2x2, 2x3, and 3x2 configurations. This indicates that the performance of PFD largely
depends on the random initialization of the particles.
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Figure 4.12.: Sensor configurations for 10 targets and 10 number of samples.

The performance results of D-Bay compared to the centralized approach are presented
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in Figure 4.13. This figure shows the results for 30 randomly generated problems for 6
sensors and 12 targets. The results show an increase in the achieved relative utility of
D-Bay compared to the centralized approach based on the number of samples. The dif-
ference in achieved utility can be explained by investigating the sampling strategies. The
centralized approach samples the sensor orientations equidistantly. Therefore, as the
number of samples is increased, the resolution of the samples increases uniformly for
the centralized approach. D-Bay samples dynamically to balance exploration and ex-
ploitation based on all previously acquired observations. Consequently, D-Bay will ini-
tially focus on exploration and eventually focus on exploitation. This behavior is clearly
visible in Figure 4.13a in the range between samples 3 and 10. Within this range, D-Bay
samples the sensor orientations equidistantly focussing on exploration. The sampling
behavior is identical to the centralized approach, which can be seen in the similarity in
achieved utility. For more than 11 number of samples, the achieved utility of D-Bay in-
creases substantially. This can be explained based on the angle of view of 36◦ of the sen-
sors during the experiments. At 10 samples the entire observation domain of a sensor
is observed. Afterward, the switch to the exploitation of the observations increases the
achieved utility more than the continued exploration of the centralized approach. The
advantage is even more prominent when comparing the number of samples required
by the centralized approach to achieve equal utility to D-Bay, as shown in Figure 4.13b.
This clearly shows the advantage of the dynamic sampling of D-Bay over equidistant
sampling.
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Figure 4.13.: Simulation results for randomly generated sensor coordination problems with 6 sen-
sors and 12 targets. The figures show the average result of 30 randomly generated
problems. Figure 4.13a shows the achieved utility of D-Bay and the centralized ap-
proach relative to the optimum. Note that the achieved utility for both algorithms
is equal for 3 samples since the first 3 samples are equidistantly spaced for D-Bay.
Figure 4.13b shows the number of samples required by the centralized approach to
achieve the same utility as D-Bay.
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4.8. CONCLUSIONS

In this chapter, the novel algorithm called Distributed Bayesian (D-Bay) has been intro-
duced to solve Continuous Distributed Constraint Optimization Problems (C-DCOPs).
Within D-Bay, the continuous domains are sampled based on Bayesian optimization.
This removes the need for the discretization of the domains and balances exploration
and exploitation of the global search space by incorporating knowledge about the util-
ity functions within the kernels of the probabilistic models. Compared to DCOP solvers,
which require discretization of the C-DCOP, it results in a reduction of the computa-
tional and memory demands of the individual agents. For utility functions with known
Lipschitz constants, D-Bay is proven to converge to the global optimum solution of the
C-DCOP.

Random graphs and sensor coordination problems have been used to evaluate the per-
formance of D-Bay. The results show that D-Bay outperforms a centralized approach
as well as state-of-the-art DCOP and C-DCOP solvers based on the achieved utility as
a function of the required number of samples. This sample efficiency is a result of the
application of Bayesian optimization with the D-Bay algorithm. Implementations of the
proposed algorithm and the state-of-the-art DCOP and C-DCOP solver have been added
to the open-source software library pyDCOP [46] and made available publicly2.

In future work, D-Bay will be extended towards dynamic DCOPs [14] in which the agents
need to optimize a dynamic problem at every time step. An extension will increase the
applicability of the proposed algorithm to dynamic real-world problems in which track-
ing of targets is an important factor, such as multi-agent surveillance. In a dynamic
adaptation of the sensor coordination problem, the locations of the targets change over
time based on the target properties, such as velocity and turn radius.
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5
THE DISTRIBUTED BAYESIAN

ALGORITHM: SIMULATION AND

EXPERIMENTAL RESULTS FOR A

COOPERATIVE MULTI UAV SEARCH

USE CASE

In this chapter, the Distributed Bayesian (D-Bay) algorithm is applied to an autonomous
search use case. Within the use case multiple unmanned aerial vehicles equipped with
cameras cooperatively search an area and minimize the required time. The use case is
modeled within the continuous Distributed Constraint Optimization Problem (DCOP)
framework. This framework extends the (discrete) DCOP framework by allowing vari-
ables with continuous domains. Compared to similar DCOP solvers, the characteristics
of the D-Bay algorithm are well-suited for the use case and allow for the implementa-
tion of autonomous vehicles with limited resources (computational power, memory, and
communication bandwidth). Experimental results are given and these results are used to
validate a simulation environment. Within the simulation environment, various scenar-
ios are implemented. The D-Bay algorithm was able to find solutions within 3.5 % of the
optimal solution with a limited number of samples per agent.

This chapter has been published in the proceedings of the OptLearnMAS workshop of the AAMAS confer-
ence, 2020 [10].
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5.1. INTRODUCTION

A utonomous vehicles are used for various tasks to increase situational awareness.
Examples include surveillance, search, patrolling, observing, and pursuit-evasion.

These tasks are often represented as a mobile sensor coordination problem [33], a coop-
erative search problem [3], or a patrolling problem [27].

In the literature, numerous types of autonomous vehicles have been used to perform co-
operative searches. The reader is referred to the work of Veres et al. [29] for a systematic
overview of methodologies used for the main classes of autonomous vehicles. This chap-
ter focuses on the cooperative search problem in an outdoor environment performed by
Unmanned Aerial Vehicles (UAVs). For outdoor environments UAVs are generally used
thanks to their ability to traverse a large number of types of terrain. In typical real-world
use cases, several UAVs need to search a predefined region in as little time as possible
to find particular objects or victims. In these use cases, a single operator should be able
to control all UAVs in an easy and straightforward manner. Therefore, a UAV should be
able to optimize its own path with respect to the paths of the other UAVs. For this rea-
son, search problems have been modeled within various frameworks, such as the task
allocation framework, Markov decision processes, and game theory. The reader is re-
ferred to the work of Robin et al. [25] for a unifying taxonomy of search-related problems
and a comprehensive survey of the application of a wide range of problem frameworks.
The usage of UAVs introduces an implementation problem for the algorithms used to
optimize the individual paths as the complications arise from limitations in communi-
cation, computation, and/or memory. For UAVs, these complications become apparent
as the required hardware needs to be small and lightweight to reduce negative effects on
endurance. Additionally, due to the distance between the UAVs during real-world appli-
cations, the communication capabilities to a central system are often limited. In other
words, UAVs can communicate with nearby UAVs but not with a central system. This
makes it impractical to use a centralized approach.

In order to take both considerations into account, in the current chapter, the Distributed
Constraint Optimization Problem (DCOP) framework is used to model the distributed
cooperative search problem. As noted by Fioretto et al. [8], this framework is well suited
since it enables the exploitation of the structure of the problem to create both efficient
algorithms and communication strategies. The DCOP framework has been applied to a
wide range of problems. Some notable examples include the works of Meisels [17], Modi
et al. [18], Petcu et al. [21], Gershman et al. [12], and Yeoh et al. [31]. A problem mod-
eled as a DCOP is based on an objective function that quantifies the collaborative goal
of agents. Thanks to the focus on the distributed nature of the underlying problems, the
solvers for DCOP are focused on local computation and explicit communication strate-
gies. This makes the DCOP framework ideal for modeling and solving the distributed
cooperative search task.

The contributions of this chapter are twofold. Firstly, the cooperative search problem
is modeled as a continuous DCOP and optimized by the D-Bay algorithm [9]. It will be
shown that the characteristics of the D-Bay algorithm make it suitable for the application
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to UAVs with limited resources. Secondly, experimental results are given for a coopera-
tive search use case with multiple UAVs to illustrate the application of the D-Bay algo-
rithm in a real-world scenario. In the use case, a predefined area needs to be searched in
as little time as possible. Additional simulation results are given in order to evaluate the
performance of the D-Bay algorithm for a heterogeneous group of UAVs.

