

Delft University of Technology

Design Through Analysis

Möller, M.; Verhelst, H. M.

DOI
10.1007/978-3-031-47355-5_5
Publication date
2024
Document Version
Final published version
Published in
Fluids Under Control. Advances in Mathematical Fluid Mechanics.

Citation (APA)
Möller, M., & Verhelst, H. M. (2024). Design Through Analysis. In T. Bodnár, G. P. Galdi, & Š. Nečasová
(Eds.), Fluids Under Control. Advances in Mathematical Fluid Mechanics. (pp. 303–368). (Advances in
Mathematical Fluid Mechanics). Birkhäuser. https://doi.org/10.1007/978-3-031-47355-5_5

Important note
To cite this publication, please use the final published version (if applicable).
Please check the document version above.

Copyright
Other than for strictly personal use, it is not permitted to download, forward or distribute the text or part of it, without the consent
of the author(s) and/or copyright holder(s), unless the work is under an open content license such as Creative Commons.

Takedown policy
Please contact us and provide details if you believe this document breaches copyrights.
We will remove access to the work immediately and investigate your claim.

This work is downloaded from Delft University of Technology.
For technical reasons the number of authors shown on this cover page is limited to a maximum of 10.

https://doi.org/10.1007/978-3-031-47355-5_5
https://doi.org/10.1007/978-3-031-47355-5_5

Green Open Access added to TU Delft Institutional Repository

'You share, we take care!' - Taverne project

https://www.openaccess.nl/en/you-share-we-take-care

Otherwise as indicated in the copyright section: the publisher
is the copyright holder of this work and the author uses the
Dutch legislation to make this work public.

Chapter 5
Design Through Analysis

Y. Ji , M. Möller , and H. M. Verhelst

5.1 Introduction

Numerical simulations of physical systems have become an indispensable third
pillar in modern computational sciences and engineering (CSE) complementing
theoretical and experimental analysis. Most numerical methods in use today like
the finite element method (FEM), the boundary element method (BEM), the finite
volume method (FVM), and the finite difference method (FDM) have their origin
many decades ago when computers delivered only a marginal fraction of their
today’s performance and were moreover a scarcely available resource, and CSE
was at its infancy. It is therefore no surprise that all aforementioned numerical
methods were originally designed as validation tools to be utilized deliberately
in one of the final stages of the entire design and analysis workflow and not as a
repeatedly queried in-the-loop tool. Over many decades, upstream processes like
the creation and iterative optimization of designs were typically disconnected from
the downstream computer-aided simulation-based analysis, which has led to the
separation of the computer-aided design (CAD) and computer-aided engineering
(CAE) communities, an unsatisfactory situation that is lasting until today.

In fact, even modern textbooks on numerical methods for (initial-)boundary
value problems ((I)BVPs) teach the traditional triad of pre-processing, analysis, and
post-processing, thereby cementing the separation of CAD and CAE disciplines.
If the focus lies on the theoretical study of the methods’ mathematical properties,
it is understandable why pre- and post-processing are considered secondary tasks.
However, in engineering practice it is these upstream pre-processing steps that create
the problem-specific inputs to the analysis, for instance, the geometry model on
which the (I)BVP needs to be solved.

Y. Ji · M. Möller (�) · H. M. Verhelst
Delft University of Technology, Delft, CD, The Netherlands
e-mail: M.Moller@tudelft.nl

© The Author(s), under exclusive license to Springer Nature Switzerland AG 2024
T. Bodnár et al. (eds.), Fluids Under Control, Advances in Mathematical Fluid
Mechanics, https://doi.org/10.1007/978-3-031-47355-5_5

303

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-031-47355-5protect T1	extunderscore 5&domain=pdf
http://orcid.org/0000-0002-1173-6457
http://orcid.org/0000-0003-0802-945X
http://orcid.org/0000-0001-8677-862X

 885
56845 a 885 56845 a

mailto:M.Moller@tudelft.nl
mailto:M.Moller@tudelft.nl
mailto:M.Moller@tudelft.nl
https://doi.org/10.1007/978-3-031-47355-5_5
https://doi.org/10.1007/978-3-031-47355-5_5
https://doi.org/10.1007/978-3-031-47355-5_5
https://doi.org/10.1007/978-3-031-47355-5_5
https://doi.org/10.1007/978-3-031-47355-5_5
https://doi.org/10.1007/978-3-031-47355-5_5
https://doi.org/10.1007/978-3-031-47355-5_5
https://doi.org/10.1007/978-3-031-47355-5_5
https://doi.org/10.1007/978-3-031-47355-5_5
https://doi.org/10.1007/978-3-031-47355-5_5
https://doi.org/10.1007/978-3-031-47355-5_5

304 Y. Ji et al.

Fig. 5.1 Estimation of the relative time costs of each component of the model generation and
analysis process at Sandia National Laboratories [8]. About 80% of the overall time is spent on
mesh generation (20%) and the creation of the analysis-suitable geometry (60%) and only 20% go
into the analysis per se

A study by Ted Blacker, Manager of Simulation Sciences, Sandia National
Laboratories, has led to the often-cited 80/20 modeling/analysis ratio which states
that about 80% of the overall time is spent on mesh generation (20%) and the
creation of the analysis-suitable geometry (60%) and only 20% go into the analysis
per se. The detailed breakdown in the percentage of time devoted to each task is
given in Fig. 5.1, which is based on data from [8]. This 80/20 ratio is reported to be
a common experience in industry and not specific to the Sandia report.

As it is often the case in disciplines that have a long but independent tradition,
the disconnect between CAD and CAE is due to “historical reasons” and not caused
by insuperable theoretical hurdles. Simply said, the CAD community has adopted
non-uniform rational B-splines, in short NURBS [66], as industry standard for
representing geometry models, whereas decades of research in numerical methods
for (I)BVPs have brought a plethora of ways to express and compute solution
fields and derived quantities of interest. As a consequence, the mathematical
representation frameworks in CAD and CAE are often incompatible in the sense
that a conversion is needed to cast, say, a continuously parametrized NURBS-based
geometry model into a discrete grid with a finite number of cells.

The convergence step is not only time consuming as indicated in Blacker’s
study. It also introduces additional approximation errors and is not reversible in
most cases. That is, the conversion of a parametric NURBS-based geometry model
into a discrete mesh cannot be reversed easily if, say, the simulation involves some
fluid-structure interaction which requires to update the geometry model from data
stemming from the simulation-based analysis. The same problem arises in the PDE-
constrained design optimization, where the shape of, say, an airfoil is adjusted

5 Design Through Analysis 305

repeatedly within an outer optimization loop steered by quantities of interest such
as drag and lift that are computed from the field variables of a flow analysis.

While the above scenario might leave the impression that the core of the
problem is caused by CAE, we would like to stress that also the geometry models
coming from CAD are far from being analysis suitable. Firstly, traditional CAD
models typically provide a description of the geometries’ surfaces, while numerical
methods such as FEM and FVM often require volumetric meshes that need to
be generated. Secondly, many CAD models of complex geometries consist of
multiple NURBS patches that are often glued together in a non-watertight manner,
thereby requiring tedious repair and reparameterization steps. Thirdly, as CAD
models are primarily meant for visual inspection, they might contain fine-scale
features below the resolution capability of the simulation that need to be removed
by de-featuring processes. Even in the absence of such small-scale features, the
parameterizations used in CAD models are typically not optimized for upstream
analysis. For instance, NURBS surfaces with (locally) large Jacobians are good
enough for the visual design but bring all kinds of problems in the analysis process,
which is why even “good-looking” CAD models often require an overhaul in terms
of reparameterization. Last but not least, the wide use of trimming, i.e., the selective
deactivation of unwanted parts of NURBS surfaces, calls for special treatment
in the simulation, e.g., in the framework if immersed methods [86, 95], through
the adaptation of the discretization [56] or by decomposing trimmed models into
untrimmed ones with many regular patches or cells [39].

Many of the abovementioned problems can be alleviated when basing CAD and
CAE tools on a common mathematical representation framework that satisfies the
needs of both worlds. For many applications in computational fluid dynamics (CFD)
and computational solid mechanics (CSM), this common mathematical framework
can be multi-variate splines such as NURBS [66], B-splines [15], hierarchical B-
splines [25], truncated hierarchical B-splines [29, 30], T-splines [72] and their
variants [49, 51, 50, 43, 52, 87], LR-splines [17], and T-splines and U-splines [78],
to name some of the more prominent approaches.

From all the numerical methods that adopt the above philosophy of a unified
representation framework for geometry modeling and PDE analysis, Isogeometric
Analysis (IGA), which was introduced in 2005 by Hughes et al. [38], is by far
the most prominent one nowadays. However, the quest for CAD/CAE integration
is much older as described in the book “Precursors of Isogeometric Analysis” by
Provatidis [68]. An approach that is conceptually close to IGA is the so-called
NURBS-enhanced finite element method by Sevilla et al. [73, 74]. Despite common
belief, the philosophy of a unified representation framework for geometry modeling
and PDE analysis is not restricted to isogeometric variants of FEM and BEM but
can also be applied in the context of FVM as demonstrated in [32, 57, 58].

Our main intention when writing this chapter was to sensitize the interested
reader to the manifold opportunities that can arise from using a unified representa-
tion framework throughout the computer-aided design and analysis workflow be it in
the context of IGA, NURBS-enhanced FEM/FVM, or any other numerical method
that follows the underlying philosophy. At the very least, we want to stimulate

306 Y. Ji et al.

the reader to rethink whether the classical triad of pre-processing, analysis, and
post-processing is still adequate at times when computer power is much less of a
limiting factor than it was at the early days of CAD and CAE. Moreover, we want
to illustrate the potential of genuine design-through-analysis workflows that, as the
name suggests, enable practitioners to arrive at optimized designs in an iterative
process through the repeated query to computer-aided analysis tools.

To the best of the authors’ knowledge, the first occurrence of the term design
through analysis in the literature dates back to the year 1977 when a team at the
General Motors Research Laboratories wanted “to demonstrate and evaluate the
design integrated analytic method when applied to the development of a complete
automobile” [3]. Despite the very limited computer power available at the time the
project was conducted, the visionary publication describes many aspects of modern
design-through-analysis workflows, starting at “computer methods required for the
evaluation of the entire vehicle system includ[ing] impact simulation analysis, static
structural analysis and dynamic analysis” and ending at the “use of interactive
graphics for modeling the vehicle.” The publication concludes with the encouraging
statement that “the potential value of design through analysis was demonstrated
by a significant reduction in structural weight of the project vehicle.” About five
decades later, design-through-analysis workflows have become an integral part of
daily engineering design practice. At the same time, it is a field of active research
with novel machine learning techniques enabling yet another leap forward.

The rest of this chapter is organized as follows: Sect. 5.2 gives an introduction
into splines followed by an overview of approaches to create analysis-suitable
parameterizations in Sect. 5.3. Section 5.4 discusses several use-cases of isogeo-
metric analysis, each of them illustrating a different facet of spline-based modeling
and analysis. The chapter ends with conclusions and a brief outlook in Sect. 5.5.

5.2 A Spline Primer

The term “spline” has its roots in the aircraft and shipbuilding industries, where
long and thin wooden, plastic, or metal strips (called “splines”) were held in place at
discrete points by lead weights (called “ducks” by Forrest because of their duck-like
shape; Schoenberg refers to them as “dogs” or “rats”). The elasticity of the spline
material combined with the constraint of the control points caused the strip to bend
between the fixations into a shape of minimum strain energy, that is, the smoothest
possible shape. This technique, illustrated in Fig. 5.2, had already been used for
ship-hull design before the British aircraft industry adopted it during World War II
to construct templates for airplanes. The first mathematical reference to splines goes
back to the seminal work by Schoenberg [71] who established the characterization
of splines as smooth, piecewise polynomial approximations.

5 Design Through Analysis 307

Fig. 5.2 Illustration of the
working principle of
“splines” as an early
instrument for ship-hull and
aircraft design. Thin wooden
strips (called “splines”) were
held in place at discrete
points by lead weights, which
caused the spline to take the
shape of minimum strain
energy. The success design
was then drawn on paper

5.2.1 B-Splines

This section is written in a tutorial style meaning that we present the relevant
concepts “as is” without giving mathematical proofs, which can be found in
many textbooks on splines. The description starts with an exhaustive discussion of
univariate B-splines before it generalizes this concept to the multi-variate case.

Univariate B-Splines and Their Properties

The modern way to introduce splines is through the use of basis splines (B-splines)
that are constructed by the Cox–de-Boor recursion formula from a so-called knot
vector, which in its most general form is a sequence of non-decreasing real numbers

.𝚵 = [ξ1, ξ2, . . . , ξn+d+1] , ξi ⩽ ξi+1, ∀i = 1, . . . , n + d. (5.1)

Here, .d ⩾ 0 denotes the degree and n the number of B-splines to be created. Starting
from the piecewise constant (.d = 0) basis functions that are defined as

.b0
i;𝚵(ξ) =

{
1 if ξi ⩽ ξ < ξi+1,

0 otherwise,
(5.2)

higher degree basis functions are constructed recursively [14]

.bd
i;𝚵(ξ) = ξ − ξi

ξi+d − ξi

bd−1
i;𝚵 (ξ) + ξi+d+1 − ξ

ξi+d+1 − ξi+1
bd−1
i+1;𝚵(ξ). (5.3)

308 Y. Ji et al.

Fig. 5.3 Cardinal B-splines for the knot vector . 𝚵 = [0, 1, 2, 3, 4]

Here, division by zero is precluded by assuming that “.0/0 := 0.” Figure 5.3 depicts
a sequence of B-spline basis functions ranging from .d = 0 up to degree .d = 3.

The so-defined functions feature a set of amenable properties that make them
particularly suited for both geometry modeling and PDE analysis. To start with,
the functions are piecewise polynomials of degree d in the independent variable . ξ .
Moreover, like for standard finite element basis functions, their support is local and
their value is, unlike in many finite element basis functions, non-negative:

.bd
i;𝚵(ξ)

{
> 0 ∀ξ ∈ supp

(
bd
i;𝚵
)

:= [ξi, ξi+d+1),

= 0 otherwise.
(5.4)

Looking at this property from a different perspective, in every knot span . [ξi, ξi+1)

at most .d + 1 degree d basis functions are non-zero, namely, .bd
i−d;𝚵, .bd

i−d+1;𝚵, ,

.bd
i;𝚵. The set of basis functions moreover satisfies the partition of unity property

.

n∑
i=1

bd
i;𝚵(ξ) ≡ 1, ∀ξ ∈ [ξd+1, . . . ξn) . (5.5)

It is moreover easy to show that the r-th derivative of a degree d B-spline with
respect to the independent variable . ξ is given by (cf. the proof of Lemma 3.20 in
[60])

.Drbd
i;𝚵(ξ) = d

(
Dr−1bd−1

i;𝚵 (ξ)

ξi+d − ξi

− Dr−1bd−1
i+1;𝚵(ξ)

ξi+d+1 − ξi+1

)
, (5.6)

which can be worked out recursively to arrive at an explicit expression. However,
computing derivatives in that way is tedious and not to be recommended. In the
following section we will discuss a matrix representation of B-splines that simplifies
the evaluation of function values and derivatives significantly.

Last but not least, B-spline basis functions have maximal continuity . Cd−1

provided that no two knots in the knot vector are the same. If the i-th knot . ξi is

5 Design Through Analysis 309

Fig. 5.4 Quadratic B-spline basis functions (.n = 7, .d = 2) and their first derivatives defined over
the open knot vector .𝚵 = {0, 0, 0, 1, 2, 3, 3, 4, 4, 4}; the fifth basis function . b2

5 exhibits a local . C0

continuity around the repeated knot .ξ6 = ξ7 = 3, which causes its derivative to jump at that point.
(a) Univariate B-spline basis functions. (b) Derivatives of univariate B-spline basis functions

repeated .0 < mi ⩽ d +1 times, then the continuity reduces to .Cd−mi in the vicinity
of that point. In practice, knot vectors are often chosen to be open, that is, the first
and last knots are repeated .d + 1 times, which reduces the continuity locally to . C−1

and causes the respective B-spline basis function to attain the function value one
and all other basis functions to vanish at the two end points.

Figure 5.4 depicts the .n = 7 degree .d = 2 B-spline basis functions (top)
and their first derivatives (bottom) generated from the open knot vector . 𝚵 =
{0, 0, 0, 1, 2, 3, 3, 4, 4, 4} with a twice repeated knot .ξ6 = ξ7 = 3, which leads to a
local . C0 continuity of the fifth basis function . b2

5 around that point while elsewhere
. b2

5 and all other basis functions are . C1. Consequently, .Db2
5 exhibits a jump at . ξ∗ = 3

and is . C0 continuous elsewhere as are all other basis functions.
Let us define the spline space . Sd

𝚵 as the space of all linear combinations of the
B-spline basis functions as defined in (5.2)–(5.3), i.e.,

.S
d
𝚵 = span

{
bd

1;𝚵, . . . , bd
n;𝚵

}
. (5.7)

=
{

n∑
i=1

cib
d
i;𝚵 : ci ∈ R, for 1 ⩽ i ⩽ n

}
. (5.8)

An element .f (ξ) = ∑n
i=1 cib

d
i;𝚵(ξ) of this space is termed a spline function or just

a spline and the set .(ci)
n
i=1 denotes the B-spline coefficients of f .

310 Y. Ji et al.

To improve readability, we drop subscript . 𝚵 whenever there is no ambiguity
about the knot vector used. Moreover, we introduce the vectors

.bd = [
bd

1 bd
2 · · · bd

n

]
and c = [

c1 c2 · · · cn

]
(5.9)

so that the sum in (5.8) can be written as the dot product .bd · c. Last but not least,
let us define the selection operator “.[·; ·]” that selects a sub-vector, e.g.,

.bd
[j−d;j] · c[j−d;j] =

j∑
i=j−d

cib
d
i . (5.10)

Among all possible points where a spline function .f (ξ) can be evaluated, the
Greville abscissae play a special role. They are defined as the knot average [15]

.ξ̄i = ξi+1 + · · · + ξi+d

d
. (5.11)

In general, . ̄ξi lies near the parameter value which corresponds to a maximum of
the B-spline basis function . bd

i [66]. In combination with the B-spline coefficients
. c, the pairs .(ξ̄i , ci) form the so-called control polygon of the spline function f
(cf. Theorem 2.8 in [60]). This is illustrated in Fig. 5.5 for the same knot vector
as before and the vector of B-spline coefficients .c = [

0 2 1 1 3 1 2
]
. The repetition

of knots causes the respective basis functions to attain the value one at the associated
point and all other basis functions to vanish causing the spline function to become
interpolatory, i.e., .f (ξ∗ = 3) = c5 = 3 for the example above.

