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Abstract

Least Squares Filtering and Testing for Geodetic Navigation Applications

This thesis deals with the data processing, testing, and design procedures for use in
dynamic systems, particula,rly integrated navigation systems, and provides a unffied
theoretical framework for these procedures. The data processing procedure - the
Kalman fllter - is analysed from a least squares point of view as this method provides
a better understanfing of some aspects of the Kalman filter, especially the cases where
correlation between the observables is present and for non-linea,r filtering.

The testing procedure is derived from the theory of hypothesis testing in linear
models and is based on generalized likelihood ratio tests, which are shown to be optimal
within a certain class of tests. The testing procedure is especially suited for adfitive
model errors in the functional model, and consists of three parts, namely detection,

identification, and adaptation (DIA). In the detection step the overall validity of the
model is checked and possible model errors are identified in the identification phase.

The adaptation step is required to maintain the optimality of the real-time filter in
the presence of model errors. The detection and identification steps correspond to the
testing procedure used in geodetic network analysis. The DIA procedure allows local
and global (covering several epochs) testing and can be implemented recursively, and
consequently very efficiently. The DIA procedure constitutes the quality-control step

in an overall data processing strategy for dynamic systems.

A design study in which the quality of the system is quantified should precede the
implementation of the DIA procedure. In the design procedure the important aspects to
consider are the quality of the estimation result under nominal conditions (described by

the precision) and the sensitivity of the estimation result to undetected model errors
(called the reliability). Reliability of the dynamic system is directly related to the
implemented testing procedure. Measures for precision and reliability are fiscussed.

The optimization of the design has to be performed with respect to the precision azd
reliability, and some suggestions for a design procedure for use in dynamic systems are
made.

The DIA and design procedures are validated in an extensive simulation study
based on a simple linear model and a (hydrographic) navigation system. This study
shows that the quality of the system mainly depends on the precision of the observables
and the level of integration in the dynamic system. The quality of a system can be
improved by using more precise observables and by increasing the level of integration.
Based on the design study recomrnendations on the window lengths of the tests can
be given. It is shown that tests for slips require longer window lengths than tests
for outliers. The detection and identification steps of the DIA procedure work very
well, even in the presence of multiple errors. The adaptation procedure is validated
for local tests. Adaptation works well for outliers, but an adaptation procedure for
slips should be implemented with care. The testing and design studies show that the
correct specification of likely model errors by means of alternative hypotheses is a
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crucial element in model validation techniques for dynamic systems.
The least squares (Kalma.n) filter and the DIA procedure with its associated design

procedure are important building blocks of a real-time data processing and quality
assurance procedure for dynamic systems.
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Chapter 1

Introduction

This thesis deals with various aspects of high-precision real-time dynamic positioning.
Particular attention is paid to the data processing algorithms for real-time position
determination and aspects of quality assurance of dynamic positioning. In the following
we will introduce the problem definition and will successively discuss the historical
context of the current research, the elements of geodetic and navigational methodologies
which are at the basis of the research, and the main points of our investigations.

Problem Defini t ion

In society there exists an increasing demand for the real-time accurate determination
of position and velocity. Although this trend is partly technology driven, dema^nfing
positioning requirements exist in the fields of traffic management (think of the growing
tra,ffic densities at sea, on land, and in the air) and in the (more geodesy oriented) fields
of photogrammetry, satellite positioning, and resource exploration. The general trend
is that the position and velocity not only have to be determined precisely, but also
that the quality of the estimation process to obtain position estimates is assured. One
of the research objectives at the Delft Geodetic Computing Centre is the development
of a real-time data processing procedure for geodetic positioning systems. The data
processing covers the estimation of the unknown parameters and the quality assurance
of the estimation process. The task we face is the development of a real-tirne, optimal
estimation and testing procedure for use in geodetic, dynamic positioning systems.
The optimization of such a procedure is based on a design procedure which will also
be considered herein. The procedure is based on a unified framework of the theory of
least squares and hypothesis testing in linear models.

Context of  the Current Research

This research should be seen in the context of three professional activities, namely land
surveying, hydrography, and navigation, all of which are concerned with the determi-
nation of position. Position determination can be considered as a process of taking



Introduction

measurements and computing one's position. Thereupon the land surveyor and hydro-
grapher may use these positions for mapping purposes, whereas the navigator is gener-
ally interested in where he is going. Until recently the three professional communities
had largely different working methods. The land surveyor and hydrographer, however,
shared their methodologies of data processing (by means of least squares adjustment)
and quality control. The hydrographer and navigator both worked in a dynamic en-
vironment and often used the same positioning systems, and the land surveyor and
the navigator, finally, were hardly aware of each other's existence. In the past twenty
years this situation has gradually changed because land surveyors, hydrographers, and
navigators have had to face similar problems. Land surveying has become much more
'dynamict and faces a growing dema.nd for (nearly) real-time results. Navigation, at the
other end of the spectrum, has to face rapidly increasing accuracy requirements, which
have long been a primary concern in land surveying and hydrography. Last but not
least, all comrnunities are increasingly relying on the same positioning system, namely
the Global Positioning System (GPS). In short land surveyors, hydrographers, and
navigators are all becoming, in part, precise positioning specialists. One has now ar-
rived at a point where land surveying, hydrography, and navigation share the following
problems:

- The dynamics of the measurement process (even static satellite positioning relies
on moving satellites).

- The availablity of a large, continuous stream of data.

- The requirement of real-time quality control.

- The trend towards fully automated data processing.

Considering the problem definition our research is primarily related to the aspects of
data processing and quality control.

The Synergism of Geodetic Adjustment Theory, Quality Control and
Navigation Techniques

We have seen that precise positioning problems in dynamic environments can be ap-

proached from two sides. Firstly one can start from the techniques used in land survey-

ing and adapt them to a dynamic environment. Secondly one can extend the navigation

methodologies with the adjustment and testing procedures of land surveying. In this

thesis we will use elements of both disciplines. Our starting point is the adjustment

and testing procedure of (mathematical) geodesy.

In land surveying it is comrnon practice to work with redundant measurement se-

tups. Surveyors have long been aware that precise measurements do not automatically

provide accurate estimation results if errors in the data or other model misspecifications

are not detected. Redundant data allow the testing for possible model misspecifica-

tions. Besides it is often not possible to reoccupy a measurement station. To obtain
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consistent results from a redundant measurement setup surveyors use the least-squares

adjustment procedure. B.l.lRo.q. [1968] was the first to introduce a systematic testing

procedure in geodesy, namely the B-method of testing. In the B-method tests of vari-

ous fimensions, encompassing the same alternative hypothesis, have an equal detection

power for that specific alternative hypothesis. Closely related to testing is the concept

of reliability. Reliability describes the sensitivity of the estimation result to errors that

have not been identified by the testing procedure, and can thus be considered as a

measure of the quality under the alternative hypothesis. Geodetic measurements are

expensive, and consequently design procedures have been developed to optimize the

estimation procedure with respect to precision and reliability. The simulta,neous opti-

mization (or design) with respect to quality (quality comprises precision and reliability)

is part of a larger quality assurance cycle, which also includes quality control (gener-

ally implemented by means of a testing procedure) and validation of the adjustment

results. In the following we will frequently use elements of geodetic adjustment and

testing theory. The reader interested in the ideas underlying geodetic adjustment and

testing theory is referred to [B,t.l.no-a., 1967, 1968, 1977] and [Kocu, 1988].

From the navigation community we 'borrow' the experience of data processing in

real-time and more specffically the Kalman filter [K,o.rrvrln, 1960]. The Kalman fllter

is an estimation (or rather adjustment) procedure to recursively estimate the state (pa-

rameters) of a dynamic system. Although the filter has not been developed especially

for navigation purposes, it has found its widest use in the navigation environment.

The Kalman filter is a well documented estimation algorithm and is covered by numer-

ous textbooks (we refer, for example, to [J.o.zwrxsxl, 1970; Gor,n, 1974; MavBEcK'

1979,1982]). Developments in the field of navigation have been recorded by K.q.vroN

[1eeo].
With the Kalman fllter, the B-method of testing and its associated design procedure

we have available the tools to develop our data processing and design methodology for

dynamic systems.

On the Adjustment and Test ing for Dynamic Systems

We begin our investigations by considering the optimal estimation procedure for dy-

namic systems. In our effort to provide a unified framework for the data processing of

dynamic systems we consider the recursive estimation of parameters from the viewpoint

of least squares. For linear models the least squares adjustment provides us with the

best estimators within the class of linear unbiased estimators (see, e.g., [Kocn, 1988]).

Best means that one obtains estimators with minimum variance. We will show that

the Kalman fllter (and many other results that are known from filter theory) can be

derived by the method of least squares directly. Under the working (or null) hypothesis

the Kalman fllter thus constitutes an optimal estimation procedure. We do not de-

rive new filter algorithms, but show that the filter results can be obtained by a simple

methodology familiar to surveyors.
After the data processing algorithm (i.e. the Kalman filter as based on the least
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squares adjustment) has been established, we consider the operation of the data pro-
cessing scheme in the presence of model misspecifications, that is under an alternative
hypothesis (model misspecifications are specified as alternative hypotheses). Tests to
detect and identify model errors will be derived using the theory of hypothesis testing
in linear models. Generally one will strive for the most powerful testing method, that
is for tests which give the best reliability. For the cases we consider most powerful
tests do not exist; a usefu-l subset is however provided by the class of uniformly most
powerful invariant (UMPI) tests. It can be shown that the generalized likelihood ra-
tio tests which are used in geodetic testing procedures are UMPI-tests. Our testing
procedure also includes the adaptation for model errors. The estimation of the model
errors can be derived from the least squares procedure applied to the model under the
alternative hypothesis. After adaptation one can often revert to the processing under
the null hypothesis.

The implementation of the optimal estimation and the most powerful (under certain
conditions) testing procedure in a dynarnic system requires a careful design with respect
to the precision and reliability criteria. A design study is necessaiy to give a qualitative
description of the system.

Contr ibut ion of this Report

This report provides a unffied framework for the adjustment and testing procedr:res
for (geodetic) navigation systems based on the theory of least squares and hypothesis
testing in linear models. The detection, identification, and adaptation (DIA) procedure
is derived and especially the aspect of adaptation is closely investigated. The design
procedure for dynamic systems is extended with the aspect of reliability and we will
provide a first step towa,rds the generalization of the design procedure for geodetic
networks to geodetic navigation systems. A systematic design study for an integrated
navigation system based on the measures of precision and reliability is presented. This
analysis helps to understand the properties of the various design measures we use and
demonstrates how they can be used in (navigation) system design. We extensively
investigate the performa^nce of the (local) adaptation procedure and establish its use-
fulness. Part of the work presented herein has been reported previously in [Tnuurssnu
AND SALZMANN,  1988,  1989;  TouNrssEN 1990a,  1990b;  SaLzM.q .Nr . r  1990,  19911.

Outl ine of this Report

In CuaptpR 2 we investigate the Kalman filter in the context of least squares adjust-
ment. The chapter deals with the data processing under the null hypothesis. Using
the least squares approach many well-known results in filter theory can be derived in
a r:nified manner. The Kalman fllter is the data processiag algorithm that is used
throughout our research. Cs.o.ptnn 3 is devoted to the derivation of the DIA proce-
dure. Based on the theory of hypothesis testing in linear models a testing strategy for
model misspecifications in the functional model is investigated. We pay much attention
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to the adaptation step of the procedure. In CH.c.pTER 3 we actually consider the data

processing under an alternative hypothesis. Quality assurance of dynamic systems is

discussed in Ctt.tptnR 4, where the design of dynamic systems with respect to precision

and reliability is considered. The concept of reliability is closely related to the test-

ing procedure implemented parallel to the filter. The design methodology proposed in

Cn,q.pton 4 is subsequently applied to a simple linear model and an integrated naviga-

tion system in CH.q,ptpn 5. The simple linear model primarily serves to explain certain

phenomena that are fould in the analysis of the more sophisticated navigation model.

In a simulation study in CH.q,ptnn 6 we then apply the DIA procedure to datasets

related to the aforementioned linear and navigation models. We fiscuss the detection

and identification phases sepa.rately from the adaptation procedure. The conclusions
and recomrnendations resulting from our research are given in CH,q'ptpn 7.





Chapter 2

A Least Squares Approach to
Kalrnan Filtering

2.1 Introduction

In this chapter we consider algorithms for the real-time estimation of parameters ln

dynamic systems and especially the Kalman filter. The introduction of the Kalman

filter [Kalrur,o.N, 1960] was an important event in the development of estimation theory.

Basically the Kalman filter facilitates the recursiae estimation of the parameters (or

states) of linear, time-varying systems. Like many estimation methods the Kalman

filter can be derived from various points of view. SoRnnsoN [1970a] has given a lucid

account of the historical development of the Kalman filter in the context of least squares

estimation. In this chapter we will pursue this least squares approach to Kalman

flltering and the reasons for this are twofold. Firstly surveyors a e very familiar with

least squares estimation in general. Secondly, and more importantly, we believe that

the principle of least squares constitutes a framework for a unified, comprehensive, and

self-contained treatment of flltering problems. Moreover the least squares estimators

are the best estimators within the class of linear unbiased estimators. In the following

we will show that the least squares approach leads to major results in flltering theory,

known from the literature, directly.

Filter algorithms can be derived using probabilistic and deterrninistic methods (for

a fiscussion the reader is referred to Sonnuson [1970b] and Mpr,se .lNo CoHI.l [1978]).
It is well known that in case one considers lineartirne-varying systems, the least squares'

maximum likelihood, minimum mean square error, and maximrrm a posteriori estima-

tion principles all lead to the same estimator, if the observables are Gaussian. Swpn-

lntc [197L] demonstrated that to obtain the Kalman filter the Gaussia.n assumption

does not necessarily have to be made in every step in the derivations. In our least

squares approach the stochastic model of the observables is characterized by their first

and second (central) moments. Although the careful reader might argue that a deriva-

tion of the filter algorithms based on such a limited stochastic model is of little use,
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we think that in practice the specffication of the first two moments is already fifEcult
enough. If actually the observables can be assumed to be Gaussia^n (as is often done
in the literature), the least squares estimators are equivalent to the 'classical' Kalman
filter estimators.

In case the time-varying system under consideration is nonlinear, fifferent estima-
tion principles result in fifferent estimation procedures. Since the theory of nonlinear
least squares adjustment is quite well developed, we opt to follow the least squares
approach for nonlinear problems as well. The application of nonlinear least squares
theory leads to nonlinear fllter solutions in a very straightforwa.rd manner. Besides one
circumvents the cumbersome, nonlinear propagation of probability density functions
(see,  e .g . ,  [Sonnxsor . r ,  1970b] ) .

We will limit ourselves to models formulated in discrete-time. In practice the sys-
tem model, which consists of a dynamic and a measurement model, may be given in
continuous-time. Our investigations are based on sampled data systems and thus the
continuous to discrete-time conversion of the measurement model does not need to
be considered. For the conversion of continuous-time dynamic models into equivalent
discrete-time models we refer to [M.r.vnocK, 1979] or [DnCnnro, 1989].

z .L .L  Overv iew o f  th is  Chapter

In Section 2.2 we give an outline of the (linear) dynamic and measurement models and
the 'classical' Kalman fllter, which is the algorithm comrnonly used in practice. At
this point we introduce the least squares representation of the model and we will pay
particular attention to the description of the system noise. In Section 2.3 we give an
introductory overview of least squares adjustment. A first derivation of the Kalman
filter based on the model with observation equations is given in Section 2.4. Next an
alternative derivation, based on the model with condition equations is presented in
Section 2.5. In Sections 2.4 ar.d 2.5 we also consider cases related to multiple epochs
to provide a link with smoothing. The impact of various stochastic models of the
observables is investigated in Section 2.6. In Section 2.7 nonlinearities in the model
underlying the Kalman fllter and iterative solution strategies are considered. Finally
some conclufing remarks are given in Section 2.8.

2.2 The System Model and the Linear Kalman Fi l ter

Before the least squares approach to Kalman filtering is discussed, we briefly outline the
linear Kalman filter and the model it is based on. We then introduce the system model
on which we base our least squares approach and we indicate how in our least-squares
approach the system noise (or disturbance) can be looked upon as a fiscrete-time
observable.
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2 .2 .1  The Ka lman F i l te r

We assume that the fiscrete time dynamic model can be described by the following
difference equation

L * :  Q * , * - 1 r 6 - 1  *  w p  )

where an underscore indicates that a quantity is a random variable and with

h  -  L ,  &  t ime ind ices  w i th  k  =  I ,2 r3r .  .  .
c1, n X 1 vector of state variables
O*,*-r  nx nstate tra,nsi t ionmatr ix
'u)1, n X 1 vector of system noise.

(In the literature the contribution of the system noise
is sometimes given as u6-1.)

The measurement model is given by the following equation:

( 2 . 1 )

U * : A * 9 1 " * 4  '

y* rn6 X L vector of observables
A6 rnk x n design matrix
g* rnk x L vectot of measurement noise.

(2 .2 )

where

Observations are not necessarily available at equidistant time intervals and furthermore
the number of observations (rn6) may vary with time.

Also the stochastic part of the model has to be specffied and at this point we make
the customary assumptions that the initial state cs is distributed as .l[(cs, P6) and
is uncorrelated with ur6 and q for all &. trr is distributed as N(0, Qft) and q6 is
uncorrelated with p1 for k I l; q5 is distributed as l[(0,,R6) and 94 is uncorrelated
with g/ for k I l; and rrr is uncorrelated with gJ for all &, l. The matrices P6 and ,R6
are positive definite; Q1 is positive semi-definite.

Depenfing on the application one has in mind, one rnight wish to obtain an estimate
of the state at a certain time &, which depends on all observations taken up to and
including time & + l. If I < 0 the estimation process is called prediction. The state
estimate then depends on the observations taken prior to the desired time of estimation.
If I : 0 the process is called filtering and in this case the state estimate depends on all
the observations prior to and at time &. Finally, if I > 0 the process is called smoothing
and the state estimate depends on the observations taken prior to, at, and after time
k .

Since we have primarily real time applications in mind, we shall restrict ourselves
in this section to recursive prediction and filtering. The problem we are faced with is
to estimate the state at time k using a linear estimator based on all observations up
to and including time ,b. Furthermore the estimate must be 'best' in a certain sense.
Keruln [1960] was the first to solve this problem for the model given by (2.1) and
(2.2) using the minimum mean square error criterion.
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The (recursive) Kalman fllter basically consists of two parts: the time update ar.d

the measurernent update. The time update of the state estimate and its associated error

covariance matrix are given as:

i * l x - t  :  O* , * - r  i r - r  l * - t
Pxl*- ,  = Qx,*-tPx-t ;*-rOT,*-r  *  Q*

Equation (2.3) gives the estimate of the state at time k using all observations prior to

time /c. The time update equation is also known as the one-step prediction equation.

In [K,lrrvr,l.l l, 1960] the predicted state is interpreted as the conditional mean of c6 -

Qk,*-te*-t  f  t r . r*  based on the observables g;,  for i  :  Lr. . . rk -  1,  and qs. Since the

system noise is assumed to be independent of g, (for all l) and c0, its conditional mean

equals its unconditional mean, which was assruned to be zero, and thus the time update

of the state est imole reads i* l*_r:  i [ t ,*-r f*-11*-1. The measurement update of the

state estimate and its associated error covaniance matrix are given as:

(2 .3)

(2.4)

where

where

Q,*

Note that the predicted residual
measurement update.

i r" l t "- ,  *  K *(yx -  A*i* lx_t)

(I - KkAk)Pxlx-t )

K * : P*tx-t AT (n* * A1,P611,-1,4T)-1

i* l *  =

Pt l* :

(2 .5 )
(2 .6 )

(2 .7)

is the so-called Kalman gain matrix. The measurement update equation is also known

as the filter equation. Equations (2.3) to (2.7) constitute the well-known Kalman filter.

An important role in the fllter process is played by the so-called predicted residual.

The predicted residual is defined as the fifference between the actual system output

and the predicted output based on the predicted state:

a * = U _ * - A x i * l x - t (2 .8)

The predicted residual represents the new information brought in by the latest observ-

able y*. (Therefore the predicted residuals are also called innovations in the literature.)

Under the working hypothesis that the mathematical model is specified correctly, the

predicted residual has well defined statistical properties, viz:

3 4 - N ( 0 , , Q , ) ,  ( 2 . 9 )

= (fir I Ar,P1,11,-rA[) . (2.10)

and its covariance matrix are available during each
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2.2.2 The System Model in the Least Squares Approach

In the following sections and chapters we will use a model definition which fiffers
slightly from the one given above. We will use the following measurement model:

n{U} = Akxk ; n{y*} = Rk , ( 2 . 1 1 )

with & :1r2r. . . ,  and where -E{.}  and D{.}  are the operators of mathematicalexpec-
tation and dispersion. Note that in (2.11) c6 is a vector of unknown parameters. The
observation equation of the initial state is given as:

E { q o } = q ;  D { s o } - P s . (2.12)

We thus only explicitely model the first and second (central) order moments of the
observables cs and g6. The system noise vector ilr* was used in (2.1) to model the un-
certainty in the state tra.nsition and thus constitutes a disturbance to the deterministic
part of the dynamic model. If we assume that the system noise, which from now on we
will denote as the disturbance 4[, is an observable quantity, it follows from (2.1) that
we can formulate the observation equation of the disturbances as

E{d t " }  -  t k  Q* , * - tc * - t  ;  D{&}  =  Qn (2 .13  )

In practice the vector dp is not observable. The disturbance can be modelled as a

random function, that on the average is zero-mea.n (otherwise the propagation of the
state vector in time would not lead to unbiased predictions). W" therefore interpret the
zero-mean value of the disturbance d6 as the sarnple value dp. In the models (2.11) to
(2.13) the system state is considered as a deterministic parameter as a result of which
(2.13) can also be interpreted as an observation equation. With equations (2.11) to
(2.13) we have now specified a discrete-time model which can be tackled by the least
squares method. Because we define the state as a vector of unknown parameters, the
matrices P*l*-, and P116 have to be interpreted as covariance matrices of the predicted
and filtered state and not as error covariance matrices.

Note that the model given by (2.11) to (2.13) is equivalent to the description given by
(2.1) and (2.2)if y * and qle are Gaussian and are distributed as N(-46c6,,Bs) and N("*-
O*,*-r ,*-t,Q*) respectively; 16 and U^ ane mutually uncorrelated; gh is uncorrelated
with gL for k I l; U nis uncorrelated with y_rfor k I l; and qs is fistributed as N(c6, Pe).

2,3 Least Squares Adjustment

In this section a synopsis of least squares adjustment will be given. This section serves to
introduce the least squares algorithms of interest and to familiarize the reader with the
notation we will use in the sequel. We consider least squales adjustment for models with
observation equations and models with condition equations. We fi:rthermore discuss
the concept of yR-variates. The notational conventions introduced in the previous
section are maintained.

1 1
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2.3.L Model with Observation Equations

The model with observation equations is given as

E{y} = t, ; n{y} = Qv ,, (2 .14)

where  y  i s  a  mxI  vec toro fobservab les ;  c  i s  anx l  vec toro funknowns;  /  i s  a rnxn
design matrix of rank n; and Qy ir r Ttlxnl covariance matrix of the observables of rank
m. In the sequel we will often use the shorthand notation E{y} = Ar; Qo instead
of (2.1a). The observables are written as functions of the unknowns by means of the
observation equations. In practice a sample y of the observable y is given, and one
estimates the unknown vector c. The least squares estimation procedure for the model
with observation equations is sumrnarized in Table 2.1.

normal equations

(ArQ; t  A)s = t rQ; 'y

estimators

a

v
e

: (Ar  Q; t  A)- ,  Ar  Q; ,  y
= pe!
= p*y

covarlance matrlces

Qe :  (ArQi 'A) - t
Qo = PaQoPI

= PtQy: QoPtr
Qe : P*QuPir

=  P*Qu:  QoPi r

orthogonal projectors

P1

P*

,q(Ar  Q; t  A)- t  ar  g- t
I  -  A(Ar  Q;1 A)-1 ar  Qi t

Table 2.1: Estimation procedure for the model with observation equations.

In many cases the observation equations are nonlinear, i.e.:

E { y } = A ( n ) ;  n { y } = Q y ,  ( 2 . 1 5 )

where ,a(.) is a map of Rn into R^. Generally this nonlinear model is approximated
using a first order Taylor expa.nsion for the observation equations evaluated at an
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approximate value xs of n:

A(n) = A(ro) * 0"A(cs)L,c + o( l l  Ar l l )  ,

where L.n : a - To and O,A(rs) is the Jacobian of ,a(. ) evaluated at rs. Using this ap-
proximation (we do not go into the discussion on the justification of this approximation
at this point) one obtains an estimation procedure for a model with linearized observa-
tion equations, if one substitutes d,.A(co) for ,4, Ac f'rr c, and Ly = y - A(ro) for g in
the equations given in Table 2.1. Estimators of the parameters c and the observations
y are then obtained as i - tr + G and 0 = ,4(co)+&. To obtain improved estimates
the estimation procedure may be iterated, using the latest parameter estimates as new
approximate values.

2 .3 .2  Mode l  w i th  Cond i t ion  Equat ions

An equiualent (or dual) representation of the model with observation equations can be
given by the model with condition equations, whete one has to specify the conditions
the observables have to fulflll. The model with condition equations is given as

B r E { y } - o ;  D { y } : Q o , ( 2 . 1 6 )

where BT is a b x rn matrix of condition coeffcients of rank b. The number of condition
equations 6 is equal to the number of redundant observations m - n. Instead of (2.16)
we often use the shorthand notation B"t E{y} :0 ; Qv. Due to the stochastic nature
of the observables (as described by the covariance matrix Q r) the condition equations
are usually not fulfil led. This is described by the 6 x l vector of misclosuresl whichis
defined as

t - =  B T y  i  Q t :  B T Q , B  . (2.r7)

The covariance matrix of the misclosures follows firectly from applying the error prop-
agation law. The least squares estimation procedure for the model with condition
equations is sumrnarized in Table 2.2.

In practice one often has to deal with nonfinear condition equations

B r ( E { y } ) = 0 ;  n { y } : Q v , (2 .18  )

where BT(.) is a map of R^ into Rb. If we approximate the nonlinear condition
equations by a first order Taylor expa.nsion at y6 (the best value for y6 being the
observation y itself), we obtain the linearized model with observation equations

0oBr  (ys )E{As}  =  0  ;  D{Lu}  =  Qv,

where Ly = U - Uo and drBr(yo) is the Jacobian of Br(.) evaluated at yo. The
estimation procedure given in Table 2.2 can be used for the model with linearized
condition equations by substituting 0rBT(go) for BT and Ag for y. The estimator for

the observations y then reads 0 = yo +&.
The connection of the models with observation equations and condition equations

is given in Table 2.3. In the nonlinear case it holds that Br(,4.(r)) : O.

13
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estimators

v
z

Pqron!

PqoaU

covarlance matnces

8;, Pf,"6QoPqL:a

PqLonQu =_QoPdf"

PquaQyP$"a

PgoaQv :  QoP6rB
Qe

orthogonal projectors

PeuB : QoB(Br QoB)-t Br
PQtuB : I  - QuB(B"tqp1-tBr

Table 2.2: Estimation procedure for the model with condition equations.

rank(.4)
rank(Br

= n

) : b

b TTL _ TL

3 ^ I A = o
b x m  r n x n  b x n

D ,L A

p L
L A

Pd,"
PeoB

Table 2.3: Relation between models with observation and condition equations.

2.3.3 gR-Variates

Now the least squares estimators based on the models with observation and condition
equations have been derived, we introduce an important concept in adjustment theory,
namely the yR-variates [Bl,tnDA, 1,96?]. yR-Variates are observables that are either
stochastically or fi:nctionally related to another set of observables y. In practice one
makes a distinction between the following types of yR-variates: free variates which
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are correlated with g-variatesl d,eriaed, variates which are functions of g-variates; and

constituent variates, variates of which the y-variates are functions. In the sequel we are

mainly concerned with constituent variates. In the notation associated with yR-variates

the functional relationship between the y-variates and the constituent yR-variates is

given as:
y = ItyR (2 .1e)

The least squares estimators of the corrections of the y- and yR-variates are related by

the well-known formula

eR = QnoQ;tQ (2.20)

Equation (2.20) is valid for all three types of yR-variates, but is derived here for the case

of constituent variates. Application of the propagation laws of variance and covariance

to (2.19) gives

Qy = lYQnlYT and Qpo = Q1IYT

The model with condition equations (2.16) can, using (2.19), also be written as

ar ttn{f1 = o; D{yo} = QR,

which, by applying the least squares estimation procedure for models with condition

equations, leads to the following least squales estimator of the corrections:

?R : e nlyr B(B"t LQ RArg)-t B' Ly* .

Not ing that QpAr = QRv, B(B"rIrQRArB)-1 Br = B(BrQyB)-tBr -  Q; lPgoa,,
and AyR : y, (2.20) follows immediately.

2.4 The Linear Kalman Filter - A derivation based on

least squares for a model with observation equations

The objective of this and the succeeding section is to show that the prediction, filtering,

and smoothing formulas found in the literature can easily be derived using the least

squares approach. First we present the model we use for our derivations. This model

takes into account the system state at times ,t - L and & and is a model with observation

equations. The Kalman fllter model is expressed in state-space and the states coincide

with the parameters of a model with observation equations.

The linear model of observation equations from which the linear Kalman filter can

be derived is given asl

1 5

",? ii'),= (-*;.-, i )( .8,),
lwhenever matrices appear with rnissing elements, then those elements are zero

(2.21)
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closely patterned

Prediction

For prediction one considers the estimation of the state without the use of the observ-
ables yo. Then (2.21) reduces to

Equation (2.22) can be solved immediately as there is no redundancy in this model.
Hence the available estimate in-rlt-r of c6-1 cannot be improved upon. The least
squarres estimator of c4, which is denoted by ,i*l*-r, follows directly from inverting the
design matrix of (2.22). The inverse of the design matrix is:

Hence we obtain the estimator of the predicted state

i * l ^ - ,  = O * , * - r 4 * - l * - t * d 6 .  Q . 2 3 )

As we take the sample value d4 of the fisturbance d6 to be equal to zero the least
squares estimate of the predicted state is

ix lx-,  = (Dt, fr-r  ix- t l*- t (2.24)

The covariance matrix of the estimator of the predicted state is obtained by application
of the error propagation law

(2.25)

Equations (2.24) and (2.25) constitute the tirne update (or prediction) equations of the
Kalman filter (cf. eqs. 2.3 and 2.4).

Filtering

If we include the observables at time ft in the estimation process we obtain the estimator
of the flltered state. This leads to the following model with observation equations:

) ,

ing derivation is

" t ( " ^ - [ - ' ) r =  ( - * i - - ,  ? ) ( ' : ; ' ) ; ( P o - ' r * - '  a - )  .  e . 2 2 )

u t ( " ^L '  
) r= (  i r ) , - ;  (Po rn - ' (2.26)
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Straightforward application of the least squares algorithm (cf. Section 2.3) gives for
the estimator of the state at time & and its cova,riance matrix

i*t* = (r61i_r + A[a/.t*)-' (p*,]_,4*1* _, + A[n114) e.27)
P*t*  =  ( r4 i_r+A[nnlAr) - ' .  (2 .28)

Application of the matrix inversion lemma

(Pnri- ,  + AT Rkl Ad- '  :  P*l*- t  -  P*l*-rAT@u * ApP1,11,-r1;)- t  A*Px,- ' r

to (2.27) and (2.28) gives after some rearrangements the measurement update (or fllter)
equations (2.5) to (2.7). We thus derived the Kalman filter algorithm using standard
Ieast squares methods.

In the literature also an alternative form of the Kalman gain matrix is given. Al-
though this alternative form is identical to (2.7), we will nevertheless briefly indicate
how it can be derived firectly using the least squares approach. If one inserts (2.28)
irLto (2.27) one obtains

itl* = Pp11,P4|ao*l*-r * rp14A[n;1yo ,

which can be rearranged as

i*tt = Pnt*(Pnti_, + AI n,1 t*)a*t*-r + P1WAT Rl'(yn - Ani*y-r)

= i*l*-, + P1,p"A[Rit @o - A*s*p,-) ,

so that the alternative form of the gain matrix is (cf. eq. 2.7):

K* : Pxr,,AT Ri1 (2.2e)

Smoothing

In the derivations above we sepa,rately derived the time and measurement update equa-
tions of the Kalman filter. It is, however, also possible to consider model (2.21) as a
single adjustment problem. The estimator of the filtered state (!rt*) will be identical
to the form given by (2.27), but an estimator of the smoothed state at time ft - 1is
obtained, because we also take information after time rt - l- into account.

At this point two angles of attack are possible to obtain an estimator of the smoothed
state at time ,t - 1. The direct approach is to start fuorn(2.2L) and to derive the normal
equations from the observation equations

(  , ; : , t f t - r  *  o [ , * - r  Q; t ln ,n - ,  -a [ , * - ,QE '  
\  /  a* - ,  \  _

\  - Q o ' o o , o - r  Q ; t  +  ' + [ 4 r A *  )  \  4 n  )  
-

1 7

(  P ; : ,w - ,a * - t  t k - r  *  o [ , * - ,Q* 'do  \
\  Q ; l d * + ' t [ R ; t u *  )

(2 .30)
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By solving the normal equations (which requires some lengthly algebraic manipulations,

including repeated use of the matrix inversion lemma) one obtains the estimator of the

one-step delayed smoothed state and its covariance matrix as

(2 .31 )

(2.32)

with ft-1 = Pk-tl*_'QT.o-rP*Ji_r. The estimator of the smoothed state and its covarr-

ance matrix are equivalent to'the forms found in the literature for a one-step delayed

smoothed solution. The direct least squares approach via the normal equations makes

adfitionaly available the covariance between the estimator of the flltered state and the

estimator of the smoothed state. A drawback of the derivation via the normal equations

is that explicit use is made of the inverse of the covatiance matrix of the disturbances

(8r). This inverse does not necessarily exist as 8r is only required to be positive

serni-definite. Therefore we look for an alternative derivation which avoids the explicit

computation of the inverse of Q*.
This alternative, more elegant, derivation is obtained using the yR-variates. In the

case of smoothing we have to deal with so-called constituezl variates. From equation

(2.22) it follows that i6_1la_r and d.p are the constituent variates of i616_1, or

4t-r1* :  i*-r lx- t  I  J*- t(q*t* -  i t l *- t  )

D{u-r, ' }  :  P*-r l*- ,  *  J*-t(P*l t  -  P*t*- t)4-,

," = ('--'o;J;1r-1"nt-' ) rr*'u-, - i*t*)

(2.33)

In the notation associated with 3rB-variates (2.33) can be written as y - AyR. After the

least squares estimator of the corrections to the yR-variates is obtained, the estimator

of the smoothed state follows automatically. The estimator of the corrections is given

by  (2 .20) :
e R :  Q n  Q u t ?  ,

where

Q u =

and thus

Qno =

e -

Pnln-, (cf. eq. 2.25)

(  ' * - r , * - ro [u- t  \
\ Q * l
ixlx-t  -  i* l*  )

If werestrict ourselves to the estimator of the correction to the yR-variate4*-r1t-, oo"

obtains as the estimator for the smoothed state at time ,t - 1:

i * - r l *  =  ik- t l f t - r  *  P*- r l * - ro [ , r - rPur i - r (41*  -  i tg*- t )  , (2 .34)
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which is identical to (2.31).

In this section it was demonstrated that the recursive prediction, fllter, and (one-

step) smoothing equations can be derived using a least squares approach based on model

(2.21). If, however, model (2.2L) is extended to multiple epochs, derivations based on

the least squares approach do not result automatically in convenient recursive formula-

tions of the prediction, flltering, and smoothing problems anymore. A drawback of the

derivation based on models with observation equations is that analytic solutions are

hard to obtain if many epochs are considered simultaneously, because every additional

epoch increases the dimension of the normal matrix (which is usually a completely full

matrix and has to be inverted) by the fimension of the state vector. Therefore we also

investigate an alternative approach based on the model with condition equations.

2.5 The Linear Kalman Filter - A derivation based on

least squares for a model with condition equations

In Section 2.3 it was stated that for a model with observation equations an equivalent

model with condition equations can be found. The derivation of the Kalman filter based

on a model with condition equations provides us with an alternative to the approach

with observation equations, which becomes rather intractable for more than two epochs.

Prediction

To obtain the prediction formula we start frorn (2.22). For the prediction case one

cannot obtain a model with only condition equations because not all unknowns can be

eliminated. After eliminating c;.-1 orl€ obtains

( **,*- ' (2 .35)

which leads directly to the prediction formula (2.23).

Filtering

If the observations at time ,t are included in the estimation process one obtains from

(2.26), after eliminating the unknown cp:

7 9

( -on

, ) "t( 
u-;l--' 

)) 
= '* ,

, ) " t (  t - r ' ) r = o (2.36)

which is of the form BT.E{y} = 0, and where BT is a coeffi.cient matrix of fimension

m1,x(nIm*). It can easily be verified that the property BT A = 0 holds. Application of

the least squares algorithm for a model with condition equations gives for the estimators
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a-*1* : o*1*-t * P*l*-r ,a,[@* * ApP1,6-14;)-t (!* - A*q*l*-)
= &*1*- t  +  K*( l * -  A* ix l *_1)  (2 .38)

of the corrections

( + ) : ( -Poto-'.A[(nr r A1'P1'11'-'4[)-' ) rr.
\eu /  \  f t * ( f t * *AaPol i - ' ; i ; - t '  ) lLr -A* i * t * - t )  

Q '37)

and thus for the filtered state estimator (cf. eq. 2.5):

Smoothing

If one starts from model (2.2L) a model with condition equations
by subsequent elimination of c6 (via y' = yk - A*d*) and c6-1
A*Q *,*- t , i*-r  l*-r  ) ,  as fol lows:

can be obtained

(via ytt : y' -

(  - ' * * * , * -  t  -A* ,  )  " r ( *  { . ' )  
,  =  o ,  (  

' - - ' ' * - '  
e *

"- 
)  

'  (2 '3e)

where BT is of fimension mk x (Zn + m*). One can easily verify that the property
BT A :0 holds. If one follows a direct approach based on the least squares algorithm
given in Section 2.3, one obtains the estimator (2.31) for the state at time k - 1 after
some algebraic manipulations.

Here we use the alternative solution based on yR-variates (we repeat the derivation,
because in the model based on condition equations the estimators of the least squares
corrections are given in a somewhat different form). The constituent variates can be
described by (2.33). For the model with condition equations it follows from (2.37) with

QR = enoei tQ ,

where Qo and Qno ut" as defined before, but

c 
= -7:d!f;J,-1,-,'!n-' 

AT)-' @n - A*s*t*-')

that the estimator of the corrections to the yR-variate 4*-r1*-r it

4 = -P*-tl*-to[,*-r Pri_rK^(y*- A*sxl*-r)

: -p*_rl*_ro[,u_, pal_r(4rtr - ir. lr_,) .

This results in an estimator identical to (2.31) and (2.14), namely

&-*-t1* = i*-rlr-r * P*-r 1*-rof*-r Pai-r(s*l* - i*lt -r) (2.40)
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2 .5 .L  Mul t ip le  epoch so lu t ions

We now try to expa,nd our derivation of the Kalman filter to more than two epochs
using the model with condition equations. If one is able to find an analytic form valid
for any number of epochs this will greatly facilitate all subsequent derivations. The
model with condition equations is basically non-parametric and hence a link with the
parametric state-space concept of the Kalman fllter might cause some problems.

If we expa.nd model (2.2L) to, for example, three epochs, one obtains:

o r - (  
_  A * Q * . * - r  - A 6  I ^ x  0  0  )-  

\  
- / o * rO*+ r , * -  r  -A*+ r iD*+ r , t  0  -d t+ r  I ^ ^ * ,  )  

)

where rmp arrd rnk+1 are the number of observations at time ,t and ,t f 1 respectively,

and

I = (il-r1*-r, il, YI, 4+r, d*, )t
For an arbitrary number of epochs (starting at time fr - 1) the model with condition
equations can be written as:

ar n{yy = o; Qo , (2.42)

where

B T :

21

"'(" {,,' )' : I t' -+'.il (':r' ) ;
( P^_, t^_,  , )

I 
t* ,n I e.4r)

I  
Q * t  

o ^ * , )
In order to write model (2.41) as a model with condition equations we have to eliminate
the parameters. We begin by eliminating c1-1 and c111, so that (2.4L) reduces to:

(  du + o*,*-r  6r-r  I , . - t  \  (  In \
n { l  y k  l t : l  i r  l , * .

\  g n * ,  -  A * + t & + t  /  \  A * + r Q * + t , *  )

By eliminating c; one then arrives at the familiar model BT E{y}: 0, where

T' f  r .  k + 7

0

-  A*Q * , * - t  -  Ap
- A*+' tOt+r,r-r  -A*+t iDt+r,*
-  A*+zQx+z,tr- t  -  A*+zQ*+2,*

f^t, 0

o - A*+t
0 - A*+ziDt+z,t+r

)
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I  = (4t6-r ,  4,  r t ,  4*rd*, , ' ' ' ) t

t =  B T y  , (2.43)

where the elements of the closure vector ! are:

4  =  l x -  A x ( Q  *  O 6 , 6 - 1 i 6 _ r 1 * _ r )

4+t :  !x+t 
-  Ax+td*+t -  /*+r O*+ t ,* i l  -  A*+r iD*+r,r-r  i*-r  l*- t

=  ! *+ t -  Ax+r (dx+t  *  iD*+r , * (4  *  iDr , r - r4*_r1*_r ) )

4+z = !r ,+z 
-  Ax+z(d*+z * o*+2,*+r(4"+t *  Qx+t,*(& * o*, t-r i t - t ; r- t  )))

(e tc . )

Model (2.42), together with (2.43), gives a complete description of the multiple epoch

filtering and smoothing problem. However, the structure of the misclosure vector t
does not imrnediately lead to major simplifications in the (analytic) solution of the
adjustment problem, because the matrix BT Q vB which has to be inverted is completely

full. Therefore it is required that this model is further developed. It can be seen
from (2.43) that the misclosure vector at time ,t is equivalent to the predicted residual
ax (: g*- AxL*l*-r). h the Kalman filter the predicted residuals and their covariance
matrix are reafily available. So if we are able to express all elements of the misclosure
vector as functions of the predicted residuals this might lead to major simplifications.
In the sequel we will show that the vector of misclosures can indeed be written as a

fuaction of the predicted residuals.
In order to write the misclosure vector as a function of the predicted residuals, we

start with rewriting the misclosure vectot as:

)

( 'o-'to-'

l Q o
' " :  

I  
R* 

e*+tl.
The vector of misclosures t is defined as:

4+t  =

l*+z =

(etc . )

ap

u*+r  *  1*+r( i *+t l *  -  i r+r l * - r )

!*+z* A*+z(i*+zl*+t - L*+zl*-t)

tk

4+r

ap

u*+r  *  / *+rO*+t ,* (8r t r  -  i * l * - t )
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t*+z
= ax+z I A*+zQx+2,*+r (4+rl*+r - i61rlfr * 4+rl* - 4*+r1t-r )
=  t ! *12*  A*+zQ*+2,*+r ( (g*+r t r .+ r  -  4*1r1* )  *  i [ *+ r , * ( i *1*  -  i *1* - r ) )

(e tc . )

which can be verified by simple substitution. Recalling that (cf. eq. 2.5)

, i ; l ; :  i4 ;_ t  *  K ;a ;  ,

the elements of the misclosure vector ! can then be written as

L k = a 4

4f+r :  rr t+r*Aaa106rr1,1"K6y1

tx+z :  l !*+z * Ax+z0*+2,*a1K*af!*a1l A*az0*az,*Kxa4

(e tc . )

'We 
can thus express the misclosure vector as a linear firnction of the predicted residuals:

t - - L a ,

I ^ x 0 0
Apr1Q41,1"Kp I^r*, 0
A112Qp12,6Kp A*+zQx+2,*a1K*1t I^r*,

(2.44)

where

23

)

,:I
and

,  = (YT d*, ,4*r ,  " ' ) t
The matrix .t is a lower triangular matrix of full rank, and consequently its

be computed in a straightforward manner. Hence the predicted residuals

expressed as a linear function of the misclosures

where

a = L - | t ,

Imx o
-A*+tK 

t t  I^xrL
- A6rr2F6,r2R p4 - At+rR x+z

-A*+tFn+tF*+zK **t  -  A*+zFxyrK *a,

lnverse can
can also be

(2.45)

, r = [

0
0

f^x
- A*+t

+2
K *+z

with
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Applying the estimation procedure from Table 2.2 to the model with condition

equations (2.42) and using the linear relationship between the misclosure vector and

the predicted residuals gives for the least squares estimator of the corrections:

e : QoB(Br Qrn)-t B,y_
= eaBL-r (L-1Br qoBL-r1-t  7- t  7,
:  euBL-r (L-1Br qoBL-t)- to .

The problem of inverting the matrix BTQrB has been replaced by the problem of

inverting the matrix L-lBTQyBr-T. The form of this matrix does not immediately

suggest that a major simplification is now possible. However, using the fact that

E{f} = BTQvB and the linear relation (2.44) between the predicted residuals and

misclosure vector. it follows that

E{Luar Lr .- = Br QyB
E{d}  = L- lBrQvBL-r  , (2.47)

where the matrix L-1 B't QaB.t-T is the covariance matrix of the predicted residuals.

It is well-known (for a proof see Appenfix A) that

(2.46)

(2.48)

(2.4e)

E { w y T } = 0 ,  k + t ,

and consequently we arrive at the important result that

L- lBr  QvBL- - t  
-  d i .g (Q,*  ,Q, r * , , .  .  . )

This matrix can easily be inverted and is a function of covariance matrices of the

predicted residuals only. We now have available a least squares description for the

prediction, filtering, and smoothing problem, which renders analytical solutions feasible.

To demonstrate the usefulness of the batch solution in terms of a model with condi-

tion equations, we consider the following example. Say, for example, we want to derive

the est imator of the state at t ime & - 1at t ime I  ( i*-r l r ) ,  with I  = krk t  1, ." ,  using

all observables in the time interval [&, I]. The least squares estimator of the smoothed

state at time I is obtained by:

i  t  - t l t  :  i&-r l*-r  
-  4*-,  ,o-t

For the estimator of the least squares corrections (cf. eq. 2.46) we need the first row of

the matrix QoBL-'.From (2.42), (2.45), and (2.46) it follows by simple substitution

t h a t  
r f  ;  r

&-*-t1t=ik-t l*-r  * P*-t t*-to[,0- 'E I  I I  Ff ln"[Q;, 'u '  (2'50)
i=h ly=/c+t I

Using the definitions of the measurement update (2.5) and the gain matrix (2.7), it

immediately follows that

AT Q;,t v, = Pi;t-r(Lt; - b;1;-t) ,
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and inserting this result in (2.50) gives for I = ft

i x - t l *  =  i k -7 l / " - r  *  P t - r l * - rO[ , r - rPr r i - , (4* t t  -  i * l r - r )  ,

which is identical to the one-step smoothed solutions found before. If we now asslune

that (2.50) holds for I = m - L, and use the identity (I - K;A;) = P4;P4;1-t, it follows
f r o m  

r ^  r
i*-tt^ : ik.t l--r * P*-rt*- 'ol,o-, I  f I  r l  I  dl?;)u^

lj=*+ t I

that

i * - t l ^  =  i l " - t l ^ - . t  -

l ^  I
pr,-r t*-1oT,o_, 

I  I I  tor,r ;pi- t t j - tp- i1r, i_) ' I  t ;h_, (s^tu - i^t^-t)
lj=/c+ 1 I

and thus (2.50) can be written as

l ^  I
4-t6 : &*-tt^-t * I tI Pi-ttj-tol-' Pi]-' l (n^6 - i^t^-') ' (2'51)

Lr=* I

Equation (2.51) corresponds with the so-called fixed-point smoother [Monttcu, 1969].