The remainder of this chapter is organized as follows. In Section 5.2 the cooperative
search problem is described and modeled within the DCOP framework. Section 5.3 in-
troduces the D-Bay algorithm and evaluates its characteristics. In Section 5.4 the overview
of the hardware and the software of the UAVs used in the experiments are presented. Af-
terward, experimental evaluation of the D-Bay algorithm with multiple UAVs is included
in Section 5.5. Finally, Section 5.6 summarizes the results and defines future work.

5.2. PROBLEM DEFINITION

We consider a cooperative search use case with multiple autonomous quad-rotor vehi-
cles. These vehicles are selected thanks to their versatility and high maneuverability. As
autonomous vehicles will distributively optimize their trajectories, they are referred to
as (autonomous) agents. Typically, these search operations are performed by autono-
mous vehicles equipped with one or more cameras. While surveying, the images from
the cameras are evaluated by image-processing software to detect and identify objects
of interest. The solution to the cooperative search problem involves an optimal division
of the search region between all agents. The optimal division is defined as the division
that will require the least amount of time for all vehicles to complete the entire search
and return to their initial position.

More specifically, we consider a (rectangular) search region defined by its width and
height as R = (Rw,Rh), where Rw ≥ Rh. It is assumed that there are no obstacles and
that the size of the region is known by all agents. Every agent has a single variable xi it
can assign, where i is the agent index. The variables of the agents are related to the size
of their individual segments Ri = (Ri ,w,Rh) and Rw =∑N

i=1 Ri ,w.

The search problem is considered to be two-dimensional, as the altitude for all UAVs
is kept constant during the search. The altitude results from a trade-off between the
required resolution for successful detection of the images and the size of the area imaged
by the camera. Higher-resolution images will therefore enable a larger observed area.

In addition to the time spent searching, the travel times of the UAVs towards the start of
their segments (pi ,s), and from the end of the segment (pi ,f) back to their initial positions
(pi ) are taken into account. The UAVs will traverse a series of equidistance parallel legs
within their search segments, where a leg indicates a straight line over which scanning
is performed. This search pattern is often referred to as a lawnmower pattern. As shown
by Ablavsky et al. [2], the lawnmower pattern is optimal for a rectangular search area and
UAVs of which the sweep width is larger than the turn radius. For quad-rotor vehicles,
this holds for any sweep width as these platforms are holonomic. The sweep width is



5

94 5. THE D-BAY ALGORITHM: SIMULATION AND EXPERIMENTAL RESULTS

based on the width of the camera image (li ,w) on the ground. To ensure complete cov-
erage, the distance between the legs is based on the sweep width such that consecutive
tracks interleave. An additional distance (lt) is added before the start of the leg to ensure
that oscillations (caused by the cornering) are eliminated to ensure that the image qual-
ity is constant while searching. The velocity of the UAVs during scanning and transit is
denoted by vs, and vt, respectively.

An overview of the search segment of a single agent can be seen in Figure 5.1.

Figure 5.1.: Overview of the search segment of agent ai .

For agent ai the number of legs of its lawnmower pattern is defined by

Ni ,l(xi−1, xi ) =
⌈

Ri ,w

2li ,w

⌉
=

⌈
xi −xi−1

2li ,w

⌉
,

where ⌈·⌉ is the ceiling operator. The start and finish positions of the pattern of agent ai

can be defined according to its neighboring agent ai−1 as

pi ,s(xi−1) = (xi−1 + li ,w ,0),

pi ,f(xi ) =
{

(xi − li ,w ,0) if Ni ,l is even,

(xi − li ,w ,Rh) otherwise.

Based on these values and the properties of the search area, the required time to scan a
segment (including transit) for ai is calculated as

fi (xi−1, xi ) = Ti ,s(xi−1)+Ti ,sc(xi−1, xi )+Ti ,f(xi ), (5.1)
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where the transit times (Ti ,s(·) and Ti ,f(·)) and the time spent scanning (Ti ,sc(·)) are de-
fined as

Ti ,s(xi−1) = |pi −pi ,s(xi−1)|2
vs

,

Ti ,f(xi ) = |pi −pi ,f(xi )|2
vt

,

Ti ,sc(xi−1, xi ) = Ti ,c +Ti ,l.

The time spent scanning depends on both the time required for traversing the legs, de-
fined as

Ti ,l =
Ni ,l(xi−1, xi )Rh

vs
,

and on cornering between the legs, defined as

Ti ,c =
2(lt + li ,w)

(
Ni ,l(xi−1, xi )−1

)
vs

+2Ni ,l(xi−1, xi )τ,

where τ is the time required by the UAV to make a turn. In the next section, the search
problem will be modeled within the DCOP framework.

5.2.1. PROBLEM FORMULATED AS A DCOP

A Distributed Constraint Optimization Problem (DCOP) is a problem framework that is
based on a global objective function that needs to be optimized in a distributed manner.
The global objective function is defined as the aggregate of utility functions. Typically,
the summation operator (

∑
(·)) or the maximum operator (max(·)) are used as the aggre-

gation operator. The agents within the DCOP are defined based on variables. Each agent
can assign a value to its variables. Instead of the global objective function, an agent only
knows two properties of the problem; (1) the local utility functions of which its variables
are used as an argument, (2) its neighboring agents, which are defined as agents that
share a utility function, i.e. if there exists a utility function of which its arguments in-
clude variables of both agents. This local view of the problem creates the need for the
agents to cooperate to optimize the assignment of their variables in terms of the global
objective function.

The value assignments are restricted by the domains of the variables. This feature of
DCOP makes it suitable for problems with bounded inputs such as many real-world
problems. However, conventionally the domains are defined as finite discrete sets, while
many real-world problems (including cooperative search) are best described using fi-
nite continuous sets. The reason for the discrete set definition is based on the origin of
the DCOP framework. DCOP originates from the Constraint Satisfaction Problem (CSP)
framework [28], which is mainly used to model problems such as graph coloring prob-
lems and meeting scheduling problems. These problems inherently have finite and dis-
crete domains. The DCOP framework emerged from extending the CSP framework to



5

96 5. THE D-BAY ALGORITHM: SIMULATION AND EXPERIMENTAL RESULTS

agent-based distributed optimization by Yokoo et al. [32] and generalization to utility
functions instead of constraint satisfaction checking. Within this process of extending
and distributing, the domains have not been updated to include continuous values.

To address this issue, in this chapter, a continuous version of DCOP is used to model the
cooperative search problem. Following the notation of Fioretto et al. [8], a continuous
DCOP is defined by D= 〈A,X,D,F,α,η〉 where:

• A = {a1, . . . , aM } is the set of agents, where M is the number of agents.

• X = {x1, . . . , xN } is the set of variables, where N ≥ M is the number of variables.

• D = {D1, . . . ,DN } is the set of domains of all variables, where Di ⊆R is the (conti-
nuous) domain associated with variable xi .

An assignment denotes the projection of variables onto their domain as ρ : X →Σ.
In other words, for all xi ∈ X if ρ(xi ) is defined, then ρ(xi ) ∈ Di . An assignment of a
subset of variables is denoted by ρV = {ρ(xi ) : xi ∈ V}.

• F = { f1, . . . , fK } is the set of utility functions, where K is the number of utility func-
tions.

• α : X → A is a mapping from variables to agents. The agent to which variable xi is
allocated is denoted as α(xi ).

• η is an operator that combines all utility functions into the objective function.

The global objective of a DCOP is to minimize the objective function, defined by G(ρ) =

fn∈F
η

(
fn(ρVn )

)
. Based on this definition the cooperative search problem can be cast into a

DCOP as,

• A = {a1, . . . , aN }, where N is the number of UAVs,

• X = {x1, . . . , xN }, since every agent has a single variable (M = N ),

• D = {D1, . . . ,DN }, where Di = [0,Rw] is related to the search region,

• F = { fi (xi−1, xi ) : i ∈ {1, . . . , N }}, where fi (xi−1, xi ) is defined by Equation 5.1 with
x0 = 0,

• α= {xi → ai : i ∈ {1, . . . , N }}, where every agent is assigned a single variable,

• η= max(·), in order to minimize the maximum time required for all agents.

