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Summary

Synchrony is a phenomenon that pervades all fields of science. The Kuramoto model is a prominent model
that describes synchronization in systems (networks). It models each element of the network as an oscillator
with an individual phase. Due to global coupling, a phase transition is realized, such that some oscillators of
the network synchronize. An example of this model is the synchronization of chemical oscillators. However,
this model is sometimes insufficient. It is found that in some parts of the brain, synchronization is required,
but that excessive synchronization may lead to epilepsy. This reveals that negative feedback is required in
order to avoid excessive synchronization.
In this study, the Kuramoto model is extended to an adaptive network by introducing two opposing adapta-
tion rules, such that the strength of coupling can differ per pair of oscillators. The anti-Hebbian rule promotes
links between oscillators that are in anti-phase. It is found that networks with this adaptation rule organize
themselves in a way that links occur between oscillators whose frequencies are most distant, and that other
links are weakened or pruned completely. This suggests that networks with this adaptation rule are able to
avoid excessive synchronization. However, the network is still able to sustain explosive synchronization.
The second rule, the Hebbian rule, promotes links between oscillators that are in phase. Networks with this
rule do not prune links. Again explosive synchronization is revealed in this network.
A stability analysis is performed to obtain more fundamental insights in the dynamics of the network. The
results of this thesis can help obtaining deeper understanding the dynamics and principles of link pruning
and explosive synchronization in complex networks: phenomena that are observed in, among others, the
field of neuroscience.
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1
Introduction

’Every night along the tidal rivers of Malaysia, thousands of fireflies congregrate in the mangroves and flash
in unison, without any leader or cue from the environment’ Steven Strogratz poetically writes in his book[1]
about synchronization. It is one of many mysterious examples where a (large) group of individuals sponta-
neously organize their movements or activities to synchronize as a group. Without noticing, we take part in
this synchronizing process on a daily base. For example, think of the applaud after a concert. It may take
some time, but the audience will almost always end up clapping their hands in the same rhythm [2]. Re-
cently, Somnox - a spin-off of this university - released a sleep robot that imitates a slow breathing rhythm.
By holding the robot, your own breathing rhythm will synchronize to that of the robot. Other examples of
synchronization in the human body include the pacemaker cells in our heart that synchronize in order to
produce one joint heartbeat [3], and neurons that fire synchronous in some regions of the brain. [4]. On the
other hand, oversynchronization may lead to epilepsy [5, 6].
Synchronization occurs not only in the field of biology, it is a phenomenon that pervades all fields of science.
Important applications in physics consist of synchronization in superconducting Josephson junctions [7, 8],
coupled lasers [9, 10], power grids [11, 12] and coupled microwave oscillators [13].

The existence of the spontaneous order and synchronization of groups astonished many scientists, and trig-
gered them to find an explanation. The first report on the subject originates from Christiaan Huygens [14],
who discovered that the phases of pendulums hanging from the same support synchronize. However, the in-
terest in the topic aroused due to the work of Wiener, who was interested in the generation of alpha rhythms
in the brain [15]. He already expected that the underlying principle of these rhythms was related to other ob-
served synchronzation mechanisms. However, his ideas were too complex and did not lead to clear analytical
results [16, 17]. Winfree was the first to propose an actual mathematical model to describe the synchroniza-
tion of oscillators [17, 18]. He recognized that synchronization is a threshold process. Only if oscillators are
somehow coupled strong enough, a transition will take place from an incoherent state to a synchronous one.
This model inspired Kuramoto, who finally simplified the model of Winfree [19, 20, 16]. This simplification
led to the Kuramoto model, probably one of the most celebrated and successful models to describe the syn-
chronization of systems. In short, the elements of the elements of the system are modelled as oscillators with
a phase. Due to global coupling of all the oscillators, a phase transition occurs, such that some elements syn-
chronize.

It is found that sometimes the Kuramoto model is unsufficient. As stated above, excessive synchronization in
the brain may cause epilepsy. It is desired to add negative feedback to the model. To that extend, in this study
the model will be extended, such that the strength of the coupling can differ per pair of oscillators. The thesis
is organized in the following way. In Chapter 2 the Kuramoto model is discussed and the model is extended to
an adaptive network by introducing adaptation rules, such that the strength of coupling can differ per pair of
oscillators. The first rule, the anti-Hebbian rule, is adapted from [21]. This rule weakens links between oscil-
lators that are in phase, and promotes links between oscillators that are in anti-phase, while the second rule
(Hebbian rule) operates vice-versa. Then, in Chapter 3 the dynamics of a large, adaptive network are consid-
ered, by numerically simulating the networks. This is a reproduction of [21], and extended to the Hebbian
adaptative network. In particular, it will reveal the existence of Explosive Synchronization (abrupt and irre-
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2 1. Introduction

versible transition towards a synchronized state [22, 21]) for both adaptive networks, while having different
dynamical properties. Explosive synchronization is currently a subject of many interest, and is for example
recently linked to seizures and anesthetic-induced unconsciousness [23, 24, 21]. After that, in Chapter 4 a
small network of only two oscillators is considered, and solved analytically. From this solution, some very ba-
sic insights in the dynamics of the adaptive network are obtained. This is again based on [21], and extended
to the Hebbian network. In Chapter 5 the study will be extended to a network of 3 oscillators. Although this
network is not easily solved analytically, by using earlier obtained insights, the dynamics of the network can
still be predicted. By doing so, even more dynamics and coupling rules are revealed. Thereafter, in Chapter
6 the coupling of chemical oscillators is considered as an application of the Kuramoto model. Finally, the
conclusions are drawn and interpreted in Chapter 7, and some recommendations for further research will be
done.



2
Theory

2.1. Introduction
This chapter short outlines the theoretical background of the model: an adaptive complex network of Ku-
ramoto oscillators. First the basic principles of graph theory will be presented, as graphs and complex net-
works share the same properties. Thereafter, the model of the complex network of this paper will be intro-
duced.

2.2. Algebraic Graph Theory
A complex network can be defined as ’a system made by a large number of single units (individuals, com-
ponents or agents) interacting in such a way that the behaviour of the system is not a simple combination
of the behaviours of the single units’ [25]. Using graph theory this system can be described mathematically.
The single units are represented by nodes or vertices. The nodes are connected, if there occur interactions
between nodes.These connections are represented by edges that connect the corresponding nodes.
The term ’complex network’ is usually used to refer to the real system or network, while the graph refers to
the mathematical description of the system [26].

2.2.1. Definiton of a graph

Figure 2.1. A graph G = (V ,E), where
V = {1,2,3,4,5,6} and

E = {{1,4}, {1,6}, {2,4}, {4,5}, {4,6}}

A graph G is an ordered pair of finite sets (V ,E). V is the set
of vertices or nodes, and E the set of subsets of V , such that
E ⊆ { {u, v} | u, v ∈ V }. An element {u, v} of E represents an
edge between nodes u and v . A graph G ′ = (V ′,E ′) is a sub-
graph of G = (V ,E), if V ′ ⊆V and E ′ ⊆ E .
A graph is called an undirected graph, if all edges have no ori-
entation, and thus that for {u, v} ∈ E it holds that {u, v} = {v,u}.
In the model of this paper, it is assumed that the network is
undirected, that no node is connected to itself and that two
nodes are connected by at most one link.
See figure 2.1 for an example of a simple graph [27, 28].

2.2.2. Walks and paths
By using the links, it is possible to ’walk’ through the graph. A walk is an ordered list of nodes (n0, . . . ,nk ), such
that {ni−1,ni } ∈ E ,∀1 ≤ i ≤ k. If n0 = u and nk = v , this is called a walk between u and v . A path between u
and v is a walk between u and v where all visited vertices are unique, such that ni 6= n j ,∀i , j = 0, . . . ,k and
i 6= j [27, 28].

2.2.3. Connectivity and completeness
A graph G = (V ,E) is connected if there exists a path between each pair of nodes of G . A graph can also
consist of multiple connected components. A connected component G ′ = (V ′,E ′) is a maximal subgraph of
G = (V ,E), that is connected and that is not connected to any other node of V ′.

3



4 2. Theory

If no edges terminate a node, than this node is also a connected component. For example, the graph of Figure
2.1 has two connected components, namely the subsets V ′

1 = {1,2,4,5,6} and V ′
2 = {3}

A graph G = (V ,E) is complete, if there exists a link {u, v} in E for all nodes u and v in V [27, 28].

2.2.4. The Adjacency Matrix
The adjacency matrix A contains information about the edges of graph. If a graph has N nodes, than the
adjacency matrix is a square N -by-N matrix. Its elements are defined as follows:

ai j :=
{

1 {i , j } ∈ E

0 otherwise
(2.1)

For example, the adjacency matrix of the graph of Figure 2.1 is

A =



0 0 0 1 0 1
0 0 0 1 0 0
0 0 0 0 0 0
1 1 0 0 1 1
0 0 0 1 0 0
1 0 0 1 0 0


The adjacency matrix has some interesting properties that are especially useful for larger graphs. In these
cases it is more convenient to describe a graph by and perform calculations with an adjacency matrix, in-
stead of drawing the graph.

Since it is assumed that no node is connected to itself, the adjacency matrix is a hollow matrix, meaning
that ai i = 0,∀i = 1, . . . , N . Furthermore, seeing that the graph is undirected, it holds that ai j = a j i , and thus
that the adjacency matrix is symmetric.

As ai j determines whether node i is linked with node j , the i th row contains information about all the con-
nections of node i . In other words, the number of edges that terminates node i can be found by taking the
sum of row i . This is also called the degree di of node i . The diagonal matrix ∆ := diag(d1,d2, . . . ,dN ) is called
the degree matrix [29].

2.2.5. Laplacian and Connected Components
For the graph of Figure 2.1 it is easy to determine the number of connected components. However, if only
the adjacency matrix of a large graph is known, it would be very complicated to first draw the corresponding
graph and then determine the number of connected components. Luckily, algebraic graph theory offers an
alternative.
This alternative makes use of the spectral analysis of the Laplacian Q. This matrix is given by [29]

Q =∆− A (2.2)

With A the adjacency matrix and ∆ the degree matrix of graph G . There are multiple formulations of the
following theorem, here is chosen for the formulation in [30]

Theorem 1. Let G be an undirected graph with non-negative weights. Then the multiplicity k of the eigenvalue
0 of Q equals the number of connected components A1, . . . , Ak in the graph. The eigenspace of eigenvalue 0 is
spanned by the indicator vectors 1A1, . . . ,1Ak of those components.

The proof (and additional information) can also be found in [30]. As mentioned before, in this model it is
assumed that the network is undirected, and it is assumed that the weights are non-negative, such that this
theorem may be used. Thus, by determining the algebraic multiplicity of the eigenvalue 0 of Q, the number
of connected components can be determined.

2.3. The Model
As mentioned in section 2.1, the model of interest is an adaptive complex network of Kuramoto oscillators.
The nodes of the network are coupled oscillators and the system obeys the dynamics of an extension of the
Kuramoto model with an adaptation rule for the coupling of the oscillators. In this section the dynamics and
properties of the Kuramoto model will be described, followed by the introduction of two adaptation rules.



2.3. The Model 5

2.3.1. The Kuramoto Model
A prominent model to describe the synchronization of a large and undirected network of coupled oscillators
is the Kuramoto model, described by the Japanese physicist Yoshiki Kuramoto [20]. The model consists of N
≥ 2 coupled limit-cycle oscillators. The uth oscillator (u = 1, . . . , N ) is defined by its natural frequency ωu and
its phase θu ∈ [0,2π]. The natural frequencies are distributed by a unimodal probability g(ω) that is symmetric
about its mean frequency, and the phase of the oscillators obeys the dynamics

θ̇u =ωu + σc

N

N∑
v=1

sin(θv −θu) (2.3)

where σc denotes the overall coupling strength, thus the strength of an connection between two oscillators.
In Figure 2.2(a) a schematic representation of the phases of two Kuramoto oscillators is shown.
The degree of global synchronization can be quantified with the help of the order parameter

z := R(t )e iψ(t ) = 1

N

N∑
u=1

e iθu (t ) (2.4)

where ψ(t ) is the average phase of the network at time t. R corresponds with the magnitude of the order
parameter and can be interpreted as the degree of global synchronization. Figure 2.2(a) shows the order pa-
rameter for two Kuramoto oscillators. If all phases are uniformly distributed in the interval [0,2π], then the
network is asynchronous (or: incoherent) and R ≈ 0. This is shown in Figure 2.2(b). On the contrary, if all os-
cillators have the same phase φ(t ) =ψ(t ), then R = 1. In this case, the complex network is fully synchronized,
and this is shown in Figure 2.2(c). Equation (2.4) can be rewritten as

R(t ) = 1

N

∣∣∣∣∣ N∑
u=1

e iθu (t )

∣∣∣∣∣ (2.5)

Kuramoto rewrote equation (2.3) with the help of equation (2.4) as [31]

θ̇u =ωu −Rσc sin(θu −ψ) (2.6)

In this equation the evoluation of the phase of the u-th oscillator no longer depends on the phase of the other
oscillators, but on R and ψ. The larger σc , the more the oscillators are attracted to R(t )e iψ(t ), and thereby the
network becomes more synchronous[16].

-1-1 -0.5-0.5 0.50.5 11
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00
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22
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11

00
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-1-1 -0.5-0.5 0.50.5 11

-1-1

-0.5-0.5

0.50.5

11

00

(c)

Figure 2.2. A visualisation of the parameters of Kuramoto oscillators: (a) The phases θ1,θ2 and the corresponding order
parameter z, (b) an asynchronous network with R ≈ 0 and (c) a synchronous network with R ≈ 1.

There exists a critical coupling strength σcritical such that the network transforms from a asynchronous into
a synchronous network. Kuramoto analytically proved that for an infinite number of oscillators, and for a
continuous, symmetric and unimodal distribution g (ω) centered above 0, the σcritical is given by [19, 20]

σcritical =
2

πg (0)
(2.7)
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and that the global synchronization for σc >σcritical is given by

R =
√

1− σcritical

σc
(2.8)

And R ≈ 0 for σc < σcritical, as the network is asynchronous for these values of σc . In Figure 2.3, R is plotted
as a function of σc for a network with σcritical = 0.5, in accordance with (2.8). It shows a very sharp transition
from an incoherent network to a synchronous network at σc =σcritical.

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

c

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

R

Figure 2.3. The order parameter R as a function of overall coupling strength σc given a critical coupling strength of
σcritical = 0.5.

For the finite dimensional Kuramoto model, the expression of σcritical does not hold. However, a necessary
condition for the existence of synchronized solutions is given by [32, 33]

σcr i t i cal >
N (ωmax −ωmi n)

2(N −1)
(2.9)

where ωmi n/ ωmax are the minimum/maximum values of the natural frequencies of the oscillators of the
network. It is emphasised that the above inequality gives a lower bound for σcritical, and not the exact value.

2.3.2. Adaptive Complex Networks
In the Kuramoto model, the strength of a connection between two oscillators is the same for all connections.
In the network of this paper however, the strength can differ for every connection. The (modelled) weight of
the connection between oscillators u and v is depicted byαuv ∈ [0,1]. The Kuramoto model can be applied by
including the connectivity of the network in the evolution of the phase [34]. The evolution of the phase can
then be rewritten into

θ̇u =ωu + σc

N

N∑
v=1

αuv sin(θv −θu) (2.10)

In adaptive networks, the weights of connection not only differs for every connection, they can also evolve in
time according to an adaptation rule. In the following two adaptation rules will be introduced: the Hebbian
and the anti-Hebbian rule.

TheHebbian adaptation rule
First, the Hebbian adaptation rule will be introduced. This rule stimulates connections between oscillators
that are in phase. The instantaneous phase correlation puv (t ) between oscillators v and u at time t, is mea-
sured by:

puv (t ) = 1
2‖e iθu (t ) +e iθv (t )‖ =

√
1+cos(θu(t )−θv (t ))

2
(2.11)

Of course, oscillator u and v are in phase if puv = 1 and in anti-phase if puv = 0. The Hebbian adaptation rule
is then given by

α̇uv = (puv −pc )αuv (1−αuv ) (2.12)
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where pc is the correlation threshold. It can be easily seen that whenever puv > pc the weight of the link
between oscillator u and v gets increased. On the other hand, whenever puv < pc this link will decrease. In
other words, given a fixed correlation threshold, the links of pairs with a higher level of instantaneous phase
correlation will be reinforced. Furthermore, notice that an equilibrium is reached if αuv = 0 or αuv = 1, cor-
responding to the minimum and maximum value of the weight of the link.

The anti-Hebbian adaptation rule
In a similar way, an anti-Hebbian adaptation rule can be formulated. This rule stimulates connections be-
tween oscillators that are out of phase, and is given by [21]

α̇uv = (pc −puv )αuv (1−αuv ) (2.13)

where puv as in equation (2.11) and pc the correlation threshold. It can be easily seen that now whenever
puv < pc the weight of the link between oscillator u and v gets increased. On the other hand, whenever
puv > pc this link will decrease. Thus, given a fixed correlation threshold, the links of pairs with a higher level
of instantaneous phase correlation will be weakened. It is emphasized that if the Hebbian adaptation rule
stimulates a certain link, then the anti-Hebbian rule would weaken that same link.

Properties of the adaptive networks
For networks with an anti-Hebbian or Hebbian adaptation rule the global strength S can be defined. S is
defined as the sum of all weights of connections, or

S := 1

N −1

N∑
u,v>u

αuv (2.14)

The maximum total strength of a network is equal to 1
N−1

N ·(N−1)
2 = N

2 .

Finally, to achieve better insight in the topological characteristics of the network, the adjacency matrix A =
{auv } of the network is required. This matrix is defined as:

auv :=
{

1 αuv > τ
0 otherwise

(2.15)

where τ is the threshold to keep relevant (strong enough) links and delete irrelevant (too weak) links. Obvi-
ously, αuv is the weight of the link.





3
Numerical simulations of an adaptive

complex network

3.1. Introduction
In this chapter a network of N = 300 oscillators is considered. At t = 0, the phases θu of this network are
uniformly distributed in the interval [0, 2π], the links αuv in the interval [0,1] and the natural frequencies ωu

in the interval [0.8,1.2]. Modified Euler is applied to simulate the time evolution ofαuv and θu for a large range
of the coupling strength σc and the phase correlation threshold pc for both a network with an anti-Hebbian
adaptation rule and a network with a Hebbian adaptation rule. The final degree of the global synchronization
R, the total strength S, the largest component Ng and the average degree 〈k〉 is measured. In addition, the
microscopic structure of the networks will be studied.

3.2. Anti-Hebbian Adaptation Rule
First, a numerical simulation is done for a network with an anti-Hebbian adaptation rule, given by equations
(2.10) and (2.13).

3.2.1. Global Synchronization
The final degree of global synchronization R of the simulated network can be computed with equation (2.5).
In Figure 3.1 R is shown as a function of σc and pc .
Figure 3.1(a) shows R as a function of σc for different values of pc . For low values of pc , the network is not
able to synchronize for any value ofσc and remains incoherent. For higher values of pc synchronization of the
network is possible, and an abrupt transition of the global synchronization is shown for σc ≈ 0.25. For these
values of pc , the R,σc -characteristics are similar to the R,σc -characteristics of the non adaptive Kuramoto
model, as visualized in Figure 2.3 (note that the network in this figure has a different σcritical). However, it
must be noted that the transition from the incoherent network to the synchronous state is more abrupt, and
almost discontinuous. This reveals the existence of explosive synchronization (ES). This is the abrupt and
irreversible transition from an incoherent state to a fully synchronized state [22, 21]. Explosive synchroniza-
tion that is currently a subject of many interest, and is for example recently linked to seizures and anesthetic-
induced unconsciousness [23, 24, 21]. It is still debated whether this transition is discontinuous or not [35].
The critical value ofσc deduced in Figure 3.1(a) is in line with equation (2.9), which says that synchronized so-
lutions in a network with N = 300 can only exists if at leastσc > 0.2. Moreover, with the help of equation (2.7),
σcritical of a network with a infinite number of oscillators can be computed: σcritical = 2

π · 1
g (0) = 2

π · ωmax−ωmin
1 ≈

0.255. Although finite-size effects are expected for this system, this theoretical value still seems to be a very
accurate approximation.

In a similar way, R can be plotted as function of pc for different values of σc . This is shown in Figure 3.1(b). In
accordance with the paragraph above, the network is not able to synchronize for any value of pc if σc < 0.25.
For σc > 0.25, the network is able to synchronize and an abrupt and (almost) discontinuous transition of R is
shown at pc = 0.65.