Fig. 5.5 Quadratic spline function and its control polygon constructed from . 𝚵 =
{0, 0, 0, 1, 2, 3, 3, 4, 4, 4} with B-spline coefficients .c = [0 2 1 1 3 1 2]

5 Design Through Analysis 311

A Matrix Representation of B-Splines

Before we proceed to multi-variate B-splines, we would like to review the construc-
tion procedure (5.2)–(5.3) and discuss an alternative representation of B-splines
that is hardly discussed in the literature but has several advantages from both the
theoretical and the implementation point of view. The following description is based
on chapters 2 and 3 from the lecture notes by Lyche and Mørken [60]. We encourage
the reader to study these excellent notes for a detailed derivation of the matrix
representation and for an in-depth discussion of splines and B-splines in general.

Exploiting the fact that at most .d + 1 degree d B-spline basis functions are non-
zero per knot span, an element .f (ξ) of . Sd can be written equivalently as

.f (ξ) = bd
[j−d;j](ξ) · c[j−d;j], ∀ξ ∈ [ξj , ξj+1). (5.12)

In Theorem 2.14 of [60], Lyche and Mørken provide an alternative representation
of B-spline basis functions in terms of a chain of matrix products, namely

.bd
[j−d;j](ξ) = Rd

1(ξ)Rd
2(ξ) · · · Rd

d(ξ), (5.13)

where for each positive integer .k ⩽ d the .k × (k + 1)-dimensional B-spline matrix
. Rd

k is given by

.Rd
k (ξ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

ξj+1−ξ

ξj+1−ξj+1−k

ξ−ξj+1−k

ξj+1−ξj+1−k
0 · · · 0

0
ξj+2−ξ

ξj+2−ξj+2−k

ξ−ξj+2−k

ξj+2−ξj+2−k
· · · 0

...
...

. . .
. . .

...

0 0 · · · ξj+k−ξ

ξj+k−ξj

ξ−ξj

ξj+k−ξj

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (5.14)

From the plentiful examples given in chapter 2 of the lecture notes [60], we
would like to replicate Examples 2.12 and 2.13 to illustrate the above construction
procedure. Let us consider linear B-splines (.d = 1) and let .ξ ∈ [ξj , ξj+1). It follows
from the local support property that the only two basis functions that are non-zero
in that knot span are .b1

j−1 and . b1
j . Their restriction to the interval can be given as

.

[
b1
j−1 b1

j

]
=
[

ξj+1−ξ

ξj+1−ξj

ξ−ξj

ξj+1−ξj

]
. (5.15)

Likewise, for quadratic B-splines (.d = 2) the row vector of B-splines that are non-
zero in .[ξj , ξj+1) can be written as the product of two matrices, namely

.

[
b2
j−2 b2

j−1 b2
j

]
=
[

ξj+1−ξ

ξj+1−ξj

ξ−ξj

ξj+1−ξj

]
· . (5.16)

312 Y. Ji et al.

⎡

⎣
ξj+1−ξ

ξj+1−ξj−1

ξ−ξj−1
ξj+1−ξj−1

0

0
ξj+2−ξ
ξj+2−ξj

ξ−ξj
ξj+2−ξj

⎤

⎦ . (5.17)

The matrix form moreover leads to “explicit” expressions for computing (higher
order) derivatives of B-splines. Let us reconsider the general case (5.13). The vector
of all r-th derivatives of degree d B-spline basis functions that are non-zero in
.[ξj , ξj+1) can be computed from (see Theorem 3.15 in [60])

.Drbd
[j−d;j](ξ) = d!

(d − r)!Rd
1(ξ) · · · Rd

d−r (ξ)DRd
d−r+1 · · · DRd

d , (5.18)

where the (first ordinary) derivative of the k-th B-spline matrix is given by

.DRd
k =

⎡
⎢⎢⎢⎢⎢⎢⎣

−1
ξj+1−ξj+1−k

1
ξj+1−ξj+1−k

0 · · · 0

0 −1
ξj+2−ξj+2−k

1
ξj+2−ξj+2−k

· · · 0

...
...

. . .
. . .

...

0 0 · · · −1
ξj+k−ξj

1
ξj+k−ξj

⎤
⎥⎥⎥⎥⎥⎥⎦

. (5.19)

As remarked by Lyche and Mørken in [60], the derivative operator D can be
applied to any of the d matrices . Rd

k as long as we differentiate r of them.
From a computational point of view, it makes sense to choose the trailing r

matrices as this reduces the number of arithmetic operations to be performed. Recall
that the k-th B-spline matrix has dimension .k × (k + 1) and features 2k non-
zero entries. Each entry of . Rd

k involves two subtractions and one division, whereas
this reduces to one subtraction and one division for .DRd

k . Accumulated over all d
matrices, this yields an overall count of arithmetic operations for assembling the
non-zero matrix entries of .3d2 −2dr +3d + r2 − r when the derivatives are applied
to the trailing r matrices and .3d2 + 3d − r2 − r when the leading r matrices are
differentiated. A similar cost analysis can be performed for the order in which the
chain of matrix–matrix multiplications is evaluated. Assuming that the matrices are
stored in dense format, the product between an .n × o and an .o × m matrix gives
rise to .nm(2o − 1) arithmetic operations (o multiplications and .o − 1 additions per
entry of the resulting .n × m matrix). A quick calculation shows that for . d ⩾ 2
a left-to-right evaluation requires .(4d3 + 9d2 − d − 12)/6 arithmetic operations,
whereas a right-to-left evaluation requires .(4d4 + d3 − 4d2 − 1)/6 operations. We
therefore recommend to evaluate the matrix chains in (5.13) and (5.18) from left to
right starting at . Rd

1 and applying the derivatives (if any) to the trailing matrices.
Putting it all together, a handy approach to evaluate an element f of the spline

space . Sd (or its r-th derivative .Drf) in a given point . ξ∗ is as follows:
Find the knot span .[ξj , ξj+1) such that .ξj ⩽ ξ∗ < ξj+1 and compute

5 Design Through Analysis 313

.f (ξ∗) = bd
[j−d;j](ξ

∗) · c[j−d;j] or. (5.20)

Dr f (ξ∗) = Drbd
[j−d;j](ξ

∗) · c[j−d;j] (5.21)

using the matrix representations (5.13) and (5.18), respectively.

Efficient Evaluation of B-Splines

For the reader who is interested in implementing the above in their own code, we
would like to remark that (5.20) and (5.21) is particularly suited for programming
languages like Python or Matlab and linear algebra libraries that support tensor
operations. In that case, . b’s and . c’s can be generalized to tensors, whereby the
third dimension represents the different . ξ∗ values and respective sub-vectors of
coefficients. Then the spline or its derivative can be evaluated in all given points
simultaneously by simple tensor contraction along the first two dimensions.

Instead of assembling the matrices (5.17) and (5.19) (or their generalization
to tensors) and performing the multiplications explicitly, which might be time
consuming and require a lot of computer memory especially for many evaluation
points at a time, we present a modified version of Algorithm 2.22 from chapter 2 of
[60] in Algorithm 2. The main difference is the automated handling of repeated
knots (i.e., the smart circumvention of the “.0/0 := 0” check) and the uniform
treatment of functions and their derivatives, respectively.

Algorithm 2 B-spline evaluation
Require: Find positive integer j ⩽ n + d + 1 such that ξ∗ ∈ [ξj , ξj+1)
1: b = 1
2: for k = 1, . . . , d − r do
3: t1 =

[
ξi−k+1 . . . ξi

]
4: t21 =

[
ξi+1 . . . ξi+k

]− t1
5: mask = (t21 < tol) ⊳ < element-wise comparison
6: w = (ξ∗ − t1 − mask) ÷ (t21 − mask) ⊳ ÷ element-wise division
7: b = [

(1 − w) ⊙ b 0
]+ [

0 w ⊙ b
] ⊳ ⊙ element-wise multiplication

8: end for
9: for k = d − r + 1, . . . , d do

10: t1 =
[
ξi−k+1 . . . ξi

]
11: t21 =

[
ξi+1 . . . ξi+k

]− t1
12: mask = (t21 < tol)
13: w = (1 − mask) ÷ (t21 − mask)
14: b = [−w ⊙ b 0

]+ [
0 w ⊙ b

]
15: end for

After the execution of the algorithm, vector . b contains the values of the r-th
derivatives of the .d + 1 degree d B-splines that are non-zero at the point . ξ∗. Like
with (5.20) and (5.21), Algorithm 2 can be generalized to handle multiple points .ξ∗

314 Y. Ji et al.

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e
4

5e
4

1e
5

2.
5e
5

5e
5

1e
6

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e
4

5e
4

1e
5

2.
5e
5

5e
5

1e
6

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e
4

5e
4

1e
5

2.
5e
5

5e
5

1e
6

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e
4

5e
4

1e
5

2.
5e
5

5e
5

1e
6

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e
4

5e
4

1e
5

2.
5e
5

5e
5

1e
6

10−1

100

101

102

103

104

105

106

W
al
lc
lo
ck
 t
im

e
in
 n
s/
en
tr
y

AMD EPYC 7402 (24 cores) Fujitsu A64FX (48 cores) Tesla V100S PCIe 32GB

d = 1 d = 2 d = 3 d = 4 d = 5

(a)

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e
4

5e
4

1e
5

2.
5e
5

5e
5

1e
6

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e
4

5e
4

1e
5

2.
5e
5

5e
5

1e
6

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e
4

5e
4

1e
5

2.
5e
5

5e
5

1e
6

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e
4

5e
4

1e
5

2.
5e
5

5e
5

1e
6

1e
0

1e
1

1e
2

1e
3

1e
4

2.
5e
4

5e
4

1e
5

2.
5e
5

5e
5

1e
6

10−1

100

101

102

103

104

105

106

W
al
lc
lo
ck
 t
im

e
in
 n
s/
en
tr
y

AMD EPYC 7402 (24 cores) Fujitsu A64FX (48 cores) Tesla V100S PCIe 32GB

d = 1 d = 2 d = 3 d = 4 d = 5

(b)

Fig. 5.6 Computational performance of vectorized B-spline evaluation as given in Algorithm 2
implemented in LibTorch 2.0 and executed on different CPU and GPU architectures: (a) univariate
B-splines and (b) bi-variate B-splines

simultaneously by extending all vector quantities to matrices and adjusting lines 7
and 14 to not only append/prepend a scalar “0” to the vector but an entire column of
zeros to the matrix. We have implemented this approach in an in-house research
code based on the C.++ API of LibTorch 2.0 and measured its computational
performance for different processors (CPUs) and graphics cards (GPUs) for problem
sizes between a single and a million evaluation points. A summary of the results
is presented in Fig. 5.6 for B-splines of degree 1 to 5 both for the univariate
case (described here) and for the case of bi-variate functions (to be addressed
below). By exploiting vectorization and parallelization, the compute time for B-
spline evaluation can be reduced by multiple orders of magnitude, especially when
using GPUs.

It is easy to see that all vectors in lines 3–6 and 10–14 of Algorithm 2 are of
length k and that the . b’s in lines 7 and 14 are after the appending/prepending with
zeros of length .k+1. Let us neglect this detail and estimate the cost of the loop body
by 10k arithmetic operations (counting the element-wise comparison as arithmetic
operation). Then the overall cost of Algorithm 2 is .5(d2 + d) operations which is
significantly cheaper than assembling the matrices .Rd

k and performing the matrix–
matrix multiplications in (5.13) and (5.18), respectively.

Application of the vector of evaluated B-spline basis functions and their deriva-
tives to the coefficient vector . c in (5.20) and (5.21), respectively, gives rise to the
costs of a standard inner product, namely, d multiplications and .d − 1 additions.
Even though one might be tempted to evaluate (5.20) and (5.21) from right to left by

5 Design Through Analysis 315

applying the trailing . Rd
d matrix to the coefficient vector to obtain a smaller column

vector and repeat the process until . Rd
1 is reached, we advise against this approach,

since in many applications the B-spline basis functions can be pre-evaluated, e.g.,
in the Greville abscissae (5.11), and reused throughout the simulation, whereas the
control points may change, e.g., in an analysis and optimization process.

Knot Insertion

The reader who is familiar with the finite element method might wonder if it is
possible to “refine” the B-spline function space defined in (5.8). As .S

d
𝚵 is solely

determined by the degree d and the knot vector .𝚵 = (ξi)
n+d+1
i=1 , any “finer” knot

vector .Π = (πj)
m+d+1
j=1 (with .m > n) will generate a richer function space as . Sd

Π .
Let us consider the special case that .𝚵 ⊆ Π , that is, all knots from the original

sequence are contained in the “refined” one. Moreover, let both knot vectors have
common knots at the two ends, and let no knot occur with multiplicity higher than
.d+1 in which case we call the knot vectors .d+1-regular. Then a spline f in . Sd

𝚵 with
B-spline coefficients .c = (ci)

n
i=1 can be represented exactly (!) in .S

d
Π by calculating

the B-Spline coefficients .d = (dj)
m
j=1 relative to the knot vector . Π by the second

Oslo algorithm (see Algorithm 4.11 from chapter 4 in [60]):

Algorithm 3 Knot insertion (Oslo algorithm 2; cf. [60])
1: for j = 1, . . . , m do
2: Find positive integer i such that ξi ⩽ πj < ξi+1
3: Compute the B-spline coefficient bj as

bj =
{

ci if d = 0,

Rd
1 (πj+1) · · · Rd

d (πj+d) · c[i−d;i] if d > 0.

4: end for

The chain of matrix–matrix products can again be computed efficiently by
resorting to Algorithm 2. This approach of refining the spline space .Sd

𝚵 through
augmenting its underlying knot vector . 𝚵 is termed knot insertion and common
practice. In particular the fact that spline functions f in . Sd

𝚵 have an equivalent and
easy-to-compute representation in .Sd

Π (with .𝚵 ⊆ Π) makes it an amenable tool
for design-through-analysis workflows as it allows to first generate a spline space
for representing the geometry model with sufficient level of detail and then refine
this space for the analysis while preserving the capability to represent the original
geometry model exactly within the refined spline space.

Next to the Oslo algorithm, there exist alternative approaches like blossoming to
determine the B-spline coefficients after the insertion of knots into . 𝚵 as discussed
for instance in Section 4.4 of [60]. However, blossoming is mathematically more

316 Y. Ji et al.

advanced and requires a different implementation, whereas Algorithm 3 reuses the
concept of B-spline matrices (5.17). It thereby suggests itself for programming
languages like Python and Matlab and linear algebra libraries that support tensor
operations since, like before, all . b coefficients can be computed simultaneously.

Multi-variate B-Splines

A canonical approach to generalize B-splines into multiple parametric dimensions
is by taking the tensor product of univariate ones. Let .𝚵 = (

𝚵1, . . . , 𝚵p

)
denote

the set of p independent knot vectors, .d = (
d1, . . . , dp

)
the individual degrees for

each direction, .n = (
n1, . . . , np

)
the number of univariate B-spline basis functions

per direction, and .p ∈ N⩾1 the number of parametric dimensions.
The degree . d tensor-product B-spline basis functions are then defined as

.Bd
i;𝚵(ξ) =

p∏
k=1

b
dk

ik;𝚵k
(ξk), (5.22)

where .i = (
i1, . . . , ip

)
is a multi-index from the admissible range .1 ⩽ i ⩽ n and

.ξ = (
ξ1, . . . , ξp

)
denotes the multi-component independent variable.

In a practical implementation, the multi-index . i is typically “flattened” to a global
index i that varies between 1 and .n = n1n2 · · · np by imposing an ordering on the
different dimensions (e.g., “smaller dimensions run faster”) and computing

.i := (i3 − 1)n1n2 + (i2 − 1)n1 + i1. (5.23)

Figure 5.7 illustrates the degree .2×3 B-splines basis functions defined over the knot
vectors .𝚵1 = {0, 0, 0, 1, 2, 3, 3, 4, 4, 4} and . 𝚵2 = {0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4}
in .ξ1- and .ξ2-direction, respectively. The interpolation property carries over to those
basis functions for which both univariate components evaluate to one.

With definition (5.22) at hand, the corresponding spline space .Sd
𝚵 is defined

analogously to its univariate counterparts (5.8) as follows:

.S
d
𝚵 = span

{
Bd

1;𝚵, . . . , Bd
n;𝚵

}
. (5.24)

=
{

n∑
i=1

ciB
d
i;𝚵 : ci ∈ R, for 1 ⩽ i ⩽ n

}
. (5.25)

We will drop subscript . 𝚵 whenever there is no ambiguity about the knot vector.
For the efficient evaluation of multi-variate B-spline basis functions (or their

derivatives), Algorithm 2 can be applied to each univariate component indepen-
dently from which the final function value can be computed as follows:

5 Design Through Analysis 317

Fig. 5.7 Tensor-product degree .2 × 3 B-spline basis functions defined over the two knot vectors
.𝚵1 = {0, 0, 0, 1, 2, 3, 3, 4, 4, 4} and .𝚵2 = {0, 0, 0, 0, 1, 2, 2, 3, 3, 3, 4, 4, 4, 4} in .ξ1- and .ξ2-
direction, respectively

.f (ξ∗) =
(

bd1
1,[j1−d1;j1](ξ

∗
1) ⊗ bd2

2,[j2−d2;j2](ξ
∗
2)
)

· c[j−d;j]. (5.26)

Here, .[j − d; j] stands for the multi-dimensional generalization of the selection
operator “.[·; ·],” that is, the operator that extracts a sub-matrix from the matrix of
B-spline coefficients in the bi-variate case and a sub-tensor in the tri-variate case.