Apart from the definition of the continuous DCOP as given above, a DCOP is typically
represented in the form of a graph. Two frequently used forms are the (undirected) con-
straint graph and the (directed) pseudo-tree [11]. In both graphs, the agents are shown
as nodes and neighboring agents are connected through an edge. Note that a constraint
graph can be converted into a pseudo-tree by means of various procedures, such as
depth-first-search [4]. A benefit of the pseudo-tree over the constraint graph is that the
pseudo-tree introduces hierarchy to the variables and thereby divides the problem into
subproblems. The hierarchy creates an implicit communication structure that is used
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to send messages between the agents without requiring all-to-all communication. The
subproblems can be exploited by algorithms in order to efficiently solve the DCOP.

5.3. ALGORITHM OVERVIEW

Due to the limited (computational and communication) resources that are available to
the UAVs, not all DCOP solvers will be suitable to solve the (continuous) DCOP. Classical
DCOPs solvers tend to be intractable for continuous DCOPs, despite a limited number of
variables, due to the cardinality of the domains. As noted by Leite et al. [15] and Fioretto
et al. [8], the runtime complexity increases exponentially for almost all solvers that are
guaranteed to find the optimal solution. Even for near-optimal solvers, the complexity
increase is linear based on the cardinality of the largest domain.

The main reason is that the majority of the DCOP solvers are created for DCOPs with
discrete domains. Therefore, to apply these solvers, the continuous domains need to be
discretized. A straightforward approach is to use equidistant discretization for all vari-
ables. This allows for the creation of domains with a cardinality of arbitrary size. As for
most problems, the quality of the solution depends on the resolution of the variables,
where a high resolution allows for better solutions. This creates a trade-off between so-
lution quality and computational and memory requirements.

5.3.1. DESCRIPTION OF D-BAY

In a previous chapter, the Distributed Bayesian (D-Bay) algorithm [9] was introduced
to solve a continuous DCOP without the need for the discretization of the continuous
domains. The D-Bay algorithm involves four sequential phases:

(1) Pseudo-tree construction The agents create a pseudo-tree from the constraint
graph of the DCOP, by performing a depth-first search traversal.

(2) Allocation of utility functions Similar to the allocation of variables, all utility func-
tions are exclusively allocated to the agents.

(3) Sample propagation In this phase, every agent optimizes its local variables through
the Bayesian optimization method and the exchange of sample and utility mes-
sages. This phase is initiated by a sample message from the root agent. The phase
finishes when a termination criterion is reached by the root agent. The samples are
selected through the optimization of an acquisition function. A graphical overview
of the sample phase is shown in Figure 5.2.

(4) Assignment propagation The final phase is the assignment propagation phase, in
which the root agent sends the final assignment of all its variables to its children
as a final message. Based on these assignments the children can assign their own
variables to the value corresponding to the optimal utility value.
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Figure 5.2.: Graphical overview of the sample phase of D-Bay. Agents are indicated by circles la-
beled with an agent index, and utility functions are shown as black lines. Starting from
the root a0 (top-left), a sample message S0 is sent to its children (a1, a2). After iter-
ating between its children and calculating its local utility, agent a2 combines all local
utilities and sends a utility message U0

2 to its parent.

Based on the taxonomy introduced by Yeoh et al. [30], the D-Bay algorithm can be clas-
sified as a sample-based solver. This class of solvers uses probabilistic measures to co-
ordinate the sampling of the global search space. The probabilistic measures are used
to balance exploration and exploitation of the search space. The two main differences
with existing sample-based solvers (DUCT [20] and Sequential Distributed Gibbs (SD-
Gibbs) [19]) are the sample selection and its iterative approach. Firstly, within the D-Bay
algorithm, the Bayesian optimization method is used for the selection of the samples.
The Bayesian optimization method consists of two elements: a probabilistic model to
approximate an unknown (utility) function, and an acquisition function to optimally se-
lect a new sample. This method is also referred to as an active learning approach as
the acquisition function makes use of previously sampled values and the probabilistic
model to learn as much about the function in a sample-efficient manner. The Gaussian
process is used as the probabilistic model to represent acquired knowledge about un-
known functions. This model is widely used to efficiently approximate functions through
a predefined cross-correlation function, commonly referred to as a kernel. The values of
the function are approximated based on the inverse of the covariance matrix, which is
generated based on the kernel and samples of the function. As noted by Rasmussen et
al. [23], an important part of the computational burden of Bayesian optimization is the
Cholesky factorization used to calculate the inverse of the covariance matrix. To signif-
icantly reduce the computational load, a Markovian class kernel [6] is used within the
D-Bay algorithm. A Markovian class kernel possesses the property that the correspond-
ing covariance matrices can be inverted analytically. Secondly, instead of iterating over
the entire pseudo-tree, agents iterate between parents and children only. While this typ-
ically requires more messages than DUCT and Sequential Distributed Gibbs (SD-Gibbs),
it ensures determinism concerning the utility value of a sample. In other words, a sample
will always return the same utility value.
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5.3.2. CHARACTERISTICS OF D-BAY

In this section, the characteristics of the D-Bay algorithm are compared to the related
DCOP solvers, DUCT and Sequential Distributed Gibbs (SD-Gibbs).

Similar to DUCT and Sequential Distributed Gibbs (SD-Gibbs), D-Bay is an anytime al-
gorithm since the optimization can be stopped after every iteration and the solution
will always improve compared to the previous iteration. Most other characteristics are
related to the number of iterations during the optimization, denoted by I . Within the D-
Bay algorithm, the number of iterations is used as a termination criterion for all agents.
In every iteration, an agent optimizes the value of its next sample through Bayesian op-
timization. Therefore the runtime complexity of D-Bay is O(I ). The optimization of the
local variables is restarted every time a new sample message from the parent is received.
An agent only needs to store the utility of the values based on the current (local) iteration
to send the best utility value back to its parent, thereby restricting the memory require-
ment per agent to O(I ). The size of the utility messages is fixed at O(1) while the size
of the sample messages is proportional to the maximal depth of the tree t as O(t ). The
number of messages scales with O(C I t ), where C denotes the largest number of chil-
dren. Note that this will result in O(I N ) in the worst-case scenario. In this scenario, the
problem structure cannot be exploited to split the problem into subproblems. In other
words, the resulting pseudo-tree has a single branch (also known as a pseudo-chain).

The related DCOP solvers (DUCT and Sequential Distributed Gibbs (SD-Gibbs)) need to
discretize the domains and have a runtime complexity corresponding to the cardinality
of the largest domain as O(Iηd). Here d denotes the largest cardinality of the domains
and η denotes the largest number of neighboring agents. This highlights the fact that
by discretizing the continuous domains, the runtime complexity will significantly in-
crease. Furthermore, for DUCT there are large memory requirements O(d t ) as it needs
to store all the best costs for all messages. SD-Gibbs is much more memory efficient and
merely requires O(η). Concerning the message characteristics, DUCT sends fewer mes-
sages than SD-Gibbs, but they are larger. A comparison of the D-Bay algorithm with its
closest related solvers for these key characteristics is shown in Table 5.1.

Table 5.1.: Comparison of algorithm characteristics (based on Fioretto et al. [8, Table 4]).

Runtime Message

Algorithm Complexity Memory Number Size

DUCT O(Iηd) O(d t ) O(I N ) O(N )
D-Gibbs O(Iηd) O(η) O(I Nη) O(1)
D-Bay O(I ) O(I ) O(C I t ) O(t )

The characteristics of the D-Bay algorithm are favorable for agents with limited resources
as it only requires the communication of small messages without large computational or
memory requirements per message. Furthermore, the requirements are independent of
the discretization of the domains, which solves an important problem of current DCOP
solvers.
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Note that these requirements are related to the iterations per agent, not the entire pseudo-
tree as in DUCT and SD-Gibbs. This difference is the result of the definition of an iter-
ation within the execution of the algorithm. After every iteration, the algorithm could
be stopped and return a solution to the problem. For both DUCT and SD-Gibbs, this re-
quires all agents to send, receive, and process messages. In D-Bay every agent optimizes
its value based on the latest sample of their parents. For that reason, an update of the
values of the leaf agents is regarded as an iteration within D-Bay. Due to this difference,
non-concurrent constraint checks [16] are generally used to compare DCOP solvers for
specific problems in a quantitative manner.

