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Abstract. In this paper, we explore how to effectively suppress the diffusion of
(mis)information via blocking/removing the temporal contacts between selected
node pairs. Information diffusion can be modelled as, e.g., an SI (Susceptible-
Infected) spreading process, on a temporal social network: an infected (informa-
tion possessing) node spreads the information to a susceptible node whenever a
contact happens between the two nodes. Specifically, the link (node pair) block-
ing intervention is introduced for a given period and for a given number of links,
limited by the intervention cost. We address the question: which links should be
blocked in order to minimize the average prevalence over time? We propose a
class of link properties (centrality metrics) based on the information diffusion
backbone [19], which characterizes the contacts that actually appear in diffusion
trajectories. Centrality metrics of the integrated static network have also been
considered. For each centrality metric, links with the highest values are blocked
for the given period. Empirical results on eight temporal network datasets show
that the diffusion backbone based centrality methods outperform the other met-
rics whereas the betweenness of the static network, performs reasonably well
especially when the prevalence grows slowly over time.

Keywords: Link Blocking, Link Centrality, Information Diffusion Backbone,
Temporal Network, SI Spreading

1 Introduction

The development of sensor technology and electronic communication service provide
us access to rich human interaction data, including proximity data like human face-
to-face contacting, electronic communication data like email exchange, message ex-
change, phone calls [6, 14, 18]. The recorded human interactions can be represented
as temporal networks, in which each interaction is represented as a contact at a given
time step between two nodes. The availability of such social temporal networks inspires
us to explore further how to suppress the diffusion of (mis)information that unfolds on
them? One possible intervention is to block the links (i.e., remove contacts between
node pairs), but only for a given period and given node pairs limited by intervention
cost. In this work, we address the question: which links should we block for a given
period in order to minimize the prevalence averaged over time, i.e., to prevent or delay
the diffusion on temporal networks?
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Progress has been made recently in understanding, e.g., nodes with what temporal
topological properties (temporal centrality metrics) should be selected as the seed node
that starts the information diffusion in order to maximize the final prevalence [3, 5,
8, 13, 15, 16], links with what temporal topological properties appear more frequently
in a diffusion trajectory [19]. These works explored in general the relation between
node’s or link’s topological properties and its role in a dynamic process on a temporal
network. Our question which links should be blocked to suppress information diffusion
will actually reveal the role of a link within a given period in a diffusion process in
relation to the link’s temporal topological properties.

As a starting point, we consider the Susceptible-Infected (SI) model as the infor-
mation diffusion process. A seed node possesses the information (is infected) at time
t = 0 whereas all the other nodes are susceptible. An infected node spreads the in-
formation to a susceptible node whenever a contact happens between the two nodes.
Given a temporal network within the observation time window [0, T ] , we would like
to choose a given number of links within a period [ts, te] to block in order to suppress
the diffusion. We propose a comprehensive set of link centrality metrics that character-
ize diverse temporal topological properties. Each centrality metric is used to rank the
links and we remove the links with the highest centrality values for the period [ts, te].
One group of centrality metrics is based on the information diffusion backbone [19],
which characterizes how the contacts appear in a diffusion trajectory thus contribute
to the diffusion process. Centrality metrics of the integrated static network, where two
nodes are connected if they have at least one contact, are also considered. We propose
as well the temporal link gravity, generalized from the static node gravity model [9]. We
conduct the SI spreading on the original temporal network as well as the temporal net-
work after link blocking. Their difference in prevalence accumulated over time is used
to evaluate the performance of the link blocking strategies/metrics. Our experiments
on eight real-world temporal networks show that the diffusion backbone based metrics
and the betweenness of the static integrated networks evidently outperform the rest.
The backbone based metrics (betweenness of static network) perform(s) better when
the prevalence increases fast (slowly) over time. This observation remains universal for
diverse choices of the blocking period [ts, te] and number of links to block. Our finding
points out that both temporal and static centrality metrics, with different computational
complexities, are crucial in identifying links’ role in a dynamic process.