9
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Note that for a network with infinitely many oscillators and a uniformly distribution of all corresponding θi ,
it can be assumed that for each x ∈ [0,2π] there exists an oscillator i such that ωi = x. This means that the
average value of the instantaneous phase correlation puv at t = 0 ( 1

N

∑
i , j>i pi j (0)) can be computed by taking

the integral over θ from 0 to 2π, or:

puv(0) = 1

2π−0

∫ 2π

0

√
1+cos(θm −θl )

2
dθl =

2

π
≈ 0.637 (3.1)

Note that this value is almost equal to the critical correlation threshold deduced in 3.1(b). This relationship
can be explained using the properties of the anti-Hebbian adaptation rule. This rule stimulates links between
oscillators with puv < pc . Thus, if at t = 0 puv(0) < pc , then more than half of the links will be stimulated, forc-
ing the network in the synchronized stated.
Obviously, due to finite-size effects, the real value of puv(0) may slightly differ from this theoretical value.
However, equation (3.1) appears to be a very accurate approximation for the critical correlation threshold of
a finite network of 300 oscillators.
Figures 3.1(a) and 3.1(b) can be combined in a 3D surface plot and a heat map, see Figure 3.1(c) and 3.1(d)
respectively. This figure shows that there exists a large region of parameters σc and pc for which the net-
work remains incoherent (i.e. R ≈ 0). For higher values of pc and σc an abrupt and discontinuous transition
towards a fully synchronized network is shown, revealing the existence of explosive synchronization (ES). Fig-
ure 3.1(d) shows that this abrupt transition indeed occurs for σc > 0.25 and pc > 0.65, which is in line with
what was found in Figures 3.1(a) and 3.1(b).
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Figure 3.1. The final degree of global synchronization R. R is shown a) as function of σc for different values of pc and b)
as function of pc for different values of σc and c), d) as function of both pc and σc . c) underlines the abrupt transition
from a asynchronous into an synchronized network (ES). a), b) and d) show that ES occurs for σc > 0.25 and pc > 0.65.
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3.2.2. Total strength
The global strength S of the evolved network can be computed with equation (2.14). Figure 3.2 shows S as a
function of σc and pc . It points out that for σc > 0.25, S decreases with increasing σc , except for pc ≈ 1. This
can be explained by investigating equations for θ̇u , α̇uv and puv (given by (2.10), (2.13) and (2.11) respectively)
intuitively. If σc increases, the term

∑N
v=1αuv sin(θv −θu) becomes more significant in the equation for θ̇u ,

leading to increasing values of puv . Due to the anti-Hebbian adaptation rule, this will result in more links to
be weakened. However, if pc ≈ 1, it will always hold that puv < pc and thus all links will be strengthened.
Moreover, the figure points out that S suffers an abrupt transition for σc < 0.25 at pc = 0.65. This value of the
critical correlation threshold is the same as for R and again corresponds with equation (3.1).
Taking into account both Figure 3.1(d) and Figure 3.2, it should be noticed that (for pc > 0.65) the relations of
S and R with σc are inverse, i.e. S peaks for σc < 0.25, where the network is asynchronous, and S decreases
for σc > 0.25, where the network is fully synchronized. This points out that the network first undergoes a
phase of strong local synchronization, where clusters are formed, before achieving global coherence. While
achieving global coherence, the total strength of the network decreases, implying that links are pruned.
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Figure 3.2. The total strength S as function of pc and σc .

3.2.3. Global topological characteristics
Better insight in the topological characteristics of the evolved network can be retrieved by inspecting the
largest component Ng and the average degree 〈k〉 of the evolved network. In order to compute these proper-
ties, the adjacency matrix is studied (defined as in equation (2.15)). The threshold is chosen as τ= 0.8 to only
keep the significant links. The network is studied in the range of parameters σc and pc where the transition
into a synchronous and connected network takes place: pc ∈ [0.6, 1] and σc ∈ [0.2, 1].
The largest component Ng of the evolved network can be found by analysing the connected components of
the graph. Theorem (1) is used to find the number of connected components. Figure 3.3(a) shows the size of
Ng as function ofσc and pc . It reveals that for a large region of the parameters the network is fully connected,
so that the all the oscillators are part of the same component. In the region 0.4 < σc and pc ∈ [0.7, 0.9], the
network is not fully connected. Again, this can be explained by increasing values of puv , and thus decreasing
values of αuv for increasing σc . Only for pc sufficiently large, links will be reinforced.
Figure 3.3(b) shows 〈k〉 of the oscillators as function of the parameters. It points out that the network con-
nectivity decreases from 〈k〉 = N (complete network) to 〈k〉 = 2.
It is interesting to note that Ng remains very large (Ng > 250 for almost all combinations of parameters). Since
〈k〉 = 2 is the absolute minimum to enable a fully connected network (required for R ≈ 1), this points out that
all redundant links are pruned in the pruning process (see subsection 3.2.2).
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Figure 3.3. Topological characteristics of the binarized network as a function of the coupling strength σc and of the

correlation threshold pc : a) The largest connected component Ng , and b) and the average degree 〈k〉.

3.2.4. Microscopic topological characteristics
More information about the topological characteristics of the evolved network can be retrieved by ’zooming
in’ on the oscillators and inspecting how their natural frequencies and the network structure correlate.
These features are inspected in Figures 3.4, 3.5 and 3.6 for a fixed value σc = 0.6 and three values of pc :
pc = 0.61 (left panels), pc = 0.75 (middle panels) and pc = 0.95 (right panels). The value of σc is fixed such
that synchronization is possible (see Figure 3.1). The values of pc are chosen in such way that the different
phases of synchronization are depicted: before the transition (pc = 0.61) and after the transition(pc = 0.75
and pc = 0.95). For pc = 0.75, this transition has just occurred, and all redundant links are pruned. For
pc = 0.95 the value is sufficiently large to reinforce most links (see Figures 3.1, 3.2 and 3.3).

Figure 3.4 depicts the degree ku as function of ωu of each oscillator u and the different parameter combi-
nations. Just before the transition, ku and ωu are uncorrelated. However, just after the transition a very clear
relation is shown between ku and ωu . Oscillators whose frequencies are close to the extreme values of the
distribution (i.e. ωu ≈ 0.8 or ωu ≈ 1.2) are much more connected than oscillators with an average ωu (i.e.
ωu ≈ 1.0). This correlation is still present for pc = 0.95, though it is less strong. This is an interesting result,
as this shape (V -shape) for k −ω-characteristics is known to be an indicator for networks that can sustain
explosive characteristics [21]. // The result is explained by inspecting the equation for α̇uv ((2.13)) intuitively:
low values of puv result in increasing αuv . It may be expected that the more distance the natural frequen-
cies of two oscillators have, the lower the instantaneous phase correlation puv is (and thus the stronger αuv ).
Naturally, oscillators with natural frequencies close to the extreme values of the distribution have more dis-
tance with the natural frequencies of the other oscillators in the network. In particular, an oscillator u with
ωu = 1.0, can have a maximum distance of ∆ω= 0.2, whereas an oscillator v with ωu = 0.8, can have a maxi-
mum distance of ∆ω= 0.4. Thus, as the oscillators with natural frequencies close to the extreme values of the
spectrum have on average more distance (in natural frequency), it is expected that puv is also lower on aver-
age, and thus that these oscillators will have a higher degree ku . Note that this implies, that it is also expected
that links mainly occur between oscillators with distant frequencies.
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Figure 3.4. Scatter plot of the degree ku as function of ωl of each oscillator u for σc = 0.6 and a) pc = 0.61 b) pc = 0.75
and c) pc = 0.95. A strong correlation appears after the transition in a synchronized network: oscillators whose

frequencies are close to extreme values of the distribution are much more connected than the other frequencies.

The implication above (that links are formed between oscillators with distant ω) is confirmed in Figure 3.5,
where the node neighborhood detuning ωu −〈ωv 〉u is shown for each oscillator u for the three combinations
of parameters, with 〈ωv 〉u the average frequency of oscillators v ∈Cu and Cu the set of oscillators that are con-
nected to oscillator u. The figure shows that after the transition oscillators are much more likely to form links
with oscillators whose frequency is distant. This phenomenon is called frequency dissasortativity [21], and
is particularly remarkable just after the transition. In this phase of synchronization the node neighborhood
detuning is discontinuous in ωu resulting in a gap in the middle of the frequency spectrum. Here, the prefer-
ence for connecting with nodes that have frequencies on the right side of the spectrum shifts to a preference
for the left side of the spectrum, in order to obtain as much distance in frequency as possible. In addition,
all other links are pruned. Again, this can be explained by inspecting the equation for α̇uv ((2.13)) intuitively:
low values of puv result in increasing αuv , thus forcing the network to acquire frequency dissasortativity.

0.8 0.9 1 1.1 1.2

 
u

-0.3

-0.2

-0.1

0

0.1

0.2

 
u
 -

 
 

v
u

(a)

0.8 0.9 1 1.1 1.2

 
u

-0.3

-0.2

-0.1

0

0.1

0.2

 
u
 -

 
 

v
u

(b)

0.8 0.9 1 1.1 1.2

 
u

-0.3

-0.2

-0.1

0

0.1

0.2

 
u
 -

 
 

v
u

(c)

Figure 3.5. Scatter plot of the node neighborhood detuning ωu −〈ωv 〉u , with oscillators v ∈Cu for σc = 0.6 and a)
pc = 0.61 b) pc = 0.75 and c) pc = 0.95. The network acquires frequency dissasortativity after the transition.

Figure 3.6 shows the connectivity of the network as function of ωu and ωv . This is done by ordering the
adjacency matrix according to their natural frequencies. The green regions represent connected oscillators,
and red regions represents disconnected oscillators. Inspecting these figures shows the process of pruning
and reinforcing links. Before the transition, only links between oscillators with frequencies close to the mid-
dle of the spectrum are pruned, corresponding to the red diagonal region. Just after the transition this region
of pruning links becomes much larger, leaving unaffected only the links between oscillators with frequencies
that are as far away from each other as possible. In the right panel, pc is sufficiently large to reinforce more
links. However, just as in the left panel, links between oscillators with frequencies close to the middle of the
spectrum are more likely to be pruned than other links.
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Figure 3.6. The connectivity of the network as function of ωu and ωv for σc = 0.6 and a) pc = 0.61 b) pc = 0.75 and c)
pc = 0.95. Links between oscillators with frequencies close to the middle of the spectrum are most likely to be pruned.

Just after the transition almost all links are pruned, only leaving links connecting nodes whose frequencies are as far
away as possible.

3.3. Hebbian Adaptation Rule
The same analysis can be done for a network with an Hebbian adaptation rule, given by equations (2.10) and
(2.12).

3.3.1. Global Synchronization
The final degree of the global synchronization R of these networks can be computed with equation (2.5). Fig-
ure 3.7 shows R as a function of pc and σc . The surface plot in Figure 3.7(a) shows that there exists a region
of parameters σc and pc where the network will not synchronize (R ≈ 0), a region where the network is fully
synchronized (R ≈ 1) and a very small region of parameters where this transition takes places, corresponding
with the very abrupt and steep increase of R: explosive synchronization. Figure 3.7(b) points out that this
transition occurs for σc > 0.25, which is equal to the theoretical critical value for a network with infinite os-
cillators (given by equation 2.7) and corresponds with the critical value of the network with an Anti-Hebbian
adaptation rule (see Figure 3.1).
For values ofσc slightly above this critical value, the network will synchronize for pc < 0.63, again correspond-
ing to puv(0) given in equation (3.1). Thus, the critical correlation threshold is the same as for the network
with an anti-Hebbian adaptation rule (see Figure 3.1), but the relation is inverse. This can be explained by
the nature of the adaptation rules. Using the Hebbian adaptation rule, links between oscillators u and v with
puv < pc are stimulated, whereas with the anti-Hebbian adaptation rule links with pc < puv are stimulated.
However, if σc increases, the critical correlation increases, resulting in an expanding region of parameters
for which the network is able to synchronize. In a similar way as the investigation of the relationship of S
and σc for the anti-Hebbian network (see section 3.2.2, this relationship can be explained by investigating
equations for θ̇u , α̇uv and puv (given by (2.10), (2.12) and (2.11) respectively) intuitively. If σc increases, the
term

∑N
v=1αuv sin(θv −θu) becomes more significant in the equation for θ̇u , leading to increasing values of

puv . Due to the Hebbian adaptation rule, this implies that for a fixed value of pc more links will be stimulated
as σc increases. This causes the shift to the left of the critical correlation threshold as pointed out in Figure
3.7(b).



3.3. Hebbian Adaptation Rule 15

0
1

1

0.5R

c

0.5

p
c

1

0.5

0 0

(a)

0 0.2 0.4 0.6 0.8 1
 p c

0

0.2

0.4

0.6

0.8

1

 
c

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

 R

(b)

Figure 3.7. The global synchronization R of the evolved network as a function of σc and pc . The surface plot in a)
underlines the explosive transition of the asynchronous to the synchronized state. The heat map in b) points out that

this happens for σc > 0.25 and pc < 0.63, and that the latter critical value increases with σc .

3.3.2. Total Strength
The global strength S of the evolved network, defined by equation (2.14), is shown as function of σc and pc

in Figure 3.8. The figure points out that S suffers an abrupt transition at pc = 0.63 and σc = 0.25, and that the
critical value of pc rises with σc , for σc > 0.25. For values of pc below this critical value a very strong network
is found. This relationship can be explained by investigating equations for θ̇u , α̇uv and puv in a similar way
as in the subsection above, finding that for a fixed pc , an increasing σc results in more stimulated links, and
thus an increasing S.
Just as with the anti-Hebbian network, the figure points out that S also suffers an abrupt transition for σc <
0.25 (and pc = 0.63), whereas the network does not synchronize for this combination of parameters σc and
pc (see Figure 3.7. This points out that the network first goes through a phase of strong local synchroniza-
tion, where clusters are formed, before achieving global coherence. In contrast to the network with the anti-
Hebbian adaptation rule, S does not decrease as global coherence is achieved. This thus points out that
increasing σc does not result in the pruning of links.
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Figure 3.8. The total strength S as function of pc and σc .

3.3.3. Global topological characteristics
The global topological characteristics are studied by inspecting the largest component Ng and the average
degree 〈k〉 of the evolved network. The adjacancy matrices (defined as in equation (2.15)) are computed and
analyzed for a threshold τ = 0.8 and in the parameter range pc ∈ [0,0.9] and σc ∈ [0.2,1]. This is the relevant
parameter range where the transition into a synchronous network takes place (see Figure 3.7).
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Figure 3.9(a) shows the size of Ng in this parameter range. It reveals that in a large region of parameters the
network is fully connected, such that all oscillators belong to the same component. If this region is compared
to Figure 3.9(b), where 〈k〉 is depicted in the same parameter range, it is found that the network is not only
fully connected, but also almost complete (i.e. 〈k〉 ≈ N ) in this region. Comparing Figure 3.9 to Figure 3.8
it is found that same dynamics are found for Ng and 〈k〉 as for S. Since no links are pruned while achieving
global coherence, S and therefore 〈k〉 and (eventually) Ng do not decrease in the synchronized state. In the
asynchronous region however, all links are pruned, resulting in S ≈ Ng ≈ 〈k〉 ≈ 0. There are thus only two
possible states of the network: either all links are reinforced, or all links are pruned.
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Figure 3.9. Topological characteristics of the binarized network as af function of the coupling strength σc and of the
correlation threshold pc . The largest connected component, Ng , is shown in a), and the averagede degree, 〈k〉 is shown

in b).

3.3.4. Microscopic topological characteristics
Better insight in the topological characteristics of the evolved network can be retrieved by inspecting the cor-
relations between the network structure and the natural frequencies. These microscopic features are shown
in Figures 3.10, 3.11 and 3.12 for a fixed value ofσc = 0.6 and three values of pc : pc = 0.5 (left panels), pc = 0.78
(middle panels) and pc = 0.95 (right panels). These values are again chosen in such a way that the different
phases of synchronization are depicted: the fully synchronized state (pc = 0.5), just before the transition in a
asynchronous network (pc = 0.78 and finally the asynchronous state (pc = 0.95)). Note that this are the same
phases as studied for the network with an anti-Hebban adaptation rule (see subsection 3.2.4), but in reverse
order.
Figure 3.10 shows the degree ku as function of ωu for each oscillator u of the network. For the fully synchro-
nized and the asynchronous phase these two features are uncorrelated, as ku is constant: ku ≈ 290 and ku ≈ 4
respectively. Just before the transition a correlation between ku and ωu is shown. Oscillators whose frequen-
cies are close to the extreme values of the distribution (i.e. ωu ≈ 0.8 or ωu ≈ 1.2) are less connected then
oscillators whose frequencies are more in the center of the distribution, i.e. ωu ∈ [0.9,1.1]. In comparison to
the anti-Hebbian network, this correlation is less strong.
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Figure 3.10. Scatter plot of the degree ku as function of ωl of each oscillator u for σc = 0.6 and a) pc = 0.5, b) pc = 0.78
and c) pc = 0.95. A weak correlation appears just before the transition to an asynchronous network. Oscillators whose

frequencies are close to extreme values of the distribution are less connected than the other frequencies

Figure 3.11 shows the node neighborhood detuningωu−〈ωv 〉u for each oscillator u for the three combinations
of parameters, with 〈ωv 〉u the average frequency of oscillators v ∈ Cu and Cu the set of oscillators that are
connected to oscillator u. For the fully synchronized network a linear relation is shown. Figure 3.10(a) showed
that ku ≈ 290 ≈ N for allωu . Therefore, 〈ωv 〉u ≈ 1 for allωu , resulting in the linear relation in the synchronized
phase. A few deviations from this relation are shown for oscillators whose frequencies are close to the extreme
values of the distribution, where the (absolute value of the) node neighborhood detuning is slightly smaller,
pointing out that these oscillators are not able to link with oscillators whose frequencies are on the other
side of the spectrum. For the asynchronous network, the node neighborhood detuning is contant, with ωu −
〈ωv 〉u ≈ 0. In this phase, oscillators are only able to link with oscillators whose frequencies are very close
to each other. Finally, just before the transition a mix of these two relations is found. It is noted that the
(absolute value of the) node neighborhood detuning is smaller than in the completely synchronized phase
(and larger than the asynchronous phase), pointing out that links linking oscillators whose frequencies are
close are favored (and that a larger distance is allowed than in the asynchronous phase). This phenomenon
is the opposite of frequency dissasortativity, which is acquired in networks with an anti-Hebbian adaptation
rule.
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Figure 3.11. Scatter plot of the node neighborhood detuning ωu −〈ωv 〉u , with oscillator v ∈Cu

Figure 3.12 depicts the connectivity of the network as a function of ωu and ωv , by ordering the adjacency
matrix according to their natural frequencies. The green regions represent linked oscillators, and red regions
represent disconnected oscillators. For the fully synchronized network only a few links between oscillators
with frequencies that are as far away from each other as possible are pruned, all the other oscillators are
connected. Just before the transition, this pruning region becomes much larger, and many links between
oscillators whose frequencies are close to the extreme values of the distribution are pruned, especially those
between oscillators with very distant frequencies with respect to each other. In the asynchronous network,
all links are pruned, except for those linking two oscillators with almost similar frequencies. This results in
the thin diagonal line.
The pruning of links only occurs if pc becomes too large, resulting in the transition in an asynchronous net-
work. This is an essential difference with the anti-Hebbian network, where link pruning also occurs in the
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synchronous network.
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Figure 3.12. Scatter plot of the node neighborhood detuning ωu −〈ωv 〉u , with oscillator v ∈Cu



4
Analysis of an adaptive network of 2

oscillators

4.1. Introduction
The dynamics of the two networks in the previous chapter may be better understood by analyzing a much
more simplified system. Vanesa Avalos-Gaytan et al. [21] analytically derived the equilibrium points and
their stability for a network of two oscillators with an anti-Hebbian adaptation rule. In this section the results
of this study will be briefly presented and the analytical study will be extended to an analysis of a network
of two oscillators with a Hebbian adaptation rule. In addition both analysis will be compared to a numerical
simulation of the networks.

4.2. Anti-Hebbian adaptation rule
First a network with an anti-Hebbian adaptation rule is considered. The network consists of two oscillators
θ1 and θ2 that are coupled by a single weighted link α. The two oscillators have an instantaneous phase cor-
relation p given by equation (2.11). The dynamics of the network are described by the differential equations
for θ̇u and α̇, given by (2.10) and (2.13) respectively.

4.2.1. Analytical study
The analytical study can also be found in [21], and therefore only the results will be presented in this subsec-
tion. If few more details are desired, it may be useful to first read the analytical study of the Hebbian network
(section 4.3), which is a bit more extensive and has many similarities with the anti-Hebbian case.
In order to transform the of equations given by equations (2.10) and (2.13) into a two-dimensional system,
the phase difference φ := θ2 − θ1 and natural frequency difference ∆ = ω2 −ω1 is defined. Without loss of
generality, it is supposed that ∆> 0. The two-dimensional system is given by:

φ̇=∆−σcαsin(φ)

α̇=
(

pc −
√

1+cos(φ)

2

)
α (1−α)

(4.1)

Where pc is the correlation threshold and σc the coupling strength. It is not possible to integrate the set of
equations (4.9) explicitly, therefore the stability of the system is analyzed to better understand its behavior.
In order to do so, the equilibrium points (i.e. φ̇= 0 and α̇= 0) are determined, and (φ∗,α∗)1 and (φ∗,α∗)2 are
found:

φ∗ = arcsin

(
∆

σc

)
, α∗ = 1 (4.2)

φ∗ = arccos
(
2p2

c −1
)

, α∗ = ∆/σc

2pc

√
1−p2

c

(4.3)

19
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Where the star stands for an equilibrium value of α and φ. The stability conditions can be found by studying
the sign of the eigenvalues of the Jacobian matrix of these two equilibrium points.
In this study two critical coupling strengthsΥ1,Υ2 are found, given by

Υ1 := ∆

2pc

√
1−p2

c

(4.4)

Υ2 :=
(

1

Υ1
−

(
1−2p2

c

)2

4pc
(
1−p2

c
))−1

(4.5)

Note that ∆ < Υ1 < Υ2 for all values of pc and ∆. Furthermore, note that both equilibrium points are not
defined for σc <∆.
Equilibrium point (4.2) is stable for pc > 1p

2
and ∆<σc <Υ1.