In a practical implementation, the values of .c[j−d;j] are typically not stored at
contiguous memory positions unless the selection operator makes a deep copy.
Often, the data is contiguous in the leading dimension, say, . ξ1 with offsets of
. n1 along the second direction, offsets of .n1n2 along the third direction, etc. We
therefore suggest to use Algorithm 993 [20] for the efficient computation of matrix–
matrix products with matrices composed of Kronecker products. Let us drop sub-
and superscripts for the moment. Then the tri-variate counterpart of (5.26) reads

. (b1 ⊗ b2 ⊗ b3) · c = (I ⊗ I ⊗ b3) · (I ⊗ b2 ⊗ I) · (b1 ⊗ I ⊗ I) · c. (5.27)

This expression can be evaluated in three steps over the number of univariate
directions as given in Algorithm 4. The reshape operation in line 2 assumes that
matrices are stored in column-major format, that is, after the transposition in line
3 . c is a matrix with . nd rows. After the successful execution of the algorithm, . c
contains the scalar value of f or its derivative in the point . ξ∗.

318 Y. Ji et al.

Algorithm 4 Efficient evaluation of tensor-product B-splines (Algorithm 993 [20])

Require: Univariate B-spline basis functions
[
b1 · · · bp

]
evaluated in ξ∗ and selection of B-spline

coefficients c both restricted to [j − d; j]
1: for k = 1, . . . , p do
2: c = reshape(c, [·], nk)
3: c = bk · c⏉
4: end for

The arithmetic costs of this algorithm for the bi-variate case are . (2n1 + 1)n2 − 1
arithmetic operations and .((2n1 + 1)n2) + 1)n3 − 1 for the tri-variate case,
respectively, assuming that reshaping and transposition are not performed explicitly
but via clever memory accessing. As before, Algorithm 4 can be easily extended to
a tensorized version that can evaluate f in multiple points simultaneously.

Geometry Modeling with B-Splines

In much the same way as we defined the spline function spaces (5.8) and (5.25), one
can define higher dimensional spaces, i.e.,

.S
d,s
𝚵 =

{
n∑

i=1

ciB
d
i;𝚵 : ci ∈ R

s , for 1 ⩽ i ⩽ n

}
, (5.28)

with the main difference being that the B-spline coefficients are vector-valued data.
Then, an element .f ∈ S

d,s
𝚵 realizes a mapping from the parameter space

.Ω̂p =
p⊗

k=1

[
ξk,dk+1, ξk,nk

] ⊂ R
p, (5.29)

a p-dimensional hypercube, to the s-dimensional geometric or physical space . Ωs ⊂
R

s . Canonically, .f : Ω̂1 → Ωs , .1 ⩽ s ⩽ 3, defines a spline curve, . f : Ω̂2 →
Ωs , .2 ⩽ s ⩽ 3, a spline surface, and .f : Ω̂3 → Ω3 a spline volume. Higher
order extensions for, e.g., space-time formulations or, in general, the parametric
representation of s-dimensional data are also straightforward. In what follows, we
will drop the superscripts p and s if the dimensions are clear from the context.

5.2.2 Truncated Hierarchical B-Splines

Since B-spline bases are typically constructed as a tensor product between the
bases in each direction, tensor-product refinement of one element implies the
refinement of multiple elements in one direction, see Fig. 5.9a. This implies a

5 Design Through Analysis 319

quasi-local approach for adaptive refinement, which improves the speed of multi-
scale simulation problems only partially. In order to provide local refinement of the
spline basis, several spline basis constructions have been proposed in the literature
such as hierarchical B-splines (HB-splines) [25], truncated hierarchical B-splines
(THB-splines) [29, 30], T-splines [72] and their variations [49, 51, 50, 43, 52, 87],
polynomial splines over hierarchical T-meshes (PHT-splines) [16], locally refined
(LR) splines [17], and splines over unstructured meshes (U-splines) [78], the latter
not to be confused with the unstructured splines to be presented in Sect. 5.2.4. Here,
we review the (T)HB splines, and we refer the reader to the reference works for the
other spline constructions.

The construction of the truncated (hierarchical) B-spline basis (. H) . T is defined
recursively as given in [29]:

1. Initialize .T 0 = H0 = {ϕ ∈ B0 : supp ϕ /= ∅}, with the superscript denoting level
0, . B0 a tensor B-spline basis on level 0, and . ϕ a basis function with non-empty
support.

2. Recursively define .T 𝓁+1 = T 𝓁+1
A ∪ T 𝓁+1

B or .H𝓁+1 = H𝓁+1
A ∪ H𝓁+1

B for . 𝓁 =
0, ..., N − 2 with N the maximum level. The truncated basis .T 𝓁+1

A is defined as

. T 𝓁+1
A = {trunc𝓁+1 τ : τ ∈ T 𝓁 ∧ supp τ /⊆ Ω𝓁+1}

and the hierarchical basis . H𝓁+1
A

. H𝓁+1
A = {ϕ ∈ H𝓁 : supp ϕ /⊆ Ω𝓁+1}.

Furthermore, the basis .T 𝓁+1
B = H𝓁+1

B is given by

. H𝓁+1
B = {ϕ ∈ B𝓁+1 : supp ϕ ⊆ Ω𝓁+1},

with .Ω𝓁+1 ⊆ Ω𝓁 nested domains, . B𝓁 the B-spline basis on level . 𝓁, and . trunc𝓁 τ

the truncation of . τ with respect to .B𝓁+1 and .Ω𝓁+1.
3. Then the final THB-spline basis is defined as .T = T N−1 and the final HB-spline

basis is defined as .H = HN−1.

Figure 5.8 illustrates the principle of local refinement with B-splines using
(truncated) hierarchical B-splines (HB- and THB-splines, respectively). In the top
row of this figure, an initial uniform degree 2 B-spline basis with uniform knot
vector .𝚵 = {0, 1/8, 2/8, ..., 7/8, 1} is presented. In the bottom row, a uniform
refinement and (T)HB refinements of the indicated functions are presented.

The potential of refinement splines compared to knot insertions for local is
illustrated in Fig. 5.9. When a knot insertion is performed in a tensor B-spline basis
to refine a marked element, the refinement automatically introduces refinement of
other elements in the knot line (see Fig. 5.9a). For hierarchical splines, the basis
functions are inserted only locally, resulting in the addition of degrees of freedom
only in the marked element, see Fig. 5.9b.

320 Y. Ji et al.

0

1

β
i

B-spline basis HB-spline basis THB-spline basis
Q

0

1

β
i

0 0.5 1
ξ

Q

0 0.5 1
ξ

0 0.5 1
ξ

Fig. 5.8 Principles of refinement for different spline bases. The top plots represent the basis on
level 0, optionally with refined basis functions given in blue color. The bottom plots illustrate the
refined bases: uniform refinement (left), hence level 1; HB-refinement (middle); THB-refinement
(right) with truncated basis functions in red color. The line . Q represents the elements of the basis.
The unrefined unique knot vector in all cases is .𝚵 = {0, 1/8, 2/8, . . . , 7/8, 1} and the degree of
the basis is 2. All bases are generated with the open-source IGA library G+Smo [42]

(a) Refinement of a tensor-product B-spline
basis. To refine the element, the knot 0.5625
is inserted in both knot vectors.

(b) Refinement of a (T)HB-spline basis. To re-
fine the element, the basis functions with sup-
port on this element from the finer level (be-
low) are inserted in the original basis (above)
following the procedure from Fig. 5.8.

Fig. 5.9 Refinement of a two-dimensional tensor B-spline basis (a) and a (T)HB-spline basis (b)
for a marked element with corners .(0.5, 0.5) and .(0.625, 0.625). The original B-spline basis has
degree 2 and unique knot vector .𝚵 = {0, 1/8, 2/8, . . . , 7/8, 1} in both directions

5.2.3 Non-uniform Rational B-Splines

While B-spline basis functions offer great flexibility to model geometric freeform
shapes like curves, surfaces, and volumes, they fall short in accurately representing

5 Design Through Analysis 321

ω = 1

Origin

ci

cω
i

x
y

ω

1

2

3

-2
-1

0
1

2

-2 -1 0 1 2

Fig. 5.10 Illustration of a univariate NURBS curve

conic curve surfaces such as ellipses and hyperbolas, which are widely encountered
in industrial applications. To overcome this limitation, a natural progression is to
generalize B-splines to Non-Uniform Rational B-Splines (NURBSs), which have
become the industry standard in modern CAD systems. Essentially, NURBSs extend
the concept of B-spline basis functions by incorporating rational functions, achieved
through the introduction of weights .(ωi)

n
i=1 as an additional mechanism to modulate

the shape of the geometric object.
In essence, each control point .ci ∈ R

s is assigned a weight factor .ωi ∈ R
+ with

which we define the projected control point as follows:

. cω
i =

(
ωici

ωi

)
∈ R

s+1.

A NURBS geometry in . Rs space is obtained by projecting a B-spline geometry in
.R

s+1 onto the hyperplane of .ω = 1 through a central projection transformation, as
illustrated in Fig. 5.10. Notably, this transformation enables the accurate representa-
tion of conic curves using piecewise quadratic polynomial curves, making quadratic
NURBS curves an appropriate choice for precise representation.

In practice, NURBS curves (and other NURBS-based geometric objects) are not
constructed via central projection transformation but by replacing the univariate B-
spline basis functions (5.3) by their rational counterparts

.Nd
i;𝚵,ω(ξ) = ωiN

d
i;𝚵,ω

(ξ)

n∑
i=1

ωiN
d
i;𝚵,ω

(ξ)

(5.30)

and defining the corresponding function space as follows:

322 Y. Ji et al.

.S
d,s
𝚵,ω = span

{
Nd

1;𝚵,ω, . . . , Nd
n;𝚵,ω

}
. (5.31)

=
{

n∑
i=1

ciN
d
i;𝚵,ω : ci ∈ Rs , for 1 ⩽ i ⩽ n

}
. (5.32)

The generalization to multi-variate NURBS spaces follows the same tensor-product
construction principle as was adopted for B-splines with a single weight per
basis function. Let us conclude this section by remarking that NURBSs, although
being the predominant industry standard, are often not necessary in practical
design-through-analysis applications and that other features like local refinability
of (T)HB-splines outweigh the shortcoming of B-spline basis functions to not being
able to represent conic curves and their higher dimensional extensions exactly.

As before, we will drop sub- and superscripts whenever their information can
be deduced from the context. Moreover, we will adopt . Ni as generic notation for
B-spline and NURBS basis functions alike unless stated otherwise.

5.2.4 Multi-patch Splines

Many geometries of practical interest like the one depicted in Fig. 5.11 cannot be
represented by a single-patch B-spline or NURBS mapping .f : Ω̂ → Ω unless
trimming is used excessively. It is therefore common practice to combine multiple
such mappings to a multi-patch spline, i.e.,

.f𝓁 : Ω̂ → Ω𝓁, Ω =
⋃
𝓁

Ω̄𝓁. (5.33)

For the reader who is familiar with finite elements, each patch . Ω𝓁 can be considered
as a kind of macro element with . f𝓁 being the push-forward operator from the
reference element . Ω̂ into the physical space. Likewise, if the mapping . f𝓁 is bijective,
its inverse .f−1

𝓁 : Ω𝓁 → Ω̂ exists and is termed the pull-back operator.
While most conformal finite element formulations do not go beyond . C0 continu-

ity over element interfaces (i.e., continuity of the values of the basis functions but
not of their derivatives), it would be beneficial to preserve at least part of the . Cd−1

continuity of higher order B-splines when coupling multiple patches to a multi-patch
object. To achieve this, so-called unstructured splines, i.e., splines with higher order
smoothness over patch interfaces, can be constructed.

In case of one-dimensional bases, the concept of patch smoothing is trivial, but
illustrative for higher dimensions. The concept of interface smoothing is illustrated
in Fig. 5.12 and can be interpreted as a construction where basis functions . ϕ ∈
S

d,1
𝚵 of a spline space .Sd,1

𝚵 with interface smoothness 1 are represented by a linear

5 Design Through Analysis 323

Fig. 5.11 Illustration of a planar multi-patch geometry

324 Y. Ji et al.

0

1

ψ
i

0

1

A
ij

ψ
j

0 0.5 1 1.5 2
0

1

ξ

ϕ
i

Fig. 5.12 The concept of interface smoothing between two bases of degree 2 with unique knot
vector .𝚵 = {0, 1/8, 2/8, . . . , 7/8, 1} (left) and .𝚵 = {1, 9/8, 10/8, . . . , 15/8, 2} (right). The top
figure provides the two bases with the dotted basis functions . ψi , the functions that have non-zero
derivatives and values on the interface, and the dashed basis functions represent the functions that
have zero values but non-zero derivatives on the boundary. The middle row presents scaled basis
functions .Aijψj . Here, all functions are scaled by a factor of 1, except for the dotted functions,
which are scaled by a factor of . 1/2. The bottom row presents the basis .ϕi = Aijψj where the sum
is evaluated over the repeated index j . The blue and red functions are constructed by taking the
sum of the dashed and dotted functions in their support on the one side (resulting in the dash-dotted
line) and taking the dotted line on the other side

combination of functions .ψ ∈ S
d,0 from a space .Sd,0. For example, basis function

. ϕi is represented by all basis functions . ψj weighted with coefficient . Aij :

.ϕi = Aijψj , (5.34)

By applying this procedure to all basis functions . ϕi , we arrive at the relation

.ϕ = Aψ (5.35)

with A denoting the transformation matrix.
In higher dimensions, interface smoothing as illustrated in Fig. 5.12 can be

performed to construct interface basis functions. However, the increased parametric
dimension (see Fig. 5.13) introduces vertices where the smoothing of basis functions
is non-trivial. Spline constructions that provide smoothing mappings like the
matrix A are referred to as unstructured splines, providing bases with higher

5 Design Through Analysis 325

Fig. 5.13 Multi-patch decomposition of a simple domain into six patches. All the vertices on the
boundary are regular since there are 1 or 2 patches joining. The vertices in the interior are irregular
since their valence (i.e., the number of patches joining in the vertex) is not equal to 4. These vertices
are also referred to as extraordinary vertices

B-Rep V-Rep Field

analysis-suitable

parameterization

IGA

structural design optimization

Fig. 5.14 Design-analysis-optimization pipeline

smoothness than .C0 over patch interfaces and vertices. Examples of unstructured
spline constructions include the D-Patch [70, 80], the Almost-. C1 construction [77],
the Approximate . C1 basis [89, 90], the Analysis-Suitable . G1 construction [12, 22],
polar spline constructions [79], and constructions based on subdivision surfaces
[54, 5].

5.3 Creation of Analysis-Suitable Parameterizations

In modern CAD systems, as shown in Fig. 5.14, Boundary Representations (B-Rep)
are commonly used to represent CAD models. B-Rep describes the boundaries
of an object through vertices, edges, and faces, organizing these elements using
topological relationships. This representation provides high flexibility and efficiency
in geometric modeling and design. However, before conducting simulation-based
analysis, it is essential to construct a Volumetric Representation (V-Rep) for the inte-
rior of the CAD model. This process is typically known as domain parameterization
or simply parameterization. Once an analysis-suitable parameterization is obtained,

326 Y. Ji et al.

known boundary control points cj

unknown inner control points ci

x(ξ) =
∑
i∈II

ciNi (ξ)

︸ ︷︷ ︸
unknown

+
∑
j∈IB

cjNj (ξ)

︸ ︷︷ ︸
known

.

Fig. 5.15 Illustration of the problem statement for the creation of analysis-suitable parameteriza-
tions

simulation-based analysis can be performed on the volumetric representation model.
For visual reference, please see Fig. 5.14.

5.3.1 Problem Statement

Unless noted otherwise, we will restrict ourselves to the single-patch case in what
follows. For the sake of notation convenience, let . II and . IB be the index sets for the
unknown inner control points and the known boundary control points, respectively.
Then, the parameterization . x can be represented as follows:

.x(ξ) =
∑
i∈II

ciNi(ξ)

︸ ︷︷ ︸
unknown

+
∑
j∈IB

cjNj (ξ)

︸ ︷︷ ︸
known

, (5.36)

where . ci , .i ∈ II are unknown inner control points, . cj , .j ∈ IB are the given
boundary control points, .Ni(ξ) and .Nj(ξ) are the corresponding NURBS basis
functions, and .ξ ∈ Ω̂. As depicted in Fig. 5.15, the known boundary control points
. cj are represented by the blue points. Conversely, the unknown inner control points
. ci , are indicated by the red points. It should be noted that the black lines that
connect the control points indicate the so-called control net, whereas the actual
parameterized domain . Ω is the gray quarter annulus underneath.

In fact, the quality of the parameterization significantly impacts the accuracy
and efficiency of subsequent analysis tasks [11, 93, 67]. First and foremost, a high-
quality analysis-suitable parameterization should be a bijection. Additionally, it
should exhibit good orthogonality of “grid lines” and uniformity of “cell sizes”

5 Design Through Analysis 327

or, in other words, minimal distortion in terms of angles and area/volume. Strictly
speaking, the technical terms “grid lines” and “cells” are anachronisms from
classical grid-based methods and should be replaced by “parametric curves with
all but one parameter kept fixed” and “images of the push-forward operator for
the tensor-product of knot spans in . Ω̂,” respectively. At the same time, use of
this terminology might help the reader familiar with grid-based methods like finite
elements to interpret grids as the lowest order . C0 parameterizations, where by virtue
of the interpolation property the control net and the domain . Ω fall together.

In light of the above requirements on the mapping .x : Ω̂ → Ω, the
parameterization problem can be formulated as follows: Given the set of boundary
control points . cj , the objective is to construct the unknown inner control points
. ci in such a way that the resulting parameterization . x guarantees bijectivity and
minimizes angle, as well as area/volume distortion.

5.3.2 Classification of Parameterization Methods

For an analysis-suitable parameterization, the bijective property plays a crucial role.
In this section, we categorize the existing methods based on the approaches they
employ to handle the bijectivity constraints.