The rest of the paper is organized as follows. We propose the methodology in Sec-
tion 2. In Section 2.1, the representation of a temporal network is introduced. In Sec-
tion 2.2, the construction of diffusion backbone is illustrated. Afterwards, we propose
the link centrality metrics in Section 2.3. In Section 2.4, the link blocking procedure and
the performance evaluation method are given. We further describe temporal empirical
networks that will be used in Section 3. The results of the link blocking strategies on
the temporal empirical networks are analyzed in Section 4. We conclude our paper in
Section 5.
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2 Methods

2.1 Representation of temporal networks

A temporal network within a given time window [0, T ] is represented as G = (N ,L),
where N denotes the node set and the number of nodes is N = |N |. The contact set
L = {l(j, k, t), t ∈ [0, T ], j, k ∈ N} contains the element l(j, k, t) representing that a
contact between node j and k occurs at time step t. The integrated weighted network of
G is denoted by GW = (N ,LW ). The weight wjk of link l(j, k) counts the number of
contacts between node j and node k.

2.2 Information Diffusion Backbone

The information diffusion backbone was proposed to characterize how node pairs ap-
pear in a diffusion trajectory thus contribute to the actual diffusion process [19]. To
illustrate our method, we construct the backbone for the SI model with infection prob-
ability β = 1, which means that an infected node infects a susceptible node with prob-
ability β = 1 whenever the two nodes have a contact. The backbone can be also con-
structed for the SI model with any infection probability β ∈ [0, 1].

We first record the spreading tree Ti of each node i by setting i as the seed of the SI
spreading process starting at t = 0. The spreading tree Ti is the union of the contacts
through which the information propagates. The diffusion backbone GB is defined as

the union of all the spreading trees, i.e., GB = (N ,LB) =
N⋃
i=1

Ti. We use N , LB to

represent the node set and the link set respectively. Each link l(j, k) in LB is associated
with a weight wBjk, counting the number of contacts between j and k, that appear in
diffusion trees/trajectories initiated from every node. An example of how we construct
the diffusion backbone GB is given in Figure 1(a-c).
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Fig. 1: (a) A temporal network G with N = 5 nodes and T = 8 time steps. (b) Spread-
ing trees rooted at every seed node. The time step on each link denotes the time of the
contact through which information diffuses. (c) The diffusion backbone GB . (d) Dif-
fusion backbone GB∗ confined within ts = 2, te = 5. When we consider the links
that only appear in a time window [ts, te] = [2, 5], the value on the link shows the link
weight in GB∗ .

2.3 Link centrality metrics

We first propose three backbone based link centrality metrics:
• Backbone Weight. The backbone weight wBjk of a link l(j, k) counts how many

times the link or its contacts appear in spreading trees (trajectories) initialized from
every node.
• Time-confined Backbone Weight [ts, te]. Furthermore, we define the time-confined

information diffusion backbone GB∗ , which generalizes our previous backbone defini-
tion. The backbone GB∗ confined within a time window [ts, te] is the union of all the
spreading trees but only of the contacts that occur within [ts, te]. Hence, two nodes
in GB∗ are connected if at least one contact between them within [ts, te] appears in a
diffusion tree rooted at any node. The weight wB

∗

jk of link l(j, k) in GB∗ equals to the
number of times that contact(s) between j and k within [ts, te] that appear in the spread-
ing trees rooted at every node. The link weight in GB∗ characterizes the frequency that
a link, within [ts, te], contributes to the information diffusion. An example of the time-
confined backbone construction is given in Figure 1(d), where ts = 2, te = 5. Take
link l(2, 4) as an example. It appears in the spreading trees twice, both at time step t1,
which is beyond range [ts = 2, te = 5]. Therefore, wB

∗

24 = 0. Link l(2, 3) appears at
time step t8, t3, t3, t3, t3 in all the spreading trees, only the time step t8 is out of range
[2, 5]. Hence, wB

∗

23 = 4.
• Backbone Betweenness. The backbone betweenness is defined to measure the link

influence in disseminating global information. Given a spreading tree Ti, the number of
descendant nodes of link l(j, k) is denoted asBijk. We define the backbone betweenness
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Bjk of link l(j, k) as the average number of descendant nodes over all the spreading
trees, i.e., Bjk = 1

N

∑
i∈N B

i
jk.