Equilibrium point (4.3) is stable for pc > 1p
2

and Υ1 <σc . For Υ1 <Υ2 <σc the point has a sink node, and for

Υ1 < σc <Υ2 the point has a spiral sink. The latter case converges slower to the asymptotic state, as the rate
of convergence min‖Re(λ1,2(pc ,σc ))‖ drops.
It is interesting to note that for N = 2 the necessary condition for the existence of synchronized solutions (see
equation (2.9)) simplifies to

σc > N (ωmax −ωmin)

2(N −1)
=∆ (4.6)

This condition for σc is also found in the analysis. Thus, for N = 2, this lower boundary is in fact the exact
value of σcr i t i cal .

4.2.2. Numerical study
In this subsection a network of two oscillators will be simulated, and this network will be compared to the
analytical derived asymptotic values of the network. At t = 0 the simulated network has the following proper-
ties:

ω1 = 0.8, ω2 = 1.2, ∆= 0.4

θ1 = 0, θ2 =π, φ=π
α= 0.5

(4.7)

The value ofφ is chosen such that at t = 0 a minimum value of p (p = 0) is obtained, which is the most optimal
situation for the anti-Hebbian network to evolve. This network is developed in time using modified Euler for
the differential equations (2.10) and (2.13) for θ̇ and α̇, respectively.
First, the weighted link α is studied as function of σc and pc . Figure 4.1(a) shows the value of α in the simu-
lated network, and Figure 4.1(b) shows the asymptotic value of α, as derived in the analytical study. In region
A1 the network is disconnected (α= 0). In region A2 the network is connected (α= 1), but since σc <∆, the
network will not synchronize. Thus, in both regions A1 and A2 phase-locking is not possible. A1 is defined
by pc < 1p

2
, and A2 is defined by pc > 1p

2
and σc < ∆. On the other hand, synchronization is possible in re-

gions B1 and B2. In B1 equilibrium point (4.2) is stable, and thus in this region α= 1. Region B1 is given by
∆ < σc <Υ1 (given by (4.4)) and pc > 1p

2
. Finally, in region B2 equilibrium point (4.3) is stable, and thus the

link converges to Υ1
σc

. Region B2 is enclosed byΥ1 <σc and pc > 1p
2

.
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Figure 4.1. The weight of the link as function of σc and pc in a) a simulated network and b) the asymptotic value of an
analytical study. The analytical study is verified by the simulation, however for 0.64 < pc < 1p

2
the link does not converge.

The analytical study is verified by the numerical simulation, as Figures 4.1(a) and 4.1(b) are indeed very sim-
ilar. However, around pc = 1p

2
the transition from the incoherent network to the synchronous one is less

abrupt for the simulated network than the analytical study predicts. In this region, the link does not seem to
converge. Figure 4.2 depicts the development of α in time for σc = 0.6 and pc = 0.5 (4.2(a)), pc = 0.95 (4.2(b))
and pc = 0.64 (4.2(c), 4.2(d)) after n time steps (h = 0.01). These values of pc correspond to the incoherent
state, the synchronous state, and the region of transition, respectively. The figures reveal a fast convergence
of α for pc = 0.5 and pc = 0.95, but that, as t →∞, α indeed does not converge to any value 0.64 < pc < 1p

2
. It

may be assumed that this is causes by errors of the Modified Euler method, and not by errors of the analytical
study. This results in the fluctuating pattern in this region in Figure 4.1(a).

0 200 400 600 800 1000
n

0

0.2

0.4

0.6

0.8

1

(a) pc = 0.5

0 200 400 600 800 1000
n

0

0.2

0.4

0.6

0.8

1

(b) pc = 0.95

0 200 400 600 800 1000
n

0

0.2

0.4

0.6

0.8

1

(c) pc = 0.64

0 2 4 6 8 10
n 106

0

0.2

0.4

0.6

0.8

1
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Figure 4.2. The value of α after n time steps (h = 0.01) for σc = 0.6. In a) pc = 0.5 corresponding to the incoherent state,
in b) pc = 0.95 corresponding to the synchronous state and in c), d) pc = 0.64 corresponding to the region of transition. It

is shown that for pc = 0.64 α does not converge.

Moreover, in the analytical study it was found that for σc >Υ2 (given by (4.5)) the convergence of α is slower
than forσc <Υ2. In Figure 4.3(a)α is shown in regions B1,B2−I and 2B−I I while the network is still evolving
(after 1000 time steps, h = 0.01). In Figure 4.3(b) the asymptotic value in this region is depicted. Region B2− I
is enclosed byΥ1 <σc <Υ2 and pc > 1p

2
, and region B2− I I byΥ2 <σc and pc > 1p

2
. Indeed, in region B2− I I

the value of α deviates more from the asymptotic value. However, this claim is not correct for the whole
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region. The rate of convergence does not drop significantly for every combination of σc and pc in region
B2− I I .
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Figure 4.3. The value of α in regions B1,B2− I ,B2− I I . In a) the network is shown after 1000 time steps (h = 0.01) and in
b) the asymptotic values are shown. The convergence in some parts of region B2− I I is indeed slower, but not for all

combinations of σc and pc in the region.

Figure 4.4(a) shows the value of φ in the simulated network, and Figure 4.4(b) shows the asymptotic value
of φ, as derived in the analytical study. It was already found that in region A1 and A2 no phase-locking is
possible. In region A1 this means that φ does not converge, as φ̇ = ∆, en thus φ changes at a constant rate.
In region A2, φ̇ = ∆−σc sin(φ), resulting in the fluctuating pattern. In region B1 and B2 φ is given by the
corresponding equilibrium points (4.2) and (4.3). As in Figure 4.1 in the region 0.64 < pc < 1p

2
the simulated

network does not converge to the asymptotic value.
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Figure 4.4. The value of the φ as a function of σc and pc . In a) the simulated network and in b) the asymptotic value of φ.
For 0.64 < pc < 1p

2
the simulated network does not converge to the asymptotic value.

Finally, in Figure 4.5(a) the global synchronization R is shown as function ofσc and pc of the evolved network.
In Figure 4.5(b) the asymptotic value is depicted. Indeed, the final degree of global synchronization can be
described very precise.
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Figure 4.5. The value of the R as a function of σc and pc . The global synchronization can be described very precise. In
the region 0.64 < pc < 1p

2
the simulated network does not converge.

Note that the value of R in regions A1 and A2 is based on non converging values of the phases of two oscil-
lators. Therefore, in a small network the value of R fluctuates rapidly in time between 0 and 1, as the phases
are sometimes in phase and sometimes in anti-phase. If there are more oscillators, the rate of change of the
phases will still differ per oscillator (as there are many different values of ∆). As the phases are not related
(and now N = 300), the phases will now cancel each other and R will tend to 0. Including this result, the dy-
namics in Figure 4.5 are very similar to those obtained for a network of 300 oscillators with an anti-Hebbian
adaptation rule (see Figure 3.1(d)).
Moreover, comparingα (see Figure 4.1) to the total strength S, which directly depends on the value ofα, once
again reveals that the dynamics in parameter space of these networks are very similar.
These similarities suggest that the analysis of this elementary network actually captures the dynamics of
large-scale adaptive networks, that are impossible to analyze analytically.

4.3. Hebbian adaptation rule
The same analytical and numerical study can be preformed for a network with a Hebbian adaptation rule.
Again, this network consists of two oscillators θ1 and θ2 that are coupled by a single weighted link α and have
an instantaneous phase correlation p given by equation (2.11). The dynamics of the network are described by
the differential equations for θ̇u and α̇, given by (2.10) and (2.12) respectively. The latter differential equation
characterizes the Hebbian adaptation rule.

4.3.1. Analytical study
The analytical study of the Hebbian network has the same structure as the anti-Hebbian network. However,
the study presented in this subsection will be more detailed, as this study is not preformed yet.
The dynamics of the network obey the differential equations for θ̇u and α̇ (equations (2.10) and (2.12)). This
gives the following set of equations:

θ̇1 =ω1 + σc

2
αsin(θ2 −θ1)

θ̇2 =ω2 + σc

2
αsin(θ1 −θ2)

α̇= (
p −pc

)
α(1−α)

(4.8)

If the first two equations are added, it is found that θ̇1 + θ̇2 = ω1 +ω2. This reveals that the system can be
reduced with one equation. To do so, the phase difference φ := θ2 − θ1 and natural frequency difference
∆=ω2 −ω1 are defined. The numbering of the oscillators may be arbitrary, so without loss of generality, it is
assumed that ∆> 0. The two-dimensional system is then given by:

φ̇=∆−σcαsin(φ)

α̇=
(√

1+cos(φ)

2
−pc

)
α (1−α)

(4.9)
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This set of equations can not be integrated explicitly. Therefore, to grasp better insight in its behavior, the
stability of the system is analyzed. To this end, the equilibrium points (i.e. φ̇= 0 and α̇= 0) are determined,
and (φ∗,α∗)1 and (φ∗,α∗)2 are found:

φ∗ = arcsin

(
∆

σc

)
, α∗ = 1 (4.10)

φ∗ = arccos
(
2p2

c −1
)

, α∗ = ∆/σc

2pc

√
1−p2

c

(4.11)

Note that this is the same set of equilibrium points as in the anti-Hebbian network. Again, φ∗ in (4.2) is not

defined if∆>σc . Moreover, note that for pc ∈ [0,1] it holds that 1/(2pc

√
1−p2

c ) ≥ 1. This implies that for α in
(4.3) it holds that α≥∆/σc , thus α> 1 if ∆>σc , which is not possible. From this, it is concluded that for both
equilibrium points to be well defined it is required that ∆≤σc .
The stability of a certain equilibrium point can be determined by constructing the Jacobian matrix J and
evaluating its eigenvalues at that point. If all eigenvalues of J have Re{λi } < 0, then the equilibrium point
is asymptotically stable. If at least one eigenvalue has Re{λi } > 0, then the point is unstable. If J has an
eigenvalue λi = 0, that is not due to symmetry in the system, J provides no conclusions about the stability of
the equilibrium point. [36] The Jacobian of the system (4.9) has the form

J (φ,α) =
 ∂φ̇
∂φ

∂φ̇
∂α

∂α̇
∂φ

∂α̇
∂α

=

−σcαcos(φ) −σc sin(φ)

α(α−1)sin(φ)

2
p

2+2cos(φ)

(√
1+cos(φ)

2 −pc

)
(1−2α)

 (4.12)

Spectral analysis of the Jacobian evaluated at (φ∗,α∗)1 reveals the spectrum λ(J (φ∗,α∗)1), that is

λ1 =−σc cos(φ∗) (4.13)

λ2 = pc −
√

1+cos(φ∗)

2
(4.14)

Note that λ1 < 0, if cos(φ∗) > 0. Indeed, since cos(φ∗) = cos
(
arcsin

(
∆
σc

))
=

√
1−

(
∆
σc

)2
and the equilibrium

point is only defined for σc >∆, it is found that λ1 < 0.
Moreover, the result cos(φ∗) > 0 implies that, for pc < 1p

2
, it always holds that λ2 < 0. Thus, the equilibrium

point is stable in this region.
For pc > 1p

2
, the region of stability can be determined by solving λ2 < 0 for σc . This yields the same critical

coupling strengthΥ1 as obtained in the anti-Hebbian network:

Υ1 := ∆

2pc

√
1−p2

c

(4.15)

However, the relation of σc and Υ1 is opposite: If σc <Υ1 the point is unstable, and for Υ1 < σc the point is
stable.
Next, the stability of the second equilibrium point, i.e. (φ∗,α∗)2, is inspected. The spectrum of the Jacobian
evaluated at this point contains the following eigenvalues:

λ± =
A±

√
A2 +B

(
1
Υ1

− 1
σc

)
C

(4.16)

where A := 2(1−2p2
c )∆, B := 16pc (1−p2

c )∆2 and C := 8pc

√
1−p2

c .
Note that B and C are always positive for pc ∈ [0,1]. This implies that λ+ > 0 for σc >Υ1.
Moreover, note that α∗ = Υ1

σc
. As α is constrained to be in the unit interval, this equilibrium point is only well

defined for σc >Υ1.

It is concluded that the second equilibrium point is not stable for any value of σc and pc . Thus, the Hebbian
network has only one stable equilibrium point, whereas the anti-Hebbian network has two stable equilibrium
points. In other words, in the Hebbian network the weight of the link will always evolve to one of the extreme
values, i.e. α= 1 or α= 0, and there is no intermediate (stable) value like in the anti-Hebbian network.
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4.3.2. Numerical study
In this subsection a network of two oscillators will be simulated at each (pc ,σc ). The resulting network will
be compared to the analytical derived asymptotic values of the network. At t = 0 the simulated network has
the following properties:

ω1 = 0.8, ω2 = 1.2, ∆= 0.4

θ1 = 0, θ2 = 2π, φ= 2π

α= 0.5

(4.17)

The value of φ is chosen such that at t = 0 a maximum value of p (p = 1) is obtained, which is the most opti-
mal situation for the Hebbian network to evolve. This network is developed in time using modified Euler for
the differential equations (2.10) and (2.12) for θ̇ and α̇, respectively.

First, the weighted link α is studied as function of σc and pc . Figure 4.6(a) shows the value of α in the sim-
ulated network, and Figure 4.6(b) shows the asymptotic value of α as derived in previous analytical study.
In region A1 the network is connected (α = 1), but since σc < ∆, this is not strong enough to synchronize
the network. In region A2 the network is disconnected (α = 0). Thus, in both A1 and A2 phase-locking is
not possible and the network will not synchronize. Region A1 is defined by pc < 1p

2
, σc < ∆, and region

A2 by pc > 1p
2

, σc < Υ1. In region B synchronization is possible, and here α = 1. This region is given by

pc < 1p
2

, σc > ∆. Regions A1, A2 and B are similar to regions A2, A1 and B1 of the anti-Hebbian network,

respectively (see Figure 4.1).
The two figures correspond almost exactly, indicating that the analytical study is verified. Indeed, α= 0 and
α= 1 are the only possible values in the evolved network, just like the analytical study predicted. However, the
critical value of pc in the evolved network is shifted to the left relative to the analytical study. This is almost
similar to the anti-Hebbian network, where the numerical and analytical study also differed at the transition
from a synchronized towards an asynchronous network. Again, it may be assumed that this is due to errors
of the modified Euler method. However, in this case α does converge, but not to the asymptotic value.

A1 A2

B

0 0.5 1
p

c

0.2

0.4

0.6

0.8

1

c

0

0.2

0.4

0.6

0.8

1

(a) Simulated network

A1 A2

B

0 0.5 1
p

c

0.2

0.4

0.6

0.8

1

c

0

0.2

0.4

0.6

0.8

1

(b) Asymptotic value

Figure 4.6. The weight of the link α as function of σc and pc in a) a simulated network and b) the asymptotic value
obtained in the analytical study. The numerical study verifies that α only takes the values 0 and 1. The critical value of pc

in the evolved network is shifted to the left relative to its asymptotic prediction

Figure 4.7(a) shows the value of φ of the simulated network, and Figure 4.7(b) shows its asymptotic value,
both as function of σc and pc . In regions A1 and A2 it was found that no phase-locking is possible, as φ̇ 6= 0.
Similar to corresponding regions of the anti-Hebbian network (see Figure 4.4), in region A1 φ̇=∆−σc sin(φ),
in region A2 φ̇=∆. Finally, in region B φ̇= 0 and φ is given by 4.10.
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Figure 4.7. The value of φ as function of σc and pc . In a) the simulated network and in b) the asymptotic value of φ.

Finally, Figure 4.8(a) shows the final degree of synchronization R of the evolved network, and Figure 4.8(b)
depicts its asymptotic value, both as a function of σc and pc . Indeed, using the analytical analysis a very
precise description of R can be obtained. However, as with 4.6, the critical values of pc are sligthly shifted to
the left for the simulated network.
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Figure 4.8. The value of R as function of σc and pc . In a) the simulated network and in b) the asymptotic value of R. The
global synchronization can be described very precise, although the critical values of pc are slightly shifted to the left

As with the anti-Hebbian network, it must be noted that the value of R in regions A1 and A2 would tend to
0 as N grows (see subsection 4.2.2). Including this result, it is again found that the dynamics of Figure 4.8
fits closely to the final degree of synchronization of a network of 300 oscillators, as is shown in Figure 3.7.
Moreover, the diagram of α (see Figure 4.1) is very similar to the total strength S of the large network, which
directly depends on α.

These similarities suggest that the analysis of this elementary network actually captures the dynamics of
large-scale adaptive networks, that are impossible to analyze analytically.



5
Analysis of an adaptive network of 3

oscillators

5.1. Introduction
In the previous chapter it was shown that the dynamics of a network of two oscillators can be analyzed an-
alytically and that it may be suggested that this analysis captures the relevant dynamics of the large-scale
networks. The Hebbian network is only stable for α = 1 or α = 0, and has no intermediate stable value. It
may be expected that this is also the case for larger networks (of N oscillators). Therefore, the dynamics of
this network are less interesting to study. For this reason, the analysis will be extended to a network of three
oscillators with an anti-Hebbian network only. The network consists of the oscillators with phases θ1, θ2 and
θ3. Note that the number of possible links increases from 1 to 3, immediately raising the complexity of the
problem.

First the results of the stability analysis will be presented and compared to a numerical simulation of the
network. Thereafter, all details of the stability analysis will be presented in 5.4-5.7. Finally some basic ’link-
ing’ rules will be given, that are obtained in the stability analysis.

5.2. Numerical study
In the stability analysis there were found 26 equilibrium points. These points and their derivation can be
found in 5.4-5.6. The stability of the points are summarized in Figure 5.1. The different colors depict different
(stable) equilibrium points. The boundary of each region is analytically derived of estimated in the stability
analysis.
In region A, it is found that α12 = 0 and 0 < α23,13 < 1. Region B , corresponds to α12 = 0,0 < α23 < 1,α13 = 1.
In region C , it holds that 0 < α12,23, and α13 = 1. In region D , the weight of the links are given by 0 < α12 <
1,α23 =α13 = 1. In region E all links are equal to 1. Finally, in the regions F 1,F 2 no equilibrium point is stable.
In the region F 2 (where pc > 1p

2
), it is expected that the weight of the links will tend the maximum value 1,

which is not enough for synchronizing the oscillators (just as with 2 oscillators). In region F 1, the weight of
the links will tend to 0, resulting in 3 disconnected oscillators.

The exact value of the equilibrium points and the stability conditions can be found in 5.6. After studying
all the equilibrium points, this bifurcation diagram will be discussed more extensively in section 5.7.

27
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Figure 5.1. Stability diagram of all the equilibrium points of the network (with ∆1 = 0.1,∆2 = 0.3, by using the (estimated)
conditions for stability.

Now, a network of three oscillators will be simulated at each (pc ,σc ) using the modified Euler method. The
characteristics of the resulting network will be compared with the predicted characteristics based on the
bifurcation diagram above. At t = 0 the simulated network has the following properties:

ω1 = 0.8, ω2 = 0.9, ω3 = 1.2

θ1 = 0, θ2 = 2

3
π, θ3 = 4

3
π

α12 = 0.5, α23 = 0.5, α13 = 0.5

(5.1)

And thus ∆1 = 0.1,∆2 = 0.3, and φ1 = φ2 = 2
3π. Here, φ1,φ2 are chosen such that the instantaneous phase

correlations pi j are as low as possible.

Figure 5.2 shows the total strength S as a function of pc and σc . Figure 5.2(a) shows the value of S of the
simulated network, and Figure 5.2(b) shows the asymptotic values of S. The regions A,B ,C ,D,E are not la-
beled in this figure (as this would be a bit chaotic), but of course the asymptotic value of S is determined by
using the values of α∗

i j ,α∗
j k ,α∗

ki of the equilibrium point that is stable in these regions. Comparing the left

and right panel shows that the asymptotic values indeed correspond almost exactly to the simulated values
of S in these regions.
Region F 1 and F 2 correspond to those of Figure 5.1, but they are expanded as a larger interval is considered.
Indeed, in region F 1, it is shown that S = 0 in both the right and left panel. However, around pc = 1p

2
the

transition towards the (a)synchronous network is less abrupt for the simulated network than the analytical
study predicts. This is very similar to the case of 2 oscillators, see Figure 4.1. In this region, the link does not
seem to converge at all. Moreover, the boundaries of region F 2 seem to correspond to those of the simulated
network, as the value of S becomes irregular in this region. However, it is seen that is not true that all links
tend to the maximum value in this region. However, as it is expected that this region is still asynchronous, the
exact dynamics in F 2 are beyond the scope of this study and will therefore not be divided further in separate
regions (of different values of S).
Finally, the lines σc = max{∆1+2∆2 ; 2∆1+∆2}

2 = 0.35 and σc = min{∆1 +2∆2 ; 2∆1 +∆2} = 0.5 are shown. The first
corresponds to a lower bound on σc for the existence of possible synchronized solutions that is found in
the analysis (see equation (5.67)). The latter depicts the lower bound for which the network is stable for all
pc > 1p

2
.
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Figure 5.2. Total strength S of the network as a function of σc and c . In a) the network is simulated, in b) the asymptotic
value of S is shown.