Algebraic Parameterization Methods

These methods rely on algebraic principles and involve, if at all, the solution of a
linear system of equations, which makes them computationally efficient.

One notable example is the Discrete Coons method [24], which belongs to a spe-
cial type of Transfinite Interpolation (TFI) methods. This explicit parameterization
method does not require the solution of a linear system of equations and is generally
considered highly efficient. Xu et al. extended this method to three-dimensional
NURBS volumetric parameterization [93].

Several linear parameterization methods that solve a linear system, such as the
spring model method and the mean value coordinates method, were discussed in
[31]. Since these algebraic methods do not specifically consider the bijectivity
constraint, they often yield self-intersecting parameterizations when dealing with
complex domains. In these scenarios, algebraic methods are often used to compute
an initial guess as a starting point for a more advanced parameterization approach.
This two-step procedure, of course, requires that the downstream method is capable
of turning a non-bijective parameterization into a bijective one.

Nonlinear Constrained Optimization Methods

These methods inherently treat the bijection constraint as constraint terms and
employ energy functions that characterize the orthogonality and uniformity of the

328 Y. Ji et al.

parameterization as the objective function. An analysis-suitable parameterization is
then generated by solving the constrained optimization problem.

Xu et al. [91] utilized the observation that the Jacobian determinant of the param-
eterization can be expressed using higher order NURBS functions. They employed
the nonlinear coefficients of the Jacobian determinant as inequality constraints to
ensure bijectivity in the parameterization results. They subsequently extended this
method to volumetric parameterizations [93]. Wang et al. [85] proposed an acceler-
ated constrained optimization framework by utilizing constraint aggregation, divide
and conquer, and hierarchical optimization strategies. Xu et al. [94] introduced a
computational reuse method for computation domains with consistent topological
structures. Ugalde et al. [1] presented a series of sufficient and necessary conditions
for achieving injectivity in quadratic B-spline parameterizations.

Despite the effective performance of these parameterization methods based
on nonlinear constrained optimization in small-scale examples, the number of
constraints significantly increases as the problem size grows, particularly in the
context of volumetric parameterizations. To mitigate the computational burden, Pan
et al. [65] introduced a constraint addition strategy that gradually incorporates col-
location points in a coarse-to-fine resolution manner. Nevertheless, this method still
incurs a substantial computational cost, necessitating the utilization of commercial
optimization solvers.

Nonlinear Unconstrained Optimization Methods

In the aforementioned parameterization methods based on nonlinear constrained
optimization, the significant quantity of nonlinear constraints represents a challeng-
ing problem to solve. Consequently, in recent years, unconstrained optimization-
based parameterization methods have gained popularity.

Xu et al. [92] introduced a parameterization method that involves minimizing the
variational harmonic mapping. Nguyen and Jüttler [61] initially computed a series
of harmonic mappings from the computational domain to the parameter domain,
subsequently employing spline approximation for the inverse mapping. Falini et al.
[21] extended this method to planar THB-spline parameterization by first calculating
the harmonic mapping from the computational domain to the parameter domain
through the boundary element method. They then utilized spline least squares
fitting for the inverse mapping. Nian et al. [62] presented a planar parameterization
method that relies on Teichmüller mapping. Pan et al. [64] introduced a low-rank
parameterization method that utilizes quasi-conformal mapping and employs an
alternating direction multiplier method to minimize the objective functional. They
subsequently extended this method to include volumetric parameterization [63].

The Radó–Kneser–Choquet theorem guarantees the injectivity of the solution
to the Winslow functional, which resulted in its widespread usage in traditional
mesh generation fields, where it is known as the Most Isometric ParameterizationS
(MIPS) energy in computer graphics [37]. In the field of computer graphics, a three-

5 Design Through Analysis 329

dimensional version of this energy is also recognized [26]. These energy functionals
frequently necessitate an initial parameterization that possesses bijectivity. To tackle
this issue, researchers have proposed various foldover elimination methods. Su et
al. [76] projected the Jacobian matrix onto a space with bounded K-distortion,
while Liu et al. [53] further enhanced this method by incorporating simultaneous
optimization of boundary correspondence. Zheng et al. [96] recently employed
this idea in THB-spline volumetric parameterization and introduced an efficient
method for volumetric parameterization. Another approach involves the usage of
penalty functions and Jacobian regularization techniques, which find their roots in
the literature on grid distortion problems [27, 28]. Wang and Ma [84] implemented
this idea in planar parameterization problems, successfully circumventing the need
for extra foldover elimination steps.

Nonlinear Partial Differential Equation (PDE)-Based Methods

These methods either approximate the stationary points of the Dirichlet energy while
satisfying known boundary conditions or solve the corresponding Euler–Lagrange
equations.

Martin et al. [55] utilized discrete volumetric harmonic mappings to fit tri-
variate B-spline volumes. Shamanskiy et al. [75] developed analysis-oriented
parameterizations through the solution of nonlinear elasticity equations using neo-
Hookean hyperelastic material laws. Ali and Ma [2] utilized an isogeometric
approach with equigeometric points to solve PDEs with boundary vector con-
straints in planar parameterization. Hinz et al. [35, 36, 34] proposed a series of
parameterization construction methods based on nonlinear PDEs by discretizing the
Laplace equation, drawing upon the principles of Elliptic Grid Generation (EGG).
These elliptic parameterization methods based on EGG demonstrate favorable
convergence properties and excel in slender domains with extreme aspect ratios.

5.3.3 Optimization-Based Parameterization Methods

This section introduces optimization-based parameterization methods. As men-
tioned in Sect. 5.3.2, constrained optimization methods are computationally inef-
ficient due to the presence of numerous nonlinear constraints. Accordingly, we
will present two unconstrained optimization methods: the barrier function-based
method and the penalty function-based method. These methods are derived from
the authors’ two published papers: [40] and [41], respectively.

When considering energy functions that characterize angle distortion and
area/volume distortion, the Jacobian matrix . J plays a crucial role. The following
fundamental quantities are frequently involved in this context.

330 Y. Ji et al.

1

1

1

s

s

s

Fig. 5.16 The geometric interpretation of the singular values of the Jacobian matrix

Fig. 5.17 The geometric interpretation of the Jacobian determinant

• The Jacobian matrix of the parameterization . x:

.For the 2D case: J =
[
x1,ξ1 x1,ξ2

x2,ξ1 x2,ξ2

]
; . (5.37a)

For the 3D case: J =

⎡

⎢⎢⎣

x1,ξ1 x1,ξ2 x1,ξ3

x2,ξ1 x2,ξ2 x2,ξ3

x3,ξ1 x3,ξ2 x3,ξ3

⎤

⎥⎥⎦ . (5.37b)

First, it is crucial to consider the singular value . σi (.i = 1, 2, . . . , s, .1 ≤ s ≤ 3) of
the Jacobian matrix . J . Figure 5.16 illustrates how these singular values reflect
the variations in the lengths of the principal axes when locally mapping the unit
sphere to an ellipsoid. Ideally, we aim for uniform singular values across the
Jacobian matrix to ensure minimal angle distortion.

Second, another significant quantity is the Jacobian determinant .|J | of the
parameterization . x. The Jacobian determinant at a specific point provides the
optimal linear approximation of the distorted parallelogram in the vicinity of
that point. As depicted in Fig. 5.17, the Jacobian determinant represents the ratio

5 Design Through Analysis 331

between the area of the approximating parallelogram and that of the original
square.

• The metric tensor .G = J ⏉J :

.For the 2D case: G =
[
x,ξ1 · x,ξ1 x,ξ1 · x,ξ2

x,ξ2 · x,ξ1 x,ξ2 · x,ξ2

]
; . (5.38a)

For the 3D case: G =

⎡

⎢⎢⎣

x,ξ1 · x,ξ1 x,ξ1 · x,ξ2 x,ξ1 · x,ξ3

x,ξ2 · x,ξ1 x,ξ2 · x,ξ2 x,ξ2 · x,ξ3

x,ξ3 · x,ξ1 x,ξ3 · x,ξ2 x,ξ3 · x,ξ3

⎤

⎥⎥⎦ . (5.38b)

In particular, a parameterization . x is locally conformal at a point . ξ∗ if and
only if the metric tensor . G satisfies .G = n(ξ∗) · Ip×p, where .Ip×p represents the
identity matrix and .n(ξ∗) > 0. In this case, the Jacobian matrix . J represents a
combination of proportional scaling and rotation in each direction, leading to an
orthogonal isoparametric structure for the parameterization . x. It is worth noting
that under this condition, all singular values of the Jacobian matrix . J are equal.

Based on the aforementioned fundamental quantities, the pointwise Most Iso-
metric ParameterizationS (MIPS) energy [37, 26] can be employed to quantify angle
distortion in the vicinity of a single point:

.E
angle
p =

{
σ1
σ2

+ σ2
σ1

, 2D case,
1
8

(
σ1
σ2

+ σ2
σ1

) (
σ2
σ3

+ σ3
σ2

) (
σ1
σ3

+ σ3
σ1

)
, 3D case,

(5.39)

where . σi represent the singular values of . J . The minimum value of .E angle occurs
when .σ1 = σ2 = · · · = σp, ensuring minimal angle distortion.

Furthermore, we utilize the following pointwise uniformity energy function
.E unif.

p to assess the distortion in area/volume

.E unif.
p = |J |

vol(Ω)
+ vol(Ω)

|J | , (5.40)

where .vol(Ω) denotes the area/volume of the computational domain . Ω.
Recalling the angle distortion energy (5.39), in the 2D case, we have

.E
angle
p = σ1

σ2
+ σ2

σ1
= σ 2

1 + σ 2
2

σ1σ2
= trace(G)

|J | . (5.41)

This energy is also known as Winslow’s functional, which may be more
familiar to the mesh generation community. It is solely determined by the Jacobian
determinant and the metric tensor . G of the parameterization . x, making it an intrinsic
geometric quantity. Given that the parameter domain .Ω̂ = [0, 1]2 is convex, the

332 Y. Ji et al.

Radó–Kneser–Choquet theorem [69, 47] states that the unique minimum value of
Winslow’s functional establishes a differential homeomorphism between the interior
of the parameter domain and the interior of the computational domain. Moreover, as
the Jacobian determinant approaches zero, which is in the denominator, the energy
.E

angle
p that measures angle distortion tends to infinity. This property effectively

prevents self-intersections from occurring.
Although there is no strict mathematical theory supporting the 3D case, a similar

property holds, that is,

.

E
angle
p = 1

8

(
σ1

σ2
+ σ2

σ1

)(
σ2

σ3
+ σ3

σ2

)(
σ1

σ3
+ σ3

σ1

)

= 1

8

((
σ 2

1 + σ 2
2 + σ 2

3

) (
σ 2

2 σ 2
3 + σ 2

1 σ 2
3 + σ 2

1 σ 2
2

)
|J |2 − 1

)
.

(5.42)

It can be observed that the Jacobian determinant appears in the denominator, which
has the capability to prevent self-intersections.

Basically, this property appears to provide insight for constructing an analysis-
suitable parameterization by minimizing the following energy function:

.E =
∫

Ω̂

λangleE
angle
p + λunif.Eunif.

p dΩ̂, (5.43)

where .λangle and .λunif. are trade-off parameters used to balance the angle and
area/volume distortion.

However, the situation is far more intricate than it initially appears. The presence
of the Jacobian determinant in the denominator creates a barrier that can potentially
prevent self-intersections. Conversely, starting from an infeasible initial parame-
terization, which is frequently encountered in complex domain parameterization
problems, it introduces an arbitrary level of complexity. In essence, a bijective
parameterization must be established prior to the minimization of the energy
function (5.43). In the subsequent two subsections, we will investigate approaches
to tackle this challenge.

Barrier Function-Based Method

In this section, we will introduce a three-step strategy known as the barrier
function-based method, designed to generate high-quality parameterizations. We
aim to overcome the challenges associated with numerous nonlinear constraints and
achieve superior outcomes. The fundamental workflow of the barrier function-based
method is illustrated in Fig. 5.18, providing a visual representation of the step-by-
step process involved.

5 Design Through Analysis 333

Foldovers
elimination

Quality
improvement

Initialization Almost foldover-free Final result

Fig. 5.18 The workflow of the barrier function-based method

Initialization

A common approach to solving nonlinear optimization problems is through iterative
methods. Therefore, a reasonable initial guess is crucial to improve the convergence
speed of subsequent solutions. As discussed in Sect. 5.3.2, algebraic parameteriza-
tion methods such as the discrete Coons method [24], the spring model method [31],
and the smoothness energy method [65] are commonly employed to generate an
initial guess. In what follows, we adopt the smoothness energy method. Specifically,
the unknown inner control points .ci , i ∈ II are obtained by solving the following
quadratic programming problem:

. arg min
ci , i∈II

∫
Ω̂

‖Δx‖2 dΩ̂. (5.44)

It can be obtained by solving a sparse and symmetric linear system of equa-
tions. The preconditioned conjugate gradient method or the GMRES method with
incomplete Cholesky decomposition is typically used for the solution. The initial
parameterization constructed by this method is shown in the left part of Fig. 5.18.
Note that this method does not guarantee a self-intersection-free parameterization,
as it becomes evident from the presence of many self-intersections on the back of
the duck.

Foldover Elimination

Generally, for complex computational domains, the initial parameterization con-
structed using algebraic parameterization methods does not guarantee bijectivity.
Therefore, in our method, the second step is to eliminate foldovers.

To ensure a bijective parameterization, it is necessary for the Jacobian determi-
nant to be greater than zero throughout the entire computational domain. To this
end, we solve the following unconstrained optimization problem:

. arg min
ci , i∈II

E fold =
∫

Ω̂

max {0, δ − |J |} dΩ̂, (5.45)

where . δ is a user-specified parameter value.

334 Y. Ji et al.

The objective function in problem (5.45) clearly attains a minimum value of
zero. During practical computations, the objective function is commonly evaluated
using Gaussian numerical integration. However, in this scenario, a zero value of the
objective function only indicates that the integrand evaluates to zero at the Gaussian
integration points, which does not guarantee a bijective parameterization. Therefore,
we refer to parameterizations that satisfy the condition of the Jacobian determinant
being greater than zero at all Gaussian integration points as almost foldover-
free parameterizations. As depicted in the central portion of Fig. 5.18, solving the
optimization problem (5.45) leads to a substantial reduction in self-intersections.
Solving the problem (5.45) plays a crucial role in achieving success and improving
the quality of the subsequent parameterization. However, it is important to note
that addressing this problem alone is insufficient to completely eliminate self-
intersections for the majority of complex computational domains. To this end, we
further improve the parameterization quality in the next step.

In problem (5.45), the choice of parameter . δ greatly influences the success of
the problem-solving process. On the one hand, a larger value of . δ is desired as it
leads to a higher-quality parameterization, which in turn enhances the convergence
efficiency in improving the subsequent parameterization. On the other hand, setting
. δ too large may result in the failure to solve the problem. To enhance the robustness
of our method in this chapter, we employ an adaptive solving strategy that begins
with a larger initial value of . δ and gradually decreases it.

For a general parameterization . x, the determinant of the Jacobian at a specific
parameter value represents the ratio of the area in the computational domain to that
in the parameter domain near that point. Since we assume the parameter domain to
be the unit square .[0, 1]2, the Jacobian determinant should be equal to the area of the
computational domain. To achieve this, we initially set . δ to 5% of the computational
domain’s area. If the problem cannot be solved with this value of . δ, we progressively
decrease it using a decay factor .decay_f actor . The specific steps for solving the
problem are outlined in Algorithm 5.

Algorithm 5 Foldover elimination
Require: x: Planar NURBS parameterization;
Require: decay_f actor: Decay factor for parameter δ;
Require: area(Ω): Area of the computational domain;
Require: max_iter: Maximum number of iterations.
Ensure: x: Parameterization after foldover elimination.
1: for k = 0, 1, . . . , max_iter do
2: Calculate δ = decay_f actork ∗ 0.05 ∗ area(Ω);
3: Solve the unconstrained optimization problem arg min

ci , i∈II

E fold; ⊳ (5.45)

4: Update the control points ci , i ∈ II ;
5: if E fold < 100 ∗ MACHINE_PRECISION then

return Parameterization x after foldover elimination;
6: end if
7: end for

return “Maximum number of iterations reached!”;

5 Design Through Analysis 335

Parameterization Quality Improvement

Considering that the Jacobian determinant is present in the energy function (5.43),
it acts as a barrier to prevent self-intersections in the resulting parameterization.
However, as the objective function exhibits discontinuous variation, the Jacobian
determinant value can cross zero abruptly. In such cases, the objective function lacks
a minimum value, and employing the original energy function (5.43) would lead
to failure in solving. Therefore, we introduce the following modifications to the
original energy function:

.E c =
{

E , if min |J | > 0,

+∞, otherwise.
(5.46)

In other words, when the minimum value of the Jacobian determinant at the
Gaussian integration points is negative, the original energy function . E is modified to
become infinite. This modification serves as a penalty for invalid parameterizations.
The modified energy function, denoted as . E c, acts as a barrier that distinguishes
between bijective and non-bijective parameterizations. Hence, we refer to the
approach presented in this subsection as the barrier function method. Modern
nonlinear optimization solvers commonly employ line search techniques, such as
the Armijo–Goldstein criterion, the Wolfe–Powell criterion, strong Wolfe criterion,
and others, to ensure a significant decrease in the objective function value. By
incorporating these techniques, the modified energy function . E c effectively prevents
the occurrence of self-intersections, ensuring a smooth and valid parameterization.
The resulting parameterization, depicted on the right side of Fig. 5.18, demonstrates
the effectiveness of the approach.

Penalty Function-Based Method

The barrier function-based method presented in the previous section requires an
initial parameterization that already exhibits bijectivity. However, obtaining such
a parameterization efficiently can be challenging and may necessitate additional
foldover elimination steps. It is crucial to highlight that these foldover elimination
steps offer limited enhancements to the parameterization quality and may lead
to redundant computations (see the middle of Fig. 5.18). To tackle this issue, we
present a penalty function-based approach for parameterization. This method is
straightforward to implement and effectively eliminates the need for extra foldover
elimination steps. The fundamental workflow of this penalty function-based method
is illustrated in Fig. 5.19. To the best of our knowledge, this concept was initially
introduced by Garanzha to address mesh untangling problems [27, 28]. Notably,
Wang and Ma recently applied this idea to planar parameterization problems [84].