We consider as well the following centrality metrics derived from the integrated
weighted network. Only the links in the integrated network deserves blocking. All the
following metrics are zero for a node pair that they are not connected in the integrated
network.
• Degree Product of a link l(j, k) is the product of the degrees of its two end nodes

in GW , i.e., dj · dk.
• Strength Product. The node strength of a node j in GW is defined as sj =∑
k∈Γj

wjk, where Γj is the neighbor set of node j. Hence, the strength of a node equals
to the total weight of all the links incident to this node. We define strength product of a
link l(j, k) as sj · sk.
• Static Betweenness. The static betweenness centrality for a link is the number

of shortest paths between all node pairs that pass through the link. To compute the
shortest path, we define the distance of each link in the integrated networkGW inversely
proportional to its link weight inGW . This choice follows the assumption that links with
a higher weight in GW can spread information faster [12].
• Link Weight. The link weight wjk of a link l(j, k) in GW tells the total number

of contacts between node j and k in the temporal network G within the observation
window [0, T ].
• Time-confined Link Weight [ts, te] refers to the number of contacts between two

ending nodes that occur in [ts, te].
• Temporal Link Gravity. The link gravity between node j and k has been defined

by regarding the node degree as the mass, the distanceHjk of the shortest path on static
networkGW between j and k as the distance. The static gravity of node j can be further
defined as

∑
k 6=j

djdk
H2

jk
. The static node gravity has been used to select the seed node of

an information diffusion process in order to maximize the prevalence [9], motivated
by the fact that it contains both the neighborhood and the path information of a node.
We generalize the gravity definition to temporal networks. The temporal link gravity of
l(j, k) is defined as 1

2 (
djdk
Q2

jk
+

djdk
Q2

kj
), where Qjk is the number of links of the shortest

path from j to k in all the directed spreading trees (see Figure 1(b)). Specifically, the
shortest directed path from j to k is computed in each spreading tree rooted at one seed
node. We consider the shortest among these N shortest directed paths and its length
(number of links) is Qjk.

2.4 Link Blocking and Evaluation

We illustrate the link blocking procedure and the evaluation method to measure the ef-
fectiveness of link blocking strategies. Given a temporal network, we specify the time
window to block links as [ts, te]. For each time window [ts, te], we count the num-
ber of node pairs |L∗W (ts, te)| that have at least one contact within [ts, te] and block
5%, 10%, 20%, 40%, 60%, 80% and 100% of |L∗W (ts, te)| links respectively using each
centrality metric. The number of links to be blocked is further expressed as the fraction
f of the number of links in the integrated network. For each centrality metric, we block
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the given fraction f of links that have the highest values for the given period [ts, te],
i.e., remove all the contacts within [ts, te] associated with the selected links.

We perform the SI spreading model by setting each node as the seed node on the
original temporal network as well as the temporal network after the link blocking. The
average prevalence is the average over each possible seed node. The average prevalence
of the SI diffusion at any time t when the selected fraction f of links are blocked within
[ts, te] and when no links are blocked is denoted as ρf (t) and ρo(t) respectively, where
t ∈ [0, 1, ..., T ]. The effectiveness of each centrality metric is evaluated by

ρD(f) =

∑T
t=1(ρ0(t)− ρf (t))∑T

t=1 ρ0(t)
(1)

which corresponds to the area below the original prevalence ρo(t) and above the preva-
lence curve ρf (t) with link blocking normalized by the area under ρo(t) (shown in
Figure 2(b)). A larger ρD(f) implies a more effective link block strategy in suppressing
the SI spreading.