In order to find the global synchronization R, so that it can be verified that the regions A,B ,C ,D,E correspond
to synchronous states (and F 1,F 2 to asynchronous ones), the phase differences φ1,2 must be known. Figure
5.3(a) shows the value of φ1 in the simulated network, and Figure 5.3(b) shows its asymptotic value, both as a
function of σc and pc . In regions A,B ,C ,D,E phase-locking is possible (φ̇= 0), so it is expected that in these
regions the φ1 converges to the asymptotic value. Indeed, the left and right panel correspond almost exactly
in these regions.
In region F 1,F 2 here is no phase-locking, and thus no convergence of φ1. In region F 1 φ̇1 = ∆1, en thus φ1

changes at a constant rate. However, note that due to different convergence times (to αi j , j k,ki = 0), φ1 does
not have to be constant in this region. In the right panel this is only done for simplicity.
In region F 2, φ̇1 =∆1 + σc

3 [−2sin(φ1)+ sin(φ2)− sin(φ1 +φ2), resulting in a more rapidly fluctuating pattern.
Obviously, a figure with similar dynamics can be constructed for φ2.
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Figure 5.3. The phase difference φ1 of the network as a function of σc and pc . In a) the network is simulated, in b) the
asymptotic value of φ1 is shown.

Finally, Figures 5.4(a) and 5.4(b) shows the global degree of synchronization R of the simulated network for
different evolving times, and 5.4(c) shows the asymptotic value of R.
Indeed, the states in F 1,F 2 are asynchronous and the value of R changes with time. This is confirmed by
comparing figures 5.4(a) and 5.4(b). It is clear that for different times, R has different values in these regions.
Moreover, synchronized states only occur in regions A,B ,C ,D,E . Here the value of R is stationary, and thus
remains the same for different evolving times. It is noted in these regions a very precise description of R can
be obtained.
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Figure 5.4. The global synchronization R of the network as a function of σc and c . In a) and b) the network is simulated,
but for different evolving times, and in c) the asymptotic value of φ1 is shown. In regions F 1,F 2 the network is

asynchronous and non-stationary.

To emphasize the similarity between the simulated and asymptotic values of R in the regions A,B ,C ,D,E
the color scale is adjusted. This is shown in Figure 5.5. Indeed, the value of R correspond almost exactly.
Therefore, it may be suggested that the stability analysis is performed correctly.
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Figure 5.5. The phase difference φ1 of the network as a function of σc and c . In a) the network is simulated, in b) the
asymptotic value of φ1 is shown.

Finally, it must be noted that the value of R in regions F 1 and F 2 depends on the non-stationary values of the
phases of two oscillators. Therefore, in a small network the value of R fluctuates strongly in time between 0
and 1. If there are more oscillators, the rate of change of the phases will differ per oscillator (as there are many
different values of ∆). Therefore, the value of the phase differences will be random and R will tend to 0. This
was already found in the network of 2 oscillators, see section 4.2.2.
Including this result, the dynamics in Figure 5.4 are again quite similar to those obtained for a network of two
oscillators (Figure 4.5) and for a network of 300 oscillators (see Figure 3.1(d)) with an anti-Hebbian adaptation
rule. In comparison with the the network of 2 oscillators, the critical value of σc of a network of 3 oscillators
became smaller, and thus closer to the critical value of the network of 300 oscillators.
Moreover, the dependence of total strength S on σc , pc (see Figure 5.2) are very similar to those of the net-
work of 2 and 300 oscillators (Figures 4.1 and 3.2, resp.). In a network of three oscillators, S becomes relatively
smaller for increasing σc , then it does in a network of two oscillators. This again is a better representation of
the dynamics of S of the large network.
However, it must be noted that the region where synchronized states occur for 0.35 <σc < 0.5, has a remark-
able shape, that is not observed in the large network. Therefore, the dynamics of both S and R differ here from
those of the large-scale network. However, in general it may be suggested that the dynamics of the 3-network
capture the dynamics of the large-scale networks.

5.3. Introduction analytical study

In the following sections the set of equations will be simplified, the equilibrium points will be presented, and
the stability conditions will be derived for a network of three oscillators. The procedure is similar to the one
followed for the network of 2 oscillators, although the analysis is (much) more complex for the network of
three oscillators.

5.4. Transformation of the set of equations

The three oscillators θ1, θ2 and θ3 are coupled by three weighted links α12, α23 and α13 through an anti-
Hebbian adaptation rule. The evolution of the phases and the weight of the links are given by equations
(2.10) and (2.13), respectively and result in a six-dimensional system of equations. In the following, this set of
equations will be transformed into a set of five equations.
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The differential equations θ̇1, θ̇2 and θ̇3 are given by

θ̇1 =ω1 + σc

3
[α12 sin(θ2 −θ1)+α13 sin(θ3 −θ1)] (5.2)

θ̇2 =ω2 + σc

3
[α12 sin(θ1 −θ2)+α23 sin(θ3 −θ2)] (5.3)

θ̇3 =ω3 + σc

3
[α23 sin(θ2 −θ3)+α13 sin(θ1 −θ3)] (5.4)

Adding these equation gives θ̇1+θ̇2+θ̇3 =ω1+ω2+ω3, which is a constant factor. This reveals that the system
can be reduced by one equation. To that extend, the phase difference φi and natural frequency difference ∆i

is defined:

φi := θi+1 −θi (5.5)

∆i :=ωi+1 −ωi (5.6)

for i = 1,2,3 and with the cyclic boundary condition that θi+3 = θi . Note that: ∆i = −∆ j −∆k and φi =
−φ j −φk +n ·2π, ∀i , j ,k = 1,2,3, i 6= j 6= k and n ∈Z.
Subtracting equations (5.3) - (5.2) and (5.4) - (5.3), the differential equations for φ1 and φ2 are obtained. Fi-
nally, by substituting φ3 =−φ1 −φ2, the system is reduced to two differential equations.
Next, the differential equations for α̇12, α̇23 and α̇13 are included to find the set of equations that describes
the dynamics of a network of 3 oscillators. These are in the form of α̇i j =

(
pc −pi j

)
αi j (1−αi j ). The instan-

taneous phase correlation pi j between oscillators i and j is given by (2.11) and can be rewritten as

p12 =
√

1+cos(φ1)

2

p23 =
√

1+cos(φ2)

2

p13 =
√

1+cos(φ3)

2

(5.7)

Finally, the five-dimensional set of equations is given by

φ̇1 =∆1 + σc

3

[−2α12 sin(φ1)+α23 sin(φ2)−α13 sin(φ1 +φ2)
]

(5.8)

φ̇2 =∆2 + σc

3

[−2α23 sin(φ2)+α12 sin(φ1)−α13 sin(φ1 +φ2)
]

(5.9)

α̇12 =
(

pc −
√

1+cos(φ1)

2

)
α12 (1−α12) (5.10)

α̇23 =
(

pc −
√

1+cos(φ2)

2

)
α23 (1−α23) (5.11)

α̇13 =
(

pc −
√

1+cos(φ1 +φ2)

2

)
α13 (1−α13) (5.12)

As it is not possible to integrate equations (5.8) - (5.12) explicitly, the stability of the system is analyzed to
better understand its behavior.

5.5. Equilibrium Points
Just as in the previous chapter, the stability of the system can be analyzed by computing the equilibrium
points of the system and checking the stability of these points. The equilibrium points of this system are the
values of αi j and φi for which all differential equations (5.8) - (5.12) are all equal to zero.
Observing that equations (5.10)-(5.12) are equal to 0 if and only if α∗

i j = 0∨α∗
i j = 1∨φ∗

i = arccos(2p2
c − 1),

where φ∗
i is the corresponding phase difference in the equation for α̇i j . For each combination of these val-

ues (such that all three equations are equal to 0) an equilibrium point can be found by substituting them in
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equations (5.8)-(5.9), resulting in a system of 2 equations with 2 unknown variables, except in the case that
φ∗

1 =φ∗
2 = arccos(2p2

c −1) mod (2π). The latter results in a system of 2 equations with 3 unknown variables,
but then an implicit expression for the equilibrium point can be found. The same holds for larger networks,
i.e. each combination of α∗

i j = 0∨α∗
i j = 1∨φ∗

i = arccos(2p2
c − 1) will give an equilibrium point. Moreover,

note that the case α∗
12 = α∗

23 = α∗
13 = 0 is not considered, as this yields ∆i = 0 for all ωi , while it is assumed

that ωi is distributed in an interval (that contains more than one point). Thus, it can be concluded that the
total number of possible equilibrium points of the network is given by 3Nα −1, where Nα = N (N−1)

2 is the total
number of links connecting N oscillators. Thus, there are 26 equilibrium points for a network of 3 oscillators.

In this section the 26 equilibrium points will be found by considering the three possible situations: the net-
work has 1, 2 or 3 links in total, or equivalently: 2 links are equal to 0, 1 link is equal to 0 and all links are
nonzero. These equilibrium points will be arranged in 9 different sets of alike equilibrium points.

5.5.1. One link

Set 1
In this case, the weight of two links is equal to 0. If the weight of the third link is chosen to be equal to 1, the
equations for α̇i j ((5.10) - (5.12)) are all equal to 0. By filling in the values of the weight of the links in equa-
tions for φ̇1 ((5.8)-(5.9)) and equating them to 0, the equilibrium points can be found. For example, using
α∗

12 = 1, and α∗
23 =α∗

13 = 0, equations (5.8)-(5.9) will take the form of two constraints on φ1. This results in the

asymptotic value φ∗
1 = arcsin

(
3∆1
2σc

)
for φ1. The other phase difference φ2 can have any value. However, later

it will be shown that the value of φ2 is restricted to be ’large enough’, otherwise an extra link will appear.
The same procedure can be followed for α23 = 1 or α13 = 1 to obtain constraints for φ2 and φ1 +φ2, respec-
tively. The following three equilibrium points are found, where for each point only the condition for the
constrained phase difference is given:

φ∗
1 = arcsin

(
3∆1

2σc

)
, α∗

12 = 1,α∗
23 =α∗

13 = 0, ∆2 =∆3 =−∆1
2 (5.13)

φ∗
2 = arcsin

(
3∆2

2σc

)
, α∗

23 = 1,α∗
12 =α∗

13 = 0, ∆1 =∆3 =−∆2
2 (5.14)

φ∗
1 +φ∗

2 = arcsin

(
3(∆1 +∆2)

2σc

)
, α∗

13 = 1,α∗
12 =α∗

23 = 0, ∆1 =∆2 (5.15)

Set 2
Now consider the situation where two links have a weight of 0, and the weight of the third link is 0 <αi j < 1.
In that case, the corresponding equation for α̇i j is only equal to zero, if for the φi appearing in this equation
it holds that φi = arccos

(
2p2

c −1
)
. Filling in the two links with weight 0 and the φi = arccos

(
2p2

c −1
)

in the
equations for φ̇1, φ̇2 ((5.8)-(5.9)), and equating them to 0, an explicit expression can be found for the weight of
the nonzero link. Again, the value of the other phase is not prescribed (yet). The following three equilibrium
points are obtained:

φ∗
1 = arccos

(
2p2

c −1
)

, α∗
12 =

3∆1

4σc pc

√
1−p2

c

α∗
23 =α∗

13 = 0, ∆2 =∆3 =−∆1
2 (5.16)

φ∗
2 = arccos

(
2p2

c −1
)

, α∗
23 =

3∆2

4σc pc

√
1−p2

c

α∗
12 =α∗

13 = 0, ∆1 =∆3 =−∆2
2 (5.17)

φ∗
1 +φ∗

2 = arccos
(
2p2

c −1
)

, α∗
13 =

3(∆1 +∆2)

4σc pc

√
1−p2

c

α∗
12 =α∗

23 = 0, ∆1 =∆2 (5.18)

There are 6 equilibrium points found in total with one link.

5.5.2. Two links

Set 3
Now the case is considered, where one link is equal to 0, and the other two links are nonzero.
First, the weight of the two nonzero links is chosen to be one. Again α̇12 = α̇23 = α̇13 = 0 is satisfied. To find
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the equilibrium points, the equations for φ̇1, φ̇2 ((5.8)-(5.9)) are equated to 0, and the method of substitution
is used to solve for φ∗

1 ,φ∗
2 . The following three points are found:

φ∗
1 = arcsin

(
∆2 +2∆1

σc

)
φ∗

2 = arcsin

(
∆1 +2∆2

σc

)
, α∗

12 =α∗
23 = 1 α∗

13 = 0 (5.19)

φ∗
1 = arcsin

(
∆1 −∆2

σc

)
φ∗

1 +φ∗
2 = arcsin

(
∆1 +2∆2

σc

)
, α∗

12 =α∗
13 = 1 α∗

23 = 0 (5.20)

φ∗
2 = arcsin

(
∆2 −∆1

σc

)
φ∗

1 +φ∗
2 = arcsin

(
∆2 +2∆1

σc

)
, α∗

23 =α∗
13 = 1 α∗

12 = 0 (5.21)

Set 4
Just like shown before, the two links can also be chosen to be 0 < αi j < 1. Then again, the corresponding φi

of the equation of α̇i j has to be φi = arccos
(
2p2

c −1
)
. By equating equations (5.8)-(5.9) (φ̇1, φ̇2) to 0 and using

substitution the following three equilibrium points are found:

φ∗
1 =φ∗

2 = arccos
(
2p2

c −1
)

, α∗
12 =

∆2 +2∆1

2σc pc

√
1−p2

c

α∗
23 =

∆1 +2∆2

2σc pc

√
1−p2

c

α∗
13 = 0 (5.22)

φ∗
1 =φ∗

1 +φ∗
2 = arccos

(
2p2

c −1
)

, α∗
12 =

∆1 −∆2

2σc pc

√
1−p2

c

α∗
13 =

∆1 +2∆2

2σc pc

√
1−p2

c

α∗
23 = 0 (5.23)

φ∗
2 =φ∗

1 +φ∗
2 = arccos

(
2p2

c −1
)

, α∗
23 =

∆2 −∆1

2σc pc

√
1−p2

c

α∗
13 =

∆2 +2∆1

2σc pc

√
1−p2

c

α∗
12 = 0 (5.24)

Set 5
Finally, as there are two nonzero links, it is also possible to find equilibrium points that have one link equal
to 1, and one link with 0 <αi j < 1. This implies that the asymptotic value of the φi appearing in the equation
for α̇i j has to equal φ∗

i = arccos
(
2p2

c −1
)
. Filling in the known values of α(= 1,0) and φ(= arccos

(
2p2

c −1
)
) in

equations (5.8) and (5.9) (φ̇1, φ̇2) results in the following six equilibrium points:

φ∗
1 = arccos

(
2p2

c −1
)

φ∗
2 = arcsin

(
∆1 +2∆2

σc

)
, α∗

12 =
∆2 +2∆1

2σc pc

√
1−p2

c

α∗
23 = 1 α∗

13 = 0 (5.25)

φ∗
2 = arccos

(
2p2

c −1
)

φ∗
1 = arcsin

(
2∆1 +∆2

σc

)
, α∗

23 =
∆1 +2∆2

2σc pc

√
1−p2

c

α∗
12 = 1 α∗

13 = 0 (5.26)

φ∗
1 = arccos

(
2p2

c −1
)

φ∗
1 +φ∗

2 = arcsin

(
∆1 +2∆2

σc

)
, α∗

12 =
∆1 −∆2

2σc pc

√
1−p2

c

α∗
13 = 1 α∗

23 = 0 (5.27)

φ∗
2 = arccos

(
2p2

c −1
)

φ∗
1 +φ∗

2 = arcsin

(
2∆1 +∆2

σc

)
, α∗

23 =
∆2 −∆1

2σc pc

√
1−p2

c

α∗
13 = 1 α∗

12 = 0 (5.28)

φ∗
1 +φ∗

2 = arccos
(
2p2

c −1
)

φ∗
1 = arcsin

(
∆1 −∆2

σc

)
, α∗

13 =
2∆2 +∆1

2σc pc

√
1−p2

c

α∗
12 = 1 α∗

23 = 0 (5.29)

φ∗
1 +φ∗

2 = arccos
(
2p2

c −1
)

φ∗
2 = arcsin

(
∆2 −∆1

σc

)
, α∗

13 =
2∆1 +∆2

2σc pc

√
1−p2

c

α∗
23 = 1 α∗

12 = 0 (5.30)

This looks like many different equilibrium points, but it is emphasized that all equilibrium points are in fact
very similar. They all depend on σc and pc in the same way. In addition, as ∆3 = −∆1 −∆2, the numerators
∆1−∆2 can also be written as 2∆1+∆2, etc. Now it is even more clear that all equilibrium points in this set are
similar under exchange of subscripts.

There are found 12 equilibrium points with two nonzero links.
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5.5.3. Three links

Set 6
Now, the case is considered where all links are nonzero. Obviously, all links can be chosen to be 1, and then
it follows that α̇12, α̇12, α̇12 = 0 ( (5.10)-(5.12)). By equating the equations for φ̇1, φ̇2 ((5.8) and (5.9)) to 0, a
system of two nonlinear equations with two unknown variables (φ1 and φ2) is obtained. From this set of
equations, φ∗

2 and φ∗
1 +φ∗

2 can be expressed as a function of φ∗
1 , giving the following equilibrium point:

φ∗
2 = arcsin

(
sin(φ1)+ ∆2 −∆1

σc

)
φ∗

1 +φ∗
2 = arcsin

(
2∆1 +∆2

σc
− sin(φ1)

)
α∗

12 =α∗
23 =α∗

13 = 1 (5.31)

Finally, a condition on φ∗
1 can be obtained by substituting φ∗

2 in equation φ̇1(5.8) and using the relevant
trigonometric identities. This condition is given by the following equality:

2∆1 +∆2

σc
= sin(φ1)

1+
√

1−
(
∆2 −∆1

σc
+ sin(φ1)

)2

+
√

1− sin2(φ1)

+ ∆2 −∆1

σc

√
1− sin2(φ1) (5.32)

There is no explicit solution to this equality. However, using numerical methods, sin(φ∗
1 ) (and thus φ∗

2 and
φ∗

1 +φ∗
2 ) can be solved found for each value of σc .

Set 7
The next set of equilibrium points can be found by choosing all links to be 0 < αi j < 1. Then, all phase
differences have to obey φi = arccos

(
2p2

c −1
)
. Equating equations (5.8) and (5.9) to 0 results in a system of

two equations with three unknown variables (α12,α23 and α13). This gives an implicit expression for α23 and
α13 in terms of α12:

φ∗
1 =φ∗

2 =φ∗
1 +φ∗

2 = arccos
(
2p2

c −1
)

α∗
23 =

∆2 −∆1

2σc pc

√
1−p2

c

+α∗
12 α∗

13 =
2∆1 +∆2

2σc pc

√
1−p2

c

−α∗
12

(5.33)

In order to satisfy cos(φ∗
1 ) = cos(φ∗

2 ) = cos(φ∗
1 +φ∗

2 ), it must hold that pc = 1∨pc = 1
2 . Note that for pc = 1 the

value of α23 and α13 goes to infinity, whereas it should be bounded in the unit interval. Thus, it follows that
pc = 1

2 , resulting in

φ∗
1 =φ∗

2 = 2
3π, φ∗

1 +φ∗
2 = 4

3π α∗
23 =

2(∆2 −∆1)

σc
p

3
+α12 α∗

13 =α12 − 2(2∆1 +∆2)

σc
p

3
(5.34)

Set 8
As before, the next set of equilibrium points can be found by choosing one link equal to 1, and two links
with 0 < α∗

i j < 1, again implying that the corresponding phase differences are given by φ∗
i = arccos(2p2

c −1).

However, now it must be noted that φ∗
i = −arccos(2p2

c − 1), is also a solution. This is now relevant, as this
implies different values for the last phase difference. For example, ifφ∗

1 =φ∗
2 = arccos

(
2p2

c −1
)
, thenφ∗

1+φ∗
2 =

2arccos
(
2p2

c −1
)
, while φ∗

1 =−φ∗
2 = arccos

(
2p2

c −1
)
, would imply φ∗

1 +φ∗
2 = 0. Below, the equilibrium points

are given. If in point (5.35) the signs were chosen to be opposite, the additions term −2(2p2
c −1) would vanish.

For the other two points, the terms between brackets originate from phase differences with opposite sign.

φ∗
1 =φ∗

2 = arccos
(
2p2

c −1
)
, α∗

12 =
2∆1 +∆2

2σc pc

√
1−p2

c

±2(2p2
c −1) α∗

23 =
2∆2 +∆1

2σc pc

√
1−p2

c

±2(2p2
c −1) α∗

13 = 1

(5.35)

(−)φ∗
1 =φ∗

1 +φ∗
2 = arccos

(
2p2

c −1
)
, α∗

12 =
∆1 −∆2

2σc pc

√
1−p2

c

(±2(2p2
c −1)) α∗

13 =
2∆2 +∆1

2σc pc

√
1−p2

c

(∓2(2p2
c −1)) α∗

23 = 1

(5.36)

(−)φ∗
2 =φ∗

1 +φ∗
2 = arccos

(
2p2

c −1
)
, α∗

23 =
∆2 −∆1

2σc pc

√
1−p2

c

(±2(2p2
c −1)) α∗

13 =
2∆1 +∆2

2σc pc

√
1−p2

c

(∓2(2p2
c −1)) α∗

12 = 1

(5.37)
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Set 9
Finally, the last set of equilibrium points can be found by choosing two links equal to 1, and one link with
0 <α∗

i j < 1. This implies that the asymptotic value of theφi appearing in α̇i j has to equalφ∗
i = arccos(2p2

c −1).