The basic idea is quite simple. In order to accommodate invalid initial parame-
terizations and unfold folds during the optimization process, we introduce a novel

336 Y. Ji et al.

Optimized parameterizationInitializationB-Rep

Untangling &
Minimizing distortion

Penalty objective function

Fig. 5.19 The workflow of the penalty function-based method

-0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08
-0.1

-0.05

0

0.05

0.1

0.15

(a)

0

2

4

6

8

10

12

14

16

18
104

(b)

0.1 -0.1 -0.08 -0.06 -0.04 -0.02 0 0.02 0.04 0.06 0.08 0.1

Fig. 5.20 Penalty function and Jacobian regularization techniques. (a) Jacobian determinant and
different penalty functions. (b) Reciprocal square of Jacobian determinant and penalty functions

penalty function. The proposed penalty function, represented as .χ(|J | , ε, β), is
defined as follows:

.χ(|J | , ε, β) =
{

ε · eβ(|J |−ε) if |J | ≤ ε,

|J | if |J | > ε,
(5.47)

where . ε is a small positive number, and . β is a penalty factor used to control the
slope of the penalty function.

As shown in Fig. 5.20a, if .|J | < ε, then .χ(|J | , ε, β) is equal to a small
positive number. On the other hand, if .|J | ≥ ε, it is exactly equal to the Jacobian
determinant .|J |. Therefore, intuitively, . 1

χ2(|J |,ε,β)
imposes a significant penalty for

negative Jacobian determinants and has a smaller value to accept positive Jacobian
determinants, as shown in Fig. 5.20b.

Remark 5.3.1 For mesh untangling problems, Garanzha [27] proposed a penalty
function .χorg:

.χorg(|J | , ε) = |J | +
√

ε2 + |J |2
2

, (5.48)

5 Design Through Analysis 337

where . ε is a positive number. However, as shown in Fig. 5.20a, even when . |J | >

ε, the penalty function .χorg is not strictly equal to the Jacobian determinant
.|J |. This introduces additional errors, which may not be desirable in practical
applications.

Based on the idea of Jacobian regularization, we replace the Jacobian determi-
nant in the denominator of the pointwise angle distortion function (5.42) with the
penalty function (5.47), and we obtain

. E
angle,c
p = 1

8

(
‖J ‖2

F

∥∥∥J −1
∥∥∥2

F
− 1

)
. (5.49)

Similarly, we also modify the uniformity energy function (5.40) as follows:

.E unif.,c
p = vol(Ω)

χ(|J | , ε, β)
+ χ(|J | , ε, β)

vol(Ω)
. (5.50)

Eventually, the corrected weighted objective functional is expressed as follows:

.E c =
∫
Ω̂

(
λangleE

mips,c
p + λunif.E unif.,c

p

)
dΩ̂. (5.51)

The resulting volumetric parameterization is depicted in Fig. 5.19 (right).

5.3.4 PDE-Based Methods

The theory of harmonic mapping has garnered considerable attention in the realm
of planar parameterization owing to its exceptional mathematical properties and
robust theoretical underpinnings. In actuality, the optimization-based approaches
elucidated in the preceding sections fundamentally strive to approximate the inverse
mapping of harmonic mapping in finite-dimensional spline spaces.

Figure 5.21 illustrates a cross-section of a twin-screw compressor, presenting
notable geometric challenges, particularly with extreme aspect ratios between the
rotor clearances. While numerous parameterization techniques perform admirably
on established benchmark geometries, they often demonstrate subpar performance
in practical applications. Figure 5.21a showcases the parameterization results
achieved using the penalty function method outlined in Sect. 5.3.3 [41]. For such
challenging geometric shapes, the precise selection of pertinent parameters becomes
crucial. Moreover, during our research, we discovered an unreasonable influence
of the parameter domain size on the parameterization results. In contrast, the
PDE-based Elliptic Grid Generation (EGG) method [35] yields a satisfactory
parameterization outcome, as depicted in Fig. 5.21b.

338 Y. Ji et al.

(a)

(b)

Fig. 5.21 Parameterizations generated by the penalty function-based method [41] and the Elliptic
Grid Generation (EGG) method [34]. (a) Penalty function-based method. (b) Elliptic Grid
Generation (EGG) method

The fundamental concept behind the Elliptic Grid Generation (EGG) method is to
compute a harmonic mapping . x from the parametric domain . Ω̂ to the computational
domain . Ω by solving the following set of Laplace equations:

.

{
Δξ(x, y) = 0

Δη(x, y) = 0
s.t. x−1|∂Ω = ∂Ω̂. (5.52)

The problem (5.52) belongs to a specific class of Dirichlet problems. The
existence of a solution is ensured if the boundary .∂Ω satisfies the .C1,α Hölder
continuity condition for some .α ∈ (0, 1), and the uniqueness of the solution is
guaranteed by the maximum principle. Given the assumption that the parametric
domain . Ω̂ is convex, typically represented as a unit square, the unique solution .x−1

5 Design Through Analysis 339

establishes a one-to-one correspondence, ensuring its non-vanishing Jacobian . J ,
between the interior regions of the parametric domain . Ω̂ and the computational
domain . Ω [18].

Discretization in Sobolev Space H 2

In the context of generating parameterizations for IGA, the primary focus lies on
the mapping . x from the parametric domain . Ω̂ to the computational domain . Ω,
which represents the inverse of the harmonic mapping .x−1. Consequently, the set
of Laplace equations (5.52) is transformed into an equivalent problem by Xu et al.
[92]. The resulting problem is a nonlinear vector-valued second-order PDE:

.

{
L̃x = 0

L̃y = 0
s.t. x|

∂Ω̂
= ∂Ω, (5.53)

where

.L̃ = L
g11 + g22

, (5.54)

with the differential operator

.L = g22
∂2

∂ξ2 − 2g12
∂2

∂ξ∂η
+ g11

∂2

∂η2 , (5.55)

and .gij = x,ξi
· x,ξj

denotes the entries of the metric tensor . G in (5.38).
The scaled operator (5.54) was introduced by Hinz et al. [36] to enhance

convergence. This operator provides a more consistent convergence criterion for
geometries with varying length scales and demonstrates improved convergence
properties in numerical experiments.

Let us denote by . S the spline space spanned by NURBS basis functions. Let
.S0 = {Ni ∈ S : Ni |∂Ω̂

= 0} be the collection of .Ni ∈ S that vanish on . ∂Ω̂.
Following the IGA setting, we have the following variational counterpart of (5.53):

.∀Ni ∈ S0 :
{
Fx = 0,

Fy = 0,
s.t. x|

∂Ω̂
= ∂Ω, (5.56)

where

.Fx =
∫

Ω̂

N L̃x dΩ̂, . (5.57)

Fy =
∫

Ω̂

N L̃y dΩ̂, (5.58)

340 Y. Ji et al.

Fig. 5.22 Duck example: The left displays the parameterization resulting from the .H 2 discretiza-
tion (5.56), where some non-uniform elements can be observed inside the red circle. On the right
side, the result achieved through the discretization (5.59) in the .H 1 space is displayed. The color
encodes the scaled Jacobian, with white representing optimal orthogonality

and . N denotes the column collection of the NURBS basis functions .Ni ∈ S0.
Then the unknown inner control points can be determined by solving the

aforementioned nonlinear system, with the known boundary control points acting
as Dirichlet boundary conditions.

The parameterization obtained from solving the nonlinear system (5.56) is
presented on the left side of Fig. 5.22. It is evident that non-uniform elements
appear near the head of the duck, highlighted by the red circle. As pointed out
in [35], this issue can be partially alleviated by refining the current geometry
to achieve a more accurate approximation of the harmonic mapping. However,
such refinement operations introduce unnecessary control points and increase the
complexity of CAD geometries, potentially leading to challenges in subsequent
analyses and downstream processes. This phenomenon, widely observed in EGG
[92], is an inherent characteristic. In the following section, our objective is to
improve the quality of the parameterization while maintaining the same number
of control points. To tackle this problem, we introduce a scale factor and propose a
novel discretization for (5.52) in the Sobolev space .H 1 instead of . H 2.

Discretization in Sobolev Space H 1

In this section, to further enhance the quality of the parameterization, we introduce
the following discretization in the Sobolev space . H 1:

.∀Ni ∈ S0 :
{

Fx
H 1 = 0,

Fy

H 1 = 0,
s.t. x|

∂Ω̂
= ∂Ω, (5.59)

5 Design Through Analysis 341

where

.

Fx
H 1 =

∫
Ω̂

∇xN · ∇xξ dΩ̂,

Fy

H 1 =
∫

Ω̂

∇xN · ∇xη dΩ̂,

(5.60)

and . N denotes the column collection of the NURBS basis functions .Ni ∈ S0.
Upon solving (5.59), the resulting parameterization is depicted on the right side

of Fig. 5.22. It is evident that the parameterization quality has been substantially
enhanced, as observed from the improved orthogonality and uniformity, and the
absence of non-uniform elements. Importantly, the cardinality of control points
remains unchanged.

5.3.5 Experiments and Comparisons

In this section, we embark on a comprehensive examination of the aforementioned
parameterization techniques. Our main objective is to evaluate their effectiveness
and applicability by utilizing the comprehensive test dataset [53] that comprises 977
planar models. Figure 5.23 show some representative examples of this dataset. By
subjecting these techniques to rigorous scrutiny across a diverse range of models, we

Fig. 5.23 Planar parameterization results gallery

342 Y. Ji et al.

aim to gain a deeper understanding of their performance and identify any potential
limitations.

Quality Metrics for Parameterizations

In this section, we adopt the following quality metrics to measure the quality of
parameterizations:

• Scaled Jacobian:

. |J |s = |J |
p∏

i=1
x,ξi

. (5.61)

The scaled Jacobian characterizes the orthogonality of the parameterization and
falls within the range of .[−1, 1]. A parameterization . x is considered bijective
only when .|J |s > 0 for all .ξ ∈ Ω̂. If the scaled Jacobian .|J |s takes on negative
values, it indicates that the parameterization is not bijective. A value close to . 1.0
for the scaled Jacobian .|J |s across the entire parameter domain suggests a high
degree of orthogonality.

• Uniformity metric:

.unif. =
(|J |

area(Ω)
− 1

)2

, (5.62)

where .area(Ω) denotes the area (or volume) of the computational domain . Ω.
Ideally, the Jacobian determinant .|J | for the parameterization . x should equal
the ratio of the computational domain area (or volume) to the parameter domain
area (or volume). Thus, the optimal value of the uniformity index .unif. is . 0.0.

In our experiments, we evaluate both quality metrics using a dense sampling of
.1001 × 1001 points, including the boundaries. We omit the maximum values of
scaled Jacobian and the minimum values of uniformity metric in our statistics since
they are attainable in most examples.

Effectiveness and Quality Assessment

Figure 5.24 illustrates the worst-case quality metrics for the resulting param-
eterizations, specifically .min (|J |s) and .max (unif.). It is worth noting that a
negative value of .min (|J |s) indicates the presence of self-intersections in the
resulting parameterization. From the figure, it is evident that the optimization-
based parameterization methods exhibit greater robustness in this planar dataset
compared to the PDE-based methods. Table 5.1 presents the success rates of various
parameterization approaches.

5 Design Through Analysis 343

-1 -0.5 0 0.5 1
0

2

4

6

8

10

Fig. 5.24 Planar dataset: .min (|J |s) vs. . max (unif.)

Table 5.1 Success rates of
parameterization approaches

Method Success rate

Barrier function-based method . 961
977 ≃ 98.36%

Barrier function-based method . 956
977 ≃ 97.85%

PDE-H2 discretization . 608
977 ≃ 62.23%

PDE-H1 discretization . 721
977 ≃ 73.80%

Figure 5.25 presents the mean values of the scaled Jacobian .|J |s and the
uniformity metric. It is evident that the two optimization methods, namely the
barrier function-based method and the penalty function-based method, exhibit
convergence to similar results across most models. This outcome is expected, as
the primary difference between these two methods lies in their approach to handling
bijectivity constraints. In comparison to the PDE-. H2 discretization method, the . H1
discretization method demonstrates improved uniformity.

Computational Time

Figure 5.26 illustrates the performance of different parameterization approaches in
terms of computational time, with the PDE-.H2 discretization exhibiting the best
performance. In general, the PDE-based parameterization methods demonstrate
faster computation times compared to the optimization-based methods.

344 Y. Ji et al.

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Fig. 5.25 Planar dataset: .mean (|J |s) vs. . mean (unif.)

0 0.2 0.4 0.6 0.8 1
0

2

4

6

8

10

Fig. 5.26 Planar dataset: computational time

Volumetric Parameterizations

The aforementioned parameterization approaches can be seamlessly applied to 3D
volumetric parameterization problems. Figure 5.27 showcases volumetric parame-
terization results obtained using the penalty function-based method. It is noteworthy
that the minimum value of the scaled Jacobian indicates the resulting parameteriza-
tions are bijective.

5 Design Through Analysis 345

Fig. 5.27 Volumetric parameterization results gallery

Fig. 5.28 Multi-patch volumetric parameterization

Extension to Multi-patch Parameterizations

Although our previous discussion primarily focused on the single-patch scenario,
it is important to emphasize that our parameterization techniques can be seam-
lessly extended to handle multi-patch domain parameterizations. This versatility
arises when the topological layout of the quadrilateral or hexahedral elements is
determined. By intelligently integrating multiple patches, our techniques enable
the effective representation of complex domains. Figure 5.28 serves as a visual
demonstration, showcasing a volumetric parameterization that leverages a multi-
patch configuration.

346 Y. Ji et al.

Fig. 5.29 Multi-patch THB-spline parameterization

Extension to THB-Spline Parameterizations

As illustrated in Fig. 5.29, it is important to highlight that our parameterization
techniques exhibit impeccable compatibility with THB-spline parameterizations.
This noteworthy characteristic indicates that our methods are adept at effectively
managing the intricate complexities that arise in THB-spline-based parameteriza-
tion. Consequently, our parameterization techniques offer a versatile and robust
solution that can be applied across a broad spectrum of applications.

5.4 Isogeometric Kirchhoff–Love Shell Analysis

In this section, an example of isogeometric analysis for thin shell mechanics is
provided. The aim of the section is to show how the isogeometric Kirchhoff–Love
shell equations can be derived from geometric and mechanics principles, employing
geometric and solution representations using splines and how they can be used in the
analysis. The derivation of the shell element is provided in Sect. 5.4.1. Thereafter,
three benchmark studies are presented in Sect. 5.4.2.

5 Design Through Analysis 347

5.4.1 The Isogeometric Kirchhoff–Love Shell Element

The isogeometric Kirchhoff–Love shell was first presented by Kiendl in [45] and has
been widely used within the isogeometric analysis community. The derivation of the
Kirchhoff–Love shell model in this section follows the PhD Thesis of Kiendl [44].
For basic principles of continuum mechanics, the reader is referred to [6] or other
continuum mechanics textbooks. The section concludes with a benchmark problem
using snapping of a hyperelastic shell, based on [82].

Geometry

The Kirchhoff–Love shell theory describes the deformation of surfaces. Hence, let
.S(ξ1, ξ2) : R2 → R

3 be a surface. For this surface, the covariant basis vector . aα

is defined by taking the derivatives of the surface with respect to the parametric
coordinate . ξα , i.e.,

.aα = ∂S
∂ξα

, α = 1, 2. (5.63)

Using the covariant basis, the covariant metric tensor or first fundamental form is
defined by

.aαβ = aα · aβ. (5.64)

Using the first fundamental form of the surface, the contravariant metric tensor is
defined using the inverse of . [aαβ], as .aαβ = [aαβ]−1. Furthermore, the contravariant
basis . aα is defined by

.aα = aαβaβ. (5.65)

Using the covariant basis vectors from (5.63), the surface unit normal vector is
defined by

.â3 = a1 × a2

|a1 × a2| . (5.66)

In addition to the surface gradients, the curvature of the surface is a quantity of
interest, typically related to bending. In the present derivation of the Kirchhoff–
Love shell theory, the curvature is included via the second fundamental form, as

.bαβ = â3 · aα,β = −â3,β · aα. (5.67)

Here, .aα,β denotes the second derivative or Hessian of the surface and .â3,α denotes
the derivative of the unit normal vector with respect to the parameter . ξα . Via

348 Y. Ji et al.

Weingarten’s formula [88] it holds that .â3,α = −b
β
αaβ with .bβ

α = aαγ bγβ . Since
the second fundamental form .bαβ depends on the surface Hessian .aα,β , second
derivatives of the surface description .S(ξ1, ξ2) are required.

Assuming the Kirchhoff hypothesis [19], i.e., no shear of the shell cross-section,
orthogonality of orthogonal vectors after deformation, and no thickness change,
the Kirchhoff–Love shell formulation assumes that any point in the shell can be
described by its position on the surface .S(ξ1, ξ2) and its position along the surface
normal . a3 as

.x(ξ1, ξ2, ξ3) = S(ξ1, ξ2) + ξ3â3. (5.68)

The derivatives of the coordinate system . x with respect to the parametric coordinates
. ξi (.i = 1, 2, 3) provide the full basis of the coordinate system used for the
Kirchhoff–Love shell element. The covariant basis of . x is given by

.

gα = ∂x

∂ξα

= aα + ξ3a3,α,

g3 = ∂x

∂ξα

= â3.

(5.69)

Following from the covariant basis, the first fundamental form .gij = gi · gj is
defined using the first and second fundamental forms as

.

gαβ = (aα + ξ3a3,α) · (aβ + ξ3a3,β),

= aαβ − 2ξ3bαβ + ξ2
3 aα · aβ,

g33 = 1,

gi3 = g3i = 0.

(5.70)

The last term, quadratic in . ξ3, can be neglected for thin or moderately thick shells
[10]. The contravariant metric tensor .gij and the contravariant basis . gi are derived
like for the surface . S . Using the shell coordinate system (5.68) and the covariant
basis (5.70), the kinematic relation for the Kirchhof–Love shell can be derived.