2.6 Alternative Noise Models

In the previous sections we asstuned that the measurements and fisturbances were

mutually uncorrelated and uncorrelated in time. In practice it is likely that correlation

is present. In this section we will consider the following types of correlation:

A. Correlation between the fisturbances (system noise) over a sample period and
the measurements at the end of that interval

- . T -  (  s ,  i = kE{(4" - n{d*})@_t - n{yil'), } : 
t ;" i I k

B. Correlation between the measurements and the fisturbances (system noise) over
the ensuing sample period

(
E{ (% -  E{y- i } )@*+,  -  E{&+'  t l ' l  :  

{  f * ' , } l

C. Correlation between the measurement noise at successive epochs.

D. Correlation between the fisturbances at successive epochs.
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This list is not exhaustive, but in general it will be quite difficult to specify more
detailed models for various types of correlation. Correlation between noise sources at
successive epochs is also called coloured noise or sequentially time correlated noise.

In practice cases C and D will prevail. Due to the approximation of the 'real

world'by a dynamic model some correlation between disturbances at successive epochs
will always be present. Also time correlated measurements (measurement noise) occur
quite frequently in practice. This type of correlation is often due to the internal data
processing in the measurement systems (e.g. receivers of rafiopositioning systems) or
mechanical damping of the measurement devices (e.g. conventional gyros). Cases C
and D are often specified as exponentially time correlated noise because other, more
sophisticated, noise models are difficult to derive. Cases A and B cover the correlation
between disturbances and measurements and are formulated in a somewhat restricted
manner. It is likely that disturbances will have some impact on the measutements
(consider, for example, a ship subject to pitch, roll, and heave that is equipped with
a satellite antenna installed in top of a (sweeping) mast) and besides this type of
correlation will probably not be limited to a single epoch. Tractable, general solutions
for models which incorporate correlations between fisturbances and measurements for
longer time spans are, however, not available. Closed form solutions can be found for
cases A and B and therefore these cases are considered.

The objective of this section is to demonstrate that the least squares approach leads
to solutions for some of these cases directly. Solutions can be derived in a straightfor-
ward manner for cases A and B. Time correlated measurements and disturbances (cases

C and D) can be tackled by orthogonalization methods (which constitute differencing
schemes between correlated observables to obtain derived observables which are uncor-
related) or state augmentation procedures, in which the correlated noise is modelled
in state-space. Both approaches are demonstrated and their relation is shown for time
correlated measurements. The results obtained in this section are compared with the
solutions found in the literature.

2.6.L Correlat ion between Measurements and Disturbances - Case A

If one considers correlation between the disturbances over the sample period and the
measurements at the end of that interval, the model with observation equations reads:

(  i  * - r l ^ - ,
E { l  dn

\ 9 * ) ' : (

Q * r - )
s ;  t u )

I O
- iD*,t- r I

o A x)r' : ; ' ) ;
(2.52)

P*-r l*- t
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where Sr is a n x rmk matrix. This model is equivalent to the following model with
condition equations (cf. Section 2.5):

27

(

from which the le

( ; : ) =

-A1, t  )  r r ("- f '  
) t  

=o'  (  " iF '
ast squares estimators follow directly as

( z * 1 0 - ,  \ -  ( r o o , 4 [ - s ^  \ n - r r
\  

-4 '  
/  

*  
\  t i l l * -  ^o  )o ; ' \ 4 -  

A6ao1 t - ' ) '  ( 2 '54 )

; : ) '  
( 2 b 3 )

where
q, = (A1,P1,1*-rAT I  R* -  AxS* -  S;,4;)

lf no correlation is present this form reduces to the standard Kalman filter solution.

The variance of the least squares estimators follows from applying the error propagation

law to (2.5a):

P*w -- P*t*-, - (Prt*-, dT - So)Q;t(ArPoto-, - Sf,)

The time update equations remain unchanged.

(2 .55)

2.6.2 Correlat ion between Measurements and Disturbances - Case B

In case one considers correlation between the measurements and the disturbances over

the ensuing sample period, the model with observation equations can be written as:

"(*!i, '),= (_t,_ l)(.;i,) ; (2.56)

I Pol*-' \
( 
'*'*- 

*+ 's* I '
\ s; Q*+' f

where 5* is a rmk x n matrix. By orthogonalization of 4+r with respect to y* one

obtains a model equivalent to (2.56), but with uncorrelated observations:

(  a * 6 - r  \  (  1  o \ r  -  \
E { l  ! *  l l = l  A *  o l f  ) '  Q . s 7 )' \  

an* ,  - - t [ o ; ' y - *  ) '  \  ( - * * *1 ,p  - ' 5 [ 'R ; r ' 41 )  t  /  \  x r ' + t  /
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From (2.57) it can be seen that the estimator of the flltered state at time ,t remains

unchanged, so that one obtains:

n{( a-*, *1'f  ̂r 'on)t: ( (- iDo+,,* l  rfor'oo,?)  (  . : : , )  ; (2.58)

( ' a o  o  \
\  o  e * + r - s [ n ; t s * )

Equation (2.58) can be solved immediately as there is no redundancy in the model.

The estimator of the predicted state at time b + 1 reads

(o*+r,r + s[411 A*)uw * dr+r - s[ Rnty-u

iD*+r,r4*l* I d*+r - Sf,A;t @* - A^sxW)

iD*+r,*4*l* I dx+t - S[A;t @n - Ars-olk-l - A*K*(!t - A*ixlx-t))

Q*+t,* i* l* l  dt"+t  -  SIno'g -  AkKk)(y+- A*st t*- t )

Q*+r,*4*l* * d*+t - sf,a;t lLk(AkPktk-r 1I + an)-t @* - Ans*l*-t)l

or+r,* i r l r  I  d*+t  -  SI(AkPk1*-rAI1 R*)- t  (y_o -  A* i*1n-,  )  .  (2.59)

For the estimate of the predicted state the sample of dp*1 is taken equal to zero. The

covariance matrix of the predicted state is obtained by applying the error propagation

law to (2.59)

P*+r l r  =  i [aa1, ;P l l lO t r , r *Q*+t

SI(AkPklk-rAI + R*)-t5* * o*+r,* Kt S* I sf,rf o[*r,a . (2.60)

If no correlation is present this form reduces to the standard Kalman filter (prefiction)

solution.

Comparison with Solut ions found in the Li terature

The reader can compare the results we have found for cases A and B with the solutions

given in literature (e.g. Jlzwtusxl [1970]). The solutions given here fiffer slightly

in the parts containing the correlation terms 5r and Sfl (note the sign changes in

comparison with [ibid., pp.209-212]). This difference is due to our definition of the

disturbance &. In our model description the matrices 5 model the correlation between

theobservab lesgandd,where  E{dk}  i sde f inedasc f r -O* , t - rx1" - l . Inmost tex tbooks
on Kalman filtering the matrices ^9 model the correlation between quantities e and

tr, where rr is the so-called system noise (cf. Section 2.2). It one inserts (2.1) in our

definition of the fisturbance vector d; one obtains d* = e* - O*,*-r c* -t - 9t , where

the disturbance d6 and the system noise vector u6 have opposite signs. This explains

the sign changes in our formulas (2.54), (2.55), (2.59), and (2.60) as compared with

[ibid.].

tk+1lk =

:

:

:

:

=
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2.6.3 Time Correlated Measurements

Time correlated measurement noise can be handled using the concepts of orthogonal-

ization or state augmentation. We start our discussion on time-correlated measurement

noise by considering a vectot of observables y - (rt , rtnr, . . .)T of which the covariance

matrix is specified as:

D{v} =

(2.62)

one can easily verify that the derived observables Py are uncorrelated, that is the

elements of y can be orthogonalized by means of the matrix P. In principle this or-

thogonalization procedure can be used to derive a filter algorithm for time correlated

measurements. It is self evident, however, that the algorithms derived using the or-

thogonalization approach will be rather involved compared with the tclassical' Kalman

filter algorithm. The structure of the orthogonalization matrix (2.62) inevitably results

in algorithms in which the estimator of the state at time ,t also depends on the mea-

surements at time k + L, and thus recursiveness is lost. We demonstrate this by an

example. If we assume, for example, that the first observation is processed at time ,t,

the model with observation equations for four epochs can be written as

29

( no i?rvt, nfr.ILl,IL 2 _ .' \
I  i lo*, R* (!Pk+1fiai[ ;+, * Nr+r) (Vo*tft*Vt, + N6a1)V[* 2 " '  I

| ***,*n*,"* trr+z(tr*+,R*rrI*1 * N*+rl -,flili;lil-r$lll | ,
I
\ ' : : 

r/^l
where the matrices V; and N; (which remain unspecified for the moment) model the

correlation of the measurements and a contribution of white noise at time i respectively.

If one premultiplies the vector y by the square and full-rank matrix

': [ 
-+.' -::.' ? ... ) '

0
0
0
0
0
I

A*+z

) :

i  * - t l * - t

4
yk

dt +t
!-x+t
dt+z

lx+z

I
- iD*,*-r

0
0
0
0
0

0
I

Ar
-o*+r ,*

0
0
0

0
0
0
I

A*+t
-Or+2,*+r

0

c k - l

ek

',k+'t

X E r ,

(2 .63)

)

E {



30 A Least Squares Approach to Kalman Filtering

P*-  r l r -  r

Specifying

PE{y} = E{

iP*+rE*

0

V;12' i [311R1

the matrix P as

P _

4 - t ; t - t
d*
a

4x+r
9x+r  -  V t+rgr

dx+,
U x+z 

- 9 x+zY u*,

R1VT+, 0
0 0

(Vra1R1V[*1*  n
N*+r )
Qr+r  o

tP*+z x
(!P111,R1!Ir[*,* 0

tr[*+ r )

R*v[*,v[*,
0

(! t111.R1v[*r*
.tvr+,)v[+z

0

V112(V611RrVT+,*
N*+r)VI+, * i[r+z

Qx
R1'
0

0
Q x + t

0

0

0

I 0  0  0  0  0 0
0 I  0  0  0  0 0
0 0  I  0  0  0 0
0 0  0  . r  0  0 0
0 0 - t l t + r  0  I  0 0
0 0  0  0  0  I 0
0 0 0 0 -Vx+z 0 I

\ ;  P A =

. r 0 0 0
-Or,r-r . f  0 0

0 A 1  0 0
0 - iDt+t , r  I  0
0  -V r11 /p  Ax+ r  0
0  0  -O*+z , t+ r  I
0  0 - { t  *+zAx+r Ax+z

(2.64)

a derived model with uncorrelated observables can be obtained from model (2.63) as

follows:
PE{y}  = PAx ;  D{Py}  = PQaPr, (2.65)

where

PQ oP 
t  = f iag(P6- lk- l ,  Q k, Rx,Q *+t,Nft+r,  Q *+2, N*+z) .

To establish a link with the literature we will now consider a special case of model (2.65)
covering three epochs (viz. k - Lr,t and fr + 1). Since all observables are uncorrelated,

the estimator of the flltered state at time & can be obtained in the usual way, and hence
model (2.65) can be reduced to

Q *+t

It follows from (2.66) that one obtains an estimator of the smoothed. state at
We first eliminate the parameters c6 and c7"11 to arrive at an equivalent mo

\

I
N*+t /

(2 .66)
time ,b.

del with

',(n-., "4*rr*,"r)r: ( ;;.,,i- ,i, ) (,:r, ), ("-
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condition equations, namely

, I ittt, \
(  (v** ' ,an - Ax+to*+r,*) -A*+t ,  )  " t l  

dnt '  l )  
= o (2'67)'  

\  ! *+ r -v , " tu+  I

The estimator of the state at time fr can be found by straightforwa.rd application of

the least squares estimation procedure for models with condition equations. Denoting

(y r*, 
-![*+r gr ) as g*+r and ( ![;,1 1,4 * - A*+tiD*+r,* ) as H 641 one finds for the estimator

of the state at time ,b:

i* l*+r = i*p, -  PoWH[+r(H1,,4P1,p,H[a1* A*+tQ*+r1I*,  + N*+,)- t  x

(4*, + H*+fi*l* - A*+td*+r) . (2 .68)

If one considers A*+tQ*+tAI*, * -l[6.u1 as a single new covariance matrix and recalls

that the samples of d,; are chosen equal to zero, this form is very similar (but not

identical) to the 'classical' Kalman fllter measurement update. From (2.67) one can

also derive the estimator of the disturbances at time & + 1 (to obtain an actual estimate

d6..1 is set to zero)

in*, : d*+t * Q*+rAT+r(H1"a1P1"11"H,[*, + /t+r Q*tAT+, + Nt+r)-t x

@ * n r *  H x + t i * l * -  A * + t f u , + ) .  ( 2 ' 6 9 )

The least squares estimator of the flltered state at time ,t * 1 is firrully obtained as

4*+rl*+r :  iD*+t, t i t la+r * dn*,  ' (2.70)

Equations (2.68) to (2.70) can be compared with the solutions given by BRvson lln

HopnrrsoN [1968]. Except for some minor differences in notation (our matrix fft11

corresponds to -11[ in [ibid.]), the main difference of our results and those in [ibid.]
is that we arrive at our algorithm in a straightforward manner using the principle of

least squares. In comparing our results with [ibid.] it can be seen that BnvsoN AND

HotrRrxsoN explicitely interpret the matrix'i[7.11 from the outset as a state tra,nsition

matrix, whereas in our derivation the matrix V4.,r1 remains largely unspecified (![*+t

only has to be chosen in such a way that the matrix P in (2.64) is of full rank).

Furthermore we can avoid the somewhat artificial discussion on the interpretation of

the estimators i61641 and i;111;a1, as in our approach they can simply be interpreted

as least squares estimators of the smoothed state at time ,t and the filtered state at

t imef t f l respec t ive ly .
A second approach to deal with time correlated measurement noise is given by the

method of state augmentation. In order to follow this approach one has to assume that

the time correlated measurement noise can be modelled using a state-space approach.

As a consequence the time correlated measurement noise is modelled wing a fixed
number of additional states. Including these additional states in the functional model

31.
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then automatically leads to state augmentation. Instead of using the model given by
(2.61) the time correlated measurement noise is now described as:

E{tk} - ek - V*,*-re*-r ;  D{t*} :  N* , (2 .71)

with
E{y) = Atct (ot  g,  = Atrt  r  et)  ;  D{!r  }  = Br )

where ![t,t-r is a rn x rn state tra.nsition matrix of the measurement noise. (For the
sake of simplicity we assrune that all rn observables y are time-correlated; in practice
the number of time-correlated observables may lie in the range I to m, but this does not
affect the following derivations.) Analogous to the reasoning in Section 2.2 the vector
d[ is considered as an observable, random fisturbance vector of which the sample values
d"n arc chosen equal to zero. Using equation (2.7L) one can for ft = 3r4,... defile the
augmented system model as:

E { A k }  -  r 1 -  O * , * - r E * - r  I  U *  : A * t *  , (2.72)

where

iDr,r-t

Ax

D{dk}

with starting values

& = (4 d:n')'
I  T  T \ Tc k  :  w i e i )

( n l m ) x I

( n * r n ) x l

( n + m ) x ( n * m )

m x ( n { m )

( n + m ) x ( n * r n )=  ( ? , $ - )

= ( t-f-' *-:-_, )
=  ( o n  / )

0 0
0 0
0 0
I O
O I

A2 I

,t
- iDr ,o

0
0
0
0

) =E{

go

d1

y1

d2

di I Vzflt
Uz

0
I

A1
-Qz, t

vzJAt
0

e O

I 1

I 2

€ 2 )

Po
Q t

Rt

Qz
N2
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This is a very straightforward procedure which can be implemented using standard
Kalman filter software, apart from the fact that the measurement model contains
noise-free observations. Therefore care has to exercised, as this approach might lead
to numerical ill-conditioning of the covariance matrix of the (augmented) predicted
state, thus leafing to difficulties in the computation of the covariance matrix of the
(augmented) flltered state. Due to the noise free measurement model the ranl< of the
covariance matrix of the estimator of the filtered augmented state (with fimension
n I m) is merely n.

Comparison of Orthogonal izat ion and Augmentat ion

It remains to be shown at this point that the orthogonalization and the state augmen-
tation approach lead to identical results for the estimators of the system state. ff we
assume that the first observation is processed at time ,t and we consider four epochs,
the augmented state model can also be formulated as:

E {y }  :  Ax  ;  B rn  =  
"  ;  

D {y - }  :  Qv , (2.73)

where

y_ = (4[-,to-, ,4,yT,4*r,(4*, * t[*+r,*9*) ' ,4*r,4f) '

A _
A

I  0  0  0  0 0
-O*,* - r  I  0  0 0 0

0  A *  0  0  0 0
0 -i [*+r,1, I  0 0 0
0  V 6 1 1 , 6 , 4 a  0  I  0 0
0 0 - iD*+2,*+r 0 I 0
0 0 0 -Vk+2,k+1 0 I

33

B-, = (
A x + t  I  o  o )

0  0  A r + z  I )
0 0
0 0

{D : (r[-,, rT,r|+r"T+rrTnr,"T*)r

c = (Yt,, Y[*r)r

Qo :  d iag(P6-116 - t ,Q* ,  R* ,Q*+t ,  Nk+r ,  Q*+z ,N*+z) .

Equation (2.73) is given in a so-called mixed model representation, which is in the
form of observation equations with conditions on the parameter vector o. We use the
condition equations to eliminate the state variables e611 and e1.,r2 from the state vector
c. Noting that e6..,.1 = Uk+t - A*+to611 and ek+2 = Ux+z - A*+ztk+2, model (2.73)
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can also be written as

I
- iDr,r-r

0
0
0
0
0

i x-tl*-t

d*
yk

d*+,

d7x+t - Uk+t *
dt +,
d'*+z - U*+z *

V *+t,* !*

t [*+z,t+t 9*+r
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E{ ) =

0
I

A*
-  o*+r ,*
V *+t ,xA*

0
0

0 0
0 0
0 0
I O

- At+t o
- ot+2,*+i I

V*+z, t+rA*+t  -A*+z

rk -7

rk

nk+7

tk+2

(2.74)

)

with 8y as in (2.73).  From (2.71) i t  fo l lows that Qi -U;*V;, ;-r9;-r  is ident ical to -(U;-

V;,;-'r!;_) and thus to -yr. If furthermore the matrices ![; in (2.61) correspond to

the state tra.nsition matrices V;.;-1 in (2.7L), the equivalence of the state augmentation
approach (resulting in (2.7a)) and the orthogonalization approach (2.65) is established.

The main difference between the solutions based on orthogonalization and state
augmentation is that for the solution based on orthogonalization the matrices t[; not
necessarily have to be state transition matrices. In the orthogonalization approach the
condition imposed on the matrices ![; is that the tra,nsformation matrix P in model
(2.64) is of full rank. A difference in the actual application of the orthogonalization and
state augmentation algorithms is that with the former approach one obtains estimators
ixlx+t and i;a1;611, whereas with the latter approach, due to the use of the standard
Kalman fllter algorithm, one only obtains the estimator i1111111.

Sumrnarizing, two strategies can be followed in case of time correlated measutements
that result in identical estimators of the filtered state. The orthogonalization approach
is based on the differencing of correlated observables. The differencing scheme leads to
a somewhat involved filter algorithm, which automatically makes available a one-step
smoothed estimate of the state. The dimension of the state vector remains unchanged.
The state augmentation approach is based on the fact that one assumes that the time
correlated measurement noise can be modelled in state-space. Because exponentially
correlated noise can very easily be modelled in state-space, the state augmentation
approach is tailored for this type of noise. A drawback is that the dimension of the
state vector is increased to n f rn, but an advantage is that the standard Kalman filter
algorithm can be used.
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2.6.4 Time Correlated Disturbances

If a complete description of the dynamic behaviour can be given for a certain system,
the description of the dynamic model by a state tra,nsition only disturbed by white noise
is probably adequate. In practice, however, it is rather unlikely that such a model is
completely corlect, because

- A model description that takes all disturbances into account can seldom be given
(such a model requires complete knowledge of the system dynamics).

- Even if the system can be adequately modelled, a reduced system model is some-
times preferred for computational reasons.

Imperfect modelling is often compensated by increasing the variances of the fistur-
bances leafing to so-called sub-optimal fllter designs. In practice this procedure often
works quite well, but its application actually requires a careful sensitivity analysis (see,
e.g., Gorn [1974]). It has to be kept in mind, however, that time correlated fistur-
bances are generally due to imperfect modelling of the system dynamics and hence the
most obvious approach is to enhance the system model.

If the disturbances are time correlated, the system model can be given as (if one
assumes the first observation is processed at time &):

(2 .75)",1-'i;,'), [ 
.i.' Jr,rl ,,. )(:[);

where

(  i * _ t t * _ ,  \  (  I  o  o \

pn {y } - r { l  f_  l r , " r : l  
- iD . * - r  

i _  S l ;
\  do* t  -  { t *+ rdx  /  \  t [ * * r iD* , * - r  - (Qr+r , *  *  V*+r )  I  /

I  Pn_rto_,

l a * o
l o R *
I  v  x+rQ*  o

\
In the case of time correlated measurements we considered two solution methods,
namely orthogonalization and state augmentation. In this section we proceed along
similar lines and start with the orthogonalization approach.

Specifying an orthogonalization matrix in an analogous manner to (2.64) and con-
sidering three epochs we arrive at a derived model of the form

Pn{y}  :  PAc ;  D{Py}  :  PQvPr, (2.76)
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PQ oP' = diag(P*- t lk- t  tQ ktf i r ,  Nr+r) .

Since all observables are uncorrelated we can first compute the estimators of the states
o;.- 1 and c6 taking into account the observables i6-116 -t, &, and gtu. This boils down
to the computation of the estimator of the flltered state at time & and the estimator of
the of the one-step smoothed state at time ,t - 1 (cf. Sections 2.4 and 2.5). Inserting
these estimators into (2.76) results in the model

where Jk-t : P*-l*-toT,*-, Pni-r. Model (2.77) is not overdetermined and hence the
estimator of the predicted state at time ,t * l- follows directly as:

4 t 1 r l r  -  - i [ * + r O r , t - r d t - r l *  * ( i D t + r , * *  V * + r ) 4 1 *  +  d * + t - V x + t &  '  ( 2 ' 7 8 )

The cova,ria,nce matrix of the estimator can be obtained by application of the error
propagation law. Equation (2.78) reduces to the standard Kalman filter prediction
solution if V7,a1 - 0.

State augmentation provides a second method to deal with time correlated distur-
bances. The description of time correlated disturbances in state-space results in a fixed
number of additional states (namely n). Using state augmentation one tries to model
time correlated fisturbances as state variables of a fictitious linear dynamic system
which is itself excited by white noise. 

'We 
assume that the time correlated disturbances

for  &  :  3 ,4 , . . .  can  be  mode l led  as

with
E { d t } - x 1  - i l r , o c o  ;  D { & } = Q t

Model (2.79) is the discrete-time equivalent of the models provided in the literature
for the continuous time case with time-correlated disturbances (cf., e.g., [Mlvnncx,
1979, Ch.4]). The covaria.nce matrix of the'extended'vector of disturbances is singular.
The vector df, is considered as an observable, random disturbance vector of which the
sample values df; arc taken equal to zero. Using equation (2.79) one can for /c = 31 4, . . .
defile the augmented system model as:

E{dk}  -  E6  -  Q* , *_ t r * - t  ;  n {y* }  :AkE*  , (2 .80)
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where

n{U} = R* rnk x rTLk

with starting values

1 0 0 0
-o r ,o  I  0  0

0 4 r 0 0
i lz , r  Or ,o - t lz , r  I  0
Vz , rOr ,o  - (V r , t  *  Oz , r )  0  I

0  0  0 A z

N2 N2

N2 N2

Rz

Estimators of the predicted and flltered augmented state can be obtained by means of
the standard Kalman filter algorithm. The equivalence between the orthogonalization
and state augmentation approaches can be proven along similar lines as was done for
time-correlated measr:rement noise in the previous section. The proof is trivial once
one sees that model (2.79) can be transformed into the following model:

, + (  4 i  ) t =  ( ' * ) -  ( * * , : - ,  -  0  )  ( ' - - '  ) ; r { ( q l \ t = ( N :  
n \

' \ d r l '  
\ r r /  \  0  i D * , * - r  / \ E * - t /  

' \ d n / '  
\  0  ; )

( 2 . 8 1 )
If one deletes the parameter d6 from the augmented state model (which can be done
using the condition d* = xt - O*,*-r c7.-1 in (2.81)) one finally obtains a model identical
to  (2 .76) .
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2 .6 .5  Summary

In this section we considered four possible types of correlation and their impact on
the fllter solutions from a least squares point of view. We showed that for the cases
with mutually correlated measurements and d.isturbances results could be obtained in a
straightforward manner. The cases of time correlated measurements and fisturbances
could be tackled by means of state augmentation and orthogonalization. For the case of
time correlated measurements we explicitely demonstrated that the orthogonalization
and augmentation approach lead to identical results. State augmentation results in
a larger dimension of the system state, but facilitates the use of standard Kalman
fllter software as it leaves the model underlying the Kalman fllter basically unchanged.
Orthogonalization corresponds to the differencing of successive (correlated) observables.
Using such differencing schemes, however, requires alternative filter algorithms, which
have been derived in this section.

2.7 Model Nonl ineari t ies

The Kalman filter and the equivalent least squares solutions are all based on linear
models. In the well-known formulation of K.q.LIvIA.I,{ [1960] this implies that both the
dynamic model and the measurement model are linear. In the least squares approach
this means that the observation equations or the condition equations are linear. In
practice we often have to deal with nonlinear functional relations, for example:

E{4,}  -  tk  -  d* .* - t ( t r - t  )

and

n{U} :  A{ rx )  ,

where it is assumed that the noise enters in an additive fashion. For many applications
the dynamic model is approximated by a linearized model. If one asslunes that the
state trajectory is rather smooth, one can, by choosing a suitably smallupdate interval,
approximate a nonlinear dynamic model by a linear model. Most geodetic measurement
models, on the contra.ry, are nonlinear. It is therefore important to have methods to
assess the amount of nonlinearity in nonlinear models. Besides it is useful if one can
proof that a linearized model is a sufficient approximation (in that case rtre can use the
estimation procedures for the linearized observation and condition equations).

In this section we first briefly consider the impact of nonlinearities on least squares
estimators and discuss the Gauss-Newton iteration scheme. Then nonlinearities in the
Kalman fllter are discussed starting with nonlinearities in the measurement model.
Also the case of a nonlinear dynamic model is briefly fiscussed. Finally, the case with
a combined nonlinear measurement and dynamic model is discussed. The section is
concluded with some remarks on the practical aspects of dealing with nonlinearities in
the fllter models and a brief sumrnarv.



2.7 Mod,el Nonlinearities

2.7.L Nonl ineari ty and Least Squares

For models with nonlinear observation equations of the form E{y} = /,(c), one can

make a fistinction between two types of nonlinearity [Tnur.rlssnN, 1989a]. Firstly

one has the nonlinearity related to the chosen parametrization, that is the nonlinearity

which is nof invariant ulder a change of variables in ,4(c). If one considers, for example,

the tracking of a survey vessel with a tachymeter, and the position of the vessel is

expressed in pola,r coorfinates relative to the tachymeter, the measurement model

is linear. A position expressed in rectangular coordinates will inevitably result in a

nonlinear measurement model. Secondly, nonlinearity can be due to intrinsic properties

of the map ,4,(c), that is the n-dimensional manifold (described by the map d(c) for

various c) embedded in the dataspace R^ is nonlinear.
In most practical cases it is impossible to find exact nonlinear equations for nonlin-

ear least squares problems. There exist, however, useful approximations that describe

the biases (due to nonlinearity) in the least squares estimators. These biases for mod-

els based on observation equations and condition equations are given in [TnuNIssnu,
1989a] and [TnuNrssEN AND KNIcxvrnyER, 1-988] respectively. The importance of

these measures, which can be analysed in the design phase, is that one can assess the

amount of non-linearity in the least-squares estimators. TeuNIssEN AND KutcxtvtovoR

[1988] also provide an approximation of the covariance matrix of the (non-linear) least

squares estimator.

2.7.2 The Gauss-Newton I terat ion Scheme

For practical applications we must now define a processing strategy. If the bias due

to nonlinearities is significant, one has to be careful in applying the linearized least

squares approach. Because the models are usually approximated by a first order Taylor

expa,nsion, iterations are necessary to obtain less biased estimates. Iterations for least

squares problems for models specifi.ed in terms of observation equations are generally

performed using the Gauss-Newton iteration scheme
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f o r i = I r 2 r . . . ,

(2.82)

where i denotes the iteration step and. 0,A(i;) is the Jacobian of ,a(.) evaluated at i;.

For a discussion on other iteration schemes see [TnuNIssEN, 1989b]. To test whether

the iteration should be continued or not one needs a termination criterion. A criterion

for the Gauss-Newton method, which is invaria.nt to a change of variables, is

l l i ; + r -  i ; l l s ,  1 e  ,  ( 2 . 8 3 )

w i t h | | i ; 1 1 * i ; | | q , = @ a n d ' w h e r e e i s a p r e s e t t o l e r a n c e
level.
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Some additional remarks concerning nonlinearities in least squares problems can
be made. Firstly, Tpunrssol [1985; 1989b] has given a geometric interpretation of
nonlinear least squares problems. Secondly, a large drawback of iterative schemes is
that the computational load of the algorithms cannot be predicted. Therefore it might
be necessary to specify a maximum number of iterations as an additional termination
criterion for the iterations. Thirdly, one can approximate nonlinear models by higher
order Taylor expansions, but then the estimation procedures have to be adapted. A
fisadvantage of higher order approximations is, in general, the large computational
burden associated with them.

2.7.3 Nonl inear Models in Kalman Fi l ter ing

The aspects of nonlinearity discussed so far pertain to least squares problems in general.
In this section nonlinearity is discussed for filtering problems. Although in the strict
sense Kalman filters are by definition based on linear models, the term Kalman filtering
will also be maintained in the case of nonlinear models. We will first consider the case
of a nonlinear measurement model. In geodetic practice a nonlinear measurement
model is the rule rather than the exception. Then we consider a possible nonlinear
dynamic model and finally the situation where both measurement and dynamic model
are nonlinear is considered. It will be shown that the methods we fiscussed for nonlinear
least squares problems in general, lead to solutions for the nonlinear flltering problems
directly.

Nonlinear Measurernent Model

We consider the following model with non-linea.r observation equations (cf. eq. 2.26):

(2.84)

which is of the form E{y} = A(r). If the estimator of the predicted state is based
on measurements prior to time &, the matrix P*l*-t is an approximation (due to the
non-linea.rity) of the actual covariance matrix of the estimator of the predicted state.
Estimates of the system state can be obtained by the straightforward application of
the Gauss-Newton iteration scheme (2.82):

irl*,;+r = irl*,, +

Pa*,; [Pa]-,  ( i*u.- ,  -  i* l* , ; )  1 0,A6(ip1l" ,r)rE; l  @* - A*( i*w,) l

for i  = L,2,. . . ,  where Prl* , ;  = ( f6; i_r - f  0,A6(ia1fr , , )r f t ; l  0,Ap(&pp,, ;))*1 and with
i*lt,o = i*l*-t. After some rearrangements one finds that

i *1* , ;+ t  =  i * l * - t  I  K* , ;+ r (y*  -  A* ( i * l * , ; ) -  0 ,Ap( ip1* , ; ) ( i * t * - r  -  i * l * , ; ) )  ,  (2 .85)

" t ("^[- ' ) t  
= (  ̂ i r la) ' (  r*r- '  

o- )  ,
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where K*,;+.r  :  P*l*- t0,Ap(ip11,,) t(A* t  0,A6(i61*, ;)P*l*-r0,Aa(i611,, ;) t )- t .  The co-
variance matrix of the estimator of the flltered state at the (i + 1)th iteration step is
approximated by

P*lx;+t = ( I  -  K a1. ' r10,Ap(i t t* , ; ))Prt*- t ( 2 . 8 6 )

The time update equations of the Kalman filter remain unchanged. Note that, except
for the update of the flltered state (2.85), the formulas of the measurement update
of the linear filter can be used with the design matrix .47, replaced by the Jacobian
O"Ax(.). The recursive scheme (2.85) is also obtained if one starts from the model with
condition equations (cf. eq. 2.36)
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(-r I )E{  (
Ax(ut*-r)

yk )r
- 0 . (2 .87)

If no iterations are performed (i = 0 in eq. 2.85) and i*l*,3: fr*l*-t, the result is
called an eatended Kalman filter (EKF). If no iterations are performed and i*l*,o: ,*,
with 27. some externally provided (approximate) state trajectory, the result is called a
l inearizedKalman f i l ter (LKF). I f  i terat ions are performed ( i  = 0,L,2,. . .  in eq. 2.85)
and i61s,6 : i*l*-t the result is called an iterated eutended Kalman filter (IEKF).

In general it is fifficult to predict the number of iteration steps that is necessary to
comply with the convergence test (2.83). As the IEKF follows from the Gauss-Newton
method it also has the (local) convergency characteristics of the Gauss-Newton method.
TnuNIssnr,t [1991] has shown that the IEKF has a local linear rate of convergence and
derives an upperbound of the linear convergency factor for the IEKF. This upperbound
can be evaluated in the design phase of the filter and allows the prediction of the number
of required iteration steps.

Nonlinear Dynarnic Model

For many applications the dynamic model is approximated by a linear model. This is
possible if the state trajectory is smooth enough and a suitably small update interval is
chosen. In practice the system noise is often used as a useful, although artificial, method
of accounting for (among other things) neglected nonlinearities. In general the dynamic
model can be derived from some continuous time model, which models the dynamic
behaviour of the system under consideration. Dynamic models often are nonlinear, as
forces often act in a nonlinear manner on systems. In this section we assume that an
equivalent (nonlinear) representation in discrete-time is available, that is the dynamic
model is characterized by nonlinear diference equations. Although the fiscretization of
the system dynamics might be troublesome due to the nonlinearities, this approach is
followed in order to maintain our description of the Kalman fllter in discrete-time. For
some applications the use of so-called continuous-discrete fllters, where the dynamic
model is given in continuous time (i.e. by differential equations) and measurements are
available at d,iscrete-time instants, is to be preferred, for instance when the force model
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governing the system is available, but for these type of fllters the reader is referred to

the literature. We thus assume that the dynamic model can be described as:

E{4}  =  ak  Qt . t  - t ( r r - r  ) .  (2 .88)

From (2.88) the following estimator of the predicted state can be derived

(2.8e)

This est imator is not unbiased because E{Qr,*-r( in-r l t -r)}  I  d*,*-r(E{s*-r t*- t}) .
An approximation of the covariance matrix of the estimator of the predicted state is
given by:

P* l * - ,  :  0 ,Q*h- t  ( i * - r  l * - r  )P*- r  i * - ,  0 ,6rh- t  ( i * - r  l t - ,  ) r  +  Q* , (2.e0)

where 0,Qt3- t ( i r - t l r - r ) is  the Jacobian of  the n-d imensional funct ion / (z)  evaluated

at i4-1la-r. The solution given above is quite simple, because we assumed the noise

enters in an additive fashion. If the nonlinear dynamic model is expa,nded to, say,

E { d k }  =  Q * , x - t ( r * , r * - t )  ,

also the nonlinear propagation of the noise has to be considered.

Cornbined Nonlinear Dynarnic and Measurernent Model

We considered the cases of nonlinear measurement and dynamic models separately. In

practice it might occur that both models are non-linear, that is

l n * - ' t * - ,  \  (  , * - ,  \  / P * - r * - '  \
E { l  &  l } : l x t - Q * * - ' ( ' * - ' )  l ; l  Q x  l , ( 2 . e 1 )

\  s_  /  \  A* ( " * )  /  \  Ro l

which is of the form E{y} : f @). For this model we can partly proceed in the sarne
way as we did for the linear case, namely by executing the time and measurement
updates sepa.rately. The estimator of the predicted state and its covariance matrix are
obta inedbyapp l ica t ionof  (2 .89)  and(2 .90) respec t ive ly .  Basedonthees t imatoro f  the
predicted state one can then apply the Gauss-Newton iteration scheme to model (2.84).
An alternative approach is to apply to Gauss-Newton iteration scheme to model (2.91)

directly. One then not only improves the nonlinear measurement update (as with the
IEKF), but one also improves the time update. (One thereby obtains an estimator
of the smoothed state at time /c - 1.) The application of the Gauss-Newton iteration
scheme to (2.91) leads to an algorithmidenticalto the so-called Iterated Linear Filter-

Smoother [JazwINsxI, 1970]. The iteration scheme can be given as (the derivation wiil
not be given here):
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i * l r - r , ;  =  d@*- t l , r , r -1 )  +

0 ,d* , * - t ( i * - t  I * , ; - r  ) ( t * - t  l * -1  
-  i * - t  l * , ; - r  )

i * l x , ;  :  i * l * - r , ;  +  K* , ; [ y t  -  A* ( i * l * , ; - t )  -

0" Ap(i  p11,-t , ; )( i r l*- t , ;  -  f  * l* , ; -r  ) ]
i x-rl*,;

f o r i = L r 2 r . . .

(2.s2)

(2.e3)
(2.s4)

with

K *, ;  = Pt11, -1, ;0,  A,r  ( i* l*-  r , ;  )r  ( i?* + 0, Ap(i  a1a - t , ; )  Pxl , ; , ;  0, ,4r (  i r l*- , , .  )r  )  
-  t

Pxl*-r , ,  :  0,d*,*- t( i*- t l t , ; - r)P*-r l*- ,  0,dx,*- t  ( i*-r l r , ; - ,  )r  + Q*-,

Jx - t , ;  =  P*_ l l * - t0 ,d* , * - t ( i r - r l , t , ; - r )Por i - , . ,

Pxlt"-r,o : P*l*-t

i * - r 1 t , o  =  i * _ t l * _ ' r

i *1* ,0  =  i r - r l * - r  *  d@*- t | * - t )  .

The covariance matrix of the estimator of the filtered state is given by (2.86) and
only has to be computed once the iteration process is terminated. Furthermore the
covariance matrix of the smoothed state at time /c - 1 does not have to be computed
explicitely. The slight difference with the algorithm given in [ibid.] is due to the fact
that we assumed a fiscretized, nonlinear dynamic model. Note the resemblance of
(2.93) with (2.85), and of (2.94) with the smoothing formula given in Section 2.4.

2.7.4 Pract ical  Considerat ions

Working with nonlinear models also requires the assessment of the amount of nonlin-
earity. It is, however, very difficult to give general guidelines to judge to what extent
linearized models are adequate for Kalman filter applications. Tounlssell [1989a] shows
that the amount of bias in the estimators is a function of the precision of the observables
(as given by o'Qu), and the parametrization and nonlinearity of the maps ,4(.), BT(.),
or ,F(.). In [ibid.] measures for diagnosing nonlinearity are given. These measures can
be computed in the design phase of a fllter. The biases of the estimators can often be
decreased by the choice of a suitable parametrization, high measurement precision, and
low system noise.

Kn pss [1980] gives an extensive overview of nonlinear filtering, also covering, among
other things, higher order fi.lters. The decision which order of approximation is to be
used or which other solution may be more appropriate can usually only be determined
by extensive simulations. The same holds for the decision whether iterated or non-
iterated strategies are to be preferred. Examples of simulations are given in [Kn"ons,
1980] and [J.o.zwIllsxI, 1970]. In the case the nonlinearity in the measurement model
is predominant, these simulations indicate that the iterated extended Kalman fiIter
(IEKF) is usually the best solution. Good approximate values are available by means
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of the estimates of the predicted state. Combined with the (local) linear rate of con-

vergence of the IEKF, the number of iterations will be small.

2 .7 .5  Summary

The purpose of this section was to show how nonlinearities in the (discrete-time)

Kalman filter could be dealt with. The Gauss-Newton iteration scheme is used to obtain

actual least squares estimates. The impact of nonlinearities on the iteration schemes

for so-called extended Kalman filters was examined more closely for three cases' namely

a nonlinear measurement model, a nonlinear dynamic model, and a combined nonlin-

ear dynamic and measurement model. It was shown that the firect application of the

Gauss-Newton method resulted in the iterated solution schemes presented in the liter-

ature. Also some remarks concerning the evaluation of the biases in the resulting least

squares estimators were made. The actual evaluation of biases is, however, to a large

extent problem dependent. In this section we limited ourselves to first order approxi-

mations of the model nonlinearities. Higher order approximations were not discussed.

The decision if such filters are more adequate than the fllters presented in this section

can only be based on extensive simulations for the problem at hand. For additional

information on this topic the reader is referred to the references.

2.8 Concluding Remarks

With the least squares method one has available a powerful tool to deal with prediction,

filtering, and smoothing problems. The least squares approach provides us with a

unified and simple methodology for flltering problems. Except for the mean and the

dispersion of the observables no assumptions concerning their distributional properties

have to be made in the derivations. Consequently we can only derive the mean and

dispersion of the least squares estimators of the predicted, flltered, and smoothed state.

The somewhat limiting assumption of normally distributed observables does not have

to be made.
The derivations presented in this chapter are valid for measurement and dynamic

models formulated in discrete time. In practice most observations will be available at

discrete instants, thereby leading to measurement models formulated in d.iscrete time.

The dynamic model is, however, sometimes formulated in continuous time. To apply

the algorithms derived in this chapter the dynamic model then has to be fiscretized,

which can be easily achieved for many applications in surveying. Furthermore we fid

not discuss various filter mechanizations. (A filter mechanization is nothing but a

specific form of a filter algorithm.) Various mechanizations have been derived for nu-

merical reasons and the optimization of the computational efficiency. Mechanizations

are generally defined independently of the way the filter algorithms are derived, al-

though marry mechanizations can be directly derived using the least squares approach.

For computational aspects of Kalman filtering the reader is referred to BtpuvI.AN [1977]
and Ctt tx t19831.



2.8 Concluding Remarks

Especially in the cases of correlation between observables (Section 2.6) and non-

linearities in the dynamic and/or measurement models (Section 2.7) we feel that the

interpretation of the state estimators as least squares estimators gives a better under-

stanfing of the derived results. For these cases the link with least squares is rarely

made in the literature. A further major advantage of the least squares approach is

that the dual, equivalent formulations of models with observation equations and mod-

els with condition equations facilitate the derivation of fllter and smoothing results,

as one can choose between different least squares estimation procedures (cf. Section

2.3). If one, for example, considers multiple epochs, it is shown in Section 2.5 that

an analytical solution of the smoothing problem can be found based on a model with

condition equations, whereas a solution based on the model with observation equations

is intractable. We do not claim that the derivation is extremely simple, but still the

results follow from a straightforward application of the least squares algorithm. In later

chapters it will be seen that this form, covering multiple epochs, is very useful.
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Chapter 3

A Testittg Procedure for LJse in
Dynarnic Systems

3.1 Introduction

In the previous chapter we have shown how the real-time estimation of parameters in

dynamic systems can be executed in a least squares framework. Based on the principles

of least squares we arrived at the well-known Kalman filter algorithm. The estimation

results are optimal if all assumptions underlying the mathematical model hold. Mis-

specifications in the model wil l invalidate the results of the estimation procedure and

thus also any conclusion based on them. In practice model misspecifications may occllr

frequently, and hence the estimation procedure should be supported by a model val-

idation technique. Model misspecifications may be due to erroneous observation and

dynamic models (i.e. the functional model is not designed properly), errors in the ob-

servables (e.g. blunders in sensor outputs), or an incorrectly specified stochastic model

(e.g. the covariance matrices of the observables are not correct). In this chapter we wiII

develop an effi.cient model validation procedure for misspecifications of the functional

part of the fl l ter model, and especially errors that can be modelled as additive effects

(generally denoted as slips). In addition to misspecifications in the stochastic model,

slip-type model errors constitute the most frequently occurring type of model error in

geodetic practice. We assume that the structure of the observation and dynamic model

is correct. Methods that deal with the estimation of parts of the functional model

(usually denoted system identif ication methods in the l iterature) are e.g. f iscussed in

[Goonwm . lNo PayNp ,1977).  The analys is  of  model  misspeci f i .cat ions in  the stochas-

tic model fits in the framework of the theory of variance component estimation and

is of ten c lass i f ied as 'adapt ive f i l ter ing ' (see,  e.g. ,  ICurrv,  1979]) .  In  the l i terature the

terminology is somewhat ambiguous as the terms system identification and adaptive

filtering are sometimes used interchangeably.

Real-time estimation requires a real-time testing procedure, which can detect and

isolate model misspecifications and can be used in conjunction with the Kalman fiIter.
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We will focus on tests related to sl-ips in the functional model, i.e. so-called slippage
tests. The testing procedure will consist of three steps, namely detection, identification,
and adaptation and consequently it is called the DIA procedure. The detection and
identification steps were introduced into geodetic testing theory by TouNtssEN AND
S-lr,zM.lNN [1988;1989] and subsequently extended with the adaptation step by Tou-
NIssEN [1990a;1990b]. Although we strive for a real-time testing procedure, it will be
obvious that certain model errors can only be detected with a certain delay (e.g. 'soft'

failures). Therefore we consider the concepts of local and global testing. Local tests
only take one epoch of the dynamic system into account and are thus genuinly real-
time, whereas global tests take several epochs into account. The DIA procedure can be
implemented in recursive form and thereby global tests can efficiently be accomodated
in the procedure.

All results are presented within the framework of the theory of hypothesis testing
in linear models (see, e.g., [Kocn, 1988]). This approach facilitates the derivation
of the testing procedure using generalized, likelihood ratio tests and provides a link
with the testing procedure for geodetic networks (the so-called B-method) developed
by B.r..r.no.o. [1968]. Furthermore the testing procedure will serve as the basis of the
reliability description of dynamic systems in the next chapter. The DIA procedure will
be based on the sequence of predicted residuals (innovations), which have well defined
statistical properties if the Kalman filter operates at an optimum.

3.1 .1  Overv iew o f  th is  Chapter

We begin by reviewing the concept of hypothesis testing in Section 3.2, where we also
discuss some aspects of the optimality of the generalized likelihood ratio tests we use
in the sequel. We then specialize these findings to the filter model in Section 3.3 where
we also discuss the concepts of local and global testing. Detection, Identification, and
Adaptation are discussed in Sections 3.4, 3.5, and 3.6 respectively. The feasibility of the
B-method of testing for dynamic systems is considered in Section 3.7, and an overview
of the DIA procedure is given in Section 3.8. A brief review of and comparison with
related testing procedures found in the literature is given in Section 3.9. Finally some
concluding remarks are given in Section 3.10.

3.2 Hypothesis Testing

The testing procedure for dynamic systems we will discuss in this chapter is based on
the theory of hypothesis testing, which is described in, for instance, [Mnr,s.a. ,o.Nn Coutt,
1978; Kocn, 1"988; CasoLL.q. AND BERGER, 1990].  The object ive of hypothesis test ing
is to decide, based on the actual observations (or, in statistical terms, a sample from
the population), which of two complementary hypotheses (generally called the null (or
working) hypothesis (fls) and the alternative hypothesis (IIn)) is true. A hypothesis
is a statement about a population parameter and we will limit ourselves to hypotheses
related to the mean of random variables.
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In testing hypotheses one can make two types of errors. Firstly, one can reject the
null hypothesis when in fact it is true; this is called an error of the first kind and its
probability (a) is often denoted as the false alarm probability. The test is then said
to have a level of significance or size o. Secondly, one can accept the null hypothesis
when in fact it is false; this is a so-called error of the second kind and its probability
is sometimes called the probability of missed detection. In statistics one rather works
with the probability that the null hypothesis is rejected correctly with a certain test,
and the probability of correctly rejecting lls is called the power of the test. A test
can be optimized with respect to the level of significance or the power of the test, but
unfortunately not simultaneously to both. Our testing procedure will be based on the
well-known Neyman-Pearson principle (see, e.g., [Mnr,sA AND Cottw, 1978]), which
states that for a test with a fi,redlevel of significance, one should maximize the power
of the test. Actually we try to find the most powerful (MP) test within the class of
tests with a certain level of significance.

