Integrating runtime identity functions
into a dependent type system

Master’s Thesis

José Carlos Padilla Cancio






Integrating runtime identity functions
into a dependent type system

THESIS

submitted in partial fulfillment of the
requirements for the degree of

MASTER OF SCIENCE
in
COMPUTER SCIENCE
by

José Carlos Padilla Cancio
born in Havana, Cuba

]
TUDelft

Programming Languages Group
Department of Software Technology
Faculty EEMCS, Delft University of Technology
Delft, the Netherlands

www . ewi . tudelft.nl


www.ewi.tudelft.nl

© 2025 José Carlos Padilla Cancio.

Cover picture: Medieval rendering ghost.



Integrating runtime identity functions
into a dependent type system

Author: José Carlos Padilla Cancio
Studentid: 5224969

Abstract

Dependently typed languages allow developers to enforce compile time correctness
of programs via the type system. These guarantees however, have to be proven with
code, incurring a runtime and memory overhead. These costs can be avoided by using
erasure (based on Quantitative Type Theory (QTT)) to omit code marked as erased (e.g.
the aforementioned guarantees), which enables a separation between compile-time and
run-time concerns.

Erasure annotations can give rise to types that are nominally different but structurally
equal at runtime. We name functions between these types that behave like the identity at
runtime, runtime identity (runid) functions. Current solutions do not have a structured
way to reason about these runid functions as a first class member of the type system. This
means programmers have no way to enforce that the compiler will erase these functions
nor use the information of runid status to propagate optimizations, like defining runid
functions that are polymorphic on some underlying runid function.

This thesis introduces a lightweight core language that extends a QTT-style, inten-
sional Martin-Lof Type Theory (MLTT) with explicit markers for runid functions. We
extend the type system with a static check that ensures runid-marked functions are equiv-
alent to the identity function at run-time, using a novel run-time equivalence relation.

As a secondary contribution, we define a semantics for our language inspired by
Normalization by Evaluation (NbE) [ACD07]. Our semantic domain is extensional, i.e.
function equality is extensional, and agnostic to the compilation target, providing a clean
model for reasoning about erased and runtime identity behaviour. We prove the sound-
ness of our static analysis by showing that runid-equivalent terms are mapped to equal
semantic values.
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Preface

The cover picture of this thesis contains a ghost. The natural interpretation is that Iam dealing
with erasure, with things removed, with things gone. In some sense this is true. But this view
is lacking, incomplete. Ghosts are not just gone; they are remnants of a past, influencing and
determining the present. In many cultures, there is a notion of ghosts as haunting us, often
presented and interpreted as some mythologized supernatural force. But the truth is that
we do have ghosts, and they do haunt us. We are defined by that which comes before us, by
those who walked the paths we now walk, by those who were there but now aren't.

In a way, types — and especially erased types — operate like a sort of ghost of comput-
ing. Invariants, contracts, promises made that disappear as we travel down the layers of
abstraction, yet, despite being gone, are metaphysically present in some way. This thesis is
about pulling more things (runtime identity functions) into the realm of ghosts, an admit-
tedly macabre endeavour when worded this way. But in a sense, this essence of “ghostness”
has nothing to do with being dead, but rather with influence maturing. As our code travels
down to the metal, we no longer need to manually intervene, because our ghosts of previous
assurances gently guide what comes out of each compilation step. Kind of like how, as a
child matures, its parents slowly intervene less and less and become a “ghost”: an influence
that defines the potentiality of the child, rather than an active enforcer.

I've grown a lot since I landed at Schiphol five years ago. This thesis is the result of years
of growing and learning. If it were not for the “ghosts” of my surroundings, I could not have
reached the stage I am in now. So I would like to thank them.

To my supervisors Bohdan and Jesper: thank you for your invaluable guidance and sup-
port. Writing a thesis is a like navigating turbulent waters, and your support was like a
lightpost in the storm.

To my dear friend William: thank you for recommending the functional programming
course, fully unaware of the deep rabbit hole you were about to send me down, and thank
you for the many laughs to help lighten the load.

To my friends Zoya, Matteo, and Puja: thank you for days of working together, spitballing
ideas with each other, and working through our own theses in solidarity.

To my sister Isa: gracias por tu apoyo, sin el cual no hubiera logrado llegar a las alturas
que he llegado.

To my parents: gracias por las décadas de amor y apoyo, cridndome a la persona que soy
hoy, y gracias por el privilegio de tener la vida que he tenido.
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Chapter 1

Introduction

Programmers use dependent type systems to express precise constraints on program be-
haviour. These constraints are specified within the type system itself, rather than relying
on external specifications or verification tools. The compiler/type system then verifies that
these constraints hold statically.

Dependent types can be interpreted via the Curry-Howard correspondence : types are
logical statements, programs of these types are proofs of these statements. Put differently, in
dependent type systems we can express properties as types and prove the property with the
underlying program for the associated type.

Dependent types sit at the intersection between mathematics and computation, so we
will give an intuitive introduction to their function from the perspective of the programmer:
focusing on computation and how we define data types. From there we explain how this
powerful programming style can incur costs and what methods we currently use to curtail
these costs. Our contribution extends these methods to support runtime identity (runid)
functions, i.e. functions which manipulate erased content but leave run-time relevant content
untouched.

1.1 Dependently typed languages

The core property of dependent types is that types can depend on values. This leads to a
more expressive type system than, for example, a polymorphic type system! where types
can depend on types: such as lists YA.List A that are generic on their carrier type A.

Let us take a closer look at an example of a dependent type by looking at how dependent
function types work. In regular type systems, a function f : A — B will bind the argument
a : Ain the body of f. However, dependent functions f : (a : A) — B, also bind a : A in the
body of the return type B. Since a is in scope, B can be defined as a computation procedure
that depends on the value of a — for example f : (b: B) — (ifbthen X elseY) with B as the
type of booleans and X, Y as arbitrary types. So f(true) : X and f(false) : Y; the return
type of the function is different for different inputs.

Full dependent type systems are used in a number of programming languages and projects.
These range from pure theoretical settings of mechanizing mathematical proofs to verifica-
tion of real world code such as compilers. Some examples are : “CompCert” [Ler+16] a
formally verifed optimizing C> compiler, and “sel4” [Kle+09], a formally verified microker-
nel.

Some languages also implement partial dependent types, like Rust’s “const generics” or
C++ templates. In Rust, “const generics” allow types to depend on some compile-time con-
stants (but not run-time values)— arrays being the canonical example: [T;N] is an array with

'also known as generics
*large subset of C99



1. INTRODUCTION

entries of type T and N is a compile-time constant indicating the size of the array. This enables
Rust to, for example, perform compile-time bounds checking for constant index values 3.

1.1.1 Inductive families

We can add dependency to data types as well! The paradigmatic examples used to show how
dependent data types extend non-dependent ones are lists and vectors. Listing 1 introduces
a definition of both in Agda.

data List (A : Set) : Set where
[] ¢ List A
_%_ ¢ (x ¢ A) » (xs ¢ List A) » List A

data Vec (A : Set) : (n : N) » Set where
[ ¢ Vec A zero

¢V {n} (x ¢ A » (xs ¢ Vec A n) » Vec A (suc n)

Listing 1: Definition of lists and vectors in Agda

In Agda, the data keyword declares a new inductive type with parameters before the
colon and indices after. Therefore, data List (A : set) : setdeclares a type List polymor-
phic on some type A. Lists are defined with two constructors: one for the empty list []
List A and cons for non-empty lists _:_ ¢ (x : A) (xs : List A) » List A. Cons takes an
element (head) and a sublist (tail) and prepends the head to the tail. Lists are the Functional
Programming (FP) implementation of linked lists. The underscore character in a function is
used for “mixfix” notation, so the arguments to the cons function are supplied like this: a :
as.

On the other hand data vec (A : set) : (n : N) » set declares vec which is paramet-
ric on A but indexed by n. Vectors are lists indexed by their length. The index argument n : N
in the type signature shows us this dependence. Empty vectors have index 0. Non-empty vec-
tors are constructed using the vector cons constructor _::_ : V {n} » (x : A) > (xs : Vec A
n) » Vec A (suc n). The curly braces {n} is for implicit arguments. Arguments marked im-
plicit can be omitted and Agda will infer their value, if it is able to. As such, visually the
constructor looks the same a :: as, however, this is because Agda can infer the value for n.
Under the hood, the explicit function call is _::_ {n} a as®.

The type signature for the vector cons almost lines up with that of lists: we take a head
and append a tail. The distinction lies in the extra index argument n, which shows us that
prepending an element a to a list as of length n produces a list of size 1 + n = suc n. Our
constructor needs this index argument; without it we could specify neither the type of the
tail xs : Vec A ?, nor the result term vec A (suc ?).

Vectors also tie back to our previous example of Rust arrays; encoding length information
directly into the type allows us to perform length-sensitive operations (like indexing) on
vectors without having to worry about bounds errors. For example, a safe and total® indexing
function would have the type index : {n : N} s (i : N) » Vector An » i < n s A This
type signature contains the guarantee i < n that the index is within the bounds of the length.
We know we will never perform an out-of-bounds index i > n, because we would have to
provide evidence that it is in bounds i < n, which would contradict i > n.

Vec here is an example of an inductive family [Dyb94]. Inductive families generalize
inductive data-types, which programmers may know (lists, trees, maps, tuples...), to depen-

*https:/ /doc.rust-lang.org/reference/expressions/array-expr.html
*implicit arguments are excluded from mixfix notation
>Will never crash and is defined on all its inputs



1.2. Erasure

dent types. Other data types in dependently typed languages include co-inductive, inductive-
inductive, inductive-recursive and higher-inductive types. Inductive types, however, encode
the common use case of data in programming: Finite®, recursively structured, data.

1.2 Erasure

We have shown that dependent types enable strong correctness guarantees by allowing pro-
grams to express and enforce properties within their type signatures. In doing so, they intro-
duce a natural and intuitive distinction between computation and assurance. Some parts of a
program are relevant to run-time behaviour, while others’ exist solely for compile-time veri-
fication. Ideally, we want to separate these concerns: run-time-relevant code should remain
in the compiled program, while compile-time-only components can be checked statically and
then safely erased.

This distinction is clearly illustrated by the vector example discussed earlier. The con-
structor _::_ carries a length index n. For instance, _:_ {2} a (_=_ {1} b (_#_ {0} c []1))
encodes a three-element vector with explicitly stated lengths. Clearly, the information being
stored is redundant. While these indices are essential for static analysis and type checking,
retaining all 100 successive indices in a 100-element list at run-time would be wasteful, espe-
cially if such data is never used during execution.

Run-time-irrelevant indices can introduce overhead in both memory usage and compu-
tation time, although the extent of this overhead depends on the evaluation strategy of the
language. In lazy languages, where function arguments are only evaluated when needed,
run-time costs are lower but still present. The primary costs are in memory utilization but
there are still some computation costs incurred [Tej20].

To this end dependently typed languages have come up with different mechanisms to
handle run-time irrelevant data. Languages like Rocq ® separate the language into two worlds,
one for run-time code and one of compile time code. Code belonging to the compile time
section of the language is not compiled. These two are not allowed to intermingle which
gives a limited degree of granularity.

Languages with erasure based on QTT [Atk18], like Agda [Nor08], allow us to mix run-
time and compile time code, as long as run-time code does not depend on compile time
code. For example in Listing 2 shows how we define a vector with erased length indices as
erased. We do this by marking the argument to the type (index) and the argument to the cons
constructor as erased with the annotation ee. Below the Agda code we show what it roughly
compiles to: the corresponding Haskell data type has no arguments for length as they have
been marked erased. The constructors are: the empty list, which takes to arguments, and the
cons constructor, which takes a head and a tail argument.

data Vec (A : Set) : @@ IN > Set where
[T ¢ Vec A zero
2V {@ n} > (x ¢ A) > (xs : Vec An) » Vec A (suc n)

data Vec a = nil | cons a (Vec a)

Listing 2: Erased vector in Agda and its compilation to Haskell

Sinductive types do not include infinitely recursive data such as streams. Such data is covered by co-inductive
types

7such as proofs or type-level indices

$formerly known as Coq
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1.3 Run-time identity functions

Erasure gives rise to different views [Wad87; MMO04] on the same data . For example: after
erasure, vectors and lists have the same structure and contents. They represent the same
run-time data in the same structure, but with different erased assurances.

Since each view carries different properties, we sometimes need to map between two
views, just to get the proofs we need. For example, the function 1istTovec defined in Listing 3
maps from a list to a vector. We reconstruct the list argument by pattern matching. In the
cons case we insert the length (using a length function).

listToVec ¢ (1 ¢ List A) -> Vec A (length 1)
listToVec [] = []
listToVec a & as = _i_ {length as} a (listToVec as)

Listing 3: listToVec function in Agda

The run-time-relevant data is not changed after executing the function. We call func-
tions that behave like this: “run-time identity” (runid) functions. We want our compiler to
recognize these functions and erase them (or replace standalone instances with an identity
function f a = a). However existing compilers will compile this function naively as in List-
ing 4. Additionally it would be nice to be able to have a type level assurance that this will be
optimized away.

listToVec :: List a -> Vec a
listTovVec []1 = []
listToVec (cons a as) = cons a as

Listing 4: listToVec compiled to Haskell

Standard QTT does not have any mechanism for annotating or verifying these functions.
Luckily we already have the required building blocks: we have a mechanism for marking data
and computation as erased; we can analyse function behaviour after erasure and determine
its runid status.

There is some limited work in this field. Most of this work is based on ornaments [McB10]—
which give a mechanism for reasoning about data types as extensions of other data types in
an explicit manner. Unfortunately, approaches based on this framework have some costs.

Chiefly, they tend to rely on unergonomic encodings of data types. Programmers have
to manually write mappings from existing data types into ornaments. These mappings also
tend to imply manual proving of certain conditions that are implicit in the data type. Vectors
would be encoded asvec An = {l : List A |length(l) = n}: The programmer has to manually
separate lists from their length and prove that the length will align with the index. We would
much rather have a “plug and play” solution that works on existing data types with minimal
work.