3 Data Description

In this paper, we use eight temporal network datasets to investigate the link blocking
problem in temporal networks. The dataset can be classified into two categories ac-
cording to the contact type, i.e., proximity (Haggle [1], HighSchool2012(HS2012) [4],
HighSchool2013(HS2013) [10], Reality Mining(RM) [2], Hypertext 2009(HT2009) [7],
Primary School(PS) [17] and Infectious [7]) and electronic communication
(Manufacturing Email(ME) [11]). The detailed topological features of these datasets
are shown in Table 1, including the number of nodes, time steps, contacts, the number
of links, link density, average degree and average link weight in GW .

On each temporal network, we perform the SI spreading process starting at every
node as the seed. The average prevalence ρ over time for each dataset is shown in
Fig. 2(a), where the time step is normalized by the time span T of the observation time
window. The spreading speed, i.e., how fast the prevalence grows over time, is quite dif-
ferent across networks. Two networks (Haggle and infectious) show slow and relative
linear increase in prevalence over times, due to the low link density in these two net-
works (Table 1). However, the prevalence in the other networks, increases dramatically
at the early stage of the spreading process and converges to about 100%.
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Table 1: Basic properties of the empirical networks. The number of nodes (N ), the
original length of the observation time window (T in number of steps), the total number
of contacts (|L|) and the number of links (|LW |), link density, average node degree (〈d〉)
and average link weight 〈w〉 in GW are shown.

Network N T |L| |LW | link density 〈d〉 〈w〉

Haggle 274 15,662 28,244 2,124 0.0568 15.50 13.30
HS2012 180 11,273 45,047 2,220 0.1378 24.67 20.29
HS2013 327 7,375 188,508 5,818 0.1092 35.58 32.40
HT2009 113 5,246 20,818 2,196 0.3470 38.87 9.48

Infectious 410 1,392 17,298 2,765 0.0330 13.49 6.26
ME 167 57,791 82,876 3,250 0.2345 38.92 25.50
PS 242 3,100 125,773 8,317 0.2852 68.74 15.12
RM 96 33,452 1,086,404 2,539 0.5568 52.90 427.89

0.0 0.2 0.4 0.6 0.8 1.0

0.0

0.2

0.4

0.6

0.8
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Fig. 2: (a) Evolution of the average prevalence ρ of the SI model (β = 1) for the eight
empirical datasets. (b) An example of the area difference between the original spreading
curve (ρo) and the curve (ρf ) after blocking f fraction of links.

4 Empirical Results

In this section, we evaluate the effectiveness of using aforementioned centrality metrics
to select the links to be blocked within [ts, te]. We consider diverse time windows [ts, te]
as listed in Table 2. Intervention is possibly introduced at different diffusion phases.
Hence, ts ∈ {T10%I , T20%I , T30%I , T40%I , T50%I}, where T10%I is the time when the
average prevalence without blocking reaches ρ = 10% (see Fig. 2(a)). The duration
of each time window is set as the duration for the average prevalence to increase 10%
just before ts. If ts = T20%I , the duration of the time window is te − ts = T20%I −
T10%I . If ts = T10%I , the duration of the time window is te − ts = T10%I − T0%I =
T10%I . The number of links to block has also been chosen systematically. We take
[ts = T10%I , te = 2T10%I ] as an example to illustrate our findings. Figure 3 shows
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Table 2: The time window [ts, te] we choose for link blocking based on the average
prevalence ρ when β = 1. For instance, T10%I represents the time when the prevalence
reaches ρ = 0.1.

Network [T10%I , 2T10%I ] [T20%I , 2T20%I − T10%I ] [T30%I , 2T30%I − T20%I ]
Haggle [3293, 6586] [8416, 13539] [9523, 10630]
HS2012 [403, 806] [675, 947] [925, 1175]
HS2013 [50, 100] [113, 176] [195, 277]
HT2009 [332, 664] [377, 422] [439, 501]

infectious [410, 820] [553, 696] [751, 949]
ME [168, 336] [285, 402] [461, 637]
PS [136, 272] [276, 416] [287, 298]
RM [5, 10] [34, 63] [111, 188]

Network [T40%I , 2T40%I − T30%I ] [T50%I , 2T50%I − T40%I ]
Haggle [12440, 15357] [12668, 12896]
HS2012 [1043, 1161] [1109, 1175]
HS2013 [236, 277] [369, 502]
HT2009 [568, 697] [790, 1012]

infectious [955, 1159] [1062, 1169]
ME [731, 1001] [1387, 2043]
PS [323, 359] [347, 371]
RM [133, 155] [257, 381]

the effectiveness of each centrality metric as a function of f , which is the number of
links blocked normalized by the number of links in the integrated network. The random
selection of links from those that have at least one contact within [ts, te] is used as a
baseline, in which each point is the averaged over 100 realizations.