Kinematic Relation

The kinematic relation relates shell displacements to strains. Let .̊x(ξ1, ξ2, ξ3) denote
the undeformed configuration of the shell and let .x(ξ1, ξ2, ξ3) denote the deformed
configuration of the shell. Then, the deformation .u(ξ1, ξ2, ξ3) of a material point is
defined as

5 Design Through Analysis 349

.u(ξ1, ξ2, ξ3) = x(ξ1, ξ2, ξ3) − x̊(ξ1, ξ2, ξ3). (5.71)

Additionally, the deformation gradient . F is a tensor that maps between the
undeformed basis . ̊gi and the deformed basis . gi , meaning that an infinitesimal line
element .dx̊ in the undeformed configuration is defined as .dx = F · dx̊ in the
undeformed configuration [6]. Accordingly, the deformation gradient . F is defined
as

.F = gi ⊗ g̊i . (5.72)

Indeed, the deformation gradient maps . ̊gi onto . gi via .gi = Fg̊i [6]. Using the
deformation gradient, the Green–Lagrange strain tensor .E = Eij g̊i ⊗ g̊j relates the
nonlinear relation between deformations and strains

.E = 1

2

(
F⏉F − I

)
= 1

2
(C − I), (5.73)

where . C is the deformation tensor. Using the definition of the deformation gradient
and the fact that the identity tensor . I is equal to the metric tensor .Gij on . ̊gi ⊗ g̊j

yields

.Eij = 1

2

(
gij − Gij

)
. (5.74)

Using the definition of the metric tensor from (5.70), the coefficients of the strain
tensor can be expressed in terms of the surface metric and the curvature:

.

Eαβ = 1

2

(
aαβ − 2ξ3bαβ

)− åαβ + 2ξ3b̊αβx]

= 1

2

(
aαβ − åαβ

)+ ξ3

(
b̊αβ − bαβ

)
= εαβ + καβ.

(5.75)

The shear strains .Ei3 and .E3i and the normal strain .E33 vanish because of
the orthogonality and unity of the basis vector . g3 in deformed and undeformed
configurations. This indeed shows that the shell formulation following from the
assumed coordinate system in (5.68) yields a formulation free of cross-sectional
shear and thickness change. Hence, the shell can be represented by its mid-surface
only and the strain tensor is represented with respect to the first two components of
the basis, i.e., .E = Eαβ g̊α ⊗g̊β . The coefficients . εij and .καβ relate to the membrane
strain tensor .ε = εαβ g̊α ⊗ g̊β and the bending strain tensor .κ = καβ g̊α ⊗ g̊β .

Constitutive Relation

In general continuum mechanics, the second Piola–Kirchhoff stress tensor . S =
Sij g̊i ⊗ g̊j is energetically conjugate to the Green–Langrange strain tensor .E =

350 Y. Ji et al.

Eij g̊
i ⊗ g̊j [6]. For a 3D continuum, the coefficients of the second Piola–Kirchhoff

stress tensor can be defined using a strain energy density function . Ψ :

.Sij = 2
∂Ψ

∂Cij

. (5.76)

In addition, the material tensor or elasticity tensor .C = Cijkl g̊i ⊗ g̊j ⊗ g̊k ⊗ g̊l is a
fourth-order tensor that relates the total differentials of the second Piola–Kirchhoff
stress . S and the Green–Lagrange strain . E. Its coefficients are defined by

.Cijkl = ∂Sij

∂Ekl
= 4

∂2Ψ

∂Cij ∂Ckl

, (5.77)

such that the coefficients of the total differential of the second Piola–Kirchhoff stress
tensor, .dSij , relate to the total differential of the Green–Lagrange strain tensor, .dEij ,
via

. dSij = Cijkl dEij . (5.78)

For linear elastic materials, stress and strain are linearly dependent such that . C has
constant coefficients according to (5.77). Therefore, the following identity is valid
for linear materials:

.Sij = CijklEkl. (5.79)

Furthermore, assuming small strains, through thickness deformation is neglected
and .C33 = g33 = 1, which allows to use 2D constitutive models. However, when
strains are large, for example, in hyperelastic material models, the plane stress
assumption that .S33 = 0 is typically violated [46], hence .C33 /= 1. To use the in-
plane components of the stress tensor, .Sαβ in the Kirchhoff–Love shell model, static
condensation of the material tensor . C needs to be performed to satisfy the plane
stress condition. The formulations for the hyperelastic stress and material tensors
for Kirchhoff–Love shells are provided in [46] and an extension for stretch-based
material models was provided by [82].

Variational Formulation

The variational formulation for the Kirchhoff–Love shell is derived based on the
Principle of Virtual Work. According to this principle, the total energy in the system,
represented by .W(u) = W int(u) − W ext(u), is minimized for the deformation . u if
and only if its variation .δW(u, v) with respect to . u is equal to zero:

.δW(u, v) = δW int(u, v) − δW ext(u, v). (5.80)

5 Design Through Analysis 351

Here, . v denotes the virtual displacements. Since .δW(u, v) can be nonlinear, the
displacement . u can be found using the Newton–Raphson method by solving

.δvW + δ2
vwWΔu = 0, (5.81)

where .δvW = δW(u, v) and .δ2
vwW = δ2W(u, v,w) is the second variation of the

energy in the system using virtual displacements . v and . w and .Δu is the incremental
update of the displacements.

The derivation of the external virtual work is rather straightforward. Assuming
that the body force vector . f and the boundary force vector . g are independent of the
deformation field . u, the first variation of the external work .W ext simply yields

. δvW
ext =

∫
Ω✶

f · v dΩ✶ +
∫

∂Ω✶

g · v d𝚪 =
∫

τ

∫
Ω

f · v dΩ dξ3

+
∫

τ

∫
∂Ω

g · vn d𝚪 dξ3 , (5.82)

where .Ω✶ = τ × Ω with . τ the thickness domain .τ = [−t/2, t/2] of the shell and . Ω
the surface domain. For the internal virtual work, the first variation with respect to
the displacements . u is given by

. δvW
int =

∫
Ω✶

S : δvE dΩ✶ =
∫

τ

∫
Ω

S : δvE dΩ =
∫

Ω

N : δvε + M : δvκ dΩ .

(5.83)

Here, the definition of the strain tensors . ε and . κ from (5.75) is used and the
membrane force tensor . N and the bending moment tensor . M are defined as moments
of the stress tensor through thickness:

.

N =
∫

τ

S dξ3 ,

M =
∫

τ

ξ3S dξ3 .

(5.84)

The second variation of the energy of the system required for solving the nonlinear
system of equations using the Newton–Raphson iterations (see (5.81)) solely
depends on the second variation of the internal energy, assuming deformation-
independent body forces. Taking the variation of the internal energy with respect
to . u, the second variation becomes

.δ2
vwW(u) =

∫
Ω

δwN : δvε + N : δ2
vwε + δwM : δvκ + M : δ2

vwκ dΩ . (5.85)

The variations of . N and . M can be obtained using the total differential of . S and . δS
(see (5.78)). First, since

352 Y. Ji et al.

.δE = δ(ε + ξ3κ) = δε + δ(ξ3κ) = δε + κδξ3 + ξ3δκ (5.86)

and using the total differential of the strain, . δE, and integrating . δS through the
thickness, the total differentials of . N and . M are obtained:

.

δN =
∫

τ

δS dξ3 =
∫

τ

(C : δε + ξ3C : δκ + δξ3C : κ) dξ3 ,

δM =
∫

τ

ξ3δS dξ3 =
∫

τ

(ξ3C : δε + ξ3C : δκ + δξ3C : κ) dξ3 .

(5.87)

From the first and second variations of the internal energy, respectively (5.83) and
(5.85), it can be seen that the first and second variations of the membrane strain and
bending strain tensors.

Discretization

The principle of virtual work derived in (5.80) is valid for any variation of the
unknown displacement field .u(ξ1, ξ2, ξ3). In order to discretize the principle of
virtual work, it is assumed that the undeformed and deformed configurations . ̊x and
. x, respectively, are represented by a finite sum of basis functions .ϕk(ξ1, ξ2) weighted
by coefficients . ̊xh

k and . xh
k , i.e.,

.

x̊h(ξ1, ξ2) =
∑

k

ϕk(ξ1, ξ2)̊x
h
k ,

xh(ξ1, ξ2) =
∑

k

ϕk(ξ1, ξ2)x
h
k .

(5.88)

Here, the superscript h indicates discrete approximations of . ̊x or . x and the index
k indicates the k-th component of this representation. Since the displacement field
. u is defined as the difference between . ̊x and . x, it can similarly be expressed as a
discrete field . uh and the variations in the principle of virtual work are represented
by virtual displacements . uh

k . As a consequence, all variations in the virtual work
equation are represented by derivatives with respect to components of the virtual
nodal displacements . uh

k . In the following, all quantities are referred to in the discrete
setting, and hence the superscript h is omitted.

In the sequel, r denotes the global index of the degree of freedom . ur representing
a component of one of the nodal displacement vectors. For the sake of brevity, the
shorthand notation .(·),r = ∂(·)

∂ur
is used to represent derivatives with respect to . ur .

Using (5.71), the variation of the deformed configuration is

.x,r =
∑

k

(̊
xk,r + uk,r

) =
∑

k

ϕkuk,r , (5.89)

5 Design Through Analysis 353

where the last equality follows from the fact that the undeformed configuration is
trivially independent of the deformation field . u. Similarly, the derivatives of the
covariant basis vectors . aα of the discrete deformed configuration . xh, see (5.63), are

.aα,r =
(

∂xk

∂ξα

)
,r

=
∑

k

∂ϕk

∂ξα

uk,r . (5.90)

As a consequence, the variation of the surface metric tensor of the deformed
configuration, .aαβ (see (5.64)), becomes

.aαβ,r = (
aα · aβ

)
r

= aα,r · aβ + aα · aβ,r . (5.91)

Since the undeformed configuration is invariant to the deformation field . u, the first
variation of the membrane strain tensor . ε from (5.75) becomes

.εαβ,r = 1

2
aαβ,r . (5.92)

Similarly, the second variations of the deformed configuration, the deformed surface
metric tensor, and the membrane strain can be derived. Starting with the first
variation of the deformed configuration from (5.89), the second variation becomes

.x,rs =
∑

k

ϕkuk,rs = 0. (5.93)

The second variation of . uk is zero since the components of these nodal weights are
linear in . ur . Similarly, .aα,rs = 0. As a consequence, the second variation of the
surface metric tensor in the deformed configuration, . aαβ , becomes

.aαβ,rs = aα,rs · aβ + aα,r · aβ,s + aα,s · aβ,s + aα · aβ,rs , . (5.94)

= aα,r · aβ,s + aα,s · aβ,s . (5.95)

Again, since the undeformed configuration is invariant to the deformation field . u,
the second variation of the membrane strain tensor becomes

.εαβ,rs = 1

2
aαβ,rs . (5.96)

To derive the variations of the curvature tensor, the variations of the second
fundamental form .bαβ are needed, hence requiring variations of .aα,β and . ̂a3, see
(5.67). Firstly, the variation of .aα,β with respect to . ur is

.a(α,β),r =
(

∂2x

∂ξα∂ξβ

)
,r

=
∑

k

∂2ϕk

∂ξα∂ξβ

uk,r . (5.97)

354 Y. Ji et al.

Furthermore, using .a3 = a1 × a2, the variation of the unit normal vector . ̂a3 is

.â3,r =
(

a3

|a3|
)

,r

= |a3|a3,r − a3(|a3|),r
|a3|2 . (5.98)

Here, the variation of the non-unit normal vector . a3 is obtained by

.a3,r = a1,r × a2 + a1 × a2,r , (5.99)

and since .|a3| = √
a3 · a3, the variation of the normalization .|a3| is

.(|a3|),r = a3 · a3,r

|a3| , (5.100)

such that the variation of the unit surface normal vector of the undeformed
configuration, . ̂a3, can be obtained. Together with the variation of the surface
Hessian, .a(α,β),r from (5.97), the variation of the second fundamental form becomes

.bαβ,r = â3,r · aα,β + â3 · a(α,β),r . (5.101)

From the definition of the bending strain tensor . κ in (5.75) and the fact that the
undeformed configuration is invariant to the deformation field . u, the coefficients of
the first variation of the bending strain tensor become

.καβ,r = −bαβ,r . (5.102)

To obtain the second variation of the bending strain tensor . κ , the second variations
of .aα,β and . â3 need to be obtained in order to compute the second variation of . bαβ .
Firstly, from (5.97), it follows that .a(α,β),rs = 0 since the second variation of . uk

is zero. Secondly, for the second variation of the unit normal vector . ̂a3, the second
variation of the non-unit normal vector . a3 and its length .|a3| are needed. The second
variation of the non-unit normal vector follows from the first variation in (5.98) and
from .a(α,β),rs :

.a3,rs = a1,rs × a2 + a1,r × a2,s + a1,s × a2,r + a1 × a2,rs . (5.103)

= a1,r × a2,s + a1,s × a2,r . (5.104)

Furthermore, the second variation of .|a3| is

.(|a3|),rs =|a3|(a3 · a3,r),s − (
a3 · a3,r

)
(|a3|),s

|a3|2 . (5.105)

=a3,s · a3,r + a3 · a3,rs
|a3| −

(
a3 · a3,r

)(
a3 · a3,s

)
|a3|3

. (5.106)

5 Design Through Analysis 355

Using the second variations of the non-unit normal . a3 (see (5.103)) and its length
.|a3| (see (5.105)), the second variation of the unit normal vector . ̂a3 can be derived

.

â3,rs =
(|a3|a3,r − a3(|a3|),r

|a3|2
)

,s

=
(|a3|a3,r − a3(|a3|),r

)
,s

|a3|2 −
(|a3|a3,r − a3(|a3|),r

)
2|a3|(|a3|),s

|a3|4

= a3,rs

|a3| − (|a3|),sa3,r

|a3|2 − a3,s(|a3|),r
|a3|2 − a3(|a3|),rs

|a3|2 + 2
a3(|a3|),r (|a3|),s

|a3|3 .

(5.107)
Additionally, taking the variation of .bαβ,r and using the first and second variations
of .aα,β and . ̂a3, the second variation of the second fundamental form .bαβ can be
obtained

.

bαβ,rs = â3,rs · aα,β + â3,r · a(α,β),s + â3,s · a(α,β),r + â3 · a(α,β),rs ,

= â3,rs · aα,β + â3,r · a(α,β),s + â3,s · a(α,β),r .

(5.108)

From (5.108) and (5.75), it directly follows that the coefficients of the second
variation of the bending strain tensor are

.καβ,rs = −bαβ,rs . (5.109)

Besides the first and second variations of the membrane strain tensor . ε and the
bending strain tensor . κ , the first variations of the membrane force tensor . N and the
bending moment tensor . M also need to be obtained. Using the total differentials . dN
and .dM (see (5.84)), the coefficients of the first variations of . N and . M with respect
to . ur are

.

Nαβ
,r =

(∫
τ

Cαβγ δ dξ3

)
εγ δ,r +

(∫
τ

ξ3Cαβγ δ dξ3

)
κγ δ,r ,

Mαβ
,r =

(∫
τ

ξ3Cαβγ δ dξ3

)
εγ δ,r +

(∫
τ

ξ2
3 Cαβγ δ dξ3

)
κγ δ,r .

(5.110)

Note that the last term of (5.86) drops out because the variation of . ξ3 with respect to
. ur is zero. Using the variations with respect to the nodal displacement components
. ur , the first and second variations of the energy equation in the shell following from
the virtual work statement in (5.80) can be defined for each component . ur . Firstly,
the first variation of the energy statement provides the components of the residual
vector . R as

356 Y. Ji et al.

. Rr(u) =
∫

Ω

N(u) : ε,r (u) + M(u) : κ ,r (u) dΩ −
∫

Ω

f · u,r dΩ −
∫

∂Ω

g · u,r d𝚪 .

(5.111)

Secondly, the second variation of the energy statement from (5.81) provides the
Jacobian matrix for the Newton–Raphson iterations, also known as the (tangential)
stiffness matrix K , with coefficients

. Krs =
∫

Ω

N,s(u) : ε,r (u)+N(u) : ε,rs(u)+M,s(u) : κ ,r (u)+M(u) : κ ,rs(u) dΩ .

(5.112)

In case of zero displacements, i.e., .u = 0, the deformation gradient . F is an identity
map and the deformation tensor . C is the identity tensor. Therefore, the stress tensor
becomes the null tensor, .S = 0, making the tensors . N and . M vanish as well. In this
case, the first integral of the residual vector . R is zero and the second and fourth
terms drop out of the stiffness matrix K . This gives the external force vector . P and
the linear stiffness matrix . KL, with coefficients

.

Pr = −Rr(0) =
∫

Ω

f · u,r dΩ +
∫

∂Ω

g · u,r d𝚪 ,

KL
rs = Krs(0) =

∫
Ω

N,s(0) : ε,r (0) + M,s(0) : κ ,r (0) dΩ .

(5.113)

Up to this point, all quantities have been defined to be used in the variational
formulation, except for the basis functions .ϕk to define the undeformed and
deformed configurations of the shell surface as well as the displacement field: . ̊x,
. x, and . u, respectively (see (5.88)). Since the Hessian of the metric tensor .aα,β is
used in the definition of the second fundamental form and its variations, see (5.67),
(5.101), and (5.108), the basis functions . ϕk need to be differentiable up to the second
derivative. Due to the higher order continuity that can be achieved using splines,
they provide a suitable basis for the Kirchhoff–Love shell. In the paradigm of using
the same splines for the representation of the geometry .S(ξ1, ξ2) as well as for the
discrete solution of the displacement field .uh(ξ1, ξ2, ξ3), this choice of the basis
introduces the isogeometric Kirchhoff–Love shell.