1.4 The goal

Our approach is an inversion of ornament-based approaches. They focus on the internal
representation of data types, while we focus on an analysis of existing types. We imagine a
type system extended with annotations for saying: types A ~ B are the same at run-time
and f : A — Bis a runid function.

Listing 5 shows a mock example of how these annotations could look in Agda. We state
that the vector type should be considered equivalent to lists and tell the type system which
constructors should be paired up together (trivial for now). We can check that this mapping

4
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from lists to vectors is correct by comparing the function signatures of the paired up con-
structors and see that they are equivalent at run-time. From there we mark the listTovec
function as runid, which the type system can verify because it now considers list and vector
constructors as equivalent.

The annotations give enough information for checking these conditions without user-
provided code. The programmer does not need to rewrite any data types, nor give any man-
ual proofs.

These annotations would be integrated into the type system, enabling the programmer
to use this type information as any other type. For example, they could define runid higher-
order functions— which in turn empowers the programmer to define generic functions that
leverage runid status, such as a generic runid map function on lists :

@runid map ¢ (@runid f ¢ A -> B) -> List A -> List B.

The type system could even infer this runid status, possibly even ad-hoc, which would
reduce the number of user-provided annotations. Additionally, inference would allow the
programmer to ‘lift’ regular higher-order functions to runid status. Returning to maps on
lists: map ¢ (f ¢ A -> B) -> List A -> List B would not be runid but
map g : @runid List A -> List B would be, assuming that g is runid.

data @repr=List Vec (A : Set) : @@ NN - Set where

@constructor=[]

[T ¢ Vec A zero

@constructor=_:_

_u_ 2V {@ n} (x ¢+ A) (xs ¢ Vec A n) » Vec A (suc n)
@runid listToVec ¢ (1 ¢ List A) -> Vec A (length 1)
listToVec [] = []
listToVec a = as = a & (listToVec as)

Listing 5: Mock data type and runid annotations

1.5 Contributions

The problem context gives us certain goals. We wish to work with the existing type system
as opposed to giving a new underlying theoretical basis. We want to see what results we
can obtain with no new user-provided code. Thus our research question is: “How could we
design a type system for runid functions based on exhaustive annotations but no extra user-
provided code”. We assume that the runid functions are already present and do not count
as extra user-provided code. Given the novel nature of this research we chose to emphasize
exploring the theoretical underpinnings of such a type system.
Our contributions to address this research question are as follows:

e Runid Type Theory (RTT): A core type theory with exhaustive runid and erasure anno-
tations, partially formalized in Agda. The type theory enforces erasure with a simpli-
fied version of QTT. Runid terms are typed by way of a syntactic run-time-equivalence
relation I' = a ~, b. The relation denotes that two terms will compile to the same
value.

e We give a mechanism of how to implement this as a language feature.

e A denotational semantics of run-time equivalence post-erasure using an extensional
semantic domain based on the PER model from NbE [Abel3]. Terms I' - a : A are
mapped to functions on environments where the result type is the semantic type for A.

5
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e A proof of soundness of (a variant of) our syntactic run-time equivalence relation with
regard to this semantics in the style of logical relations. We show that terms related by

our run-time equivalence relation are mapped to equal values in our semantic domain,
after erasure.



Chapter 2

BTT: Our Quantitative Type Theory

We begin by introducing the base of our prototype Base Type Theory (BTT) which is a simpli-
fied QTT [Atk18]. Inspired by Agda, our type theory is an intensional dependent type theory
with predicative universe levels. Variables are formalized using de Bruijn indices but will be
presented using named variables for convenience in this thesis. Since the variable names are
only for show, we employ the Barendrengt convention and assume that all variable names
are fresh and there is no name capture. We have partially formalized BTT in Agda ®.

First we explain the basics of how to read and interpret a type theory, then give the proper
definition of BTT: We begin by introducing the syntax. Then explain the usage modality and
its operations. From there we define the typing judgements, first focusing on the rules for
type formers and then on the rules for terms. In the end we explain the conversion rules that
give rise to our definitional equality relation.

2.1 How to read a type theory

Before we go on to define our type theories it is instructive to explain what a type theory is,
or more importantly, how it is specified. We will give a short introduction by way of a simple
language with two values: natural numbers and functions.

We can define the syntax of terms and types with a grammar. The grammar is given
in Backus-Naur form: the left hand side of ::= indicates the variables used to indicate the
current class of strings, the right-hand side indicates the terminal and recursive strings, sep-
arated by |. For example suc a is a recursive term string with some term string a.

x,Y,z € String

A,B = (x:A) - B Dependent functions
|  Nat Base types

| set Universes

Figure 2.1: Example syntax for types

A type theory gives us a mechanism to assign a type A to a term a: a : A. Each lambda
constructor binds a variable which we need to keep track in a contextI' := & | Iz : A
which assigns a type to each variable. Putting this together we can define typing judgements
I' = a : Awhich can be read as: term a has type A in (typing) context I'.

]https: //github.com/J0s3c4rl0s/run-time_id_fn
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Y,z String
a,b,e,d,n,P =z Variable
| A(z:A)b|a-c Functions

| suc a|z]|eWataPbc Nats

Figure 2.2: Example syntax for terms

A type theory gives a set of logical rules for how to derive these judgements from previous
conditions. These rules are typically indicated in inference diagrams, taken from formal logic.
Figure 2.3 gives a simple example of such a diagram. The bottom half P is the consequence
and holds if the above conditions A, B also hold.

A B
P

Figure 2.3: Inference diagram

Equipped with this knowledge of how to read inference diagrams we can specify the
typing rules for our language. In general there are three categories of rules for typing (or
syntactic terms):

1. Formation rules tell us how to “form” a type: e.g.

I'A:set I'x:AF B: set
I'—(z:A) > B:set

2. Introduction rules tell us how to “introduce” a term of a type, which give us the rules
for the constructor: e.g.
Iz:A+b:B
F'-Xz:A)b:(z:A) > B

3. Elimination rules tell us what are well defined computations, which correspond to elim-
inators: e.g.
'-f:(x:A) > B TI'a: A
I'-f-a:B

We exclude universe levels from the text since universe levels do not interact with our
main results. Universe levels Set,, : Set,41 are a mechanism used to maintain logical sound-
ness by avoiding Girard’s paradox Set : set.?

2.2 Syntax

Our syntax is defined with “usage annotations” =, o, p, contexts I, types A, B, C' and terms
a, b, c. We do not distinguish between types and terms in our formalization, but we will use
the custom of writing types in uppercase and terms in lowercase, with the exception of type
functions, i.e. terms that return types (often denoted P).

Figure 2.4 defines our syntax for contexts. Contexts are maps from variable names to
their type and usage.

*The paradox is the type-theoretic equivalent to Russell’s paradox in (naive) set theory (Does the set of all sets
that do not contain themselves, contain itself?). Universe levels resolve this by having a hierarchy of universes
soset i : Set (i + 1),no universe contains itself and every universe is a member of a type.



2.2. Syntax

Figure 2.4: Syntax for Contexts

The syntax for type formers is defined in Figure 2.5. Note that as we have a dependent
type theory some types can depend on terms. Most famously vec A n® where n is some term
indicating vector length. The usage modality in types are annotated by their usage with two
forms of annotations: explicit and position-based. Annotations on explicit bindings = © A
are relatively straightforward and found in dependent types (pairs and function spaces).

Position-based annotations such as A °w”B inform us of the usage that will be bound to
the relevant constructor arguments. This second case derives from the fact that, in languages
like Agda, type parameters and indices would be expressed as bindingse.g. _+_ : (o A) ->
B -> set for sum. We do not support general inductive types nor allow partial application
to the type formers. Because of this, we annotate the arguments directly.

x,Y,2,p € String

A B,P:=(z%A) —B Dependent functions
| List A | vecAn? Recursive types
| A°w’B | (z% A)x B” Sumand product type
|  Nat Nats
| set Universes

Figure 2.5: Syntax for types

Terms are introduced with the rules in Figure 2.6: we present per type in an alternating
fashion its constructor(s) and then its eliminator.

Regarding the constructors note that analogously to types we annotate bindings (e.g. for
abstractions) and constructors (e.g for left injection of sums) with relevant usages. Our for-
malization annotates type parameters and indices in eliminators, but for readability we omit
this from the syntax here as well.

a,b,c,d,n, P :=x Variable
Az A)blac Functions
| "(a,b)’ | el™x”aPb Products
| suc a|z|eWataPbc Nats

| consjab | [1; | elLista APbc Lists
| consT anb | [17 | elvec" a Pcd Vecs

| inl™?a | inr™”b | el™w”a Pcd Sums

Figure 2.6: Syntax for terms
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2.3 Quantities

Based on QTT [Atkl18, section 2], every variable binding contains a quantity (also called
usage). The erased usage 0 denotes variables that are not present at run-time, and the present
usage w variables or terms that are present at run-time.

Atkey defines these as a semi-ring and defines operations for argument sharing and en-
forcing the separation of run- and compile-time. However we do not need this entire machin-
ery, it suffices to know that 0 < w and have a multiplication operation . Multiplication can
be thought of in this context as selecting a quantity, more specifically collapsing the usage
to 0 = 0o = 00 when either argument is 0.

2.4 Typing rules

We now present the typing rules on our syntax to give a static semantics to what a well-
formed expression is. We define the judgement ' - a ¢ A to mean that term a has type A4 in
context I' in mode o. Following [ Atk18, section 2.1.3] the “mode” ¢ splits our type theory in
two halves: erased 0 and present w; where erased segments are relevant to the compile-time
and present segments are relevant to the run-time.

For [Atk18] these modes differ from just the quantities as he accepts a general semiring
for usages. However as our quantities are just erased and present we can neatly reuse them
for the different modes of our typing derivations.

Substitution is defined as a[x — b] where each instance of x in b is substituted for a.

We will implicitly assume that — when dealing with pairs or sums — at least one of the
usage annotations is in run-time position. Otherwise, we could accept terms in run-time
positions that are empty and thus non-sensical.

241 Types

Type formers are always typed in erased position I' - A ° Set, as type formation is only rel-
evant to the compile time. Apart from this specific modification, the typing rules adhere to
standard formulations commonly found in the literature.

Our dependent pairs are different to those given by [ Atk18] (which they call dependent
tensor) because they only support a usage annotation on the LHS of the product while we
support usage annotation on both sides.

I A9 set F,a:?AI—B(:)SetFH I-A%set T,x" A B set

T 0 T 0 FZ
' (z:A) - B: set '+ (x: A) x BP ! set
I A9 set I'-A%set TERIN
‘S  List - >€ On' - Vec
'~ List A Set ' vec An% : set
— N ;v
I' - Nat : Set I' A°wPB : set

I'a®A Fl—b(:JAl_

Fl—agb(:)Set

lle

Figure 2.7: Type rules for type formers
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2.4.2 Terms

Terms of types come in three kinds: variables, constructors and eliminators.

The variable rule checks that the context contains an entry with the same type and a
usage greater or equal to the needed usage for the variable. This enforces the invariant that
erased variables are not used in run-time position. Note that run-time variables can be used
in erased position, we only restrict flow in one direction.

/
ag
xz:Ael o<o

2% A

— var

Figure 2.8: Typing rule for variables

Constructors are well-typed when their arguments are well typed (e.g. ' - h: A and
I'—t:List AforI' - cons;ht: List A). For constructors of types that do not carry any
usage annotations the mode ¢ is maintained. Constructors of types that do contain usage
annotations multiply the mode by the usage when checking annotated terms, e.g. when
checking the left value a in " (a, b)” we scale the checking by 7. As stated earlier this has the
effect of shifting the typing mode to erased position if the value we are checking is introduced
in erased position.

Lz A-b7B I‘I—A?Setl_)\ I'-a™ A FH)":’)B[Q;HCL]F .
pair
CHAzTA)b7 (A —>B L "(a,b) 7 (z7 A) x B°
(e
. . FI—n.NUat L suc
' z: Nat I' - suc n : Nat

Fl—al:TA F}—as(:TListA

p I p = cons;
T'H11;:List A I' - consjaas : List A
g o oTm
. -1, I'-h: A Fl—t:Vecén” Fl—n:Natl_(mev
D' [15 :vecAZ™ ' consl h(suc n)t: Vec A (suc n)™
om op
FFGU‘A Finl Fl_bU'B F dinr
' 4nl™Pa : A°wPB I'4dnr™Pb: A°wPB

Figure 2.9: Typing rules for constructors

Eliminators give rise to eponymous elimination rules and encode a computation proce-
dure, such that feeding a constructor to an eliminator gives rise to a concrete computation
(or reduction). Eliminators on data types are equivalent to structural induction/recursion
on the data type.

Let us look at the typing of the eliminator on natural numbers elNatn P bc to elucidate
the typing rules on (recursive) data type eliminators. The eliminator is typed in mode o and
takes four arguments:

1. The scrutinee n, the argument being matched on, is type checked in the same position
.

11
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Penfnat  TEPY(z7Nat) - set
PHb, P72z TyminNat,p? P m by ? P (suc m)
I eWatnPb,b,° P%n

— elNat

Figure 2.10: Typing Nat eliminator

2. The motive P, which gives the return type per input, which is typed in erased position
as it is a type function.

3. The branches b, ¢ give the relevant execution code for the scrutinee. In cases where
there are multiple constructors there is one branch per constructor (b is for z, c is for
suc m). Each branch exposes the relevant arguments to the constructor by extending
the context. If the data type is inductive (which Nat is), we also encode an induction
procedure during elimination: Let n = suc m, the eliminator is applied to the sub-
term(s) m and provided to the inductive branch ¢, by way of the argument p. 3

For applications f * a the rule checks in position o that f is indeed a function with argu-
ment of quantity 7. From there it checks that the argument a has the correct argument type
in the om mode, meaning the argument is checked in erased mode if either: the function
takes erased argument or the typing is already in erased position.