For simple hypotheses (which means that the distribution parameters are completely
specified under l/6 and Ha), it follows from the Neyman-Pearson theorem that the
so-called likelihood ratio (LR)-test is a MP test. Although we consider cases based
on composite hypotheses, it is worth investigating whether likelihood ratio tests for
composite hypotheses (usually denoted generalized likelihood ratio (GLR) tests) are
MP-tests within a certain class of tests as well. The generalized likelihood ratio test
stat ist ic is def ined as (see, e.g.,  IC. l .soLLA AND BnRcon, 1990]):

d?%, p,(vlo)
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)(v) = (3 .1  )max r

0  e  @ Pa \U lu )

where po(yl9) is the probability density function of the observable g given the parameter-
(-vectod 9, and where O and O0 denote the entire parameter space and the parameter
space under f10 respectively. From (3.1) follows that A(y) is in the closed interval [0,1].
Based on the GLR-test statistic the GLR-test is then defined as:

reject I10 if .\(y) ( a I accept I lo if l(y) > o , ( 3 .2 )

with 0 < a< 1. I f  a GLR-test is most powerful foral l  0 e O, then the test is cal led
uniformly most powerful (UMP). In the cited references it is stated that in general the
GLR-test is a good test, but it is not necessarily UMP. For the cases we will consider
the GLR-test is optimal within a certain class of tests, which will be discussed shortly,
and can generally be specified and evaluated in a straightforward manner. Therefore
we will restrict ourselves to testing procedures based on GlR-tests.

A consequence of the use of likelihood ratio tests is that we have to specify the
distribution of the observables, whereas in the previous chapter we could limit ourselves
to the specification of the mean and dispersion of the observables. In the following we
will assume that the observables are normally distributed, an assumption which is often
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adequate in geodetic practice, and in that case the linear least squares estimators we

derived for the predicted, filtered, and smoothed state are also maximum likelihood
estimators.

In the following we will establish some properties of the GLR-tests and we will show
under which conditions they are optimal. Unfortunately the GLR-tests we consider are

not UMP. In practice often no UMP tests of a certain size a exist within the class of
all tests for composite hypothesis testing problems. Therefore we restrict the class of

tests to be considered by means of the concept of invariance and try to find a UMP size
a test for this restricted class. Then for the cases that fulfill the invariance conditions,
the test is called a uniformly most powerful invaria.nt (UMPI) size a test. Anxolo

[1981; Ch7 and Chl3] has proven that the GlR-tests used in this report (all of which
are tests about the mean) are actually UMPI size a tests. His proof is, however, very
technical and requires mathematics beyond the scope of this report. Therefore we will

try in the following to make plausible, rather than prove, that the GlR-tests we use

are actually UMPI.

3.2.1 On Propert ies of the General ized Likel ihood Ratio Tests

This section serves to illustrate that the GlR-tests we use in this report are uniformly
most powerfulinvariant (UMPI) tests. We will begin with a very simple example and we

will then successively address the concept of invariance, hypotheses related to subsets
of the parameter vector, and suffciency. Finally, we will arrive at the tests familiar

from geodetic testing theory. In the following we assume that the size of the tests has

been fixed and consequently all tests are tests with size a.

We begin by considering an n'L x I vector of observables y that is distributed as

follows:

Y- -  N(E{Y} ,o21)  ,

Hs : E{y_} = 0 ; Ht : E{y} I 0 .
with o2 known and

(3 .3 )

(3.4)

For (3.a) no UMP test exists (see, e.g.,  [Clsor, l . r .  AND BERcnn, 1990; Ch8]),  and

by restricting the class of tests by the principle of invariance, we try to find a UMP
test in this restricted class. We consider three types of invariance, namely distribution

invariance, testing procedure invariance and invariance of the hypothesis problem. If
we consider, for example, the transformation

y ' : R y , , (3 .5 )

where -B is an orthogonal matrix (i.e. ftT,R : 1), then the problem is said to be distri-
bution invariant if the form of the distribution is invariant under the tra,nsformation.
The transformed observable gtl is fistributed as N(,8{!},o'I), which is indeed of the
same form as (3.3). After the tra.nsformation (3.5) the null and alternative hypothesis
read Ifs , E{{} = 0 and H1: E{yt} I 0 and are similar to (3.4), so that the hypothesis
problem is also invariant under (3.5). Finally the testing procedure is said to be testing
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procedure invalia.nt if for any sample of y that leads to rejection of I/6 also the sample

of y' leads to rejection of Hs and vice versa. The test must therefore be invariant

under orthogonal tra.nsformations and consequently the critical region of the test must

be (hyper-)spherical with its centre at the origin (we already saw that an orthogonal

tra.nsformation maintains the distribution and hypothesis problem invariance). Such a

critical region can be obtained if we consider test statistics of the form ?(y) : (yT y) I o'

and we will consider optimality properties of this test statistic.

If y is distributed accorfing to (3.3), then ?(y) = f ylo'is distributed as

r(y)  -  x2(*, . \ )  wi th  ̂  -  E{Y L{Y} .

In fAnrvor,o, 1981] and [C.r.snr,LA AND BeRcoR, 1990] i t  is stated that i f  the rat io

nr6yQ@)l\a)
(3 .6  )pztr l ( " (v) l )o)

is an increasing function of 
"(y) 

for )a ) )6, the test that rejects Hs if T(Y) > k.

(where &o is the critical value of the test and is a function of the size a) is UMP

for testing Ilo : .\ = lo versus Ha : )a ) )0. Inserting f @) in (3.6) and using the

definition of the X2-probability density function, it can be seen that the ratio
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(3 .7 )

(where f (.) denotes the gamrna-function)is an increasing function of ?(y) for all.\a )

0. In our particula.r example (3.4) corresponds to llo : ) = 0 and Ila : .\ > 0, and thus

the test

reject Hs rf T(y) = v+ > ko i accept H1l if T(y) : YJ I ko , (3.8)_  \ d ,  
d , 2  O z

is indeed a UMP test. Having asserted that (3.8) is a UMP test for the case Ifs : .\ = 0

versus H I : ), ) 0, this means that (3.8) is a UMPI-test for (3.4), and is invariant under

the orthogonal tra^nsformation (3.5). We will now show that (3.8) is also a GLR-test'

Based on (3.a) and the fact that y is normally distributed, the GLR test statistic (3.1)

is

(3 .e  )

PrOp(Y) l^a)  , )o .  S
t(,I4trD 

- exP(T'k

_ 1u)-7@2)-T exll-_l,:hyry) _ exp(_ fiuril.-  
(h)-? 1oz1-T 

---r \

The GLR-test (3.2) directly follows from (3.9), and can be written as

,,T ,,
reject Ho if - ) Ina-" i

and is  ident ica l  to  the UMPI- test  (3.8) .

CI
ilz t

)
m
2

-
)

) 'r(
T

(v
ry"

T

(

accept  u"o+ l - l r .a -z  , (3 .  1o  )
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We thus have shown that the test we have derived using the invariance restrictions
coincides with the GLR-test, and with (3.6) the GLR-test is also shown to be UMPI
for (3.a). In the subsequent discussions we will assurne that o2 is known and is equal

to one, and we will now consider some more general cases.
In the testing problems we will consider the specification of the hypotheses is usually

related to subsets of the parameter vector. Assume, for example, that the vector y can

be partitioned in two subsets and is distributed as

( 3 . 1 1  )

with
H 0 :  E { 4 }  =  0  i  H t :  E { y r ] r  l 0  .  ( 3 . 1 2 )

If we consider a transformation of the form y/ - Ry f r (where r? is an orthogonal
matrix and r is an rn x 1 vector) then 3tl is distributed as:

If Rn : 0, 12 : 0, and R22 is orthogonal, it follows that the hypothesis problem is

invariant, because then (cf. eq. 3.12)

H t ) :  EUr j  : 0  ;  Ha :  n {y t " }  I  O . ( 3 . 1 4 )

The observables y! ar.d yt, are uncorrelated and hence f@) : y']!', is also a GLR
test statistic, because with (3.1a) the maximization of the likelihood ratio over all

parameters (cf. eq. 3.1), is identical to the maximization over the parameters E{{"}.

Based on (3.10) the GLR test

( 3 . 1 5 )

is a UMPI test for (3.12), and is invaria,nt under the transformation (3.13) with the
conditions given above. Besides it is apparent that the testing procedure is invariant

under a wide range of tra.nsformations related to E{y.,}.
Next we consider the case where additional parameters n{W} are part of the model

(3 .16  )

(a)_.,(( EIi," l) ,(;  ?),,

G)- "(( fr::""1t:iIfr;:fl1?lI;:) ,(; ? ), (3 13)

(il)-',(1i.i) (i ; r),

reject n" ,t 
S 

) lna-21 accept n, t 
$ 

l lna-2 ,

with

ns :  E{yr}  = 0 and n{W} :  0  ;  Ht ,  E{yr}  I  0  and E{s. }  = 0. ( 3 . 1 7 )
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In this case model (3.16) can be reduced to model (3.11) by sfficiency, because the

parameters contained in E {q} have no impact on the testing problem at hand. Con-

sequently the UMPI test for (3.17) is identical to the GLR test (3.15).

Finally we will consider the case generally encountered in geodetic practice, where

the rn-dimensional vectot of observables y is distributed as
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Y--  N(E{Y} ,Qo)  ,

H s : E { y } e  n @ ) ;  H t . : E { y ) e  R ( A : C ) ,

( 3 . 1 8  )

(3 .1e)

(3.20)

and where ft(,A) c R(A: C) C R^ and we asslune that dimB(A) = n and dim,R(C) =

b with nlb 1 rn (R(X) denotes the range space of the matrix X). Based on the findings

given above we will indicate how a UMPI test for (3.19) can be found. The basis vectors

of the spaces R(A), R(C), and R(,4. : C)r span R^. The range spaces n(/,) and r?(C)

which span R(,4 : C) are not necessarily orthogonal. By means of the transformation

e -- PlC, where Pra is the orthogonal projector onto -R(,4.)r, the range space R(,4. : C)

can also be thought to consist of the subsets -R(,4) and ,R(d) with R(4)Ln(e). Given

these definitions one can now consider a matrix in R^, say, .R for which holds that

RTQ;IR : I and that can be partitioned as (-81 ,Rz,Rz), where each -R; has the

property that R"[ Q;' R; :1. The columns of -R1, Rz, Rz lie in the spaces R(A)' R(e),

and .R(,4 : C)a respectively. One can then consider the tra,nsformation

{  :  R ' Q ; ' Y  '

where the vector y/ is distributed as (cf. eq. 3.18):

(3.22)

(3.23)

(3 .21 )

The null and alternative hypotheses are now specified as (cf. eq. 3.19):

Hs :  EUr \ :  0  and E{4}  =  0  i  H t ,  EUr}  I  0  and E{yL l r  :0  .

This testing problem is similar to (3.17) and can be reduced by sufficiency to (3.14),

for which the GLR test statistic (of the UMPI test) was shown to be ? : yf yir. using

(3.20) and the fact that R(R;)Ln(Ri) for i, i -- L,2, 3 with i I i ' it follows that

T : y']y"
= f q;' nrRTei'y .

Taking into account the facts that n(d) = R(Rz) and that nTQ;' Rz = I, it follows

that R2R[Q;1 t^n be written as R2(R[QitRr)-tRTQvl, which corresponds to the

3r)- ' '(\ i*i) (i; l) '
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definition ofthe projector Pp, (cf. Section 2.3) and thus to the projector P". Inserting

the definit i  on of P7 =e (d Q;le)1er Q;1 with e = PiC in (3.23), one obtains

r = y_r Q; 'Pic(cr Pi 'Q; 'e;c1- 'c 'Pi 'Q; 'y,

which, using the results given in Table 2.1,, can also be written as

r  = t  e u, c(c,  e; '  e ee o1 c)- t  c '  e; '  e . (3.24)

Equation 3.24 is the well-known test statistic for b-dimensional hypotheses based on

the model of observation equations (see, e.g., [Kox, 1984]). Using the results of Sec-

tion 2.3, the test statistic (3.24) formulated in terms of the equivalent model of condition

equations is:
T  = L r e , l B r c ( c r B e ; ' B ' t c ) - t c ' n Q , t t .  ( 3 . 2 5 )

With (3.24) and (3.25) we have available the GLR test statistics of the UMPI test for

(3.19). In the next section we will specialize this result to the Kalman filter model.

3.3 A Testing Procedure

The purpose of this section is to introduce the concepts of a testing procedure for use

in dynamic systems and to apply the results of the previous section to the Kalrnan

fllter model. We start by fiscussing the concepts of local and global testing. We then

fiscuss the specification of the alternative hypotheses in terms of predicted residuals.

As stated in Section 3.1 we are primarily interested in model errors that can be classified

as slips. We will see that the Kalman filter provides a linear relationship between the

predicted residuals and slip-type errors. The straightforward specification of model

errors in terms of the predicted residuals combined with the well defined statistical

properties of the predicted residuals (cf. eq. 2.9 and Appendix A) render the predicted

residuals extremely suitable for model validation pu{poses. Moreover the predicted

residuals (and their covariance matrices) are readily available from the Kalman filter.

The GlR-tests are based on the predicted residuals and correspond to the GlR-tests

which were described in the previous section.

3.3.1 Local and Global Model Test ing

In the class of slippage tests we make a distinction between local rnodel testing and

gtobalmodel testing. We speak of local model testing when the tests performed at time

,b only depend on the predicted state at time /c and the observations at time k. If the

test takes more than one epoch into account we speak of global model testing. The

difference between local and gtobat testing is depicted in Fig. 3.1. From the definition

it follows that in contrast with the global tests, the local tests can be executed in real-

time. One way to perform global tests is to apply a batch type solution for a batch

of collected data. Better results than for local tests can be expected as smoothing is
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Figure 3.1: Local (top) and Global (bottom) test statistics.

involved. The disadvantage of batch solutions is however, that the test statistics are

only available with a delay, and more importantly, the recursiveness, which makes the

Kalman filter algorithm so attractive is lost. In the sequel we will show that the global

tests can also be executed in recursive form. Besides we think that a small delay in

detection and identification is acceptable, because after all it may be more important

in practice to detect a possible misspecifi.cation with a delay, than not to detect it at

all.

3 .3 .2  Spec i f i ca t ion  o f  A l te rna t ive  Hypotheses

If we limit ourselves for the moment to a batch of observables in the time interval from

I to lc, we will consider model errors of additive nature to the vector of observables

Ut = (u[r-r ,uj ' ,d[*r ,a111,. . . ,4,g;) t .  An out l ier in a single observable g; (with

I < i < /c), for example, can be parametrized as

n{a} :  A&i + c 'Y '

where c, is a rn;xL vector and V is an unknown parameter. In general terms a slip type

error in the observables in the time interval [/, . . ., &] can be parametrized as follows:
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Y y :

D f = , ( " l m ; ) x L Df=,(" l- rn;)
C a V
x b  6 x 1  )

( 3 . 2 6 )

with the full rank matrix C, known, the b-vector V unknown, and 1 < b < lf=1@1 m;).

Based on (3.26) one can specify the null and alternative hypotheses as (cf. eq. 3.19):

H o :  y _  -  N ( A c , Q o )
(3 .27)

H t :  N ( A x I Y y , Q ) .
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Note that we assume that the observables are normally distributed. In the previous

section we have seen that the appropriate test statistics for (3.27) are given by (3.2a)
or (f .ZS). The latter form is obtained if we assume that the Kalman fllter has been

derived from a (linear) model of condition equations, viz:

n r n l y y = s ;  n { y } : Q o . (3.28)

This shows that if the model error Vy is an element of the null-space of ,aT (i.e.

Vy e N(BT)) the testing procedure cannot detect slips in the observables, because

then BT(E{g} +Vy) :0, and therefore we assurne in the sequel that V3r is not an

element of N(BT). (This is in accordance with the specification of the alternative

hypothesis in (3.19).)  Instead of direct ly using the test stat ist ics (3.2a) or (3.25),  we

will first show how the model error defined by (3.26) can be written in terms of the
predicted residuals.

From (3.28) follows that (3.27) can also be written as:

N  N(0 ,  B . f  QaB)
(3.2e)

Ha :  t -=  Br  (y+  CaV)  N N(BrCaV,B 'Q.B) ,

where ! is the M xL (with M:Df=trn;)  vector of misclosures and B'C, is aknown

M x b matrix. In Section 2.5.1 we established the one-to-one relationship between the
predicted residuals and the vector of misclosures, namely

L = L a , (3 .3  o  )

with .t a square and full-rank matrix. Equation (3.30) enables us to specify the hypo-

theses (3.29) as function of predicted residuals, viz:

H o :  a  N  N ( 0 , Q " )

H 1 :  a  r y  N ( V o , Q , )  ,

( 3 .31 )

where  Qu =  L- IBTQ,BL-T =  d i .g (Q, , , . . . rQ, r ) ,  and the  M xr  vec tor  Vo can be
parametrized as

H o :  L :  B T  y

with

Y u : C , Y ,

cu = L-|BT ca .

(3 .32)

(3.33)

The (M x b) matrix Cu can be partitioned as

C,  :  (C[ , ,Cf , * r , .  . . ,Cf l ) t  ,

and is assumed to be known and of full rank 6. In Section 3.5 we will show how the
matrices Cun can be computed efficiently in a recursive manner. The hypotheses (3.31)
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cover the time interval [], . . ., ,t] and are called global hypotheses. If the hypotheses are
limited to a single epoch &, the hypotheses (3.31) reduce to the /ocolhypotheses:

Hok :  ap  tu  N(0 ,  Q"* )
(3 .34)

H A k :  l k  N  N ( V u 6 ,  Q u * )  ,

where Vo6 can be parametrized as CurY.

3.3.3 Test Stat ist ies for IJse in Dynamic Models

With (3.31) and (3.3a) we have specified the null and alternative hypotheses in terms of
the predicted residuals, and we now introduce the test statistics of the DIA procedure.
Using the relation between the misclosure vector and the predicted residuals (3.10), we
can wri te the GLR test stat ist ic (3.25) of the UMPI tests for (3.31) and (3.34) as:

T :  ar  e,1 L-1 Br cy(cl  n r '  e; l  L-1 Br co1-t  c l  n r '  e; t  y .  (3.35)

By thereupon inserting (3.33) in (3.35) the GLR test statistic can be written as:

T = ar e;|c"(cj e;t c,)-, cj e;, p_ , (3.36)

(3 .37 )

and consequently the UMPI (GtR) test for testing f16 against -F14 reads:

Reject //o in favour of H 1 if ur g;1 C,(CI Q;t C,)-t CI Q;', > ko ,

where ,to is the critical value. The critical value of the test can be derived from the
fistribution of the test statistic (3.36). From (3.31) and (3.36) it follows that 7 is
distributed as:

H o : ,  T  N  X 2 ( b , 0 )
(3 .38)

H t :  T  N  X 2 ( b , ^ )

with 1 < b < M. Thenon-centrality parameter

^  =  v rc :  Qurc ,Y , (3 .3e)

is obtained by substituting C"V for o in (3.36).
The GLR test (3.37) could also have been obtained by inserting the likelihood

functions of the predicted residuals under 116 and H1 (cf. eq. 3.31)

Ho:  po@) = (2r) -u/zp, l -1 /z  exp{-  Lr rQ; t r }
(3 .40)

H,c, :  p . , ( r lV)  :  (2r ) -u/z1q, l t lz  exp{-  } (u  -  C"V) 'Q; t (o  -  C,V)}  ,

in (3.1) and (3.2), where (3.1) has been replaced by the likelihood ratio

)(o) :  PY(u)
max

v e Rb P!\ulv )

5 7

( 3 . 4 1 )
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With

where
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"1%, 
po(,lv) : p,(olv),

n -- QI e;'c,)- 'cI e;'y ,

(3.42)

(3.43)

is the maximum likelihood estimator of V (which because of the assumption of normally

distributed observables is also the least squares estimator), the GLR test given by (3.2)

can then be written as:

Reject Hs \ f  ar Q;t ,  -  ( ,  -  C"v) 'Q;11u - C,v) )  lna-z, (3.44)

which after inserting (3.a3) in (3.aa) is identical to (3.37).

Ho

Figure 3.2: Predicted residual space with metric Q;l and the two hypotheses fls and

H 1 .

If one assumes that in RNt theinner product is defined by Q;', the test statistic ?

(given by 
"q. 

3.36) can be interpreted geometrically (cf. Fig. 3.2) as the square of the

length of the vector that follows from projecting u orthogonally on the range space of

C, viz;
T : llpc,yllz ,

where we have used the definition of the orthogonal projector

Pco = c"(cIQ;tc,)- 'c jQ;t  .

I f  C, is square and of ful l  rank ( i .e.  rank(C,):  M), (3.45) reduces to 
"  

:  l lq l l2.
The likelihood ratio test (3.37) is based on the fact that the complete covariance

matrix Q, is known. In the case the covariance matrix Q, is known up to an unknown

scale factor (i... Q, can be written as o2Q, with @, known), one can stil l compute the

likelihood ratio (although the likelihood functions under f16 and H1(cf. eq. 3.40) are

(3.45)

Vv : CuV
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not valid anymore). Instead the following test statistic [TourvIsson, 1990b] has to be
used (cf .  Fig. 3.2):

y_r e;lc"(c[ e; 'c,)- 'cI e; 'y
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sinz Q -

Under the null and alternative hypothesis

Ho: sirr2 $

d  Q ; ' v

the test statistic s\n2 $ is distributed

N  B ( b ,  M , 0 )

(3 .46)

as

(3 .47)
H t ;  s i n z d  N  B ( b , M , ^ )

where B(ft,fr,,\) is the Beta-distribution with fi,f2 degrees of freedom and non-
centrality parameter ). The corresponding test reads:

Reject Hsinfavour of Haif  s in2 $> B-(b,M,0). (3 .48)

Instead of the test statistic sin2 d one may also take cos2 d or tan2 d as test statistic.
Because of their functional dependency they will give identical outcomes for the testing.
It shouldbe noted that since sin2 Q: l for b = M(: Df=tm;) (cf. eq. 3.45 and Fig. 3.2),
the test statistic sinz d is only applicable for 1 ( b < M.In the following we wiII assume
the complete covaria,nce matrix Q, is known.

: CnV

HA

Figure 3.3: Predicted residual space with metric Q;1 and the two hypotheses Ils and
IIa with V known.

In our derivations so far the vector V was assumed to be unknown under Ha. A-
special case occtlrs if besides the matrix C, also the vector V is known under IIa. In this
case the problem reduces to one of discriminant analysis. A geometric interpretation is
given in Fig. 3.3. If V is known the generalized likelihood ratio test reduces to a simple
likelihood ratio test of the following form (cf. eq. 3.44):

H o
v l s i n  I
uTwn

Reject Hs i f  ur Q;t ,  -  ( ,  -  C,V)r Q;1 1a - C,V) )  ln a-2 , (3.4e)
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where a is a positive constant. After

tes t
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Reject 116 in

The test stat ist ic

f a v o u r o f H t i f

r  =v rc f  e ; '@- 'U t ,o ) (3 .51 )

is a linear function of u and consequently ? is distributed as:

Ho : T N N(-rv^rcf Q; 'c,v,vrc:Q;lc"v)

H .q :  T  I { (+ }V rC ;  Q ; tC ,Y ,v rC :Q; tC ,V )  .

If both hypotheses are equally likely, o is chosen equal to one, which corresponds to

the case that I /6 is rejected i f  l lu l ls in{ < } l lvr l l  (cf .  Fig. 3.3).  The decision rule for

discriminating between Ifs and 1/,a then becomes:

Accept Hs i f  YurQ, t( ,  -  
f  Vr l  .  0 laccept I11 otherwise'  (3 '53)

Although this test is conceptually very simple, the possibility of two fully specified

hypotheses 116 and Ha very rarely occurs in practical applications.

Local and Global GLR Tests

Now the generalized likelihood ratio test has been derived we reconsider the local and

globaltests. The test statistic for the local test at time ,b follows from (3.36) as:

rk : y[ e,r1 c, u(c:re;] c, *)- ' c:rQ;l y*

The local test of size a is now as follows:

Reject H6r if and only \f Tk > x:.(bk,O) , ( 3 .55 )

where X2.(bt ,0) is the upper o probability point of the central 12-distribution with 6t

degrees of freedom, with 1 1 bp 1 mp.

The appropriate global test statistic for testing the two (global) hypotheses given

by  (3 .31)  i s

/ ,*  :  ar e;1 c,(cI Q; 'c,)- t  cI  Q; 'v. , (3 .56 )

and the global test of size o is as follows:

Reject f ls i f  and only i f  TI 'k > xZ&,0),  (3 '57)

with 1 < b < M(= lf=1m;). The test statistic (3.56) is not yet in a form which

is suitable for real-time applications. From the fact that the predicted residuals of

some rearrangements one arrives at the following

I

v ' c lQ; t@ -  
uc"v )  >  Lno- ' .  (3 .50)

(3.52)

(3.54)
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different epochs are uncorrelated (cf. Appenfix A) it
written as:

61

follows that (3.56) can also be

(3 .58 )
k k k

Tt'k = tt ctt e;'q;lr[D cf,e;,'cu,f-'lD,cI,e;,'y,) .
: - t

It will be seen that this simplification is essential and facilitates the derivation of global

test statistics with batch type properties in recursive form.

In the following section we will develop local and global test statistics for certain

classes of alternative hypotheses. For most practical applications two particula,r forms

of ?fr and TI'k are of special importance. Overall model tests correspond to the case

that 66 - rnk in (3.55) or 6 : D!=trn; in (3.57). Slippage tests for identification
purposes are often related to one-dimensional hypotheses, i.e. b* = 1 or 6 = 1 in (3.55)

and (3.57) respectively.

3.4 Detect ion

In the detection step of the DIA procedure one checks the overall validity of the null

hypothesis. Therefore the tests associated with this phase are called ouerall rnodel tests,

and are used for detecting possible unspecified model errors in I/0.

We first consider local overall model (tOM) tests. If 6; is chosen to be equal to

m4, the vector Vu6 of (3.34) remains completely unspecified. The matrix C,* becomes

a square, non singular (and thus invertible) matrix and can be eliminated from (3.54).

Consequently the LOM test statistic becomes

r* = deiw (3.5e)

The local overall model (tOM) test for testing the hypothesis Ilo* versus H4r is:

Reject l/gk if and only if Tk = u[Q;:up > y!.(mp,0) . (3 .60)

In a similar fashion the global overall model (GOM) test can be derived. If b is

chosen equal to D!=t*; the matrix C, in (3.32) becomes square and invertible and can

thus be eliminated from (3.56). Using the property that the predicted residuals are

uncorrelated between epochs the test statistic (3.56) can be written as:

T t 'k : luTQ;, 'u ,  (3 .01)

whichunder f l6and H l is  d is t r ibu tedasg iven in (3 .38) .  F rom(3.61)  i t fo l lowstha t

the GOM test statistic can also be computed recursively as:

T t ,k  =  T t , * - t  1Tk (3.62)
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The GOM test stat ist ic reduces to the LOM test stat ist ic (3.59) for I  = k.  The test
statistic covers the complete mathematical model up to & if I is chosen equal to one.
The global overallmodel (GOM) test for testing the hypothesis IIs versus Hais:

kk

Reject fls if and only if TI'k - D"7 Q;,t r, > xZ(D,nzi,O) .
t = l  t = l

(3 .63)

3 .4 .L  Prac t ica l  Cons idera t ions

Although the global detection test statistics can be computed efficiently in real-time
(the predicted residual u;b and its covaria.nce matrix Qu1" are readily available during
each measurement update), there may still be the practical problem of a delay in time
of detection. Besides the detection test statistics cannot be directly compared.

k
I 71,1

0

T1 ,3  T1  ,4

72,3  72 ,4

7'3,3 7'3,4

74,4

a

a

?3,4

T4 '4

I
J

--+

T1  ' 2

72 ,2

l c +

T1 ,1  71 ,2  .

7 2 , 2  7 2 3

73,3

( b )( " )

Figure 3.4: The detection test statistic ?/'a with (a) no window, (b) a moving window
with N = 2.

From a practical point of view it is impossible to compute all detection test statistics
?''A starting at I : 1 for all & > I. This situation is shown in Fig. 3.4a. In order to
reduce the number of computations and the delay time of detection, it is worthwhile
to introduce a moving window of length N by constraining I to k - N + I < I < k.
This is shown in Fig. 3.4b. With this window the delay time of detection is at the most
equal to nf - 1. When choosing .lf one of course has to make sure that the detection
power of the test statistic ?fr-N+1'fr is stil l sufficient. This is typically a problem one
should take into consideration when designing the filter. The choice of windows for the
detection tests has to be in accordance with those of the identification tests. which are
discussed in the next section.

Once a window for the detection tests has been chosen one has to be careful in
drawing conclusions from the test results. First of all it is impossible to Specify the
type of model error which caused the rejection of the null hypothesis. Furthermore it
is difficult to infer at which epoch the model error occurred, i.e. the tirne of occurence
I. Under the null hypothesis the test statistics Tt'k witln / in the interval k - N + 1 <
/ ( are all distributed as X2(b,0), but the degrees of freedom b are diferent for each
overall model test and consequently the test statistics cannot be directly compared. A
comparison can be made if one normalizes the test statistics with respect to the critical
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values of the associated test. For each test the critical
from the central 12-distribution with 6 degrees of freedom.
statistic 

"fi!. 
is the one for which holds that

TI ,k

k" ; Y t e l f t - N + 1 < l < k ] .

rk = (h' ,,

"TrQ;: 
y*

63

value &o can be computed

The ' la.rgest' detection test

(3 .64)

(3 .6  5  )

(3 .66  )

The choice of the size a of the tests (3.60) and (3.63) has not been discussed yet.
For the moment we asslune we follow the B-method of testing fBa,lnn,o., 1968], which
will be discussed in Section 3.7.

3.5 Identification

In the detection phase of the DlA-procedure we test if the null hypothesis is valid
without specifying a particula.r alternative hypothesis. If the null hypothesis has been
rejected one has to search for possible model misspecifications. In the identification
phase one must specify alternative hypotheses which could account for the rejection of
the null hypothesis by the overall model tests. The specification of possible alternative
hypotheses is application dependent and is one of the most difficult tasks in hypothesis
testing. One must consider which types of model errors are likely to occur and also
if local identification test statistics are suffi.ciently powerful to identify the relevant,
likely hypothesis. It is self-evident that the identification of certain types of model
errors, e.g. 'soft' sensor failures, requires global tests. In the following we will discuss
local and global test statistics for identification purposes. It will be shown how the
global test statistics can be computed recursively. We then discuss the identification
test procedure. Because it is very fifficult to specify generally useful multi-dimensional
alternative hypotheses, we limit ourselves to one-dimensional alternative hypotheses.
It should be noted that all one-dimensional test statistics (unless indicated otherwise)
can be (based on eq. 3.58) generalized to multi-dimensional test statistics.

3.5.1 Ident i f icat ion Test Stat ist ics

If b7" is chosen equal to 1, the matrix Cu* of (3.54) reduces to a vector, which will be
denoted by cu*, and the vector V7, reduces to a scalar. In this case the localtest statistic
can be written as:

withr

which under Ilo* is distributed as N(0,1). This local test statistic can be used to
identify particular one-fimensional misspecifications in 116*, such as a slippage in the

'The lower case kernel letter t will be used for one-dirnensional slippage test statistics.
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mean of the predicted state, a slippage in the mean of the observables, or a slippage in

the mean of a combination of the observables and the predicted state. Hence we call
(3.66) a local slippage (LS) test statistic. If one, for instance, suspects sensor failures

or outlying observations one can follow the datasnooping approach [Ba.t no.L, 19681 by
choosing rnfr number of vectors cr* of the form

c i  :  ( 0  1  . . .  0 ) t
m 6 X L  1  i  r n k  ' (3 .67)

f o r i : l r . . . r n k .
If 6 is chosen equal to one in (3.56) one obtains t};re global one-dimensional identifi-

cat ion test stat ist ic.  The matr ices Cr, ,  with i  = 1,, . . . , ,b,  reduce to vectors, which are

denoted as cui. The corresponding one-dimensional global slippage (GS) test statistic
reads (cf. eq. 3.58): 

,h

l"[,Q;,'u
; - t ( 3 .68  )"rc

11"j,Q,,'",,)tl '
i = l

which under Ifs is fistributed as lf (0, 1). Note that this test statistic reduces to the one-

dimensional LS test statistic (3.66) for I = ft. The one-fimensional global slippage test

statistic tl,t can be used to identify particular one-dimensional global misspecifications
in Ho. In order to be able to use the test statistic I'h it real-time we need a recursive

scheme for updating the vectors cu-, i = 1r..., ft. Various cases, depending on the choice

of alternative hypothesis, can be considered. We will consider the following four cases:

a) A jump in the state vector at time l.

b) A permanent slip in the state vector that starts at time l.

c) A single slip (outlier) in the vector of observables at time l.

d) A sensor slip that starts at time l.

We use the one-dimensional vector c, to specify the type of model error in the dy-

namic model (cases a and b) and similarly the vector co for the specification of model
errors in the observations (cases c and d). The choice of the vector c, is often rather
straightforward, whereas the choice of the vector c, is dependent on the specification

of the state vector. By combining the time and measurement update equations of the
Ka lmanf i l te r . , recurs f r . reschemesfor thevec tors  cur r i= I r . . . rk  cor respond ing tocases
a) to d) can be derived.

The recursive scheme one obtains for a jump in the state vector (which at time I

manifests itseif as a disturbance d; f 0) reads

c u ;  =  - A . X ; J ,  i = 1 r . . . . , k
X;+ t , t  =  iD ;+r , ; ( /  -  K ;A; )X ; f i  X tJ :  c ,

Ll'k =

(3 .6e)



Identification

The recursive scheme for a permanent slip in the state vector (which after
manifests itself as a systematic fisturbance d; f 0) reads

c r ;  :  - A ; X ; J ,  i = l r . . . r k

X;+t , r  = c '  *  o ;+r , ; ( I  -  K iAi )X; , r i  Xr , t :  c ,

The recursive scheme for an outlier in the vector of observables at time / reads

0)r
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time I

(3 .70)

( 3 . 7 1 )

in  (3 .67) .

(3 .72)

(3.73 )

(3.74)

The vector c, is not specified explicitely here,
Finally the recursive scheme for a slip in the jtA

but can, e.g., be chosen as

sensor reads

c u i  =  c i - A ; X ; 1 ,  i = 1 r . . . , ,  I c

X;+t , t  = iD;+r , ; (X; , r  *  K;c, , ) i  XtJ = 0

where
c j = ( 0 1

j

The matrices X;,1 (here n x 1 vectors), with i ) I, in (3.69) to (3.72) describe the
response of a model error on the predicted state it1;-t. With eqs. 3.69 to 3.72 we are
now able to compute the one-dimensional global test statistic (3.68) recursively.

It will be clear that our global recursive test statistics are more sensitive to global
model errors than the local test statistics. The difference in detection power between
the local and global one-dimensional slippage tests for a particula,r model error follows
when one compares the noncentrality parameters Vte and Vtl,fr of the two test statistics.
For the local test statistic (3.66) we have (cf. eq. 3.39)

vtfr  = kT_e;rt",*), / ,y ,

and for our global test statistic (3.68) we have

k

Vt' 'e = 1l "[,Q,,1 "u,)t 
l 'v

i= t

Since the matr ices Qu,,  i  -  1, . . . , r t  are posit ive def ini te,  this result  shows that Vt l ,a
is an increasing function of b and that Vtt,k > Vrft for k > I. Hence, with increasing
,b the detection power of the global test increases and is never less than the detection
power of the local test.

I
I  +  1 , , . . . , k
X t J  : 0

[  " ,  
f o r i =

[  
-ArXr , ,  for  i :

Q;+t,;(x;J * K;c,;) i

cui  :

Y . . - ,r r  r +  1 . ,
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3.5 .2  Ident i f i ca t ion  Procedure

After detection the most likely model error has to be identified. If more than one alter-
native hypothesis is specffied, one has to deterrnine the type and the tirne of occarence
of the model error. Because we only consider one-dimensional alternative hypotheses it
is possible to compare the test statistics directly. The most likely model error is the one
corresponfing to the largest test statistic. If the largest test statistic is larger than the
critical value of the test, the corresponding alternative hypothesis is declared valid. In
the next step one can estimate the model error related to the identified alternative hy-
pothesis. Estimation of the model error is discussed in the next section on adaptation.
Summarizing, the identification procedure consists of three steps:

1. A search for the largest test statistic among all specified alternative hypotheses.

2. A check if the largest test statistic is larger than the critical value of the test.

3. If a particular Ha is declared valid the associated model error is estimated.

In a more formal manner the procedure can be given as (assuming only one-fimensional
alternative hypotheses are specified):

1 '  l t / ' A l " * :  & - ( N - . * - T i :  r ' - k - L ^ i n  
l ' t ' a l

2. If ltJ'*l-"* ) N.12(0,1) declare the corresponding fI; valid

3. If Ha is valid then estimate Vr,a associated with ltl 'al*.* (cf. Section 3.6),

(3 .75)
where (N-.* - 1) and -t*1, are the maximum delay and minimal lag of the test statistics
respectively.

3 .5 .3  Prac t ica l  Cons idera t ions

From a computationalpoint of view it is impossible to compute all test statistics starting
at / : 1 (cf. Fig. 3.5a). In order to reduce the number of computations and the delay
time of detection, it is worthwhile to consider introducing a moving window of length N
by constraining I  to le- N+ 1 SI <k ( the delay t ime of detect ion is then at the most
equal to N - 1 (cf. Fig. 3.5b)). Finally, the test statistic I't *.y be too insensitive for
identifying model errors if I > k - .t. One then can limit oneself to the computation
of the test statistics with delay N - 1 and lag ,t icf. Fig. 3.5c). The design procedure
(cf. Chapter 4) will provide information on the actual detection power of the envisaged
tests, and is a useful tool in choosing the window size of the tests.

By limiting the computation of the test statistics to a certain window the additional
computational load associated with the identification procedure is limited. The addi-
tibnal computations required for the identification step are basically given by the recur-
sive schemes of (3.69) to (3.72), but all the quantities required for these computations
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Figure 3.5: The one-dimensional recursive identification test
window, (b) a moving window with N --  3,L: 0,  and (c)
l [ : 3 , L : I .

are provided by the fllter. The number of operations related to eqs. 3.69-3.72 grows

linearly with the window lengths of the tests and the number of different alternative

hypotheses considered. If one limits oneself to local identification the computational

costs are almost negligible compared with those of the fllter operations.

In practice we have to deal with different types of alternative hypotheses. Therefore

it seems unlikely that the delay and lag of all identification tests are chosen identical.

In general one will try to design the testing procedure in such a way that real-time

corrective action remains as much as possible. Consequently the testing procedure will

usually also be based on local tests, even if the detection power of the local tests is

small.

The detection tests (cf. Section 3.4) were also based on windows. The DIA proce-

dure is based on the fact that identification takes place after a model error has been

detected. Therefore the largest delay of the detection tests (cf. Fig. 3.4) should be

chosen at least as large as the largest delay for the identification tests.

The identification procedure as given by (3.75) should be used with care. If, for

example, frequently a model error is detected and simultaneously no specific model

error can be identified, one should reconsider the choice of alternative hypotheses. If

besides the actual model error cannot be specified as a model error of additive nature,

it cannot be identified in an optimal manner by our slippage tests. The identification

procedure is based on the assumption that model errors are sufficiently sepa,rated in

time to allow for infividual detection and identification. If it is likely that model errors

can occur (nearly) simultaneously the procedure given by (3.75) has to be refined.
Furthermore we tacitly assumed that the testing parameters for every identification
test (the size a and the power 7) are identical. The choice of the testing parameters
will be considered in more detail in Section 3.7, where we discuss the application of the

B-method of testing. Finally the comparison of the various test statistics is not that
straightforward if one also considers multidimensional alternative hypotheses.
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3.6 Adaptat ion

The final step in the DIA procedure is adaptation and is needed to eliminate the bias
in the fiItered state. The moment a model error is detected and identified, the real-
time operation of the Kalman filter requires that corrective action is taken immediately.
Herein lies the major difference with the testing procedures for geodetic networks, where
adaptation is generally performed off-line. The requirement of real-tirne operation
necessitates that an automatic adaptation procedure is devised, which maintains, as
much as possible, the optimality of the Kalman fllter. After detection of a model error
using local tests, real-tirne adaptation is possible. In many cases, however, a model
error will be identified with a certain delay of detection (this is a firect consequence
of the concept of global testing). In the event of delayed detection at time & the state
estimate is biased in the time interval / (the time of occurence r:f the model error) to fr.
We have to find a strategy for handling the delayed detection of a slip, but in practice
we will often opt for a simple approach that resets the fllter at time ,t, leaving the state
estimates biased in the time interval I to &. The rationale of this approach, which will
also be followed here, is that for real-time applications we are primarily interested in the
present estimate of the state. Besides the bias in the state estimate is probably small
as the model error cannot be detected until time &. It will be clear that optimal results
are obtained if one is able to design a filter that is capable of following the correct
alternative hypothesis at the correct time of occurence. Such an approach requires a
whole bank of fllters, each one taylored for a particula,r alternative hypothesis. The
efficiency of the DlA-procedure is largely due to the implementation of a detection and
identification procedure parallel to a single filter. We will therefore restrict ourselves
to adaptation strategies that also operate parallel to a singlefilter.

We will first consider the estimation of model errors after identification and show
how the biased state can be adapted. We will then discuss the optimal adaptation pro-
cedure, which requires a continuous updating of the filtered state. We will show that
the adaptation for outliers can also be performed in an optimum manner by perform-
ing the adaptation step only once and reverting to the filter under the null hypothesis.
For slips such a simple, optimal adaptation procedure is only possible for the so-called
partially constant state space models [TouNIssou, 1992]. If one wants to continue the
fi.lter under the null hypothesis after a single adaptation step for slips, generally only
approximate (suboptimal) solutions are available. We asslune that adaptation is per-
formed for one-dimensional alternative hypotheses only, and hence scalar model errors
V are considered. The generalization to b-dimensional error vectors is straightforwa,rd.
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3.6.L Est imat ion of  Model  Errors

At time & the estimator of the model error V with a time of occurence I reads:

k
\ - . T  o - l n/  - u i Y u i  l i

r ' l ' h  i= l
I t )

K

\ -  T  ^ - 1

)  . c j . e u ; . e ;
a - t

k

Qsr ,x  = (D. ; t  8 ; t " , , ) -1  ,
;=t

where the vectors cui are computed accorfing to (3.69) to (3.72). Note the close rela-

tionship with the test statistic (3.63). The estimator (3.76) follows from (3.43) directly

if we take the uncorrelatedless of the predicted residuals between epochs into account,

and is equivalent to the least squares estimator based on the following model of obser-

vation equations:

l u  \  ( " , ,  \  ( Q " ,  \
_ .1  ;  I  |  "  |  _  |  eu , * ,  IB t l  * l '  l l = l - ' 1 * ' l v ; l  |  

( 3 . 7 7 )

t ,  p * )  \ " ' u r l  t ,  e , r l
From (3.77) it can be easily seen that the estimator of the model error can be computed

in a recursive manner. At epoch I the recursive bias estimator is initialized as:

V ' ' '  =  k l ,e ; , tcu, ) - lc [ ,Q; , 'a1 , (3 .78 )

with

Q e t , r = ( " I , Q ; , ' " u , ) - ' .  ( 3 ' 7 9 )

After initialization the estimato, V''t, with I < i < &, and its covariance matrix are

computed recursively as:

V' ' t  = V' ' t -1 + Glu- 
" , ,v ' ' t - t )

Qs t , ;  :  ( I  -  G ;cu , )Qo1 ' ; - '  )

G;  :  Q, i , , , - r "T, (Q",1 cu,Qv, , - r " t l ) - t  ,

vector.
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( 3 . 7 6 )

with

where

is the 1 x rn; gain

(3 .8  o  )

(3 .81 )

(3.82)
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It can be shown that the estimator of the bias and the estimator of the state vector
under Ho are uncorrelated2

E{(v' 'n - r{Y'n})(4?r* - E{4r*i) '} : o . (3 .83 )

This important relationship will not be proven here. If one, however, recalls that
the Kalman fllter can be written as a least-squares adjustment problem and the error
estimators are a function of the least-squares residuals, which are uncorrelated with
the least-squares estimators of the unknowns, it follows intuitively that (3.83) is true.

3 .6 .2  Opt ima l  Adapta t ion

With the recursive schemes (3.69) to (3.72) we have available the 'response' matrices
X;,1 (in our situation of one-fimensionalmodelerrors the matrices X;,1 reduce to n x 1
vectors), which describe the response to a model error (starting) at epoch I on the
estimator of the predicted state at epoch i, viz. i;1;_t. The 'response' matrix of the
model error on the filtered state estimator i;1; at epoch f is given as

X;,t : o;,;+rx;+r,r , (3 .84)

where X;+t1 is obtained through (3.69), (3.71) or (3.72). If the model error is associated
with a slip in the state vector (cf. eq. 3.70), one obtains

T;, t  = O;, ;+r (X;+r , t  -  c,)  .  (3.85)

At and after the time of identification &, the filtered state can be updated as

u7p: q?l; -X",,Y'' '

. 1 , ! l  .

V'' is computed with (3.76) or (3.80). Error propaga-
i )  k :

Pf,o : P,o1, *T,,tQv,,;fl,,

P*  o  =  -X ; , tQv , , ,
t l t '

where use has been made of the fact that c!1, and V''t r." uncorrelated. Equations
(3.86) and (3.87) constitute the optimal adaptation equations for the model errors
described by (3.69) to (3.72).

Actually the estimators obtained by the Kalman filter operating under flo when
combined with the recursive bias estimator given by (3.78) to (3.82) and the update

with i ) k, where the estimator
tion applied to (3.86) yields for

( 3 . 8 6 )

(3 .87 )

2The sup"rscripts 0 and a indicate that an estimate is obtained under I/6 and Ifa respectively.
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equations (3.86) and (3.87) are identical to the estimators that would have been ob-

tained by the fllter operating under I11. FnInotAND [1968] was the first to show that

the approach based on the fi.lter operating under the null-hypothesis and a parallel bias

filter is equivalent to an augmented filter based on the extended model:

E{dk} -  zk Fx,r ,- tz*-t  i  n{U} :  Akz* ,
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, , _ ( , *- ' -  
\  v

with

\  -  (  Q * . 0 - ,

/ ; f a , a - l  

: \  
0

If one considers slips in the state vector Bk -- c, and C* : 0, whereas for a slip in

observation j B*:0 and C* : cj. The (minor) difference betweenthe error estimation

in the DIA procedure and FRtnor,ann's estimator lies in the fact that we do not assume

the bias is present from the outset. The sepa,rated-bias approach clearly shows that

one can actually fllter under the null hypothesis and simultaneously estimate possible

model errors, i.e. explicit filtering under the alternative hypothesis using an augmented

fllter is not necessary.

3.6.3 Adaptat ion for Out l iers

Although it may not be directly apparent from (3.86), the adaptation procedure for

outliers is also optimal for the estimator of the state if adaptation is performed only once

and after that one reverts to the fiIter under l1o. This result follows imrnediately if one

formulates the filtering problem as a batch-type least-squares adjustment problem with

observation equations. If one considers an outlier at epoch /, the unknown parameter

V appears only in a single observation equation3

n{A}  :  Ar t t  *  c rv  ;  n {A}  -  R t  .

After adaptation at time ft one obtains the following set of observation equations (cf.

eqs. 3.86 and 3.87):

" , -  ) '  
D {dk }=  (  ?  3  ) '  

r -  =  (  o r

( 3 . 8 8 )

" r ) '

[ 
.1,. ,1, i'i ;) 1.1,) ; 38eE {

gklk

v"'"
4"*,
!*+'t

Pn .,-^
"*  k  l , i

0
0

p  n  0  . . .' ; a  1 7

Q - , ,  0  0

o  Q * + t  o  " '
0 0 R*+t

\

t r -
l r  

-

I
P;"-k l f r

3Th" same holds il one considers a jurnp in the state vector.
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It can be seen from (3.89) that the parameter V is present in a single observation

equation only and can thus be considered as a free yR-variate (cf. Section 2.3.3). One

can thus revert to the fllter under Ifs, because a better estimator of V for i > ,t will

have no impact on the state estimators i;1;. This means that at the time of adaptation

ift1* is taken as the new initial state (with covariance matrix Pf1*) and the 'standard'

Kalman filter can be used for all following epochs. This is of course very convenient

from a computational point of view, because neither the bias filter (cf. eqs. 3.78 to 3.82)

nor the adaptation steps (3.86) and (3.87) have to be continued. The estimator V"' .u,r,

stil l be improved as a yR-v.riate (because of the correlation between the observables
^ t L

cf 1* and V"^ in (3.89)) and will be identical to the estimator given by (3.80).