For example, choose α∗
23 =α∗

13 = 1 and φ∗
1 = 2arccos(2p2

c −1), such that equations (5.10)-(5.12) are equal to 0,
and a system of two equations and two unknown variables (α12 and φ2) is left. From this set of equations an
expression for α12 as function of φ∗

2 is found, giving the equilibrium point

φ∗
1 = arccos(2p2

c −1) α∗
12 =

∆1 −∆2 +σc sin(φ∗
2 )

2σc pc

√
1−p2

c

α∗
23 =α∗

13 = 1 (5.38)

Moreover, by again using the relevant trigonometric identities, a condition on φ∗
2 can be found:

2∆2 +∆1

σc
= 2p2

c sin(φ∗
2 )+2pc

√
1−p2

c cos(φ∗
2 ) (5.39)

In addition, it must also hold that 0 <α∗
12 < 1. These equality’s can not be solved analytically, but they can be

solved numerically. This gives the allowed parameter space and the corresponding values of sin(φ∗
2 ).

In the same way expressions can be found for the case 0<α23<1, giving the equilibrium point

φ∗
2 = arccos(2p2

c −1) α∗
23 =

∆2 −∆1 +σc sin(φ∗
1 )

2σc pc

√
1−p2

c

α∗
12 =α∗

13 = 1 (5.40)

with the following condition on φ∗
1

2∆1 +∆2

σc
= 2p2

c sin(φ∗
1 )+2pc

√
1−p2

c cos(φ∗
1 ) (5.41)

and the equilibrium point with 0<α13<1

φ∗
1 +φ∗

2 = arccos(2p2
c −1) α∗

13 =
2∆1 +∆2 −σc sin(φ∗

1 )

2σc pc

√
1−p2

c

α∗
12 =α∗

23 = 1 (5.42)

and a condition on φ∗
1 (this could also be written as a condition on φ∗

2 )

∆1 −∆2

σc
= 2p2

c sin(φ∗
1 )+2pc

√
1−p2

c cos(φ∗
1 ) (5.43)

There are found 8 equilibrium points with three nonzero links. It is now concluded that all 26 equilibrium
points are found.

5.6. Stability of Equilibrium Points
In this section the stability of the equilibrium points found in section 5.5 will be analysed by studying the
spectrum of the Jacobian, just as is done in subsection 4.3.1
The Jacobian matrix of the system (equations (5.8) - (5.12)) is given by:

− 2σcα12 cos(φ1)
3 − σcα13 cos(φ1+φ2)

3
σcα23 cos(φ2)

3 − σcα13 cos(φ1+φ2)
3 − 2σc sin(φ1)

3
σc sin(φ2)

3 −σc sin(φ1+φ2)
3

σcα12 cos(φ1)
3 − σcα13 cos(φ1+φ2)

3 − 2σcα23 cos(φ2)
3 − σcα13 cos(φ1+φ2)

3
σc sin(φ1)

3 − 2σc sin(φ2)
3 −σc sin(φ1+φ2)

3

α12(1−α12)sin(φ1)
2
p

2+2cos(φ1)
0 (pc −p12)(1−2α12) 0 0

0
α23(1−α23)sin(φ2)

2
p

2+2cos(φ2)
0 (pc −p23)(1−2α23) 0

α13(1−α13)sin(φ1+φ2)
2
p

2+2cos(φ1+φ2)
α13(1−α13)sin(φ1+φ2)

2
p

2+2cos(φ1+φ2)
0 0 (pc −p13)(1−2α13)


where the phase correlations pi j are given as in (5.7). In the following the eigenvalues of the equilibrium
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points will be computed and the stability conditions formulated per set of equilibrium point. For each set,
the stability conditions are first summarized, followed by the derivation of these conditions. For some sets
of equilibrium points, the derivation is quite technical and/or extensive. It is sufficient to read the stability
conditions only for understanding the bifurcation diagram and ultimately the dynamics of the network.

5.6.1. One link

Set 1

Stability conditions
It can be concluded that an equilibrium point of this set is stable, if

1. ∆i =∆ j =−∆k
2 , where ∆k > 0

2. pc > 1p
2

3. 3
2∆k ≤σc <Σ1,k ((5.45),(5.47),(5.48))

4. σc > f (pc ), where f (pc ) is determined by pc < pi j and pc < p j k (such that corresponding αi j , j k = 0)
(see eq. (5.46)).

Moreover, it is found that frequency dissartovity is required, i.e. the link occurs between the oscillators whose
frequencies are most distant.

Derivation
The equilibrium points in this set are given by (5.13)-(5.15). For the sake of completeness, the first point is
also stated below:

φ∗
1 = arcsin

(
3∆1

2σc

)
, α∗

12 = 1,α∗
23 =α∗

13 = 0, ∆2 =∆3 =−∆1
2

For φ∗
1 to be well defined, it is required that

∣∣∣ 3∆1
2σc

∣∣∣ ≤ 1, or 3
2 |∆1| ≤ σc . Evaluating the Jacobian matrix of this

equilibrium point gives the following eigenvalues:

λ1 =
√

1+cos(φ∗
1 )

2
−pc =

√√√√√1+
√

1− 9∆2
1

4σ2
c

2
−pc

λ2 = pc −
√

1+cos(φ∗
2 )

2
= pc −p23

λ3 = pc −
√

1+cos(φ∗
1 +φ∗

2 )

2
= pc −p13

λ4 =−2σc cos(φ∗
1 )

3
=−

2σc

√
1− 9∆2

1

4σ2
c

3
λ5 = 0

(5.44)

If pc < 1p
2

, then λ1 > 0 for all allowed φ∗
1 and the equilibrium point is a saddle point.

If pc > 1p
2

, the inequality λ1 < 0 can be solved for σc , resulting in the critical coupling strength Σ1,1:

Σ1,1 := 3∆1

4pc

√
1−p2

c

(5.45)

If σc > Σ1,1 then the equilibrium point is a saddle point λ1 > 0. If σc < Σ1,1 then λ1 < 0. Moreover, note that
this implies that ∆1 > 0, as σc can not be negative.
It is clear that λ2 < 0 and λ3 < 0, if pc < p23 and pc < p13. Thus, if

2p2
c −1 < cos(φ∗

1 +φ∗
2 ) = cos(φ∗

1 )cos(φ∗
2 )− 3∆1

2σc
sin(φ∗

2 ) ∧ 2p2
c −1 < cos(φ∗

2 ) (5.46)
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This can be solved numerically and implies a lower bound forσc as function of pc (in the region whereλ1 < 0).
Note that pc < p23 and pc < p13 is required to obtain α23 = 0 and α13 = 0 in a network with an anti-Hebbian
adaptation rule.

Finally, λ4 < 0 for all σc , as
9∆2

1

4σ2
c
< 1.

The same analysis can be done for equilibrium points 2 and 3, given by (5.14) and (5.15) respectively. The
critical coupling strength for the second equilibrium point is given by

Σ1,2 := 3∆2

4pc

√
1−p2

c

(5.47)

and for the third equilibrium point by

Σ1,3 := 3(∆1 +∆2)

4pc

√
1−p2

c

(5.48)

It is noted that λ5 = 0, and thus that nothing can be said about the stability.[36] It gives rise to the center
manifolds, which are curves that capture the asymptotic features of the point. [37] In this stability analysis
however, it is just assumed that by studying the center manifolds, it is found that the point is stable. In other
words, the eigenvalues with zero real part are ignored for now. In the following section, the stability analysis
will be compared to a numerical simulation, and this will reveal if this assumption is correct or not.

Finally, it is noted that for a certain network only one of the three equilibrium points can be stable, due to
the condition on ∆i , j ,k (∆i = ∆ j = −∆k

2 ,∆k > 0). Without loss of generality, the system can be ordered such
thatω1 >ω2 >ω3. Then, ifω2 = ω1+ω3

2 , this condition is satisfied (with∆k =∆3) and the first and third oscilla-
tor are connected, i.e. the oscillators whose frequencies are most distant. This phenomenon, called frequency
dissasortativity was already observed in large networks (3.2.4), and is here analytically confirmed!

Set 2

Stability conditions
An equilibrium point of this set is stable, if

1. ∆i =∆ j =−∆k
2 , where ∆k > 0

2. pc > 1p
2

3. σc >Σ1,k ≥ 3
2∆k , where two eigenvalues have complex part for σc >Σ2,k (,(5.52),(5.53))

Again, the link occurs between the oscillators whose frequencies are most distant.

Derivation
The equilibrium points of this set are given by (5.16) - (5.18). Recall that for the first point of this set is de-
scribed by:

φ∗
1 = arccos

(
2p2

c −1
)

, α∗
12 =

3∆1

4σc pc

√
1−p2

c

α∗
23 =α∗

13 = 0, ∆2 =∆3 =−∆1
2

The weight of the link α∗
12 can also be written as α∗

12 = (3∆1/2σc )

2pc

p
1−p2

c

. This implies that 3∆1
2σc

≤α∗
12, as for 0 ≤ pc ≤ 1

it holds that 0 ≤ 2pc

√
1−p2

c ≤ 1. Taking into account that 0 ≤α∗
12 ≤ 1, it can be concluded that 0 ≤ 3∆1

2 ≤σc .
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The Jacobian matrix of this point yields more complex eigenvalues. These eigenvalues can be rewritten into:

λ1 =
A+

√
A2 +B( 1

σc
− 1
Σ1,1

)

C

λ2 =
A−

√
A2 +B( 1

σc
− 1
Σ1,1

)

C

λ3 = pc −
√

1+cos(φ∗
2 )

2
= pc −p23

λ4 = pc −
√

1+cos(φ∗
1 +φ∗

2 )

2
= pc −p13

λ5 = 0

(5.49)

where A := 2∆1(1−2p2
c ), B := 24pc (1−p2

c )∆2
1, C := 8pc

√
1−p2

c and Σ1,1 the critical coupling strength given by
(5.45).
Notice that B and C are always positive, so it can be shown easily that if σc < Σ1,1, that λ1 > 0 and λ2 < 0,
regardless the sign of A. Hence the equilibrium point is unstable for these values of σc .
If σc > Σ1,1, the stability depends on a second critical coupling strength Σ2,1 that determines the sign of the
radicand:

1

Σ2,1
: = 1

Σ1,1
− A2

B
= 1

Σ1,1
− (1−2p2

c )2

6pc (1−p2
c )

(5.50)

Using Σ2,1, the eigenvalues λ1 (λ+) and λ2 (λ−) can be rewritten as

λ± =
A±

√
1
σc

− 1
Σ2,1

)

C
(5.51)

Since A2 and B are both positive, it holds that Σ2,1 >Σ1,1, and thus the following cases need to be considered:
Σ1,1 <σc <Σ2,1 and Σ1,1 <Σ2,1 <σc .
If Σ1,1 <σc <Σ2,1, the sign of λ± is the same as the sign of A.
On the other hand, if Σ1,1 < Σ2,1 < σc , then the radicand is negative and thus the eigenvalues are complex.
The sign of the real part is again the same as the sign of A.
Hence, in both cases it holds that Re{λ±} < 0 if A < 0, thus if∆1 < 0 and pc < 1p

2
, or if∆1 > 0 and pc > 1p

2
. Only

the latter is valid, since it is required that ∆1 > 0 for α12 to be well-defined.

Moreover, λ3,λ4 < 0, if pc < p23 and pc < p13. As with the previous set of equilibrium points, these conditions
are necessary to obtain α23 = 0 and α13 = 0 in a network with an anti-Hebbian adaptation rule. However, in
this case, these conditions do not yield an extra lower bound for σc . To verify this, note that equation 5.46 is
met for small negatives values of φ∗

2 , as long as pc < 1. The latter is satisfied as σc >Σ1,1.

A similar analysis can be done for equilibrium points 5 and 6.
For the fifth equilibrium point, the critical coupling strength (distinguishing real and complex eigenvalues) is
given by

1

Σ2,2
: = 1

Σ1,2
− (1−2p2

c )2

6pc (1−p2
c )

(5.52)

And for equilibrium point 6, by

1

Σ2,3
: = 1

Σ1,3
− (1−2p2

c )2

6pc (1−p2
c )

(5.53)

Finally, just as in the previous group, it is noted that for a certain network only one point of this set can
possibly be stable. If the point is stable, then the nonzero link connects the oscillators whose frequencies are
most distant.



40 5. Analysis of an adaptive network of 3 oscillators

5.6.2. Two links

Set 3

Stability conditions
It is found that this point is always unstable.

Derivation
The points of this set are given by (5.19), (5.20) and (5.21). Recall that the first point is given by

φ∗
1 = arcsin

(
∆2 +2∆1

σc

)
φ∗

2 = arcsin

(
∆1 +2∆2

σc

)
, α∗

12 =α∗
23 = 1 α∗

13 = 0

The solution is feasible if
∣∣∣∆2+2∆1

σc

∣∣∣≤ 1 and
∣∣∣∆1+2∆2

σc

∣∣∣≤ 1. Otherwise, φ∗
1 and φ2∗ are not defined.

The eigenvalues of the Jacobian matrix for this point are

λ1 =

−cos(φ∗
2 )

3
− cos(φ∗

1 )

3
+

√
cos(φ∗

2 )2 −cos(φ∗
1 )cos(φ∗

2 )+cos(φ∗
1 )2

3

σc

λ2 =

−cos(φ∗
2 )

3
− cos(φ∗

1 )

3
−

√
cos(φ∗

2 )2 −cos(φ∗
1 )cos(φ∗

2 )+cos(φ∗
1 )2

3

σc

λ3 =
√

1+cos(φ∗
1 )

2
−pc =

√√√√√1+
√

1−
(
∆2+2∆1
σc

)2

2
−pc

λ4 =
√

1+cos(φ∗
2 )

2
−pc =

√√√√√1+
√

1−
(
∆1+2∆2
σc

)2

2
−pc

λ5 = pc −p13 = pc −
√

1+cos(φ∗
1 +φ∗

2 )

2

(5.54)

Note that cos
(
φ∗

1

)≥ 0 and cos
(
φ∗

2

)≥ 0, since
∣∣∣∆2+2∆1

σc

∣∣∣≤ 1 and
∣∣∣∆1+2∆2

σc

∣∣∣≤ 1. Therefore, it holds that cos(φ∗
1 )+

cos(φ∗
2 ) =

√
cos(φ∗

2 )2 +2cos(φ∗
1 )cos(φ∗

2 )+cos(φ∗
1 )2 >

√
cos(φ∗

2 )2 −cos(φ∗
1 )cos(φ∗

2 )+cos(φ∗
1 )2. This implies

that λ1 < 0. Moreover, it is trivial that λ2 < 0.
If pc < 1p

2
, then it holds that λ3,λ4 > 0 and thus that this point is unstable for this region.

If pc > 1p
2

, the sign of λ3 depends on the critical coupling strength

Σ3,1 := ∆2 +2∆1

2pc

√
1−p2

c

(5.55)

If σc > Σ3,1, then λ3 > 0, or, the other way around, σc < Σ3,1, then λ3 < 0. Note that σc is positive, and thus it
must hold that 0 <∆2 +2∆1 ≤σc <Σ3,1.
The sign of λ4 (for pc > 1p

2
) depends on the critical coupling strength

Σ3,2 := ∆1 +2∆2

2pc

√
1−p2

c

(5.56)

and also here applies: If σc < Σ3,2, then λ4 < 0 and vice-versa. In addition, this is a valid statement if it also
holds that 0 <∆1 +2∆2 ≤σc .
Define ∆max(mi n) = max(min){∆1 +2∆2,∆2 +2∆1} and Σmi n/max = ∆mi n/max

2pc

p
1−p2

c

. Then λ3,λ4 < 0 for 0 < ∆max <
σc <Σmi n and pc > 1p

2
.

Finally, λ5 < 0 if pc < p13. This condition is required in order to obtain α13 = 0 in a network with an anti-
Hebbian adaptation rule. However, it can be proven that if 0 < ∆max < σc < Σmi n and pc > 1p

2
, then λ5 > 0,

and thus that this equilibrium point is unstable. As this is nontrivial, the proof is given below:
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Proof. Consider ∆min,∆max,Σmi n ,φ∗
1 ,φ∗

2 and λ3,λ4,λ5 defined as above. Furthermore, consider 0 < ∆min <
∆max < σc < Σmi n and pc > 1p

2
, such that we have that λ3,λ4 > 0. We need to prove that this implies that

λ5 > 0, thus that pc >
√

1+cos(φ∗
1+φ∗

2 )
2 . Or equivalently: cos(φ∗

1 +φ∗
2 ) < 2p2

c −1.

cos(φ∗
1 +φ∗

2 ) = cos

(
arcsin

(
∆max

σc

)
+arcsin

(
∆mi n

σc

))
⇐⇒

= cos

(
arcsin

(
∆max

σc

))
·cos

(
arcsin

(
∆mi n

σc

))
− sin

(
arcsin

(
∆max

σc

))
· sin

(
arcsin

(
∆mi n

σc

))
⇐⇒

=
√

1−
(
∆max

σc

)2

·
√

1−
(
∆mi n

σc

)2

− ∆max∆mi n

σ2
c

⇐⇒

<
√(

1−
(
∆mi n

σc

)2)2

− ∆max∆mi n

σ2
c

⇐⇒

<
√(

1−
(
∆mi n

σc

)2)2

⇐⇒

= 1−
(
∆mi n

σc

)2

(∗) ⇐⇒

< 1−4p2
c (1−p2

c ) (∗∗) ⇐⇒
= (

2p2
c −1

)2 ⇐⇒
< 2p2

c −1, for pc ∈ ( 1p
2

,1)

Note that at (∗) we used that 1−
(
∆mi n
σc

)2 > 0, implying that the square and the root cancel out. At (∗∗) we used

that σc < ∆min

2p2
c−1

implies 2p2
c −1 < ∆min

σc
. We conclude that cos(φ∗

1 +φ∗
2 ) < 2p2

c −1, as required.

In a similar way it can be proven that equilibrium point 8 and 9 are unstable.
It can thus be conluded that all points in this set are unstable.

Set 4

Stability conditions
By using earlier obtained insights, and by assuming that only links occur between oscillators whose natural
frequencies are most distant, it is found that the first equilibrium point of this set is always unstable. For a
given network, the oscillators can be ordered (such that ω1 < ω2 < ω3), and the other two points are then
stable if

1. ∆1 6=∆2, and ∆1,2 > 0

2. pc > 1p
2

3. Equilibrium point 2: ∆1 >∆2, and σc >Σ4,2 >∆max > 0, with ∆max the numerator of Σ4,2 ((5.58)

4. Equilibrium point 3: ∆2 >∆1, and σc >Σ4,3 >∆max > 0, with ∆max the numerator of Σ4,2 ((5.59)

Moreover, this reveals that the strongest link (equal to 1), occurs between the two oscillators whose frequen-
cies are most distant. The less stronger, but nonzero link occurs between the two oscillators whose frequen-
cies are second most distant.

Derivation
The equilibrium points in this set are given by (5.22), (5.23) and (5.24) respectively. The first point of this set
is also shown below:

φ∗
1 =φ∗

2 = arccos
(
2p2

c −1
)

, α∗
12 =

∆2 +2∆1

2σc pc

√
1−p2

c

α∗
23 =

∆1 +2∆2

2σc pc

√
1−p2

c

α∗
13 = 0
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To determine the stability of these points, the Jacobian is again evaluated at this equilibrium point by filling in
the corresponding values forφ∗

1 ,φ∗
2 ,α∗

12,α∗
23,andα∗

13. However, this time the spectrum of the resulting matrix
can not be found as straightforward as in the previous cases. Therefore, it might be better to take a different
approach for this problem by finding the stability numerically and to compare the results with earlier ob-
tained insights.
The stability is determined numerically by computing the eigenvalues of the (simplified) Jacobian for dif-
ferent values of σc and pc , and checking whether these have all real negative part. It is found that the first
equilibrium point of this set is never stable, but that the second and third equilibrium point are stable un-
der certain conditions. The following paragraph will elaborate on these conditions. Thereafter, it will be
explained why the first equilibrium point is never stable.

Note that for equilibrium points from the first en second set it was found that these points are stable for
σc <Σi andσc >Σi , respectively. Moreover, note that set 1 and 2 are in fact very similar to set 3 and 4, respec-
tively. Namely, the values of α∗

i j and φ∗
i are related in the same way to the parameters σc and pc , but have

a different constant in the numerator and - in the case of set 3 and 4- an extra nonzero link and prescribed
phase difference.

Moreover, note that the critical coupling strength of set 2 (and 1) is in fact the curve whereα∗
i j = 3∆i

4σc pc

p
1−p2

c

=
1, and thus that for σc < Σi , an equilibrium point from this set would have α12 > 1, which is not allowed. It
was found that beneath this curve, αi j is just equal to 1.

The equilibrium points of this set have two nonzero links. In the following, the stability will be determined by
considering each link apart, as if the other two links have vanished. The appropriate conditions (found from
set 1 and 2) will be selected and combined. Therefore, it may be expected that there are two critical coupling
strengths per point, namely the curves where the nonzero links αi j and α j k of such a point are equal to 1 (as
this is the stability condition for one link to be nonzero and smaller than 1). Just as with the first two sets,
it would be reasonable to suggest that equilibrium point i of set 3 and equilibrium point i of set 4 share the
same critical coupling strengths.

For set 3, it was found that the critical coupling strengths, Σmi n/max , were given by Σi = σc sin(φ∗
i )

2pc

p
1−p2

c

, and these

curves correspond exactly to those predicted (namely, the curves where α∗
i j = 1,α∗

j k = 1). As with set 1, it

is expected to have σc < Σmi n as one of the conditions for stability for set 3. This is indeed a condition for
stability, though combined with other conditions the point is still unstable.