This scaling operation is also present when type checking sum branches: erasure in sums
indicates if the left or right constructor are erased, e.g. A Ow* B has an erased left constructor.
As such each branch is scaled to match the usage of the constructor: if the left constructor is
erased then its corresponding branch must also be in erased position.

™

I'-f%@4A) —>B Ta”

4y
I'-f"a’B

I'rs? ATw’B TP? (27 ATePB) — set
oo T Ak b, T PT(nU"a) T,2" B bg ™ P (inr™rb)
Fl—el”wpstLbRC:qus

Felw

Figure 2.11: Typing rules for eliminators with scaling

24.3 Mode zeroing rule

Rule - TMO is exactly the same as in QTT, it “state[s] that we can take any term and produce
its ‘resource free’ counterpart in the o = 0 fragment”[ Atk18]. Note that this rule only holds
in one direction, an arbitrary compile time judgement obviously cannot be assumed to also
hold as a run-time judgement.

FI—a‘:’B
I'a'B

~ ™0

Figure 2.12: Typing rule to shift type checking mode.

*Traditionally the branches would be functions taking these extensions as arguments. By extending the
context we increase syntactic readability as we write ¢ instead of A(m ¢ Nat).A(p ° P " m).c

12
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2.5 Equality

Since we are dealing with a dependently typed language, our types can depend on terms
which themselves may describe some computation procedure. As a trivial example consider

'+ 2%4d" Nat, we can only type this correctly if we can show that 1d ? Nat reduces to Nat.
As such we need some notion of computation-aware equality between types/terms. This
is commonly achieved by defining a definition equality relation. For us this is an untyped
conversion relation on terms A = B, which we can use in our typing rules via the -~ conv
rule. This empowers us to resolve the previously mentioned example, as we should be able
to reduce the function application to simply be equal to Nat.

Fl—a(:TA A=B
I'+a®B

— conv

Figure 2.13: Typing conversion rule

Our definitional equality contains the usual equivalence (reflexivity transitivity, symme-
try), congruence and computation rules (3-reduction). Note that in the conversion relation

0
the 8 reductions are modality agnostic, e.g. they will reduce f - a, f © a, f -» a in the same
manner. Congruence rules are only modality aware in that they will not mismatch modality
annotations, e.g. f Ya = fra.

2.5.1 Propositional equality

Sometimes we need to tell the type system that two terms are equal when it cannot tell just by
definitional equality. In these situations we want to have a type to express equality which is
tulfilled by propositional equality. Figure 2.14 showcases the typing rules for propositional
equality. We only have one introduction for propositional equality rf1 which which is the
trivial reflexivity proof. When we eliminate on some equality we wish to check that the
body type checks assuming that we rewrite the right term b for the left one a and that we
have resolved the equality to rf1.

Fa® A
Fl—rﬂ?a;a
0, 0 0
F'-P:(x:A)— (y:zx=x)— Set
Fl—b(:Tan[-]rﬂ Fl—e?a“b

o o. 0 ~ Fel=
I'Helxx™ebP:P-b-e

—rfl

Figure 2.14: Typing rules for propositional equality

2.6 Limitations

We only have a short overview of selected data types to explore the design of the type theory.
Future work would expand this to general inductive families.
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Chapter 3

RTT: adding runid functions to our
language

In this chapter, we extend our type theory with the notion of runid functions. The philosophy
underpinning this extension is that we think of our type theory as a core type theory where
all runid terms are marked and thus do not have to be inferred or where runid inference is
done in an earlier type-checker/compiler pass. These marked terms are then checked by our
type system to verify that their run-time behaviour does in fact equate to that of an identity
function, post erasure. This check is facilitated by our run-time equivalence relation I' |-
a ~, bwhich states that in some context two terms will be equal post-compilation.

We are being intentionally vague for now about the definition of compilation or erasure
procedure. We will define what we mean more rigorously when we define our semantics.
For now, it suffices to have an intuitive understanding of compilation as an “optimizing”
compiler which optimizes terms exclusively based on usage annotations and runid markers.
Its behaviour will become more clear when we describe the individual rules.

Our typing rules and run-time analysis interdepend and take on different responsibil-
ities. The run-time analysis verifies that terms will be equal post compilation, assuming
annotations are valid. The typing rules on the other hand verify that annotations are correct
assuming that our run-time analysis will reject terms which do not compile to the same term
or value.

We will first present the syntax of the language with runid markers. Then we will describe
the typing rules. Finally we will present the run-time relation which underpins our analysis.

3.1 Syntactic extension

We extend our syntax in Figure 3.1 by marking types and terms by a subscript , if they are
in some sense runid.

1. Functions are the only type that can be runid, and must have non-erased inputs so we
omit the usage annotation.

2. Lambdas constitute the only constructor that can be runid

3. The rest are eliminators on data types, following the pattern: e, Type.

3.2 Typing runid terms

Since the runid markers are an extension of existing types, our typing rules follow a similar
structure of first checking that the unmarked term is well typed and then checking the run-
time behaviour of the term. This allows us to have a weak, but efficient, relation that depends

15
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A,B,P:=(z:A)—, B Dependent functions

a,b,c,d,n, P, ::=
A(z: A).B Abstraction
a-b Application
el,"xPaPb Product eliminator

el,Lista APbc Listeliminator

|

|

|

| elNataPbc Nat eliminators
|

| el,vec"aPcd  Veceliminator

|

el, "w’aPcd  Sum eliminator

Figure 3.1: Runid extension

on typing and does not require us to check the validity of (runid) terms when expressing the
relations between terms at run-time. We will define and explain the analysis underpinning
this relation in the next section.

3.2.1 Functions

The function type and eliminator are the exceptions to this pattern of checking run-time
equivalence when dealing with runid terms. We do not need to perform any analysis to ac-
cept runid type formation, merely well-formedness. Lambdas are accepted as runid under
the requirement that their function body is equivalent to the argument to the function. Appli-
cations need no run-time equivalence analysis, they merely need to check that the provided
function is typed as runid.

P AYset T,2Y AL BY set

0 =11
' (x:A) >, B:set
PFAz?Ab(2YA) >B Ta%A-b ~, y I'f%@x:A) —, B F|—a‘:’A|_
Tk Mz A)bY (z: A) >, B ' I'-fy,a’B

Figure 3.2: Typing rules for runid function terms

3.2.2 Eliminators

To reduce notational noise, we omit the typing hypothesis that the unmarked version of the
term is well-typed.

We only allow runid eliminators to be well-typed when the scrutinee is a variable a: we
substitute into a the arbitrary constructor that matches the case — e.g. the empty list b[a —
[1;] and non-empty list c[a — cons; ht] branches. We also substitute recursive subterms (like
the tail of a list or the predecessor of a number) with the result of the recursive eliminator
call. This models an induction procedure: by checking each branch, we ensure the condition
holds in the base case (like [1;), and in the inductive cases (like cons; ht), we assume the
subterms match the corresponding recursive results.

We would naively prefer to have a structured form of reasoning about keeping track of
assumptions of run-time equivalence in our analysis: e.g. I' = p ~, sucm = T I

16
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3.3. Run-time equivalence

bs ~, suc m. However including such hypotheses would violate strict positivity in the for-
malization and well-foundedness in the mathematical relation. As such we use substitution
as a safe way to define this, but suggest future work to give a more structured approach to
defining, say, an assumption context A for a more general system.

Fl,rgkbz[ﬂjb—)Z} ~p Z

Fl,Fg,mo:JNatl— bs[p — m][x — suc m| ~, suc m
— el,-Nat

Fl,ﬂfof)Nat,FQ — elTNatbestuz)PL-ux

Iy, Ty b= bafl = (0]~ [
I, D,k Y AtY List A bylp— ][l — cons; ht] ~, cons;ht

> o - el,List
I',0 7 List A,To - ellistlAPbyb. : P - as

Figure 3.3: Typing rules for Nat and List eliminators

Since erasure in sums implies erasure of constructors, we only perform analysis on the
branches which are non-erased. It is nonsensical to relate terms in erased position, so we
merely omit these comparisons. This induces 3 rules for each valid erasure configuration !.

Fl,FQ,x?A,yl:)Bl—b[CH”(x,y)P] ~p "(z,y)P

Iye:(x: Ay x BP,Toel,"xPcPb: P-c

', oy YBr br[s — inr%@y] ~,. inrf@y
el Qw®

w

Fl,sﬁ?)AOwa,Fg - elrowwstLbR%)P -8

Figure 3.4: Typing rules for runid products and sums

3.3 Run-time equivalence

Finally we come to the primary novel analysis of this thesis: the run-time equivalence rela-
tionI' ~ a ~, b— which has so far been used in typing rules but not defined properly.
The majority of the rules are not surprising: our run-time equivalence relation shares the
same congruence and equivalence rules present in our conversion relation (but not the com-
putation rules). The interesting rules concern terms annotated with erasure or marked with
runid. In both cases terms are equated to their optimization.

3.3.1 Relating runid terms

Remember that we already perform a correctness check of any runid terms we encounter
in our typing rules, so when we encounter them in our relation we assume they are correct.
To this end, the runid functions correspond to identity functions, as shown in Figure 3.5.
What remains are runid eliminators on data types, which all relate to their scrutinee: e.g.
I'-elNata Pbc ~, afor some variable a.

10One could also have one rule with conditional checks on usage before requiring the analysis
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~—

r

'-(a:A)—, B ~ (a:A) > A

N)\T ~

' XA(a:A)b ~ Na:A)b F'fwya ~ a

Figure 3.5: Relating runid functions

3.3.2 Relating types with erasure

The rules on types motivate the rules on terms. If two types are considered to be equivalent
at run-time I’ — A ~, B then for each I' - a : A then there should be some I' - b: B
I' = a ~;, b. Sowe begin with types.

Figure 3.6 gives the rules for equating types with erasure information. Most types are
related to their non-erased counterpart. The only caveat is that dependent function and pair

types weaken the codomain of the result type with the argument variable I, = Ar B set.

So we cannotjustsay I' - (z ° A) - B ~, Bsince Bis weakened with regards toI'. Instead
we pick a C that is strengthened with regards to z, i.e. C' does not refer to .

T2 A-B ~, C ]
0 ~p (1) — 0 X ~, Vec ¥
'-(x:A)—>B ~. C I'-vecAn® ~, List A
0
F,m:Al_B’\‘rC 0
0 ~r (1) X - ~ ()x0
F'(x:A)xB ~, C F'-(x:A)xB” ~. A
0 0

I'A%B ~, B I-AwB ~, A

Figure 3.6: Run-time equivalence rules on types

3.3.3 Relating terms with erasure

The rules on terms are motivated by the rules on types. As we said, if ' - A ~, B then
surely forany I' - a : A there mustbesomeI' - b: AsuchthatI' - a ~, b. Wecan find this
bby way of the rules on terms. We present the rules for constructors and then for eliminators.

3.3.4 Constructors

Erased functions are related to a version of their bodies without reference to the erased argu-
ment (same procedure we used for function types). Right-erased pairs are related to their
left term (and vice versa). A left-injection for a right-erased sum is just its content (and vice
versa). Finally erased vectors are related to list constructors.

Note that we assume a correspondence between vectors and lists and thus a correspon-
dence between their constructors. In a full system, correspondence of nominal types would
not be hardcoded. Instead, you could obtain these rules by checking if relevant signatures
are run-time equivalent.

The algorithm for including new rules would be: Compare the signatures of the type
formers; if successful compare the signatures of the constructors, assuming that the nominal
types are run-time equivalent. If this check succeeds you introduce rules equating the nom-
inal type formers and the constructors. Let us apply this process to vectors and lists as an
example. The vector signatures are on the LHS, the list signatures on the RHS.

18
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F,J/‘(I)AFI) ~p C
FI—)\(x(:)A).b ~p C

~r A0

I’,x(:)A}—b ~p C

~r (7)0 0 ~r 0(7)
' (a,b)? ~. a '+ "(a,b) ~ ¢
- .1,0 o o0,
' inll ~, a rn L' dinr% ~, b rnt
T ~. b T ~, b
~p 119 ma R

I'-119 ~ 11

' consg anas ~, cons;bbs

Figure 3.7: Constructor erasure rules

1. Compare the type formers’ signatures:

0
I' - (A :set) » (n : Nat) — Set ~, (A : set) — set. We now assume that
I'+vecAn® ~, List A during our analysis of the constructors.

2. Compare the constructors:

nil: T vec Az° ~, List A. Holds by assumption.

(n ° Nat) —
cA) > (x:A)—
cons: I' (x ~p _
(ws:vec AnY) — (zs:List A) —
vec A suc nY List A

The argument n gets erased. The equality holds by congruence on function types,
via reflexivity I' - A ~, A and by assumptionI" - vec Asuc n® ~, List A.

Eliminators

Figure 3.8 showcases the inference rules for eliminators with partially erased types. Again,
we are guided by the rules on types for eliminators. Function applications get equated to the
function term, which is equated to the body when the function is resolved to lambda term.
As for the datatype eliminators: If I' - A ~, B then an eliminator for A is equated to
an eliminator for B. Vector eliminators equal list eliminators, subject to strengthening of the
branches. With dependent pairs the eliminators correspond to let bindings of the non-erased
counterpart, where the body is the strengthening of the branch. Sums are defined similarly
as let bindings of the inner value, where we select the non-erased branch for the body. Since
we do not directly support let bindings in our language we simulate these with lambdas.

3.4 Limitations

Our rules are so far hardcoded for aligning nominally distinct but structurally equivalent
types (i.e. lists and vectors). We give a procedure to determine when types should be con-
sidered structurally equivalent, however it would be nice for future work to define this more
formally for general inductive families.