Although the size of the messages is small, the number of messages is largely dependent
on the depth of the tree. Therefore, during the experiments, two main aspects of the D-
Bay algorithm will be investigated. Firstly, the quality of the solutions for the number of
samples determines the number of messages sent during optimization. Secondly, verifi-
cation of the number of messages required by the algorithm allows for application on a
low-bandwidth network.

5.4. UNMANNED AERIAL VEHICLES (UAVS)

In this section, an overview of the Unmanned Aerial Vehicles (UAVs) used for the exper-
iments is given. The hardware, software architecture, and simulation environment are
discussed.

5.4.1. HARDWARE OVERVIEW

In the experiments, quad-rotor UAVs (3DR-X4) are equipped with a downward-facing
camera (GoPro Hero5 Session [13]) that image a small section of the search area while
traveling over it while taking snapshots. This camera was selected as it is low-weight
and eliminates the vibrations induced by the UAV through software-based image sta-
bilization. The camera is connected to an onboard computer (Raspberry Pi 3B+ [24]),
that runs the D-Bay algorithm and handles the communication between the agents. The
size, weight, and accessibility of this computer made it highly suitable for the applica-
tion. Communication between the agents is done through low-power radios (XBee Pro
[5]). This radio module can create a meshed network using the ZigBee protocol between
all modules for up to 750 m. Note that this holds for an outdoor environment with a line-
of-sight between the modules. Within the network messages up to 84 bytes can be sent.
During the flight, the UAV is regulated by a flight controller (3DR Pixhawk 1 [1]), which
uses measurements from an inertial measurement unit for linear acceleration and an-
gular speed, barometric pressure measurements for height, and GPS measurements for
latitude and longitude. This flight controller runs the PX4 autopilot software [7]. An
overview of the UAV and its components is given in Figure 5.3.
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Figure 5.3.: Overview of the 3DR-X4 UAV used during the experiments. Key components required
for autonomous flight are highlighted.

5.4.2. SIMULATION ENVIRONMENT

The configuration of the UAVs is modeled in a realistic simulation environment in order
to validate the autonomous actions of the UAVs. In this chapter, the Gazebo simulator
[14] is used as it offers a high level of flexibility in modeling the environment and the
UAVs. There is a large open-source community that actively supports and extends the
simulation environment, and creates high-fidelity virtual models for various (autono-
mous) vehicles. These models require a high level of expert knowledge to construct and
validate. For this reason, within our simulations, the community model of the 3DR Iris
is used. The 3DR Iris is the commercial version of the 3DR-X4 and is only different in
appearance due to the enclosure. An example of the UAV model in the simulation envi-
ronment is shown in Figure 5.4.

Figure 5.4.: Example of the simulation environment (Gazebo) of the UAV (3DR Iris) and its sim-
ulated view of the downward facing camera. Adapted from https://www.youtube.
com/watch?v=mKt4ZTaE2bk.

https://www.youtube.com/watch?v=mKt4ZTaE2bk
https://www.youtube.com/watch?v=mKt4ZTaE2bk
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5.4.3. SOFTWARE OVERVIEW

An additional benefit of the Gazebo simulation environment is its extensive interface
with Robotic Operating System (ROS)[22]. This allowed the seamless transition between
simulation and experimental execution of the D-Bay algorithm and testing of the coop-
erative search use case. Apart from an interface to Gazebo and the autopilot, the ROS
middleware is also used to connect all other software components within the computer,
such as the communication module, the D-Bay algorithm1, and the camera interface. A
schematic overview of the software architecture is shown in Figure 5.5.

Pixhawk

D-Bay

Pixhawk

D-Bay

Pixhawk

D-Bay

Simulation Experimental

Gazebo

Camera Communication

Figure 5.5.: Schematic overview of the software architecture.

5.5. EXPERIMENTAL EVALUATION

Preliminary experiments were performed to derive the parameters of the problem of the
UAVs. The resolution of the cameras allowed for the UAVs to fly at a height of 10 m. At this
altitude the scan width was 5 m, therefore li ,w = lw = 5m. A velocity of 3 m/s was found
to produce a stable flight without large oscillations in speed and position. Postprocess-
ing of the camera images showed the velocity of the UAVs did not negatively influence
the image quality. For this reason, both the velocity during scanning and transition are
equally set to vt = vs = 3m/s. Investigating the data collected during the cornering al-
lowed for the determination of the turn length (lt) and time required per turn (τ). While
there were some minor differences in the number of oscillations after a turn, all were
damped out after 5 m. Therefore, the turn length was set as lt = 5m. The average time
required per turn was found to be 1.5 s, however, when the UAV was greatly affected by
wind, this could increase to as much as 7.5 s. Even though there were no strong winds,
all experiments were located at an old airfield that offered no protection from the wind.

1available at https://gitlab.com/jfransman/pyDcop/

https://gitlab.com/jfransman/pyDcop/
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As these gusts of wind occurred only sporadically, the time required per turn was set to
τ= 1.5s. Additionally, a search region of R = (Rw,Rh) = (200m,50m) was defined to en-
sure all UAVs would have enough battery power to complete the entire search. The lower
left corner of the search region is used as the reference position (0,0). The UAVs were
placed near the reference position with (approximately) 5 m intervals to ensure enough
spacing between the UAVs for safe takeoff and landing conditions. For the experiments,
a group of five UAVs was selected. An initial (reference) experiment was conducted as a
baseline for the performance when no optimization of the segments was performed. The
search area was equally divided among all UAVs as Ri ,w = Rw/5. The required time (for
all UAVs to finish their search) for the reference experiment to finish was approximately
240 s. The individual times required by the UAVs to finish scanning varied considerably.
This was to be expected as the UAVs had a similar-sized area to scan, but greatly different
travel times.

This reference experiment was compared to experiments with optimized segments by
the D-Bay algorithm. At the start of the experiment, while all UAVs were located on the
ground, the pseudo-tree was constructed through the DFS algorithm [4]. The middle
UAV initiates the DFS algorithm since this will create a less deep tree compared to select-
ing a UAV that is assigned to the edge of the search area. After the DFS algorithm, the
root agent of the pseudo-tree initiates the D-Bay algorithm by sending a sample to its
children. When the D-Bay algorithm terminates, the resulting trajectories were sent to
a control station. The control station was required to check the validity of the trajecto-
ries of the UAVs before takeoff2. After validation, the controls station issues a cleared for
takeoff command to all UAVs. All actions afterward were autonomously executed by the
UAVs.

For the experiments, the termination criterion (number of samples for the agents) was
altered and the total required time for all UAVs to finish their search was evaluated. The
comparison between the optimized segments and the reference experiment is shown in
Table 5.2. The trajectories of the UAVs for 18 samples are shown in Figure 5.6.

Table 5.2.: Experimental results of optimized segments compared to reference segmentation.

Total time difference

# samples Result [s] Percentage [%] Absolute [s]

6 221 −7.9 −19
12 218 −9.2 −22
18 208 −13.3 −32

2Manual validation of the search trajectories was a (hard) requirement for permission to fly multiple UAVs
autonomously at the airport.
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Figure 5.6.: Experimental results of the color-coded GPS tracks of the UAVs. The initial locations
of the UAVs are in the bottom left corner.

5.5.1. VALIDATION OF SIMULATIONS

An important motivation for carrying out the experiments was to validate the simulation
environment and the (implicit) assumptions in the modeling of the cooperative search
use case. The scenario of the experiments was modeled within the simulation environ-
ment and a comparison of the total required time based on a varying number of samples
is shown in Table 5.3.

Table 5.3.: Comparison of experimental and simulated results.

Result [s] Total time difference

# samples Experimental Simulated Percentage [%] Absolute [s]

6 221 220.8 −0.1 −0.2
12 218 209.7 −3.8 −8.2
18 208 206.0 −1.0 −2.0

The comparison shows a close match between the experimental and simulated results
for 6 and 18 samples, which indicates a small residual modeling error. The comparison
for 12 samples shows a relatively large difference. In that experiment, a single UAV had a
longer flight time than its simulated counterpart. Inspection of the flight time of the UAV
showed a deviation from the trajectory that can be attributed to a gust of wind during
cornering. During preliminary experiments, the time required per turn could be seen
to increase by as much as 6 seconds. This observation can explain the outlier in the
comparison.