In the following we will illustrate that the results of the optimal adaptation proce-

dure and the fllter reverted to -EIs after adaptation are identical by showing that the

estimators for the bias at epoch & + 1 are the same whether one adapts for an outlier

at epoch ,t or at ft + 1.
If one assurnes adaptation has taken place at epoch ft and the one-step prediction

to epoch & + 1 is performed, one obtains the following model of observation equations

for the measurement update at & * 1:

P ;u  P . "  ;  0' k +  I  l a  r i l  r  1 1 '  
v

Pv . r r .  , .  Qs , *  o
'  x + r  l x

0 0 R*+t

wnere

q1+tw = ar+r,*(s?t*  -  xr , ,v ' ' r ) l  i l+t

= 4?+rtt - X**' ' 'Y' '*

Pt+tw : or+r,*(Pftr tX*,tQ,i,.rFI,,)oI*r,* I Q*+'t
: Pr3+r1* I X*+t,tQ'o,,rX'[+t,t

Pi ' r i * , ,*  :  -Qi" '* f l , 'Q[*t ,*

:  - Q i " ' u X [ * ' ' '  '

In equation (3.90) V''* i, a free yR-variate and using the relation gR = Q nrQit e (rt.

eq. 2.20) the estimator of the bias at epoch ,b + t is obtained as

v/ 'a+l 

:  $ '-  - ;r ,rr- , ,0(Pf,* ' t*)- '4r+rrr '  (3'e1)

4r*r , r  =  -Pr i * r rudTl r (83** ,  *  " , ** ,  Qs, , rc | r * )  
- t (s*+r  -  . , * * ,V ' 'o)

)
(3 .e0)

",( ;:-:. ), = ( ,1., : )( " s ' ) '

where
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follows directly from solving model (3.90) for c6,.1 using the method of condition equa-

tions. Insertiog 9a**,,. in (3.91) and using the matrix inversion lemma finally yields:

9/'a+1 = V''n * Gr+r(qu*, - 
",**,V''*) ,

which is identical to (3.80). In a similar way one can show (after some lengthly algebraic

manipulations) that

ql+tl*+t

=  4?1r | t+ r  -  Xo* ' ' 'V ' ' ' * t  '

which indeed corresponds with the optimal estimator of the adapted state (cf. eq. 3.86).

3.6.4 Adaptat ion for Sl ips

For slips we cannot revert to the fllter under I/6 and obtain optimal estimators of the

filtered states after a single adaptation step. If we consider, for example, slips in the

observations, the observation equations (after adaptation at time &) are:
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l)l
( r 0
1 0 0

) : l - o * + t , t  I

I 
o Ar+t

\ : :

E {

; avklk

v''*
&+,
u *+t

c k

rk+ t

V )  

,  ( 3 e 2 )

and now the parameter V appears in every observation equation of y-, with i > k.

Therefore V/'A .rrrrrot be treated. as a free yR-variate any longer, and we cannot revert

to filtering under I1o in an optimal way. A notable exception exists for slips in the

so-called partially constant state-space model, where filtering under fls after a single

adaptation step is possible.

3.6.5 Adaptat ion for Sl ips in the Part ial ly Constant State Space Model

Assume that under the null hypothesis the observables (at an epoch i) are related to a

constant bias z as follows:

n{U} = Aici t  C;z ; D{yi} - R; , (3.e3)

where z is a vector of parameters with 1 < dim(z) 1ma. The (rn; x dim(z))-matrixC;
indicates which observables are related to the constant bias state z. TpuxIssol [1992]
was the first to consider the adaptation for slips for models given by (3.93), which he

calls partially constant state space (PCSS) models, which are of special importance in

aThis means that not every observable y. is necessarily related to a bias state z'
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GPS data processing. In the following we wiII follow TnunIssnN's derivation (based

on a batch type least-squares adjustment problem) and show how one can revert to the
filter under Ils after a single adaptation step for a slip in an observable y.. We consider

the case where a slip occurs at time I in observation j (cf. eq. 3.72):

n { U } : A p r * C t z + c j v ;  o { y } -  R t .  ( 3 . 9 4 )

After adaptation at time ft one obtains the following set of observation equations (cf.

eqs. 3.89 and 3.92):

aa
4lk
aa
4 l k
^ t Lv"'"

&*t
!++t

, Pr,9

P . r z

, P v
0
0

where P,, Pr,r, Pr,g etc. are shorthandnotations for P4,*, Pi"rlr,2"rlr, P^i1^,i, and with

(cf .  eq.  3.86)

(x',:) : ( :fl: ) - (-#-,',) v' - (3.e6)

After adaptation for the slip at time & we are (considering model (3.93)) not so much

interested in the adapted bias estimate 2ftqu as well as in the 'new' bias state which is

corrected for the stp and which can be obtained by the following full rank transforma-
tion:

(3.e7)

0 0
I O
0 1
0 0

C*+t cj

I O
0 0
0 0

-o*+t , *  I
0 ,4*+r

0 0
0 0
0 0

Q*+t  o
o R*+r

P, P,,
P. -  P,
Pv,, Pv,

0 0
0 0

( ; ) = ( ;  l ) ( ; )
Inserting the inverse transform

E1 ) =
| 

.;:, 

')

|  ' l '  ( 3 . e 5 )

t , ; )

) ( ; )
( ; ) = ( i- c j

1
(3.e8)



3.6 Adaptation 75

the observation(which does not affect the covariance matrix of the

equations (3.95) yields:

observables) into

t k + t

(3 .ee)

The parameter V now only appears in the observation equations of the observables 21,,
^ t t

and V'' ' . Performing the full-rank tra.nsformation

E {

0 0
I  - c j

0 1
0 0

C*+r  o

z

V

0 0
I O
0 1
0 0

Ct+t o

E {

zklk
aa?klk
^ t Lv' ' '"

&*,
! * * t

) :

I
0
0

-  iD*+r ,*
0

0
0
0
I

A t+ r
z

V

(3 .100 )

firrully reduces the observation equations (3.95) to:

) :

t h

t k + 1

;  ( 3 . 1 0 1 )

0
0
0
0

fir+ r

where the state vectot element Z contains the original bias and the contribution of the

slip. In model (3.101) V''* h., become a free y't-variate (corresponding to the situation
of the adaptation for outl iers) and thus has no impact on the state estimators r;1; and

26 fot i > k. We can thus revert to the filter model under I10 after a single adaptation
step. As we proceed with the fi l ter procedure with the 'new' bias vector Z, care has
to be taken that the adaptation step is executed correctly. Starting from (3.96) and
applying the transformation (3.100) yields:

P, , "  I  P" ,vcf  P, ,v  0
p"  + P",v i j '  I  c jPv," ' t  c lPyQ P",e !  c iPy 0

Pe., { Pec.l' Pe 0' J

o  o  Q * + r
0 0 0

" ' (?n) ' : ( ;  ?)" ' (J ' - -,)t

!.klk
:a
?+lk
^ t Lv"'"

dr*,
l t+t

I O
0 0
0 0

- o**t, i .  I
o  1 t * i

P,
P , - + c ; P c -

Pv,,
0
0

:

(x":) : (fi1:
)  

( - . { ; : " , ) ' ' * ( 3 .102 )
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The covariance matrix of the adapted state follows from (f .f OZ) as

(;;" ';t ) ̂ _ 
: (;i. .'if 

)_,_ * ( *{,1!", ) ou,- (
- - T  1 TxL,, \

(Ti,, - d' J
(3 .103 )

Sumrnarizing, we have shown that for the particular case of the partially constant

state space model and slips modelled according to (3.94), one can revert to the fl l ter

under f16 after a single adaptation step has been performed. The practical importance

of the PCSS model is its applicabil ity to GPS, where the measured phase observables

are available up to a constant, unknown bias (called ambiguity). Furthermore GPS

phase observables may be contaminated by slips (called cycle slips) due to receiver

tracking errors, atmospheric disturbances, and signal interruptions.

3 .6.6 Adaptat ion for  S l ips;  A Subopt imal  Solut ion

We have shown that it is impossible to revert to the filter under I1o in case of slips
in the observables (except in the important case of the partially constant state space

model). If one nevertheless wants to continue the operation of the fl l ter under the null

hypothesis, one has to resort to suboptimal f i l ter solutions. For practical applications

the following ad-hoc strategy can be useful. After the identif ication of a slip at t ime

fr one takes 6[1* (which at t ime fr is unbiased) with its covariance matrix Pf,1*, as the

new init ial state and proceeds with fi l tering.under the null hypothesis. This method

neglects the correlation between z[1* and V''* .rrd is based on the assumption that the

bias is estimated well enough at t ime &. To prevent the accumulation of bias in the

state estimator one has to correct the observables from time & onwa,rds. For a slip in

the state vector or a slip in an observation channel the observables with their covariance

matrices have to be corrected as follows:

sl ip in state (cf .  eq. 3.70) slip in observations cf .  eq.  3.72)

y R
-  

^ t k
y - -  , uY ' ' "  R  +  cvQ,  r cJ

(3 .104 )

Note that the sample values of d, -.,V' '* ate not zero.

3 .6.7 Pract ica l  Considerat ions

In this section we consider a number of practical aspects related to the adaptation

procedure and we wil l briefly discuss the computational load of the (optimal) adaptation

procedure and the biasedness of the test statistics after adaptation.

under -FIn

after adaptation

d
d -  

" ,V ' ' ^

a
Q *  c ,Q i1 , , " c [
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Compu ta t i ona l  Load

The additional computational load caused by the adaptation procedure is rather l im-

ited. The close relationship between the test statistics and the error estimates (cf.

eqs. 3.68 and 3.76 and note that the terms in the numerator and denominator are iden-

tical) makes the latter ones available at a very low computational cost. The response

matrix of the model error on the fl l tered state is computed using (3.84), and is closely

related to the response matrix for the predicted state, which is computed recursively

in the identif ication procedure.

If one uses the optimal adaptation procedure as given by (3.86) and (3.87), one ac-

tually switches to a fi l ter operating under the alternative hypothesis using the recursive

bias estimation scheme given by (3.80) to (3.82). A drawback of the optimal method is

that the memory of the bias fi. l ter grows while the window length of the tests remains

fixed. Furthermore a separate bias fi l ter has to be implemented parallel to the Kalman

filter, and only one model error at a time can be conveniently handled. Compared

to the exact procedure the approximate adaptation procedure for slips (described in

Section 3.6.6) is computationally very attractive, although one has to take care that

at every time update corrections to the disturbances are applied and that l ikewise

the measurements are corrected at measurement updates. Overall the computational

requirements of the adaptation procedure do not seem to be prohibit ive.

B iasedness of  Test  Stat is t ics

After adaptation one has to remove the bias from the test statistics (or the predicted

residuals on which they are based), in order to allow the identif ication strategy to

proceed automatically. Those test statistics that are (partly) based on the predicted

residuals in the time interval / to & wil l be biased. After the adaptation step the

identif ication test statistics can be adjusted for the model error as follows:

tt;k - piot';r

(r - p3)'t '

where pi; (f. Chapter 4) is the correlation coefficient between tl 'k lttte test statistic

associated with the most l ikely I11) and each other test statistic denoted symbolically

^, tt;k. The correlation coefficient pi; cannot be easily computed in a recursive manner

and hence (3.105) is of l imited practical use if the time of occurence / and the time of

detection ,b do not coincide for both hypotheses. We therefore suggest to reinit ialize

the testing procedure after adaptation with local tests (i.e. tests with a window length

of one). This strategy backfires if model errors occur (nearly) simultaneously and

should thus be implemented with care. The major drawback of the strategy is that

it is rather heuristic than theoretically sound. From (3.105) it is apparent that it is

impossible to devise a testing procedure which can cope with slips and outl iers for a

single observation type simultaneously using local tests only; in that case the absolute

value of the correlation coefficient is always equal to one, that is the outl ier and slip

a 7

t/"i.;"","a,j = (3 .105 )
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hypothesis cannot be separated. If only local tests are implemented, one can cope with

simultaneous errors using an iterated approach (cf. ITouNISsEN, 1990b]) which takes

the correlation between the test statistics into account.

3 .6.8 Al ternat ive Approaches to  Adaptat ion

We have discussed solutions (some exact, some suboptimal) to the adaptation prob-

lem. In addition to the discussed procedures some other adaptation schemes might be

considered, which only require a single additional f i l ter at most. We wil l briefly discuss

two approaches which wil l not be pursued any further, but are included for the sake of

completeness.

Paral le l  ( lagged) Kalman Fi l ter

If the main objective of the fl l ter procedure is to obtain a dataset free of errors in the

observations, one can follow a simple approach. Assume one can ascertain that all likely

model errors can be identif ied and removed with a delay trf - 1 (which corresponds

to a window length of l[). Then a parallel fi.lter operating with a delay N, using

information provided by the real-time filter and operating on the original (temporarily

stored) data, leads to optimal results. The real-time fi l ter has to operate in conjunction

with detection and identif ication tests and the data in the time interval lft 
- N + 1, fr]

have to be stored. The method seems particula.rly suited if only model errors in the

observations are expected and no reai-time solutions are required. The lagged fi l ter can

operate without a full detection and identif ication test procedure. The main advantage

of the lagged fi l ter is its simplicity. A possible application of the method would be

the elimination of outliers from the original dataset. Drawbacks are that no real-tirne

estimates are available and errors in the dynamic model cannot be handled easily (a

jump in the state vector, for example, cannot be resolved by deleting an observation

from the dataset).

Backward Fil tering

Instead of opting to use a lagged fi l ter, one can also implement an algorithm that f i. l ters
'backwards' once a model error has been identif ied, removes the model error, and fi l ters
'forward' to obtain a better real-time solution. Although this method is theoretically

feasible, the computational load of the backward fi l ter strategy cannot be predicted

and hence the method is deemed unpractical for real-time applications.

3 .6 .9  Summary

In this section we have developed a real-time adaptation procedure, which maintains

the optimality of the estimators. Computational considerations ruled out the imple-

mentation of bank of Kalman fi l ters, each one taylored for a particular hypothesis. The

ad.aptation procedure given by (3.86) and (3.87) is optimal for both outl iers and slips
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(we conciously neglected the bias in the state estimators in the time interval I to k - L).

For outliers it was shown that one can revert to filtering under the null hypothesis after

adaptation, while maintaining the optimality of the state estimators. For slips such an

approach is only feasible for the partially constant state space model. In all other cases

of the adaptation for slips reverting to fi l ters under the null hypothesis wil l result in

suboptimal solutions. Practical considerations showed that the adaptation strategies'

which are based on resetting the window lengths of the tests, wil l be hampered if model

errors occur (nearly) simultaneously. In case the model errors occur separated in time

it is to be expected the proposed procedures operate weII.

3.7 The B-method of Test ing

This section is meant to provide a l ink with the testing procedure for geodetic networks

developed by Baano.L [1968]. This so-called B-method has been used vely successfully

in network applications and therefore one should consider if i t can also be implemented

for dynamic systems.

The essential element of the B-method of testing is that an error related to a particu-

lar alternative hypothesis should be detected with equal probabil ity by all tests, which

encompass that particular alternative hypothesis. This means that the non-centrality

parameter ,\ is equal for all tests. Bl.q.RDA suggested to fix .\ by specifying the level

of significance a and the power of the test 7 for one-dimensional tests. One keeps the

power of the test f ixed at 70 for all tests, because one is interested in the model error

that can be detected with a probabil ity 7s. This l ine of thought implies that the level of

significance c of a multi-dimensional test is computed from the level of significance a6

of the one-dimensional tests. If one fixes the level of significance of the one-dimensional

test, the level of significance of the multi-dimensional test can be computed from the

inverted power function:

)  :  l ( o o , 7 0 ,  1 )  =  ) ( 4 , 7 s ,  b )  ) (  3 .1  06 )

where b is the dimension of the multi-dimensional test.

Up to this point we tacitly assumed that the DIA procedure is based on the B-

method. It has been indicated at the end of Section 3.4 that the level of significance

of the overall model tests is based on the level of significance of the one-dimensional

tests via the B-method of testing, and thus an error with a magnitude related to the

noncentrality parameter ls - )(oo,7o, 1) is detected with equal probabil ity (namely

7o) by all tests. The size of a model error associated with ls is cailed rninimal detectable

bias and is a measure of the detectabil ity of a one-dimensional hypothesis. The minimal

detectable bias is further discussed in Chapter 4.

Following the reasoning of the B-method we assume that identif ication is only per-

formed after a model error has been detected. In the implementation of the DIA

procedure one has to take care that the method is implemented correctly. If, for exam-

ple, the identif ication of a model error with a delay of four coincides with the detection
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of some model error with a delay of two, the detection test does not encompass the
identif ication test. In practice such a mismatch wil l most l ikely occur for model errors
that are about the size of the minimal detectable bias.

Theoretically the coupling given by (3.106) is strictly valid for model errors of the
size of the minimal detectable biases. If one, for instance, considers model errors consid-
erably Iarger than the minimal detectable biases, the probabil ity of identif ication of the
model error is larger than the probabil ity of detection, but because large model errors
are always detected, the B-method is sti l l  valid. The point we want to stress is that
the coupling of the one- and multi-dimensional tests is not generally valid and should,
depending on the application at hand, not be applied blindfoldedly. Th.ese remarks
do not l imit the usefulness of the B-method in the DIA procedure, and experience has
shown that in general it works well. In practice diff iculties due the direct l ink between
detection and identif ication can be expected if the model errors are smaller than the
minimal detectable biases (but if one wants to detect such errors the testing procedure
should be reconsidered anyway). Also in cases where a certain model error is incorpo-
rated in, for example, one-, two-, and, three-dimensional hypotheses the comparison of
the various identif ication test statistics might be diff icult.

A more serious problem is that the B-method of testing is based on the assumption
that the level of significance of all one-dimensional tests is identical. The actual choice
of the level of significance is f iscussed in Section 3.7.1. If the level of significance is not
identical, we suggest to base the B-method on the largest level of significance of all one-
dimensional hypotheses considered. This may result in a large level of significance of
the overall model tests, but we thinl< it is better to use the B-method in a conservative
manner and rather allow false alarms than missed detections.

Despite its l imitations we think that the use of the B-method for testing procedures

in dynamic systems can be justif ied. The DIA procedure enables the realization of an
automatic model validation technique and any implementation of an automatic strategy
requires a decision mechanism. We think the B-method is a useful tool to implement
such a decision mechanism in the tra.nsition of the detection to identif ication phase

of the DIA procedure. To what extent the B-method provides the ultimate solution
cannot be determined yet and should be based on further experiments.

3 .7 .1  Cho i ce  o f  t he  Leve l  o f  S ign i f i cance

The B-method assumes that the ievel of significanc€ os for all one-dimensional tests
is equal. Such an assumption can readily be made for testing procedures in geodetic
network adjustments. Conventional control networks are usually designed in such a
way that the direction and distance measurements have an approximately equivalent
contribution to the final network solution. In GPS networks baseline components are
needed in all three (cartesian) coordinate directions. Therefore there is no reason to
test the separate components with different levels of signifi.cance.

The sensor suite of an integrated navigation system, on the other hand, may consist
of a range of different sensor types. Furthermore it is likely that different types of
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model errors are specified (for example slips and outl iers). The magnitude of the level
of significance for each test is of course application dependent and is not necessarily
identical for all tests. A vehicle location system, for example, is generally based on a
digital map (which can be considered as a sensor type with a low measurement rate
and a low suspectibil i ty to model errors) and a magnetic compass (a sensor with a high
measurement rate and high error rate). For this particular case it does not seem proper
to test a single reading of both 'sensors' with the same level of significance. Generally
sensors with high measurement rates allow one to discard measurements more easily
(which amounts to testing with a large level of significance (e.g. oo : 0.05 instead. of
the a6 = 0.001 used in control network adjustments). The actual choice of the level
of significance and power of the tests should take the characteristics of the sensors and
the impact of undetected errors into account. The testing parameters should be chosen
based on a trade-off between the costs of missed detection and false alarm.

3.8 Recapitulat ion of the DIA Procedure

To facilitate further reading we slurunarize the findings of the previous sections. One
of the most diff icult tasks in designing a testing procedure is the specification of l ikely
model misspecifications. The choice of alternative hypothe ses is application dependent.
One has to ascertain if the l ikely model misspecifications can really be modelled as
additive effects (slips) in the functional model. If, for example, the stochastic model is
specified incorrectly, one has to recourse to adaptive fi l tering techniques. Even if the
model misspecifications can be modelled as slips, one has to decide which alternative
hypotheses have to be specified. Also the choice of the level of significance and the power
of the test depends on the application. The performance of the testing procedure can be
analysed using the design procedure discussed in the next chapter, and this procedure
should be used to determine the window lengths and testing parameters of the tests.
We assume that in the design phase the testing parameters, the window lengths of
the tests and the alternative hypotheses have been specified. The DIA procedure is
sumrnarized in Table 3.1.

We assume that the detection and identif ication steps are coupled via the B-method
of testing, which was discussed in Section 3.7. If the frequent detection of model errors
does not coincide with subsequent identif ications, one should seriously consider other
types of mismodell ing, such as an incorrectly specified stochastic model or an under-
parametrized dynamic model. The estimation of the model error can be considered
as a part of either the identif ication or the adaptation procedure. After adaptation
for outliers one can revert to the filter under -F/0. Adaptation for slips can be imple-
mented using the exact procedure given by (3.86) and (3.82), or by an approximate,
sub-optimal procedure (cf. eq. 3.104).
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D E T E C T I O N

Local Overall Model I
(LoM) Test( -s tat is t ic)  |

(3.59)  j  Test  s tat is t ic
3.60)  |  Test

Global Overal l  Mode

(G OM) Test(-statistic)
(3 .61 )

Local  Test ing Global Testing

IDENTIF ICAT ION

Local Slippage
(LS) Test( -s tat is t ic)

( 3 . 6 6 ) Test stat ist ic

GIobal Slippage
(GS) Test( -s tat is t ic)

( 3 . 6 8 )
Determine most  l
the identif ication

ikely model error

procedure  (3 .75)

vla

Est imat ion of  model  error  (3.76)  or  (3.80)

Table 3.1:  Overv iew of  the DIA procedure

3.9 Other Techniques for Model Validation

The purpose of this section is to provide a i ink between the DIA-methodology presented

in this chapter and other model validation techniques. The DIA procedure has been

developed a long the l ine of  hypothesis  test ing in  l inear  models (c f . ,  e .g. ,  [KocH, 1988]) .

It has been show;r that the alternative hypotheses can be specified in terms of predicted

residuals and that all test statistics can be computed recursively.

Since the early seventies numerous investigations have been performed under the

headings 'Failure Detection Identif ication and Recovery' (FDIR) and'Robust Kalman

Filtering'. The presentation in this section is not meant to be (and cannot be) exhaus-

tive as the l iterature abounds with model validation techniques. It should, howevet,

provide the reader an entry to the relevant l i terature. General overviews of model val-

idat ion techniques are g iven by,  
" .g . ,  

Wl l lsxv [1976]  and B.q.ssovILLE [1988] .  We wi l l

l irnit ourselves to methods that deal with model errors of additive nature (slips) and

techniques that are closely related from an algorithmic point of view. We will briefly

discuss the use of the predicted residual in model validation techniques, the GLR ap-

proach, a multiple model approach based on parallel f i l ters, the impact of decentralized

models on model validation, and 'robust' Kalman fi l tering.

3 .9.1 The Use of  the Predic ted Residual

The predicted residual naturally presents itself as a tool for model validation of Kalman

filters due to its weli defined statistical properties under the null hypothesis. The iocal

and g lobal  detect ion tests ( (3.60)  and (3.63)  respect ive ly)  are funct ions of the predicted

residuals, and are frequently encountered in the l iterature on FDIR.

The use of predicted residuals for performance analysis of Kalman fi l ters was in-

troduced by Mnnn".l. AND PESCHoN [1971]. Their methodology focusses on the overall

performance analysis of the Kalman filter and basically consists of a monitoring proce-

dure for the predicted residuals.
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3 .9 .2  The  GLR Approach

The GLR (Generalized Likelihood Ratio) approach is a systematic methodology to de-

tect, identify, and adapt for slip-type model errors and is closely related to the DIA

procedure. The GLR approach was developed in the seventies by a group ofresearchers

a t  M IT  [Wr l l sxv ,  1976 ;  Wr r , r , sKy  AND JoNns ,  1976 ;  CH, ING AND DuNN,  1979 ] .  The

algorithm of the DIA procedure itself is almost identical to the (recursive) Failure

Detection Identif ication and Recovery (FDIR) methods based on the Generalized Like-

lihood Ratio approach derived by the MlT-group. Wlr,r,sxv [1976] notes that "GLR
performa,nce [is] quite outstanding for failures that can be modelled as additive effects."

The aforementioned researchers also provide a l ink between the error (or bias) estima-

tion procedure and the separate bias estimation concept of FnIplr,,q.ND [1968], which

was fur ther  e laborated by IcN.ncNI [1981;1990] .  A lso FnInnr ,aNn [1983]  acknowledges

the l ink of the bias estimation procedures with the FDIR methods. Although the DIA

algorithm is to a large extent identical to that of the FDIR GLR procedure, there exist

a number of important differences. Firstly, the GLR method was never extended with a

comprehensive design procedure (although some preliminary results on the detectabil-

i ty  and separabi l i ty  of  a l ternat ive hypotheses are prov ided by [Bunxo ET AL.  1976]) .

Secondly, the detection and identif ication steps are not coupled and hence detection

and identif ication can occur independently. Finally, the adaptation (recovery) step is

not really well documented.

3 .9.3 Mul t ip le  Model  Approach

The mul t ip le model  approach (see,  e.g. ,  [Wl l rsxv,  1986;  BnowN AND Hw. l .Nc,  1987])

is based on the assumption that for every alternative hypothesis a Kalman fi l ter solution

is computed. At every fi l ter cycle one then chooses the most l ikely fi l ter solution. One

thus operates a bank of Kalman fi l ters. Such an approach can be very useful if one, for

example, operates one fi l ter under the null hypothesis of a constant velocity dynamic

model and one fi l ter under the alternative hypothesis of a constant acceleration dynamic

model. As soon as an acceleration is detected one can switch to the fi l ter operating

under the alternative hypothesis. An advantage of the multiple model approach is that

no model degradation occurs if one switches from one fi l ter mode to the other. A

possible disadvantage is the heavy computational load, especially if one has to check

for many model misspecifications in the observation model.

3 .9.4 Decentra l ized Qual i ty  Contro l

The present testing procedure is based on the premise that the data processing is

done by means of a single Kalman filter. If a navigation system consists of many

subsystems it may be advantageous (or even necessary) to process the data of each

sensor separately and to obtain an overall solution by merging the results of each

subset. One then uses the concept of 'federated' or 'decentralized' f i l ters, which was

developed by Causorv [1988; 1990]. In a decentralized setup it is possible to perform
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so-called local quality control (i.e. one implements a DIA procedure for each separate

(or local) f i. l ter). The advantage of such an approach is that model misspecifications are

limited to the local fllter model and hence smearing effects are limited. A disadvantage

is that the redundancy of the local f i l ters is generally quite low. Decentra.l ized quality

contro l  is  d iscussed by Knnn [1987]  and LoonaIS ET AL.  [1988] .  A theoret ica lproblem

arises if one wants to implement a DIA procedure for the overall f i l ter which merges

the output of the local f i l ters, because one should take into account the results of the

local testing procedures. The situation is sirnilar to the testing procedure in a second

phase network adjustment, when the original observations are not available anymore.

3 .9.5 Robust  F i l ter ing

Some authors (e.g.  BoRurr . t  [1988])  have invest igated the use of  robust  est imat ion

techniques for geodetic applications. An introduction to robust estimation techniques

is g ivenby H,a.r tenl  ET AL. ,  [1986] .  One could a lso consider  to ' robust i fy ' the Kalman

filter for model misspecifications. Investigations dealing with 'robust' Kalman fl l ters are

reported by,  among others,  M.q.sRoLtpz AND MARTtru [1977]  and Pnfr l  AND GurrMAN

[1988, 1989]. Robust f i l ter algorithms have been derived primarily for additive model

errors in the observables (which usually are modelled by assurning a rnixed fistribution

for the observables using a so-called variance inflation model). We do not consider

robust estimation, but a Kalman fi l ter combined with the DIA procedure can also be

considered a'robust'f i l ter. To i l lustrate the performa.nce of a robust f l l ter and a DIA

supported Kalman fi l ter, we compare results obtained by the DIA approach with results

obta ined by the robust  f i l ter  developed by Por. ra AND GurrMAN [1988] .  In  [ ib id. ]  a

one-dimensional state space model with a scalar observation equation n{a}: c7. for

31 epochs and two simulated outl iers is considered. In Fig. 3.6 we have reproduced (on

the left) the true state used for the simulation (solid l ine), the simulated data (dots)

and the estimates obtained by the standard Kalman fi l ter (dashed line). On the right

we have depicted the true state (solid l ine), the robust f l l ter estimate (dotted l ine), and

the fi l ter estimate after adaptation for outl iers (dashed line). All f i l ters are based on

the system model given in [ibid.]. Although the results for this single case presented in

Fig. 3.6 by no means constitute the equivalence of the robust and DIA based fi l ter, it

can be seen that the performa.nce of both methods is comparable.

3 .9.6 Discuss iorr

In the geodetic and navigation practice model errors can often be modelled as slips

in the functional model. We have developed a procedure to cope with such errors

automatically. The recursive DIA method seems to be very suited for (almost) real-

time model validation and adaptation purposes. It is based on a single Kalman fl l ter

with a parallel operating DIA procedure. Its low computational cost and its sound

theoretical base render the DIA procedure a very attractive model validation technique

for slip-type model errors.
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Figure 3.6: Comparison of the estimates of the Kalman

DIA supported Kalman filter for the example in Ppfr.q'
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filter, the robust fllter, and the
.q.r .ro GurrMAN [1988].

Of the alternative methods the GLR approach is the most closely related to the

DIA procedure. A major difference is that the DIA procedure is based on a unified

procedure in which detection, identif ication, and adaptation are coupled. Particularly

the l ink between detection and identif ication by means of the B-method has never been

applied (to our knowledge) in testing procedures for dynamic systems. Furthermore we

think that the implementation of any model validation technique should be preceded by

an extensive design Tsrocedurc. As such the design procedure (discussed in Chapter 4)

should be considered to be part of the DIA methodology.

3.10 Concluding Remarks

The optimal properties of the fi l ter estimators can only be guaranteed in real-time if a

testing procedure is operating synchronously with the fi l ter. We have derived suc-h a

testing procedure based on the theory of hypothesis testing, and we demonstrated some

optimality properties of the generalized l ikelihood ratio tests on which the procedure is

based. The testing procedure is optimized for model misspecifications that can be mod-

elled as additive effects (or slips), and allows local and global testing. Local tests are

genuinly real-time and are based on a single epoch, whereas global tests operate with

a (small) delay, but cover a number of epochs. The testing procedure consists of three

steps, namely detection, identif ication, and adaptation (DIA). The DIA procedure can

be implementedrecursively and is thus very effi.cient. In the identif ication step not only

the type of model rnisspecification, but also the time of its occurence is deterrnined.

We suggested to couple the detection and identif ication step of the procedure by means

of the B-method, but the implementation of this coupling wil l require some further

investigations. The choice of the testing parameters for each specific alternative hypo-

thesis wil l have to be established partly by measurement experiments, and wil l depend

a' t

1 f

a

a
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on, among other things, the costs associated with type one and type two errors and
the error rate of the sensor suite in question. After a model error has been identified,
the state has to be adapted to maintain the optimality of the real-tirne filter results.
Adaptation for outliers is very simple and requires only a single adaptation step, after
which one can revert to the filter under the null hypothesis. Exact adaptation for slips,
on the other hand, generally cannot be implemented that easily, because it requires
continuous adaptation after identification. Approximate adaptation schemes for slips
can be devised but their suboptimality has to be established in a design study for each
particula.r case. A drawback of the current implementation of the DIA procedure is
that during adaptation the detection and identification test statistics are biased (due
to the model error), and therefore an efficient methodology to remove the bias in the
predicted residuals has to be found. Despite this drawback the DIA procedure is a very
efficient testing procedure for slip-type model errors and will be used throughout this
report. The DIA procedure is summarized in Section 3.8.

In the next chapter we will consider (based on the Kalman filter and the DIA
procedure) how the design of a dynamic system can be optimized. An important
design aspect will be reliability, which describes the sensitivity of the estimation result
to model misspecifications. We will see that the reliability of a system depends on the
testing procedure that is implemented.



Chapter 4

Design of Dynarnic Systerns

4.1 In t roduct ion

In the present chapter we try to develop a methodology for the optimization of dynamic

systems. With optimization of a dynamic system is meant the design of a dynamic sys-

tem subject to quality criteria determined by the purpose of the system. Optimization

is part of the quality assurance of a dynamic system. After the design of a system

has been completed, it has to be ascertained that the performance of the system under

operational conditions is in accordance with the description of the quality of the sys-

tem design. Real-time model validation or quality control is implemented by means of

the DlA-procedure, which was discussed in the previous chapter. Finally the quality

of the estimation result should be compared with the quality requirements. Quality

assurance thus encompasses the steps of design, control, and validation with respect to

the quality of the system, which are respectively related to the a priori, real-tirne, and

a posteriori phases of the operation of a dynamic system. In this chapter we wil l focus

on the design of dynamic systems and especially integrated navigation systems.

The concept of quality comprises precision and reliabil i ty. In the design phase of

a system the precision and reliabil i ty requirements have to be reconciled with l imit-

ing conditions such as cost, available hardware, computer power, personnel, and time

schedules. Our optimization procedure is l imited to aspects of precision and reliabil i ty,

because the other design aspects are too application dependent to be put in a general,

practical framework.

Traditionally the performa,nce of dynarnic systems (and of integrated navigation

systems in particula.r) is specified in terms of precision: how accurately can certain

parameters (e.g. position, velocity) be estimated. The currently emerging demand for

(real-time) quality control necessitates that also reliabil i ty is taken into account, i.e.

the effect that possible model misspecifications have on the estimation results. The

concept of reliabil i ty is closely related to the testing procedure that is implemented in

the dynamic system, and has hitherto received litt le consideration. The measures of

precision and reliabil i ty are mathematically tractable and are therefore very useful to

8 7
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judge the performa,nce of any system. The quality measures are independent of actual

measurements and thus the quality of a dynamic system can indeed be analysed in the

design phase.
The design procedure presented here can be considered as a generalization of the

optimization technique for geodetic networks as has been developed by B.llno.d [1968,
1973, 1977]. A first step towards a design procedure for dynamic systems was presented

by TnuNIssnn [1990a, 1990b].

4 .L .L  Overv iew o f  th is  Chapter

In Section 4.2 we will discuss a general framework for the design of dynamic systems
and the concept of quality assurance. We will pay attention to quality criteria, quality

measures, and design parameters of dynamic systems. The measures of precision and

reliability are considered in Sections 4.3 and 4.4 respectively. The findings of Section 4.4
are directly related to the DIA testing procedure. In Section 4.5 we tentatively propose

a design procedure for integrated navigation systems. In Section 4.6 we consider an

example and compare our reliability description with a particular one found in the

literature. Some concluding remarks are given in Section 4.7.

4.2 Design and Quality Assurance

In the introduction we have discussed the concept of quality assurance. In the design

phase of a dynamic system one wants to assure that the results of the estimation
procedure meet the preset quality requirements. We will not go into the specification

of these requirements, and will assume quality requirements have been set. Once a
particula,r design has been implemented and the system is operational, one has to assure

that the quality of the estimation result is in accordance with the quality requirements
set in the design phase. We will consider the following qualitg criteria:

precision What is the precision of the state estimators under the working hypothesis?

internal reliability

detectability How well can certain model errors be detected and identified?

separability How well can one make a distinction between different model er-

rors?

external reliability

bias in state estirnator What is the impact of (undetected) model errors on
the estimation results?

signiffcance of bias How significant are the biases in the state vector caused
by (r:ndetected) model errors?
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The description of the precision is only valid under the null hypothesis. In Chapter 3
we have discussed the DIA procedure that is used, among other things, to validate this
assumption. The reliability of the system depends on the tests that are executed with
the DIA procedure (actually reliability is only defined if one tests for model misspec-
ifications), and consequently the reliability of the system design has to be a,nalysed,
even if only precision requirements have to be met. The setup of the testing procedure
should be derived from a design procedure in which the type, window length, and test-
ing parameters of the tests a,re determined. The design procedure can then be regarded
as an intrinsic part of the DIA procedure.

The design procedure will be based on quality rneasuresfor:

precision In general the precision of a dynamic system should be analysed by consid-
ering the complete covariance matrix of the state estimator covering all epochs.
In the current chapter we will limit the analysis to (elements of) the covariance
matrices of the predicted and filtered state, because we are primarily interested
in the real-time quality of the dynamic system. The precision of the state vector
elements related to position is visualised by point standard ellipses.

internal reliability Internal reliability is analysed using the so-called Minimal De-
tectable Biases (MDBs). The MDBs can be used as a measure of detectability
and separability.

external reliability We analyse (firnctions of) biases in the fi.ltered state estimator
caused by models errors of the size of the MDBs. The firect analysis of the biases
is quite laborious and therefore we primarily consider the significance of the bias
in the state vector. A measure of significance is the Bias to Noise Ratio (BNR).

The assessment of the overall quality of a particula,r design is dependent on all
quality criteria. Only if all quality criteria are taken into accor:at simultaneously the
quality of the estimators of a dynamic system can be assured. Depending on the
application at hand the designer may decide that a certain quality criterium outweighs
the others. If the quality requirements cannot be met, one can consider the following
d,esign options (or design parameters), that consist of changes in the:

functional rnodel The functional model consists of the measurement model and the
dynamic model. The measurement model may be changed by increasing the num-
ber of observations, introducing other types of measurement systems, changing
measurement sampling rates, or by mofification of the geometry in the measure-
ment setup. The actual dynamics (or kinematics) of the system underlie the
dynamic model, and hence this model cannot be changed at will. It seems nat-
ural, however, to choose the dynamic model as simple as possible on condition
that the dynamics are properly described.

stochastic rnodel The stochastic model is given by the covariance matrices of the ob-
servations and disturbances. Changes in the stochastic model of the observations
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are directly related to changes in the precision of the measurements (by, for exam-
ple, replacing a system with a similar system of a better precision). Furthermore
a change in the sensor suite will result in a change of the stochastic model of the
observations. The stochastic model of the fisturbances strongly depends on the
sophistication of the dynamic model and the (unmodelled) dynamics which the
system is subjected to.

testing procedure In the design phase the pa"rameters of the testing procedure only
have an impact on the reliability description of the system. The testing pararne-
ters are the type of model errors one considers, the window lengths of the tests,
and the size and power of the tests.

Changes in the functional and stochastic model have an impact on both the precision
and reliability description of the system. It may be obvious that in practice certain
model parameters cannot be changed (e.g. due to the limited availability of measure-
ment systems). In the optimization procedure one should aim at a system design which
meets, but not eaceed,s, the quality requirements. Furthermore the conclusion of the
optimization procedure may be that it is impossible to design a system which meets
the quality requirements under the given constraints.

The design procedure should fin"lly provide the user with a description of the:

systern rnodel A description of the firnctional and stochastic model which meets the
quality requirements.

quality of the system design A quantification of the precision and (internal and
external) reliability of the system design.

testing procedure The parameters of the testing procedure which are to be imple-
mented in the system, namely the type of model errors considered, the window
lengths of the tests, and the size and power of the tests.

In the current context we focus on the description of the quality of the system and
the design of a testing strategy. The results of the design procedure a.re evidently
application dependent (our examples are related to precise positioning applications).
The design procedure itself, however, is generally applicable.

Quality assurance is not realized by merely optimizing the design of the dynamic
system. One will actually have to implement the proposed system model and equip the
filter with the chosen testing strategy. During operation the quality of the system is
monitored by the DlA-procedure. After the operation of the system has been completed
one has to characterize the quality of the estimation result and has to demonstrate that
the preset quality requirements have been met. Only if all steps have been completed
the quality of the estimation result is assured. 

'We 
assume the quality of the estimation

result is described by the same quality measures which are used for the design of the
system. As a consequence we will make no firrther distinction between the a priori and
a posteriori quality assessment, and will only consider the design of dynamic systems.
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It is very important to realize, however, that the quality of the design is independent
of actual data, whereas the quality of the estimation result is not.

4.3 Precision

The best known and most widely used quality criterion in navigation is doubtless
precision. The performance of navigation systems is at least always specffied in terms
of precision by their manufacturers. Generally the integrated navigation system has to
meet certain well defined precision requirements imposed by the application at hand.
The Kalman filter automatically provides the following (local) measures of precision,
viz:

covaniance matrix of the estimator of the predicted state at time &: Pxl*-,
(4 .1 )

covariance matrix of the estimator of the filtered state at time /c: P*lx .

One can thus reafily derive the precision (of functions) of estimators of the state vector.
The covariance matrices (4.L) describe the random nature of the state estimators und.er
the nuII hypothesis.

Precision is commonly described by the following measures:

- Standard deaiationof elements of the state vector. If one considers the fthplglqgnt
of the filtered state vector, its standard deviation is given &s d; = 

1f F*1*);;.
Often one is also interested in the precision of certain linear functions of the state
vector. If we consider the linear function A = aTi*l* of the filtered state vector

(with a , Rn),the standard deviation of Q is given as 
"5 

= 
,["r f*1*".

- Point stanilard ellipse (or ellipsoid) for the description of the precision of position
for two- or three-dimensional applications. If we denote the part of the covariance
matrix of the filtered state related to position as Pfiff, the direction and length
of the principal axes of the point standard ellipsoid are given by the eigenvectors
and square root of the eigenvalues of the matrix Pf'f respectively.

The precision measures are dependent on the following design parameters:

- Stochastic model of the observables. It follows directly from the Kalman filter
algorithm that the precision of the state estimator is a direct derivative of the
covariance matrices of the observables g (n) and the fisturbance, d(Q), and a
possible correlation between the observations and disturbances. Improving the
precision of the observations and/or disturbances results in an enhanced precision
of the (filtered and predicted) state estimators.

- Measurement model. The geometry of the measurement setup and the redun-
dancy of the system have a firect impact on the precision of the state estimators.
Increasing, for example, the redundancy (by, 

".g., 
enlarging the number of obser-

vations or adfing an additional measurement system) leads to a better precision.

91



92 Design of Dynamic Systems

- Dynamic model. Changes in the dynamic model (which generally also encom-
pass changes in the stochastic model of the disturbances) have an impact on the
precision, especially for the estimator of the predicted state.

It is difficult to quantify the improvement in precision caused by changes in the mea-
surement and dynamic models.

4 .3 .1  Prec is ionCr i te r ia

The precision requirements for geodetic
mented and in Table 4.1- we provide an
applications.

navigation applications are quite well docu-
overview of precision requirements for some

gravity (sea
gravity (land, air)
gravity gradiometry (air)
relative geoid
3D-seismic (land,sea)
aeromagnetics
resource mapping (photogrammetry)
1:50,000
1:20,000
l : 10 ,000

20
(height)

20
I

1-3
I

< 1 0
< 0 .01
< 1 0
10
50
30

100
25
D

2
0.5
0 . 1

Table 4.1: Precision requirements for geodetic and high precision navigation applica-
tions (from [Scnw,rnz ET AL., 1g8g]).

In Table 4.1 the precision requirements are specified as RMS errors of the posi-
tion a.nd velocity states. If, for example, position in the plane is given in Easting
(,8) and Northing (N) coordinates, the RMS horizontal position error is defined as
RMS : tl@", - 

"'.W. 
Because the objectives of dynamic surveys are usually well de-

fined, the precision requirements for (geodetic) navigation applications can be clearly
specified. The specification of precision requirements, however, is fa,r from standardized.
In geodetic practice usually standard deviations or criterion (covariance) matrices are
used to quantify precision. In the navigation community measures such as RMS, DMRS
(measures based on the covariance matrix), CEP (2-D), and SEP (3-D) (radial precision
measures) are commonplace. A review of these measures and their relationship is given
by MnntlrAs ET At. [1985]. We propose to specify the precision requirements based
on measures that can be derived from the covaliance matrices of the state estimators
such as standard deviations or point sta.ndard ellipsoids. One has to keep in mind that
for the two-dimensional case the standard ellipse merely corresponds to a 3g% confi-
dence region and in the three-dimensional case the standa,rd ellipsoid represents only a
20% confidence region.

Application Precision in RMS required for
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4.3.2 Precision Test ing

Given the criteria for precision we want to know if our design can meet the given
requirements. It was seen that for precise positioning purposes the criteria are well
known and therefore (the elements of) the covariance matrices of the state estimators
can often be directly compared with the requirements. The analysis of precision in
geodetic network design is largely based on the criterion matrix theory developed by
BalRpl [1973]. For general purpose networks suitable criterion matrices have been
developed. The variety ofapplications (and thus realizations) ofintegrated navigation
systems limit the usefulness of a criterion theory for dynamic systems. We therefore
propose to analyse the precision with measures that are based on the covariance matrix
of the state estimator and can be directly compared with the requirements as specified
in Table 4.1.

4.4 Reliability

In this section we deal with the reliability of dynamic systems. The section is meant to
provide a general overview of the reliability aspects of dynamic system design. Relia-
bility is discussed in [Ba.l,no.l, , Lg77; Kox, 1984] in the context of network design and
for integrated navigation systems in [TnuNrssw, 1990a]. Internal reliability describes
the model misspecifications which can be detected by the statistical tests with a certain
probabilit5 that is internal reliability provides measures for the detectability of model
erlors. The separability between various alternative hypotheses is usually considered
part of the internal reliability description as well. External reliability describes the
influence of model misspecifications on the state estimators.

We begin this section on reliability with the concept of internal reliability and
establish a link with the testing procedure fiscussed in Chapter 3. Internal reliability
can be analysed by the minimal detectable bias (MDB), and we will use the MDB
primarily as a measure of detectability. It will be indicated how the MDB can be used
in the design procedure and how it is affected by various model and testing parameters.
We then proceed with a discussion of external reliability and show how the MDBs are
propagated as biases into the state estimators. A measure of significance of this bias is
the bias to noise ratio (BNR) and we will show how the BNR can be used in the design
procedure.