The solution of using substitutions to model induction hypotheses works but is not an
elegant solution, it would be preferable for future work to explore how to generalize keeping
track of assumed equivalences.
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Pi=f ~r f/ 0
Trfla~ f

L'+by, ~ U,
F,n(:)Nat,h:A,t:VecAnOFbc ~p b,
' ewecaPb,b. ~, ellista P b, b,

~p elvec

F,$9A,y:Bl—b ~p C
I'-el%<aPb ~, MNy:B)c-a

~p el0x

I'Nx:Brbr ~ c
I'el%waPbrbg ~ Mz:B).c-a

~p el%w

Figure 3.8: Eliminator erasure rules

20



Chapter 4

Semantics

This chapter endeavours to give a semantics to the notion of “equivalent at run-time” that
underpins our analysis of erasure and runid functions. The system thus far is very syntactical
in nature: it concerns itself with literal syntax strings and manipulating them. We have not
explored, however, what this analysis is supposed to mean, we have not given a semantics to
our analysis.

We give a denotational semantics of equivalence at run-time by way of a partial equiv-
alence relation (PER) model a la NbE [Abel3]. We use their notion of a fully normalized
domain D which we map to for our comparison, but do not reify back into our original syn-
tax, as we are only interested in equality in the domain.

We first introduce what a denotational semantics is and motivate it. Then explain the
internal erasure operation. Then define the domain of values D that we map to. Then we
define how to relate values as equivalent in our domain. Finally, we bring everything together
to define a notion of semantically run-time equivalent terms which we use in our proof.

4.1 Denotational semantics

As mentioned earlier, our run-time equivalence is intended to capture the loose notion of
two terms being “equivalent” at run-time post erasure. This analysis is intended to justify
our runid compiler optimizations, as including them should not change the semantics of the
resulting program.

Ultimately we are interested in runid functions which may have a different syntax but the
same behaviour as an identity function. This implies we want some form of extensionality in
our domain, we want functions that behave the same to be equal: Va.f(a) = g(a) — f=g.

Additionally, we may have multiple targets of compilation. Agda typically compiles to
Haskell, but also has compilation backends for JavaScript and acpa2ns [Coc+22] an alterna-
tive Haskell compiler. This complicates things somewhat. If we include runid functions then
we are including an element into our type system that we have defined by way of the run-
time, and by extension compilation (target). But if a language supports multiple compilers
and targets (i.e. it is defined by specification not implementation), then we need a compiler
agnostic semantics. Or at least a specification that is agnostic to implementation details.

This compiler generality motivates a denotational semantics. Denotational semantics
give meaning to a program by way of some mathematical model. For the purposes of this
thesis we would like to emphasize this as an abstraction of computation. We have a sense
of computation and a sense of redundant or equivalent computation, but it does not matter
what the specifics of this computation are, just what its result is.

Let us explain how this differs from “syntactic” approaches, using Turing machines as
a friendly analogy for a syntactic approach. Turing machines abstract away the implemen-
tation details of hardware or software by giving a system of step-by-step operations (opera-
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tional semantics). Denotational semantics abstract away the specifics of step-by-step compu-
tation by delegating that computation to some mathematical model. The simplest example
of this is a language which only contains numbers being given the semantics of N as val-
ues and mapping functions to functions on natural numbers. Now that we are operating on
mathematical functions we can, for example, state that two implementations of the Fibonacci
function are the same because they give the same results for the same inputs, without con-
cerning ourselves with their execution mechanism.

As such we define a domain D and an interpretation from our language to our semantic
domain [_]. Alternative compilers respect the semantics of runid and erasure if they map
to some language whose semantic model D’ is isomorphic to our own, as illustrated in the
following commutative diagram.

RTTLD

lle

c

D/

Figure 4.1: Compilation must respect our semantics up to isomorphism

4.2 Erasure function

As we said, our erasure semantics is defined by a partial erasure function | _ : RTT — RTT
from our core type theory to an erasure-free subset:

1. Terms marked erased are dropped, e.g. | (a ? A)—-B=|B
2. runid marked terms have their marking dropped, e.g. | f-ra=|f- |a

3. Type annotations and motives are ignored, e.g. |elNata_bc =elNat Ja_ |b |c
4. The function is undefined for explicitly erased terms, e.g. | z if x YAer or | inl%¥a.

An exhaustive definition of the erasure function can be found in Appendix C.

4.3 Constructing the domain

We begin by defining our domain of values D. Our domain is made up of two broad classes of
values: Dy corresponds to the values that will correspond to terms, and Dy corresponds to
type codes, i.e. values that represent types. Following Abel [ Abel3] our domain is “untyped”
in that we simply construct values that correspond to an untyped lambda calculus (which
closely models run-time behaviour of functional programming languages). We will bring
typing into our semantics later, by way of the PER model.

A value d : Dy is either: a natural number n : N, a functiona — b : D — D!, a pair
(a,b) : D x D or an empty list symbol [|]. Accordingly, a type code d; : Dr is either: the Nat
type code, a dependent function type code, a dependent pair type code, a list type code, a
vector type code, or a universe type code (with hidden universe level).

'This function notation helps us distinguish semantic functions from syntactic lambdas
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D =Dy v Dr
Dy =N v D—-D v DxD v {}
Dr =nNatp | VeCD(DT,D) |  Listp Drp

|  Funp(Dp,D — Dp) | Pairp(Dp,D — Dr)| Setp
Figure 4.2: Values in D

4.4 Evaluating terms into domain values

We now proceed to write a function to evaluate syntactic terms into semantic values. Our
function maximally evaluates terms to simplify comparisons. When we enter under a binder,
e.g. AMa : A).b, we get a function from some value a, to the interpretation of the body b, where
any reference to @ in b is replaced by a,. We can generalize this to any open terms using
environments: We define environments ~ : Env as an association of variables to domain
values. v(a) is the result of looking up variable « in the environment. vy[a — a,] extends
the environment ~ with the variable a« mapped to value a,. Thus, the semantics of an open
term is a function from a valid environment to some value in D. We will define what valid
environments are later on, for now it suffices to intuitively think of valid environments as
binding each variable in the context to an adequate value.

Definition 1. Terms are evaluated to functions on their environment

Y Env
() :P—>Env—>D
(Variables)
() =(x)
(Constructors:)
Aa: A)b), = 4y = (s fasa
(]( )D = ( ajy, (]bD'y[xH(]a[)W])
(2D~ =0
(suc n))y =1+ (n),
(71D~ =
(cons;ab)), = ((ADy, (t)~)
(Eliminators)
(f - ay = (/Dy((a)y)
(]el x anD = (]bl)v[x»—»xv,yHyv}
where: (a)y = (2, Yo)
(etnata_bd)) = recn((a)y, (b)~, (K, r)(]CD'Y[m'—)k,p'—)r])
(]elL'i_st xs—bCD’Y = reCL((]'TSD’Y’ (]bD’Yv (ha 2 T) g (]CD'y[aHh,as»—»t,pHr])

Lambdas are evaluated to functions and accordingly lambda application evaluates to
function application in the domain. Natural numbers are mapped to the set? of natural num-
bers N with the successor operation mapped to a simple addition operation. Recursion on
natural numbers is defined by way of a semantic recursion principle recn(a,b,): a is the
number being case matched on, b is the value for the base case, 7 is the inductive step. i(m, p)
takes two arguments: the predecessor m and the result of induction p. We obtain this i func-
tion by evaluating the syntactic inductive branch ¢ and bind the two syntactic variables to
the values given. Elimination on pairs implies splitting the pair into its left and right value
and feeding them to the evaluation of the branch argument b.

Definition 2. Structural induction on N
recn(0,0,1) =b
recn(l+m,b,i) =i(m,recn(m,b,i))

2Or type, we are relatively agnostic on the specific formalization
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Definition 3. Structural induction on Lists
recr,([],b,1%) =b
recr,((h,t),b,1) =i(h,t, recr(t, b,i))

Our syntax includes types so we need to give its definition on syntactic type terms. How-
ever this is where things can get a bit unclear. We are going to call the result of evaluation on
syntactic types: type codes. We will not call them type values. Later when we give our PER
model we will define type values, or semantic types, in terms of PER. Evaluating syntactic
types gives us an encoding of types in our semantic domain, not a semantic type. Because
of this we have custom encodings for types, the only interesting one being the encoding for
functions.

Definition 4. Evaluation of types as terms

(]( ) - BD = FunD((]AD’Yvav = (]BD’Y[GHGU])
((a:A) x D = PairD((]AD’wav = (]Bl)w[a»—mq,])
(List A)y = Listp (A),

(Nvat]) = Natp

(set), = Setp

Our functions are dependent: The codomain B will depend on the domain A. A function
type code Funp(A, F)) is the type code for its argument type A € D together with a function
from its argument to its result type code F': D — D.

Definition 5 (Interpretation of terms). Terms are interpreted into their evaluation post-erasure

[aly = (L aDy

4.4.1 Including functions in the domain in a well-founded manner

Defining the value of functions is problematic, as the naive presentation we have given D —
D : D is not well founded and leads to circularity. The question is then how to construct the
domain of functions in a well founded manner.

Abel [ Abel3, section 3.2] illustrates two options (and uses the latter): use domain theory
— where values are Scott-continuous functions — or defunctionalize and use closures. We
will explain how the two solutions differ and why our results can be reformulated in either
approach.

In domain theory we solve the domain equation D =~ [D — D], where [D — D] de-
notes Scott-continuous functions. The approach involves, roughly, constructing successive
domains Dy, D1, D2, D3 and defining D as the limit of these successive constructions. This
is established work, however defining domain theoretic constructs is quite involved [ Abel3,
section 3.2]. If we took this approach, we would evaluate lambda terms into semantic func-
tions as such: (A(a : A).b)y = ay = (b)yjaay)-

If we instead take Abel’s defunctionalized approach [ Abel3, section 3.2], we define our
domain to have a closure value (v, A(a : A).b) which pairs a syntactic lambda term with the
environment it was evaluated in. We add onto this domain a primitive application operation
App : D x D — D which computes a closure together with an argument to a domain value.
This application operation would be defined in terms of evaluation App((y, A(a : A).b),a,) =
(]bDW[aHav]'

The only difference in practical terms between either formalization is if we evaluate di-
rectly into a semantic function or if we delay evaluation until the argument value is provided.
With regards to the relating of function values the rule is the same — related environments
and related inputs map to related outputs. For ease of readability we will write function
values like functions. Formally we will keep in mind that actually our functions are secretly
closures, but would like to remind the reader that it should be possible to reformulate our
claims in domain theoretic terms, should they so desire.
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4.5 Relating values via semantic types as PER

4.5.1 Semantic types as PER

Semantic types d = D x D are PER on the domain values D, they tell us how to relate values
which are of the same “type”. We build these relations inductively, implicitly assuming a
universe hierarchy we mostly omit for conciseness. We refer to the set of PER and relations
on D as Per < Rel.

A PER d is a relation on some set D that respects transitivity and symmetry, but not
reflexivity. This means that for arbitrary a € D it will not always hold that a ~ a : .
However combining transitivity and symmetry gives us reflexivity; once a value is related to
any other value, it is also related toitself: a * b: A = br~a: A = a~a:d. Dueto
this we can also define a PER ¢ as a (total) equivalence relation on some subset A — D. We
use a € A to mean that a is a member of this subset. More concretely a € o if 3a’.a ~ ' : .

Intuitively, this means that a semantic type 9 does two things simultaneously: specify a
subset of well-behaved values and tell us which of these are equivalent. The collection of all
of our semantic types is the collection of quotient sets which span all “reasonable” values.

We will now proceed to give a definition of how to construct each of our semantic types,
by giving an overview of each type — with an eye towards the fact that each PER respects
transitivity and symmetry, arguing the case where it is not clear. We will define each PER
in an inductive manner from the ground up, courtesy of our predicative universes [ Abel3,
section 4.3]. Given the relational style of this semantics we will use the notational shorthand
Va ~ a' : 9 to mean Va,a’ such thata ~ o’ : A.

4.5.2 Semantic types

Let us begin with the semantic type for natural numbers N-af. Assuming we have some
denotation for natural numbers N (set theoretic, type theoretic, etc.), we relate them induc-
tively: O relates to itself and successive numbers are related if their predecessors are related.
We can prove symmetry and transitivity trivially by induction.

Definition 6 (Semantic type of natural numbers).

n~m: Nat
0~0: Nat 14+n~1l+m:Nat

Vector and list values are related in a congruence manner. We write (h,n,t) as a short-
hand for (h, (n,t)) for vector values.

Definition 7 (Semantic type of lists).

h~h:A tx~t . List(dA)
[~ [ : Lt(d) (h,t) ~ (W, ¢") : L3t (A)

Definition 8 (Semantic type of vectors).

hah:d n~n:Nat txt:Tec(d,n)
[~ [: TVec(d,n) (hon,t) ~ (1,0, ¢') : Vec(dd, 1+ n)

We now proceed to the semantic type for dependent functions I1(d, F). o is the semantic
type of the argument and F : 9 — per the type family: the function which computes the
result type from the argument value. More precisely, F is a function on the relation , which
respects 9. It maps related values to the same relation: Va ~ o' : A.F(a) = F(da’). The
extensionality principle induces a PER.
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Definition 9 (Semantic function types: II(A, F)). Given two functions f, f' € D — D we state
they are related by extensionality; If their outputs are related then they are related.
Va~a :d.fla)~ f(a'): F(a)
[~ f L I(d,F)

Dependent pairs have an analogous definition. The difference being that we have input-
output pairs and thus do not need to quantify over all possible inputs.

Definition 10 (Semantic dependent product types: (4, %)). Pairs are related pointwise, with
dependency in the type specification.

a~ad:A bxV:F(a)

(a,b) ~ (a/, ) : 2(A, F)

We now define semantic universes by way of inductive inference rules and a recursive
lifting function [_] : D — Set. The inductive rules relate type codes as members of the PER
Sel. The lifting function “lifts” type codes in D to members of the semantic type Sef.

Definition 11 (Semantic type of type codes).