Apart from the influence of the wind, only minor deviations were identified during the
comparison between the results within the simulation environment and the experiments.
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This achievement can be attributed to the high quality of the UAV model and the inte-
gration of all important components during simulation (e.g. autopilot software, D-Bay
algorithm). One of the major deviations between the initial simulations and the experi-
ments can be attributed to the influence of the wind. These deviations are most clearly
visible in the trajectory of UAV 4 in Figure 5.6 as this UAV deviated most from the in-
tended trajectory. During cornering the UAVs were affected most as the waypoints of the
trajectory are located closely together. A gust of wind can push an UAV off course, thus
needing additional time to recover. Note that not all UAVs were affected to the same
extent.

5.5.2. EVALUATION OF COMMUNICATION

As detailed in Section 5.3, during optimization the UAVs sent several small-sized mes-
sages between the parents and children. For this reason, it is appropriate to evaluate the
communication between the agents. The data shows that the required time of optimiza-
tion was severely affected by the latency within the XBee network. The latency is caused
by the meshed topology of the network and the low-power design of the radios which
disables the radio periodically to reduce energy consumption. The XBee radios create a
meshed network that will relay messages from source to destination. During optimiza-
tion (on the ground) all UAVs were within communication range, therefore instead of
one-to-one communication, all messages were received by all radios. When a radio re-
ceived a message that was not directed to it, the radio would not discard the message but
would try to relay the message to its destination. This process is repeated by all radios
(that are not the target of the message) and caused a message flood in which the same
message was relayed by multiple radios. The flooding was limited by the maximum hop
count of the messages but resulted in numerous messages being resent within the net-
work. This effect increased the time for the messages to reach their final destinations
significantly.

In addition to the optimization messages, the UAVs communicated their telemetry infor-
mation through the XBee network during flight. We noticed that not all messages were
successfully received, this is an indicator that the network was congested. During the
optimization, messages were resent, however during the flight they were dropped after a
few tries since the message buffers of the radios can only hold four messages. The con-
gestion could be confirmed by increasing the interval after which the telemetry messages
were sent. This increased the time for a single message to successfully reach the control
computer. The update resulted in a large reduction in the number of dropped messages.
Moreover, the relaying of messages was a clear indication that the range of the radios was
far less than specified. Field tests showed an average range of 60 m during flight, while
the datasheet specified up to the 750 m. Related to the size of the search area during
the experiments, the 60 m range was sufficient for neighboring agents to pass messages.
However, if similar experiments were to be conducted for a significantly larger search
area the communication capabilities should allow for neighbors to be in direct contact
with each other to ensure reliable execution of the algorithm.
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Despite these issues, we can conclude that the XBee network was capable of sending
the messages for the D-Bay algorithm. Thereby showing the D-Bay algorithm can be
successfully implemented on a low-bandwidth communication network.

5.5.3. ADDITIONAL SIMULATIONS

Within the validated simulation environment additional simulations were performed.
Five scenarios were constructed by changing the properties of some UAVs to evaluate
the performance of the D-Bay algorithm for a group of heterogeneous UAVs. Scenarios
1-3 alter the scan width of a subset of UAVs to resemble UAVs with cameras of different
quality. Scenario 4 varies the scanning velocity of three UAVs. In scenario 5 one UAV has
a higher scanning velocity, but a smaller scan width. The (altered) parameters for the
scenarios are defined as,

Scenario 1: l1,w = 10m,
Scenario 2: l1,w = 10m, l5,w = 20m,
Scenario 3: l1,w = 10m, l3,w = 2.5m, l5,w = 15m,
Scenario 4: v1,s = 6m/s, v3,s = 1.5m/s, v5,s = 4.5m/s,
Scenario 5: v1,s = 6m/s, l1,w = 2.5m.

In Table 5.4, an overview of the results of the simulations for 20 samples per agent is
compared with the (optimal) results of a brute-force optimization method.

Table 5.4.: Simulation results compared to the optimum.

Difference

Scenario Result [s] Percentage [%] Absolute [s]

1 179.0 3.2 5.5
2 160.0 0.4 0.7
3 179.9 2.4 4.3
4 181.8 3.5 6.2
5 188.5 2.8 5.2
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In Figure 5.7 the simulation results for scenario 3 are shown.

UAV 1
UAV 2
UAV 3
UAV 4
UAV 5

Figure 5.7.: Simulation results of the trajectories of the UAVs for scenario 3. The trajectories are
color-coded by UAV.

The simulation results show a close approximation to the optimum for all scenarios.
Similar results were obtained when only 10 samples per agent were used. The results
for all scenarios (except scenario 1) did not differ more than 2 % from the results with
20 samples. This is an indication that the D-Bay algorithm converges relatively fast even
with a very limited number of samples per agent.

5.6. CONCLUSIONS

In this chapter, experimental results for a cooperative search use case with multiple Un-
manned Aerial Vehicles (UAVs) have been presented. This problem was modeled within
the continuous Distributed Constraint Optimization Problem (DCOP) framework and
solved with the Distributed Bayesian (D-Bay) algorithm. The D-Bay algorithm is specifi-
cally designed for continuous DCOPs and operates directly on the continuous domains.
This makes the D-Bay algorithm excellently suitable for the application of real-world
problems such as use cases with autonomous vehicles with limited resources (computa-
tional power, memory, and communication bandwidth).

Experimental results were used to validate the Gazebo high-fidelity simulation environ-
ment and to update the model of the cooperative search problem with UAVs. The sim-
ulation results showed that the D-Bay algorithm was able to find solutions for various
scenarios that are within 3.5 % of the optimal solution with a limited number of samples
per agent. As the algorithm and the hardware proved to be satisfactory for the coopera-
tive search use case, future work will mainly focus on an extension to dynamic optimiza-
tion based on real-time image collection. Finally, to make the D-Bay algorithm more
accessible, we would like to contribute it to the PyDCOP [26] library.
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6
CONCLUSIONS AND FUTURE

RESEARCH

T his Ph.D. thesis has focused on the development of algorithms that can optimize the
actions of autonomous vehicles. The leading use cases in this thesis are underwater

search operations with multiple AUVs. These operations suffer from some fundamen-
tal restrictions, especially when the search area contains potentially dangerous objects.
This will require a relatively large distance between the support vessel and the AUVs.
The first restriction is related to the communications caused by the attenuation of radio
signals in seawater. The energy of acoustic signals is greatly reduced as the frequency is
increased. For that reason, to communicate with the support vessel over large distances,
low frequencies need to be used which requires large transducers and offers low data
rates. This makes centralized in-situ optimization by the support vessel of the trajecto-
ries of the AUVs infeasible. The second restriction is the available computational power
onboard the AUVs, which makes the centralized in-situ optimization by a single AUV
(for all other AUVs) unrealistic. For these reasons, a distributed approach is necessary
for which all AUVs cooperate through the exchange of messages and share the computa-
tions. In this chapter, an overview is given of the contributions of the research described
in this thesis, as well as recommendations for future research topics.

6.1. RESEARCH CONTRIBUTIONS

This thesis focuses on the cooperation between autonomous agents to efficiently and
effectively complete an objective. It contributes to the state-of-the-art in modeling and
cooperative optimization of multi-agent systems. The goal of the research is to quantify
the global performance of agents based on local utility functions and inter-agent col-
laboration. The focus of the research is to further develop C-DCOP solvers that can be
applied to various real-world problems.
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6.1.1. ALGORITHMS DEVELOPED

The presented Compression-DPOP (C-DPOP) algorithm in Chapter 2, is an extension of
Distributed Pseudotree Optimization Procedure (DPOP) [9] algorithm. C-DPOP itera-
tively discretizes the continuous domains of a C-DCOP and dynamically updates the do-
mains after each iteration based on the found (local) optimum. The computational and
memory requirements of the algorithm can be selected using two parameters. These pa-
rameters make C-DPOP highly suitable for application to autonomous vehicles that are
restricted by processing power and/or communicational bandwidth.