Now, for set 4, it would be reasonable to require pc > 1p
2

and σc > Σmax (so that pc > p12, p23). For set 3,

it was proven that it is not possible to have pc < p13, if σc < Σmi n and pc > 1p
2

. However, it can be proven

that for σc >Σmax and pc > 1p
2

, it holds that pc < p13, and thus that the point may be stable. Thus the critical

coupling strengths for an equilibrium point of this set are given by

Σ4,1 := max{∆1 +2∆2;2∆1 +∆2}

2pc

√
1−p2

c

(5.57)

Σ4,2 := max{∆1 −∆2;∆1 +2∆2}

2pc

√
1−p2

c

(5.58)

Σ4,1 := max{∆2 −∆1;2∆1 +∆2}

2pc

√
1−p2

c

(5.59)

Note that these critical coupling strengths can also be written as max{σcα
∗
i j ;σcα

∗
j k }, withα∗

i j ,α∗
j k the nonzero

links. The point is stable for σc >Σ4,i

Finally, the equilibrium point must also be well defined. Without loss of generality, a given network can
be ordered such that ω1 < ω2 < ω3, and thus that ∆1,∆2 > 0. Then the second equilibrium point (of set 4) is
well defined, if ∆1 > ∆2, and the third equilibrium point is well defined if ∆2 > ∆1. If ∆1 = ∆2, all points are
unstable.
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(i) ∆1 = 0.3, ∆2 = 0.1

Figure 5.6. The parameter range of stability (blue) of the 3 equilibrium points of set 4 for different values of ∆1,∆2 (of an
ordered network). The lines pc = 1p

2
,σc =∆max and the curve σc =Σmax are also plotted in each figure.

The upper row shows the first equilibrium point, that is not stable for any value of ∆1,∆2,σc , pc . The middle row shows
the second equilibrium point, that has a stable region A if ∆1 >∆2. The bottom row shows the third equilibrium point,

that has a stable region A if ∆2 >∆1.

Figure 5.6 shows the region of stability for the different equilibrium points of an ordered network (ω1 <
ω2 < ω3). The stability of each network and equilibrium point is numerically determined by computing
the eigenvalues of the corresponding Jacobian. A stable region is indicated with blue. In addition, the lines
pc = 1p

2
,σc =∆max and the curve σc =Σmax are plotted in each figure.

The figure confirms that the first equilibrium point (upper row panel) is unstable for all values of∆1,∆2,σc , pc .
It shows that the second point (middle row panel) only has a stable region if∆1 >∆2. This region (A) is indeed
enclosed by pc > 1p

2
andσc >Σmax , as was reasoned above. Finally, it shows that equilibrium point 3 (bottom

row pannel) has a stable region if ∆2 > ∆1. This region (A) is indeed enclosed by pc > 1p
2

and σc > Σmax , as

was reasoned above.

Finally, is is considered why the first equilibrium point is unstable. Using the same argument as before, it
could be assumed that this point could also possibly be stable for σc > Σmax = max{∆1+2∆2,∆2+2∆1}

2σc pc

p
1−p2

c

. However,

Figure 5.6 shows that this argument does not hold for the first equilibrium point. This is explained by using
the same phenomenon observed before: frequency dissasortativity (see subsections (5.6.1.1), (5.6.1.2)). In
other words, if |∆i | = |ω j −ωi | is smaller than |∆ j |, |∆k |, then there is no link between oscillator i and j. Seen
the nature of the anti-Hebbian coupling and the observations seen in set 1 and 2 (and in the complex adap-
tive network), this assumption seems reasonable. The following proofs that under this assumption, the first
equilibrium point is not well defined for any values of ∆1,∆2.
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Proof. Consider the first equilibrium point of the fourth set of an anti-Hebbian network of 3 oscillators, and
assume frequency dissasortativity. The oscillators have frequencies a,b, c in the given interval of natural fre-
quencies: a,b,c ∈ [ωmi n ;ωmax ], with a ≤ b ≤ c and ωmi n 6= ωmax . There are 3 cases we need to consider:
b < a+c

2 ∨ b = a+c
2 ∨ b > a+c

2 .

First, we consider b < a+c
2 . We then have |a −b| < |b − c| < |c −a|, thus the nonzero links will occur between

(b,c) and (c, a). Thus, in order to have α12,α23 > 0, we must have ω2 = c. We can have ω1 = a and ω3 = b or
vice-versa.
Assume ω1 = a, ω3 = b. But then we have ∆1 +2∆2 = (c −a)+2(b−c) = 2b− (a+c) We have b < a+c

2 , and thus
∆1 +2∆2 < 0. But then α23 < 0 and this is a contradiction. Similarly, assume ω1 = b, ω3 = a. We then have
∆1 +2∆2 = (c −b)+2(a − c) = 2a −b − c < 0 (as a ≤ b ≤ c), and thus α12 < 0. This is again a contradiction.

Secondly, we consider b = a+c
2 . We then have |a −b| = |b − c| < |c − a|, thus the nonzero links will occur be-

tween (c, a) and either (a,b) or (b,c).
Assume the links will occur between (c, a) and (a,b). Due to frequency dissasortativity we then must have
ω2 = a to have α12,α23 > 0. Independent of the choice of ω1 and ω2, we will find that either ∆1 +2∆2 = 0 or
∆2 +2∆1 = 0, and we again have a contradiction.

Finally, we consider b > a+c
2 . We then have |b−c| < |a−b| < |c −a|, thus the nonzero links will occur between

(b, a) and (c, a). Thus, in order to have α12,α23 > 0, we must have ω2 = a. We can have ω1 = c and ω3 = b or
vice-versa.
Assume ω1 = c, ω3 = b. But then we have ∆2 +2∆1 = (b − a)+2(a − c) = a +b −2c. We have a ≤ b ≤ c, and
thus ∆2 +2∆1 ≤. But then α12 ≤ 0 and this is a contradiction. Similarly, assume ω1 = b, ω3 = c. We then have
∆2 +2∆1 = (c −a)+2(a −b) = c +a −2b < 0 (as b > a+c

2 ), and thus α12 < 0 and this is a contradiction.

We thus conclude that we can not have a combination of oscillators such that this equilibrium point is stable.

Note that this proof only works for the first equilibrium point, and not for the second and third equilibrium
point of the set. However, a similar argument proves that for these two points it must hold that ∆1,2 > 0 for
the points to be well defined (given frequency dissasortativity).
In addition, it must be noted that the link between the pair of oscillators whose frequencies are most dis-
tant, has the largest value in both point 2 and 3. This is again explained by frequency dissasortativity: the
preference for distant frequencies.

Set 5

Stability conditions
The third and fourth point of the set have a stable region. A given network can be ordered (such that ω1 <
ω2 <ω3), and the points are then stable if:

1. ∆1 6=∆2, and ∆1,2 > 0

2. pc > 1p
2

3. pc < pki , with k, i chosen such that αki is the vanished link.

4. Σ5,2, j <σc <Σ5,1,i ((5.60), (5.61))

5. σc > f (∆i , j ,k ), with f (∆i , j ,k ) the numerator of Σ5,1,i .

6. Equilibrium point 3: ∆1 >∆2, and for equilibrium point 4: ∆2 >∆1

Derivation
The next set of equilibrium points are given by (5.25)-(5.34). For the sake of completeness first point of this
group is also stated below:

φ∗
1 = arccos

(
2p2

c −1
)

φ∗
2 = arcsin

(
∆1 +2∆2

σc

)
, α∗

12 =
∆2 +2∆1

2σc pc

√
1−p2

c

α∗
23 = 1 α∗

13 = 0

As with the previous set of equilibrium points, the spectrum of the Jacobian at this equilibrium point is not
easily found. Therefore, a similar approach as before will be taken. First, the conditions for stability will be



5.6. Stability of Equilibrium Points 45

determined. Then it will be reasoned which equilibrium points may have a stable region, and which points
are always unstable, by comparing the point to those analysed before.

In the previous set, it was found that the stability of the points (with two nonzero links), can be determined
by considering each link apart, and take the appropriate conditions of the first two sets, as if the other links
are zero. These conditions combined, gave the desired conditions for the equilibrium point as a whole. The
same approach will be used here. It must be noted that all points in this set have αi j = 1, 0 < α j k < 1 and
αki = 0, with i , j ,k ∈ {1,2,3}, i 6= j 6= k.
First, the conditions of αi j = 1 are considered. In set 1, it was found that the restricting conditions then orig-
inate from pc < p j k , pki and pi j < pc . The first two conditions imply α j k ,αki = 0, and the latter implies
αi j = 1. Thus, pi j < pc is selected as a stability condition for the equilibrium points in set 5. This implies a
critical coupling strength, given by

Σ5,1,i := σc sin(φ∗
i )

2pc

√
1−p2

c

(5.60)

withφ∗
i the phase difference appearing in the formula of pi j . For stability, it must hold thatσc <Σ5,1,i . More-

over, φ∗
i (and thus the point) is well defined, if σc > f (∆i , j ,k ), with f (∆i , j ,k ) the numerator of the argument of

φ∗
i = arcsin

(
f (∆i , j ,k )
σc

)
. It must be noted that f (∆i , j ,k ) is also the numerator of Σ5,1,i .

Next, the conditions due to the link obeying 0 < α j k < 1 are considered. In the previous set for such links
it is required that σc >Σ5,2, j , with Σ5,2, j given by

Σ5,2, j :=σcα
∗
j k (5.61)

Moreover, the link is well defined if σc > g (∆i , j ,k ), where g (∆i , j ,k ) is the numerator of the expression of α∗
j k . It

must be noted that g (∆i , j ,k ) is also the numerator of Σ5,2, j .

Thus, the point is well-defined, if σc > g (∆i , j ,k ) and σc > f (∆i , j ,k ). As Σ5,2, j < σc < Σ5,1,i , it must hold that
g (∆i , j ,k ) < f (∆i , j ,k ) (as the critical strengths have the same denominator). Thus, the conditions equilibrium
point is well defined if just σc > f (∆i , j ,k ).

Now, the vanished link α∗
ki is studied. As was already mentioned in set 1, 2 and 3, a vanished link α∗

ki comes
with an eigenvalue λ= pc −pki . In other words, it must hold that:

2p2
c −1 < cos(φ∗

k ) (5.62)

whereφk is again the phase difference appearing in the formula of pki . As the other phase differencesφi , j are
already given, φk can be expressed in σc and pc . Therefore, this inequality can easily be solved numerically.
As in set 2, this will imply a lower bound on σc : σc > h(pc ).

Using these observations, it can be deduced which points are never stable and which points may have a
stable region. These deductions will be discussed briefly, as they are very similar to the conclusions of the
previous set of equilibrium points.
The first and second equilibrium points ((5.25), (5.26)) of this set will never be stable. Assuming frequency
dissasortativity, either f (∆i , j ,k ) or g (∆i , j ,k ) is negative. This would either imply σc < Σ5,1,i < 0, or α j k < 0,
which is not allowed.
However, the third and fourth point ((5.27), (5.28)) have a stable region if ∆1 >∆2 > 0 or ∆2 >∆1 > 0, respec-
tively. Without loss of generality, a given system can be ordered, such that ∆1,2 > 0, as described before.
It can be shown that the last two points of the set ((5.29), (5.34)), are never stable. The corresponding proof
shows that either f (∆i , j ,k ) < g (∆i , j ,k ), or that g (∆i , j ,k ) < 0. The first result implies that it is not possible to
have Σ5,2, j <σc <Σ5,1,i . To obtain the latter result, frequency dissasortativity is again assumed, and it implies
that α j k ≤ 0.
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5.6.3. Three links

Set 6

Stability conditions
The point is stable if

1. Equation (5.32) has a solution, i.e. φ1 is defined

2. p12, p23, p13 < pc (or: σc <Σ6,1,Σ6,2,Σ6,3)

Moreover, a necessary bound is found: σc > max{∆1+2∆2 ; 2∆1+∆2}
2 . This bound is also satisfied by all previous

sets.

Derivation
This set contains one equilibrium point, given by (5.31) and below

φ∗
2 = arcsin

(
sin(φ1)+ ∆2 −∆1

σc

)
φ∗

1 +φ∗
2 = arcsin

(
2∆1 +∆2

σc
− sin(φ1)

)
α∗

12 =α∗
23 =α∗

13 = 1

and where φ∗
1 is found by

2∆1 +∆2

σc
= sin(φ1)

1+
√

1−
(
∆2 −∆1

σc
+ sin(φ1)

)2

+
√

1− sin2(φ1)

+ ∆2 −∆1

σc

√
1− sin2(φ1)

By using the same approach as in the previous sets, it is expected that this equilibrium point is stable if
p12, p23, p13 < pc . Recall that this is the condition for a single link to be equal to 1.

However, the spectrum of the Jacobian matrix of this equilibrium point could also be determined analyti-
cally. The following eigenvalues are found:

λ1 =−
√

a2 −ab −ac +b2 −bc + c2 −a −b − c

λ2 =
√

a2 −ab −ac +b2 −bc + c2 −a −b − c

λ3 =
√

1+cos(φ∗
1 )

2
−pc

λ4 =
√

1+cos(φ∗
2 )

2
−pc

λ5 =
√

1+cos(φ∗
1 +φ∗

2 )

2
−pc

(5.63)

where a = σc cos(φ∗
1 )

3 , b = σc cos(φ∗
2 )

3 , c = σc cos(φ∗
1+φ∗

2 )
3 . It can be shown that a,b,c ≥ 0, and thus obviously λ1 < 0,

andλ2 =
p

a2 −ab −ac +b2 −bc + c2−(a+b+c) =
p

a2 −ab −ac +b2 −bc + c2−
p

a2 +2ab +2ac +b2 +2bc + c2 <
0. Thus, λ1,λ2 < 0 do not provide any restrictions. The conditions for stability are given by p12, p23, p13 < pc ,
and this corresponds to those predicted. The following critical coupling strengths are found (similar to (5.60)):

Σ6,1 := σc sin(φ∗
1 )

2pc

√
1−p2

c

(5.64)

Σ6,2 := σc sin(φ∗
2 )

2pc

√
1−p2

c

(5.65)

Σ6,3 := σc sin(φ∗
1 +φ∗

2 )

2pc

√
1−p2

c

(5.66)

These curves can be found numerically, and the point is stable if σc < Σ6,1−3. Moreover, the point must be

well defined. To that extend, it is obliged
∣∣∣sin(φ∗

1 )+ ∆2−∆1
σc

∣∣∣ ≤ 1 and
∣∣∣ 2∆1+∆2

σc
− sin(φ∗

1 )
∣∣∣ ≤ 1. This will give a
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necessary condition for σc , in the following way:

Without loss of generality, the system can be ordered (∆1,∆2 > 0). Then, 2∆1+∆2
σc

> 0. Therefore, −1 ≤ 2∆1+∆2
σc

−
sin(φ∗

1 ) ≤ 1 can be reduced to: 2∆1+∆2
σc

− sin(φ∗
1 ) ≤ 1, or: 2∆1+∆2

σc
≤ 1+ sin(φ∗

1 ) ≤ 2. Thus the first lower bound is

given by σc > 2∆1+∆2
2 .

Moreover, by adding the inequalities: −1 ≤ 2∆1+∆2
σc

− sin(φ∗
1 ) ≤ 1 and −1 ≤ sin(φ∗

1 )+ ∆2−∆1
σc

≤ 1, it is obtained:

−2 ≤ 2∆1+∆2+∆2−∆1
σc

= ∆1+2∆2
σc

≤ 2. Thus, the second lower bound yields: ∆1+2∆2
2 ≤σc . It can be concluded, that

a necessary condition that must be satisfied is given by

σc > max{∆1 +2∆2 ; 2∆1 +∆2}

2
(5.67)

It must be noted that this condition is also satisfied by all previous points!

Set 7

Stability conditions
It is found that this point is always unstable.

Derivation
The next equilibrium point is given by (5.33), or by:

φ∗
1 =φ∗

2 = 2
3π, φ∗

1 +φ∗
2 = 4

3π α∗
23 =

2(∆2 −∆1)

σc
p

3
+α12 α∗

13 =α12 − 2(2∆1 +∆2)

σc
p

3

with pc = 1
2 .

Again, the spectrum of the (simplified) Jacobian matrix is not so straightforward. However it is noted that
this equilibrium point is only well defined for a specific value of pc , such that it is not possible to obtain a
region of stability as before, but only an interval of values of σc such that this point is stable. Moreover, it is
noted that pc < 1p

2
, and therefore it is expected that this point will not be stable. Indeed, for various values of

∆1,2, there are no values of σc found such that this point is stable.
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Set 8

Stability conditions
The first equilibrium point (with additional term −2(2p2

c −1) for the link) has a stable region. If a given system
is ordered (∆1,∆2 ≥ 0), this region is given by:

1. max{Σ8,1,i ,Σ8,2, j } <σc < min{Σ8,3,i ,Σ8,4, j } ((5.68),(5.69),(5.70),(5.71))

2.
p

a2 −ab −ac +b2 −bc + c2 − a −b − c < 0, with a = σcα12 cos(φ∗
1 )

3 , b = σcα23 cos(φ∗
2 )

3 , c = σc cosα13(φ∗
1+φ∗

2 )
3 .

This is an approximated boundary.

Moreover, max{Σ8,1,i ,Σ8,2, j } <σc again implies σc > max{∆1+2∆2 ; 2∆1+∆2}
2 .

Derivation
The set of equilibrium point is given by (5.35)-(5.37). The first equilibrium point is given by

φ∗
1 =φ∗

2 = arccos
(
2p2

c −1
)
, α∗

12 =
2∆1 +∆2

2σc pc

√
1−p2

c

±2(2p2
c −1) α∗

23 =
2∆2 +∆1

2σc pc

√
1−p2

c

±2(2p2
c −1) α∗

13 = 1

All points in this set have two links 0 <αi j ,α j k < 1 and one link αki = 1. Again, the spectrum of the Jacobian
matrix is hard to analyse, so a different approach is desired. However, it must be noted, that the structure of
these links is different from those in set 1 and 2, and not all conditions can be copied from the these sets.

First it is stated, that only the equilibrium points with the additional terms ±2(2p2
c − 1) may have a stable

region. It can be assumed that in order to have αki = 1, it is obliged to have pki < pc . The points without the
additional terms, have for the phase difference φ∗

k appearing in pki , that φ∗
k = 0. This implies 1 < pc , but pc is

restricted to the unit interval. Only the points with additional terms are thus considered.

First, the links 0 < αi j ,α j k < 1 are studied. Still, the lower bounds σc > σcαi j and σc > σcα j k seem to be
reasonable, as these imply αi j ,α j k < 1. For the first equilibrium point (with −2(2p2

c − 1)), and for pc > 1
2 ,

these bounds can be rewritten to the critical coupling strengths

Σ8,1,i := 2∆1 +∆2

2(1+2(2p2
c −1))pc

√
1−p2

c

(5.68)

Σ8,2, j := ∆1 +2∆2

2(1+2(2p2
c −1))pc

√
1−p2

c

(5.69)

where αi j , j k < 1, if σc > Σ8,1,i ,Σ8,2, j , or σc > max{Σ8,1,i ,Σ8,2, j }. Note that for pc < 1
2 , the term 2(1+2(2p2

c −1)
becomes negative, and therefore the inequality sign flips (as solving for σc implies dividing by this term),
implying that σc is negative. Therefore, pc > 1

2 . Moreover, it easily shown that this boundary again implies

σc > max{∆1+2∆2 ; 2∆1+∆2}
2 . This is the lower bound for σc found in the previous point.

However, these critical coupling strengths will not be sufficient. It must be noticed that due to the addi-
tional term, αi j , j k may become smaller than 0. Therefore, critical coupling strengths must be introduced,
such that αi j , j k > 0. Solving this inequality yields the following critical coupling strengths:

Σ8,3,i := 2∆1 +∆2

4(2p2
c −1)pc

√
1−p2

c

(5.70)

Σ8,4, j := ∆1 +2∆2

4(2p2
c −1)pc

√
1−p2

c

(5.71)

where the link is well defined if σc < Σ8,3,i ,Σ8,4, j , or just σc < min{Σ8,3,i ,Σ8,4, j }. Obviously, these critical cou-
pling strengths must be positive. Note that for pc < 1p

2
, the inequality sign would flip. However, seen all

previous sets of equilibrium point, it is a save guess to assume pc > 1p
2

.

As α13 is the strongest link, it is expected that the frequencies of the corresponding oscillators are most dis-
tant. Thus, a given system must be order from lowest to largest frequency to have positive critical coupling



5.6. Stability of Equilibrium Points 49

strength.

Now the linkαki = 1 is considered. In the sets before, this implied a critical coupling strength: σc < σc sin(φ∗
1 )

2pc

p
1−p2

c

.

Note that this was the result of pki < pc , where the phase difference appearing in pki is given by φ∗
i =

arcsin( f (∆1,∆2(,pc ))
σc

). However, for this point φ∗
1 is not in this form, so this critical coupling strength can not be

used. For point 1, φ∗
1 +φ∗

2 = 2arccos(2p2
c −1). Solving pki < pc , then yields (for pc > 1p

2
): 2p2

c −1 < pc , and

this is alwasy true in the given interval.