— Natp

Natp =~ Natp : Sel S [Natp] = Nat

Ar A :Set na~n': Natl
Vecp(A,n) =~ vVecp(A',n') : Setl

§ = veen(,) Vecp(A,n)] = Veo([A],n)
A~ A : Set
a~d :[A] = B(a) ~ B'(d): Sel
Funp(A, B) ~ Funp(A’, B') : Set

STRDG) (A B) = TI([A],a v [B(a))
A~ A : Set
a~a :[A] = B(a) ~ B'(d): Set
PairD(A,B) r PairD(A/,B') :

S —Pairp(,) [Pairp(A, B)] = X([A],a — [B(a)])

1<k
Set; = Set; : (Sﬁtk

5= setp [Setz’] = S@‘tz

We specify the rules for universes only once to show we are still working in a predicative
manner and building our semantic types inductively. We will continue to ignore universe
levels unless relevant.

Lemma 1 (Related type codes lift to equal PER). If two type codes are semantically related
A~ B:S8et
Then their lift induce equal PER

Proof. Holds by induction on the rules: Holds trivially for base cases S — Natp and setp and
by induction for inductive cases S — Funp(, ), S — Pairp(,) O

Now we have an evaluation function (A), to compute type codes, a specification for re-
lating type codes and a function to lift type codes into semantic types. Putting everything
together we define an operation to go from syntactic types to semantic types: Evaluating
types to a type code and then lifting these to a semantic type gives us the semantic type
associated with that code.
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Definition 12 (Interpretation of types). Types are interpreted to the PER obtained from lifting the
type code obtained from evaluation post-erasure

IIA]]“/ = [Ql ADW]

4.5.3 Relating environments

We can relate terms and types now in our semantic domain. In order to relate open terms
we now also need some mechanism to relate contexts in the semantic realm; we must relate
environments v ~ 7' : [I'],, in such a way that the provided values respect types bound in
the context I'.

Definition 13 (Interpretation of contexts). Contexts are interpreted to the PER of related environ-
ments

~v :[T] a~ada:[A y~v":T

— S5 - w
T~ g [T] Z Y[z — a]l =[x —d]: [T,z A] yrev:T,x: A

4.6 Semantic run-time equivalence

We now have the necessary building blocks to define a semantic run-time equivalence judge-
ment. We can interpret contexts to related environments, terms to domain values and types
to PER.

Definition 14. Terms are semantically run-time equivalent if for any related environments they erase
and evaluate to related values.

F'ea=b:A < Yy~ :[I].[a], ~ [b], : [A], (4.1)
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Chapter 5

Proof

Given that we now have a semantics of erasure and equivalence at run-time we specify our
central theorem. We make use of a strong run-time equivalence relation that folds the condi-
tions of correctness of the typing of runid terms into the relation. We explain how to define
this relation. From there we give an important lemma that terms related by our strong rela-
tion will not fail on erasure, allowing us to exclude such cases from our main proof. Then
we introduce the central theorem: (strong) syntactic run-time equivalence implies semantic
run-time equivalence.

5.1 Strong run-time equivalence relation

To help our proof we use a modified version of our syntactic relation. Intuitively, this relation
unites the typing judgement and previous (weak) relation into a strong relation that closely
models the logical relations-style semantics that we use in our proof. This means the relation
contains all the information we need to prove correctness without relying on an invariant or
reference to typing rules. However it makes checking the relation inefficient as one has to
do duplicate checking of already checked runid terms. The strong relation also adds a type
annotation which is useful in our proof to determine which semantic type should be used to
compare the terms.

We will give an overview of the changes in our strong relation vis-a-vis the weak relation.
We give an exhaustive list of the typing rules in Appendix D.

Building the strong relation

Because PER do not have reflexivity in general, we discard the reflexivity ruleI' - a ~, a.
Instead, we add “reflexive” rules for each base term and rely on congruence rules for each
constructor. As an example, we give the rules for constructing equivalent Nat terms.

I'-n~sm:Nat
I'z~gz:Nat I suc n ~5suc m: Nat

Figure 5.1: Strong run-time equivalence for Nat constructors

We would like to only capture well-formed terms in the relation. In the weak relation this
was maintained via typing rules on the side. Now we add an extra precondition to all the
rules saying I' - a ~5 a : A for all subterms (unless the a is already related to some other
term in the conditions). Since the only way reflexivity can be formed is via structural rules
described above, this captures well-formedness instead of the side conditions.
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For equivalence rules that rely on well-typedness of annotations —i.e. erasure and runid
— we equate the term with its optimization. Erased functions are equivalent to erased lamb-
das, and runid functions to identity functions.

0 0
PEfrs Mo A)bi@ ) =B p v @A) (@A) A Than~sa:A
I fla~sb: B Thkfra~sa:A

Figure 5.2: Strong run-time equivalence of applications

Another element of this well-formedness is that terms marked as runid are subject to
conditions in the weak run-time equivalence. The canonical example being runid lambdas,
which have the condition that their bodies are equivalent to their argument. These conditions
are maintained in the strong equivalence.

CHAzYA)b (YA ->B Te?AFb ~,
D M(z:A)b% (x:A) >, B

= A

Fa“Ar-b~ga: A
F'XM(a:A)b~sAa:A)a:(a:A) —r A

Figure 5.3: Runid Lambdas: typing rule vs strong run-time equivalence rule

5.2 Related terms have defined erasure

Theorem 1 (Related terms have defined erasure). If ' - a ~, b : A then neither a nor b will be
a term in erased position, ie. \a # Land | b # L

The erasure function fails when the input is a term in erased position, however it does not
flow from a run-time term into an erased term. Our syntactic rules follow a similar structure.
If we operate by induction we see that none of the axioms will relate a term in erased position,
and our inductive rules will not relate the erased portions either.

Proof. We operate by induction on the strong rules:
1. Base cases:
a) variables x are only ever erased to L if = ? A eT which s excluded by the assump-
tion in the variable rule
b) All other base rules contain no erased fragments and thus erase directly to them-
selves, i.e. not L
2. Inductive case: We have the following inductive rules:
a) Congruence rules, e.g. I' - in1*“a ~, inr““b : A wB. These do not erase to L if
no subterm erases to L, which holds by induction.

b) Erasure rules, e.g. I' - in1“’a ~4 b : A¥w"B. The erasure function does not sub-
recurse on erased subterms, and the subterms marked not erased will not reduce
to L by induction.

¢) Runid rules. This also holds by induction, by analogous logic.
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d) Erased constructors, i.e. erased left injections in1%“a (and erased right injection).
Neither of these are included in our relation.

None of the inductive rules relate terms that would erase to | so |a # L.

Assuch forany I' - a ~5 b : A in our relation, erasure will succeed for both a and b. O

5.3 Main theorem

Our main theorem is proving the fundamental theorem of logical relations: syntactic run-
time equivalence entails semantic run-time equivalence.

Theorem 2. Syntactic run-time equivalence implies semantic run-time equivalence
I''~a~sb:A = TEa=0b:4
By Definition 14 more explicitly:
If a, b are syntactically related I" - a ~5 b : A then: Interpreting a, b with related environments
v ~ " : [T] produces related terms [a], ~ [b] : [Al, in semantic type [A],

Our proof will operate by induction on the strong rules. We will give an overview of
the classes of rules with illustrative cases to detail the proof strategy. Each case will show
the relevant syntactic rule and operate by induction on the assumptions of the rule. More
involved proofs will rely on helper lemmas.

We will implicitly assume arbitrary enviroments v ~ +/ : [I'], such that every statement
quantifying over environments of I" will use the same environment. We will also implicitly
assume the same for context extensions in assumptions. The first few lemmas will manually
fix the contexts and extensions and subsequent lemmas will use analogous logic.

We use Theorem 1 to know that we do not have to handle failure of erasure, and can
assume that the erasure function succeeds.

We first prove the PER rules subsection 5.3.1, then go over the proof strategy for regular
rules subsection 5.3.2, rules for erasure subsection 5.3.3 and finally rules for runid terms sub-
section 5.3.4. These classes of rules exhaustively cover the set of strong run-time equivalence
rules thus the main theorem holds by induction on the strong run-time equivalence rules.

5.3.1 PER rules

Our strong relation still has inference rules for symmetry and transitivity. These can be fairly
trivially proven with by combining induction with the PER rules of the semantic domain.

Case 1 (Strong relation is a PER). Symmetry and transitivity in the strong relation entail the same
results in the domain.

1. GivenT'=b~ga: AitholdsthatT'—a ~5b: A
2. GivenT'Fa~gb: AandT' b ~gsc: AitholdsthatT' —a ~sc: A

By proving transitivity and symmetry in general we can operate in our proof in an equa-
tional manner, rewriting terms.

5.3.2 Unerased rules

Rules relating unmarked and unerased terms are either base reflexivity rules or congruence
rules. The proof strategy for these cases is relatively straightforward, axioms in the source
map to axioms in the PERs, the conditions of composite semantic types are obtained via
induction on the assumptions (which by congruence in the source relation we have for each
subterm).

To this end we detail the proof strategy for:
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1. Rules on types with function types

2. Rules on constructors with suc a and A(a © A).b

3. Rules on eliminators with application and induction on nats

Rules on types
The base types Nat, Set are axiomatically related in both the source and semantic domain.

Hence these are base cases in our main proof and are trivial.

Dependent functions (a © A) — B, products (a Y A) x B, lists List A and vectors
vec An* are the inductive cases. We show the proof for functions as the others are analogous.

Case 2 (Unerased function type). Regular function types are semantically equal if their argument
types are equal and their return types are extensionally equal

P-A~,C:set I,a” A B ~; D :set

I'-(a?A) - B~ (c?C)—D:set

Proof. For arbitrary v ~ +' : T" we wish to prove
[(a? A) - B], ~ [(a® C) — D], : Set
If we evaluate both sides of the relation we are left to prove

FunD([[A]]%aU — [[B]]'y[aHaU]) ~ FunD([[C]]’ch = [[D]]'y’[a»—»cv]) :

By Definition 11 for function type codes we require two conditions: argument types relate
and return type functions relate by extensionality.

1. [A], ~ [C]., : Set holds by induction on the first assumption

2. Forany a, ~ ¢, : [A], we need to prove that supplying each argument to the type code
function gives us related typecodes, i.e.

[[B]]y[a»—»av] ~ [[D]]’y’[an—»cv} : Sel
Which similarly holds by induction on the second assumption

As both conditions are satisfied our typecodes are equivalent. O

Constructors

Similarly we have base cases and inductive cases.

The base cases in the strong relation are also axioms in the domain, e.g. I' - z ~5 z : Nat
holds since 0 ~ 0 : N-at.

Inductive cases are congruence rules and hold similarly by induction on the assumptions
of the rules. We give two proofs, one for suc a and one for A(a ¥ A).b. The former relies on
congruence conditions in the semantic domain and thus shows an analogous proof for pairs.
The latter shows the technique for functions, which is instructive as all our domain values
are either base values or functions on base values. This will become useful when discussing
the proofs for eliminators.

Case 3 (Congruence on suc).

I'-n~gm:Nat
I' = suc n ~5 suc m : Nat
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Proof. We need to prove that, for some v ~ ~' : [I'],
[suc a]y ~ [suc b, : Nat
By evaluation we need to prove
1+ [a]y ~ 1+ [b], : Nal
By congruence on semantic Nats (Definition 6) it suffices to prove
la]y ~ [b] : Nat
Which holds by induction on the assumption. O

Case 4 (Regular lambdas). Lambdas are related if their bodies are related.

Fa”A-b~,V:B
P-Xa®A)b~;MNa® AW : (e A) > B

Proof. For arbitrary v ~ 4/ : [I'] we need to prove that

(av — [[bﬂ'y[a'ﬁau]) ~ (a; — [[b/]]'y’[aHa{)}) : H([[A]]’Ya Ay — [[Bﬂy’[a»—»av])
By function extensionality (Definition 9) this entails proving that function outputs are re-
lated for arbitrary related inputs a, ~ a, : [A], i.e.
[[b]]v[a'—»av] ~ [[b/]]v/[aHa;,] : [[B]]v[a»—»av]

Which holds by induction on the assumption. O

Eliminators

Eliminator cases are all inductive rules, we give two cases: function application and elimi-
nation on nats. Function elimination shows how to apply the extensionality principle, non-
inductive eliminators evaluate to regular function applications so are proven analogously to
the case for application. Inductive eliminators differ in their proof as they operate by induc-
tion in the semantic domain, as such we give the Nat eliminator case as a simple example of
how to prove such cases.

Case 5 (Regular function application).

Pf~f (@74 >B I'a~sd :a
I f%a~ f'"d:B

Proof. By Definition 9, related functions map related terms to related outputs

[/ (laly) ~ £ 14(leTy) : [Bly
Induction on the assumptions tell us that the functions and inputs are related. O

In order to prove the nat eliminator case we need two lemmas: one which lets us know
that the interpetation of the motive into a semantic type family produces valid types, and
another giving the conditions that need to be satisfied to inductively prove that two recursors
on nat values are equivalent.

To know that a semantic type family is valid we rely on the same conditions placed on
the type family % in the semantic function type II(, F): i.e. that it respects .
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Lemma 2 (Motives induce valid semantic type family). Valid motives are valid semantic type
families.
Given
P~ P (A, Sel)
The semantic family P = a — [P(a)] is valid, i.e. Va ~ o' : A
P(a) = P(d)

Proof. By the assumption and Definition 9 we know the function P maps related inputs to
related outputs. Since the outputs are type codes Lemma 1 tells us these type codes lift to
equal semantic types. As such & is a valid semantic type family. ]

Inductive eliminators

Since inductive eliminators are defined semantically via purpose built recursive functions it
is useful to first abstract over the specifics and show the conditions necessary to prove two
recursive functions on nats equivalent.

Lemma 3 (Equivalence of recursors on natural numbers). Recursors on natural numbers are
equivalent if they are piecewise equivalent in the arguments.

Given
a~d: Nat
by ~ b, P(2)
c~c :UNat,n— U(P(n),_— Pl +n)))
It holds that

recn(a, b, c) ~ reen(a’,b', ) : P(a)
Proof. We operate by inductionon a ~ o' : Nat

1. Base case: 0 ~ 0: Nat.
We need to prove that

recn(0,b,¢) ~ recn (0,0, ') : P(0)

Which computes to
b~ b :P0)

Which holds by assumption.