5.4.2 Benchmark Problems

In this section, we present some example problems using the isogeometric
Kirchhoff–Love shell. In the first example, adopted from [82], the collapse of a
truncated cone is simulated. This example uses a hyperelastic Ogden model such
that the stress and material tensors are defined by (5.76)–(5.77). In the second
example, adopted from [83], a mesh adaptivity example using THB-splines is

5 Design Through Analysis 357

presented, using a basis as explained in Sect. 5.2.2. In the last example, a post-
buckling problem on a multi-patch geometry is solved. The example is adopted
from [23] and modelled using the Analysis-Suitable .G1 construction, which is a
surface unstructured spline construction mentioned in Sect. 5.2.4.

Nonlinear Hyperelastic Shell Analysis

As a first example we model the collapse of a truncated cone (or frustrum). The
geometry of the cone is given in Fig. 5.30 and is represented by NURBS from
Sect. 5.2.3. The original benchmark problem is adopted from [7] and the presented
results are published in [82].

The problem parameters from Fig. 5.30 are as follows. The shell has a height
.H = 1 [m], top radius .r = 1 [m], bottom radius .R = 2 [m], and thickness . t =
0.1 [m]. Only a quarter of the shell is modelled since the original reference [6]
uses axisymmetric elements. The shell is represented by quadratic NURBS with 32
elements over the height and one over the circumference. On the boundary . 𝚪1 the
displacements are fixed in the x- and y-direction and free in z. Also, a uniform load
p is applied on . 𝚪1, providing a uniform displacement . Δ. On . 𝚪2 the displacements
are fixed but rotations are free. On . 𝚪3 and . 𝚪4, symmetry conditions are applied,
restricting in-plane deformations normal to the boundaries and restricting rotations
on the boundary by applying clamped boundary conditions as described in [45].

The corresponding material model is of the Ogden type and has the following
parameters:

. μ1 = 6.300 [N/m2], α1 = 1.3,

μ2 = 0.012 [N/m2], α2 = 5.0,

μ3 = −0.100 [N/m2], α3 = −2.0,

implying that .μ = 4.225 [N/m2]. For more information about the stretch-based
Ogden material model inside the isogeometric Kirchhoff–Love shell, the reader is
referred to [82].

The load applied on the top boundary is either applied using displacement
control (DC), by incrementally increasing the displacement of the boundary, or by
arc-length control by employing Crisfield’s spherical arc-length method [13] with
extensions for resolving complex roots [48, 97]. If this method does not converge to
an equilibrium point, the step size is bisected until a converged step is found. After
this step, the step size is reset to its original value [81].

In Fig. 5.31, the results for the collapsing conical shell are presented and
compared to the reference results from [6]. The displacement-controlled (DC) result

358 Y. Ji et al.

Fig. 5.30 Geometry of the
collapsing conical shell with
32 quadratic elements over
the height

−0.2 0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2 2.2
−0.4

−0.2

0

0.2

0.4

B

D

E

F

G

H

I

Displacement Δ [m]

D
is

tr
ib

ut
ed

 l
oa

d
p
 [N

/
m

]

ALM DC
OG OG

OG, Ref. [5]

0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6 1.8 2

−4

−2

0

2

4

·10−2

AC

J

K

Displacement Δ [m]

D
is

tr
ib

ut
ed

 l
oa

d
p
 [N

/
m

]

Fig. 5.31 Load-displacement diagram of the collapsing conical shell. The lines represent solutions
obtained using the Arc-Length Method (ALM) and the markers represent solutions obtained by
Displacement Control (DC) together with the reference solution by Başar and Itskov [7]. The
capital letters in the diagram represent points for which the deformed geometry is plotted in
Fig. 5.32 and the arrows describe the direction of the solution path

shows good agreement with the reference results, with differences that can be
explained by shear locking as present in the reference results. When performing
arc-length stepping on the problem, it can be seen that at the moment of snapping,

5 Design Through Analysis 359

A B C D

E F G H

I J K

Fig. 5.32 Deformed geometries corresponding to the solution path presented in Fig. 5.31

x
y

z
W

L

u = 0

u = 0

u = 0

u = 0
P

symm

symm

E = 1.0 [MPa]

ν = 0.3 [-]

P = 4 · 10−7 [N]

L = 1 [mm]

W = 1 [mm]

t = 10−3 [mm]

Fig. 5.33 Geometry and parameters for a square thin plate subject to a point load P in the middle.
The plate is fully constrained in every corner. Because the problem is symmetric, only a quarter
of the domain is modelled. Hence, symmetry conditions are applied. On the x-aligned symmetry
axis, this implies that .uy = ∂uz

∂y
= ∂ux

∂y
= 0, and on the y-aligned symmetry axis this implies that

. ux = ∂uz

∂x
= ∂uy

∂x
= 0

around .Δ ∼ 1.9, a complex snapping phenomenon arises, coinciding with the
moment of snapping in the DC path. Observing the deformations in Fig. 5.32, it
can be seen that the collapsing mechanism consists of the formation of multiple
waves in radial direction that invert after the loop with the highest force amplitude.

360 Y. Ji et al.

Fig. 5.34 Deformed surface from the benchmark presented in Fig. 5.33. The result is the last
solution from the adaptive meshing routine with deformation norm goal functional of which the
results are presented in Fig. 5.35

Nonlinear Adaptive Shell Analysis

As a next example, we consider adaptive refinement of isogeometric meshes. This
example is adopted from [83]. The adaptivity iterations are performed using THB-
splines and the marking of the element is driven by the Dual-Weighted Residual
(DWR) method [4, 9] see [83] for the complete procedure.

We consider a square membrane subject to a point load in the middle and with
corners fixed in all directions, see Fig. 5.33. As a material model, a linear Saint-
Venant–Kirchhoff constitutive law with Young’s modulus .E = 1.0 [MPa] and a
Poisson ratio .ν = 0.3 is used. The membrane is considered very thin compared to
its in-plane dimensions, i.e., .t = 10−3 [mm], .L×W = 1×1[mm] (.L/t = 1000). In
the middle of the membrane, .P = 4·10−7[N] is applied. As depicted in Fig. 5.33, the
simulations are performed on a quarter of the domain, using symmetry conditions.
As a goal functional for the DWR method, a displacement norm is used

.L(u) =
∫

Ω

‖u‖ dΩ . (5.114)

The maximum number of levels for the THB refinement is 11, meaning that the
finest level has .211 × 211 = 2048 × 2048 elements.

The result of the deformed membrane for the last step of the adaptivity simulation
is given in Fig. 5.34. In Fig. 5.35, the estimated error via the DWR method is
given for the uniformly refined mesh as well as for the adaptively refined mesh.
In addition, Fig. 5.36 provides the element errors on the meshes corresponding to
the points with the marked border in Fig. 5.35, together with contour lines for the
displaced geometry. From the results, it can be observed that the adaptively refined
mesh is in general more efficient per degree of freedom than the uniformly refined
mesh, due to localization of the error in the bottom-right corner. However, it can
also be seen that the adaptive mesh is not monotonously decreasing, probably due
to the nonlinearity of the problem where asymmetries in the mesh can result in
large errors. From the bottom plot in Fig. 5.35, it can also be observed that the non-
monotone decrease of the error is related to the percentage of the elements in the
mesh that is eligible for refinement (i.e., that did not reach the maximum level yet).

5 Design Through Analysis 361

10−7

10−6

10−5

10−4
Δ
L

Adaptive
Uniform

101 102 103 104 105
10−7

10−4

10−1

#DoFs

R
ef

.
%

 o
f
e

Fig. 5.35 Estimated error convergence (top) and the percentage of the total element error e that is
available for refinement (bottom) against the number of degrees of freedom (DoFs) for adaptively
and uniformly refined meshes with respect to the goal displacement-based goal functionals. The
markers labeled with a black border are the markers for which the mesh is plotted in Fig. 5.36

Fig. 5.36 Normalized element error values .ek/ΔL for uniformly (top) and adaptively (bottom)
refined meshes using goal function .L(u) = ∫

Ω
‖u‖ dΩ. The meshing steps increase from left to

right. The contour lines represent the displacement of the membrane, with intervals of .0.1 [mm].
The bottom-right corner of the pictures indicates the fixed corner and the top-left corner is the
corner where the load is applied. (a) Uniform refinement. (b) Adaptive refinement

362 Y. Ji et al.

When this percentage is small, refinement is performed using elements that have an
insignificant contribution to the total error.

Nonlinear Multi-patch Shell Analysis

As a last example, a post-buckling problem on a multi-patch geometry is solved.
This example is adopted from the paper [23] where the isogeometric Kirchhoff–
Love shell is used on a multi-patch domain using the Analysis-Suitable .G1 basis
from [22].

The geometry is given in Fig. 5.37 and is fixed on the left side and loaded with an
in-plane load of .λP and an out-of-plane load .λPs using .P/Ps = 100 on the bottom-
right side. The dimensions of the geometry are .L = 255 [mm], .W = 30 [mm],
.Lh = 55 [mm], and .Wh = 10 [mm], and the thickness is .t = 0.6 [mm].
Furthermore, the material parameters for a linear Saint-Venant–Kirchhoff material
are .E = 71240 [N/mm2] and .ν = 0.3. Figure 5.38 shows the deformation of the
L-shaped domain.

The load-displacement curves are given in Fig. 5.39 for a degree .p = 4 basis
with maximum regularity .r = p − 2. The example has been computed by using
the penalty method [33] with the penalty parameter .α = 103. The results show that
the Analysis-Suitable .G1 basis provides a good alternative to penalty methods for
multi-patch analysis of this post-buckling simulation.

Fig. 5.37 Geometry of the
L-shaped domain with length
.L = 255 [mm] and width
.W = 30 [mm] and with
rectangular holes of size
.Lh = 55 [mm] and
.Wh = 10 [mm]. The
geometry consists of 25
bilinear patches

W

L

Lh Wh

λPs
λP

5 Design Through Analysis 363

Fig. 5.38 Deformed
geometry of the L-shaped
domain with 25 patches
corresponding to Fig. 5.37 on
the last point of the
load-displacement curve for
the Analysis-Suitable . G1

method for .p = 4 in
Fig. 5.39. The color scale
represents the out-of-plane
displacement

0 10 20 30 40 50 60

0

0.5

1

Out-of-plane displacement at end point [mm]

λ
P

p = 4
Pen. α = 103

Fig. 5.39 Displacements at the point where the load is applied in Fig. 5.37. All results are plotted
with the out-of-plane displacement component on the horizontal axis and the load .λP on the
vertical axis. The penalty parameter used for the penalty method is . α = 103

5.5 Conclusions and Outlook

Design through analysis—to the authors’ best knowledge first mentioned in the
literature in the 1970s in a report from the General Motors Research Laboratories
has gained new impetus since the advent of Isogeometric Analysis in the early
2000s. It is obviously more than the bundling of CAD and CAE tools under
a common user interface that hides (but does not cure) the tedious and error-
prone back-and-forth conversion between genuinely incompatible representations
of geometry and analysis models. As we tried to show in this chapter, breaking with
the traditional triad of pre-processing, analysis, and post-processing and placing the
entire workflow on common mathematical grounds—splines (cf. Sect. 5.2)—brings
plentiful advantages. One of the most beneficial ones is the higher continuity that not
only brings higher accuracy per degree of freedom but also simplifies the solution
of higher order differential equations without auxiliary variables.

364 Y. Ji et al.

At the same time, the many advantages of IGA do not come for free: preserving
higher continuity in the multi-patch case requires special techniques—unstructured
spline constructions. Moreover, the task of creating analysis-suitable parameteriza-
tions from CAD models can be as complicated as generating admissible compu-
tational grids. In Sect. 5.3 we have presented several computational approaches to
construct high-quality analysis-suitable parameterizations from boundary descrip-
tions. For the reader who prefers working with classical computational grids, e.g.,
in the context of finite elements and finite volumes, we would like to remark that it
is still possible to utilize the presented approaches to construct a bijective mapping
.x : Ω̂ → Ω and generate both structured and unstructured meshes by “pushing
forward” a grid created in the parameter domain . Ω̂ to the physical space . Ω [59].
That way, the task of (i) ensuring the non-folding of elements and (ii) optimizing
the shape and the size of elements gets decoupled as the former property is ensured
by the bijectiveness of the push-forward operator.

Section 5.4 finally gave a brief insight into the analysis capabilities of IGA at
the hand of Kirchhoff–Love shell models. Let us conclude this chapter with a word
of caution that is likewise meant as motivation to continue research in IGA and
design through analysis. We believe that all numerical methods have their strengths
and weaknesses and none of them is superior to others at large. In our opinion,
breaking with the traditional triad of pre-processing, analysis, and post-processing
is what makes IGA stand out at this moment and, possibly, a precursor for other
numerical approaches that will enable even more sophisticated design-through-
analysis workflows in the future.

Acknowledgments The first author would like to thank Prof. Dr. Chun-Gang Zhu from Dalian
University of Technology for his valuable contribution to domain parameterization in this chapter,
as well as Dr. Kewang Chen and Prof. Dr. Cornelis Vuik from Delft University of Technology for
their contributions to the development of the .H 1 PDE-based methods. All three authors would like
to express their gratitude to Dr. Angelos Mantzaflaris (Inria Sophia Antipolis Méditerranée), Dr.
Andrea Farahat (Johann Radon Institute for Computational and Applied Mathematics, Austrian
Academy of Sciences, Linz, Austria), Dr. Mario Kapl (ADMiRE Research Center, Carinthia
University of Applied Sciences, Villach, Austria), Prof. Dr. Josef Kiendl (Institute of Engineering
Mechanics Structural Analysis, Universität der Bundeswehr München, Munich, Germany), and
Dr. Henk den Besten (Department of Maritime and Transport Technology, Delft University of
Technology, The Netherlands) for fruitful discussions and collaboration on Kirchhoff–Love shell
theory, multi-patch coupling and joint code development in the open-source IGA library G+Smo
(https://github.com/gismo/gismo) [42].

References

1. I.A. Abelló Ugalde, V. Hernández Mederos, P. Barrera Sánchez, G. González Flores, Injectivity
of B-spline biquadratic maps. Comput. Methods Appl. Mech. Eng. 341, 586–608 (2018)

2. Z. Ali, W. Ma, Isogeometric collocation method with intuitive derivative constraints for PDE-
based analysis-suitable parameterizations. Comput. Aided Geom. Des. 87, 101994 (2021)

3. J.A. Augustitus, M.M. Kamal, L.J. Howell, Design through analysis of an experimental
automobile structure. SAE Trans. 86, 2186–2198 (1977)

https://github.com/gismo/gismo
https://github.com/gismo/gismo
https://github.com/gismo/gismo
https://github.com/gismo/gismo
https://github.com/gismo/gismo

5 Design Through Analysis 365

4. W. Bangerth, R. Rannacher, Adaptive Finite Element Methods for Differential Equations, 1st
edn. (Birkhäuser Basel, Basel, 2003). ISBN 978-3-7643-7009-1

5. P.J. Barendrecht, Isogeometric Analysis for Subdivision Surfaces (Eindhoven University of
Technology, Eindhoven, 2013)

6. Y. Başar, R. Grytz, Incompressibility at large strains and finite-element implementation. Acta
Mech. 168(1), 75–101 (2004)

7. Y. Başar, M. Itskov, Finite element formulation of the Ogden material model with application
to rubber-like shells. Int. J. Numer. Methods Eng. 42(7), 1279–1305 (1998)

8. Y. Bazilevs, V.M. Calo, J.A. Cottrell, J.A. Evans, T.J.R. Hughes, S. Lipton, M.A. Scott, T.W.
Sederberg, Isogeometric analysis using T-splines. Comput. Methods Appl. Mech. Eng. 199(5),
229–263 (2010). Computational Geometry and Analysis

9. R. Becker, R. Rannacher, An optimal control approach to a posteriori error estimation in finite
element methods. Acta Numer. 10:1–102 (2001)

10. M. Bischoff, K.-U. Bletzinger, W.A. Wall, E. Ramm, Models and finite elements for thin-
walled structures, in Encyclopedia of Computational Mechanics, chapter 3 (John Wiley &
Sons, Ltd, Hoboken, 2004)

11. E. Cohen, T. Martin, R.M. Kirby, T. Lyche, R.F. Riesenfeld, Analysis-aware modeling:
understanding quality considerations in modeling for isogeometric analysis. Comput. Methods
Appl. Mech. Eng. 199(5–8), 334–356 (2010)

12. A. Collin, G. Sangalli, T. Takacs, Analysis-suitable G1 multi-patch parametrizations for C1
isogeometric spaces. Comput. Aided Geom. Des. 47, 93–113 (2016)

13. M.A. Crisfield, An arc-length method including line searches and accelerations. Int. J. Numer.
Methods Eng. 19(9), 1269–1289 (1983)

14. C. de Boor, Package for calculating with B-splines. SIAM J. Numer. Anal. 14(3), 441–472 (32
pages) (1977). Published By: Society for Industrial and Applied Mathematics

15. C. De Boor, A Practical Guide to Splines. Applied Mathematical Sciences, 1 edn. (Springer,
New York, 1978)

16. J. Deng, F. Chen, X. Li, C. Hu, W. Tong, Z. Yang, Y. Feng, Polynomial splines over hierarchical
T-meshes. Graph. Models 70(4), 76–86 (2008)

17. T. Dokken, T. Lyche, K.F. Pettersen, Polynomial splines over locally refined box-partitions.
Comput. Aided Geom. Des. 30(3), 331–356 (2013)

18. P. Duren, W. Hengartner, Harmonic mappings of multiply connected domains. Pac. J. Math.
180(2), 201–220 (1997)

19. A. Edward, H. Love, G.H. Darwin, XVI. The small free vibrations and deformation of a thin
elastic shell. Philos. Trans. R. Soc. London (A) 179, 491–546 (1997)

20. P.L. Fackler, Algorithm 993: efficient computation with Kronecker products. ACM Trans.
Math. Softw. 45(2), 1–9 (2019)

21. A. Falini, J. Špeh, B. Jüttler, Planar domain parameterization with THB-splines. Comput.
Aided Geom. Des. 35, 95–108 (2015)

22. A. Farahat, B. Jüttler, M. Kapl, T. Takacs, Isogeometric analysis with C1-smooth functions
over multi-patch surfaces. Comput. Methods Appl. Mech. Eng. 403, 115706 (2023)