While C-DPOP outperforms DPOP, it does not offer any guarantees about the quality
of the solution and could get stuck at local optima. Furthermore, the efficiency of the
C-DPOP algorithm could be improved when the properties of the utility functions are
taken into account. This would enhance the discretization method from uniform to util-
ity based. Regions of high utility could be estimated by incorporating the gained infor-
mation from the solution of previous iterations.

The Distributed Bayesian (D-Bay) algorithm, presented in Chapter 4, possesses both
these properties. All agents model the influence of their variables on the global utility
as a Gaussian process [11]. The properties of the (local) utility functions are captured by
selecting an appropriate kernel. Instead of discretization of the continuous domains, the
agents iteratively select samples from the domains. Sampling refers to the determination
of the utility of a value within the domain. The selection of the samples is performed by
Bayesian optimization [7] in which an acquisition function balances exploration and ex-
ploitation of the search space based on the kernel and the previous samples. Under mild
conditions (known Lipschitz constants of the utility functions), D-Bay is proven to con-
verge to the global optimum of the C-DCOP.

Compared to DCOP solvers, which require discretization of the C-DCOP, it results in a
reduction of the computational and memory demands of the individual agents. The
D-Bay is a versatile algorithm that can be applied to numerous real-world C-DCOPs.
The algorithm is sample-efficient in terms of the number of samples required by the
agents to approach the optimum. During execution, multiple small-sized messages are
exchanged between the agents. This makes the D-Bay algorithm especially suitable for
problems that have a relatively small number of agents and computationally demanding
utility functions.

6.1.2. EXPERIMENTS PERFORMED

Both the C-DPOP as well as the D-Bay algorithm were applied to benchmark and to real-
world problems to evaluate their performance and applicability. This required modeling
of the problems within the C-DCOP framework.

The C-DPOP algorithm was applied to a mobile sensor coordination (benchmark) problem
[14] in Chapter 2. This problem was selected because it is a well-known real-world
problem for mobile sensors. In this problem, multiple autonomous agents equipped
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with sensors (with limited sensing range) need to coordinate their position on a two-
dimensional surface to get the most accurate reading of multiple targets.

Modeling this problem as a C-DCOP, instead of a DCOP, showed the potential of C-
DCOPs for real-world problems. Traditionally, modeling this problem as a DCOP would
require a trade-off between solution quality and the size of the search space. That is be-
cause all possible values need to be defined in the (finite) discrete domains of the vari-
ables. Discretization of the two-dimensional surface to a high resolution would allow
for accurate positioning of the agents but will increase the size of the search space. A
C-DCOP does not have this trade-off, while still being able to set the bounds of the vari-
ables through the continuous domains. Taking this into account, modeling real-world
problems as C-DCOPs offers great benefits over modeling as (traditional) DCOPs.

Within the mobile sensor coordination problem, the location of the targets is known by
the agents and cooperation is focused on finding the optimal sensor locations. A (static)
sensor coordination problem was modeled in Chapter 4, in which both the number of
targets and the location of the targets are unknown. A real-world analogy of this problem
is the optimization of the orientation of multiple cameras that can change their obser-
vation angle to observe (and classify) targets.

The (local) utility functions defined within a C-DCOP are continuous. In other words,
changes to the inputs of the function will result in comparable changes to the output.
This property is not always shared by the utility functions of DCOPs, which are allowed
to be discontinuous. Taking advantage of this property, D-Bay was able to balance ex-
ploration and exploitation of the search space. The effect of the balancing could be seen
by an increase in performance after only a few view angles were sampled. Therefore, by
modeling a problem as a C-DCOP instead of a DCOP, algorithms can take advantage of
the additional information embedded within the problem definition.

Proceeding towards more realistic problems, the Mine Counter-Measures (MCM) oper-
ation was modeled in Chapter 3. The operation was modeled as a distributed segmen-
tation problem for an area for multiple cooperative Autonomous Underwater Vehicles
(AUVs). The utility of the segmentation is based on global performance metrics that
are set by an operator. The metrics related to the expected time of completion (of the
search) and the level of confidence that all mine-like objects within the area have been
detected. The MCM operation was simulated within the high-fidelity UUV simulator [6].
The performance of the side-scan sonar sensors of the AUVs was adjusted during opera-
tion. After each leg of their trajectories, the AUVs assessed their sonar performance and
communicated if it resulted in a change in (global) utility. The modeling as a C-DCOP
allowed for in-situ optimization of the metrics based on (measured) sonar performance
by the agents. The agents jointly optimized their trajectories by communicating the util-
ity of their trajectories, as defined by the metrics, not the actual trajectories themselves.
Modeling the MCM operation in terms of utility thereby enabled the usage of heteroge-
nous agents without changing the problem definition.

Finally, a real-world autonomous search use case with multiple Unmanned Aerial Vehi-
cles (UAVs) was modeled in Chapter 5. The use case was modeled within the C-DCOP
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framework as a segmentation problem that is closely related to the MCM operation. Dur-
ing the experiments, a low-bandwidth meshed network was used to mimic the limited
communication capabilities of underwater vehicles. It allowed for a realistic implemen-
tation of the D-Bay algorithm and showed the potential of the algorithm for application
within an MCM operation. Experiments were used to validate a simulation environment
in which additional variations of the problem were performed to assess the performance
of the D-Bay algorithm. To the best of my knowledge, this was the first reported appli-
cation of a C-DCOP algorithm on robotic platforms. Only a few other real-world exper-
iments are presented within the literature, however, these experiments involve DCOP
algorithms. The interested reader is referred to Yedidsion et al. [13] and Jain et al. [3] for
two examples involving mobile sensor teams. Essentially, the contrast between a large
number of benchmark problems and a small number of real-world experiments high-
lights the difficulties in the application of both DCOP and C-DCOP algorithms.

In conclusion, there are several benefits to modeling benchmark problems and real-
world problems as C-DCOPs. The need for discretization is removed entirely, thereby not
restricting the values but allowing the algorithms to sample them through their methods.
Furthermore, the algorithms can take advantage of the properties of the utility functions
to efficiently solve the problem. Additionally, modeling a real-world problem as a C-
DCOP allows for the abstraction of processes that are contained within the agents. This
in turn allows for heterogenous agents to collaborate without changing the problem def-
inition. Finally, the experiments performed within the research of this thesis showed the
successful real-world application of a C-DCOP algorithm. Hopefully, this will aid fellow
researchers to move from benchmark problems toward experiments as well.

6.2. RECOMMENDATIONS

In this section, the two developed algorithms are compared based on their characteris-
tics and recommendations are given related to their application.

6.2.1. ALGORITHM CHARACTERISTICS

In Table 6.1, the two developed algorithms are compared based on their characteris-
tics. Both algorithms can be classified as iterative anytime algorithms and are therefore
dependent on the number of iterations (I ). The C-DPOP algorithm shares most of its
characteristics with DPOP, due to the similarity in message passing. For this reason, the
runtime complexity, memory, and message size are highly dependent on the width of the
pseudo tree (w) and the cardinality of the domains (d). The number of messages is un-
affected by the width of the pseudo tree and scales according to the number of variables
(N ) of the problem.

The D-Bay algorithm, on the other hand, is mostly affected by the depth of the tree (t )
and to a minor extent by the number of children (C ) for its characteristics. Specifically,
the increase in the number of messages sent during optimization is exponential based
on the depth of the tree.
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Table 6.1.: Comparison of characteristics of developed algorithms.

Runtime Message

Algorithm Complexity Memory Number Size

C-DPOP O(I d w ) O(d w ) O(I N ) O(d w )
D-Bay O(I ) O(I ) O(C I t ) O(t )

The two parameters of the C-DPOP algorithm allow for the trade-off between the mes-
sage size and the number of messages. The selection of the cardinality of the domains is
the most prominent since this directly affects the size of the messages. The compression
factor (c) indirectly defines the number of iterations based on the required resolution
(r ) of the solution and thereby the number of messages. The resolution is the distance
between the samples of the domain during an iteration.

In setting the parameters for the C-DPOP algorithm, it is recommended to set the value
of the domain cardinality as large as the memory of the agents (and/or the message size)
allows. Increasing the domain cardinality will exponentially decrease the number of it-
erations needed to achieve the required resolution. Additionally, the compression factor
should be set as close to 1 to reduce the size of the domain that is discarded after each
iteration. This improves the chance of escaping local optima in between the iterations.
The C-DPOP algorithm can be stopped after its allowed computational time or the res-
olution is reached. Therefore, the combination of a large domain cardinality and a high
compression factor will sample the domain as finely as possible within the computa-
tional boundaries of the platform.