2. Inductive case: 1 + k~ 1+ Kk : Nat.
Given the induction hypothesis:

recn(k, b, c) ~ recx (K, 0, ) : P (k)
We need to prove that
recn(1+ k,b,c) ~ reex(1+ K,V ,c) : P(1+ k)
If we compute our proof term we get
c(k,recn(k,b,c)) =~ c(k',recn(K',0',)) : P (1 + k)
By assumption it holds that
c~c I(Nat,n— I(P(n), _— P +n)))

Meaning ¢, ¢ are extensionally related: related inputs are mapped to related outputs.
Both inputs are related so the functions must map to related outputs thus the inductive
case holds.
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5.3. Main theorem

As base and inductive case hold, it holds for all a ~ @’ : N-at. O
We can now proceed to concretely prove the case for equivalent Nat eliminators

Case 6 (Nat eliminator).

I'a~gd :nNat L' P~; P :(n" Nat) — set
THb~gb/:P-z Tominat,p? P-mbc~sc : P-(suc m)
I' = elNataPbc ~zelNatd PV :P-a

Proof. We need to prove that the recursors are equivalent, using Lemma 2 and the second
assumption to know the semantic types & (_) are valid PER

reClN([[a]]’Yv [[b]]% (k,?”) — [[C]]“/[m»—»k,p»—»r]) ~ reqN([[a/]],y/, [[b/]]’W (k,v 7”/) = [[C/]]v/[mHk/,pHr’]) : gs([[a]]v)

From here we can use Lemma 3 which has 3 conditions. Each condition aligns with induction
on an assumption

1. The first condition holds by induction on the first assumption

[a]y ~ [a'] : Nat

2. the second condition holds by induction on the third assumption

[oly ~ [Ty - (0)

3. The third condition holds by induction on the third assumption, by extensionality (Def-
inition 9). For arbitrary k ~ k' : Nat, r ~ ' : P (k) the functions are related.

[y = [T s psrr) * P+ )

5.3.3 Erased terms

When rules contain erased subterms we know that erasure will map the parent term to some
term without erased subterms. Because of this the cases on such rules will involve mapping
to a statement on the interpretation of the equivalent erased term. After erasure the rele-
vant statement to prove will align with a case in the previous section and be proven in an
analogous manner.

To this end we give the cases on functions with erased argument for a type. Then on
erased vec cons operation for a constructor. Then on the right erased pair eliminator.

Types

Erased functions show us how the binding of erased terms and weakening of a context by an
erased term produces semantically identical statements. This case is handled analogously in
dependent product types with erasure.

Case 7 (Erased function type). Erased function types map to the same value as their return type
weakened by the argument.

F,a(:]Al—BwsD:Set
Fl—(a[:)A)—>B~SD:Set
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Proof. We wish to prove that

[(a®A) = B], ~ [D], : Set

Since | (a ? A) — B =| B it suffices to show that

[[B]]'Y ~ [[D]],y/ : Set

Which we directly obtain by induction on the first condition of the rule.

Constructors with erasure

Constructors with erased content operate analogously to the previous congruence rules, but
ignoring erased portions. We give the lemma for non-empty length-erased vectors as an
example.

Case 8 (Erased vec cons). Erased nonempty vectors relate to their head and tail in a list

Th~sh:A TrHt~gt :vecAnd

'+ consghnt ~gconsgh't' : vec Asuc n

0

Proof. We want to prove, after erasing, that

([Rly, [t]4) ~ ([[h/]]w [[t/]]w) : Lt (dA) (5.1)

By definition lists are related if they are structurally related so we need to prove the head and
tail are related

1. [R]y ~ [#'], : 4 Holds by the first assumption
2. [ty = [t'], : L3t () holds by the second assumption

Thus the original statement holds.

Erased eliminator

We give the cases on erased application and show how to deal with data type eliminators
with the example of a right-erased pair eliminator.

Case 9 (Erased application).

Tk f~ Az A)b:(z°A) > B
I fla~sb:B

Proof. We need to prove that erased function applications are equivalent to their bodies

1f " aly = [f], ~ I8l : [B],

Which holds by induction on the assumption

[l ~ M@ ? A).0] =[] : B,
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Erased data eliminators operate by changing the nominal type, for sums and pairs this
involves mapping to an applied let binding. We show how to do this for right erased pairs
as an illustrative example

Case 10 (Right-erased pair eliminator). Given
Pprsp:A TP~ P:(2% (27 A) x BY) — set
F,x‘?)A,y(:)Bl—b~Sc:P-:U
Telt“x%pPb~yAa? A)cp:P-a

Proof. We first use Lemma 2 to show that the semantic types obtained from % = a, —
[P]zq,) are valid.
We use the definition of erasure on right-erased pair eliminators

1elt“x%pPb=Aa:A). b |p
to simplify our proof to a function application on both sides
[A\a: )0 ([p)) ~ [Ma: A).cly([ply) : Pla)

The first assumption tells us the inputs are related so by extensionality (Definition 9) it suf-
fices to prove the functions as related:

Na: A)bly = [Ma: A).c]y : (A, — P(x))
Which holds by the third assumption with analogous logic to before. O

5.3.4 Runid terms

Most rules on runid terms are analogous to the cases on the unerased variant, as erasure only
removes the runid marking. We show the case of runid application as an example of such
cases and as the central optimization. The interesting cases are inductive eliminators, so we
give the case on inductive runid nat eliminators.

Application
Case 11 (runid application).

THf~sAM(@:A)z:(a?A) >A Ta~ga:A
'-fra~sa:A

Proof. We need to prove that applying a runid function is equivalent to its argument

[/1,([al) ~ [l - [Al,
Let id = x — x, we can trivially show that id([a],) ~ [a], : [A],, so it suffices to prove that
[/1,([al) ~ id([aly) - [Al,

We use the extensionality principle on functions (Definition 9): related functions take related
inputs to related outputs.

1. We show that the functions are related
[F1y ~ id - TI([A], [A]+)
Since [\, (z : A).z],, = x — x this holds by induction on the first assumption.
2. [a], ~ [a]+ : [A], holds by induction on the second assumption
By showing that the functions and inputs are related, we prove that the applications are

related. [
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Inductive runid eliminators

Inductive eliminators require a stronger semantic lemma. We need to express the substitu-
tion of recursive subterms for recursive subcalls, e.g. b[p — m] for nats. Because of this we

give a stronger semantic lemma with such an induction hypothesis baked in.

Lemma 4 (Runid Nat recursor). Induction on runid Nats

Given
a~dad: Nat
b~0:Nat
recx(k,b,i) ~ k' : Nat = i(k,k)~1+K : Nat
i~i:I(Nat, TI(Nat, Nat))
It holds that
recn(a,b,i) ~ a' : Nat
Proof. We proceed by induction on a ~ a’ : N-at
1. Base case: 0 ~ 0 : Nat
We need to prove that
recn(0,b,7) ~ 0 : Nat
If we compute the left term we need to prove
b~0:Nat
Which holds by assumption
2. Inductive step: 1 +k~ 1+ k' : Nat

As the statement holds for the base and inductive case, it holds for all a.
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Our induction hypothesis is
recn(k, b,i) ~ k' : Nat

We need to prove
recn(l + k,b,4) ~ 1+ k' : Nat

If we compute the left term we need to prove

i(k,recn(k,b,i)) ~ 1+ K : Nat

Using the induction hypothesis and the third assumption we get

ik k) ~ 1+ K« Nat

(5.2)

(5.3)

The fourth assumption lets us use extensionality for i, if the first and second arguments
are related the outputisrelated. k ~ k : N-at holds by assumption, using the induction

hypothesis for the second argument we arrive at

i(k, recn(k, b,4)) ~ i(k, k") : Nat

(5.4)

By transitivity, combining Equation 5.3 and Equation 5.4 gives us the exact proof state-

ment we need in Equation 5.2
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5.3. Main theorem

Since inductive runid eliminators have the aforementioned substitution to express the
induction hypothesis in the syntactic rule we need to investigate how sytactic substitutions
map to the semantic domain. The following lemma shows us that substitution is equivalent
to extending the environment, mapping the variable to the interpretation of the term being
substituted for.

Lemma 5. Evaluation of substitution [bla — c]], = [b],jam[c],]

Proof. We analyze the left and right terms:

e On the left hand side: When we reach a term that is ¢ in b we instead find the term ¢
which is evaluated to [c],

e On the right hand side : When we reach the variable a in b we give the value y(a) = [c].

The values are the same barring the terms mentioned, and the terms mentioned evaluate to
the same value. O

We can now give the case for inductive runid nat eliminators.

Case 12 (Runid Nat eliminator).

w
I'i,a : Nat,T'9 - a ~5 a: Nat
I',To - bla > z] ~5 z: Nat
w
I'1,Ta,m : Nat - ¢[p — m][a — suc m] ~5 suc m : Nat
w w w
I'i,a @ Nat, o, m : Nat,p : Nat - c ~4 C : Nat

w
T'i,a @ Nvat, T2 - elyNata Pbc ~5 a : Nat

Proof. Leta, = ~(a),al, = +'(a), we need to prove that recursion on the left value is equivalent
to the right value

reen(av, [0y jaan]s (6, 7) = [l jamay mskpor]) = @y« Nad
We use Lemma 4. Which has four conditions, using Lemma 5 to interpret the substitutions:
1. a, =~ al, : N-at holds by the first assumption
2. [b]jw0] & 0 : Nai holds by the second assumption
3. For the third condition we say that given
reen(k, [0]4 gty (0, 7) = [y amkimenpor) ~ K Nad (5:5)

We must prove that
[[C]]v[[w—»k,m»—»k,ka] ~ 1 + k/ : JVO/t (56)

Which holds by induction on the third assumption

4. The fourth condition tells us the the function is well formed for arbitrary inputs k ~

E:Nat,r~r: Nat

[[C]]y[aHk,mHk,pHr] A [[C]]'y’ [a—k m—k! por'] - Nat
This follows from the fourth assumption, by analogous logic to Case 6.

As all condition holds the original statement holds by Lemma 4 O
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5.4 Limitations

We have given a proof sketch as opposed to a formalized proof. If we had more time we
would have presented this proof overview and mechanized the proof for increased rigour.

5.4.1 Polymorphic functions

. 0
Our analysis rejects erased parametric functions e.g. id : (A : set) — (a ¥ A) — A, because
the type variable A no longer exists in our context. However accounting for this would not
make our proof or semantics more useful, we could either:

1. Require types with erased parameters to be monomorphized, either by the compiler
or metatheoretically (one can regard the semantics or proof as quantifying over the
specific type)

2. Build monomorphization into the semantics, interpret the semantic type into an explicit
quantification over valid semantic types.

3. Define a different erasure function/semantics for types, and only erase type parameters
at the type level after this compiler pass.

Any of these options would gain us more technical complexity with equivalent generality
or results. As such our semantics simply exclude such functions and assumes they are
monomorphized before being passed to this compiler stage.

5.4.2 Going from the weak to strong relation

Our strong relation morally captures the behaviour of typing and weak relation. Proving this
would entail proving soundness of the strong relation with regards to the typing and weak
relation. This would take two lemmas:

1. ProvethatifT'—a® A, T—b* BandT I a ~, bthen we can select either A or B for
the strong relation. I' - a ~; b: Aand I' - a ~4 b : B should still satisfy the semantics.

2. Prove that the weak relation T - a ~, bconditions in the typing rules T |- a ¥ A entail
the strong relationI' -a ~sb: A

We leave this soundness proof as future work which is out of scope of the current thesis.
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Chapter 6

Related work

We will overview prior and related work in the field and how our contributions interact
with this work. As we have already specified the primary related work is ornament-based
approaches. We will first go over ornaments, custom representations and then agda2hs. We
will then briefly go over work in Rocq and compilers.

6.1 Ornaments

Ornaments [McB10] specify a theoretical basis for how to give an algorithm (an algebra)
to create one type from another via extension. Using this approach we can, for example,
define vectors as an extension of lists: Vec(A,n) = {l : List(A) | length(A,a) = n},ie. alist
together with a condition on the index (the index equals the length of the list). This encoding
of inductive families as dependent pairs is common in the literature. It is used in “Custom
Representations” [TB25] and Agda2HS! [Coc+22]. We will now elaborate more on these
two approaches and how our work interacts with theirs.

In both cases we will emphasize that while the framework gives strong theoretical results,
they are both unergonomic in similar ways. Both approaches carry a cost to the programmer
from needing refinement types. Agda2HS greatly limits support of runid functions to only
support types that are encoded as erased dependent pairs. Theocharis and Brady [TB25]
support more types than just refinement types, but require manually coded mappings from
existing types to their refinements, including coherence proofs.

6.1.1 Custom representations

Theocharis and Brady [ TB25] give a type theory for reasoning about the run-time representa-
tion of data generally; decoupling it from the theoretical structure of data. This is motivated
by efficiency concerns. For example, natural numbers are formalized in a linked list struc-
ture suc (suc (suc zero)) = 3. This lets us define operations like addition and theorems
with the use of induction, a powerful mathematical tool. Computers however are famously
good at representing numbers and doing calculations efficiently with binary representations
and operations, not with inefficient linked lists. Dependent languages tend to have built in
conversion from Nat primitives to binary representation. Theocharis and Brady [TB25] gen-
eralize this to give any data type a run-time representation and trivialize mappings between
the different compile time views of the same run-time data.

However as we alluded to earlier this carries some programming cost. We have to give
a mapping to a user-defined ornament encoding. This ornament encoding contains user-
provided equality proofs.