23. A. Farahat, H.M. Verhelst, J. Kiendl, M. Kapl, Isogeometric analysis for multi-patch structured
Kirchhoff–Love shells. Comput. Methods Appl. Mech. Eng. 411, 116060 (2023)

24. G. Farin, D. Hansford, Discrete Coons patches. Comput. Aided Geom. Des. 16(7), 691–700
(1999)

25. D.R. Forsey, R.H. Bartels, Hierarchical B-spline refinement. ACM SIGGRAPH Comput.
Graph. 22(4), 205–212 (1988)

26. X.-M. Fu, Y. Liu, B.-N. Guo, Computing locally injective mappings by advanced MIPS. ACM
Trans. Graph. 34(4), 1–12 (2015)

27. V.A. Garanzha, I.E. Kaporin, Regularization of the barrier variational method. Comput. Math.
Math. Phys. 39(9), 1426–1440 (1999)

28. V. Garanzha, I. Kaporin, L. Kudryavtseva, F. Protais, N. Ray, D. Sokolov, Foldover-free maps
in 50 lines of code. ACM Trans. Graph. 40(4), 1–16 (2021)

366 Y. Ji et al.

29. C. Giannelli, B. Jüttler, H. Speleers, THB-splines: the truncated basis for hierarchical splines.
Comput. Aided Geom. Des. 29(7), 485–498 (2012)

30. C. Giannelli, B. Jüttler, S.K. Kleiss, A. Mantzaflaris, B. Simeon, J. Špeh, THB-splines: an
effective mathematical technology for adaptive refinement in geometric design and isogeomet-
ric analysis. Comput. Methods Appl. Mech. Eng. 299, 337–365 (2016)

31. J. Gravesen, A. Evgrafov, D.-M. Nguyen, P. Nørtoft, Planar parametrization in isogeometric
analysis, in Mathematical Methods for Curves and Surfaces: 8th International Conference,
MMCS 2012, Oslo, June 28–July 3, 2012, Revised Selected Papers 8 (Springer, Berlin, 2014),
pp. 189–212

32. Ch. Heinrich, B. Simeon, St. Boschert, A finite volume method on NURBS geometries and
its application in isogeometric fluid–structure interaction. Math. Comput. Simul. 82(9), 1645–
1666 (2012)

33. A.J. Herrema, E.L. Johnson, D. Proserpio, M.C.H. Wu, J. Kiendl, M.-C. Hsu, Penalty coupling
of non-matching isogeometric Kirchhoff–Love shell patches with application to composite
wind turbine blades. Comput. Methods Appl. Mech. Eng. 346, 810–840 (2019)

34. J.P. Hinz, PDE-Based Parameterization Techniques for Isogeometric Analysis Applications.
PhD thesis, Delft University of Technology (2020)

35. J. Hinz, M. Möller, C. Vuik, Elliptic grid generation techniques in the framework of
isogeometric analysis applications. Comput. Aided Geom. Des. 65, 48–75 (2018)

36. J. Hinz, M. Möller, C. Vuik, Spline-based parameterization techniques for twin-screw machine
geometries, in IOP Conference Series: Materials Science and Engineering, vol. 425 (IOP
Publishing, Bristol, 2018), p. 012030

37. K. Hormann, G. Greiner, MIPS: an efficient global parametrization method. Technical report,
Erlangen-Nürnberg University (Germany) Computer Graphics Group (2000)

38. T.J.R. Hughes, J.A. Cottrell, Y. Bazilevs, Isogeometric analysis: CAD, finite elements,
NURBS, exact geometry and mesh refinement. Comput. Methods Appl. Mech. Eng. 194(39),
4135–4195 (2005)

39. K.C. Hui, Y.-B. Wu, Feature-based decomposition of trimmed surface. Comput. Aided Des.
37(8), 859–867 (2005). CAD ’04 Special Issue: Modelling and Geometry Representations for
CAD

40. Y. Ji, Y.-Y. Yu, M.-Y. Wang, C.-G. Zhu, Constructing high-quality planar NURBS parameter-
ization for isogeometric analysis by adjustment control points and weights. J. Comput. Appl.
Math. 396, 113615 (2021)

41. Y. Ji, M.-Y. Wang, M.-D. Pan, Y. Zhang, C.-G. Zhu, Penalty function-based volumetric
parameterization method for isogeometric analysis. Comput. Aided Geom. Des. 94, 102081
(2022)

42. B. Jüttler, U. Langer, A. Mantzaflaris, S.E. Moore, W. Zulehner, Geometry + simulation
modules: implementing isogeometric analysis. PAMM 14(1), 961–962 (2014)

43. H. Kang, F. Chen, J. Deng, Modified T-splines. Comput. Aided Geom. Des. 30(9), 827–843
(2013)

44. J. Kiendl, Isogeometric Analysis and Shape Optimal Design of Shell Structures. PhD thesis,
Technische Universität München (2011)

45. J. Kiendl, K.-U. Bletzinger, J. Linhard, R. Wüchner, Isogeometric shell analysis with Kirch-
hoff–Love elements. Comput. Methods Appl. Mech. Eng. 198(49–52), 3902–3914 (2009)

46. J. Kiendl, M.-C. Hsu, M.C.H. Wu, A. Reali, Isogeometric Kirchhoff–Love shell formulations
for general hyperelastic materials. Comput. Methods Appl. Mech. Eng. 291, 280–303 (2015)

47. H. Kneser, Lösung der Aufgabe 41. Jber. Deutsch. Math.-Verein. 35, 123–124 (1926)
48. W.F. Lam, C.T. Morley, Arc-length method for passing limit points in structural calculation. J.

Struct. Eng. 118(1), 169–185 (1992)
49. X. Li, M.A. Scott, Analysis-suitable T-splines: characterization, refineability, and approxima-

tion. Math. Models Methods Appl. Sci. 24(06), 1141–1164 (2014)
50. X. Li, T.W. Sederberg, S-splines: a simple surface solution for IGA and CAD. Comput.

Methods Appl. Mech. Eng. 350, 664–678 (2019)

5 Design Through Analysis 367

51. X. Li, J. Zhang, AS++ T-splines: linear independence and approximation. Comput. Methods
Appl. Mech. Eng. 333, 462–474 (2018)

52. L. Liu, Y.J. Zhang, X. Wei, Weighted T-splines with application in reparameterizing trimmed
NURBS surfaces. Comput. Methods Appl. Mech. Eng. 295, 108–126 (2015)

53. H. Liu, Y. Yang, Y. Liu, X.-M. Fu, Simultaneous interior and boundary optimization of
volumetric domain parameterizations for IGA. Comput. Aided Geom. Des. 79, 101853 (2020)

54. M. Marsala, A. Mantzaflaris, B. Mourrain, G1 – Smooth biquintic approximation of Catmull-
Clark subdivision surfaces. Comput. Aided Geom. Des. 99, 102158 (2022)

55. T. Martin, E. Cohen, R.M. Kirby, Volumetric parameterization and trivariate B-spline fitting
using harmonic functions. Comput. Aided Geom. Des. 26(6), 648–664 (2009)

56. B. Marussig, J. Zechner, G. Beer, T.-P. Fries, Stable isogeometric analysis of trimmed
geometries. Comput. Methods Appl. Mech. Eng. 316, 497–521 (2017). Special Issue on
Isogeometric Analysis: Progress and Challenges

57. X. Meng, G. Hu, A NURBS-enhanced finite volume solver for steady Euler equations. J.
Comput. Phys. 359, 77–92 (2018)

58. X. Meng, Y. Gu, G. Hu, A fourth-order unstructured NURBS-enhanced finite volume WENO
scheme for steady Euler equations in curved geometries. Commun. Appl. Math. Comput. 5(1),
315–342 (2021)

59. M. Möller, J. Hinz, Isogeometric analysis framework for the numerical simulation of rotary
screw machines. I. general concept and early applications. IOP Conf. Ser. Mat. Sci. Eng.
425(1), 012032 (2018)

60. T. Lyche, K. Mørken, Spline Methods. Lecture notes from the Department of Mathemat-
ics, University of Oslo (2018). https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/
pensumliste/splinebook-2018.pdf

61. T. Nguyen, B. Jüttler, Parameterization of contractible domains using sequences of harmonic
maps, in International Conference on Curves and Surfaces (Springer, Berlin, 2010), pp. 501–
514

62. X. Nian, F.-L. Chen, Planar domain parameterization for isogeometric analysis based on
Teichmüller mapping. Comput. Methods Appl. Mech. Eng. 311, 41–55 (2016)

63. M.-D. Pan, F.-L. Chen, Low-rank parameterization of volumetric domains for isogeometric
analysis. Comput. Aided Des. 114, 82–90 (2019)

64. M.-D. Pan, F.-L. Chen, W.-H. Tong, Low-rank parameterization of planar domains for
isogeometric analysis. Comput. Aided Geom. Des. 63, 1–16 (2018)

65. M.-D. Pan, F.-L. Chen, W.-H. Tong, Volumetric spline parameterization for isogeometric
analysis. Comput. Methods Appl. Mech. Eng. 359, 112769 (2020)

66. L. Piegl, W. Tiller, The NURBS Book (Springer, Berlin, 1995)
67. E. Pilgerstorfer, B. Jüttler, Bounding the influence of domain parameterization and knot

spacing on numerical stability in isogeometric analysis. Comput. Methods Appl. Mech. Eng.
268, 589–613 (2014)

68. C.G. Provatidis, Precursors of Isogeometric Analysis (Springer International Publishing,
Berlin, 2019)

69. T. Rado, Aufgabe 41. Jber. Deutsch. Math.-Verein. 35, 49 (1926)
70. U. Reif, A refineable space of smooth spline surfaces of arbitrary topological genus. J.

Approximation Theory 90(2), 174–199 (1997)
71. I.J. Schoenberg, Contributions to the problem of approximation of equidistant data by analytic

functions. Q. Appl. Math. 4, 45–99 and 112–141 (1946)
72. T.W. Sederberg, J. Zheng, A. Bakenov, A. Nasri, T-splines and T-NURCCs. ACM Trans.

Graph. 22(3), 477–484 (2003)
73. R. Sevilla, S. Fernández-Méndez, A. Huerta, NURBS-enhanced finite element method

(NEFEM). Int. J. Numer. Methods Eng. 76(1), 56–83 (2008)
74. R. Sevilla, S. Fernández-Méndez, A. Huerta, NURBS-enhanced finite element method

(NEFEM). Arch. Comput. Methods Eng. 18(4), 441–484 (2011)
75. A. Shamanskiy, M.H. Gfrerer, J. Hinz, B. Simeon, Isogeometric parametrization inspired by

large elastic deformation. Comput. Methods Appl. Mech. Eng. 363, 112920 (2020)

https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf
https://www.uio.no/studier/emner/matnat/math/MAT4170/v18/pensumliste/splinebook-2018.pdf

368 Y. Ji et al.

76. J.-P. Su, X.-M. Fu, L.-G. Liu, Practical foldover-free volumetric mapping construction, in
Computer Graphics Forum, vol. 38 (Wiley Online Library, Hoboken, 2019), pp. 287–297

77. T. Takacs, D. Toshniwal, Almost-C1 splines: Biquadratic splines on unstructured quadrilateral
meshes and their application to fourth order problems. Comput. Methods Appl. Mech. Eng.
403, 115640 (2023)

78. D.C. Thomas, L. Engvall, S.K. Schmidt, K. Tew, M.A. Scott, U-splines: splines over
unstructured meshes. Comput. Methods Appl. Mech. Eng. 401, 115515 (2022)

79. D. Toshniwal, H. Speleers, R.R. Hiemstra, T.J.R. Hughes, Multi-degree smooth polar splines: a
framework for geometric modeling and isogeometric analysis. Comput. Methods Appl. Mech.
Eng. 316, 1005–1061 (2017)

80. D. Toshniwal, H. Speleers, T.J.R. Hughes, Smooth cubic spline spaces on unstructured
quadrilateral meshes with particular emphasis on extraordinary points: geometric design and
isogeometric analysis considerations. Comput. Methods Appl. Mech. Eng. 327, 411–458
(2017)

81. H.M. Verhelst, M. Möller, J.H. Den Besten, F.J. Vermolen, M.L. Kaminski, Equilibrium path
analysis including bifurcations with an arc-length method avoiding a priori perturbations, in
Proceedings of ENUMATH2019 Conference (2020)

82. H.M. Verhelst, M. Möller, J.H. Den Besten, A. Mantzaflaris, M.L. Kaminski, Stretch-based
hyperelastic material formulations for Isogeometric Kirchhoff–Love Shells with application to
wrinkling. Comput. Aided Des. 139, 103075 (2021)

83. H.M. Verhelst, A. Mantzaflaris, M. Möller, J.H. Den Besten, Goal-adaptive meshing of
isogeometric Kirchhoff-Love shells. arXiv:2307.08356 (2023)

84. X. Wang, W. Ma, Smooth analysis-suitable parameterization based on a weighted and modified
Liao functional. Comput. Aided Des. 140, 103079 (2021)

85. X. Wang, X. Qian, An optimization approach for constructing trivariate B-spline solids.
Comput. Aided Des. 46, 179–191 (2014)

86. B. Wassermann, S. Kollmannsberger, S. Yin, L. Kudela, E. Rank, Integrating CAD and
numerical analysis: ‘dirty geometry’ handling using the finite cell method. Comput. Methods
Appl. Mech. Eng. 351, 808–835 (2019)

87. X. Wei, Y. Zhang, L. Liu, T.J.R. Hughes, Truncated T-splines: fundamentals and methods.
Comput. Methods Appl. Mech. Eng. 316, 349–372 (2017)

88. J. Weingarten, Über eine Klasse auf einander abwickelbarer Flächen. J. Reinen Angew. Math.
1861(59), 382–393 (1861)

89. P. Weinmüller, T. Takacs, Construction of approximate C1 bases for isogeometric analysis on
two-patch domains. Comput. Methods Appl. Mech. Eng. 385, 114017 (2021)

90. P. Weinmüller, T. Takacs, An approximate C1 multi-patch space for isogeometric analysis with
a comparison to Nitsche’s method. Comput. Methods Appl. Mech. Eng. 401(Part B), 115592
(2022). ISSN 0045–7825. https://doi.org/10.1016/j.cma.2022.115592

91. G. Xu, B. Mourrain, R. Duvigneau, A. Galligo, Parameterization of computational domain in
isogeometric analysis: methods and comparison. Comput. Methods Appl. Mech. Eng. 200(23–
24), 2021–2031 (2011)

92. G. Xu, B. Mourrain, R. Duvigneau, A. Galligo, Constructing analysis-suitable parameterization
of computational domain from CAD boundary by variational harmonic method. J. Comput.
Phys. 252, 275–289 (2013)

93. G. Xu, B. Mourrain, R. Duvigneau, A. Galligo, Optimal analysis-aware parameterization
of computational domain in 3D isogeometric analysis. Comput. Aided Des. 45(4), 812–821
(2013)

94. G. Xu, T.-H. Kwok, C.C.L. Wang, Isogeometric computation reuse method for complex objects
with topology-consistent volumetric parameterization. Comput. Aided Des. 91, 1–13 (2017)

95. L. Zhang, A. Gerstenberger, X. Wang, W.K. Liu, Immersed finite element method. Comput.
Methods Appl. Mech. Eng. 193(21), 2051–2067 (2004). Flow Simulation and Modeling

96. Y. Zheng, F.-L. Chen, Volumetric parameterization with truncated hierarchical B-splines for
isogeometric analysis. Comput. Methods Appl. Mech. Eng. 401, 115662 (2022)

97. Z. Zhou, D.W. Murray, An incremental solution technique for unstable equilibrium paths of
shell structures. Comput. Struct. 55(5), 749–759 (1995)

https://doi.org/10.1016/j.cma.2022.115592
https://doi.org/10.1016/j.cma.2022.115592
https://doi.org/10.1016/j.cma.2022.115592
https://doi.org/10.1016/j.cma.2022.115592
https://doi.org/10.1016/j.cma.2022.115592
https://doi.org/10.1016/j.cma.2022.115592
https://doi.org/10.1016/j.cma.2022.115592
https://doi.org/10.1016/j.cma.2022.115592
https://doi.org/10.1016/j.cma.2022.115592

	5 Design Through Analysis
	5.1 Introduction
	5.2 A Spline Primer
	5.2.1 B-Splines
	Univariate B-Splines and Their Properties
	A Matrix Representation of B-Splines
	Efficient Evaluation of B-Splines
	Knot Insertion
	Multi-variate B-Splines
	Geometry Modeling with B-Splines

	5.2.2 Truncated Hierarchical B-Splines
	5.2.3 Non-uniform Rational B-Splines
	5.2.4 Multi-patch Splines

	5.3 Creation of Analysis-Suitable Parameterizations
	5.3.1 Problem Statement
	5.3.2 Classification of Parameterization Methods
	Algebraic Parameterization Methods
	Nonlinear Constrained Optimization Methods
	Nonlinear Unconstrained Optimization Methods
	Nonlinear Partial Differential Equation (PDE)-Based Methods

	5.3.3 Optimization-Based Parameterization Methods
	Barrier Function-Based Method
	Penalty Function-Based Method

	5.3.4 PDE-Based Methods
	Discretization in Sobolev Space H2
	Discretization in Sobolev Space H1

	5.3.5 Experiments and Comparisons
	Quality Metrics for Parameterizations
	Effectiveness and Quality Assessment
	Computational Time
	Volumetric Parameterizations
	Extension to Multi-patch Parameterizations
	Extension to THB-Spline Parameterizations

	5.4 Isogeometric Kirchhoff–Love Shell Analysis
	5.4.1 The Isogeometric Kirchhoff–Love Shell Element
	Geometry
	Kinematic Relation
	Constitutive Relation
	Variational Formulation
	Discretization

	5.4.2 Benchmark Problems
	Nonlinear Hyperelastic Shell Analysis
	Nonlinear Adaptive Shell Analysis
	Nonlinear Multi-patch Shell Analysis

	5.5 Conclusions and Outlook
	References