4.4.1 Internal Reliability

In general one will try to devise a testing procedure that gives a reasonable protection
against type I (false alarm) and type II (missed detection) errors. Therefore one usually
fixes the size and power of the test. In geodetic practice, however, one is more interested
in the model error that can be detected with a certain probability than in the power
of the test itself (cf. the discussion in Chapter 3). By fixing the size a and power 7 of
the one-dimensional test one fixes the nsn-ssnflality parameter .\s. Assuming we use

93



94 Design of Dynamic Systems

the B-method of testing )s is fixed for tests of arbitrary dimension. One can then solve
the b-dimensional model error V from the equation of the non-centrelity parameter (cf.
eq. 3.39):

)o = vrcl e;,c,y ,
which can also be interpreted geometrically as (with metric Q;'),

)o = l lc,vl l2

The 6 x L vector V is a measure of the bias one can detect with a prefixed probability 76,
i.e. V is a measure of detectability. T};re quadratic form (4.2) represents the equation
for a b-dimensional (hyper- )ellipsoid. To obtain a convenient description we choose to
parametrize the D x 1 vector V as (cf. [Toutrtssox ET AL., 1987]):

v  =  l l v l ld  ,

where d is a 6 x 1 unit vector. Inserting ( .a) in (4.2) it follows via

that

(4.2)

(4.3)

(4.4)

(4.5)

(4.6)

^o = dr c: Q;t c,d llvll ' ,

E I ^ Ov=Vae;uad '
If one lets d scan the unit (hyper-)sphere the 6 x L vector V describes the (hyper-

)ellipsoidal boundary region of biases. Note that if the test is based on a window from

time I to k, CjQ;|C, .rn be computed as !f=1 C[,Q;,lC,,.The biases related to the
principal axes of the (hyper-)ellipsoid given by (4.2) can be computed as

d , , (4 .7)

for j - 1,...,b, where,\; and d.i ate one of the 6 number of eigenvalues and associated

normalized eigenvectors of the matrix C:Q;'Cr. The least detectable bias is connected
with the smallest eigenvalue. If one considers one-dimensional hypotheses the matrix

C, reduces to a vector c, and (4.6) reduces to

)o
(4 .8 )

Up to this point we considered the non-centrality parameter of a test associated
with its corresponding alternative hypothesis. It is, however, well known that the test
statistics are mutually correlated and hence one can also consider the non-centrality
parameter of tests which do not correspond with the actual model error. The non-
centrality parameter then provides information on how model errors affect other test
statistics. If we assume the true alternative hypothesis is parametrized as

Hti"" r9_ - N(e,V,Q,) , (4.e)
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it follows from the definition of the test statistic

T -- f e;tc"(c[q;1c,)- 'c[Q;',  , ,

that the non-centrality parameter is given as:

^ = vrd e;'c,(c: e;l c)-lc: Q;'e "v . (4.r0)

Note that (4.10) indeed reduces h (a.2) if e u - Qu. The non-centrality parameter

(4.10) can also be interpreted in geometric terms (cf. Fig. 4.L) as:

95

l = l lPc"e "vr

l = lld"vll ' cosz g ,

(4.11)

(4.r2)

where Ps, is the orthogonal projector that projects onto the range space .B(Cr). The

angle / betweend, and the range space ,B(C") is a measure of the separability between

the alternative hypothesis associated with the executed test and the true alternative

hypothesis. If the angle / is small it is difficult to distinguish between H4 and Iff;"".

From (a.3) and (4.L2) it follows that .\ ( .\s; in other words the detection power of all

tests which do not correspond with l/f;"" are smaller than that of the optimal test.

euv H:*

Figure 4.1: Predicted residual space with metric Q;1 and the two hypotheses Hl ar^d

Hti"".

If one considers one-dimensional hypotheses the matricus C, and C, reduce to

the vectors C, and c, respectively. The test associated with Iff;"" has non-centrality

parameter

,  ) o :  { Q ; l e , v z  ( 4 . 1 3 )

whereas all other one-dimensional tests have non-centrality parameter (cf. eq. 4.10):

Ho

- - - - /  
p

l l  
' c v

(4.r4)



96

which

Design of Dynamic Systems

(4.15)

(4.16)

(4.1e)

using (4.L2) can be written as:

f = ( z l 8 ; 1 " , ) V ' c o s z g ,

with

cosz S -
(dI Q;'"")'

(dI Q;'e"71"TQ;1 ",)
From (4.16) it follows that if one considers one-dimensional tests, cos2 / represents
the square of the correlation coefficient betweenthe test statistics. The correspondence
between cosz S and the correlation coefficient cannot be generalized in a straightforward
manner to multi-dimensional test statistics. Let us (for the sake of completeness)
consider two multi-dimensional alternative hypotheses (not necessarily of the same
dimension) parametrized as

H n r z u  -  N ( C , , V , Q , ) ;  H a r : a  *  N ( C u r Y r Q , )

Fcinstupn [1983] has shown that

(4.17)

maxcos2 Q;j = mux\(M;), (4 .18)

with
M;j = (cf,Q;l c,,)(cj,e;t cu,)- '  (cl,e;t c,,)(c:,e; '  c u,)- ' ,

where rnax),(M;) is the largest eigenvalue of M;i and, S;i is the angle between any pair
of column vectors of which one is contained in the range space ft(C",) and one in the
range space .R(C,r) respectively.

4.4.2 The Minimal Detectable Bias

The Minima.l Detectable Bias (MDB) is defined as the size of the model error that can
be detected by a one-dimensional test. The non-centrality parameter has been fixed at
.\0. We start with the most general definition of the MDB and we consider the following
two one-dimensional alternative hypotheses (not necessarily related to the same type
of model error):

H 4 r : a  -  N ( " , , Y r Q " )  ; H . t " :  u  -  N ( c r " Y r Q r )  ,

where the model misspecifications related to H a, and. H a, start at 11 and 12 respectively.
If we assum" HY'- Haz the MDB related to the test associated with Hn, at time &
is (cf .  eqs. 4.L2, 4.L4, and 4.16):

tv'; 'ut = (4.20)

(4.21)

GT"Q;'",,) cosz dtz

tl'(dp,-bJ
\ 1"T9-J.,J
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The scalars ("T,Q;t 
",,) 

can be computed 
"r 

(Df=-rx(/,,,2) 
"[,,Qi] 

c,r, ) with i, i : Lr2.

The MDB associated with a test not corresponding to I/f;"' is always larger than the
MDB for the test corresponding to I/f;"" (this is in agreement with the remarks made
in connection with eq. 4.12). The smallest MDB at time & is obtained,if Ha, and Ha,
relate to the same model error and 11 = lz (i.e. HAt = Hu). This follows directly
from (4.20) because only then cos2 Qp is equal to one. The generality of the definitions
(4.20) (or alternativety (4.21)) allows the use of the MDB as a measure of detectability
and separability. An illustration of the use of the MDB as a measure of detectability
and sepa,rability in analytical form is given by TpunIssnN [1990a, 1990b].

We wiII use the MDB as a measure of detectability. Therefore we limit ourselves
to the case that h : Iz = I and we assrune the test is performed for the actual model
error. The MDB associated with a test at time & for a model misspecification with
time of occurence I (denoted as lVt'ft1) is then given as (cf. eq. 4.20):

lv ' 'ol = 'I:EE;, (4.22)

Note that the MDBs are not fimensionless; the units of a particula,r MDB correspond
with those of the related alternative hypothesis (the MDB of an outlier or slip in
a range observation, for example, is specified in metres). The summation operation
in the denominator of (a.22) causes the MDB to decrease with increasing window
length (k - I * 1) of the test. All subsequent derivations and computations will be
based on (4.22). The sepa^rability of one-dimensional alternative hypotheses will be
analysed using the correlation coeffi.cient J*W (cf. eq. 4.16). If we consider the two
hypotheses given by (4.19) the correlation coefficient can be computed as:

9 7

"Tr.Q u' t  "ur.
r t . 2 )

k k

( t  
" I  ,Q  u , t  "u , , ) ' l ' (D  

c : , iQ ; j l  
" u , , ) t  

/ '
j = l t  j = l z

k

t
-max(l

P t 2  = (4.23)

4.4.3 The Minimal Detectable Bias as a Design Tool

Minimal detectable biases are a convenient design tool because they can be easily
interpreted. The designer of an integrated navigation system will generally have some
knowledge of the type and magnitude of the model errors that are likely to occur. By
means of the MDBs the designer can judge if these biases can really be detected by the
proposed testing procedure. In the design procedure the MDB can be used to:

L. Verify the chosen testing strategy. The design of the integrated navigation sys-
tem should be improved if the MDB computations reveal that certain biases are
poorly detectable. If one knows from experience that a particula,r bias has little
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impact on the estimation result and is not likely to occur, the corresponding test
statistic may be deleted. More often, however, the effect of an actual bias may be
detrimental to (pa,rt of) the estimation result. Then the design of the integrated
navigation system has to be reconsidered (by, for example, adding additional sen.
sors), or the testing parameters have to be adjusted (by, for example, increasing
the window length of the tests).

Determine the delays and lags of the tests. The MDB provides a useful tool
for the choice of the delays and lags of the tests for various types of alternative
hypotheses (cf. Section 3.5.3). If, for example, the detection power of the local
test is too small (i.e. a particula.r MDB is larger than the slze of the likely model
error), one may use tests with a certain delay of detection (from (4.22) follows
that the MDB decreases with increasing window length). If the detection power
of the local test is insuffcient one could even consider not to execute the local
test (one then introduces a certain lag). We still suggest to choose the lag of the
tests equal to zero, because then real-time identification of model errors remains
possible (a somewhat less likely model error could be larger than the MDB). The
general idea of choosing an appropriate delay is illustrated in Fig. 4.2, where the
delay of the test is determined by the point at which no significant decrease of
the MDB occurs.

Compute measures of external reliability. In Sections 4.4.4 and 4.4.5 we will show
how the bias in the state estimator due to an model error with the size of the
MDB can be computed and analyzed in a straightforward manner.

The minimal detectable biases are at the base of the description of the internal and
external reliabilitS and as such they are pivotal in reliability theory.

2 .

3 .
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J 0 1
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Figure 4.2: Use of the MDB to determine the delay of the tests; (a) Delay (e - I) in
computing test statistics for I ( /c, with & time of testing and I time of occurence model
misspecificationl (b) MDB-matrix lV''*l for a hypothetical test; (c) Test statistics tr'*
computed (c) with delay ft - I = 2 (or windowlength k - I +1 = 3).

The size of the MDB is influenced by the following design parameters:
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- Measurement model. If more sensors are integrated into the navigation system

the MDBs will generally decrease as the redundancy of the model is increased.
How much the MDBs decrease depends mainly on the type, number and precision

of the additional sensors. With each additional observation the m:rnber of MDBs
to be evaluated increases.

- Measurement geometry. The geometry is an aspect in case land or space-based

rafiopositioning systems are part of the sensor set. In case, for example, only
one (radio-)positioning system is used the size of the MDBs depends to a large
extent on the tra.nsmitter geometry relative to the sensor position.

- Sample rate of sensors. Increasing the measurement sample rate results in a

smaller contribution of the system noise between measurement updates and hence
in smaller MDBs.

- Choice of the state-space model. If more sensors are integrated into the navigation
system, the state space model can (or has to) be expa,nded by additional states
(e.g. instrumental biases). The impact of changes in the dynamic model (usually

accompanied by changes in the cova,ria,nce matrix of the disturbances) on the

MDBs is fifficult to predict.

- Stochastic model of the observations. The cova,ria,nce matrix of the observations
(-R) enters the definition of the MDBs directly via the covariance matrix of the

predicted residuals (Qr,) and indirectly via the vectors c,,. Improvement of the

measurement precision results in smaller MDBs.

- Stochastic model of the disturbances. The covariance matrix of the disturbances
(Q) enters the covariance matrix of predicted residuals (Qr,) *'i. the variance of

the predicted observations and indirectly via the vectors c,,. Lower system noise

leads to smaller MDBs.

- Filter concept. The data processing may be performed using one central filter or

be based on a decentralized filter approach ICantson, 1988]. The data processing

scheme has an impact on the testing strategy and thus on the MDBs.

- Testing parameters. The MDBs are a function of the non-centrality parameter .trs,

which in its turn is a monotonic decreasing function of the level of significance as

of the test (for a fixed power) and a monotonic increasing function of the power

To (for a fixed level of significance) of the test. Increasing the window length
(k - I * t) results in smaller MDBs.

For most practical applications, it is difficult to quantify the actual effect of the design
parameters on the MDBs. For a simple case we can, however, demonstrate the prop-

erties of the MDB by an analytical example. We consider the following model with

99
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one-dimensional state and observation vector (i.e. rn = L and z : 1):

(4.24)

where A? is the (constant) sample interval. If we assume that the filter for model
(4.24) is in steady state, it can be shown that the MDB associated with the local test
for an outlier in an observation can be written as:

y = r / I o [ q A r z ( r + u + $ + 2 u ) ]  . , 1  2 r
u  T -  

w r t n  @ =  
A * '

(4.25)

where ar ) 0 because r and g are variances. Equation (4.25) can be derived by solving
for the steady state variance of the predicted state analogously to FRtpol,,c.Nn [1-973],
who considers a two-dimensional state space model. From (4.25) it can be seen that:

- The MDB increases if the system noise q increases.

- The MDB increases if the measurement noise r increases.

- The MDB increases if the sample interval A? increases.

- The MDB increases if the non-centrality parameter Is increases.

These findings are in accordance with the general properties of the MDB listed above.

4.4.4 ExternalReliabil ity

Undetected model errors have an impact on the state estimates. It is of interest to
analyse how particular model errors are propagated as biases in the state vector or
functions thereof. The effect of model errors on the filtered state follows directly from
the filter algorithm. For a slip (of the size of the MDB) in observation i starting at
time I ("j : 

"; 
V j > l) the bias in the filtered state at time & is

E { d k } = r k - s k - 1

E{'y*} :  ,r

D{dk} - eATz

D{yo }  = ,  ,

(4.26)

where Vj'e is the MDB associated. with the test statisti. !.1,t. The bias in the filtered
state at time & due to an outlier in observation i (again of the size of the MDB) at time
l i s

Yi*t*: ofr,ft+r (* 
{,=+.,[iD;+r,;(/ 

- K;A;)]].r*,,,tr,r) o,'*,

( *  )
Vrrlr = iD*,r+r 

t,JI, '*'*,,;(r 
- r;A;ilo,*,,,rrctvt;,k. (4.27)

Simila,r forms can be found for jumps and slips in the dynamic model. The biases can be
computed recursively in the manner outlined in Section 3.5. The part of equation (4.26)
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between parentheses, for example, cotresponds to X*+t,t in (3.72), so that (a.26) (with

eq. 3.84) can be written as:

Vir l*  = 06,6. '1X611,1V1'e
(4 .28)

= Tr,,Y'r'* .

The evaluation of the external reliability using the bias vectors Vi7"11 is laborious
because every alternative hypothesis results in such a (n-dimensional) vector. On the

other hand the analysis of the vectors Vitlr provides a direct insight into the impact of

model errors on the state vector. If the fi.lter under consideration is in steady state, the
bias vectors Vi*tr are representative for the whole trajectory and consequently only a

timited nurnber of vectors has to be considered. The bias vectors Vi*tr may also serve,
at a later stage, to explain the properties of derived external reliability measures such
as the bias to noise ratio.

4.4.5 The Bias to Noise Rat io

Often not the bias vector Virl* itself, but its significance is analysed, because the

analysis of the bias vectors is quite laborious. A measure of the significance of the bias

in the state vector is the Bias to Noise Ratio (BNR):

)e = vill* PHlviktk (4.2s)

The BNR is a scalar measure of the significance of the bias in the state vector and is

a ilimensionless quantity. The BNR can geometrically be interpreted as the square of

the length of the vector Vi*lr in the vector space R' (with metric Po'l):

^,  = l lvrrt f t l l2 (4.30)

Sometimes one is only interested in the effect of a model error on particula,r functions
of the state vector. One can represent these linear( -ized) fulctions of interest by a

r x n matrix FT. The BNR pertaining to these functions follows from (4.29) as:

)pr; = (FrVtfrte)r(,F'rP*tk,F)-1 FrVa11; (4 .31)

In case Fr = I, equation (4.31) reduces to (4.29). Geometrically the BNR given by
(4.31) can be interpreted as [Toutt Issnn,1990c]:

)p'6 = l lPlr*,*11Vf*1*l l2 , (4.32)

where P(p*r*F) is the orthogonal projecter on the range space l?(P;1r-F) along lf(Ft).

A comparison of (4.32) with (a.30) shows that the BNR associated with a subset of the
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state vector is always smaller than the BNR related to the complete state vector, that
is for any r x n matrix FT of full rank

)p t ;  (  ) 5 . (4.33)

In practice the matrix .FT is often chosen in such a way that certain elements of the
state vector are selected. If, for example, one wants to investigate the significance of
the bias in the first two elements of a 4-dimensional state vector. the 2 x 4 .FT-matrix
is given as:

F r  =  ( : 9  9  9 )^  
\ 0 1  0  0 )

The BNRs given by (4.29) and (4.31) are invariant under reparametrization of the state
vector.

The interpretation of the BNR is simplified if we consider the bias of an a,rbitrary
Iinear function yg = aT (F"Vfolu), with a e iid'. Thefunction Vd can also be written
as:

vO = ar(Fr n*,*r\1rr P*v,F)-tFrvau,o .

Application of the cosine rule gives

v0

v6

va
va

From t then

s
his

,mtF; (cr. eq.4.31).

immediatelv follows that:

(4.34)

so that the BNR times the standard deviation provides a convenient upperbound for
the bias YA of an arbitrarv linea,r function of the state vector. viz:

lv0 l (4.35)

If only a single element of the state vector is considered, the BNR times the standard
deviation provides the following upperbound:

l V d r t * , |  1  o e , x  J ^ r .  ( 4 . 3 6 )

The inequalities (4.35) and (a.36) provide useful interpretations of the external relia-
bility measures I; and lpr;.

| | (rrP*tr,r')ol | | | rr Vi611 | | cos( ( Fr p1 p F) a,rr vi611 )

ar (Fr P6p,F)a

lv l  .
I ' va l  

-

ilt kF (F t Pkl*F) - 1,Fr Vi116

lr.n
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In case one considers multi-dimensional hypotheses the BNR is still a scalar quan-
titn but its magnitude depends on the direction vector d specified in (a. ) (cf. [K6srnns,
19921). If we insert (a.6) in (4.28) with Vl'e replaced by V, the BNR (4.29) can be
written as:

) e :  ) o

__T

d'Xi,t  Pa| Xwd
(4.37)

dr cf, Q;t c"d

In equation 4.37 ̂ il^o can be conceived as a Rayleigh quotient and thus the extrema
of the BNR can be obtained by solving the generalized eigenvalue problem

-T

(T i.pHlX *,)d = ̂ (c: e;t c ")d (4 .38)

for the largest and smallest eigenvalue. The bias which has the largest influence on
the parameters is in the direction of the eigenvector associated with the largest eigen-
value. The (normalized) eigenvectors associated with )-.* and l*;, do not necessarily
correspond with the principal axes of the internal reliability ellipsoid obtained with
(4 .7 ) .

In practice one generally analyses the square root of the BNR (rAJ ot JXn;1 t"
facilitate a firect comparison with the bias Vf , the MDBs, and the standard deviation
of the (filtered) state (cf. equations 4.35 and 4.36).

4.4.6 The Bias to Noise Rat io as a Design Tool

The bias to noise ratio is an important design tool because it provides a measure of the
significance of the bias in the state estimator caused by an model error of the size of
the MDB. The interpretion of the BNR is fifficult because the (dimensionless) measure
consists of two elements, namely the bias Virtr and the covariance matrix of the state
vector. The interpretation is simplified if one uses the BNR as in the inequalities (4.35)
and (a.36). In the design procedure the BNR can be used to:

1. Verify the testing strategy. If certain model errors result in large BNRs (and
thus significant biases in the estimators), the design of the system should be
reconsidered. Small BNRs on the other hand inficate that the system design
may be relaxed (by, for example, lowering the redundancy of the system), but do
not inficate that a particula,r test can be automatically deleted from the testing
procedure, because if the likely model error is expected to be (much) la,rger than
the MDB it can still cause a considerable bias in the state vector.

2. Determine the delays of the tests. The determination of the delays of the tests
by means of the MDB has already been discussed. If the analysis of the MDBs
inficates that a small delay of the test is sfficient, but the significance of the bias
remains high (i.e. the BNR is large) with increasing delay, the delay of the test
should be chosen larger than the analysis of the MDBs indicates. The analysis
of the BNRs for the determination of the delays thus serves to substantiate the
determination of the delays by means of the MDBs. The general idea is sketched
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in Figure 4.3 (the notation of Fig. 4.2 is maintained) where we consider scenarios

for an outlier in an observation causing an insignificant bias for la^rge delays and

a slip which causes a significant bias.
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Figure 4.3: Use of the BNR to determine the delay of the tests; (a) BNR-matrix

associated with a hypothetical outlierl (b) Test statistics computed (c) with delay

h - I = 1; (") BNR-matrix associated with a hypothetical slip; (d) Test statistics

computed (a) with delay /c - l: 3.

The BNR is influenced by the same design parameters as the MDB (cf. Sec-

tion 4.4.3). Its response to design changes is difficult to predict as the BNR is a

combined measure of the bias and precision of the state estimator. A design option

that causes the bias to decrease and at the same time improves the precision will have

little effect on the value of the BNR. The behaviour of the BNR ca,n be predicted fairly

well for the following design changes:

- Increasing the redundancy of the system (this is usually accomplished by using

adfitional observations) results in lower BNRs. With each additional observation

the number of BNRs to be evaluated increases.

- Increasing the non-centrality parameter ,\s leads to larger values of the BNRs.

The size of the BNR is furthermore dependent on the subset or linear firnction (modelled

with FT) of the state vector one is interested in. The analysis of the external reliability

for integrated navigation systems is usually limited to the state vector elements related

to position and/or velocity. The BNR corresponding to this subset will always be
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smaller than the BNR pertaining to the full state vector. The choice to which (linear(-

ized)function of the) unknowns the BNR relates, should be given serious consideration.

The characteristics of the BNR can be nicely illustrated for the simple model given

by (a.za). For the local test for an outlier in an observation it can be shown that the

BNR can be written as:
. )o(1 + \trTru)
. ' r

u
with ar = 2r lkLT') (.f. eq. 4.25). From (a.39) follows that .\; is a monotonic decreas-

ing function in ar. As a consequence it follows directly from this example that:

- The BNR increases if the system noise g increases.

- The BNR decreases if the measurement noise r increases.

- The BNR increases if the sample interval AT increases.

- The BNR increases if the non-centrality parameter )s increases.

Unfortunately the properties of the BNR for dynamic systems in general cannot be

illustrated so easily.

4.4.7 Choice of Convent ional Al ternat ive Hypotheses

The choice of the alternative hypotheses is application dependent. One ma5 how-

ever, consider whether the concept of the conventional alternative hypothesis can also

be maintained for dynamic systems. Blanol [1968] suggested the use of so-called

conventional alternative hypotheses to arrive at a standard reliability description of

networks. In practice the proposed conventional hypothesis (assuming an outlier in a

single observation) is often the only specific alternative hypothesis used in the testing

procedure. As a result the choice of which alternative hypotheses should actually be

tested has received little attention (a notable exception being the field of deformation

analysis). The growing importance of GPS (with its inherent cycle-slip problem) and

integrated navigation systems requires that the specification of alternative hypotheses

should seriously be reconsidered. If we limit ourselves to the slippage tests of the DIA

procedure we see that basically two types of model errors can be conveniently modelled

(viz. outliers and slips in the observables). Furthermore the DIA procedure requires

that the window length of the test is specified.
Currently too little experience is available for the definition of conventional alter-

native hypotheses in the design of integrated navigation systems. The only universal

model error (probably for all sensor types) is the outlier in a single observation. It

seems, however, that this convention is rather limited, because then model errors re-

lated to tsoft' sensor failures, slips in the observations, and changes in the dynamic

model are not taken into accourt. It might very well be possible that every type of

sensor and dynamic model requires a sepa,rate convention. The generality of Bunn.n's
proposal is then lost, but this is not asthonishing, considering the wealth of navigation

sensors available.

1.05

(4.3e)



106 Design of Dynamic Systems

4.4.8 Computat ional Aspects

In the previous sections we have provided an ovetview of the important reliabiJity

measures. If one looks at the equations that define the MDB and the BNR (we refer to
(4.22) and (4.31) inparticula,r), one sees that there exists a close relationship with the

equations we found in the derivation of the testing procedure. The denominator of the

MDB (4.22) is identical to the denominator of the test statistic corresponfing to the

MDB (3.68). Atso the BNR (4.31) can be computed in a straightforward manner. The

covariance matrix of the state estimator is provided by the Kalman filter. The bias

vector Vf*l* can be computed recursively with (4.28), where the vectors (or matrices)

Xx+t,t are computed according to one of the schemes provided by (3.69) to (3.72).

Consequently the quality measures can be computed by the same software that is used

for the filter computations (in the software for the design and adjustment of geodetic

networks this has long been exploited). The close relationship between design and filter

computations allows that the reliability is even monitored in real-time.

4.4.9 Specification of Reliability Requirements

In practice reliability requirements for navigation systems are rarely specffied explicitely.

For many real-time precise positioning applications, howevet, it is nowadays required

that some quality control procedure, usually a local testing procedure, is implemented
(see, e.g., [Nlcor.r,r, 1988]). The purpose of the testing procedure is the validation of

the null hypothesis. If IIo is valid, the precision description as provided by the filter is

then used to quantify the quality of the system. A table with reliability requirements for

geodetic navigation applications (similar to Table 4.L but expressed in MDBs, BNRs,

or (functions of) the bias vector Vi.) is not yet available. It is likely that reliability

requirements will be specified in terms of external reliability measures (because one is

primarily interested in the impact of model errors on the estimation resalt). The BNR

would be a convenient measure as it can be more effciently analysed than a set of bias

vectors for a full range of alternative hypotheses and because it provides a link with

the precision of the filtered state.

In the meantime one can proceed as follows. For most (integrated) navigation

systems the type a.nd magnitude (or range) of the model errors that are likely to occur

are quite well known. Implicitely these likely model errors thereby provide the basis

for an internal reliability requirement: the MDB should be smaller than the size of the

model error. Requirements with respect to external reliability can often be specified in

terms of firnctions of the bias vector. In 3-D seismic applications, for example, it is for

instance very important that a seismic signal can be allocated to a certain bin (a bin

represents a, say, 25m x 25m area on which the geophysical data processing is based).

The maximally tolerated bias in position can then directly be derived from the size of

the bin (note that such a requirement may result in much stricter quality requirements

than the precision requirement). Based on the given bias, one can then derive (using

inequality (4.35)) an upperbound for the BNR.
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4.4 .1O Summary

In this section we have fiscussed internal and external reliability (measures) and have
commented on their use in navigation system design. Internal reliability is described
with the MDB, which represents the size of the bias that can be detected by a certain
test with a certain probability. We have inficated how the MDB, which can be easily
interpreted, can be used to determine the window lengths of the tests. External reliabil-
ity is described by (functions of) the bias vector Vi and the BNR, which represents the
significance of the bias relative to the precision. The characteristics of the BNR allow
a direct comparison of the reliability related to various hypotheses. The interpretation
of the BNRs can be somewhat involved, but we have shown how the BNR is related
to the precision and bias of the filtered state vector. The description of reliability is
dependent on which alternative hypotheses are considered in the testing procedure. No
convention concerning the choice of alternative hypotheses could be given yet.

4.5 A First Step towards a Design Procedure for Inte-
grated Navigation Systems

In the following we propose a design strategy for integrated navigation systems based
on the quality measures for precision and reliability derived in Sections 4.3 ar.d 4.4.

The precision requirements for (geodetic) navigation applications are well known
(.f. Table 4.1). Therefore we suggest to start the procedure by designing a system
which meets the precision requirements. After this has been accomplished we can
then check if the reliability of the system is sufficient to guarantee that the precision
requirements are met under operational conditions. Although usually no reliability
requirements are explicitely specified, the model errors which are likely to occur can
be pinpointed rather well. Implicitely this knowledge provides us with requirements
for the internal reliability. A first step is to validate if the size of the likely model
errors is smaller than the size of the corresponding MDBs. If this is not the case
the design of the system has to be improved until the internal reliability meets the
suggested requirement. In a second step one can, based on the finully obtained MDBs,
compute the BNRs for the various alternative hypotheses. Using inequality (4.35) one
c:rn compute an upperbound for the bias in the filtered state. If this bias does not
exceed some preset threshold (usually one will, depending on the application, have
some idea on the maximum allowable bias), the external reliability is su-fficient. In the
procedure one should give much consideration to the specification of possible model
errors, because the choice of the alternative hypotheses determines the completeness of
the reliability description.

The system design should not exceed the given precision (and possibly reliability)
requirements too much. Furthermore it is likely that in practice the design options
are limited by constraints on, e.g., budgets and available measurement systems. The
result of the design procedure is a description of the functional and stochastic model
of the integrated navigation system, a quantification of the quality of the system, and
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a description of the proposed testing strategy (cf. our discussion in Section 4.2). The
testing procedure really has to be implemented in the integrated navigation system in
order to warrant the reliability of the system under real-time operation. Therefore we
are of the opinion that the part of the design procedure which relates to reliability is
an intrinsic part of the DIA procedure.

The design procedure for integrated navigation systems differs from the well-es-
tablished design procedure for control networks. The difference is primarily due to
the fact that the purpose of an integrated navigation system is usually well defined.
The endeavour to arrive at a design which has a 'homogeneous'precision and reliability
description therefore not necessarily applies to integrated navigation systems. The mere
va,riety of alternative hypotheses one has to consider in the design phase of a navigation
system, renders the realization of a 'homogeneous' reliability description unlikely.

4.6 Reliability and RAIM

In Section 4.4 we noted that in practice reliability requirements are not often explicitely
specified. A notable exception is found in the civil aviation community, where much
research has been performed concerning integrity. Integrity mearls that the navigator
is given a timely warning if certain precision and reliability requirements are not met.
By means of an example we will relate our reliability measures with the reliability re-
quirements which can be derived from a particular integrity monitoring scheme, namely
RAIM.

For aviation applications it is (legaily) required that a system failure, causing a
certain bias in (horizontal) position, is detected in real-time by a test with a certain
Ievel of significance and power. If this failure detection is accomplished by checking the
self-consistency within a single subsystem, the testing procedure is generally denoted
as Receiver Autonomous Integrity Monitoring (RAIM).

A test of a certain dimension can be cha,racterized by fixing two out of three testing
parameters, namely the size of the test a, the power of the test 7, a,nd the non-centrality
parameter .\. In the navigation literature the size and power of the test are usually
denoted as the probability of false alarm (o) and the probability of detection (7) (some-
times the probability of missed detection (t - f ) is used).

In the civil aviation community it is corlmon practice to fix o and ? and to give an
upper limit in terms of the position error for each phase of flight [nrc.l, 1991]. This
actually means that an upper limit is given for all three testing pa,rameters. A bias
which causes a certain position error should be detected by a test (which test is not
explicitely specified, but note it could very well be the detection procedure discussed
in Chapter 3) with at least the prespecified a a,nd 7. If this requirement cannot be
met, the test is decla,red unreliable. Stunz,q. [1988], Stunz.t AND BRowN [1990],
and BnowN ET AL. [1991] have performed design computations to establish under
which conditions GPS (in pseudo-range mode) can meet aeronautical requirements
(assuming only one pseudo range is affected by a model error). The investigations a.re
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based on a least squares adjustment per fix. The example we consider is the phase of
flight called 'enroute'. In Table 4.2 the RAIM requirements are given. The minimum

alarm limit
malcrmum allowable

alarm rate time to alarm

minimum detection
probability

370a [m] (z [nmi]) | 0.002/hour I 30 0.999

Table 4.2: RAIM requirements for enroute navigation [ntc,t,1-991,].

detection probability corresponds to a lower limit for 7. Following the interpretation
of Stunz,q. AND BRown [1990] a maximal allowable ala,rm rate of 0.002/hour with a
decision every 30 seconds (time to alarm) corresponds to a upper limit for a of t.7E-5
(= (0.002/3600) x 30). The ala.rm limit is the acceptable radial position error and is
specffied in terms of a function of the bias vector Vi. For a given satellite configuration
one can then derive the size of the bias in the measurement which will cause that the
ala^rm limit is exceeded. Contrary to the B-method of testing the size of the (detection)
test used in the RAIM methods is fixed for various degrees of freedom.

Using our approach the RAIM procedure could be implemented (and extended) as
follows. One uses the overall model test with the specified size a for the particular
phase of flight. If the local overall model test statistic is larger than the critical value

k?(b,0)) a model misspecification is detected and one can (if the redundancy 6 is
Iarger than 1) identify the model error (although identification is not part of the RAIM
requirements). Based on the a corresponfing to the test with 6 degrees of freedom,
one can compute os for a one-dimensional test using the B-method. The non-centrality
parameter .ls is then obtained from the inverse power function (the computations may
seem rather complex, but can be easily tabulated, cf. Table 4.3). One can then compute
the MDB and BNR for each satellite range. From Table 4.3 it follows that the non-
centrality parameter and thus the MDB increase with increasing redundancy. This
seems to contradict our finfings of Section 4.4.3, but there the ds was kept fixed.
Using inequality (4.35) one can then check if one stays within the alarm limit and
decla,re the (RAIM) test unreliable if one does not stay within the ala,rm limit. One
thus has available a methodology which does not only detect but also identifies model
misspecifications and provides real-time quality assurance. Furthermore this RAIM

1
2
3
4
o

6

1.7E-5
1.7E-5
1.7E-5
1.7E-5
1.7E-5
1.7E-5

18 .5
22.0
24.8
27.3
29.7
31 .9

0.999
0.999
0.999
0.999
0.999
0.999

54.6
59.2
62.6
65.4
67.9
70.2

r.7E-5
4.4E-6
l.4E-6
5.78-7
2.68-7
t.2E-7

18.5
21.2
23.3
25.0
26.5
27.9

Table 4.3: Testing parameters accorfing to the B-method corresponding to the RAIM
requirements for enroute navigation.

of freedom b
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procedure can be easily extended to the case where the data processing is based on a
Kalman filter.

4.7 Concluding Remarks

The design of dynamic systems is a part of the quality assurance of dynamic systems.
Only if the full cycle of design, real-time quality control with the DIA procedure, and
validation of the output has been completed, the quality of the process is assured.
Because the output of a (navigation) system is dependent on actual data and environ-
mental conditions, the quality of the output of the system may differ significantly from
the quality of the system design.

In this chapter we limited ourselves to the design aspects precision and reliability.
Although we paid relatively much attention to reliability, precision is just as an impor-
tant aspect of quality. Even if only precision requirements have to be met, one still
has to perform a reliability analysis. The qua.ntification of the precision (which is valid
under I/o) can only be guara,nteed if the reliability of the system is sufrcient.

We want to stress again that the reliability description is dependent on the model
errors which are considered and therefore the choice ofan appropriate set ofalternative
hypotheses is of crucial importance in the design of an integrated navigation system.
The specffication of alternative hypotheses is application dependent, but the measures
of reliability can be used for the design of arbitrary dynamic systems (irrespective of
the application).

Based on the measures of precision and reliability we tentatively proposed a design
procedure for integrated navigation systems. In the next chapter we will apply the
measures we derived for precision and reliability to a case study in which we consider
the design of an integrated navigation system.



Chapter 5

Design Computations

5.1 Introduction

In this chapter we will consider the design of dynamic systems with respect to qual-

ity. The concept of quality and the measures by which it ca,n be qua.ntified have been
discussed in Chapter 4. We will limit ourselves to the design of a simple linear system
and an integrated (hydrographic) navigation system. Up to the present little expe-

rience is available concerning the use of statistical quality measures in the design of
integrated navigation systems (contra,ry to the land surveying practice where quality
measures haven proven to be invaluable design tools). One of the main objectives of
this case study is therefore to analyse the characteristics of the quality measures under
various model assumptions with emphasis on the reliability measures. Consequently
this design study is primarily a comparative study. We will firrthermore try to establish
the suitability of the various design measures for the design of integrated navigation
systems. Finally, this chapter may serve to provide a basis for a methodology for the
design of a testing procedure for integrated systems. Based on the design study the
window lengths of the tests have to be chosen.

We start the analysis with a thorough, though limited, design study of a simple,
linear two-dimensional model. Such a model allows a first introduction to the use of
the quality measures in system design and facilitates our understanfing of the results
related to the more sophisticated navigation systems. The design study of the navi-
gation system is based on the setup of the NAVGRAV-survey, which was executed in
1986 [H.a.,lcMANs ET At., 1988]. Because the study is primarily directed towards the
analysis of va,rious quality measures in integrated navigation system design, it'does not
deal with the design of the actual navigation system (or rather hydrographic survey-
ing system) itself. The design study is limited to statistical quality measures, namely
precision and reliability. Other design parameters such as cost and available hardware
are not considered. No a priori quality requirements have been specified, and as a con-
sequence no optimization with respect to some preset quality measures is performed.
Some results pertaining to the navigation system considered here have been reported

1 1 1
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previously in I S.l,l z rvr.a. r.r n, 1 9 90 ; 1- 99 1].
As we a,re concerned with the design of (integrated navigation) systems, all the

results presented in this chapter are independent of actual data (but, of course, still
dependent on the chosen measurement scenario).

5.1.1 Overview of this Chapter

We sta,rt by briefly recapitulating the quality measures in Section 5.2. In Section 5.3 the
simple linear model with which we will start our design computations is introduced.
Design results for the linear model are discussed in Section 5.4. The setup of the
integrated navigation system is given in Section 5.5 and the results pertaining to this
system are discussed extensively in Section 5.6. Section 5.? is devoted to design studies
(especially with regard to reliability) performed by others. The chapter is concluded
by summarizing the main findings in Section 5.8.

5.2 Quality Measures

We briefly repeat the measures which a,re used in the design studies and have been
derived in Chapter 4. The analysis of reliability is limited to one-dimensional alternative
hypotheses. The reliability measures are computed based on the assumption that the
filter operates r:nder the null hypothesis except for a single model error. The following
quality measures are considered:

Precision

- Standard deviations of the filtered states.
- Point error ellipses.

Both precision measures are a function of the cova,riance matrix of the state
vector.

Internal Reliability

- Minimal Detectable Biases (MDBs). The MDB is defined by (4.22) and
represents the size ofthe the model error that can be detected by a particular
one-fimensional test. The MDB is used as a measure of detectability.

- Correlation coeffcient betweenhypotheses. The correlation coefficient (given
by 

"q. 
4.23) is a measure of the separability between trvo alternative hypo-

theses which are related to the same time of occurence I of the model error
a^nd the same time of computation lc.

External Reliability

- Bias in the filtered state. The direct influence of model errors on the filtered
state is given by the (elements of the) bias vector Vi*l*. Elements (of
functions) of the bias vector are plotted in so-called response graphs.
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- Bias to Noise Ratios (BNRs). The scalar, dimensionless BNR is defined by
(4.29) and is a measure of the significance of the bias in the state vector. We
will analyse the square root of the BNR to facilitate a direct comparison with
(elements of) the bias vector Yi*tx, the MDBs, and the standard deviation
of the predicted state.

The description of the reliability of a dynamic system is very dependent on the alter-
native hypotheses which are specified. The specification of alternative hypotheses is
application dependent and is therefore discussed in conjunction with the linear and
navigation models separately. To provide a link between the various reliability mea-
sures the flowchart given in Fig. 5.1 might be helpful. In Fig. 5.1 we consider model
errors of outlier and slip type which occul at time I and are analyzed at time &. (The
notation Vi;1; indicates an intermediate result.)

Outlier in an observation Slip in an observation
time MDB bias BNR time MDB bias BNR

t  l v ' ' * l  +  F i l te r
I

i i , , ,
t '

I + r Filter
1

V i ,+ r r ,+ ,

Filter
J

@
Qt*r*

t

trt

r F' ' ' l  + Fl ter

9it l t

I
l+ r trI --+ Filter

ve ,j,r,*,

i W --+ Fi;.. + etrtr
I t

@ - E
Figure 5.1: Interdependence of measures of internal and external reliability.

5.2.L Test ing parameters

For the design computations the level of significance is set at oo = 0.00L for the one-
dimensional tests. The power of the tests is 7o = 0.80. This results in a noncentrality
parameter of ,\s - L7.07 . The choice of the values of the testing parameters corresponds
to the choice generally made for network design. In land-surveying the values c6 =
0.00L and 7o = 0.80 are commonplace and are derived from an extensive measurement
experience. It might be that in the future (navigation) applications require different
values of the testing parameters. Note, however, that the magnitude of the testing
parameters only has an impact on the size of the reliability measures.
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5 .3

Design Computations

(5 .1 )

(5.2 )

We begin our design studies by considering a simple, linean model. We will extensively
discuss the design of this model, which will serve to illustrate the properties of especially
the reliability measures, because we think many aspects of the design procedure can be
much better understood using a simple model. We will only analyse two linear models
and therefore our analysis of these models only provides a limited insight on the impact
of the design parameters on the quality measures.

The linear (two-fimensional) polynomial model is based on the following dynamic
model: \ . / \t * - t * ;  , l  

I  r  1 |
r ) \ " ./*-, 

'
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" = ( 3 )  
i Q ' o =

with D{{} = Qn. The (linear) measurement model is given as:

n { u }  = ( r  r ) ( ;  )  ,'  
\ o "  /  *

/  o.oomr o.oob \
\  0 .005 0.01 )  

'

with D{4} - R*. We assume a one-second sampling interval (i.e. t6 - tp-1 = !).
Furthermore we assume that .R* = 1 for all fr. The two particula.r cases we consider
are denoted as LM1 and LM2, and are only different as far the covariance matrix of
the system noise (Q;r) is concerned:

E { & }  =  ( ; ) _ _ ( ;

e r n r= ( ' ; 11 ' l f  ) '  eu r z= (5.3)

This linear model can be interpreted as a navigation problem along a line, where the
position (c) and velocity (ur) along the line (expressed in metres and metres/second
respectively) are the state vector elements and the position coorfinate is the observ-
able. The choice of system noise in (5.3) corresponds to standard deviations of the
accelerations (which model the disturbances in model 5.1) of knf s2 for model LMl and
0.1m/s2 for model LM2.

Based on the model description given by (5.1) to (5.3) two datasets with a duration
of 100 seconds (this corresponds to 1-00 fixes) have been created for each model. The
analysis of reliability is based on alternative hypotheses for outliers and slips in the
observations.

5.4 Design Results - Linear Models

In this section we will successively analyse the precision, internal reliability (MDBs),
and external reliability (using the bias vectors Vi*l*, and the BNR) pertaining to the
models LMl and LM2. For the design computations the initial state and its covariance
matrix ane chosen as:

( 'l ' ,8,) (5.4)
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After 30 fixes the filters for models LM1 and LM2 are in steady state (i.e. the entries
in the covariance matrices P616 and P*+rl* remain constant).

Ersrn-a.ro [1983] has derived an analytical solution for this two-fimensional model
and gives closed form expressions for the elements of the covariance matrices of the
estimators of the predicted and filtered state and the elements of the gain matrix.
Erstn.a.r.lo's results (which are identical to our numerical results once the filter has
reached steady state) for models LM1 and LM2 are listed in Table 5.1.

Table 5.1: Filter results (steady state solution) - cases LMl and LM2.

5.4.1 Precision

The standard deviations of the fi,ltered states are given in Table 5.2 and follow directly
from Table 5.L. Clearly the standard deviations related to model LM2 are much smaller
(in particular of the velocity state) than of those related to model LMt. It is wellknown
that smaller system noise leads to better precision of the filtered state estimators.

LM1 LM2
position velocity position velocity

0 .87  1 .01 0.60 0.20

Table 5.2: Standard deviation of position [m] and velocity [m/s] estimators (steady
state solution) - cases LML and LM2.

5.4.2 Internal Reliability

The Minimal Detectable Biases (MDBs) of the coorfinate observables of models LML
and LM2 are given in Table 5.3, which nicely illustrates the fact that the size of the
MDBs decreases with increasing delay (or window length). The MDBs do not signifi-
cantly decrease for delays larger than, say, three (except for the slip hypothesis in model
tM2). This means that the contributionof the scalars c,, to the product cI8;1c,i in
(4.22) becomes negligible for large delays (Q", ir a constant because of the steady state

LM1 LMz

P* l * - t

P*lr

Kp

(  3 . t r  1 .76  \
\  1 .76 2.03 /

( o.tsz 0.4e3 \
\ 0.4e3 r.os /

( 3:ill )

( 0.564 0.125 \
\  o.rzs o.obo )

/ o.sat o.o8o \
\ o.oao o.o4o )

/  o.sot  \
I  o.oa )
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(  5 .5 )

i > l
(5 .6)

i = 1 ,

model L M 1 LM2
delay outlrer shp outlier slip

0
I
2
3
4
D

6
I

8
9

8 .38
5 .23  8 .13
5.20 7.50
5 .17  7 .30
5.14 7.28
5.14 7.28
5.14 7.28
5.14 7.28
5 .14  7 .28
5 . r4  7 .28

5 .17
4.73 4.51
4.53 4.42
4.44 4.42
4.4t 4.39
4.40 4.sl
4.40 4.22
4.40 4.13
4.40 4.05
4.39 4.00

Table 5.3: Minimal Detectable Biases [m] for outliers and slips in the coordinate ob-
servat ion at f ix 90 ( l  = 90, k -  I  =0,. . . ,9) -  cases LML and LM2.

condition). The definitions of the scalars c,, for outliers are:

cu; = cg

(cf. eq. 3.71), and for slips (cf. eq. 3.72):

i > I

i : I

c r i  =  c o - A ; i I ; , ; - 1

coi = cv

where the term between braces should be taken as identical to the identity matrix if
j  < i - 1 i n ( 5 . 5 )  o r  k  < i  - 1 i n  ( 5 . 6 ) .  A f t e r i n s e r t i n g t h e m o d e l p a , r a m e t e r s g i v e n
by (5.f ) and (5.2) and the results of Table S.L into (5.5) a,nd (5.6) one obtains with
cy : I the values for the scalars cui as given in Table 5.4. Indeed the entries of cq
rapidly decrease with increasing delaS except for the slip-type error in model LM2,
which is in accordance with the gradual decrease of the MDBs for slips in model LM2
(cf. Table 5.3). Given that Q;l = 0.243 for model LMl and 0.639 for model LM2, the
results of Table 5.4 inserted in (a.22) are identical to the MDBs given in Table 5.3.

From Table 5.3 it follows that a slip can be much better detected by a filter based
on model LM2. This can be understood if one recalls that that a larger system noise
(as in model LMl) results in a larger gain, and as a consequence the filter related to
model LML will more easily absorb a slip in the observations.

Summa,rizing the analysis of the MDBs for models LM1 a,nd LM2, it is concluded
that the detectability of the model errors does not improve much with increasing delay.
Furthermore the detectabilitv is better for the model with the smaller svstem noise.

(  ; - t

c , i  = - . l ror , r - t {  f I
(  r= l+ t

l(I - K jAj)Q;,;-r J 
\ 

*,",

, i,{g' 
s - KkAk)or,*-rl}*,-'",
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co ; LM1 LM2
delay outlier slip outlier slip

0
1
2
3
4
o

6
I

8
9

1 . 0
-1..25 -0.25

-0 .181 -0 .431
0.168 -0.262
0.170 -0 .092
0.087 -0.005
0.024 0.019

-0 .003 0 .016
-0.008 0.008
-0.005 0.003

1 . 0
-0.44L 0.559
-0.322 0.237
-0.222 0.015
-0 .141 -0 .126
-0.078 -0.204
-0.033 -a.237
-0 .018 -0 .255

0.018 -0.237
0.029 -0 .208

Table 5.4: Elements c* for outliers and slips - cases LMl and LM2.

5.4.3 External Reliability

We analyse the external reliability using so-called response graphs and Bias to Noise

Ratios (BNRs). The response graphs serve to visualize the effect of the model errors

on the state estimates and to explain the characteristics of the BNRs.

Response Graphs

Figs. 5.2 and 5.3 show the impact of an outlier of 1 metre at fix 30 and a slip of L

metre on the filtered estimator for models LM1 and LM2. The fllter quickly reacts to

the model error. The instanteneous response at fix 30 corresponds to the values of the
gain matrix given in Table. 5.1. It can be seen that the filters are underdamped.

0.00

-0 .25

Figure 5.2: ) Position [m] and O velocity response [m/s] vs. the fix number due to an

outlier (left) and slip (right) of Lm in the coordinate observation - model LML.

1.00

-0.26 +
30
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L.25

1.00

o.oof
I

T
-0 .25 f

0.00

-o.25
100

Figure 5.3: O Position [m] and O velocity response [m/s] vs. the fix number due to an
outlier (left) and slip (right) of Lm in the coorfinate observation - model LM2.