The D-Bay algorithm does not have explicit parameters to set other than the termination
criterium. The criterium can be defined based on the number of iterations or the (rel-
ative) increase in utility in between samples. The convergence to the global optimum,
however, does depend on the Lipschitz constants of the (local) utility functions. When
these constants are not known exactly for all utility functions there are several methods
to overcome this issue. The first method is to overestimate their values. This ensures the
algorithm will not exclude any areas of the domains that could hold the optimum. Con-
sequently, however, areas that certainly do not hold the optimum will be sampled and
therefore reduce the efficiency of the algorithm. The second method is to deduce the
Lipschitz constants during the sampling of the utility functions. In the literature, several
estimation algorithms have been developed. The reader is referred to Jones et al. [4] and
Wood et al. [12] for two examples. While estimating the Lipschitz constant in situ can
retain the efficiency of the D-Bay algorithm, the estimation of the Lipschitz constant of
a function can be computationally intensive [12]. This trade-off would be worthwhile
to investigate to improve the sampling within the D-Bay algorithm by choosing samples
that strike a balance between finding the optimal value (exploitation) and estimating the
Lipschitz constant (exploration).
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6.2.2. PROBLEM CHARACTERISTICS

Based on the properties of the developed algorithms as stated above, the following rec-
ommendations can be made based on the properties of the platforms and the prob-
lems.

Computational constraint platforms In the case of computationally constrained
platforms, the choice between the developed algorithms would depend on the
complexity of the utility functions. When the utility functions are computation-
ally intensive, the D-Bay algorithm samples the domains more efficiently, thereby
requiring fewer function evaluations. If the evaluation of the utility functions is
computationally cheap, the C-DPOP algorithm would be preferred as no meta-
optimization algorithm is required, which could result in significant computa-
tional overhead.

Memory constraint platforms In the case of memory constraint platforms, the D-Bay
algorithm would be preferred since only the latest optimized values are stored.
While for the reasons stated above, the C-DPOP algorithm requires a significant
amount of memory to store (and send) the messages. Decreasing the amount of
memory could require the domain cardinality to be set so low as to reduce the ef-
ficiency of the C-DPOP algorithm. Decreasing the domain cardinality could cause
the sampling of the domains to be very coarse, and thereby increase the chance of
getting stuck in local optima.

Communicational constraint platforms When the problem does not allow for large
messages to be sent between the platforms, the D-Bay algorithm would be pre-
ferred. The D-Bay algorithm sends small messages over the network which is pos-
sible in most environments (given that communication is possible at all). Larger
messages could become corrupted during transit and would require the resending
of the message entirely. The D-Bay algorithm could, depending on the properties
of the pseudo-tree, require a large number of messages. If this property is incon-
venient for the communication network, the C-DPOP algorithm can be used since
its communicational properties can be tuned through its parameters.

Pseudo-tree properties A wide pseudo-tree is the result of a highly coupled problem
in which most agents share a utility function. In other words, the effect of an agent
has a direct effect on that of all others. This hold for most combinatorial problems
such as area search problems. For problems that result in wide pseudo-trees, the
D-Bay algorithm is to be preferred as the number of messages within the D-Bay
algorithm scales with the depth of the tree.

For problems that result in deep pseudo-trees, the C-DPOP algorithm is to be pre-
ferred, as the properties of the algorithm are mostly related to the width of the
tree. For that reason, a problem that results in a deep tree can be optimized effi-
ciently. These problems often relate to loosely coupled problems, in which there is
less interdependency between the local utility functions and the global (aggregate)
utility.
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6.3. FUTURE RESEARCH

During the development of the algorithms presented in this thesis, theoretical and prac-
tical questions were raised that can serve as a foundation for future research. In this
section, ideas are presented based on these questions related to algorithm design, multi-
agent system modeling, and performing multi-agent experimentation.

6.3.1. ALGORITHM DESIGN

In this thesis, algorithms to solve C-DCOPs are developed. Their development high-
lighted several key points that could be addressed in more detail in future work. The key
points can be summarized as:

Develop adaptive communication strategies In real-world scenarios, there will be
significant communicational limitations, not only when the bandwidth is con-
strained due to environmental conditions, but also in some situations, the com-
munication could be unreliable due to a greatly fluctuating bandwidth. These
fluctuations can be caused by background noise, variations within the transmis-
sion medium, or reflections. The approach taken in this thesis was to limit the size
of the messages to allow for the highest chance of the messages arriving. An alter-
native approach would be to include the dynamic characteristics of the commu-
nication capabilities holistically. Using this approach, the algorithms would have
to explicitly take the available bandwidth into account and adjust their messag-
ing behavior accordingly. For example, upon detection of high bandwidth agents
could send either a few large messages or a lot of smaller messages. When the
bandwidth is limited, the algorithms could adjust the size and/or the number of
messages or adjust their position to be able to communicate more effectively.

Develop flexible optimization strategies The available computational power for
autonomous vehicles is increasing at an impressive rate. Three complementary
factors can be identified: 1) the introduction of specialized hardware, such as
Graphical Processing Units (GPUs) and Tensor Processing Units (TPUs); 2) the in-
crease in performance per watt; 3) the increase in battery capacity.

These trends allow for more flexibility within the ‘computation vs. communica-
tion’ paradigm. At present, most developed algorithms can be classified according
to a scale that ranges from distributed to centralized optimization. Distributed
algorithms rely heavily on communication between agents, while centralized al-
gorithms rely on computation. Breaking away from these static categories, algo-
rithms could be designed that dynamically update the balance between compu-
tation and communication during optimization. If sufficient communication is
available, all agents solve the global problem in a distributed manner. Addition-
ally, the autonomous agents could enquire other agents about their internal mod-
els and optimization methods. Afterward, when no communication is available, all
autonomous agents could rely on their computational power to solve a centralized
problem and choose their actions accordingly. Such strategies would demand that
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all agents are aware of their communicational and computational potential and
act accordingly.

Develop multi-layered hierarchical optimization methods The algorithms devel-
oped in this thesis optimize towards the global goal defined within the C-DCOPs.
The goal typically refers to objectives that are defined over a set length of time and
have a clear finish condition.

In the underwater search operation with AUVs, this is either a deadline (predeter-
mined allocated time for the operation) or an objective (scan a certain area of the
seabed). In practice, these tasks are scarcely performed in isolation. For example,
after an object is detected on the seabed, a follow-up task would be to classify this
object to determine whether the object is hazardous. Currently, the positions of
the objects are stored (or transmitted to a support vessel). If the AUVs would be
able to collect the visual camera images autonomously, this would greatly reduce
the time required for classification.

Extending the C-DCOP framework into a hierarchical framework would separate
the total problem into subproblems per level, comparable to separating the global
objective into individual utility functions in a C-DCOP. The higher levels could rep-
resent tasks within the MCM operation (e.g. detection, classification, identifica-
tion) while the lower levels represent the execution of these tasks (e.g. trajectory
optimization, adjusting sensor parameters, scheduling communication events).
The hierarchical structure could be exploited by specialized algorithms to effi-
ciently solve the total problem.

6.3.2. MULTI-AGENT SYSTEM PROBLEMS

In this thesis, benchmark problems (sensor coordination problems) and real-world prob-
lems (MCM, area segmentation) have been modeled within the C-DCOP framework. The
DCOP framework has been extended in order to enable the modeling of numerous prob-
lems. The interested reader is referred to the survey of Fioretto et al. [2] for an overview.
In order to incorporate additional classes of problems, some specific extensions could
be investigated:

Hybrid problems A characteristic of many real-world problems is the inclusion of both
discrete and continuous variables. The discrete variables typically represent states
of the agents, such as operational modes. Within these states, the (control) vari-
ables of the agents are continuous. Extending the DCOP framework to a combina-
tion of both types of domains would allow for integrated modeling of these prob-
lems. For the MCM operation, such a framework would support the optimization
of the sensor configuration (e.g. sensor type selection, sensor mode optimization).