As in the previous set, the stability can also be determined by evaluating the eigenvalues of the Jacobian
matrix of the equilibrium point at each (pc ,σc ). The region where all eigenvalues have real nonpositive part,
is shown in the right panel of 5.7. The lower curve is given by max{Σ8,1,i ,Σ8,2, j }, the upper curve is given by
min{Σ8,3,i ,Σ8,4, j }, and the vertical line is given by pc = 1p

2
. The left panel shows what is expected from the

reasoning above.
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Figure 5.7. Stable region of the first equilibrium point of set 8 for ∆1 = 0.1 and ∆2 = 0.3. In a) the stable region bounded
by reasoned conditions, and in b) the numerical determined stable region. It is clear that one condition is still missing

It is shown that the two curves are indeed very accurate. However, it is clear that one condition is missing,
resulting in a largely overestimation of the region of stability. This last condition can not be found analytically,
but it is possible to make an estimate, by observing the previous eigenvalues:

First, define a = σcα12 cos(φ∗
1 )

3 , b = σcα23 cos(φ∗
2 )

3 , c = σc cosα13(φ∗
1+φ∗

2 )
3 . In the case that there are three links equal

to 1, it was found λ =
p

a2 −ab −ac +b2 −bc + c2 − a − b − c. By taking a look at the Jacobian, this is ex-

plained by noting that the terms
αi j (1−αi j )sin(φi )

2
p

2+2cos(φi )
vanish. Now it is noted that the term corresponding to

α13 also vanishes, and that the terms corresponding to α23,α13 are relatively small in the overestimated re-
gion A of figure 5.7. For ∆1 = 0.1,∆2 = 0.3, these terms have values of ±0.01, while for example the term
(pc −p13)(1−2α13 is more than 10 times as big. Therefore, the terms are approximated by 0, resulting in the
eigenvalue λ=

p
a2 −ab −ac +b2 −bc + c2 −a −b − c.

In Figure 5.8, the stable region of the first equilibrium point is shown for different values of ∆1 and ∆2 (upper
row panels: ∆1 = 0.1,∆2 = 0.3, middle row panels ∆1 = 0.15,∆2 = 0.25, bottom row panels ∆1 =∆2 = 0.2). The
left panels are the stable regions found by implementing this extra condition λ < 0. The right panels show
again the regions where all eigenvalues of the Jacobian matrix at the first equilibrium point are nonpositive.
It is clear that the condition λ < 0 is not the exact condition, and slightly underestimates the stable region.
However, it can be said that it is a good approximation.
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Figure 5.8. Stable region of the first equilibrium point of set 8 for ∆1 = 0.1 and ∆2 = 0.3. In a) the reasoned stable region,
and in b) the numerical determined stable region.

Finally, it is noted that the first equilibrium point with: +2(2p2
c − 1) as additional term is always unstable.

The same holds for (all variants of) the second and third equilibrium point. The term +2(2p2
c −1) pushes the

weight of the link out of the unit interval.
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Set 9

Stability conditions
The first and second equilibrium point may have a stable region. If a given system is ordered (∆1,∆2 ≥ 0),
then the points are stable if:

1. Σ9,3,k <σc <Σ9,2,i ,Σ9,2, j ((5.72),(5.73),(5.74))

2.
p

a2 −ab −ac +b2 −bc + c2 − a −b − c < 0, with a = σcα12 cos(φ∗
1 )

3 , b = σcα23 cos(φ∗
2 )

3 , c = σc cosα13(φ∗
1+φ∗

2 )
3 .

This is an approximated boundary.

3. For the first point, ∆2 >∆1 and equation (5.39) is satisfied (φ∗
2 is defined)

4. For the second point, ∆1 >∆2 and equation (5.41) is satisfied (φ∗
1 is defined)

Moreover, it is numerically found that again σc > max{∆1+2∆2 ; 2∆1+∆2}
2 .

Derivation
The set of equilibrium points is given by (5.38)-(5.42). The first point is given by

φ∗
1 = arccos(2p2

c −1) α∗
12 =

∆1 −∆2 +σc sin(φ∗
2 )

2σc pc

√
1−p2

c

α∗
23 =α∗

13 = 1

where φ∗
2 can be found by solving

2∆2 +∆1

σc
= 2p2

c sin(φ∗
2 )+2pc

√
1−p2

c cos(φ∗
2 )

All points in this set thus have two links αi j ,α j k = 1 and one link 0 <αki < 1. Again, each link is treated apart,
as if it is the only nonzero link. Thus, the critical coupling strengths are given by

Σ9,1,i := σc sin(φ∗
i )

2pc

√
1−p2

c

(5.72)

Σ9,2, j :=
σc sin(φ∗

j )

2pc

√
1−p2

c

(5.73)

Σ9,3,k :=σcαki (5.74)

and for stability, it must hold that Σ9,3,k < σc < Σ9,1−2,i− j . These conditions originate from the requirements
pi j , p j k < pc and αki ≤ 1. These boundaries can only be solved numerically. As in the previous set of equi-
librium points, it is found that these conditions only are not enough: the region of stability is then somewhat

overestimated. Again, define a = σcα12 cos(φ∗
1 )

3 , b = σcα23 cos(φ∗
2 )

3 , c = σc cosα13(φ∗
1+φ∗

2 )
3 . Then the last condition is

approximated by
p

a2 −ab −ac +b2 −bc + c2 − a −b − c < 0. This again results in a slightly underestimated
region of stability, similar to the previous set.
It is found that the first equilibrium point is stable, if ∆2 >∆1, whereas the second point is stable, if ∆1 >∆2.
Note that this also implies that the weakest link occurs between the two oscillator whose frequencies are the
closest. The third point of the set is never stable.

Moreover, it is numerically found that again σc > max{∆1+2∆2 ; 2∆1+∆2}
2 .

5.7. Bifurcation Diagram
In this section, the bifurcation diagram shown in Figure 5.1 is reconsidered, and studied more extensively.
The bifurcation diagram is shown in Figure 5.9. In the left panel, the stable regions are determined by com-
puting the eigenvalues of the Jacobian at each equilibrium point and at each (pc ,σc ). The right panel shows
the regions of stability using the conditions that were found for each point in the previous section. Again, the
different colors represent different (stable) equilibrium points. In the following, all equilibrium points and
their region of stability will be discussed.
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As ∆1 6= ∆2, it immediately follows that points of the first two sets are always unstable. It was already shown
that set 3 is always unstable. However the fourth set has a stable point. As ∆2 >∆1, this the third point of this
set ((5.24), α12 = 0,0 <α23,13 < 1). This point is stable in region A, that is given by σc > 0.5

2pc

p
1−p2

c

and pc > 1p
2

.

The left panel confirms these boundaries (as was also shown in the previous section).
Moreover, it is expected that the fourth point of set 5 ((5.28), α12 = 0,0 <α23 < 1,α13 = 1) is stable in region B ,
given by 0.5 <σc < 0.5

2pc

p
1−p2

c

, pc > 1p
2

and pc < p12. The left panel again confirms these boundaries.

The point where all links have maximal value (set 6, (5.31)), α12 =α23 =α13 = 1) is stable if p12, p23, p13 < pc .
This region is given by E , and again this region is the same for the left and right panel.
Obviously, set 7 is always unstable and is therefore not considered.
In region C the first point of set 8 is stable ((5.35), ). This region is enclosed by 0.7

2(1+2(2p2
c−1))pc

p
1−p2

c

< σc <
0.5

4(2p2
c−1)pc

p
1−p2

c

, and estimated boundary
p

a2 −ab −ac +b2 −bc + c2−a−b−c < 0, with a = σcα12 cos(φ∗
1 )

3 , b =
σcα23 cos(φ∗

2 )
3 , c = σc cosα13(φ∗

1+φ∗
2 )

3 . Comparing the left and right panel shows that this boundary results in a less
curved (left) boundary of C , as was already highlighted in the previous section.
The first point of set 9 ((5.38), 0 <α12 < 1,α23 =α13 = 1) has a stable region. This is region D , and it is given by

σcα12 <σc < σc min{sin(φ1);sin(φ1+φ2)}

2pc

p
1−p2

c

and the same estimated boundary
p

a2 −ab −ac +b2 −bc + c2−a−b−c <
0 as for set 8. Again, it is shown that region D is slightly underestimated by this boundary. Finally, in the re-
gions F 1,F 2 no equilibrium point is stable. In the region F 2 (where pc > 1p

2
), it is expected that the weight of

the links will tend the maximum value 1, which is not enough for synchronizing the oscillators (just as with 2
oscillators). In region F 1, the weight of the links will tend to 0, resulting in 3 disconnected oscillators.
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Figure 5.9. Stability diagram of all the equilibrium points of the network (with ∆1 = 0.1,∆2 = 0.3. In a) these regions are
determined by computing the eigenvalues of the Jacobian at each equilibrium point and at each (pc ,σc )), whereas in b)

the (estimated) conditions for stability are used.

Thus, although regions C and D are slightly underestimated, the right panel is in general a very accurate
representation of the stability of the points. Obviously, analyzing networks using such stability conditions is
much more efficient than computing the spectrum of the Jacobian for each equilibrium point and each com-
bination of parameters. Therefore, the results of the stability conditions were used in the comparison with
the simulated network. The asymptotic values of the characteristics of the network at (pc ,σc ) are obviously
the asymptotic values of the equilibrium point that is stable at (pc ,σc ).
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5.8. Conclusion
To conclude, the analysis of the network of three oscillators revealed that for oscillators i and j , the value of
the link connecting these oscillators does not only depend on the properties of these two oscillators only, but
on all ∆i of the network. The most important and interesting rules that were found are

1. pi j < pc , then αi j = 0 and this occurs for σc > f (pc ,∆1,∆2).

2. pi j = pc , then αi j = g1(pc ,σc ,∆1,∆2) and this occurs for g2(pc ,∆1,∆2) <σc < g3(pc ,∆1,∆2).

3. pi j > pc then αi j = 1 and this occurs for σc < h(pc ,∆1,∆2).

4. If |ωi −ω j | > |ω j −ωk |, then αi j ≥α j k for all synchronous states.

It was found that the dynamics of this network in general has the same structure in parameter space as the
complex network (N = 300). Therefore it may be suggested that these rules also capture the dynamics of a
network of N oscillators. The dependence on (∆1,∆2) in the functions is then expanded by dependence on
(∆1,∆2, . . . ,∆N−1). More details on these functions ( f , g1, g2, g3 and h) can be found in the stability analysis.

Moreover, a lower bound on σc ((5.67)) for the existence of possible synchronized solutions is found. Com-
paring this to the known lower bound for finite networks (2.9) reveals that these lower bounds are equal if
∆1 = ∆2. However, if ∆1 6= ∆2, it can be shown that the lower bound found in this study is larger then the
known lower bound. In other words, in that case, the found lower bound is more accurate for a network of 3
oscillators.

Finally, the above analysis clearly reveals that even in the synchronous network (R ≈ 1) links are pruned.
Only where set 6 is stable, all links are equal to 1. In the regions A,B ,C and D the network also synchronizes,
but here links are weakened or vanish completely.





6
Synchronization of chemical oscillators

6.1. Introduction
As was mentioned in the introduction of this thesis, the study of collective synchronization is of multidisci-
plinary importance in science. In this chapter, one of the many applications will be encountered: the syn-
chronization of a population of chemical oscillators. This is based on the paper Emerging Coherence in a
Population of Chemical Oscillators [38]. In this paper experiments are reported that experimental verify the
Kuramoto model for such a population. That is, whether a phase transition occurs due to the global coupling
in the population of chemical oscillators. It must be noted that this experiment is not repeated, although
some of the figures are reproduced using the available data.

6.2. Experimental set-up
A schematic of the experimental set-up used in this paper is depicted in Figure 6.1. The system consists of
an array of 64 nickel electrodes in sulfuric acid. The electrodes are connected to the potentiostat through
random parallel resistors with mean resistance Rp and a standard deviation of 21Ω and a series resistor with
resistance Rs .

Figure 6.1. Schematic of experimental set-up. Reprinted from Emerging Coherence in a Population of Chemical
Oscillators[38]

.

The contact of nickel and sulfuric acid initiates the anodic reaction of nickel, which is an electrochemical
reaction and in general written as [39].

Ni −→ Ni 2++2e (6.1)

55
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The rate of the reaction, and thus of the nickel dissolution, depends on the applied potential at each electrode
and is proportional to the current measured (on each electrode). In this experiment, the current is measured
at a constant applied potential. It is known that this results in chaotic or periodic oscillations, depending
on, for example, the concentration of the acid ([40]), or the applied potential [41]. As the surfaces of the
nickel electrodes are obviously not all identical, the frequencies of the oscillators are distributed. During the
experiment, the overall coupling strength σc is varied. The value of σc is controlled by varying Rs ,Rp , while

the total resistance Rtot = Rs + Rp

64 is kept constant. To be more specific, σc is given by

σc := Rs

Rtot −Rs
(6.2)

In must be noted that this is not an adaptive network, thus the strength of the coupling is equal for all oscilla-
tors (=σc ).

In order to determine the global synchronization R(t ) of the system, the individual phases of the oscilla-
tors must be known. A widely used method in signal processing to define the phase of a signal is based on
the Hilbert Transform (HT) [42, 43]. In this approach, the analytic signal ψ(t ) is determined. This is a unique
complex time function associated to a signal s(t ), defined by [44]

ψ(t ) = s(t )+ is (t ) = A(t )e iφ(t ) (6.3)

where s (t ) is given by the Hilbert Transform of s(t )

s (t ) = H(s(t )) := 1

π

∫ ∞

−∞
s(τ)

τ− t
dτ (6.4)

The argument φ(t ) of the complex time function ψ(t ) is the phase of the signal.

The signal of the chemical oscillators is given by

s(t ) = I (t )−〈I 〉 (6.5)

where I (t ) the measured current at time t and 〈I 〉 the temporal mean of I , such that the signal is symmetric
around s = 0. The complex time function is thus given by ψ(t ) = (I (t )−〈I 〉)+ i H(I (t )−〈I 〉).

The global synchronization R(t ) is now defined by [38]

R(t ) := |∑64
k=1ψk (t )|∑64

k=1 |ψk (t )| (6.6)

where ψk (t ) is the complex time function of oscillator k. This definition is quite similar to the order param-
eter introduced by Kuramoto, in equation (2.5). In the study it is experimentally verified that this specific
definition of φ(t ) and R(t ) do not affect the results [38].
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6.3. Results
First, the dynamics are shown of uncoupled periodic oscillators, i.e. σc = 0. In the experiment, it was found
that the natural frequency distribution is unimodal with mean f = 0.4526 Hz and a standard deviation of
σ = 6.54 mHz. A similar set of frequencies is reproduced. In Figure 6.2 a histogram of the natural (angular)
frequencies is shown of this set, where ω= 2π f .
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Figure 6.2. A histogram of the set of natural (angular) frequencies of the 64 electrodes, that are unimodal distributed
with mean f = 0.4526 Hz and a standard deviation of σ= 6.54 mHz.

The time series of I (t ) of the second and third electrodes are given in the paper. This data is extracted from
the plot to estimate the phase shift φI between the current of two electrodes, the amplitude A and temporal
mean 〈I 〉 of the signal, such that I (t ) can be modelled as I (t ) = 〈I 〉+ A sin(ωt +φI ). It must be noted that φI

is not the phase of the signal, as defined in (6.3). It is estimated that A ≈ 1
12.5 mA, 〈I 〉 = 0.165 mA and φI ≈ 3

rad. In Figure 6.3(a) and 6.3(b) the extracted data versus the modelled (with estimated A,〈I 〉,φI ) is plotted
for electrode 2 and 3, respectively. The frequencies are not exactly the same, caused by the separate executed
unimodal distributions. In Figure 6.3(c) the modelled signals of the two electrodes are plotted in the same
figure.
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Figure 6.3. Times series of two electrodes. In a) and b) the experimental data is plotted vs. the modelled signals (with
estimated A,〈I 〉,φI ) per oscillator. In c) the modelled signals of the two electrodes are plotted.
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It now is assumed that all electrodes have the same φI (≈ 3 rad) relative to the previous electrode, and that all
electrodes have the same A and 〈I 〉, such that signals are constructed for all electrodes.

Figure 6.4 depicts a phase portrait snapshot of the 64 oscillators, i.e. the imaginary part s (t ) is plotted against
the real part s(t ) of the complex time function ψ(t ). The left panel shows the phase portrait of the modelled
signal, and the right panels shows the phase portrait that is given in the paper (the data is directly extracted).
The modelled data do not form a clear limit cycle, whereas the experimental data does.
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Figure 6.4. Phase portrait snapshot of the 64 oscillators of a) the modelled signal and b) the experimental data

The global synchronization can be found as function of t from these phase portraits, see equation (6.6). In
Figure 6.5 R(t ) based on the modelled data (left panel) and based on the experimental data (right panel) is
plotted. The data of the right panel is directly extracted from Figure 1C of the paper. Both figures reveal a
similar trend, but the global synchronization is consistently underestimated for the modelled data.
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Figure 6.5. Time series of the global synchronization R for a) the modelled signal and b) the experimental data

From Figure 6.3 it can be concluded that the signals can indeed be modelled as sines with a nonzero ampli-
tude, phase difference and temporal mean. However, from Figures 6.4 and 6.5 it can be concluded that the
assumption that all electrodes have the same phase difference and temporal mean is incorrect. It would be
more plausible to suggest that these parameters are also distributed. It is expected that this is also caused
by heterogeneity’s of the electrode surface, and therefore the distribution will be related to the distribution of
the natural frequencies. It is clear that this relation is not known, and that the data of all electrodes is required
rather than the time series of only two electrodes.

In particular, if the data is known of all electrodes and for different values of σc , then R can be plotted as
function of σc . Unfortunately, it was not possible to get in touch with the authors of the paper, to receive this
data. As the paper originates from 2002, it is likely that the contact details are now outdated.
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However, in the paper a characteristic similar to Figure 2.3 was found for the periodic (and chaotic) oscil-
lators. Thus, the global coupling of these oscillators indeed causes a phase transition, such that some of the
oscillators synchronize. This is exactly what the Kuramoto model predicts.





7
Conclusion and discussion

In conclusion, in this work the Kuramoto model is discussed, and extended to an adaptive network by intro-
ducing adaptation rules, such that the strength of coupling can differ per pair of oscillators. The adaptation
rules considered are the anti-Hebbian and Hebbian adaptation rules. The anti-Hebbian adaptation rule pro-
motes(/weakens) links between oscillators that are in anti-phase(/in phase), while the Hebbian adaptation
rule promotes(/weakens) links between oscillators that are in phase(/in anti-phase). The dynamics of large
(N = 300) networks are studied for both rules. For both networks explosive synchronization (ES) is revealed.
This phenomenon receives currently many attention in, among others, neuroscience. In particular, it is re-
cently linked to seizures and anesthetic-induced unconsciousness [23, 24, 21].

In the anti-Hebbian network, link pruning occurs in the synchronous network, thereby preventing the ex-
istence of redundant links. It is found that the network organizes itself in such way, that frequency dissasorta-
tivity is observed, i.e. links occur between oscillators whose frequencies are most distant. Both the weakening
or completely pruning of the links and the frequency dissasortativity are confirmed in a stability analysis of
a simple network of 2 and 3 oscillators. The pruning of nodes is an important feature of an anti-Hebbian
network. In the Introduction, it was mentioned that synchronization plays an important role in the brain [4],
but that excessive synchronization may lead to epilepsy [5, 6, 21]. In previous studies it is shown that anti-
Hebbian rules are important for the control of oversynchronization in the brain [45, 46]. This study may help
understanding the dynamics and principles of link pruning.
In the stability analysis of 3 oscillators, some additional ’linking’ rules were found, that determine the value
of the weight of the link. It may be suggested that these nontrivial rules also capture the dynamics of the large
network. Most importantly, the weight of the link between two oscillators and its stability depends not only
on the properties of these two oscillators only, but on the properties of all the oscillators in the network.

In the Hebbian network link pruning only occurs only in the transition from the synchronous to the incoher-
ent network. The opposite phenomenon of frequency dissasortativity is observed for the Hebbian network,
although its presence is less significant. In the stability analysis of a simple Hebbian network with 2 oscilla-
tors, it was found that the weight of a link will always evolve to one of the extreme values, i.e. α= 1 or α= 0.
It may be expected that in a network of 3 (or N ) oscillators, only the equilibrium point with allαi j = 1 is stable.

Finally, a simple application of the Kuramoto oscillators was considered: the global coupling of chemical os-
cillators. Although the results of a previously preformed experiment could not be reproduced, as not all data
was available, a real application of the model is shown. Indeed, in the experiment described, it was found
that global coupling of chemical oscillators causes a phase transition, such that the oscillators synchronize.

The reliability of the results is impacted by the numerical method used to solve the differential equations
(Modified Euler). In Chapter 3 an adaptive complex network with an anti-Hebbian and an Hebbian rule is
studied. The network with an anti-Hebbian network is an reproduction of the study preformed in [21]. The
obtained results confirm the results of this paper. However the dynamics of the largest component (Figure
3.3(a)) are slightly different, although it reveals the same trend as in the paper. It is assumed that this is caused
by errors due to the Modified Euler method. In Chapters 4 and 5 similar problems arose in the comparison of
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a simulated network with the asymptotic values. In the paper, RK4 is used to simulate the network. However,
the implementation of RK4 caused a significant delay in computation time (even though a larger time step
may be used), while in general, the method of Modified Euler gave almost exactly the same results. Therefore,
Modified Euler is used in this study. Still, it would be plausible that a numerical method with a lower order
error will result in more accurate results.