Bias to Noise Rat ios

BNRs for models LMl and LM2 are given in Table 5.5. The BNRs can be firectly
related to the reponse graphs in Fig. 5.2 because the fllter is in steady state. The
significance of the bias for outliers is seen to decrease very rapidly with increasing
delay, which is in accordance with the response graphs given in Figs. 5.2 and 5.3. The
bias for a slip remains significant with increasing delay. This phenomenon is easily
understood if one recalls that the stp is fully absorbed in the position state estimate.
The overshoot effect visible in Fig. 5.2 is also visible in the values of the BNRs, although
part of the decrease of the BNRs for slips is due to the decrease of the bias in the
velocity estimate. The values of the BNRs for model LM2 basically display the same
behaviour as for model LML, although the response is somewhat damped. This is a
direct consequence of the smaller gain associated with model LM2.

model L M l LM2
delay outlier slip outlier slip

0
1
2
3
4
D

6
a

8
I

7.29
2.7t r0.4
1.51  10 .8
0.67 10.6
0.27 10.4
0.14 r0.2
0 .09  10 .1
0.04 10.0
0.02 10.0
0.01 10.0

3 . 1 0
2.29 4.86
1.78 6.40
1.43 7.69
1 .16  8 .58
0 .95  9 .L2
0.77 9.39
0.61 9.49
0.49 9.50
0.38 9.46

Table 5.5: Squa.re root of the BNR for outliers and slips in observations at fix 90 (l = 9Q,
k  -  I  =  0 , . . . , 9 )  -  c a s e s  L M 1  a n d  L M 2 .

We will now consider the BNR related to various subsets of the state vector, which
can be specified by the matrix FT in (4.31). We have computed BNRs related to both

".,L=- |
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Figure 5.4: sqrt(I6) for outlier (teft) and slip (right) in the coorfinate observation vs.

the delay in fixes; O position a'nd velocity; A position; y velocity - model LMl.

states (Table 5.5) and will now consider (for model tMt) BNRs related only to the

position state (,FT = (1 0)) or the velocity state (]7T = (0 1)). The square roots

of the va,rious BNRs are plotted in Fig. 5.4. The significance of the bias caused by

outliers decreases quickty for every subset, but the impact on the velocity is seen to

increase in significance from delay 1 to 2 before it finally decreases (this behaviour

is in accordance with the velocity response to a.n outlier in Fig. 5.2). Furthermore

Fig. 5.4 shows that mainly the bias in the position state is significant after a slip in the

coordinate observations has occurred (also this behaviour is confirmed by the reponse

graph).
Summa,rizing, the analysis of the external reliability shows that the BNR is not

necessarily a monotonic (decreasing) function of the delay (as are the MDBs). Moreover

the magnitude of the BNRs is very dependent on the subset of the state vector one

actually considers. The significance of the bias for model LM2 is comparable with that

of model LML.

5.4.4 Concluding Remarks

In the current section we analysed the design of the two simple linear models introduced

in Section 5.3. The purpose of the rather limited analysis was to make the reader

familiar with (some of) the properties of the quality measures. We illustrated some

characteristics of the MDBs and compared these with results obtained analytically.

The analysis of external reliability was somewhat complicated and use was made of

response graphs to clarify the properties of the BNRs. After having analysed the

precision, internal and external reliability for models LM1 and LM2, we find that the

external reliability of both models is comparable, whereas the precision bnd internal

reliability associated with model LM2 are clearly better. This observation demonstrates

that the design of a system (w.r.t. quality) cannot be based on a single quality measure.

Although we will see in later sections that some of the findings reported here will

be substantiated, the findings of this section cannot be simply generalized to more

sophisticated models.
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5.5 Design Setup - Navigation Models

5.5.1 Design Conf igurat ion

We now consider the design of a hydrographic navigation system. We have chosen to
use the configuration of the NAVGRAV-survey which was performed in the North Sea
in L986. The NAVGRAV survey was a combined navigation and sea-gravimetry experi-
ment. Although a major objective of the navigation experiment was to obtain hands-on
experience with dynamic GPS positioning, we will not consider the processing of GPS
data in this case study. The design computations are performed on the basis of ter-
restrial radiopositioning systems and dead reckoning systems. The North Sea area is a
good example of a region where integration can be considered as it is covered by various
radiopositioning systems. Because we are primarily interested in the characteristics of
the design parameters and want to establish the feasibility of the design procedure, we
have not extensively modelled the actual sensors, but have used somewhat simplified
measurement models, which, however, maintain the characteristics of the systems they
represent.

We malce use of two terrestrial radiopositioning systems, namely Syledis and Hyper-
fix. Syledis is a UHF system (and thus basically a line-of-sight sytem) which supports
operation in range-range, pseudo-range, and so-called combined mode and as a conse-
quence is by itself already a subject of detailed design computations. Hyperfix is a MF
hyperbolic radio-positioning system which has replaced the similar Hifix system which
was in use at the time of the NAVGRAV-survey. Hyperfix observables can be looked
upon as range-fifferences. Usually these observables are expressed in [lanes] (on the
baseline between two tra,nsmitter stations one lane corresponds to half a wavelength
of the system). A pair of Hyperfix tra,nsmitters, between which the range-differences
are measured, is called a pattern. For further details on these radiopositioning systems
see, e.g., [B.a,rxen ET AL., 1989]. Syledis and Hyperfix constitute the 'absolute'posi-

tioning components of the system. These are supplemented by dead reckoning sensors.
We integrate a (gyro)compass and a speed log (in bottom track mode). As we consider
both 'absolute' a.nd dead reckoning positioning sensors the results of this design study
can be reafily extended to other positioning systems.

Design computations are performed at two different locations (cf. Figure 5.5). The
area with good Syledis coverage (denoted by f. in Fig. 5.5) is prima,rily used to assess
the impact of va,rious model assumptions on the quality of the integrated system. The
area with poor Syledis coverage (as Syledis is a line-of-sight system only two ranges
can be observed in the area denoted by 2 in Fig. 5.5) is used to investigate the impact
of various integration strategies on the quality of the positioning solution.

At both design locations a similar trajectory consisting of 100 position fixes at
one second intervals and sailed at a constant velocity of 5m/s has been simulated (see
Fig. 5.6). The curve has been introduced in the trajectory to detect possible direction
dependent effects.

In Table 5.6 the coordinates of the starting points of the trajectories and the sta-
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Figure 5.5: Design Area.
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Figure 5.6: Simulated trajectories - area L (left); area 2 (right).

tion coordinates are given. For the design computations we use the Hyperfix patterns

Renesse-Texel and Renesse-Pakefield.

5 .5 .2  Mode l  Assumpt ions

The description of the measurement and dynamic models is based on plane geometry.

The values given here are default values and any deviations from these values will be

Eng land

North Sea

Nethe r lands
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yperfi
Renesse
Pakefield
Texel

551  173 .93
413865.59
618383 .20

5731889.84
58 I  1444.80
5873936.0 1

Startin t trajectorporn les

Area 1
Area 2

600000.00
580000.00

5900000.00
58 10000.00

Table 5.6: Station coordinates and starting points of the trajectories.

explicitely inficated. The design computations are based on the linearized Kalman

fitter (LKF), and the measurement model is linearized with respect to the trajectories

given in Fig. 5.6.

Measurernent rnodel We give the observables and their standard deviations (the

observation equations are given in Appendix B).

- Syledis is used in range-range model the measurements have a standard

deviation of 1.5m and are assumed to be mutually uncorrelated.

- We assume that the Hyperfix system has a wavelength of 140m. The hy-

perbolic observables have a standard deviation of0.02lanes and a covariance

of 0.00021anes2. For design area 2 this corresponds to standard deviations

in the patterns Renesse-Texel and Renesse-Pakefield of 1".41m and 2.43m

respectively and a covariance between the patterns of 1..71m2.

- Gyro with a standard deviation of 2.0deg.

- Log in bottom track mode with a standard deviation of 0.2m/s.

The standard deviations of the gyro and log measurements have been chosen in

such a way that at a velocity of 5m/s the precision of gyro and log is approximately

similar (at 5m/s a standard deviation of 2deg in the gyro measurement for a one-

second interval corresponds to a standard deviation of 0.175m/s of the velocity

across track).

- The measurement sampling rate of all sensors is lHz.

Dynarnic rnodel The dynamic model is a constant velocity model with constant in-

strumental biases. The state model is of polynomial form. Given the state vector

elements

NAM K15
Union Q1A
Texel
L4A petro

558200.30
577386.80
6  18295 .10
572513,61

59035 10.80
586468 1.63
5874865.80
5953710.42

onlv used in area I

onlv used in area 1
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- Position (Easting c1, Northing xz).

- Velocity (East 13, North ca).

- Gyro offset (if a gyro is included, c5)

- Log bias (if log is included, c6)

this results in the following linear dynamic model:

123

& - l

) =

dr

dz
d3
d^

d"
ds

E{

t 1

X 2

a 3

E 4

C 5

T6

a l

I 2

s 3

I 4

I 5

r6

1 0  L T  0  0 0
0 1 0  a ? 0 0
0 0  1  0  0 0
0 0  0  1 0 0
0 0  0  0 1 0
0 0  0  0  0 1

with A? - t6 - t1-1. Note that although the trajectories used for the design
computations contain a curve, accelerations in East and North firection are not
included in the state vector.

The system noise related to the various subsets of the state vector is given as
follows:

- For the position and velocity states the fisturbance is modelled as (decou-
pled) acceleration in East and North d.irection with a standa,rd deviation
of oo = 0.25rnfs2. At 5m/s the 180" turn in the trajectory corresponds
with an acceleration across track of 0.39m/s2. As a rule of thumb one often
chooses the standard deviation as one-half or one-third of the maximum of
the expected disturbancel hence our choice is rather conservative. The level
of the system noise cannot be varied at will, because the variance of the
fisturbances has to match the actual disturbances. Contrary to the case of
the linear models this limits the range of variation of the system noise.

- The disturbance of the gyro ofset is modelled as a drift rate with a standard
deviation of o4 - 0.05deg/s.

- The disturbance of the log bias is modelled as a bias drift with a standard
deviation of a6 - 0.0kn/s2.

Based on these values the cova.riance matrix of the disturbances reads:

0

oltr2 o
0 a2uATz

) =

d1
d2

d3
d4
dt
d6

D{

( +  o  +  o  \
- , 1  o  +  o  + l"'l + o l'r" o I

\  o  +  o  ^ r 2 )
0
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5.5.3 Design Cases - Navigat ion Models

The test cases considered are summarized in Tables 5.7 and 5.8 and unless indicated
otherwise the model assumptions described in Section 5.5.2 apply. For the cases con-

case I rn n
observations notes

sR3SR2SRI SR4 GYRO LOG
la

1b

l c

1d
I e

rf
1 g
lh
1 i
1j
l k

6 6
4 4
4 8
6 7
5 6
6 6
6 6
6 7
6  1 1
6 7
6 7

x
x

T : 5
PRl

x
x
x

o  : 2 . 5 r n

T : 5
L t : 2
A t : 5

x
x

T : 5
PR2

x
x
x

o  : 2 . 5 r n

T : 5
L t : 2
A l : 5

x
x

T : 5
PR3

x
x
x

o  : 2 . 5 r n

T : 5
A t  : 2
A t : 5

x
x

T : 5
PR4

x
x

o = 2.5rn
T : 5
A t : 2
A t :  5

x

x

x

x

o  : 4 d e g

T : 5
T : 5
T : 5
I : J

x

x
x
x

o : O. rn/s
x
x
x
x

I

1 t 4

2

3

4
4
4
4

rn is the nurnber of observations; z is the number of states;
x denotes available measurement; SR denotes Syledis range;
o denotes standard deviation; PR denotes pseudo-rangel
? correlation tirne in scconds; Al mcasurement interval in seconds.
Note 1: no gyro-offset and log-bias states
Note 2: pseudo-ranges instead of rangesl clock bias additional state

s.d. clock bias drift 1.0d-8/s
Note 3: case with low system noise

s.d. acceleration in each coordinate direction 0.1m/s2
Note 4: augmented state vector due to time-correlated measurements

Table 5.7: Design cases in area L.

sidered in area 1 model la is used as a reference. Cases lb and Lc allow a comparison
with a non-integrated solution. Changes in geometry are studied using cases 1d and
1e where pseudo-ranges are used instead ofranges and only three ranges are measured
respectively. Changes in the stochastic model of the disturbances (system noise) are
studied in case Lf. The influence of the stochastic model of the observations on in-
tegrated system design is more closely studied in cases 1.g, 1h, and li. Cases 19 and
th are meant to assess the impact of precision va,riations between the positioning and
dead reckoning sensors. In case 1i (and case lc for the non-integrated system) the
aspect of time-correlated measurements is investigated. Cases Lj and Lk finally serve
to gain insight in the effect of different measurement update rates. Overall the design
configurations listed in Table 5.7 allow an extensive analysis of the impact of various
model assumptions.

In Table 5.8 the cases considered in design area 2 are given. Basically all possible
scenarios of integration are considered from dead reckoning only (case 2d) to a fully
integrated system with Syledis, Hyperfix, and dead reckoning (case 2g). In order not
to obscure the effects of integration all other design parameters are left unchanged.

The analyses in area 1 and area 2 combined should yield an extensive insight in the
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case I m fl

observations notes
SR2 SR3 HYl HY2 GYRO LOG

2a
2b
2c
2d
2e
2f
2g

2 4
2 4
4 4
2 4
4 6
4 6
6 6

x
x
x
x

x
x
x
x

I
1
1
1

x denotes available measurement;

SR denotes Svledis ranse: HY denotes Hyperf ix pattern.

Note 1: no gyro-offset and log-bias states

Table 5.8: Design cases in area 2.

design of integrated navigation system for hydrographic purposes.

5.5.4 Processing of Time-Correlated Measurements

In some design cases we have to deal with exponentially time correlated measurements.
Anticipating the analysis of the results, we indicate how the vaniance of the exponen-
tially time-correlated noise is chosen and how it can be compared to the variance of
uncorrelated observations. Exponentially time-correlated noise can be modelled as

9 k + t = 4 9 * t L * t (5 .7)

where g1 is the measurement noise at time k, ps is additional white noise, and c =

exp(-LTIT) with AT = t*+t - t; and ? the correlation time of the measurement
noise. In the filter model the measurement noise is modelled as an additional state
(one for every time-correlated measurement) and n as its corresponding system noise
(cf. Section 2.6). The variance n{n*} is chosen in such a way that

D { e * * r I = D { o e * * r y * } = R , (5.8 )

where l? is the variance of the measurement in the ulcorrelated case. If one assumes
that g* and p1 are uncorrelated, it follows that

o{s*} = (1- .*paJ#))r = (r - c2)t?.'1

Using (5.7) one finds for an arbitrary g* that

& - l

9* = ok-t er + D oi-lq*-i .
r = 1

For Ic large and o € (0,1) the variance of 94 can be approximated by
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(5.e)

(5.10)

n { e k } = ( * ) ' 1 r - o , y ,  =  ( = )  r , ( 5 . 1 1 )
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where use has been made of (5.9), the identity DEooi : fr, and the fact that

c*-r = 0. Based on (5.8) it follows from (5.11) that the processing of exponentially
time-correlated measurements partly corresponds to the processing the data with a
larger variance (note we do not consider the covariance between the various g-terms).

5.6 Design Results - Navigation Models

In this section we will successively analyse the precision, the internal reliability, the
external reliability, and all quality aspects combined for the navigation models intro-
duced in Section 5.5. We have chosen not to strive for completeness, and limit ourselves
to the highlights of the design stufies. Firstly, so many variations in the design of a
navigation system can be conceived that completeness can nevel be attained. Secondly,
a presentation of all the results rather than the highlights would render this section
unnecessa.rily long. To provide a reference one particulax case is fully documented (case
1a in design area 11 cf. Table 5.7). We mainly try to provide an insight in the aspects
that influence the quality measures in the design process and point out the efect that
certain va,riations of design parameters have on relative behaviour of the quality mea-
sures. We have chosen to present most results based on a single design aspect and, if
possible, in graphical form.

The analysis of internal and external reliability is limited to alternative hypothe-
ses related to range and gyro observations, unmodelled acceleration along the sailing
firection, and gyro drift. During a preliminary analysis of the results we for:nd that
the results pertaining to ranges and range-fifferencesl gyro and log observations; (un-
modelled) acceleration in along and across direction; and gyro offset and log bias were
very similar. The reliability analyses for ranges, gyro, acceleration along track, and
gyro drift therefore also provide insight into the reliability of range-differences, log,
acceleration across track, and log bias respectively.

In the following we will often present results pertaining to fix g0 or l-00. The graphs
concerning MDBs (internal reliability) and (the square root of the) BNRs (external
reliability) are plotted for model errors starting at fix g0 (i.e. I = 90). The value of the
MDBs and BNRs is plotted with respect to the delay of the test. The hypotheses are
considered for delays 0 to 9 (i.e. & : 90, . . . , 99). Contrary to the situation of the linear
models, the navigation models which incorporate dead reckoning sensors do not attain
a steady state condition. The variations in the precision of the state estimators are,
however, so small that an analysis at a particular fix is characteristic for the behaviour
of a quality measure along the trajectory (except for the first 30 fixes, where the starting
tra.nsient dominates the results). The variances of the initial state have been chosen as
follows: 106m2 for the Easting and Northing coordinate; 104(m/s)2 for the velocity in
East and North direction; 1rad2 for the gyro offset; and 10(m/s)2 for the log bias.
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5 .6 .1  Prec is ion

The results of the precision analysis for models la-1k are given in Table 5.9 and for
models 2a-2g in Table 5.1-0 and Fig. 5.7. The precision of the filtered state vector

elements is (after the initial tra^nsient of about 20-30 fixes) approximately constant
for the whole trajectorS but the steady-state condition is not reached for the models

with dead reckoning sensors (the precision of instrumental bias states keeps improving
slowly). For model 2d (dead reckoning only) the standard deviation of the filtered

coordinates is by definition identical to the initial standard deviation (cf. Table 5.1-0)'

as dead reckoning only provides relative position information.

We will, for ease of survey, discuss the impact of various design aspects on the

precision of the filtered stare estimators sepa,rately for the position components, the

velocity components, and the instrumental biases. From Tables 5.9 and 5.1-0 (assuming

that the measurement update interval is one second) one can, howevet, derive the

rules of thumb that an upperbound for the precision of the filtered coorfinates is

given by the precision of the positioning system (Sylefis, Hyperfix), and similarly that

an upperbound for the precision of the filtered velocity components is provided by the

measurement precision of the dead reckoning sensors. The precision is hardly influenced

by the direction changes in the trajectory because the precision of the gyro and log

measurements closely corresponds.

case

Easting Northing ""i::'Jt 'it;,",'lt 
"*#J;

[*] [*] [^/'] [*/'] [d"s]

log
bias

[*/']

semi-major
axis error

ellipse

[-]
1a
1b
1c
1d
1e
1f
1g
th
l i
1j

1k

0.47 0.48 0.15 0.17 0.36 0.050
0.79 0.74 0.40 0.39
L.Lz  1 .04  0 .38  0 .37
0.54  0 .51  0 .15  0 .17  0 .36  0 .051
0.47 0.55 0.15 0.17 0.36 0.051
0.45 0.46 0.12 0.13 0.35 0.049
0.58  0 .57  0 .24  0 .26  0 .51  0 .066
0.82  0 .67  0 .16  0 .17  0 .71  0 .053
0.97  0 .84  0 .16  0 .17  0 .7L  0 .055
0.70 0.58 0.16 0.17 0.73 0.052
0.78  0 .63  0 .16  0 .17  0 .74  0 .053
0.86 0.72 0.16 0.17 0.75 0.054
r .2 r  0 .94  0 .18  0 .18  0 .77  0 .058

0 .51
0 .85
1 .20
0.59
0.55
0.49
0 .62
0.84
1 .00
0.72
0 .80
0 .89
1 .24

Table 5.9: Standard deviation of the filtered state estimators and the semi-major axis of

the error ellipse at fix 100 (area 1-). (For models 1-j and 1k the best and worst situations

are given.)

The precision of the estimators of the position components (i.e. Easting and Nor-

thing) is significantly influenced by the following:

1 2 7
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casie

Easting Northins "i'":'Jt 'it;r'r'lt 
.:#.: in

[*] [*] [-/'] [*/'] [d"g] [*/']

senu-maJor
axis error

ellipse

[-]
2a
2b
2c
2d,
2e
2T
2E

2.00 0.90 0.55 0.41
L.zt 0.86 0.45 0.39
1.00 0.66 0.43 0.36
n la  n la  0 .15  0 .17
0.96  0 .55  0 .15  0 .17  0 .43  0 .051
0.64  0 .51  0 .15  0 .17  0 .38  0 .050
0.56 0.41 0.15 0.17 0.37 0.049

2.05
1.40
t . t 2
n/a
0.99
0.74
0.62

Table 5.10: Sta.ndard deviation of the filtered state estimators and the semi-major axis

of the error ellipse at fix 100 (area 2).

- The level of integration of the navigation system. Especially the integration of

dead reckoning sensors improves the precision of the filtered coordinates consid-

erably (cf. Table 5.1.0 and Fig. 5.7). The better precision is largely due to the fact

that the precision of the velocity components is improved by the dead reckoning
observations. Consequently less r:ncertainty is propagated into the coordinate

states at the time update of the filter. If more than one 'absolute' positioning

system is used, the precision of the filtered coordinates is predominantly deter-

mined by the (best' system (For instance, the integration of the Hyperfix with

the Syledis measurements does not lead to major improvements (cf. 2c <-+ 2b),

because the former mainly determines the precision of the position fix).

- The sta,ndard deviations of the range and dead reckoning measurements. These

directly influence the precision of the position (cf. Lh ++ la a,nd 19 <-+ 1a). A

variation of the precision of the range measurements has the largest effect.

- The correlation in time of the range measurements. Exponentially time-correlated

measurement noise results in larger standard deviations of the filtered coorfinates

(.f. 1c *' Lb and li *- La), which is in accordance with our fiscussion of the

effect of processing time-correlated measurements in Section 5.5.4.

- A larger measurement update interval (or lower measurement rate) of the range

measurements. This results in a higher standard deviation of the coordinates (cf.

1j/lk *' la) because less observations are used.

The precision of the flltered coordinates is only moderately influenced by the fol-

lowing:

- A cha,nge in the varia,nce matrix of the disturbances (acceleration along and across

track) (cf. lf ++ 1a.). For a given trajectory one can only marginally alter the

variance matrix of the fisturbances. It seems of little use to vary the level of
system noise artificially in the design stage if only small changes in its magnitude
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Figure 5.7: Point error ellipses (plotted every 10 fixes) for various levels of integration.
Top: cases 2a (left), 2b (middle), 2c (right); Bottom: 2e (left), 2f (middle), 29 (right);
Scale ellipses 30:1.

a,re likely. This does not alter the fact that the precision of the position states
may be significantly afected if the system noise changes considerably (cf. the
design study of the linear model in Section 5.4).

- Slight changes in the geometry of the configuration (cf. LdlLe .-+ 1a). If the
redundancy is large enough deleting one range observation (1e) or processing the
ranges as pseudo-ra,nges (1d) has only a small impact.
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The precision of the filtered velocity states is significantly influenced by the follow-

- The integration of dead reckoning sensors into the navigation system (cf. lb .-
1a and 2d-2g <-+ 2a-2c). Dead reckoning sensors provide direct measurements of
the velocity components and thereby provide an upperbound for the attainable
precision of the filtered velocity states.

- The standard deviation of the dead reckoning observations (cf. 19 e+ 1a).

- A change of the variance matrix of the fisturbances (in particula.r related to the
accelerations, cf. lf .-+ 1a). In the time update of the filter the uncertainties in
the accelerations are firectly propagated into the covariances of the velocities,
and therefore a lower svstem noise results in smaller standard deviations of the
filtered velocities.

The precision of the filtered velocity states is only moderately influenced by the
following:

- A variation in the standard deviation of the range measurements (cf. th e*

1a). When dead reckoning sensors are part of the system, the precision of the
flltered velocity states is mainly determined by the precision of the dead reckoning
observations.

- Time correlated range measurements (cf. 1i ++ 1a).

- A change in the measurement update interval of the range measurements (cf.
1j/lk *+ 1a).

The precision of the filtered estimates of the instrumental states has not been exten-
sively analysed, but from Table 5.9 one can see that the precision is primarily dependent
on the following:

- The correlation in time of the dead reckoning sensors (we have only considered
time-correlated gyro measurements). The standard deviation of the gyro offset
increases for exponentially time-correlated gyro measurements (cf. li <* 1-a).

- The standard deviations of the dead reckoning observations (cf. L9 ++ 1a). The
instrumental biases are an intrinsic part of the dynamic model of the dead reckon-
ing sensors, and hence the standard deviations ofthe dead reckoning observations
will directly influence the precision of the instrument states.

Summary of the Analysis of Precision

The precision of the complete filtered state of the integrated navigation system clearly
benefits most of the integration of 'absolute' positioning systems and dead reckoning
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systems. Fr:rthermore, the precision obviously improves by using more precise observ-
ables. These findings comply with Section 4.3. Time-correlated measurements and
large measurement intervals have a detrimental effect on the precision, the former be-
cause under our model assumptions exponentially time-correlated noise corlesponds to
processing the data with a larger observation noise (cf. Section 5.5.4), and the latter
because lowering the sampling rate simply means that one uses less observations to
estimate the state.

5.6.2 Internal Reliability

The aspect of internal reliability of the navigation models is analysed by investigating
the detectability of model errors (making use of the MDBs (4.22)) and the sepa.rability
between hypotheses by means of the correlation coeffi.cient (4.23).

Minimal Detectable Biases

In the following we will successively consider the MDBs for outliers and slips in the
ranges (which a,re also representative for range-differences), outliers and slips in the
gyro measurements (which are also representative for log measurements), and slips in
the state vector elements. We are not so much interested in the magnitude of the
MDBs, but rather in their (relative) response to changes in the design parameters. We
make a distinction between major and minor effects which influence the MDBs and will
usually consider the MDBs of outliers and slips sepa.rately. As a reference we provide
the results for case La in Tables 5.11 and 5.12.

delay

Outliers Slips
range range gyro log

sR2 [m] sR3 [m] [d"s] [*/']
range range gyro log

SRz lml SR3 [ml [d.sl [-/.]
0
1
2
3
4
D

6
a

8
I

6.59 6.48 15.87 1.46
6.51 6.42 12.66 1.20
6.46 6.38 12.38 1.17
6.43 6.36 t2.32 1.16
6.41 6.34 12.20 1.15
6.39 6.33 12.20 1.15
6.38 6.33 12.15 1.15
6.37 6.32 12.15 1.15
6.37 6.32 12.15 1.15
6.36 6.32 12. t5 1.15

4.91 4.75 14.38 1.30
4.20 3.99 12.72 l . l4
3.79 3.53 10.94 0.980
3.51 3.2L 9.34 0.844
3.30 2.98 8.08 0.737
3.13 2.78 7.10 0.656
2.99 2.63 6.36 0.592
2.87 2.50 5.73 0.543
2.77 2.38 5.25 0.504

Table 5.11-: Minimal Detectable Biases of outliers and slips in the observations at fix
9 0 ( l = 9 0 , & - l = 0 , . . . , 9 ) ;  ( S R 2 a n d S R 3 a r e t h e r a n g e s w i t h t h e l a r g e s t a n d s m a l l e s t
MDBs respectively.) - case la.
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delay

acceleration gyro log bias
along track across track drift drift

l^/"'l lr"/"'l [deg/s] [*/"1
1
2
3
4
D

6
7
8
I

0.904 0.869 9.34 0.841
0.688 0.670 6.53 0.576
0.574 0.562 4.72 0.414
0.502 0.494 3.48 0.305
0.451 0.446 2.6t 0.231
0.413 0.409 2.02 0.180
0.384 0.380 1.59 0.L44
0.360 0 .357 1 .28  0 .117
0.340 0.337 1.06 0.098

Table 5.1-2: Minimal Detectable Biases of state related hypotheses at fix g0 (l = 90,
h - l = 0 , . . . , 9 ) - c a s e 1 a .

MDBs of Ranges

The characteristics of the MDBs of ranges can be compared (to some extent) to those
of the MDBs of the coordinate observations in the linear models, for both provide the
'absolute' position information in a constant velocity model (cf. Section 5.4). Indeed
one finds that for the cases where no dead reckoning system is integrated (2a/2c) the
characteristics of the MDBs of the ranges agree with those of the coordinate observa-
tions in the linear model. The agreement is lost, however, as soon as dead reckoning
sensors a^re integrated (cf. Fig. 5.8). If dead reckoning sensors are integrated the MDBs
related to outliers in the ranges do not significantly improve (i.e. get smaller) with
increasing delay, whereas the improvement concerning slips is more pronounced (cf.
Fig. 5.8 (2el2g) and Table 5.1t). We have found that the MDBs related to outliers in
range observations are affected by the following:

a-a-a_a_a_a_a_a+

is.--'-;=:=3=i=i=;=;r

2 3 1

Figure 5.8: MDBs [m] concerning an outlier (teft) and a slip (right) in Sytedis range
SRL for various levels of integrationi o 2a, a 2c, L 2e, ) 29.

0
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The standard deviation of the observations. This was already observed in Sec-
tion 4.4.3. The MDBs for the outliers in model Lh (4" = 2.5m) ane, when com-
pared to model la with dr = 1.5rrrr almost exactly 2.51L.5 times as large as the
MDBs of model La.

Correlationin time of the observations (cf. Fig.5.9). Foroutliers one sees alarge
improvement of the MDB at delay 1. Also the MDBs are smaller than those of
the reference case (1a). The impact of seemingly la,rger observation noise (cf.

Section 5.5.4) is more than compensated by the fact that the (observation) error
states are pa.rt of the augmented state and are thereby linked in time, so that it
is less likely that an outlier occurs unnoticed.

a-a_a_

a-l-a-

a_._
- a \

r_._._f_3=l_; 
:_

2 g 7 6

Figure 5.9: MDBs [m] concerning an outlier (left) and a slip (right) in Syledis range
S R 1 ; A 1 i , O L a .

The MDBs of outliers in the range observations are rather insensitive to the follow-
ing:

- Integration with dead reckoning sensors. The assumption that integration always
leads to considerably lower MDBs is apparently not true: MDBs of alternative
hypotheses related to outliers in the ranges only slightly improve (cf. Fig. 5.8).

- A change in the variance matrix of the system noise. In practice the system
noise for navigation systems cannot be chosen at will, but has to correspond with

the actual fisturbances, and thus varies within bounds. In Section 5.4 we saw,
however, that for the linear model a major change in Q has a.n impact on the
MDBs of the coorfinate observations.

- Changes in geometry. If we use pseudo-ranges instead of ranges this leads to
L0% larger MDBs. Three instead of four ranges only result in marginally larger
MDBs, but a dead reckoning system integrated with four pseudora.nges or three
ranges (rather than four) is still highly redunda,nt.

The MDBs concerning slips in the range observations become smaller with increas-
ing delay (cf. Table 5.11). Integration with a second positioning system and/or dead
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reckoning systems leads to considerably lower MDBs for slip-type hypotheses of ranges
(cf. Fig. 5.8). Only for the case of exponentially time-correlated ranges (cf. Fig 5.9) one
finds a completely different behaviour (the MDBs remain constant with increasing de-
lay). Lower sample rates (cases l-j and 1k) cause a seemingly fifferent behaviour of the
MDBs (cf. Fig. 5.10), but one should take into account that a new range measurement
is not available until delay 2 (case Lj) or delay 5 (case Lk).

v \

\  \^_^_^
V - V r

a--,-  
-  

\y-y-
- t - - o - o  

a  

- t - t = . . - t -

' a - a _ a _

Figure 5.10: MDBs [m] concerning an outlier (left) and a slip (right) in Syledis range
SRl for fifferent sample ratesl A Lk, y lj, O la.

Sumrna,rizing, one can state that for ranges the MDBs decrease significantly with
increasing delay for slips and hardly (except for delay 1) for outliers (only for expo-
nentially time-correlated ranges we found a deviant behaviour). Therefore it is recom-
mended to use fifferent window sizes for tests related to outliers and slips in the ranges.
It seems that tests for outliers should use a short window length (1 or 2), while for slips
a somewhat larger window length (3 to 4) is appropriate. The magnitude of the MDB
is primarily dependent on the standard deviation of the range measurement.

MDBs of Gyro Observat ions

The MDBs related to outliers of gyro observations generally show a major improvement
going from delay 0 to delay L (cf. Fig. 5.11 and Table 5.11). For larger delays the
improvement is insignificant. (At a speed of 5m/s an angle of 15deg in a one second
interval corresponds to a velocity of 1.34m/s across track.) In Figs. 5.11, to 5.14 we
have depicted the response of the MDBs of gyro observations to integration, a change
in the covariance matrix of disturbances, a change in the variance of the observations,
and exponentially time-correlated observations.

The MDBs related to outliers in the gyro observations are influenced by the follow-
ing:

- A change in the vaniance matrix of the system noise (cf. Fig. 5.12). If the variance
of the unmodelled accelerations is decreased the velocity at the next measurement
update can be better predicted and smaller model errors in the gyro observations
can be detected.



5.6 Design Results - Navigation Models r35

o 1 Z S 4 5 A 7 E 9

r=:=:=:--:.--
_axa=a:a_\a_\^\

l - r  
t_

0 1 2 3 4 6 A 7 8 9 0 1 2 3 1 5 A 7 E 9

Figure 5.11: MDBs [deg] concerning an outlier (teft) and a slip (right) in the gyro

observation for various levels ofintegration; o 2d, A 2e, y 2f' ) 29,

a-  a -  a  -  a -  a  -  a  -a -a-

0 t 2 3 , 1  5 A 7 0 9

Figure 5.12: MDBs [deg] concerning an outlier (left) and a slip (right) in the gyro

observation for varying system noisel A lfr O 1a.

\.-. -.-.-., -.-.-
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Figure 5.13: MDBs [deg] concerning an outlier (left) and a slip (right) in the gyro

observation for varying measurement precision; A 1g, O la.

- The standard. deviation ofthe gyro observations (cf. Fig. 5.13). A larger standard

deviation (cf. case 19 where the standard deviation of the gyro observation is

twice as large as for case la) results in larger MDBs, but the increase in size of

.]:::rr:_:=r=:=
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0  I  Z 3 4  6  A 7  0  I  0  1  2 5 , 1 5  g 7  8 0

Figure 5.14: MDBs [deg] concerning an outlier (left) and a slip (right) in the gyro
observation; A 1i (time-correlated observations), O 1-a.

the MDB is not proportional to the change in standard deviation (actually it is
somewhat less).

- Exponentially time-correlated gyro measurements (cf. Fig. 5.14, and the discus-
sion in Section 5.5.4).

Flom Fig. 5.11 one sees that integration does not lead to smaller MDBs.
The MDBs of slips in the gyro observations decrease significantly with increasing

delay. The size of the MDBs is directly related to the standa,rd deviation of the observa-
tion (cf. Fig. 5.13). The improvement obtained going from delay 1 to 9 is approximately
threefold. Note that if no positioning system is integrated the MDBs a,re constant with
increasing delay (Fig. 5.11, case 2d). Integration clearly results in smaller MDBs. The
MDBs of slips in the dead reckoning sensors are additionally influenced by the following:

- A cha"nge in the variance matrix of the system noise (cf. Fig. 5.12). Smaller
system noise causes a proportional decrease of the MDBs with increasing delay
(although the improvement is less pronounced for larger delays).

- Correlation in time of the gyro observations (cf. Fig. 5.1a).

The improvement with increasing delay of the MDBs for slips is less pronounced for
the cases with larger variances for the ranges (this also encompasses the case of ex-
ponentially time correlated ranges) and the cases with a reduced measurement rate of
the ranges. This inficates that the range measurements significa.ntly contribute to the
detection of slips in the gyro observations.

Summa.rizing, one finds for tests related to model errors in the gyro observations
that (compa.red to the local tests) the MDBs for outliers get smaller for tests with a
delay of one, but then remain constant with increasing delay, while the MDBs for slips
decrease with increasing delay. This indicates that window lengths of at least 2 should
be used for tests for outliers, whereas the detection power of the tests for stps in the
observation considerably benefits from larger window lengths. The size of the MDBs

t \ . -

^\^\r- 
--i--r____._..._:l:_:l
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is primarily dependent on the stochastic model of the observations, and somewhat less
on the stochastic model of the disturbances.

MDBs of Unmodelled Acceleration and Instrumental Biases

The MDBs related to the model errors of unmodelled acceleration and instrumen-
tal biases are only briefly a,nalysed. The MDBs related to the hypotheses concerning
acceleration decrease with increasing window length (cf. Table 5.12). Where a gyro-

compass a.nd log are available these seem to provide arr upper level for the size of the
MDBs of the accelerations. The magnitude of the MDBs is afected by the system
noise (cf. Fig. 5.15). For cases where no dead reckoning sensors are available the major
improvement in the MDB is found in going from delay I to 2.

The MDBs for instrumental biases clearly show a spectacular improvement with

increasing delays. Going from delay 1 to g a ninefold improvement can be seen. The
MDBs of the hypotheses related to the instrumental biases are influenced by the fol-

lowing:

- A change in the variance matrix of the system noise.

- Sample interval of the range measurements. La,rger sample intervals lead to con-

siderably larger MDBs.

- The standard deviation of the dead reckoning measurements.

The impact of a cha^nge in system noise and measurement precision is depicted in
Fig. 5.15.

1 5z.o

'\l--_

^----::'=5-5...-5-.:r-
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0 1 2 3 4  6 4 7 E 9

\
ta \^-^l:\:\i=r=r_r_

0 1 2 5 4  5 6 7 8 9

Figure 5.15: MDBs concerning acceleration along [*/t'] (left) and gyro offset (right)

[ d e g / s ] ; A 1 f , V 1 9 , O 1 a .

Summa,rizing, it is found that the MDBs related to unmodelled accelerations and
instrumental biases clearly benefit from increased window lengths.
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Summary of Results of the Analysis of the MDBs

We have analysed the MDBs for outliers and slips in the range and gyro observations.
The characteristics of the MDBs of the range and gyro observations are also valid for
the MDBs of range-difference and log observations respectively. The analysis of the
MDBs has shown that the MDBs always become smaller with increasing delay. At
the same time it was seen that the decrease in size is not always significant. The
magnitude of the MDBs related to model errors of the observations is directly related
to the precision of the measurements. In design area l- it is found that the MDBs
related to the local tests (delay 0) of the ranges are (generally) in the range of 4-5
times the standard deviation of the range measurements. For the MDBs related to the
local tests concerning the dead reckoning sensors the size is in the range of b-Z times
the standard deviation of the measurement. Integration mainly decreases the MDBs
of the slip-type hypotheses. Overall we can tentatively conclude that for tests related.
to outliers small window lengths (1 or 2) are suff.cient, whereas the detection power
of tests for slips increases with increasing window length. The advice on the choice
of window lengths is merely inficative, because if the MDBs associated with the local
tests are smaller than the size of the likely model errors, local testing will probably be
suff.cient, whereas in other cases MDBs with a delay of, say, 10 might still be too large
to detect a likely model error.

Correlat ion between Hypotheses

In choosing a testing strategy it is of importance to know how fiferent alternative
hypotheses are correlated. We have investigated the correlation of hypotheses referring
to an identical delay (e - I) and time of computation (,t). It would also be interest-
ing to compute the correlation between hypotheses related to different delays. One
would expect, for example, a high correlation between hypotheses concerning slips in
observations for consecutive delays. Unfortunately our software (based on the recur-
sive Kalman filter) does not allow the computation of these correlation coefEcients. We
have analysed the correlation coefficient (4.23) for case la. In Figure b.16 the results
for delay l- and g are given.

From Fig. 5.16 the following conclusions (which refer to case La) can be drawn:

- For all observations the correlation between the outlier and slip hypotheses for
that particula.r channel slowly decrease with increasing delay.

- The correlation between hypotheses concerning a slip in gyro or log observations
a^nd the instrumental parameters gyro offset and log bias is very significant for
all delays.

- For small delays there exists a significant correlation between hypotheses concern-
ing unmodelled accelerations and instrumental biases and slips in dead reckoning
sensors. The correlation between the acceleration hypotheses and slip hypotheses
in the dead reckoning observations decreases very quickly with increasing delay,
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Figure 5.16: Correlation coeffi.cients (x10 and rounded to the nearest integer)for delays

1 and 9 - case 1a

whereas the correlation between the acceleration hypotheses and the hypotheses

concerning instrumental biases decreases gradually.

- The correlation bet$reen hypotheses concerning slips in the range observations a"nd

the dead reckoning observations tends to become larger with increasing delay.

The analysis of the correlation shows that for case La the correlation between a few

hypotheses is significant. For small delays (0-2) outlier and slip-type hypotheses con-

cerning the observations are strongly correlated and the correlation between the accel-

erations components a,nd slips in the dead reckoning sensors and instrumental biases is

significant. At a larger delay only the correlation between slips in the dead reckoning

observations and the instrumental biases is still significant. The large correlation should

be taken into account in the design of a testing procedure for an integrated system.
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5.6.3 External Reliability

The impact of model erlors on the filtered state is analysed using (elements of) the
bias vector Virl* and the bias to noise ratio (BNR) (4.29). We start the analysis of
external reliability by assessing the impact of model errors on the position and velocity
estimates in so-called response graphs. Although the analysis of the response graphs is
limited to a few cases, it provides a firect insight into the impact of model errors on the
state estimates. Next we investigate the bias to noise ratios which are a measure of the
significance of the biases Virlr with respect to the precision of the filtered estimates. If
one assumes that the variance of the filtered states (the noise component of the BNR)
is consta.nt (which is more or less a valid assumption), the findings of the pa.ragraph
on response graphs ca^n firectly be used to explain the characteristics of the BNRs. In
our analysis of the BNRs we are not so much interested in the magnitude of the BNRs,
but rather in the effect various design options have on the characteristics of the BNRs.

Response Graphs

The response graphs are used to investigate (elements of) the bias vector Vi*lr. If
YE*l* and V/V616 denote the impact of a model error on the filtered Easting and
Northing coordinate respectivelS the impact of the model error on the position is
defined as (VEf,* + Vlf;le)t/2. In a similar way the impact on velocity is defined as

(VVB oW + VV& kl)112. The response graphs directly visualize the effect of model

errors on the state vector. A disadvantage of the evaluation of (elements of) Vi616
is that many computations are required to obtain an overall insight into the external
reliability of a particular filter model (because the analysis of each model error requires
a sepa.rate filter run). Hence only a limited number of cases will be analysed.

The effect of model errors caused by outliers and slips in the observations has been
computed for three cases, namely cases la, 1f (case with lower system noise), and li
(case with exponentially time-correlated measurements). For this experiment error-free
observations have been simulated for a straight line trajectory of l-00 fixes with data
available at one second intervals. The various model errors a,re introduced at fix 30.
The size of the error corresponds with the MDB of the local test for the particula.r
case considered at fix 30. Outliers and slips have been introduced in the first range
(SRl), gyrocompass, and log. During a first evaluation of the results we found that
the behaviour of model errors concerning gyro and log observations is la,rgely similar.
Therefore only the results pertaining to the gyro model errors are discussed.

In Figs. 5.17 to 5.22 the position and velocity response to model errors in ra"nge
and gyro observations are given. Note that the amplitude of the response is different
for the various cases, because the magnitudes of the MDBs are diferent for each case.
It can be seen in Fig. 5.17 that the impact of a,n outlier in the range damps out fairly
quickly, whereas the impact of an outlier in the gyro observation has a long-term effect
on the position and velocity (cf. Fig. 5.18, where one can see that the filter displays an
underdamped response to a gyro outlier). For an outlier the impact on the velocity is
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Figure 5.1?: O Position [m] and O velocity [m/s] response due to an outlier (left) and
slip (right) of 6.57m at fix 30 in range SRl vs. the fix number - case 1a.
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Figure 5.18: O Position [m] and O velocity [m/s] response due to an outlier (left) and

slip (right) of 15.87deg at fix 30 in the gyro observation - case 1a.

largest at the time of occurence of the outlier. A slip in the range measurement (after
an initial transient of approximately 1-5 fixes) causes an almost constant bias in the
position estimate, while the impact on the velocity damps out slowly (cf. Fig. 5.17). A

Figure 5.19: Estimate of gyro offset [deg] due to an outlier (O) and slip (O) of 15.87deg
in the gyro observation at fix 30 - case La.
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slip in the gyro observation, on the other hand, causes a slowly diminishing bias in the
position and velocity estimates once a maximum has been reached. This behaviour is
due to the fact that the model error is slowly absorbed in the gyro offset instrumental
state, which is illustrated in Fig. 5.1-9. It is interesting to note that an error of the size
of the MDB in either the range or gyro observation causes position biases of the same
magnitude. The impact on the velocity estimate is, however, larger for model errors in
the gyro observation.

Figure 5.20: O Position [m] and O velocity [m/s] response due to an outlier (left) and
slip (right) of 10.89de9 at fix 30 in the gyro observation - case lf.

Figure 5.2L: ) Position [m] and O velocity [m/s] response due to an outlier (left) and
slip (right) of 3.72rn at fix 30 in range SRl - case Li.

For case 1f only the response graphs for an outlier and a slip in the gyro observa-
tion a,re given in Fig. 5.20, as the response for model errors in the range observations is
almost identical to case 1a. It can be seen that lower system noise leads to a somewhat
damped response for model errors in the gyro observations (compared to case 1a). The
response of the model with exponentially time-correlated measurements (case li) is
different as can be seen in Figs. 5.21 and 5.22. The response is nea,rly instantaneous,
because in the augmented state model the measurements are noise-free (cf. the discus-
sion in Section 2.6). The response to the gyro outlier is overdamped as opposed to the
previous cases.
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Figure 5.22: ) Position [m] and O velocity [m/s] response due to an outlier (left) and
slip (right) of 12.61deg at fix 30 in the gyro observation - case Li.

The analysis of the response graphs shows that:

- A model error in the range observations mainly influences the position states.

- The effect of outliers in range observations on the position and velocity estimates
is of short duration.

- Model errors of the gyro observations influence position and velocity.

- The impact of an outlier in the gyro observations is, although limited in magni-
tude, quite prolonged.

- Slip type model elrors in gyro observations tend to be absorbed in instrumental
bias states.

- Exponentially time-correlated measurement noise has a large influence on the
position and velocity response.

Given these observations, we can now use the results regarding the response graphs to
improve our understanding of the characteristics of the BNRs (a strategy which already
proved very useful in Section 5.4, where we considered linear models).

Bias to Noise Rat ios

In this subsection we will consider the BNRs for outliers and slips in the ranges and
gyro observations. The results pertaining to the ranges and gyro observations are also
representative for range-differences and log measurements respectively. The BNRs fa-
cilitate a direct comparison of the significance of the bias related to different alternative
hypotheses and therefore the BNRs related to fifferent hypotheses are discussed simul-
taneously. The analysis focusses on the comparison of the BNRs for fifferent filter
models. The analysis of BNRs is somewhat complicated by the fact that certain model
errors may influence specific elements of the state vector. Here all BNRs refer to four
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unknowns (npd = 4), viz. the position and velocity states. BNRs of other subsets of
unknowns are discussed sepa,rately. In the graphs the square root of the BNRs is always
plotted with respect to the delay of the test. The BNRs for the reference case La are
tabulated in Tables 5.13 and 5.14.

delay

Outliers Slips
range range gyro log
SR2 SR3

range range gyro log
SR2 SR3

0
1
2
3
4
D

6
t

8
9

1.49 r.26 6.63 5.81
1.31  1 .08  1 .80  1 .69
I . tz  0 .89  1 .42  1 .28
0.94 0.72 t .24 1.10
0.79 0.58 1.04 0.88
0.66 0.46 0.85 0.68
0.55 0.37 0.69 0.52
0.46 0.29 0.55 0.40
0.39 0.23 0.44 0.31
0.32 0.18 0.35 0.25

2.08 t .TL 7.54 6.57
2.50 1.98 7.23 6.21
2.80 2.t5 6.62 5.60
3.03 2.25 6.00 5.00
3.18 2.29 5.46 4.49
3.29 2.30 5.00 4.07
3.36 2.29 4.62 3.72
3.39 2.27 4.28 3.41
3.41 2.23 3.99 3.14

Table 5.1-3: Squa,re root of Bias to Noise Ratios (npd:4) of outliers and slips in
observations at fix 90 (f : 90, fr - I : 0,...,9); (SR2 a,nd SR3 are the ranges with
la,rgest and smallest BNRs respectively.) - case la.

delay
acceleration gyro log bias

along track across track drift drift
I
2
3
4
o

6
7
8
I

2.35 2.02 10.15 7.54
1.89 1.65 11.96 8.23
1.59 1.40 12.4t 8.19
1.38 1.24 12.04 7.76
1.24 t . t2 tr .27 7.22
r.13 1.03 t0.44 6.67
1.05 0.95 9.64 6.18
0.98 0.90 8.92 5.75
0.93 0.85 8.29 5.38

Table 5.14: Squa.re root BNRs (npd= 4) of state related hypotheses at fix 90 (l = 90,
l a  -  I  =  0 , . . . , 9 )  -  c a s e  1 a .