Semantically modeled problems The Entity-Relationship (ER) model, introduced by
Chen [1], was originally developed for database design. It proved to be a pow-
erful method to model both databases and ontologies for usage in artificial in-
telligence research [8]. The ER model is centered around abstractions of various
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concepts to encapsulate complexities. The entities can represent objects (e.g. hu-
mans, objects) and can be defined based on types. The entities are linked to each
other through relationships. A common description of entities and relationships
are nouns and verbs, respectively. For example, when modeling the communica-
tion between two agents within the ER model, entities agent A and agent B share
a communicate relationship. A DCOP can be modeled as agent entities with utility
and communication relationships. Leveraging the potential of the versatility of the
ER model, real-world problems could be modeled in greater detail. Additionally,
algorithms could be designed to take advantage of the structure of the entities and
their relationships to efficiently solve the modeled problem.

6.3.3. EXPERIMENTAL

In this thesis, experiments with UAVs were performed for a cooperative area search problem.
Preparing and performing the experiments showed the large disparity between bench-
mark problems and real-world applications. Within the literature, much attention is
given to the development of algorithms to solve benchmark problems. While this allows
for objective comparisons between algorithms, their implementation potential for real-
world problems is often neglected. To aid the application of the developed algorithms in
the real world, some topics of research could be addressed:

Development of simulation environments for distributed optimization When de-
veloping distributed optimization algorithms researchers often need to set up
their simulation environments to test their algorithms. This often results in
(highly) custom environments that cannot be utilized by other researchers. Ad-
ditionally, it takes a substantial amount of time and effort to develop these envi-
ronments. Open-source projects, such as ROS [10] and Gazebo [5], facilitate the
development of generic environments. These projects serve as a foundation for
other initiatives to implement use case-specific extensions. A good example is the
UUV simulator [6] in which sensors and actuators for underwater vehicles are im-
plemented. Extending such initiatives towards generic distributed optimization
would boost the applicability and usability of distributed optimization as a whole.
Another benefit is that the open-source development of such initiatives boosts col-
laboration between researchers. It is important to note that these benefits are not
confined to the development of DCOP algorithms.

Development of holistic simulation environments Simulation environments allow
for more realistic applications of algorithms, especially for multi-agent problems.
While they offer great value in the design and validation of the algorithms, it will
depend on the fidelity of the simulation environment if the results will match ex-
perimental outcomes.

These effects are well-known for sensor imperfections, such as noise and outliers,
which are (almost) always present during experiments. When not taken into ac-
count, these imperfections could cause severe problems in the operation of the
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algorithms. The physical interactions between an autonomous system and the
environment are usually modeled with a high level of detail.

However, all interactions with the algorithm (sensor information, (optimization)
problem definition, algorithm execution, communication, and actuator control)
must be taken into account and implemented realistically. Primarily to discover
several types of practical issues during the early stages of algorithm development.
An example of one of those issues is the execution time of an algorithm. It can
affect the safety of an autonomous system when the execution of the algorithm
takes too long, e.g. in handling obstacle avoidance. Long execution times could
also result in an autonomous system that is idle for the majority of the exper-
iment. Furthermore, communication issues might lead to dead-lock situations
when the algorithm waits until it has received an acknowledgment from another
agent. Finally, issues concerning failures within the autonomous system are of-
ten neglected within simulation environments. During real-world experiments,
all components are subject to failure. Designing an algorithm that can explicitly
handle failures is crucial for its reliability. If not handled correctly, a failure of a
low-level process could cascade throughout the system and cause the entire sys-
tem to fail. An example is the availability of sensor information. Moreover, without
any checks on the sensor information, expired sensor values could persist and be
treated as the latest. If the sensor is used for obstacle avoidance the consequences
could be disastrous. In conclusion, the development of a holistic simulation envi-
ronment will not only improve the fidelity of the simulations but will also improve
the reliability of the algorithms during real-world experiments.
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A THE DISTRIBUTED

BAYESIAN ALGORITHM

In this appendix, the formal description of the distributed Bayesian algorithm intro-
duced in Chapter 4 is presented.

Algorithm 2: Distributed Bayesian (D-Bay) for agent ai

Input : Pi ,PPi ,Ci ,PCi ,Fai ,FPi ,Xi ,κ
Output: ρ̂Xi

Initialization
if root agent then

while not threshold reached do

U
j
i := optimizeLocalVariables(;);

end
processFinal(;);

when received sample S j from parent Pi

while not threshold reached do

U
j
i := optimizeLocalVariables(S j );

end

send(Pi , U
j
i );

when received final Ŝ j from parent Pi

processFinal(Ŝ j );

Function optimizeLocalVariables(S j )
ρXi := computeOptimalSample(κ);
Si :=S j ∪ {ρXi };

U
j
i := calculateUtility(Si );

return U
j
i ;
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Function calculateUtility(Si )
Ui := min

ρ∈ΣXi

η
fn∈Fi

(
fn(ρVn |S j )

)
;

if Ci ̸= ; then
Ûi := getChildUtility(Si );

U
j
i := η

(
Ui , Ûi

)
;

else

U
j
i :=Ui ;

storeUtility(U j
i , Si );

return U
j
i ;

Function getChildUtility(Si )
foreach ak ∈ Ci do send(ak, Si );

when received Ui
k from all ak ∈ Ci

Ûi := η
ak∈Ci

(
Ui

k

)
;

return Ûi ;

Function processFinal(Ŝ j )
ρ̂Xi := retrieveOptimalLocalSample(Ŝ j );

Ŝi := Ŝ j ∪ {ρ̂Xi };

foreach ak ∈ Ci do send(ak, Ŝi );



B

128 B. DIRICHLET KERNEL INTERVAL FUNCTIONS

B DIRICHLET KERNEL

INTERVAL FUNCTIONS

In this appendix, the derivation of the mean and variance function corresponding to the
Dirichlet kernel is presented as introduced in Chapter 4.

As shown in the work of Ding et al. [1, Theorem 2], a kernel κ of the Markovian class
reduces the mean function µs (·) and the variance function σ2

s (·|O ) of the posterior on
the interval between observations as given in Equations (4.8) and (4.9), respectively. For
the Dirichlet kernel as defined by Equation (4.10), for a normalized domain xi , x j ∈ [0,1]
and the kernel scale parameter λ, the non-zero elements of the K −1

s (O ) matrix are given
by

(K −1
s (O ))s,s =



λ−2 x1

x1

(
x2−x1

) , if s = 1,

λ−2 (xs+1−xs−1)
(xs−xs−1)(xs+1−xs ) , if s ∈ {2, . . . ,S −1},

λ−2 (1−xS−1)
(1−xS )(xS−xS−1) , if s = S,

and

(K −1
s (O ))s−1,s = (K −1

s (O ))s,s−1 = −λ−2

(xs −xs−1)
, s = 2, . . . ,S.
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The mean function µs (·) and the variance functionσ2
s (·|O ) for the Dirichlet kernel can be

rewritten accordingly as

µs (x|O ) =κT
s (x,O )K −1

s (O )y s (O )

=
[

0 . . . 0 xs−x
xs−xs−1

x−xs−1
xs−xs−1

0 . . . 0
]



y1
...

ys−2

ys−1

ys

ys+1
...

yS


=

[
xs−x

xs−xs−1

x−xs−1
xs−xs−1

][
ys−1

ys

]
= ys−1(xs −x)+ ys (x −xs−1)

xs −xs−1
(B.1)

and

σ2
s (x|O ) = κ (x, x)−κT

s (x,O )K −1
s (O )κs (x,O )

=λ2x(1−x)−
[

0 . . . 0 xs−x
xs−xs−1

x−xs−1
xs−xs−1

0 . . . 0
]



λ2x1(1−x)
...

λ2xs−2(1−x)
λ2xs−1(1−x)
λ2x(1−xs )
λ2x(1−xs+1)

...
λ2x(1−xS )


=λ2

(
x(1−x)−

( xs−1(1−x)(xs −x)

xs −xs−1
+ x(1−xs )(x −xs−1)

xs −xs−1

))
=λ2 −(xs −x)(xs−1 −x)

xs −xs−1
. (B.2)
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