'Which is not explicitly based on ornaments
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Let us stick with the example of vectors. We start with traditional inductively defined vec-
tor vec A nand list List A types. Now we must define the ornamental encoding of vectors
Vec' A n =13 (List A) (A 1 » length 1 = n). We need to define constructor functions nil'
= (nil, refl) and cons' x (xs, p) = (cons x xs, cong succ p). Note how to give the con-
structor we must construct the proof of length (cons x xs) = succ (length xs). Next we
need to define the eliminator for vec', i.e. elim-Vec' P b r n xs. We skip the type signature
and the definition for the sake of conciseness. The point is that in this definition we must also
provide explicit equality proofs. But we are not done yet. We still need to prove our spec-
ification of the eliminator correct. We prove its behaviour correct for each constructor. For
the nil branch we prove elimvec' P b r zero (nil', refl) = b, the statement for the cons
branch is more convoluted thus omitted.

Dependent pattern matching can resolve some of these proofs but not all. The proofs are
not particularly complex for an experienced prover but still tedious. Using their system as it
currently exists implies a large amount of small changes to a large codebase.

6.1.2 Transparent in agda2hs

Agda2HS is less principled in its treatment of runid functions. It has a rudimentary analysis
of correctness, and no mechanism to specify representations. Functions are annotated as
runid when given the transparent pragma. Agda2HS checks correctness by compiling each
argument and body and comparing them. It does this at each pattern match. Types are equal
at run-time if they literally compile to the same value, not just if they are structurally equal.

This means we cannot trivially equate vectors and lists: The vector constructors and list
constructors have nominally different names so are treated as different. Instead, as Listing 6
shows, we must define vectors as a boxed type: list plus an index proof, just like the refinement
types of ornaments. The programmer is tasked with separating the existing type into data
plus proof. Previously n would implicitly have the correct value, now we need to provide
manual proofs that the index lines up with the data, i.e. the length xs = n predicate in the
example.

Vec ¢ Set » Nat » Set
Vec a n = 3 (List a) (A xs » length xs = n)
{-# COMPILE Agda2HS Vec inline #-}

pattern [Jv = [] < refl >

_%v_ : a > Vec an» Vec a (suc n)

X v (xs < p >) = (x % xs) < cong suc p >
{-# COMPILE Agda2HS _xv_ inline #-}

listToVec ¢ (xs ¢ List a) » Vec a (lengthNat xs)
1listToVec xs = xs < refl >
{-# COMPILE Agda2HS listToVec transparent #-}

Listing 6: listToVec function in Agda2HS

This explicit separation of data into run-time data plus proof makes the analysis of the
mapping “trivial”, but greatly restricts what a runid function can be or what types can be
compiled away. This is specially a problem for languages like Agda that do not tend to encode
data types like this. Making use of a feature like this would require a large refactor of existing
codebases or large changes to the implementation of Agda. We would instead like a fine-
grained approach that integrates well with existing language design and minimizes effort
on the part of the programmer.
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6.2 Proof irrelevance

6.2.1 Rocq

Some languages, like Rocq, avoid some of these run-time costs, by way of a split type-system.
A type-level separation of code and proofs are encoded [Let02]. Proof statements are mem-
bers of the pProp type and code is a member of Type. So a compiler could simply disregard
members of Prop. However, this is an under-approximation with low granularity. There are
some things you would want to disregard that you cannot put in Prop . We would like a more
granular system than what Rocq gives us.

For example Listing 7 shows an attempt to encode a safe head function on vectors where
their length index is erased. Everything is fine until we get to defining the vhead function,
which Rocq will not allow us to do since nat lives in Prop and thus cannot be eliminated on.

Inductive list (A:Set) : Set :=
| nil : list A
| cons : A -> list A —> 1list A.

Inductive nat : Prop :=
| z : nat
| S : nat -> nat.

Inductive vec (A : Set) : (nat : Prop) -> Set :=
| nilv : vec A z
| consv : forall (h:A) (n : nat), vec An -> vec A (S n).

Definition vhead {A : Set} {n : nat} (v : vec A (S n)) : A :=
match v with
| cons _ x _ => x
end.

Listing 7: Rocq attempt, vhead function rejected

By comparison in languages with QTT, like Agda, we can define such a function as in
Listing 8. This is because Agda uses the index in type checking, and can recognize it is not
used in run-time position.

data Vec (A : Set) : @ IN » Set where
[T ¢ Vec A O
2V {@@ n} 5 A > Vec An > Vec A (suc n)
vhead ¢ V {n A} > Vec A (suc n) > A
vhead (x % v) = x

Listing 8: Agda vhead function with erasure

6.2.2 Ghost type theory

Ghost type theory [Win24] try to alleviate these problems by way of a universe of “Ghost”
types, which behave closer to run-time irrelevance. These can be used for elimination into
irrelevant types but also to discard impossible branches, thus enabling us to define the vhead
function earlier.
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Additionally they give a syntactic erasure mapping which extends types with an “impos-
sible” value and inserts an absurd case into cases which are impossible on the basis of ghost
values. Future work could try integrating this into our semantics, however it is not clear to
what degree they are compatible as they seem to rely on proof-irrelevance and an extensional
type theory, while we do not support proof-irrelevance and are intensional.

6.3 Identity function detection in compiler backends

Some compilers already perform identity optimisations for commonplace shapes; Idris 2 rec-
ognizes identity functions on List-shaped things [Sta25], among others. However this does
not give a structured solution for general types, nor give the programmer any mechanism to
assure that this optimization will kick in.

[Boi21] shows an approach to a similar problem in OCaml. It describes identifying iden-
tity functions in that it analyses the representation of data types and uncovers that the func-
tion does not produce a representationally different value of the input. It is thus in its aims
quite close to our system. However some important distinctions is that it isnt a dependently
typed language and does not support erasure.
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Chapter 7

Conclusion and Future work

This thesis presented a foundational exploration of erasure and run-time identity in a depen-
dently typed setting. We introduced a core type theory enriched with erasure annotations
to distinguish between run-time-relevant and run-time-irrelevant components of a program
and runid markers to denote redundant computation. To reason about when erased terms
remain behaviorally equivalent, we defined a syntactic run-time equivalence relation and
gave it a semantics via a partial equivalence relation (PER) model based on NbE [ACDO07].

Our erasure semantics were defined as a translation from the source language to a run-
time subset, allowing us to precisely characterize which components are retained during
execution. We then established the soundness of a strengthened form of the run-time equiv-
alence relation with respect to the erasure and run-time equivalence semantics, proving that
erased terms related syntactically are also semantically equal after erasure.

While these results provide a solid foundation, several limitations point toward avenues
for future work. Most notably, our system lacks full support for inductive families. Extending
our semantics and syntactic framework to handle such families would be an important step
toward a general theoretical basis. We have suggested intuitions to define this, primarily on
the basis of analysis of signatures via our run-time equivalence behaviour.

Another open challenge lies in the treatment of higher-order runid functions and assump-
tions generally. Our current approach relies on substitution to encode assumptions about
run-time equivalence, but this technique lacks a general and principled justification. A more
robust framework for assumptions could resolve this. We attempted to design a more prin-
cipled solution for this, but ran into problems with positivity and well-foundedness.

Finally, our proof and semantics focus on a core subset of the language and have not been
mechanized. Formalizing the development in Agda or a similar proof assistant would not
only increase confidence in the results but also help clarify the boundaries of the system and
guide further extensions.

Together, these results demonstrate how dependent types can support modalities on run-
time behaviour. They form a basis for understanding and optimizing dependently typed
programs, and point the way toward richer type systems with verified run-time behavior.

45






[Abel3]

[ACDO07]

[Atk18]

[Boi21]

[Coc+22]

[Dyb94]

[Kle+09]

[Ler+16]

[Let02]

Bibliography

Andreas Abel. “Normalization by evaluation: Dependent types and impredica-
tivity”. In: Habilitation. Ludwig-Maximilians-Universitit Miinchen (2013).

Andreas Abel, Thierry Coquand, and Peter Dybjer. “Normalization by Evalu-
ation for Martin-Lof Type Theory with Typed Equality Judgements”. In: 22nd
IEEE Symposium on Logic in Computer Science (LICS 2007), 10-12 July 2007, Wro-
claw, Poland, Proceedings. IEEE Computer Society, 2007, pp. 3-12. por: 16. 1109/
LICS.2007.33. URL: http://doi.ieeecomputersociety.org/10.1109/LICS.2007.33

Robert Atkey. “Syntax and Semantics of Quantitative Type Theory”. In: Proceed-
ings of the 33rd Annual ACM/IEEE Symposium on Logic in Computer Science, LICS
2018, Oxford, UK, July 09-12, 2018. Ed. by Anuj Dawar and Erich Gradel. ACM,
2018, pp. 56—65. poI: 10 . 1145/3209108 . 3209189. URL: http://doi.acm.org/10.
1145/3209108.3209189.

Leo Boitel. Detecting identity functions in Flambda. https://ocamlpro.com/blog/
2021_07_16_detecting_identity_functions_in_flambda/. [ Accessed 24-02-2025].
July 16, 2021.

Jesper Cockx et al. “Reasonable Agda is correct Haskell: writing verified Haskell
using agda2hs”. In: Haskell '22: 15th ACM SIGPLAN International Haskell Sympo-
sium, Ljubljana, Slovenia, September 15 - 16, 2022. Ed. by Nadia Polikarpova. ACM,
2022, pp. 108-122. 1sBN: 978-1-4503-9438-3. por: 10 . 1145 /3546189 . 3549920. URL:
https://doi.org/10.1145/3546189.3549920.

Peter Dybjer. “Inductive Families”. In: Formal Asp. Comput. 6.4 (1994), pp. 440-
465.

Gerwin Klein et al. “selL4: formal verification of an OS kernel”. In: Proceedings of
the 22nd ACM Symposium on Operating Systems Principles 2009, SOSP 2009, Big Sky,
Montana, USA, October 11-14, 2009. Ed. by Jeanna Neefe Matthews and Thomas
E. Anderson. ACM, 2009, pp. 207-220. 1sBNn: 978-1-60558-752-3. por: 10 . 1145 /
1629575.1629596. URL: http://doi.acm.org/10.1145/1629575.1629596

Xavier Leroy et al. “CompCert-a formally verified optimizing compiler”. In: ERTS
2016: Embedded Real Time Software and Systems, 8th European Congress. 2016.

Pierre Letouzey. “A New Extraction for Coq”. In: Types for Proofs and Programs,
Second International Workshop, TYPES 2002, Berg en Dal, The Netherlands, April 24-
28, 2002, Selected Papers. Ed. by Herman Geuvers and Freek Wiedijk. Vol. 2646.
Lecture Notes in Computer Science. Springer, 2002, pp. 200-219. 1seN: 3-540-14031-
X. URL: http://link. springer .de/ link /service/series /0558 /bibs /2646 /
26460200.htm.

47


https://doi.org/10.1109/LICS.2007.33
https://doi.org/10.1109/LICS.2007.33
http://doi.ieeecomputersociety.org/10.1109/LICS.2007.33
https://doi.org/10.1145/3209108.3209189
http://doi.acm.org/10.1145/3209108.3209189
http://doi.acm.org/10.1145/3209108.3209189
https://ocamlpro.com/blog/2021_07_16_detecting_identity_functions_in_flambda/
https://ocamlpro.com/blog/2021_07_16_detecting_identity_functions_in_flambda/
https://doi.org/10.1145/3546189.3549920
https://doi.org/10.1145/3546189.3549920
https://doi.org/10.1145/1629575.1629596
https://doi.org/10.1145/1629575.1629596
http://doi.acm.org/10.1145/1629575.1629596
http://link.springer.de/link/service/series/0558/bibs/2646/26460200.htm
http://link.springer.de/link/service/series/0558/bibs/2646/26460200.htm

BiBLIOGRAPHY

[McB10]

[MMO4]

[Nor08]

[Sta25]

[TB25]

[Tej20]

[Wad87]

[Win24]

48

Conor McBride. “Ornamental algebras, algebraic ornaments”. In: Journal of func-
tional programming 47 (2010).

Conor McBride and James McKinna. “The view from the left”. In: Journal of Func-
tional Programming 14.1 (2004), pp. 69-111. por: 16.1017/S0956796803004829. URL:
http://dx.doi.org/10.1017/S0956796803004829.

Ulf Norell. “Dependently Typed Programming in Agda”. In: Advanced Functional
Programming, 6th International School, AFP 2008, Heijen, The Netherlands, May 2008,
Revised Lectures. Ed. by Pieter W. M. Koopman, Rinus Plasmeijer, and S. Doaitse
Swierstra. Vol. 5832. Lecture Notes in Computer Science. Springer, 2008, pp. 230—
266. 1sBN: 978-3-642-04651-3. DOI: 10 . 1007 /978 - 3- 642 - 04652 -0 _5. URL: http:
//dx.doi.org/10.1007/978-3-642-04652-0_5.

Zoe Stafford. Make ‘CONS’, ‘NIL’, ‘JUST’ and "NOTHING’ constructors have uni-
form names by Z-snails - Pull Request #3486 - idris-lang/Idris2 — github.com. https:
//github.com/idris-lang/Idris2/pull/3486. [Accessed 13-08-2025]. 2025.

Constantine Theocharis and Edwin Brady. “Custom Representations of Induc-
tive Families”. In: arXiv preprint arXiv:2505.21225 (2025).

.....

versity of St Andrews, 2020. por: 10.17630/sta/677. URL: https://doi.org/10.
17630/sta/677.

Philip Wadler. “Views: A Way for Pattern Matching to Cohabit with Data Ab-
straction”. In: POPL. 1987, pp. 307-313.