In Section 4.4.6 we observed that it is very difficult to predict the response of the
BNRs to a cha.nge in the design parameters. We a,rgued, however, that the BNRs would
get smaller with increasing redundancy, which could be brought about by, for instance,
integration. We also noted that increasing the number of sensors of the system indeed
increases the redundancy of the system, but at the same time improves the precision
of the filtered state estimates, and therefore the impact of integration on the BNRs is
difficult to predict. It is expected, however, that adding observations of a type already

the
the
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used in the system (e.g. using 3 instead of 2 ranges) will lead to smaller BNRs as the
redundancy is improved more dramatically than the precision. With the analysis of
(elements of) Vi116 we have some additional information available. We have seen that
the impact of an outlier decreases quickly with increasing delay and hence it is expected
that BNRs related to outliers in the observations will decrease with increasing delay as
well. Slips in the observations have a large systematic effect on the filtered state and
will result in large BNRs, which are not expected to decrease with increasing delay.

Considering case la for the moment (cf. Tables 5.13 and 5.14), we see indeed that
the BNRs for outliers in all types of observations decrease quickly with increasing delay,
as opposed to slips in the observations which lead to large (or even increasing) BNRs
with increasing delays. In Table 5.1,3 we want to point out an interesting phenomenon.
The BNRs related to the slips in the dead reckoning observations decrease from delay 2
onwards, while one would expect from the response graph (cf. Fig. 5.18) that the BNRs
increase. The response graphs, however, represent the bias in the position and velocity
states caused by ro error of a specific size, which does not necessarily coincide with
the MDB. From Table 5.11 it follows that the MDBs for slips in the dead reckoning
observations rapidly decrease with increasing delay. The unexpected response of the
BNR seen in Table 5.13 can thus be explained by the fact that the size of the MDBs
becomes smaller more quickly than the bias in the state vector increases. Hopefully the
reader will learn from this exposition that the analysis of the BNRs is not necessarily
trivial. However, instead of going into much more detail and arriving at conclusions
based on a single case, we consider some other important cases.

The impact of integration on the BNRs is depicted in Figs. 5.23 and 5.24, where
BNRs related to outfiers and slips in a range and gyro observation are considered.
Also the BNRs of cases 1f (low system noise), 19 (large standard deviation of the dead
reckoning observations), and 1i (exponentially time-correlated measurements) are given
in Figs. 5.25 and 5.26. The BNRs of models 1f, 19, and l-i should be compared with
the BNRs of model 1-a, which are depicted in Fig. 5.25. In Fig. 5.27 a comparison is
made between cases 2f (Hyperfixr Blror log) and 29 (Syledis, Hyperfix, gyro, Iog).
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Figure 5.25: sqrt()a) outlier range O, slip range O, outlier Byro C, slip gyro | - case
la (left) and case lf (right).
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Figure 5.26: sqrt(,\;) outlier range O, slip range O, outlier Byro O, slip gyro | - case
19 (left) and case li (right).

The analysis of BNRs for outliers and slips in the observations shows that (cf.
Table 5.13 and Figs. 5.23 to 5.27):

- BNRs related to outliers are significant for delay 0 and decrease very quickly with
increasing delay. In the response graphs the quick decrease ofthe bias in the state

o-a:_o__:a\a-_....-a_.'-a.......-

- a - a - t - t - t - t -



5.6 Design Results - Navigation Models 1 4 7

o-'---o--- 

. -a-)-l

.a.-t 

!'<:=..-t.....-.=.-

\6

Figure 5.27: sqrt(,\a) outlier range O, slip range O, outlier BYro C, slip gyro | - case

2f (left) and case 29 (right).

vector is clearly illustrated.

- For delay 0 the BNRs of outliers in dead reckoning sensors are larger than the

BNRs of ranges. This is caused by the fact that instanta,neously a model error

in a dead reckoning observation mainly influences the velocity states, which are

determined more precisely than the position states (cf. Table 5.9).

- BNRs related to slips in observations are always larger than the BNRs related to

outliers in the corresponding observations. Slips cause a permanent, significant

bias in the state estimates and therefore BNRs related to slips remain large with

increasing delay.

- BNRs related to stps in range observations have a tendency to grow with increas-

ing delay, whereas BNRs related to slip in dead reckoning observations generally

tend to decrease slowly with increasing delay. This corresponds with the results

derived from the response graphs and the discussion concerning the results given

in Table 5.13.

- Integration generally leads to smaller BNRs for slips in all observation types

and outliers in range observations for small delays (cf. Figs. 5.23 and 5.24).
This observation is, however, not always true (cf. Fig. 5.27). If integration of

an adfitional system (in this case Hyperfix) also brings about a considerable

improvement of the precision of the filtered states, the BNRs related to slips may

even become larger.

- Smaller system noise (case lf, Fig. 5.25) and larger standard deviations of the

dead reckoning observations (case 1-g, Fig. 5.26) lead to smaller BNRs of the

dead reckoning observations (if compared with case 1a). For case lf the decrease

of the MDBs (which is associated with smaller BNRs, cf. Fig. 5.12) is more

significant than the decrease ofthe standard deviations ofthe filtered state (which

is associated with larger BNRs, cf. Table 5.9). For case 1-g the increase of the
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standard deviations of the filtered states is more pronounced than the increase of
the MDBs (cf. Fig. 5.13 and Table 5.9).

It is also found that some design changes hardly affect the size of the BNRs:

- La.rger standard deviations of the range measurements have little impact on the
BNRs related to outliers and slips in the range observations, because simultane-
ously the biases in the position grow and the precision of the filtered position
states decreases.

- Using pseudo-ranges instead of ranges has no significant effect on the BNRs of
the (pseudo-)ranges.

Prediction of the behaviour of the BNRs for the cases with varying measurement
update interval (cases lj and Lk) is rather difficult. As the number of observations used
reduces with increasing measurement interval it is expected that the BNRs will become
larger. How much larger, however, is fifficult to predict as also the precision of the
filtered state will deteriorate. The effect of varying measurement interval on the BNRs
for outliers and slips in range and gyro observations is illustrated in Figs. 5.28 and 5.29.
One sees indeed that for outliers and slips of ranges the BNRs increase with increasing
measurement interval. At the same time the BNRs related to the gyro measurements
become smaller.

-r-rz|7r.-r<l-^7:-l=sL-'-'-

:-'"

Figure 5.28: sqrt()a) outlier (teft) and slip (right) range; O case la, V case lj, A case
lk.

Up to this point the analysis of BNRs has been limited to the BNRs of outliers
and slips in the observations. In Fig. 5.30 we briefly consider the model errors of
unmodelled accelerations and instrumental biases. The BNRs related to unmodelled
accelerations slowly decrease with increasing delay a^nd the BNRs for the gyro offset
are large compared with the BNRs encountered so far. Appa.rently instrumental biases
have a significant impact on the fi,ltered state, and therefore the part of the model
related to the instrumental biases should be carefully designed.

Summarizing the results given in Figs. 5.23 to 5.27,it follows that the BNRs for
outliers in the observations are significant for delay 0 only. For most cases it is found
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(left) and gyro offset (right); O case 1a, A caseFigure 5.30: sqrt()a) acceleration along
1f, y case 19.

that the BNRs for slips in observations remain large with increasing delay. In most
cases slips in ra,nge observations lead to smaller BNRs than slips in gyro observations
(for delays 0-9), which is caused by the fact that slips in the gyro (dead reckoning)
observations have a larger impact on the precisely determined velocity states than the
ranges. The analysis of the BNRs is greatly facilitated by the results obtained from
the response graphs. The analysis of the BNRs indicates that for tests related to
outliers small window lengths (1 or 2) sufrce, as the impact of an undetected error
rapidly decreases. Slip-type hypotheses on the other hand would require tests with
large window lenghts.

BNRs of Subsets of the State

The BNRs do not necessarily refer to all state vector elements, but can also refer to
pa^rticula,r firnctions of the state or a subset of the state vector (which is modelled by the
matrix FT in eq. 4.31). For case La we show how the BNR varies for different subsets
of the state. We consider the cases npd, - 2r4rand.6, where npdis the fimension of
the subset (cf. Table 5.15).
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n p d - 2 npd -- 4 n p d = 6

states
considered

position position
velocity

position
velocity

instrumental
parameters

pT 12 ozrs Ia Darz I6

Table 5.15: BNR analysis - Subsets of state vector considered (0;x; denotes a i x j-

matrix with zero entries).
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Figure 5.32: sqrt();) for outlier (left) and slip (right) in gyro withnpd = 2(A), npd:
a(O) and npd = 0(V) -  case la.

The analysis of BNRs related to diferent subsets of the state vector reveals that:

- Model errors related to range measurements mainly affect the position unknowns
(cf. Fig. 5.31, where it can be seen that the graphs of the BNRs almost coincide

for npd: 2 and 4, which means that the bias in the velocity states (rtrro)

contributes little to the total signifi.cance of the bias). This result can also be
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derived from the response plot in Fig. 5.17.

- Model errors related to gyro observations influence all states (see Fig. 5.32, in
which it is clearly visible that 1/$@pd = 6) > 1/\@pd = 4) > t/E(npd = 2)).
This result also follows from Fig. 5.18. For outliers in the gyro observations
the difference between the various BNRs is only significant the instant the outlier
occurs, which can be explained by the fact that at the moment the outliers occurs
primarily the more precisely determined velocity is affected.

Although not explicitely illustrated we also found that:

- Model errors concerning unmodelled accelerations strongly influence position and
velocity unknowns (t/E("pd: 4) > t/E(npd = 2)), but hardly the instrumental
biases (t/E@pd = 6) = ^/E("pd = 4)).

- Model errors related to instrumental biases affect all unknowns.

Overall it follows that the magnitude of the BNR may vary considerably for different
subsets of the state vector, especially for the hypotheses related to the gyro (dead
reckoning) observations.

Summary of the Analysis of the BNRs

We have analysed the BNRs for outliers and slips in the range and gyro observations,
and we have briefly considered the dependence of the BNRs on the choice of various
subsets of the state. The characteristics of the BNRs of the range and gyro observations
are also valid for the BNRs of range-diference and log observations respectively. The
analysis of the BNRs was greatly facilitated by the results we obtained from the response
plots, but the response plots alone are not sufficient to explain the behaviour of the
BNRs. Unlike the MDB the BNR is not a monotonic (either decreasing or increasing)
firnction of the delay. An advantage is that the BNRs concerning different types of
hypotheses can be directly compared.

We have for:nd that the significance of the biases in the state vector differs for
outliers and slips. Generally outliers cause significant biases (associated with large
BNRs) for a zero delay only. Slips, on the contrary, cause a permanent, significant bias
with increasing delay. This brings us to the tentative conclusion that for outliers local
tests suffice, while tests for slips should have larger window lengths. The analysis of the
BNRs thus substantiates the testing strategy based on the analysis of the MDBs, and
the strategy we proposed for the choice of the window lengths is Section 4.4.6 seems to
be appropriate. The finfings above do not automatically imply that one can fiscard
tests of hypotheses for which the BNR is small. If the error that is likely to occur is
much larger than the MDB, such an error can still cause a significant bias (the BNR
is merely a measure of significance for a bias caused by a model error of the size of the
MDB) .
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In the foregoing we did not discuss the absolute size of the BNRs, but limited our-
selves to a comparison of BNRs. In geodetic control networks the rule of thumb is that
an observation can be considered 'reliable' if the square root of the BNR is smaller
than 1,0. For navigation systems such a limit has not been determined yet. For the
time being it seems useful to judge the external reliability by using the inequality pro-
vided by (4.35). We found that the magnitude of the BNR is sensitive to changes in
the stochastic model of the observables (especially exponentially time-correlated mea-
surements) and the level of integration. The magnitude of the BNR of dead reckoning
related hypotheses depends on which subset of the state vector is analysed. In practice
the system designer should decide which subset ofthe state is ofparticular interest and
should be used in the analvsis of the BNRs.

5.6.4 Combined Analysis

Now we have stufied the response of the various quality measures (for precision, internal
and external reliability) to variations in the design parameters separately, we will briefly
consider a combined analysis of all quality measures. Especially during the fiscussion of
the BNRs it became obvious that the quality measures are strongly interrelated. This
indicates that in general it is useless to optimize the design of a system with respect to a
single quality measure, except, of course, in those cases where this is explicitly required.
If one designs a system taking into account all aspects of quality simultaneously, one
would like to obtain a system which meets the following three requirements:

L. The precision of the estimator of the filtered state is high (the standard deviations
of the estimators are small).

2. The MDBs are smaller tha"n the size of the model errors that are likely to occrlr,
that is the model errors can reafily be detected by the testing procedure.

3. The BNRs are small, that is the significance of the bias caused by a model error
of the size of the MDB is small.

In practice it might be difficult to design a system that complies with all three design
objectives. In the following we will illustrate that meeting one objective does not
necessarily imply that the other two design goals are automatically fulfiJled.

We consider the combined quality analysis for two alternative hypotheses, namely an
outlier (delay 0) and a slip (with delay 9) in the Syledis range SR2 (cf. Table 5.16). The
impact of these model errors on the Easting coorfinate is investigated. In Table 5.1-6
the standard deviation of the Easting coordinate at fix 90, the MDBs and BNRs of the
two alternative hypotheses, and the maximum bias in the Easting coordinate caused by
a model error with the size of the MDB are given for the cases with ranges we analysed
in design areas 1 and 2. The maximum bias in the Easting coordinate is computed
from the inequality (cf. eq. 4.36)

lVEl < J),t on (5.12)
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The BNR refers to the position and velocity states (npd :4) and thus (5.12) is clearly
an upperbound.

case CE

[*]

outl ier SR2 (delay 0) slip SR2 (delay 9)
MDB {\e maxlV.El
[-] (npd= 4) [-]

MDB {\e maxlV.Ol
[*] (npd = 4) [*]

l a
1b
1c
1d
1e
1f
1g
th
1i
lj
1k

2a
2c
2e
2g

0.47
0.79
T . L 2
0.54
0.48
0.45
0.58
0.82
0.97
0.70
0.86

2.00
1.00
0.95
0.56

6.59 L.49 0.70
7.44 2.74 2.16
4.09 2.27 2.54
7.4t t .26 0.68
6.64 1.58 0.76
6.56 L.44 0.65
6.80 1.86 1.08
10.9  1 .35  l . l1
3.72 1.18 1.1.4
6.92 2.05 1.44
7.46 2.77 2.38

7.99 3.26 6.72
6.99  2 .16  2 .16
6.69  1 .69  1 .61
6.47 1.24 0.69

2.77  3 .4L  1 .60
3.08  3 .27  2 .58
3.70  2 .24  2 .51
2.90  2 .82  r .52
2.99  3 .99  L .92
2.74 3.56 1.60
2.92  3 .38  1 .96
4.51 3.54 2.90
3.50 1.96 1.90
3.90 3.51 2.46
5.89 3.21 2.76

6.26 9.39 18.8
2.60 2.45 2.45
3.41  5 .10  4 .85
2.42 2.47 1.38

Table 5.L6: Combinedanalysis of the qualitymeasures at fix g0 for hypotheses related
to an outlier and a slip in range SR2.

The combined analysis in Table 5.16 shows that:

- Integration improves the overall quality of the system (cf. cases 2a <-+ 2c <-+ 2e
* 2gr 1a ++ 1b, and lc <-+ f-i).

- The relative improvement with respect to one quality measure does not necessarily
coincide with an improvement with regard to the other quality measures. From
Table 5.L6 one can see for instance that:

- Small standard deviations of the filtered state do not always coincide with
small MDBs (cf. La .r--r li, Lb <-+ 1-c, and 2c *- 2g). In Section 5.6.2 we saw
that the size of the MDBs is related to the precision of the observations.

- La,rge standard deviations can occur simultaneously with small BNRs (cf.
th/1i *' 1-a). The BNR is a measure of significance of the bias relative to
the precision of the filtered state, and hence the effect of larger variances of
the filtered state is a decrease of the BNR (cf. Section 5.6.3).

- Small BNRs can occur simultaneously with large MDBs (cf. th).

The results show that a quality assessment of an integrated navigation system should
be based on a combination of quality measures. Reliance on a single quality measure
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(".g. precision) might result in a system which provides very precise but unreliable
results.

5.7 Reliability Studies for Integrated Navigation Syr-
tems

In the literature one finds only a few references to design studies with are particula,rly
devoted to reliability. In the following we briefly fiscuss three design stufies in which
reliability was explicitely considered.

An early investigation into reliability aspects of dynamic systems has been per-
formed by Buutto ET AL. [1976], who have investigated detectability and separability
issues of GlR-tests for a simple (two-dimensional) aerospace application. Their results
are stated in terms of probabilities. Especially the results regardirrg separability are of
interest, because they show that the separability of certain model errors may be small.
Not surprisingly they find that the sepa,rability between a hypothesis concerning a slip
in a particular state vector element and a slip in an observation of that state vector
element is small. (Our analysis of the correlation between hypotheses in Section 5.6.2
yielded similar results). Their results are quite promising but are only available for a
single design case.

Based on the quality measures given in Section 5.2, Ttron:us [1991] has performed
a design study for a vehicle location system. In his study it is shown that it is ab-
solutely necessary to integrate positioning and dead-reckoning system(s) to meet the
quality requirements for vehicle location systems. Apart from the measurement sce-
nario and the implemented dynamic model, the quality measures are also shown to be
trajectory and velocity dependent. These latter two phenomena were hardly seen in
our (hydrographic) navigation system case study, as we worked in a much more benign
dynamic environment than is encountered in a road-like situation with its constant
accelerations. Furthermore TIspnIus demonstrated numerically that the enla,rgement
of the state by adfitional instrumental parameters does not have a significant impact
on the reliability description. The adfitional parameters were, however, necessary to
keep the estimators of the state vector unbiased.

Lu .lNo L.a.cx.o.pnr,r,o [1990], based on the methodology developed at the Delft
Geodetic Computing Centre, have considered the impact of model errors on the results
of a GPS positioning system. Their results on external reliability are not based on
a statistical concept like the MDB, and therefore their so-called Bias to Noise Ratios
should rather be compared to our response plots. They find that outliers (in GPS
phase measurements) mainly cause an instantaneous bias in the state, while (cycle)
slips result in a permanent bias in the state vector. These findings agree with our
analysis of the response plots in Section 5.6.3.
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5.8 Concluding Remarks

In this chapter we have dealt with the design procedure for dynamic systems, and
integrated navigation systems in particula.r. The purpose of the design study was
to analyse the characteristics of the various quality measures under different model
assumptions, to assess the usefulness of these quality measures for the design procedure
of integrated navigation systems, and to provide insight into how the window lengths
of the tests should be chosen.

The analysis of a simple, linear two-dimensional model proved very useful for a first
characterization of the quality measures. We paid much attention to the analysis of
the measures of internal and external reliability (MDBs and BNRs). Conclusions from
the analysis of the various quality measures are the following:

- The precision of the filtered state is directly related to the precision of the mea-
surements and can be improved by integration (cf. Section 5.6.1).

- The size of the MDB is primarily a function of the measurement precision. Inte-
gration improves the internal reliability and thus results in smaller MDBs. MDBs
of alternative hypotheses related to slips in the observations and instrumental bi-
ases decrease with increasing delay. MDBs of hypotheses related to outliers only
become smaller for the first delay (if they become smaller at all).

- The correlation between the test statistics is significant for certain pairs of alter-
native hypotheses.

- Outliers cause a bias of relatively short duration in the state vectot, whereas
slips cause a permanent bias in the filtered state. The analysis of the BNR can
be quite involved, as the BNR is dependent on the MDB, the precision of the
filtered state, and the delay ofthe test. Generally outliers only cause a significant
bias the instant the error occurs, whereas slips result in permanent, significant
biases. Integration generally leads to smaller BNRs.

The results concerning the precision and internal reliability correspond nicely with
what one would expect intuitively from the results of conventional geodetic network
design. The results concerning reliability are similar to those of GPS network design
(see [K6stERs, L992]). Overall the quality of the system is to a large extent dependent
on the stochastic model of the observables. The stochastic model of the observations is
largely dependent on the sensors used, while the stochastic model of the disturbances
is dependent on the fisturbances actually encountered. We also found that integration
improves the overall quality of the system. Especially the integration of 'absolute'

positioning systems and dead reckoning systems leads to large quality improvements.
Fortunately the integration concept and the choice ofthe sensors can, to a large extent,
be influenced by the designer (leaving cost limitations out of consideration). Taking
the results of the design studies into account we think that if a design study indicates
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that for a certain system the quality requirements carnot be met, enlarging the level
of integration might be the best way to meet the requirements.

We have shown that in the design procedure all quality criteria should be taken
into accoult simultaneously. An actual design study can very well be performed using
the quality measures we discussed. The precision requirements for navigation systems
are usually quite well known (cf. Section 4.3), and it can be easily verified whether
the system meets these requirements. Also one generally has some knowledge of which
model errors are likely to occur and what is the magnitude of these errors. If the MDBs
a,re smaller than the size of the likely errors, the detectability of the model errors is
suffcient. We could not provide, however, upperbounds for the BNRs. A rule of thumb
(such as it exists for control networks) cannot be given yet for navigation systems.

The design study certainly provides guidance on the choice of the window lengths
for the testing procedure. From the analysis of the MDBs and BNRs we conclude that
for tests for outliers short window lengths (1 or 2) are suffcient, whereas tests for slips
might require longer window lengths. Slips cause permanent, significant biases in the
filtered state (which necessitates their detection and identification). At the same time
slips can generally be better detected by tests with large window lengths. If, however,
the size of the likely model error is much larger than the MDB, local tests are su-ffcient
for the detection of slips.

Overall we think the findings of this chapter constitute a first step towards a full-
scale design procedure for integrated navigation systems. Most conclusions are based
on the navigation system introduced in Section 5.5. The correspondence between the
results of the (limited) analysis of the linear model and the navigation models indicates
that the conclusions drawn from these results can also be extended to other systems.
Finally we think this study may provide a benchmark for future design studies.



Chapter 6

DIA Test Computations

6.L lntroduction

In the previous chapter the design of an integrated navigation system has been dis-
cussed. The reliability description of such a system was based on the assumption that
the data processing is supported in real time by a testing strategy, viz. the DIA proce-
dure. In this chapter we will more closely investigate the performrulce of the detection,
identification and adaptation procedure. The analysis of the DIA procedure is per-
formed step-wise. First we limit ourselves to the detection and identification steps of
the DIA procedure and try to establish whether the actual detection and identification
performamce is in accorda^nce with the results of the design procedure. Then we pro-
ceed with a performance study of the adaptation procedure. Adaptation in dynamic
systems is a relatively new field of interest, and therefore it was deemed wise to follow
a cautious approach where we limit ourselves to local adaptation (i.e. adaptation based
on local identification tests). All our analyses are based on the simple linear model and
navigation models introduced in Chapter 5. The linear model is mainly used to clarify
the operation of the DIA procedure.

All analyses are based on simulated datasets. Because this study presents a first
systematic investigation into the performa^nce of the DIA procedure, it is felt that
datasets with perfectly known (i.e. simulated) model errors should be used. If the
method performs satisfactorily for simulated datasets it can be used for real datasets
at a later stage. The processing of the data of the navigation models is based on the
iterated extended Kalman filter (IEKF).

6.1.1 Overview of this Chapter

We first analyse the performa.nce of the detection and identification part of the DIA-
procedure. In Section 6.2 the detection and identification plots are introduced and
explained. The performance of the Dl-procedure is then analysed for a simple linear
model and some of the navigation models in Sections 6.2.2 and.6.2.3 respectively. The
adaptation procedure is investigated (using several adaptation strategies) for the simple
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linear model and navigation models in Sections 6.3.1- and 6.3.2 and adfitionaly for the
lane-slip problem of hyperbolic positioning in Section 6.3.3. In Section 6.4 the main
findings of the DIA test computations are summarized.

6.2 Detection and Identiffcation

The results of the detection and identification procedure will be primarily presented in
graphical form. A key to the so-called detection and identification plots, which are our
primary analysis tools, is given in Figs. 6.1 and 6.2. The major difference in analysing
the detection and identification plots is that the detection plots refer to the epoch of
compatatiorg whereas the identification plots refer to the epoch of identification.

The detection plots should be read as follows.
On the horizontal axis the fix number is plot-
ted (here fixes 25 to 39 are considered). On
the vertical axis the detection test statistics
are given (gon(i) denotes the global over-
all model test statistic with delay i; gorn(0)
corresponds with the local overall model test
statistic). All test statistics that are larger
than their critical value are indicated by a
hyphen (-). The detection results refer to the
epoch of computation. The largest detection
test statistic for a particula.r epoch is denoted
by an asterisk *. Fromthe figure one can, for
example, read that at fix 30 the detection test
statistics for delays 0 (gon(0) plotted at fix
30 corresponds to Tt,k - ?30'30) to 9 (gon(9)
plotted at fix 30 corresponds to 7zt'30) a^re
all larger than their critical value and that
the largest test statistic is associated with the
global overall model test statistic with delay
9 (gom(9) is tagged by an asterisk *). In the
lower part of the figure it is indicated by an
e where errors have been introduced in the
simulated dataset.

Figure 6.1: Interpretation of the detection plots.

In Fig. 6.1 it can be seen that we also indicate the largest detection test statistic,
but as fiscussed in Section 3.4 the overall model test statistics cannot be compa,red
firectly. In the detection plots the test statistic with the largest ratio between its size
and critical value for a certain epoch is considered to be the 'la.rgest'. The rationale for

gom(9)  I  - - - - * * - - - - - - - - *  |
gom(8)  |  - - - * - - - - - - - - - * -  |
gon(7)  |  - - * -  - - - - - - - * -  |
gom(6)  |  - * -  - - - - - - * - - -  |
gon(S)  |  * -  - - - - - * - - - -  |
gon(4)  l -  - - - - * - - - -  |
gon(3)  |  - - - * - - - -  |
gon(2)  |  - - * - - - -  |
gon( l )  |  - * -  - -  |
g o n ( o ) l  - -  -  |

- - - - - -+ - - -
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The identification plots should be read as fol-
lows. On the horizontal axis the fix num-
ber is plotted (here fixes 25 to 39 are con-
sidered). On the vertical axis the identifi-
cation test statistics are given (gso(i) de-
notes the global slippage test for outliers in
the observations with delay i; gso(0) corre-
sponds with the local slippage test). In subse-
quent plots gss refers to slips in the observa-
tions. All test statistics that are larger than
their critical value are indicated by a hyphen
(-). The identification results are adjusted
for their delay. The largest identification test
statistic for a particular epoch and type of
hypothesis is denoted by a *. From the fig-
ure it follows for example that the global slip-
page tests for outliers is larger than its critical
value for delay 0 at fix 30 (gso(0) plotted at
fix 30 corresponds to tt'k - 130'30), for delay
1 at fix 3L (gso(1) plotted at fix 30 corre-
sponds to t30'31) a.s.o. Because the identifi-
cation tests statistics are plotted adjusted for
their delay one can see that the outlier sim-
ulated at fix 30 (inficated by e) is correctly
identified.

g s o ( e )  I
g s o ( 8 )  |
g s o ( 7 )  |
g s o ( 6 )  |
g s o ( 5 )  |
g s o ( 4 )  I
g s o ( 3 )  |
g s o ( 2 )  |
g s o ( 1 )  I
g s o ( o )  |

r i -

r f -

* -
* -

- + -

- * -
- * -

* -
_ t i _

, t_

- l
- l
- l
- l
- l
- l
- l
- l
- l

I

Figure 6.2: Interpretation of the identification plots.

flagging the largest detection test statistic is to investigate whether the detection test

statistic can be used to identify the time of occr:rence of the model error.

We will start the analysis of the performa.nce of the detection and identification (DI)
procedure with the simple linear, two-dimensional model introduced in Section 5.3. The

results pertaining to this model will be discussed extensively, partly because the simple

model allows us to give a full account of the results, and partly to illustrate the use of

the analysis tools. Thereupon we will consider the navigation models of Section 5.5. A

theoretically correct analysis of the performance of the DI procedure is based on the

assumption that all datasets contain a single model error. We do not adapt for model

errors at this point of our investigations and consequently the filtered estimators are

biased (and also the predicted residuals on which all test statistics are based) after the

occurrence of the model error. Nevertheless we have also chosen to analyse datasets

containing multiple errors. In that case the detection and identification plots should

rather be considered as tsensitivityt plots, illustrating the response of the test statistics
to a sequence of model errors.



1.60 DIA Test Computations

6.2.1 Test ing Parameters

For the DI computations the level of significance (os) and the power of the test (7s) are
chosen identical to the values used in the design computations. For the one-dimensional
tests we choose co = 0.001 and 7s = 0.80. The levels of significance of the multi-
fimensional tests are determined by the B-method of testing.

8.2.2 Detect ion and Ident i f icat ion -  Linear Models

In this section we consider the simple (two-dimensional) model introduced in Section 5.3
and described by (5.1) to (5.3) with starting values as given by (5.4). For models LM1
and LM2 four datasets each have been simulated. A description of the datasets is
provided in Tables 6.1- and 6.2.

Dataset with a single outlier

fix
number

simulated
error [m]

MDBs outliers observations [m]
model LMl I model LM2

delay 0 delay 1 | delay 0 delay 1
30 20.0 8 .38  5 .23  |  5 .17  4 .73

Dataset with multiple outliers

fix
number

simulated
error [m]

MDBs outliers
model LMl

delay 0 delay 1

rbservations [rnl
model LM2

delay 0 delay 1
10
20
30
40
50
60
70
80
90

20.0
18.0
16.0
14.0
L2.0
10.0
8.0
6.0
4 .0

8.38 5,23
8.38 5.23
8.38 5.23
8.38 5.23
8.38 5.23
8.38 5.23
8.38  5 .23
8.38  5 .23
8.38  5 .23

5,29 4.79
5.17 4.73
5.17 4.73
5.1.7 4.73
5.17 4.73
5 . t7  4 .73
5. r7 4.73
5.17 4.73
5,17 4.73

Table 6.1,: Description of the datasets with (an) outlier(s) and associated MDBs for
models LML and LM2.

We will start the a,nalysis by considering the dataset with the single outlier, then
consider the datasets with slips and fio"tly look at the dataset with multiple outliers.
The size of the error in the second data set with slips and the size of some errors in the
dataset with multiple outliers is chosen in such a way that the errors are approximately
the size of the MDB.

The results pertaining to the dataset with a single outlier are given in Figs. 6.3
and 6.4. For convenience we have only plotted the time interval from fix 20 to fix 60.
Figure 6.3 shows that the performance of the detection procedure is excellent. It can
be seen that in this particula.r case the largest detection test statistic is related to the
time of occurence of the model error (gon(8), for example, is the largest detection test



Dataset with a single slip I

fix
number

simulated
error [m]

MDBs slips observations [m]
model LMl I model LM2

delay 1 delay 5 | delay I delay 5
30-100 20.0 8 .13  7 .28  |  4 .51  4 .s2
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Dataset with a single slip II

fix
number

simulated
error fml

MDBs slips observations [m]
model LMl I model LM2

delay 1 delay 5 | delay 1 delay 5
30-100 7.0 8.13 7.28 |  4.51 4.32

Table 6.2: Description of the datasets with a slip and associated MDBs for models LM1
and LM2.
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Figure 6.3: Detection Results for the dataset with an outlier at fix 30; model tM1 (left)
and model tM2 (right).

statistic at & : 38 and thus gives reasons to believe that a model error occurred at
I = 30). Although the detection test statistics are meant to test the overall validity of
the null hypothesis, they seem, at least in this particulax case, to be powerful enough
to identify the time of occurrence of the model error. Fig. 6.3 also shows that every
detection test statistic that incorporates the time of occurence of the model error is
larger than its critical value (this results in the triangular shaped pattern). The reason
that also test statistics which only refer to epochs after fix 30 are larger than their
critical values (e.g. gom(O) at fix 31) is due to the fact that we do not adapt for the
model error (and hence after fix 30 the predicted residuals are biased). Note, however,
that the impact on the test statistics is quite shortlived, which is accordance with the
response graphs for outliers (cf. Figs. 5.2 and 5.3).

In the identification plot (Fig. 6.a) an extension to the key given in Table 6.2 is
introduced by also indicating (by means of an x) which identification test statistic is
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Figure 6.4: Identification Results for the dataset with an outlier at fix 30; model LML
(left) and model LM2 (right). (A" x indicates which identification test statistic is the
largest for a particula,r epoch of computation.)

the largest for a particula,r epoch of computation. In Fig. 6.4 we differentiate between
tests for out l iers (denoted by gso(.))  and tests for s l ips (gss(.)) .  I t  can be seen, for
example, that the tests for I = 30 with a delay of one k-I = 1 (fr : 3l-), indicate that an
outlier is more likely than a slip (note that at fix 30 gso(1)>gss(1) ). The identification
procedure operates correctly for both model LML and LM2. Especially in Fig. 6.4 it
can be seen that the identification test statistics are correlated. The identification test
statistic (gso(.)) is consistently (and correctly) the largest one until the end ofthe
window at fix 39, but the synchronous slip test statistic and 'neighbouring'outlier and
slip test statistics are also la,rger than their critical value.

We now turn to the dataset with the slip of 20m starting at fix 30 (from Table 6.2
it follows that the size of the slip is clearly la,rger than the MDB). Both the detection
(Fig. 6.5) and identification (Fig. 6.6) plots show that the DI procedure works very well.
In the identification plot one should note an interesting phenomenon, namely that the
start of a slip is (usually) identified by the local slippage test (gso(O)), which might
(depending on the type of alternative hypotheses specified) refer to an outlier rather
than to a slip. This should be kept in mind if one l\tants to implement an adaptation
procedure which is suited to handle slips and outliers simultaneously. The impact of
the slip on the test statistics (especially for model tM2) is more pronounced than for
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Figure 6.5: Detection Results for the dataset with a slip of 20m starting at fix 30;
model tMl (left) and model tM2 (right).
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Figure 6.6: Identification Results for the dataset with a slip of 20m starting at fix 30;
model LMl (left) and model LM2 (right).

the outlier; this is in accordance with the response graphs for slips (cf. Figs. 5.2 and
5.4) .
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Figure 6.7: Detection Results for the dataset with a slip of 7m starting at fix 30; model
LMl (left) and model tM2 (right).
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Figure 6.8: Identification Results for the dataset with slip of 7m starting at fix 30;
model tM1 (left) and model tM2 (right).

If one considers the dataset with the slip of 7m (which is approximately the size of
the MDB, cf. Table 6.2), the performance of the DI degrades somewhat when compared
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to the case with the slip of 20m. Comparing Figs. 6.7 and 6.8 to Figs. 6.5 and 6.6 one

sees that especially less identification test statistics are larger than their critical value.
For model LM2 (where the size of the slip is larger than the MDB) the DI procedure

works well once again, but for model LMl the slip cannot so easily be identified. Also
one should note that for model LM1 the la,rgest detection test statistic no longer refers
to the actual time of occurrence of the model error. This leads us to the conclusion
that in general the detection test statistic may be a useful tool in identifying the time
of occurence of the model error, but is not the most powerful tool to do so. The
identification tests are able to pinpoint the exact time of occurence, albeit with a delay.
It can be seen from Fig. 6.8 that the correct identification for model LMl occurs with
a delay of 2 (gss(2)). (At fixes 30 and 31 outliers with a delay of 1 and 2 (reffering
to I : 29) are erroneously identified (cf. gso(1) and gso(2) in the upper left part of
Fig. 6.8).) This case constitutes a nice illustration of the growing detection power with
increasing delay.
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Figure 6.9: Response of detection test statistics to the dataset with multiple outliers
- Model LM1.

We will end the analysis of the performance of the DI procedure by considering the
response of the test statistics to a dataset with multiple outliers. Such an analysis may
clarify how various model errors might cause interference between the test statistics.
The results are provided in Figs. 6.9 to 6.1,2. For model LMt it can be seen (cf. Figs. 6.9
and 6.10) that the outlier at fix 90 is not detected and identified, which is probably due
to the fact that the simulated error is smaller than the MDB. Figure 6.10 furthermore
shows that the identification fails for the local test (gso(0)) at fixes 30,40, 50, 60, 70
(which is due to interference caused by the previous model error, because the interval
between errors is identical to the largest windowlength of the identification tests). At
fix 80 the failure of the local test is probably due to the small size of the model error.
Apart from a misidentification at fix 49 (see gso(1) ), it can be seen from Fig. 6.10 that
the identification based on the global tests functions properly, even if the biases caused
by the outliers are not accounted for.
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Figure 6.10: Response of identification test statistics to the dataset with multiple out-
liers - Model LML.
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Figure 6.1L: Response of detection test statistics to the dataset with multiple outliers
- Model LM2.

Compared to the results of model LMl, the procedure performs better for model
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Figure 6.1,2: Response of identification test statistics to the dataset with multiple out-
liers - Model LM2.

tM2 (cf. Figs. 6.LL and 6.12). This is of course due to the fact that the MDBs associated
with model LM2 are smaller than those of model tMl (cf. Table 6.L). Except for fix 81
(at which the outlier is detected with a delay of one epoch (cf. Fig. 6.12)) the detection
and identification procedure works perferctly using only the local tests. Overall it seems
that the impact of the outliers vanishes so quickly that the DI results are not that much
influenced.

Summa,rizing, the analysis of the performance of the detection and identification
procedure for the linear models shows that:

- Outliers and slips are detected and identified correctly. If, however, the model
error is smaller than the MDB, detection and identification, as expected, might
fail. This confirms that the MDBs are a useful measure for the size of errors that
can be identified.

- The identification test statistics for fifferent types of alternative hypotheses (out-
liers and slips) and for various delays are correlated, but the largest test statistic
does indicate the actual model error.

- In case no identification test statistics are computed, the 'largest' detection test
statistic might be used to infer at which time the model error occurred. For this
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purpose it is, howevel, not the most powerfirl test.

- The analysis of the dataset with the multiple outliers shows that the performance
of the DI procedure might deteriorate if model errors occur (nearly) simulta.ne-
ously.

6.2.3 Detect ion and Ident i f icat ion -  Navigat ion Models

Now the performance of the detection and identification procedure has been extensively
discussed for a simple linear model, we proceed with the navigation models which were
introduced in Chapter 5. We will limit the analysis of the DI procedure to three
fiferent datasets. An extensive analysis of the navigation models revealed that one
basically arrives at the same conclusions as have been obtained for the linear models.
A major extension of the navigation models with respect to the linear cases is that one
uses more than one measurement at every epoch. Therefore this section will prima,rily

serve to demonstrate that the DI procedure indeed indicates the correct alternative
hypothesis. In particula,r we consider models la (4 Syledis ranges, gyro, and log)
and model 1b (a Syledis ranges only), which have been specified in Section 5.5. Alt
the datasets have been simulated without disturbances (i.e. Q = 0n was used in the
simulations). Note, however, that the simulated trajectory contains a curve which,
with our constant velocity models, can be considered as an unmodelled acceleration
across track of 0.393m/s2. The datasets considered are an errorless dataset for model
1a, a dataset with outliers for model 1a, and a dataset with outliers for model 1b. A
description of the datasets with outliers is given in Table 6.3. AIl datasets have been
processed with overall model tests and slippage tests with a lag 0 and a delay g (i.e. a
window length of 10). We test for alternative hypotheses related to outliers and slips in
the measurements, accelerations along and across track and gyro and log instrumental
biases (the latter two only for model La).

fix
number

simulated
observation error [ml

MDBs outliers
model la

delay 0 delay I

rbservations [mJ
model lb

delay 0 delay I
20
30
40
50
60
70
80
90

range 1 16.0
range 2 14.0
range 3 12.0
range 4 10.0
range 1. 8.0
range 2 6.0
range 3 8.0
range 4 10.0

6.64 6.54
6.64 6.55
6.47 6.41
6.46 6.41
6.56 6.49
6.56 6.50
6.48 6.42
6.49 6.42

7.26 6.73
7.44 6.82
6.95 6.57
6.96 6.58
7.26 6.73
7.44 6.82
6.95 6.57
6.96 6.58

Table 6.3: Description of the datasets with outliers and associated MDBs for models
la a.nd lb.

We start the analysis of the Dl-procedure for the navigation models with the error-
less dataset. Although no errors have been introduced in the dataset it is obvious that
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Figure 6.13: Detection results model la (errorless dataset).
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Figure 6.14: Identification results model La - acceleration across track (errorless
dataset).

the turn in the trajectory constitutes a deviation from the assumed constant velocity
model. In Fig. 6.L3 the detection results are given. It can be seen that rather many
detection test statistics exceed their critical value. In the fix interval 1 to 30 (in which
no model misspecification is supposed to exist) the ratio of the test statistic a.nd its
critical value is at most 1.16. (In the fix interval 4 to 12 no simulta.neous identification
takes place; at fix 27 a nonexisting slip in a range is identified with a delay of three
(the size of the particula,r identification test statistic is 1.08 times its critical value)). In
the interval 30 to 70 (during the turn) this ratio reaches values up to 1.60. The curve
seems to be detected. If one considers the range of possible alternative hypotheses the
acceleration across track (denoted as tsa(. ) in Fig. 6.14) is indeed identified starting
at I = 32, but not by the test statistics with a small delay. The MDB for an accelera-
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Figure 6.1-5: Identification results model La - gyro drift (errorless dataset).

tion across track decreases from 0.87 to 0.34 mf s2 for a delay increasing from 1 to 9,
which explains why the tests with small delays are not able to identify the curve. To
a lesser extent the turn causes the identification of a gyro drift model error (gsg( . )
in Fig. 6.15), but the size of the associated test statistics is always smaller than that
of the statistic related to the acceleration across track. (The large identification test
statitics are probably due to the high correlation with the acceleration across track test
statistics (cf. Section 5.6.2).)

The analysis of the DI procedure for the datasets with outliers is not exact as we
consider datasets with multiple outliers (one thus rather considers the response of the
DI test statistics). But if we can show that the DI performance is good in the biased
case, we can conjecture that it will also work well for one model error at a time. In the
following we only consider the identification phase. The results of the analysis of the
detection test statistics agree with the results of the linear models. In Figs. 6.1.6 and 6.1-7
the response to the identification test statistics for outliers and slips in the observations
is given for models la and 1b respectively. In the plots a mmber (L,2,3,4) inficates
that the identification test statistic for that particula,r range is larger than its critical
value and a g refers to a gyro observation (no log identifications were encountered). If
more than one identification test statistic at a time is larger than its critical value this
is indicated by an n.

For model 1a identification feils at fixes 60 and 61 and 70 to 73. At fixes 60 and
61 a gyrodrift of 5.6" and an acceleration across track of 0.43rnf s2 are identified as the
most likely hypothesis respectively. From fix 70 to fix 73 an acceleration across track
(with decreasing magnitude of 0.38 to 0.31-m/s2 is identified. Both at fixes 60 and 70
the simulated range errors are about the size of the MDBs (cf. Table 6.3), and it can
be argued that acceleration across track is ajust as valid alternative hypothesis. For all
other epochs the largest identification test statistic corresponds to the simulated range
error (this cannot be derived from Fig. 6.16). This means that that at all fixes (except
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Figure 6.16: Identification results model La - slip (bottom) and outlier (top); L,2,3,4
inficate ranges, g indicates gyro, and m means that more than one test statistic at a
time is larger than its critical value.

fix 70) the local identification test statistic is powerful enough to identify the outlier in
the range.

Also for model lb the identification procedure performs very well. The simulated
outlier is not identified at fixes 60 to 62 (where an acceleration across track is identified
as the most likely hypothesis) and at fix 70 (where an nonexisting slip in range f. is
identified), but also for model lb the range errors at fixes 60 and 70 are approximately
the size of the MDBs (cf. Table 6.3). Furthermore the acceleration across track is also
a model error in this case. The identification of an outlier at fix t4 (cf. Fig. 6.17) is
not accompanied by a simultaneous detection and can thus be discarded.

The analysis of the performa.nce of the detection and identification procedure for
the models introduced in Chapter 5 shows that:

- Identification performs well, even if the errors in the datasets are not accounted
for.

- If several model errors occur simultaneously (for example the unmodelled curve
and an outlier) the identification test statistics tend to mask each other.

The MDBs constitute a useful lower bound for the size of the errors which can
be identified.



1.72

gso (9)

t 8o  (8 )

8so (7)

8so (6)

gso (5 )

86o  (4 )

8so  (3 )

t so (2 )
6so (1 )
tso (o)

8es (9)

8s8 (  8)

8s3  (7 )

t ss  ( 6 )

t ss (5 )
ts8 (4)

888 (3)

8s8 (2 )
6s8 (1 )

DIA Test Computations

---+---  -  - - -  -  -+---  - - - - -  -+--  - - - -  - - -+---  - - -  - - -+---  -  - - -  - -+--- -  - - -  - -+-  - - -  - - - -  -+-  -  - - -  - - - -+--- - -

1 1 2 3 4 7
1 1 2 3 4 1 2 3 4

7 2 3 4 1 2 3 4
t 2 3 4 7 2 3 4

1 1 2 3 4 7 2 3 4
t 2 3 4 7 2 3 4

1 1 2 3 4 7 2 3 4
1 1 2 3 4 L 2 s 4

1 1  2 3 4 t 2 3
1 1  2

L 2 2
! 2
7  2 2 2
L 2222

11  2222  3
1 1  2 2 2  3

2 7  2 2
2L7 22

n 4 f 2 3 4

3 m
t D ' 2

m 2
3 m
3  n 2
3 4 1 1  1

3  3  4 4 4  1 1  4

4 4 3 n 4 4 1 1 3 4 4
n3 44 33 441 1 22

---+--  - - - - -  - -+--  - - - - - - -+-  - - - - -  - - -+--- - -  -  - - -+--- - - -  - - -+--  - - - - - - -+---  - - - - - -+--- - - - - r -+--- - -

10 20 30 40 50 60 70 80 90
--  -+---  -  - - - -  -+--- - - - - -  -+--  - - - - -  - -+---  - - -  - - -+---  - - -  -  - -+--- - - - -  - -+-  - - -  - - - -  -+-  - - - - - - - -+--- - -

1 1 2 3 4 7 2 3 4
---+--- -  -  - - - -+--  - - -  -  - - -+--- -  - - -  - -+--  - - - - - - -+-  - - -  - - -  - -+--  - -  -  - - - -+---  - - - - - -+--  - - -  - - -  -+--- - -

Figure 6.17: Identification results model l-b - slip (bottom) and outlier (top); L ,2,3 ,4
indicate ranges, n ind.icates more than one r:rnge test statistic is larger than its critical

value.

6.2.4 Detection and Identification - Concluding Remarks

We have investigated the performance of the detection and identification (DI) procedure

for a simple linear model a"nd two navigation models. Because we do not adapt for the

model errors at this stage, the performa^nce of the Dl-procedure can only be established

exactly for cases with one model error, because after the occurrence of the first model

error the filter solution is biased. We find, howevet, that the response of the DI test

statistics, for errors fa.r enough apart, largely corresponds to the cases where only one

model error is studied at a time. The analysis of the DI procedure shows that:

- The MDB is a very useful measure of the detectability and model errors smaller

than the MDB are indeed rarely identified. We have furthermore seen that a larger

window length of the identification test statistics is benificial for the identification

of small errors (at least for those hypotheses where the MDB decreases with

increasing window length).

- Local testing is adequate for the detection and identification of large model errors.



6.3 Adaptation 1.73

- The detection procedure works well. If no explicit identification step follows the
detection phase, the detection test statistic might be helpful for the determination
of the time of occurence of the model error.

- The identification procedure performs excellently, although the identification test
statistics are correlated (and thus more than one identification test statistic is
larger than its critical value). Despite the correlation the largest identification
test statistic indicates the actual model error.