We find that four link centrality metrics always outperform the random selection:
static betweenness, backbone weight, time-confined backbone weight [ts, te] and back-
bone betweenness. In Haggle and infectious, the best performance comes from static
betweenness, whereas the time-confined backbone weight [ts, te] outperforms the other
metrics in the other six networks. Figure 2 shows that the prevalence grows slowly
over time in Haggle and infectious. Hence, the static betweenness seems a suitable
link blocking strategy for networks with a slow spreading speed. However, for net-
works where information propagates fast, the time-confined backbone weight [ts, te] is
a good indicator to select the links to block. Furthermore, we find that time-confined
link weight [ts, te] outperforms link weight and time-confined backbone weight [ts, te]
outperforms the backbone weight. This implies that considering the link temporal topo-
logical features within the blocking time window is crucial for the link selection.

For a given time window [ts, te], we define the average performance of a centrality
metric as the area under ρD(f) over the whole range f . The average performance is
further normalized by the maximal average performance among all the centrality met-
rics for the given [ts, te]. This average performance over diverse numbers of links to be
blocked allows us to evaluate whether the performance of these centrality metrics is sta-
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ble when the time window varies. Figure 4 verifies that our findings within [ts = T10%I ,
te = 2T10%I ] from Figure 3 can be generalized to the other time windows.
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Fig. 3: The effectiveness ρD(f) of each centrality metric in selecting the links to block
within time window [T10%I , 2T10%I ]. Each point on the curve corresponds to block
5%, 10%, 20%, 40%, 60%, 80% and 100% of |L∗W (ts = T10%I , 2T10%I)| links, re-
spectively. The x-axis f is obtained by the number of links blocked normalized by
the number of links in the integrated network.
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Fig. 4: Average link blocking performance for each centrality metric over different num-
ber of blocked links, within different time windows and in different networks. The x axis
shows the time windows. We only show the starting time ts of each time window for
simplicity and the ending time of each window can be found in Table 2.

5 Conclusion

In this paper, we investigate how different link blocking strategies could suppress the
information diffusion process on temporal networks. The spreading process is modeled
by the SI model with infection probability β = 1. We propose diverse classes of link
centrality metrics to capture different link temporal topological properties, including
the information diffusion backbone based metrics and the static link centrality metrics.
According to each metric, we select a given number of links that have the highest cen-
trality value and block them for the given period [ts, te]. The corresponding effect of
such link blocking is evaluated via the extent that the prevalence is suppressed over
time.
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The empirical results from eight temporal network datasets show that four met-
rics outperform the random link selection, that is, backbone weight, backbone weight
[ts, te], backbone betweenness and static betweenness. An interesting finding is that
the backbone based metrics, especially time-confined backbone weight [ts, te], perform
well in networks where information gets prevalent fast. However, the static between-
ness outperforms in networks where information propagates slowly. These observations
hold for different choices of time window and the number of links to be blocked. Our
findings point out the importance of both temporal and static centrality metrics in de-
termining links’ role in a diffusion process. Moreover, the time-confined metrics that
explicitly explore the property/role of the contacts that occur within the time window in
the global diffusion process seems promising in identifying the links to block.

In this work, we select links based on the centrality metrics that are derived from
the temporal network information over the whole observation window [0, T ]. Our study
unravels actually the relation between links’ or contacts’ temporal topological proper-
ties and their role in a diffusion process. A more challenging question is how to identify
the links to block based on the temporal network information observed so far within
[0, ts].
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