Théo Winterhalter. “Dependent Ghosts Have a Reflection for Free”. In: Proceed-
ings of the ACM on Programming Languages 8.ICFP (2024), pp. 630-658. por: 16.
1145/3674647. URL: https://doi.org/10.1145/3674647.


https://doi.org/10.1017/S0956796803004829
http://dx.doi.org/10.1017/S0956796803004829
https://doi.org/10.1007/978-3-642-04652-0_5
http://dx.doi.org/10.1007/978-3-642-04652-0_5
http://dx.doi.org/10.1007/978-3-642-04652-0_5
https://github.com/idris-lang/Idris2/pull/3486
https://github.com/idris-lang/Idris2/pull/3486
https://doi.org/10.17630/sta/677
https://doi.org/10.17630/sta/677
https://doi.org/10.17630/sta/677
https://doi.org/10.1145/3674647
https://doi.org/10.1145/3674647
https://doi.org/10.1145/3674647

runid runtime identity

RTT Runid Type Theory

FP Functional Programming
QTT Quantitative Type Theory
BTT Base Type Theory

MLTT Martin-Lof Type Theory
NbE Normalization by Evaluation

PER partial equivalence relation
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Appendix A

BTT eliminator typing rules

™

I'-f%@"4) B Ta"

4
I'/f"a’B

lea ™

Thel(@TA)xB TPy A)>set T,aT Ay " Brb?P " (z,y)

I‘l—el“xpch(:jP(-rc

el x

Fl—n?Nat FI—P?(m?Nat)ﬁSet
b, P72 TominNat,p? PTm by P7 (suc m)
[ eWatnPb,bs: P n

I~ elNat

Prhas?list A THP%(y%List A) >set Db, 7P [
D,z % A zs ? List A,p?qus}—bc?Pq(conslmxs)

P—  ellList
' elListas Pb,b. : P - as

I'—a’vecAn™ FI—P?(m?Nat)H(y?VeCAmW)—>Set Fr—an:’P(-f[]g
D,m " Nat,h ? At % vec Am™ I—bC(:TPC-r(consghmt)

P}—elVec”ananC{an

— elVec

I's?A™wPB TP (27 ATePB) — set
Tzt A-by 7 P (im™a) T,z®Brbg " P (inr™"b)
DHel™wsPbbr* P s

Felw

Figure A.1: Typing rules for eliminators
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Appendix B

Runid eliminator typing rules

', Iy, H Ay "B blc — "(z,y)"] ~r "(z,y)"

w T w w l_e-l-rx
Iiyet(x: Ay x BP,Tael,"xPcPb: P-c

Fl,rgl—bz[l"—)z} ~p Z

Pl,Fg,m%}Natl—bs[pHm][a:Hsuc m] ~, suc m

" o — el,.Nat
I'i,z : Nat,I's el Natz Pb,bs : P - x

I, Tobbpfl — [1] ~r [N
Pl,Fz,hu:)A,tu:)List A by[p — t][l — cons;ht] ~, cons;ht

o : o = el,List
I'1,0 7 List A, s elListlAPb,b. : P - as

', T b byfv— [17] ~ [17
F17F27

™
n . Nat,
hﬁt;Aa F be[p — t][v — cons] hnt] ~, cons? hnt

w
t: VecAn™

" o — el,Vec
T'i,v:vecAn™ I's - el.Vec"v Pb,b. : P-v

F1>F27y W B+ bR[S — 'inrova] ~p .inr.O,wy

- el, Qw¥
I,sY A%*B. Ty el, "w¥sPbrbr * P* s

[, T2 % A br[s — in@02] ~, im0z

el “w?
I',s H A“wOB, Ty elrwwostLbRngs

I, Do,z A bpfs — inl¥%z] ~, inl®¥z
', g,y YBr br[s — inr““y] ~, inr%y

w w o w el Y
I',s: AYw“B,I9 e, “Yw“sPbrbr : P - s

Figure B.1: Runid Typing rules elims
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B. RUNID ELIMINATOR TYPING RULES

C'by, ~ b,
L=f ~ f 0 F,n(:]Nat,h:A,t:VecAnOI—bC ~p b, 0
~ - ~p elV
refla~ f " Tk eWec?aPbybe ~yp ellista PU, b, " o0
'e:A-b ~, ¢ L0 F,az(:)A,y:Bl—bwrc 0%
~, e ~pr €
I'—elxaPb ~, MNz:A)c-a " I'tel%<aPb ~. MNy:B)c-a "
x: A by ~, I'x:Brbg ~
& =L ¢ ~re1k+J0 w = Ok r ¢ ~re10k+J

IF'elwlaPbrbg ~r Mz:A)c-a I'el’waPbrbg ~ Mz:B).c-a

Figure B.2: Eliminator erasure rules
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Appendix C

(Types)

l(a?A)—»B
) > B
L(a? A) x B¥
) x BY
L(a® A)x BY

l(a® A
l(a® A

lList A
lvec An®
lvec An¥
|AYw* B
1A%w¥B
|AYw°B
I Nat

(Constructors)

LA\ A)b
IXa® A)b
1¥(a,b)*
1%(a,b)*
1“(a,b)°
L1

| cons; ht
Loy

Loy
lcons® hnt
}cons® hnt
linl¥%“q
}in# %
Linr¥“h
Linr0@h
lz

lsuc n

| B
=(a:|A) —|B
= (la:lA)x | B

1A

| B

List |A

List |A
=Vec |A |n

l|Aw | B

| B

1A

Nat

b

Ma:lA). b

(la,]b)

b

la

[l

cons; |h |t
(1

(1,

cons; |h |t
cons, |h |n |t
inl“% |a

la

inr“% | b

b

suc |n
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C. ERASURE FUNCTION

(Eliminators)

1fa =1f

Lfa =1/ la

lel“x“a Pb =elx la |P b
lel%%“aPb =AMy :lB).lb)la
lel“x%aPb =AMz :|A).]b) |la
lel.™xPa Pb =]lel™x”aPb
lellistaPbc =ellist |a |P |b|c
lel,ListaPbc = |ellistaPbc
lelveca Pbc =elvec |a |P |b|c
lewec?aPbe =ellist la |P |[b|c
lel,vec"a Pbc = |elvec"aPbc

lelYw?sPbc =elw |s |P |blc
lel®w®sPbe Az :|B).lc) |s
lel®w’sPbe Mz :LA). [b)- s

lel, "wPsPbe = |el™w”sPbc
lelNata Pbc =elNat |a |P |b|c
lelNata Pbc =leWNataPbc
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Appendix D

Strong runtime equivalence relation

D.1 Types
0 w
I''a:AE B ~s D : set '-A~;C:set T,a: A B~ D:set
TH (a’A)— B~y D:set I (@?A) > B~y (c¥C)— D: set

I'HA~; A:set F,au:)AI—B~sA:Set
I'(a:A)—>, B~s(a:A) -, A:sSet

Figure D.1: Strong relation on function types

0
Ix: A B ~5C :set T A~,C:set
Tk (zA)xBY~;Ciset T (29A)xB%~, C:set

PA~,C:set D,aY A B~ D: set
D (27 A)x BY ~g (27 C) x D¥ : set

Figure D.2: Strong relation on product types

I'-A~; B:set
' List A ~gList B: Set

Figure D.3: Strong relation on list type

I''-A~; B:set I'A~;B:set I'Hn~gm:Nat
'+ vec An® ~, List B : set I'-vecAn% ~;, Vec Bm¥ : Set

Figure D.4: Strong relation on vector type
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D. STRONG RUNTIME EQUIVALENCE RELATION

I' = Nat ~5 Nat : Set

Figure D.5: Strong relation on nat type

I'-B ~4 B:set I'HA~g A:set

' A%“B ~, B : set ' AYwOB ~, A : set

F'HA~;C:Set I' B ~4D:set
' AYw¥B ~, CYw¥D : Set

Figure D.6: Strong relation on sum types
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D.2. Terms

D.2 Terms

D.2.1 Constructors

TaArb~yc:B Ta®Ar-b~.b:B

T Aa® A)b~sc:B T MNa% A)b~y MNa? AV (0 A) > B

I’,a%)Al—bxga:A
F'XM(a:A)b~sAa:A)a:(a:A) -, A

Figure D.7: Strong relation on lambdas

P,x(:)A}—bNSCZC P}—awsa;A
LF%a,b0)% ~;¢:C TH%a,b)?~sa:A

F'a~sc:A T,a* Arb~y;d: B
L “(a,b)* ~s“(c,;d)* : (x? A) x B¥

Figure D.8: Strong relation on pairs

I'-n~gm:Nat
I'z~gz:Nat I suc n ~gsuc m:Nat

Figure D.9: Strong relation on Nat constructors

Ch~sh:A ThHt~gt :List A
I' - consjht ~5 cons; A’ t/ @ List A

I'F[1; ~s [1;:List A
Figure D.10: Strong relation on List constructors
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D. STRONG RUNTIME EQUIVALENCE RELATION

L1 ~5 [1;: vec A Z° T [19 ~s [1¥:VecAZY

Fh~gh:A THt~gt :vecAn® F'h~shW:A ThHt~gt :vecAn® T n~gn' :Nat
0 '+ cons¥hnt ~s cons? b/ n't' : vec A suc n¥

I cons)hnt ~s consyh't' : Vec Asuc n

Figure D.11: Strong relation on vec constructors

'a~sad : A F'b~,0:B
I' - inl%%a ~g inl¥%ad’ : Aw¥B T inrY%b ~g inr*%“V : AYw*B

I''~a~sd : A I'~b~sb :B
I'in“Y% ~;a : A”+°B ' inr%%h ~g inr0«¥ : AR

Figure D.12: Strong relation on sum injections
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D.2. Terms

D.2.2 Eliminators

0 0 w
F=f~sANz:A)b:(z:A)—B F'f~sf:(x?A)>B Thra~sd:a
I fla~yb:B I fa~s f'%d B

Pf~sA@:A)az:(a?A) >A Ta~ga:A
'-fra~sa:A

Figure D.13: Strong relation for function application

I'a~sad :Nat PP~ P :(n" Nat) — Set
Pb~gl:P-z F,mU:JNat,pU:JP'ml—c~sc’:P-(sucm)
' -eWataPbc~zeWNata' PPV :P-a

w
I'i,a: Nat,I'o - a ~5 a: Nat
', Ts |—b[a»—>z] ~gs z:Nat
w
I',T9,m * Nat | ¢[p — m][a — suc m] ~5 suc m : Nat
w w w
I'i,a 2 Nat,I's,m : Nat,p : Nat - ¢ ~5 c: Nat

w
I'i,a : Nat,I's - elNataPbc ~5 a : Nat

Figure D.14: Strong relation for Nat eliminator

F-p~sp: A FI—P~SP:(ZO:J(Q:(:)A)><B“’)—>Set
F,:U(:)A,yU:JB}—bwsc:P-y
T el’«“pPb~sANa® B).c'p:P-a

PHp~sp:A TP~y P:(2% (2% A) x BY) — set
F,a:u:JA,y(:JB}—b~Sc:P-a;
PHel“x%pPb~yAa? A)c®p:P-a

Pkp~sp : (@Y A)xBY TP~ P :(27(a? A) x BY) - set
D,z Y Ay Brb~ b :(a? A) x B
D el“xYpPb~gel“x“p PV :(a” A) x BY

™

F'p~sp:(a:A) x BP
Tz Ay Brb~,"(x,y)": (a" A) x BP
Tel,"x’p_b~sa:(a’ A) x BP

Figure D.15: Strong relation for x eliminator
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D. STRONG RUNTIME EQUIVALENCE RELATION

PP~ P:(p? A’¥B) > set Ths~y5:B T,2° Brby~,b:P" (inr®¥z)

T'Hel®wsPbrbr ~s Mz Y B)b) " s: PV

PP~ P:(pT A%¢"B) > set Ths~y5:A4 Dzt Arbg~gb:P7 (in1¥0%)
I el“wlsPbrbr ~s Mz A)b) T s: PYs

P~ P :(pY AYe¥B) > set 'k s~,s:AYw“B
Toz% A by~ b : PP (im@@r)
I,y"Y Br bg ~s by P‘I-J(-inr“”‘”y)

w

I'elYw¥sPbrbp ~s el¥w s PV, bl : P s

I1,s "B, loP~yP:(xYB)—>set I',Ig,2?Brbg[s—a]~,z:B
1,84 B, Tyt el,'w¥sPbybr ~s s: B

]._‘]_,SL?A,FQFP’\’SP:(JJ“:)A)—’SQt Fl,FQ,SUuZJAI—bL[SHIE] ~sx: A
Fl,SUZJA,FQ Fel, “e%sPbrbp ~55: A

[,s 7 A9“B, Ty P~y P: (¢ AY9%B) — set
[1,0g,2 % A bpls — inl¥%z] ~5 inl¥¥z : AYw%B
', T,y YBE brls — inr“y] ~5 inr““y: AYw“B

1,80 AY0“B. Ty - el, “w¥ s Pbybp ~5 5 : Aw¥B

Figure D.16: Strong relation for w eliminators

I'-a~sa :List A FI—PNSP':(xu:JList A) — set Lb~ b :PY [T
I‘,hU:JA,t%)L'ist A,pU:JPu-)tI—C~sC’:Pg(conslht)

[ ellistaPbe ~gellista P'b ¢ : P a

I,a% List A Tg P~y P: (2" List A) — Set
['1,T2 b bla— [1)] ~s [1;: List A
P17F2,hU:JA,tu:) List A+ c[p > t]la > cons;ht] ~5 cons;ht: List A

w
I'i,a: List A,I'9 el ListaPbc ~5a: List A

Figure D.17: Strong relation for List eliminators
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D.2. Terms

I'a~ga :List A L-b~y b P [
F,hu:}A,n(:)Nat,t%}List A,pL;)PU'JtI—CNs d:P% cons ht

[ eWec?aPbc~,ellistd PPV P a

L'an~;a :vecAn® Db~y b : PP
F,hL?A,?TLU:JNat,t%}Vec:Am“’,p“:JPbt)tI—C~S c/:Pu-Jconsghmt

I' -elvec?aPbc ~, elvec? a’ P’V ¢ - P%q

I',a % VecAn™ Iy a ~sa:Vec An™
I't,To = bla— [1]] ~s [1] : Vec AZ"
Fl,rg,hszA,mT:rNat,t%} Vec Am™ |- ¢[p — t][a — cons] hmt| ~5 cons] hmt : vec A (suc m)"

w
T'i,a:vecAn™ I's - el,Vec"a_bc ~5a:Vec An™

Figure D.18: Strong relation on vector eliminators
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