- ff errors occur (nearly) simultaneously the Dl-procedure might have some prob-
lems to identify all errors correctly.

Considering the good performa.nce of the DI procedure, one has to be aware of the fact
that in practice only those model errors are identified for which a specffic alternative
hypothesis has been specified. A model error for which no matching alternative hypo-
thesis is specified, probably results (due to the correlation between the test statistics) in
the erroneous identification of some other model error. Thus the range of likely model
errors has to be given careful consideration in the design phase.

6.3 Adaptat ion

After the performance of the detection and identification procedure has been analysed,
we turn our attention to the most challenging part of real-time quality assurance in
dynamic systems, namely adaptation. The objective of this section is to establish how
well adaptation actually works.

In Section 3.6 we have shown that the exact adaptation procedure for outliers
can be implemented by updating the estimator of the filtered state and its covariance
matrix once, after which one can revert to the filter under the null hypothesis. This
is not possible for slip-type errors and therefore we will consider several adaptation
strategies for slips. Theoretically one should, from the time of identification onwards,
continuously adapt the estimators obtained by the filter under I/0. To circumvent this
permanent update it has been investigated if one obtains 'acceptable' results by various
sub-optimal strategies. A drawback of these sub-optimal strategies is that they lack a
theoretically rigorous basis. One of these strategies is denoted the semi-exact method
and reverts to the filter under .t/s after a number of steps of the exact procedure. The
so-called approximate method reverts to the filter under 116 after the adaptation step
immefiately. A description of the implementation of the approximate and semi-exact
adaptation procedures for slips is given in Appenfix C.

In this section we limit ourselves to local adaptation for outliers and slips in the
observations. This restriction is motivated by a number of reasons. Firstly and most
importantly we have very little experience in the automatic adaptation for model errors
in dynamic systems. Therefore it was considered wise to limit the investigations to those
based on local identification. From the analysis of the DI procedure we concluded that
Iocal tests are adequate to detect and identify model errors, which are, say, two times
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as large as the MDBs. Secondly the current software does not remove the bias from
the test statistics once an model error has been identified and adapted for. To prevent
misidentifications the window length of the tests is tempora,rily reset to one, which
corresponds to local testing.

The adaptation computations are based on a level of significance of cs : 0.001" for
the one-dimensional tests and a power of the tests of 7o = 0.80 in the detection and
identification procedure.

In this section we will investigate the adaptation procedure for in succesion the
simple linear model, the two navigation models considered in Section 6.2.3, and the
lane-slip problem in hyperbolic positioning. The simple linear model once more serves
to introduce a,nd explain the peculiarities and properties of the adaptation procedure,
whereas the latter two cases correspond more or less to real world situations.

6.3.1 Adaptat ion -  Linear Models

In this section we consider the performance of the adaptation procedure for the linear
models LM1 and LM2. We consider three datasets of 100 fixes for each model, which
are surlmarized in Table 6.4. The performance of the DI procedure for the datasets
with multiple outliers and a single slip has been investigated in Section 6.2.2.

dataset
with outliers

dataset
with slips

dataset
with single slip

fix slze [*l fix size [m fix slze lm l
10 20.0
20 18.0
30 16 .0
40 14.0
50 12.0
60 10.0
70 8.0
80 6 .0
90 4.0

21-30 7.0

61-70 20.0

30-100 20.0

Table 6.4: Simulated errors in the datasets concerning the linear models LM1 and LM2.

We begin with the analysis of the dataset with outliers for which the results are
presented in Table 6.51 and Fig 6.18. The adaptation procedure operates adequately
for both models: all outliers are correctly identified and adapted for, except those at
fixes 80 and 90 for model LM1 and the one at fix 80 for model LM2. The failure of the
identification (and thus adaptation) procedure at fixes 80 and 90 is probably due to the
fact that the simulated errors are not much larger than the MDBs, which corresponds
to our findings in Section 6.2.2. For model LM1 the adaptation failure causes position
biases of 5 to 13 metres in the fix interval 80-82. The damping effect of a lower system

tIn the tables a * and a - indicate correct and incorrect adaptation respectively.
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true
fix error lml

Model  LMl Model LM2
ettot estlmate CV

i t*l [*]
error estimate c9

V [*l lmj
20.0
18.0
16.0
14.0
t2.0
10.0
8 .0
6 .0

4.0

10
20
30
40
50
60
70
80
8 1
82
90

+ 18.96 2.03
+ 18.03 2.03
+ 13.36 2.03
+ 15.56 2.03
+ L4.37 2.03
+ 9.56 2.03
+ 9.44 2.03

-7 .13  2 .03
-  -14 .13  3 .24

+ 27.73 1.25
+ L7,27 1.25
+ 15 .67  1 .25
+ L3.27 1.25
+ 11 .96  1 .25
+ 8 .51  1 .25
+ 7.09 1.25

+ 4 .82  1 .25

Table 6.5: Adaptation results for the dataset with outliers - adaptation for outliersl
model LM1 (teft), model tM2 (right).

noise on the state estimates is clearly visible if one compares the unadapted position
estimates in Fig. 6.18.

Next we consider the dataset with a single slip. Such a dataset allows us to compa,re
the performance of the exact adaptation procedure (where the adaptation step is carried
out ad infinitum) with the approximate adaptation procedure for slips. The results for
models LM1 and LM2 are given in Fig. 6.19. (For model LMl the variance of the
error estimator is constant after fix 57 and consequently the depicted result actually
ccrresponds to the semi-exact adaptation procedure.) For model LM2 we additionaly
consider the error estimate obtained through the exact adaptation procedure (Fig. 6.20
left) and the covariance between the estimators of the error and the adapted state
(Fig. 6.20 right). The precision of the error estimator does not improve much with
increasing window length (the same holds for the error estimate itself). This is in
accordance with our findings in Section 5.4, where we saw that the MDBs for slips do
not significantly decrease with increasing window length. From Fig 6.19 it follows that
the performa^nce of the approximate and exact adaptation procedure are comparable
as far as the actual position estimates are concerned (which is due to the fact that
one does not obtain a really better error estimator with increasing window length).
From Fig. 6.19 it can be seen, however, that the variance of the position estimator
obtained by the approximate procedure is too low (that is too optimistic); the variance
given by the exact procedure is consistently larger. Furthermore Fig. 6.20 shows that
(using the exact adaptation method) the covariance between the error estimator and
the estimator of the adapted state (Pr.,*yr,r) does not decrease with increasing window

length and is not negligible. The approximate adaptation method is thus clearly not
optimal from the point of view of the description of the precision of the state estimators
in case of the linear models. In Fig. 6.19 one can see an interesting phenomenon in
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the case of exact adaptation. The precision of the position estimator first deteriorates
after adaptation a,nd then (after some fixes) falls back gradually to a somewhat lower
(though still elevated) level. (The same holds for the covariance between the estimators
of the error and the position in Fig. 6.20). The variance of the adapted state estimator
is prima,rily influenced by the behaviour of the response matrix X6,1 through Pf,16 =

Pttr* X *lQi,,rXj,1, because the variance of the error and position estimators is (more

or less) consta,nt. In Fig. 5.3 it can be seen that the impact of a slip of fixed size on the
position estimate has identical cha,racteristics (particularly the resembla,nce of Fig. 6.20
to Fig. 5.3 is striking).
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Figure 6.18: Datasets with outliersl Left: Position estimates (*/ - Lo) vs. the fix
number without adaptation (LM1 top; LM2 bottom) with 1 tickmark corresponding
to 5m; Right: Position estimates vs. the fix nurnber with adaptation for outliers (LMl
top; LM2 bottom) with 1 tickmark corresponfing to lm.

The results of the adaptation procedure for the datasets with multiple slips for model
LM2 are given in Figs. 6.21-, where four scenarios are presented, namely no adaptation,
adaptation for outliers, approximate adaptation for slips, and (semi-)exact adaptation
for slips. (In this particula,r case the exact procedure was stopped if the decrease in
va,riance of the error estimator between successive fixes was smaller than 1.0E-4 in order
to enable identification of the end of the slip after 1,0 fixes.) Figure 6.21- shows that the
strategy based on the adaptation for outliers is not satisfactory. The slip is conceived
as sequence of outliers, a phenomenon which was already pointed out in our a,nalysis
of the identification procedure. After a number of adaptation steps (which in this
particula.r case correspond to discarding the observation), the variance of the predicted
state estimator (at fix 27) becomes so large that the next erroneous observation is
not identified anymore and divergence occurs. The performa.nce of the semi-exact and
approximate adaptation procedure is comparable (except that the approximate method
underestimates the variance of the adapted state).

Unfortunately the dataset with multiple slips cannot be processed satisfactorily for
model LML. Although the first slip is detected at fix 21, both the semi-exact and
approximate adaptation procedure fail at the end of the slip at fix 30, after which
fivergence occurs. This can be easily understood if one considers the properties of the
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Figure 6.19: Datasets with a single slip; Position estimates (+ I -to) vs. the fix number
for the exact (top) and approximate (bottom) solutions for models LM1 (left) and tM2
(right); L tickmark corresponds to 1,m).

0.5

-0.5

1 9

18 -  1 .5
30

Figure 6.20: Left: Error estimate slip [m] for the dataset with a single slip (+/ - 1o
relative to the simulated error of 20m); Right: Covariance between estimators of the
error and position (solid line; [m2]) and velocity (dashed line; [m2/s]) - model LM2.

approximate adaptation procedure. After the adaptation at fix 21 the variance of the
'cortected' position observable is now 3.03m (cf. Table 6.5), which results in a MDB of
1"2.3m at fix 30. Clearly this MDB is much larger than the size of the jump of 7m at
fix 30 and consequently it is not detected.

The analysis of the operation of the adaptation procedure for the linear models
gives rise to the following (preliminary) conclusions:

- The adaptation procedure works better, if one only tests and adapts for those
model errors which really occur. Otherwise slips are often identified as a sequence
of outliers or some sequence of outliers may give rise to the identification of a non-
existing slip. In such cases divergence may occur.

- The adaptation procedure works very well for outliers.

- The adaptation procedure works properiy if a single slip is present in the data.
For the slips in linear models considered in this section, the exact adaptation

10030

0 10 20 30 ,(0 50 00 70 80 9o 1oo 0 10 zo 30 10 50 E0 70 80 90 1oo
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Figure 6.21: Dataset with multiple slips; Position estimates model LM2 (+ I - Lo);

Left: no adaptation (bottom); adaptation for outliers (top) 1 tickmark corresponds

to 5m; Right: approximate solution (bottom); semi-exact solution (top); 1 tickmark

corresponds to lm.

method does not provide better state estimates than the approximate procedure.

The approximate method, however, suffers from the fact that it underestimates

the variance of the adapted estimator and neglects the considerable covariance

between the estimators of the error and adapted position.

- The precision of the error estimator does not significantly decrease with increasing

window length.

- The performa,nce of the adaptation procedure varies in case of multiple slips. For

the model with low system noise (LM2) it performs rather well, but for the model

with the larger system noise the performance is unsatisfactory.

6.3.2 Adaptat ion -  Navigat ion Models

In Section 6.2.3 we discussed the performance of the detection and identification pro-

cedure for some of the navigation models introduced in Chapter 5. In this section we

consider the performance of the adaptation procedure for the models 1a and 1-b and

datasets with outliers (cf. Table 6.3) and slips (cf. Table 6.7 furtheron). All datasets

are based on the trajectory given in Section 5.5 and contain 100 fixes. Identification

(and hence adaptation) is limited to local tests for either slips or outliers in the ranges

and outliers in the dead reckoning observables.

We will first consider the performance of the adaptation procedure for the dataset

with outliers. The adaptation procedure works very well as can be seen in Table 6.6

and Fig 6.22. Lt fix 70 the outlier is not identified for model 1b, but it follows from

Table 6.3 that the size of the error is considerably smaller than the MDB (at fix 70

the LOM-test, however, is rejected). The estimation results (after adaptation) are

presented in so-called 'filtered-true' diference plots, in which the difference between

the estimated and true position is given vs. the fix number. The fifference fiItered-true

o 10 20 30 40 50 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 100
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true ertor
fix rangef V [."]

model La model lb
error estimate cv

V I'ml lml
error estimate

v tml
CV

lml
16.0
14.0
t2 .0
10.0
8.0
6.0
8.0
10.0

20 1
3 0 2
4 0 3
5 0 4
60 1
7 0 2
8 0 3
9 0 4

+ 16.92 1.61
+ 13 .86  1 .61
+ 1L.92 L.57
+ 7 .9r  1 .56
+ 8 .28  1 .59
+ 5 .96  1 .59
+ 8 .98  L .57
+ 11 .39  1 .57

+ 16.69 1.76
+ 15,25 1.80
+ 13 .18  1 .68
+ 12.07 1.68
+ 6.71 r.76

+ 8.45
+ 10 .37

1.68
1 .68

Table 6.6: Adaptation results for dataset with outliersl local adaptation for outliers -

models la and tb.

Figure 6.22: Position differences filtered-true [m] vs. the fix number; model l-a without
adaptation (top left), model la with adaptation (bottom left); model lb without adap-
tation (top right), model Lb with adaptation (bottom right); one tickma.rk corresponds
to 1 metre.

-
is defined as 1/@ - Er)2 + (N - lVt)2 where ,E and E1 ate the estimated and true (i.e.

simulated) Easting and 1t and N; a,re the estimated and true Northing respectively. In
Fig. 6.22 the position differences for the filter without and with adaptation for outliers
are depicted (in addition we have plotted the length of the semi-major axis of the point
standard ellipse (represented by the short dashed line)). It can be seen that the outliers
have a more profound effect on the coordinate estimators of model 1b (which lacks the
damping effect of the dead reckoning observations). The non-identified outlier at fix 70
is clearly visible. Overall the adaptation procedure for outliers performs excellently.

Next we turn to the analysis of the datasets with slips in the range measurements
(see Table 6.7 for a description of the datasets). We will extensively analyse the dataset
with the single slip. We do not only consider how well the (position) state is estimated
after adaptation (Fig. 6.23), but we also consider the error estimate Vl'i and its as-
sociated standard deviation in Fig. 6.24. In Fig. 6.25 the precision of the (position)

0 10 2o 30 ,10 50 80 70 80 90 100 0 10 zo 30 40 50 60 70 80 90 100
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estimator after adaptation is given and firrully the covariance between the error esti-
mator a.nd the estimator of adapted state is depicted in Fig. 6.26.

dataset with a single slip dataset with two slips
fix interval ranse# size lml lix rnterval range# srze lml

26-100 I  20.0 26-100 1 20.0
76-100 2 20.0

Table 6.7: Simulated errors in the datasets with slips concerning models La and l-b.

Figure 6.23: Position diferences filtered-true [m] vs. the fix number - comparison of
approximate (dashed line) and exact (solid line) adaptation methods; model la (Ieft),
model lb (right).

10

1 8
20 30 40 50 60 70 80 90 100 30 40 50 60 70 60 90 100

Figure 6.24: Error estimate slip [m] (+ I - La relative to the simulated error of 20m)
vs. the fix number for the exact adaptation method; model 1a (left), model lb (right).

Considering the filtered-true difference plots in Fig. 6.23, both the exact and ap-
proximate adaptation procedure operate well, although the exact method slightly out-
performs the approximate method. It follows from Fig. 6.24 the precision of the error
estimator improves with increasing window length (for the linear model the improve-
ment with increasing window length was almost negligible after about 10 fixes). This

o 10 20 30 ,[0 60 60 70 80 90 100 0 10 20 30 40 50 60 70 80 90 lqt
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0 10 20  30  40  50  60  70  80  90  100

1.81.

0 10 20 30 40 50 60 70 00 90 100

Figure 6.25: Length semi-major axis point standard ellipse [m] vs. the fix number
- design (dotted line), filter with approximate (dashed line) and exact (solid line)

adaptation; model la (left), model 1b (right).
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Figure 6.26: Covaria,nce between error estimator and Easting (solid line) [m2] and

Northing (dashed line) [m2] vs. the fix number; model 1-a (left), model 1b (right).

improvement is probably due to the much higher redundancy in the navigation mod-

els. Besides the standard deviation of the error estimator for slips in the ranges does

not benefit much from integration if one compares the ranges-only model (1b) to the

integated model (1a). Appa,rently the contribution provided by the dead reckoning

observables is 'local', providing primarily relative position information.

Contrary to our finfings in the previous section the precision provided by the fiIter

based on the approximate adaptation procedure is only too optimistic compared to the

exact solution for a relatively short duration after the adaptation step (cf. Fig. 6.25).

Due to the continuous improvement of the precision of the error estimator, the precision

of the (coordinate) estimators based on the exact adaptation procedure drops below

that of the approximate method. As a consequence the approximate adaptation method
is not likely to cause fivergence.

In Fig. 6.26 we see that the covariance between the error estimator and (elements

of) the adapted state decreases with increasing window length, and more rapidly for

model lb. The fifference in size of the covariance between models la and lb is mainly
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due to the difference in precision of the state estimator itself (In Fig. 6.25 it can be
seen that the precision associated with model la is better than that for model 1b). The
difference between the Northing and Easting component of the covariance is dependent
on the relative receiver-transmitter geometry.

Overall the exact and approximate adaptation procedures perform adequately for
the dataset with a single slip. If one operates a filter in conjunction with the exact
adaptation procedure for slips, it can be seen (at least for models 1a and lb) that
after a reasonable number of fixes (say 50) the covariances between the error and
state estimators and the variance of the error estimator become small. One can then
consider to revert to the filter under .f/o combined with continuous corrections to the
observations.

0 10 20 30 40 50 80 70 80 90 100

Figure 6.27: Position differences filtered-true [m] - comparison of approximate (dashed
line) and semi-exact (solid line) adaptation methods; model la (left), model lb (right).

o 10 20 30 40 50 60 ?0 80 90 100 0 10 20 30 40 50 60 70 80 90 100
0.0

Figure 6.28: Length semi-major axis point standard ellipse [-] - design (dotted line),
filter with approximate (dashed line) and semi-exact (solid line) adaptation; model La
(left), model 1b (right).

The dataset with the multiple slips (cf. Table 6.7) has been processed using the
approximate and the semi-exact adaptation procedure described in Appendix C. We
had to invoke the semi-exact procedure (with a stop criterion of 0.01) in order to be
able to identify the second slip. The estimation results are given in Figs. 6.27 and 6.28.

0 10 20 30 40 50 60 70 80 90 100
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For models 1a and lb the slips are correctly identified. Especially for model 1b the
semi-exact method works better than the approximate adaptation procedure. Once
more it can be seen that precision obtained by the approximate method is worse than
that provided by the (semi-)exact method a munber of fixes after the adaptation step.

Sumrna,rizing, the following conclusions can be drawn from the analysis of the nav-
igation models:

- The adaptation procedures works properly for outliers. The MDB proves (once
again) to be a useful design tool.

- In case of slip-type model errors the actual performa.nce of the approximate and
(semi-)exact adaptation procedure is compa,rable. The approximate method does
not consistently underestimate the precision of the state estimators after adapta-
tion.

- The precision of the error estimator decreases with increasing window length of
the tests and consequently the cova,ria,nce between the error estimator and the
adapted state estimators decreases. This provides the opportunity to revert to
the filter under -E[6, even in case of slips.

6.3.3 Adaptat ion Procedure -  Lane Sl ip Problem

In this section we perform a case study which is related to the lane slip problem in
hyperbolic positioning (systems). We consider the lane slip problem for a number of
reasons. A lane slip is an error that is much larger than the MDB and allows us to
investigate the performance of the adaptation procedure for large size slips which also
occur in practice (in our case a la,ne slip corresponds to an error (expressed as fistance
diference) of 140m). Secondly we want to investigate how the level of integration
influences the performa,nce of the adaptation procedure. For a precise analysis one
would have to consider one lane slip at a time, but in this section we take a more
ambitious approach. We have not only introduced two lane slips in the familiar dataset
of 100 fixes, but we also consider the effect of a possible mismatch between the actual
error and the error as specified by the alternative hypothesis. In this section we can
therefore assess the performa,nce of the adaptation procedure in the presence of very
large errors a.nd for model errors which do not exactly match the errors described the
alternative hypotheses. The data will be processed with the semi-exact adaptation
procedure, because more than one error is present at a time.

All datasets are situated in the design area 2 and are described in Table 6.8. In
dataset II the second simulated slip does not fully correspond with the step-function
characteristic which is assumed by the alternative hypothesis for slips.

The datasets given in Table 6.8 are processed with models 2b (2 hyperbolic pat-
terns)r 2c (2 hyperbolic patterns and 2 ranges), 2f (2 hyperbolic patterns and dead
reckoning) and 29 (2 hyperbolic patterns, 2 ranges, and dead reckoning). At fix 21
the MDBs associated with the local tests for the hyperbolic pattern Renesse-Texel

183
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Dataset I

fix observation

srmulatecl
error lanesl

21-100
8 1-100

hyperbolic pattern Renesse-Texel
hyperbolic pattern Renesse-Pakefield

1 .0
1 .0

Dataset I

fix observation
simulated

error lanesl
21-100

80
8 1
82

83 - 100

hyperbolic pattern Renesse-Texel
hyperbolic pattern Renesse-Pakefield
hyperbolic pattern Renesse-Pakefield
hyperbolic pattern Renesse-Pakefield
hyperbolic pattern Renesse-Pakefield

1 .0
0 .5
1 .0
1 .25
1.0

Table 6.8: Description of the datasets with lane slips.

are 0.056), 0.0491, 0.043I, 0.042) for models 2b, 2c, 2f, and 29 respectively (with

) = 140m). Similarly the MDBs at fix 8L for the pattern Renesse-Pakefield are 0.056)

(2b), 0.0?4) (2c), 0.066) (2f), and 0.0661 (2g). we have chosen to present the per-

formance analysis of the adaptation procedure by means of plots of the estimated

trajectory. These plots are somewhat less detailed than the difference plots used in

the previous section, but provide a better overview of the overall performance of the

various adaptation strategies. We look at the estimated trajectory provided by a filter

without adaptation, and filters based on the approximate and semi-exact adaptation

procedures. The left-hand plots in Figs. 6.29, 6.30, 6.32, and 6.34 depict the true tra-
jectory and the trajectory estimated by the filter (for dataset I) without adaptation.

In the plots in the middle a,nd on the right-hand side of these figures the dashed-dotted

line inficates the estimated track obtained by means of the approximate adaptation

procedure and the solid line indicates the track obtained with the semi-exact adapta-

tion procedure with a stop criterion of 0.01 (for case 2b we have used 0.001). For cases

2c and 2f we also consider the solution obtained by deleting (instead of adapting for)

erroneous data (cf. Figs. 6.31 and 6.33). During the processing we limit ourselves to

local slippage tests for slips for the Hyperfix measurements and outliers in the ranges

and dead reckoning observations.
We begin our analysis by considering the results for model2b in Fig 6.29. During the

processing of both datasets a (non-existent) error was identified at fix 49 (approximately

in the middle of the curve). Only the (semi-)exact adaptation procedure recovers from

this misidentification and gives a well estimated track for dataset I. The sta.rt of the

second slip in dataset II carurot be handled properly by either the approximate or the

semi-exact adaptation procedure. The exact procedure cannot track the change in the

size of the error, whereas the approximate method fails to identify the decrease of the

error from fix 82 to 83 (after a number of adaptation steps the size of the error has

become too small in relation to the MDB). The results of both adaptation strategies

are somewhat disappointing. This comes as no surpise if one realizes that actually
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Figure 6.29: Lane slip situation - Case 2b; Estimated track without adaptation (Ieft),
for dataset I (middle), and dataset II (right).

50% of the data are contaminated by a large error! A scenario which is based on the
elimination of faulty data is useless for model 2b as we only have two observations
available per fix (after fix 81 we would have to depend completely on the dynamic
model).
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Figure 6.30: La,ne slip situation - Case 2c; Estimated track without adaptation (left),
for dataset I (middle), and dataset II (right).

The results pertaining to model 2c are given in Figs. 6.30 and 6.31. Compared to
case 2b it can be seen that the integration of the additiond ranges leads to a much
improved result (certainly for dataset I). The semi-exact adaptation procedure applied
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Figure 6.31-: La.ne slip situation - Case 2c; Estimated track after elimination of erro-
neous data (left), Error ellipses (scale 20:L) after elimination of erroneous data (right).

to dataset II has problems with recovering the exact size of the second slip once it
has settled in. The approximate procedure recovers the varying error quite well, which
is due to the fact that it operates on a fix by fix basis. The scenario in which the
erroneous data are rejected (Fig. 6.31) results in very good track estimates, but the
precision clearly suffers from the elimination of the data (after fix 81- the design results
for model2a (ranges only) apply).
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Figure 6.32: Lane slip situation - Case 2f; Estimated track without adaptation (teft),
for dataset I (midtlle), and dataset II (right).

The results for model 2f (given in Figs. 6.32 and 6.33) show that integrating model
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Figure 6.33: La.ne slip situation - Case 2f; Estimated track after elimination of erro-
neous data (left), Error ellipses (scale 20:1) after eliminationof erroneous data (right).

2b with dead reckoning observations also leads to an enhanced track estimate. The
approximate adaptation procedure slightly outperforms the semi-exact adaptation pro-
cedure. After identification of a slip the filter under (semi-)exact adaptation procedure
keeps operating under fr0, ild because a lane slip is a large error, one actually estimates
significant instrumental biases under IIo (leading in turn to slightly biased solutions).
These biases only slowly fiminish because of the small system noise associated with the
instrumental biases. Furthermore the approximate method manages to track the vary-
ing error size in dataset II better. With the scenario based on discarding of data (cf.
Fig 6.33) one obtains excellent position estimates, but after two elimination steps one
is left with a navigation system based on dead reckoning only (this is clearly illustrated
by the growing size of the error ellipses).

Compared to model 2f the performance of the adaptation procedure for model 29
does not improve much as can be seen in Fig. 6.34. Actually the observations made
with regard to model 2f remain valid for model 29.

Sumrna,rizing, the analysis of the performance of the adaptation strategies for the
lane slip problem shows that:

- Overall the performa,nce of the approximate and (semi-)exact adaptation proce-
dures is comparable. In case the error does not fully match the specffied alterna-
tive hypothesis the approximate procedure seems to be the better alternative.

- The strategy based on the discarding of erroneous data yields good position es-
timates, but suffers from the fact that the redundancy of the system decreases
and as a consequence the quality of the system rapidly degrades. Besides the
elimination of data cannot be carried out ad infinitum; at a certain point there
will be no data left.
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Figure 6.34: Lane slip situation - Case 29; Estimated track without adaptation (left),
for dataset I (middle), and dataset II (right).

- System integration improves the performance of the adaptation procedure. The
solutions of models 2cr2f, and 29 are clearly better than those of model2b.

6.3.4 Adaptat ion -  Concluding Remarks

In the previous subsections we have extensively investigated the performance of the
adaptation procedure based on local tests only. Adaptation has been considered for
a simple linear model, some of the navigation models, and the lane slip problem of
hyperbolic positioning. We have compared the performance of the adaptation procedure
for outliers (which is exact by definition) and slips. For slip-type model errors we
have compared the performa,nce of the (semi-)exact and an approximate adaptation
procedure (both are described in Appendix C). We have found that:

- The adaptation procedure works very well for outliers.

- For slip-type errors the adaptation procedure correctly estimates the model er-
ror. The variance of the error estimator obtained by the exact procedure only
improves with increasing window length for the navigation type models. The co-
variance between the error estimator and the (adapted) state estimator (which is
negelected in the approximate method) remains significant for the linear models.
For the navigation models the covariance diminishes with increasing delay.

- Adaptation for slips works reasonably well, both with the (semi-)exact and ap-
proximate adaptation procedure. The difference between the approximate and
(semi-)exact adaptation procedures is small if judged by the state estimates. For
the linear model the approximate method, however, r:aderestimates the variance
of the adapted state, which might cause filter fivergence at a later stage. For the
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navigation models the results of the exact procedure inficate one might revert to

the filter operating under lls after a suffcient number of epochs.

- Although it seems tempting to eliminate faulty data rather than to adapt for the
r-rnderlying model error, one has to keep in mind that by doing so the quality of

the curtailed system rapidly deteriorates.

- System integration generally improves the performance of the adaptation proce-

dure.

- One has to take care that the alternative hypotheses are properly specified. A slip

may otherwise be treated as an endless sequence of outliers, possibly leading to

filter divergence. If the characteristics of a slip do not fully correspond to a step

fi:nction, the adaptation procedure for slips may have problems in estimating the

model error correctly.

The findings above indicate that (any) adaptation procedure should be implemented
with care. If one knows, however, which model ertors are likely to occut and that the

matching identification test statistics are powerful enough, the adaptation procedure

will operate adequately.

6.4 Concluding Remarks and Recommendations

The analysis of the DIA procedure has been based on simulated datasets. This has

allowed us to pinpoint specific strengths and pitfalls of the procedure. The detection

and identification part have been analysed separately from the adaptation part of the

procedure. The main finfings are summarized in Sections 6.2.4 and 6.3.4.

The detection and identification procedure works well. The analysis of the DI

procedure is hardly hampered by the fact that model errors have an impact on the

state estimates and hence on the subsequent detection and identification of model

errors. The concept of the MDB has been proven to be very useful, as MDBs really are

the size of the biases that can be detected (and identified) with a certain probability.

The analysis of the adaptation procedure has been somewhat more involved and

was fimited to local adaptation. For practical reasons we have investigated several

strategies to deal with slips. We found that the adaptation procedure is very suited to
handle outliers, whereas slip-type model errors require more consideration.

Our findings are substantiated by the implementations of the DlA-procedure for

kinematic GPS applications by T,llnot [1991] and Lu AND LAcHAPELLE [1992]. T,u-
Bor has successfully applied the (local) detection and identification steps for detecting
and isolating cycle slips in double difference phase data which were used in an ex-
periment to obtain positions of a moving train. Lu .lttu Llcslpnr'r,o implemented
the DlA-procedure, based on local tests, for a kinematic GPS positioning system, and
obtained good results for cases where one model error was present at a time.
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6.4.L Recommendations

The currently implemented DIA procedure is not suited to handle several model errors
simultaneously. It is therefore advised to develop an implementation that can handle
multiple model errors at the same epoch. This requires that for each model error the
bias in the test statistics a^nd predicted residuals is successively removed.



Chapter 7

Conclusrons

We have discussed extensively aspects of procedures for the data processing, testing,
and design of dynamic systems. The testing and design procedures can be used for
dynamic systems in general, but we have especially considered integrated navigation
systems. Our main objective has been to provide a unified framework for the procedures
of data processing, testing, and design for such systems.

The method of least squares provides us with the framework for the data processing
procedure, namely the Kalman filter. Many results known from Kalman filter theory
can be directly derived using the least squares approach. The batch type formulation
of the filtering/smoothing problem using condition equations, instead of observation
equations, greatly facilitates the derivation of results. The least squares approach
moreover has deepened our understa.nding of the filtering algorithms for the case with
alternative noise models (Section 2.6) and the case with non-linear measurement and
dynamic models (Section 2.7).

In Chapter 3 we have derived a testing procedure for slip-type model misspecifica-
tions in the firnctional model. The theory of hypothesis testing in linear models provides
us with the framework to develop our model validation and adaptation techniques. The
testing procedure is based on generalized likelihood ratio tests, which in our case are
uniformly most powerful invariant tests. The testing procedure consists of three steps,
namely detection, identification, and adaptation (DIA), where the detection and identi-
fication steps a,re coupled via the B-method of testing. The suitability of the B-method
for testing procedures in dynamic systems will require some further investigations. We
make a distinction between local and global testing in that for the latter case the test-
ing procedure covers several epochs at a time. The (local) detection and identification
steps of the DIA procedure correspond to those of the testing procedures for geode-
tic networks. The DIA procedure is formulated recursively and consequently it ca^n
be efficiently implemented parallel to the filter. Much attention has been devoted to
the adaptation procedure, because real-time estimation also requires real-time recovery
from errors. The exact adaptation equations have been derived (which are based on a
continuous updating of the state estimator and actually correspond to filtering under
the alternative hypothesis), but we have also seen that in case of outliers one can, after
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adaptation, switch back to the filter operating under the null hypothesis. In the case

of adaptation for slips this is only possible for one particula,r case, namely the partially

constant state space model. The derivation of the DIA procedure is based on the as-

sumption that a single model error occurs. For model errors sufficiently sepa^rated in

time this assumption is of little consequence for the performance of the procedure, but

the implementation of the DIA procedure would benefit from strategies for handling
model errors that occur very close together.

The testing procedure is an intrinsic part of the quality assurance cycle of a-priori,

real-time, a,nd a-posteriori model validation. To guarantee that the real-time DIA pro-

cedure works well, a system design should precede the implementation of any system.

In Chapter 4 we have fiscussed the design with respect to quality criteria, namely
precision and reliability. In the design phase one has to ascertain whether the model

can meet precision and reliability requirements. Precision describes the quality of the

system under the null hypothesis and is directly available from the Kalman filter. Reli-
ability can be considered as the quality under the alternative hypotheses, a,nd describes

the sensitivity of the estimation results to undetected model errors. Optimization of

the parameters of the testing procedure can be achieved by optimizing the reliability of

the system. Likely model errors are specffied in terms of alternative hypotheses. The

specification of the alternative hypotheses is application dependent and is one of the

most difficult tasks in system design. Based on the quality measures for precision and

reliability (MDBs and BNRs, which are measures for the detectability of a model error

and the significance of such a model error respectively) we have tentatively proposed

a design procedure for dynamic systems. The proposal is somewhat hampered by the

fact that we cannot provide explicit requirements for the reliability of integrated navi-

gation systems, but we also have indicated how this drawback can be circumvented. A

final proposal for a design procedure for geodetic navigation systems still needs to be

developed, but this can be achieved with the tools presented in this report.

In Chapters 5 and 6 we have considered the application of the design and DIA pro-

cedures respectively. All results are based on a simulation study, but as this study is

the first systematic study into the design and testing procedures based on our method-

ology, we think such a limitation can be justified. The finfings of our design study

closely correspond to what one would expect intuitively, but the use of measutes for

precision and reliability (MDBs, BNRs) additionally provides us with the opportunity
to qua^ntify the quality of a system and to compare various designs. A proper design

should take precision, internal and external reliability into account simulta.neously; op-

timization with respect to a single quality criterium does not automatically result in

a system with a good overall quality. The precision of the state estimators depends

mainly on the precision of the observables and can be improved by increasing the level

of integration of the system. The design study has revealed that for reliability one has

to make a distinction between model errors of outlier- and slip-type. The detectability
of slips benefits from larger window lengths of the tests, whereas the detectability of

outliers does not. Moreover the biases due to outliers are generally only significant

instantaneously, whereas slips cause a constant bias in the state estimators. The anal-
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ysis of the significance of the biases is performed by the BNRs, which allow a direct
comparison between various alternative hypotheses. The BNRs are not always easy to
evaluate, but the so-called response graphs considerably facilitate the evaluation ofthe
BNRs. The sepa,rability between some alternative hypotheses is poor. Overall we have
shown that the design measures are indeed useful tools to design a system with respect
to quality. Based on a design study recommendations can be given on the choice of
the window lengths of the tests. The design study also indicates that the design of
a navigation system is not necessarily a trivial task. An issue that still needs to be
resolved is the choice of the testing parameters, namely the level of significance and
the power of the tests, but the magnitude of these parameters depends on the actual
sensor suite of the system and cannot be derived from simulations.

The DIA procedure has been thoroughly verified in a simulation study where the
detection and identification steps were analyzed sepa.rately from the adaptation step.
The analysis of the detection and identification procedure has shown that the MDBs
are indeed a very useful measure of detectability. Moreover it has been found that
when a model error occurs many test statistics are rejected, but the largest one always
indicates the correct alternative hypothesis. Errors approximately twice as large as the
MDB are always detected and identified by the local tests. This has been one of the
reasons we have considered adaptation based on local tests only. We deemed it wise
to start with a simple adaptation strategy as no previous experience with the imple-
mentation of adaptation procedures was available. The adaptation procedure works
very well for outliers and cases where a single slip is present in the dataset. For cases
with multiple slips we have compared the exact procedure with a semi-exact and an
approximate method (which reverts to the filter under the null hypothesis d.irectly after
the adaptation step but neglects the correlation between the estimators of the adapted
state and the error). The correct specffication of the alternative hypotheses is very
important. Due to its local character the approximate method is the least sensitive to
a misspecffication of the alternative hypothesis. The analysis of the adaptation results
for slips indicates that in some cases one might revert to the filter under the null hy-
pothesis without making too large an approximation error, because the correlation one
neglects when reverting to the filter under the null hypothesis decreases with increasing
window length for many cases.

In summary, the framework of the least-squares adjustment and hypothesis testing
in linear models allows surveyors to obtain a better understa.nfing of the data processing
and model validation techniques for dynamic systems. The examples of the testing and
design procedures for dynamic systems have shown that these can, to a large extent,
be considered as extensions of the procedures for the testing and design of geodetic
networks.
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App.ndix A

The Predicted Residual

A.1 The Predicted Residual

To render this report self-contained we will prove in the following that, if the filter
operates at an optimum, the predicted residuals axe uncorrelated from one epoch to
the next. The proof is ta.ken from [TnuNIssEN AND Sllztrr.a,Nx, 1989] (for an alternative
proof see KAIL.ITx [1968]). We will proof that

P { a t } = o , f o r k + 1 . (A.1)

We restrict ourselves to the case I < b. The case I > & follows on the basis of symrnetry.
From

Yk=Yk-  Ax i * l * - ' t (A.2)

it follows that

e{wtl '  = Qv*v, -  Qs&4r-rAT - AoQr,rre-,yr *  A*Qtrw-rta,-rAT .  (A.3)

By definition the first two terms on the right hand side of (A.3) vanish for the case
I < &. Thus

n{wt } - - A*Q l.*t*_,y, * A*Q t1,p,_,e1t,_, AT (A.4)

The two covariance matrices on the right hand side of (A. ) can be computed once the
relation between itl*-t and the original input data of the Kalman filter is established.
From a combination of the time and measurement update equations of the Kalman
filter it follows

4; ; - r  :  o ; , i - r ( /  -  K; tA; - r )L- rF-r+ 4+i [ ; , ; - tK; t ! ; - t

20L
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If we let i run from I + t to & we get by combining the equations

a_ l

4t1t-r = fl [o;+t,;(/ - K;A;)]fuv; *
i=t
* - r  (  * - r  )
D { fl [o;+',;(I - KiAi)]ldi*, + (A.6)
j = ,  ( i - j + l  )
* - r  (  * - r  )
D { fl [o;+',;(I - KiAi)]lai*',iKiv-i '
j= l  ( i= i+ l  )

Note that for j - fr - L the product in the last two terms of (A.6) reduces to the identity
matrix.[. From (A..6) it follows that

&-1
Qr^r-,u,  = {  f I  [O;+t, ; ( /  -  K;A;)] ]  641,1K1R1 (A'7)

i=l*  1

and

fr-1

Qi1"11,-1i1p-,AT = { fl [O;+r,;(/ - f;,a;)]]Ot+1,t(-f - KAt)P1t-'tAT . (A.8)
i= l *1

What remains to be shown is that the difference of eqs. A.7 and A.8 vanishes, or that

KtRt- ( I  -  KAiPr ; r - r l f  =  0,  (A.9)

which is easily verified upon substitution of Kt - P4ttAT(n,1 A1P4t-rAT)-'. This
concludes the proof of (A.1). This leaves us with the well-known result that for a batch
o fp red i c ted res idua ls in the t ime in te rv " l [ r , . . . ,& ] ,deno tedasu=(4 ,4 r , . . . , 4 ) t ,
the covariance matrix Q, is a block diagonal matrix g" = dtag(Q,,r...rQrr).



App"ndix B

Observation Equations

8.1 Observation Equations

In the following we will describe the observation equations and their linearized forms

which have been used in the computations of Chapters 5 and 6. The equations are

taken from [SlrzMANN, 1988].
Unknowns are inficated as c;, where i indicates the number of the unknown. Ob-

servables considered are ranges (q"), hyperbolic lines of position (which can also be

considered as distance-diferences) (r;",), gyro readingt (4) and log measurements (s).

Approximate values are indicated with the superscript 0. For each observable we will

give the non-linear observation equation, the computed observation and the linearized

observation equation. (Known) Station coordinates for stations r and s are indicated

as cr, g, (denoting Easting and Northing) and ss' ys respectively.

IJnknowns

In the equations the following unknowns are used. For both the gyro and log one

unknown type unit
A l

a2

t3

A4

A E

a6

Easting
Northing
Velocity East
Velocity North
Gyro ofset
Log Bias

metres
metres
metres/second
metres/second
radians
metres/second

Table 8.1: Definition of unknowns.

additional instrumental state has been included in the model, which means that for

each dead reckoning sensor all error sources are lumped into a single additive parameter.

The gyro offset is the sum of the gyro instrument errots and the drift (the difference
between the ship's heading and course made good due to wind, waves, and current).
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The log bias (for a log operating in bottom track mode) contains instrumental errors
only. We assume that the ship sails at a constant speed. Therefore the log bias can
be included as an additive instrumental bias and the inclusion of a non-additive scale
factor is not required.

Observation Equations

A range from the ship's position i to a station s is given in [metres].

- Observation equation

E {u " }=@
- Computed observation

, y , :@
- Linearized observation equation

E{u"}- "9" 
= ' l  - '" Lr, + 4n:.nr,

rY" rl"

A hyperbolic line of position at the ship's position i w.r.t. master station r and
secondary station s is generally expressed in [lanes]. The computations a,re based
on the somewhat simplified observable:

E{u,"}=' l#

where l is the wavelength of the system in [metres] and the definition of the
observable is chosen in such a way that only positive lane counts a,re possible.
Multiplication of the observable in [la^nes] by its wavelength yields an observable
which is defined as a fistance difference in [metres].

- Observation equation

E { u r r } = ? " ' * @ - @

- Computed observation

" ; 0 " " = " " 1 @ - @
- Linearized observation equation

E{u,"} - rg"" = (? u" - t?=u t" 
)o ,, + (# - '8i '" 

)or,,ir ?L 
"yr 

ri"
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A gyro reading is assumed to be in [radians].

- Observation equation

E{Q} = arcta,n 
?- 

rt

- Computed observation

do = arctan g* - 
"g2 \

- Linearized observation equation

E{gt - 60 = --8-Acr - ;,'.8 ;" Lrq - Axs
c 5  + a \  a \  + t i

A log measurement (with the log assumed to be in bottom track mode) is given
in [metres/second].

- Observation equation

E{y}  = casin{  }  o4 cos 4 -  ca

- Computed observation

oo = aSsindo + af;cos go - al

- Linearized observation equation

E{v} - oo = (sin /0 r a2alcos {0 - o2a! sin {0)Ae3 1

(cos/0 *  aponsin/0 -  o1o!cos 6o)Arn+
(a! sin {o - a! cos do)Aru - Aae

where 

o, = #- and. a2 = ou'..\ ̂ u .e , 5  + a i  a 5  + x \





App.ndix C

Software Implementation of the
Adaptation Procedure

C.l Adaptation Procedu Software Implementation

In Chapter 3 we have derived the adaptation procedure. With eqs. 3.86 and 3.87 (which
are repeated here for easy reference) we have available the exact adaptation procedure

eilr : qllo - To,,Y''r ,

PA* = Plr + Xr,,Qo,,rTI,,

for a model error ocurring at time I and adaptation at time ,t. We also have shown in
Section 3.6.3 that for outliers performing a single adaptation step and reverting to the
filter under I/s is equivalent to the exact procedure given by (C.1) and (C.2). Except
for the special case of the partially constant state space model this is not possible for
slips. In the following we briefly describe the adaptation procedures for slips that have
been implemented in the software.

For slip type model errors the software supports a so-called tapproximate' and
the exact adaptation procedure. The main motivation for the implementation of the
approximate method is its simplicity. It lacks, however, a sound theoretical foundation.

Adaptation is only performed whenever a model error is simulta,neously detected ond
identified. Identification is limited to those alternative hypotheses which are explicitely
specified by the user. At any epoch the software can only execute a single adaptation
step, since no iterative identification scheme has been implemented in the softwa,re.

C.1.f  The Approximate Adaptat ion Procedure for Sl ips

After a slip-type model error has been detected and identified at time &, the estimator
of the filtered state and its covariance matrix are adapted according to (C.1) and (C.2).
The correlation between the estimators of the adapted state and the error is neglected.

(c .1)

(c.2)
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Then the window length of all tests is temporarily reset to zero, in order to prevent
any erroneous identifications due to smearing. Finally the estimated error is stored in
a so-called 'slip-buffer' and observations from time & onwards are corrected for the slip.
The impact of this correction on the covariance matrix of the observables is also taken
into account. A flowchart of the approximate procedure is given in Fig. C.1.

\ 
Detection of model misspecification 4

Identify lugeat (alippage) t€st Etatistic

\ 
t*, etatistic > critical value 

a/"

Estimat€ crror correrponding to the largcst tat rtatirtic

Comput€ variance enor estimate

Update filtered state and its covdiance matrix for thc idcntified
crnor

Reset window length of all test rtatistica to one

v\ 
Identified model emr of 'aliptype' 

,<,

Add cnor cstimate and its vuiucc to ccalled
'slip buften'

\ Ct*ol.tive slip is not eignificant 
4

Reset 'slip buffen' asscociated
with identified model ercr to
tero

Figure C.1: The Approximate Adaptation Algorithm implemented in the software.

For an estimated slip in observation y; the (slip bufers' of the observations and the
corresponding covaxiance matrix are updated as follows:

y,"rio = r/srie + vl,a , qlo = ft:::o * ei,,,r. (c.B)
Simila.rly the 'slip buffer' of the disturbances and their covariance matrix for a slip in
the dynamic model are updated as:

dlip - dlip + 
"ryl,k , e"lio = estip i creit,,rcT , (c.4)

where c, models the impact of a slip of the dynamic model on the vector of predicted
residuals. After adaptation for a 'slip'-type hypothesis the significance of the remaining
slip in the updated 'slip-buffer'is checked. For an adapted slip in observation channel
f it is checked if

( critical value slip test statistic. (c.5)



c.1 A d ap t at io n P r o c e d,ur e - S oft w ar e Implement at i on

If the cumulative slip is found to be non-significa,nt the buffers for observation channel
i are reset as follows:

yiro : o.o , ftlljo : o.o . (c.6)
The situation for an adapted slip in the state vector is a bit more complicated as the
vector c" often consists of more than one non-zero element. Therefore the procedure
as sketched for adapted slips in observations is also applied, but the significance test is
based on the element of d"lip related to the first element of the c, vector.

If the remaining slip in the observations is found to be significant the measulement
update of the filter is performed with the following adapted observation vector and
covariance matrix (cf. eq. 3.104):

y "  =  g _ r s l i r ,  E u  = f t  + f t . I i p .

For a significant slip in the dynamic model the time update is performed with the
following adapted disturbance vector and associated covariance matrix:

6 a - _ 6 r i v  ,  e u = g + g . l i o .

C.L.z The Exact and Semi-Exact Adaptat ion Procedures for Sl ips

The exact adaptation procedure is implemented using (C.1) and (C.2) continuously
after detection and identification at time ft. During the phase of continuous adaptation
the results of the testing procedure (i.e. detection and identification) are suppressed,
because all test statistics are likely to be contaminated by the slip-type model error (i.e.
suffer from the smea,ring effect). To counterbala,nce the deactivation of the detection
and identification procedure a stop criterion for the exact procedure can be specified
by the user. Once the decrease in the variance of the error estimator (Qg,1,;*, - Qi,,,t
(for i > fr)) falls below a specified threshold, the software switches to the approxi-
mate adaptation procedure, updates the 'slip buffers', and proceeds as described in
the previous subsection. After the switch to the approximate method this method is
no longer exact and is therefore called semi-exact. Another obvious strategy to stop
the exact adaptation procedure would be to terminate the continuous adaptation once
the variance of the error estimate falls below a particula,r threshold and the covariance
between the error estimator and the estimator of the adapted state is negligible. Be-
cause this strategy did not perform well for the simple linear models we investigated, it
has not been implemented in the softwa.re, but it is a viable (and theoretically sound)
alternative.
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