In further research, the dynamics of a network where a fraction of the oscillators have a Hebbian adapta-
tion rule, and a fraction have an anti-Hebbian adaptation rule may be studied. It would also be interesting
to extend the stability analysis to a network of N Kuramoto oscillators, and verify whether the linking rules
found in this study would still hold. In addtion, a stability analysis of a Hebbian network with 3 (or N ) oscil-
lators could be preformed, to test whether the equilibrium point with all links equal to 1 is indeed the only
stable point. Finally, it would be interesting to investigate other applications of the adaptive network. This
could be in the field of social networks. In this field it is known that some people are way more connected
than others [47], it may be suggested that this can be modelled using frequency dissartotativity. Other ex-
amples may be found in economic flows, or ecological evolution, where synchronization is already observed
[34].
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Appendix

A.1. MATLAB Codes
The computations in this study are executed in MATLAB on a High Performance Computing Cluster (HPC). In
this section, the most essential MATLAB codes are be presented. Sometimes codes are used for multiple pur-
poses, by making a few adjustments. These adjustments are indicated per code. It must be noted that codes
of simple or less relevant calculations, codes that helped understanding the network (i.e. the computations
are not included in this report), codes that sent assignments to the cluster or codes that construct figures are
left out. If desired, all codes can be delivered.

A.1.1. Simulation of the network, Macroscopic characteristics
The code below simulates a network of N oscillators, and computes the global synchronization R, total
strength S, the largest component and the average degree 〈k〉. The method of Modified Euler is used to solve
the differential equations. The function RK4 couldn’t be implemented in this code. However, a similar code is
written to solve the differential equations using RK4 (manually). With a small adjustment, the code can also
be used for the Hebbian network. The code can also be used for a small network (2 or 3 oscillators). However,
in this case, the characteristics in time (and their derivatives) are also saved (each 500 time steps), such that
evolution in time can be considered.

1 %Input
2 N =300; % number of coupled oscillators
3 omin=0.8; % minimum value natural frequency
4 omax=1.2; % maximum value natural frequency
5 sigmamin=0.2; % minimum value global coupling strength
6 sigmamax=1; % maximum value global coupling strength
7 pcmin=0; % minimum value correlation threshold
8 pcmax=0.4; % maximum value correlation threshold
9 h=0.01; % timestep

10 n=1500; % number of timesteps
11 t=0:h:h*n; % all timesteps
12 res=100; % resolution of the heatmap (nxn)
13 tau=0.8; % link threshold
14 M=4; % number of parallel nodes used hpc
15
16 %% Create vectors
17 sigmac=sigmamin:(sigmamax−sigmamin)/res:sigmamax; % 1st tuning parameter (coupling

strength)
18 pc=pcmin:(pcmax−pcmin)/res:pcmax; % 2nd tuning parameter (

correlation threshold)
19 length2=numel(sigmac); % number of coupling strengths
20 length1=numel(pc); % number of correlation thresholds
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21 omega = omin+(omax−omin)*rand(N,1); % Natural frequancies of N
oscillators, uniform distributed in [omin,omax]

22 theta=2*pi*rand(N,1).*ones(N,length1,length2); % Initial value of the phase (same
initial values for all different values of sigma, pc)

23
24 a=rand(N); % NxN uniformly distributed values

in [0,1]
25 a_lm=abs((a+a')/2−eye(N).*a); % Create initial weigthed matrix

with weighted links (symmetric, hollow, uniformly distributed in [0,1])
26 a_lm=a_lm.*ones(N,N,length1,length2); % Set as initial weigthed matrix

for all tuning parmaters
27
28 %% Time simulation − Modified Euler Method
29 parfor (k=1:length1,M) % Use M parallel nodes
30 for m=1:length2 % Time simulation of all values

of pc, sigma
31 for j=1:n
32 fntheta=dtheta(omega,sigmac(1,m),N,a_lm(:,:,k,m),theta(:,k,m));

% f(t_n,w_n), dtheta is D.E. of theta
33 fna_lm=da_lm(N,pc(1,k),theta(:,k,m),a_lm(:,:,k,m));

% f(t_n,w_n), da_lm is D.E.
of weight of link

34 predtheta=theta(:,k,m)+h*fntheta;
% predictor

of theta
35 preda_lm=a_lm(:,:,k,m)+h*fna_lm;

%
predictor of weight of link

36 a_lm(:,:,k,m)=a_lm(:,:,k,m)+(h/2)*(fna_lm+da_lm(N,pc(1,k),predtheta,
preda_lm)); % approximation a_lm (n+1)

37 theta(:,k,m)=theta(:,k,m)+(h/2)*(fntheta+dtheta(omega,sigmac(1,m),N,
preda_lm,predtheta)); % approximation theta (n+1)

38 end
39 R(m,k)=(1/N)*abs(sum(exp(1i*theta(:,k,m)))); % Kuramoto order parameter
40 S(m,k)=(sum(sum(a_lm(:,:,k,m))))/(2*N); % Global Strength
41 end
42 end
43 %% Construct Adjacency matrix
44 a_lmround=round(a_lm−(tau−0.5)); % Constructing adjacency matrix

(>tau −−> 1, otherwise 0)
45
46 %% Calculate Largest Component (LC)
47 Nc=zeros(length2,length1); % Create matrix with value of

Largest Component for (sigma,pc) (LC=300)
48 LC=zeros(length2,length1); % Create matrix with value of

Largest Component for (sigma,pc) (LC/=300)
49 n0=zeros(length2,length1); % Algebraic multiplicity

eigenvalue 0 for (sigma,pc)
50 n1=0; % number of elements connected

to first element
51 conelemi=[1];
52
53 for m=1:length2 % Determine LC

for (sigma, pc)
54 for j=1:length1
55 di=sum(a_lmround(:,:,j,m),2); % Degree of
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each oscillator
56 Delta=diag(di); % Degree matrix
57 Q=Delta−a_lmround(:,:,j,m); % Laplacian
58 eigenvalues=round(eig(Q),5); % Compute

eigenvalues of Laplacian
59 n0(m,j)=length(eigenvalues)−length(find(eigenvalues)); % Algebraic

multiplicity eigenvalue 0
60 if n0(m,j) == 1 % 1 connected

component −> LC=300
61 Nc(m,j)=N;
62 else
63 Nl=zeros(n0(m,j),1); % Create vector

with size of connected component 1, 2, ..., n0
64 [Nl(1), conelemi]=component(a_lmround(:,:,j,m),1); % Compute [size

of connected component 1, vector of oscillators part of component]
65 Compare=2:1:N; % Vector of all

oscillators in network (from 2 − N)
66 connected=ismember(Compare,conelemi)−1;
67 for i=2:n0
68 connected=ismember(Compare,conelemi)−1; % Create

logical matrix − val=−1 if oscillator is not contained in a checked
component

69 newrow=find(connected)+1; % Oscillators
that are not part of a checked component

70 row=newrow(1); % Select
oscillator in unchecked component (+1, as Compare starts from 2)

71 [Nl(i),newcolomeni]=component(a_lmround(:,:,j,m),row); % check new
component, [size connected component i, oscillators part of
component i]

72 conelemi=[conelemi newcolomeni]; % All
oscillators that are part of a checked connected component

73 end
74 LC(m,j)=max(Nl); % Pick largest

component
75 end
76 end
77 end
78 Largestcomponent=Nc+LC; % Largest

component for all (sigma,pc)
79 %% Calculate average degree <k>
80 di=zeros(N,length2,length1);
81 averagedegree=zeros(length2,length1);
82 for m=1:length2
83 for j=1:length1
84 di(:,m,j)=sum(a_lmround(:,:,j,m),2); % Degree of each oscillator
85 averagedegree(m,j)=sum(di(:,m,j),1)/N; % Average degree
86 end
87 end
88
89 %% Output
90 save('LC_antiheb_n1500.mat','sigmac','pc','Largestcomponent','averagedegree','R','S')

% Save macroscopic characteristics
91 save('network_antiheb.mat','a_lm','a_lmround','theta','omega','−v7.3') % Save

charateristics network
92
93 %% Functions
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94 % Functions for time evoluation of the phase, weight of the link, and to
95 % find the size of each component
96 %% Differential equation for theta
97 function f=dtheta(omega,sigmac,N,a_lm,theta) % Differential equation (D.

E.) for phase theta
98 som=sum(a_lm.*sin(theta*ones(1,N)−ones(N,1)*theta'))';
99 f=omega+(sigmac/N)*som;

100 end
101 %% Differential equation a_lm
102 function g=da_lm(N,pc,theta,a_lm) %D.E. for weight of link

a_lm
103 L=ones(N,1)*theta'; %defining matrices for

theta_l en theta_m
104 M=theta*ones(1,N);
105 p_lm=0.5*abs(exp(1i*L)+exp(1i*M)); %instantaneous phase

correlation
106 g=(pc−p_lm).*a_lm.*(1−a_lm);
107 end
108 %% Function to find largest component
109 function [Nc,conelemi]=component(adjacency,row) % Input (adjacency matrix

of network, connected component with oscillator 'row' in it
110 n1=0; % Output [Size of component

, oscillators in component]
111 conelemi=[find(adjacency(row,:))]; % Vector with all

oscillators connected to oscillator 'row'. (first design largest component)
112 for k = 1:3
113 n1=n1+1;
114 n2=length(conelemi); % All oscillators connected

to oscillator 'row' are checked for new connected oscillators
115 for i=n1:n2
116 row=conelemi(i); % Check oscillators that

are connected to element i (element i connected to element 'row')
117 conelem=find(adjacency(row,:)); % Find all connections with

components
118 if length(conelem)> 0
119 conelemi=[conelemi conelem]; % Add connected oscillators

to component
120 conelemi=unique(conelemi); % Delete copies
121 end
122 end % Repeat procedure (study

the connectivity of discovered connected oscillators)
123 end
124 Nc=length(conelemi); % Size of component
125 end

A.1.2. Microscopic characteristics
The microscopic characteristics of network can be computed easily from the data generated in the previous
code. For the Hebbian network, other values of pc are used.
It is also possible to fix a natural frequency in a network, and compute the microscopic characteristics for
this oscillator (after simulating the network), such that the characteristics are computed for all values of ωi .
However, it was chosen to use the data from the previous code, such that the structure of a network is more
clear, and to make sure that the circumstances are equal for all different values of ωi .

1 clear all
2 load('Nodestructure_ah_theta.mat') %See details below
3 %%
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4 % Input data is:
5 % 3 adjacency−matrices for pc=0.61, pc=0.75 and pc=0.95 (and sigma=0.6 for all three)
6
7 % 3 vectors with the phases of the oscillators for pc=0.61, pc=0.75
8 % and pc=0.95 (and sigma=0.6 for all three
9

10 % Vector containing all natural frequencies
11 %% Standard information of network (could also be obtained from input)
12 omin=0.8; % Limits for plots
13 omax=1.2;
14
15 N=300; % Number of oscillators
16 pc=[0.61 0.75 0.95]
17
18 plots=length(pc); % Number of plots
19
20 a_lmround(:,:,1)=alm_pc061; %pc = 0.61
21 a_lmround(:,:,2)=alm_pc075; %pc = 0.75
22 a_lmround(:,:,3)=alm_pc095; %pc = 0.95
23
24 theta(:,1,1)=mod(theta_pc_061_sig_06,2*pi); %pc = 0.61
25 theta(:,2,1)=mod(theta_pc_075_sig_06,2*pi); %pc = 0.75
26 theta(:,3,1)=mod(theta_pc_095_sig_06,2*pi); %pc = 0.95
27
28 %% Degree node
29 degreenode=sum(a_lmround,2);
30 %% Neighborhood detuning
31 neighborhood=zeros(N,plots);
32 connectedomega=zeros(N,1);
33 averageomega=zeros(N,1);
34 for k=1:plots
35 connectedomega=a_lmround(:,:,k)*omega; %Create matrix with the nat. freq. of connected

oscillators
36 averageomega=sum(connectedomega,2)./degreenode(:,1,k); %Compute average nat. freq. <

omega>
37 neighborhood(:,k)=omega−averageomega; %Node neighborhood detuning for all oscillators
38 end
39 %% Connectivity of the network
40 omega_sort=sort(omega);
41 a_lm2=zeros(N,N,plots);
42 for h = 1:plots % This for loop reorders the adjacency matrix, such that

oscillator 1
43 for i = 1:N % has the lowest nat. freq., and oscillator N the largest nat.

freq.
44 for j = 1:N % without changing the structure of the network
45 result1 = find(omega_sort==omega(i));
46 result2 = find(omega_sort==omega(j));
47 a_lm2(result1,result2,h)=a_lmround(i,j,h);
48 end
49 end
50 end

A.1.3. Stability analysis 3 oscillators
The next code is used to reveal the asymptotic characteristics of the network. The stability of each equilib-
rium point is given by the stability conditions that were found in chapter 5. For each equilibrium point the
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characteristics are found by filling in the asymptotic values of phase difference and weight of the link or by
solving analytical expressions for these variables. This code only works for ∆1 <∆2. Similar codes are written
for ∆1 =∆2 and ∆1 >∆2. These can also be combined, such that for any input, the output will be asymptotic
characteristics of the network. For simplicity and compactness, only one case is given here.

Instead of using the stability conditions, a very similar code is written that computes the eigenvalues of the
Jacobian at each equilibrium point (using the (solved) asymptotic values of the phase difference and weight
of the link)

1 %% Network of 3 oscillators (AH)
2 % This code generates the bifurcation matrix, and all
3 % microscopic/macroscopic characteristics of a network of 3 oscillators,
4 % with 0<Delta1<Delta2
5 %%
6 clear all
7 %% Frequencies of the network (input)
8 omega1=0.8;
9 omega2=0.9;

10 omega3=1.2;
11
12 pcstart=0.4; %xlimit of figure
13 sigmastart=0.1; %ylimit of figure
14
15 %% Determine Delta1, Delta2
16 Delta1=omega2−omega1;
17 Delta2=omega3−omega2;
18 clearvars omega1 omega2 omega3 %Not relevant
19 %% Define variables
20 sigma=(sigmastart:0.0005:1)'; %all values of sigma
21 pc=(pcstart:0.0005:1); %all values of pc
22
23 x=length(pc);
24 y=length(sigma);
25 z=length(sinphi);
26
27 hm=zeros(y,x); %Bifurcation matrix
28
29 sinphi=(0:0.0005:1)'; ` %possible values of sin(phi_1) (used to solve

analytical implicit expressions)
30 sinphi1=zeros(y,1);
31 sinphi2=zeros(y,x)+10;
32 %% Set 1 − Only for Delta1=Delta2
33 %% Set 2 − Only for Delta1=Delta2
34 %% Set 3 − Not stable for any network
35 %% Set 4
36 % Delta1<Delta2
37 % Properties of the point
38 phi2=acos(2.*pc.^2−1);
39 phi12=phi2;
40 phi1=phi12−phi2;
41
42 a12=0;
43 a23=(Delta2−Delta1)./(2.*sigma*(pc.*sqrt(1−pc.^2))).*ones(y,x);
44 a13=(Delta2+2*Delta1)./(2.*sigma*(pc.*sqrt(1−pc.^2))).*ones(y,x);
45
46 %Stability
47 % Construct logical array of pc>1/sqrt(2)
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48 lpc=pc>1/sqrt(2);
49
50 % Construct logical matrix of sigma > Maximum Critical Coupling Strength
51 MaxDelta=max(Delta2−Delta1,Delta2+2*Delta1);
52 CritSig=MaxDelta./(2.*(pc.*sqrt(1−pc.^2))).*ones(y,x);
53 lsigma=sigma.*ones(y,x)>CritSig;
54
55 % Bifurcation matrix (stable region)
56 hm4=lsigma.*lpc;
57 % Characteristics
58 S4=hm4.*(a12+a23+a13)./(3−1); %Total Strength
59 Bif4=hm4.*0.5; %Different colors for Bifurcation diagram
60 phi14=hm4.*phi1; %value of phi1
61 R4=(1/3)*abs(exp(0)+exp(1i.*phi1)+exp(1i.*phi12)).*hm4; %The phase difference is given.

Choose theta1=0, then theta2=phi1 and theta3=phi12
62
63 %% Set 5
64 % Delta1<Delta2
65 % Properties of the point
66 phi2=acos(2.*pc.^2−1);
67 phi12=asin((Delta2+2*Delta1)./sigma);
68 phi1=phi12−phi2;
69
70 a12=0;
71 a23=(Delta2−Delta1)./(2.*sigma*(pc.*sqrt(1−pc.^2))).*ones(y,x);
72 a13=1;
73
74 %Stability
75 % Construct logical array where p12>pc
76 p12=sqrt((1+cos(phi1))./2);
77 lp12=p12>pc;
78
79 % Construct logical matrix where sigma < Critical Coupling strength
80 % The Coupling Strength is the same as of point 4
81 lsigma=sigma.*ones(y,x)<CritSig;
82 lsigma2=MaxDelta<sigma;
83
84 % Construct logical array where pc>1/sqrt(2)
85 % This is the same lpc as of point 4
86
87 % Bifurcation matrix (stable region)
88 hm5=lsigma.*lsigma2.*lpc.*lp12;
89 % Characteristics
90 S5=hm5.*(a12+a23+a13)./(3−1); %Total Strength
91 Bif5=hm5; %Different colors for Bifurcation diagram
92 phi15=hm5.*phi1; %value of phi1
93 R5=(1/3)*abs(exp(0)+exp(1i.*phi1)+exp(1i.*phi12)).*hm5; %The phase difference is given.

Choose theta1=0, then theta2=phi1 and theta3=phi12
94
95 %% Set 6
96 % Find smallest solution of sin(phi1) satisfying condition
97 for m = 1:y %sigma
98 for k = 1:z %possible values of sin phi
99 A = sinphi(k);

100 term= ((Delta2−Delta1)/sigma(m)) + sinphi(k);
101 B = sinphi(k)*sqrt(1−term^2);
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102 C = term*sqrt(1−sinphi(k)^2);
103 D = (2*Delta1+Delta2)/sigma(m);
104 condition= A + B + C − D ; % Condition on phi_1
105 if abs(condition)<10^−3 % Accuracy
106 sinphi1(m)=sinphi(k);
107 break
108 end
109 end
110 end
111 clearvars condition A B C D term
112
113 % Properties of the point
114 phi1=asin(sinphi1);
115 phi2=asin(sin(phi1)+(Delta2−Delta1)./sigma);
116 phi12=phi1+phi2;
117
118 a12=1;
119 a23=1;
120 a13=1;
121
122 % Stability
123 % Construct logical array where p12<pc
124 p12=sqrt((1+cos(phi1))./2);
125 lp12=p12.*ones(y,x)<pc.*ones(y,x);
126 % Construct logical array where p23<pc
127 p23=sqrt((1+cos(phi2))./2);
128 lp23=p23<pc.*ones(y,x);
129 % Construct logical array where p13<pc
130 p13=sqrt((1+cos(phi12))./2);
131 lp13=p13<pc.*ones(y,x);
132
133 % Bifurcation matrix (stable region)
134 hm6=lp12.*lp23.*lp13;
135 % Characteristics
136 S6=hm6.*(a12+a23+a13)./(3−1); %Total Strength
137 Bif6=hm6.*3; %Different colors for Bifurcation diagram
138 phi16=hm6.*phi1; %value of phi1
139 R6=(1/3)*abs(exp(0)+exp(1i.*phi1)+exp(1i.*phi12)).*hm6; %Choose theta1=0, then theta2=

phi1 and theta3=phi12
140
141 %% Set 8
142
143 % Properties of the point
144 phi1=acos(2.*pc.^2−1);
145 phi2=phi1;
146 phi12=phi1+phi2;
147
148 a12=(2*Delta1+Delta2)./(2*sigma*pc.*sqrt(1−pc.^2))−2*(2.*pc.^2−1);
149 a23=(2*Delta2+Delta1)./(2*sigma*pc.*sqrt(1−pc.^2))−2*(2.*pc.^2−1);
150 a13=1;
151
152 %Stability
153
154 % Construct logical matrix where sigma < Critical Coupling strength
155 MinDelta=min(2*Delta2+Delta1,Delta2+2*Delta1);
156 CritSigMax=(MinDelta)./(2.*pc.*sqrt(1−pc.^2).*2.*(2.*pc.^2−1));
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157 lsigma1=sigma<CritSigMax;
158
159 % Construct logical matrix where sigma > Critical Coupling strength
160 MaxDelta=max(2*Delta2+Delta1,Delta2+2*Delta1);
161 CritSigMin=(MaxDelta)./(2.*pc.*sqrt(1−pc.^2).*(1+2.*(2.*pc.^2−1)));
162 lsigma2=sigma>CritSigMin;
163
164 % Construct logical matrix where lambda < 0
165 a=(sigma*cos(phi1)).*a12./(3−1); %Matrix multiplications such that matrix has dimension

y−by−x and element m,n has sigma(m)*cos(k)*a12(m,k)
166 b=(sigma*cos(phi2)).*a23./(3−1);
167 c=2.*(sigma*cos(phi12))./(3−1);
168 lambda=sqrt(a.^2−2*a.*b−2*a.*c+b.^2−2*b.*c+c.^2)−a−b−c;
169 llambda=lambda<0;
170
171 % Bifurcation matrix (stable region)
172 hm8=lsigma1.*lsigma2.*llambda;
173 % Characteristics
174 S8=hm8.*(a12+a23+a13)./(3−1); %Total Strength
175 Bif8=hm8.*2; %Different colors for Bifurcation diagram
176 phi18=hm8.*phi1; %value of phi1
177 R8=(1/3)*abs(exp(0)+exp(1i.*phi1)+exp(1i.*phi12)).*hm8; %The phase difference is given.

Choose theta1=0, then theta2=phi1 and theta3=phi12
178 %% Set 9
179
180 % Find smallest solution of sin(phi2)
181 A=sinphi*(2.*pc.^2); %dimensions z(=sin)−by−x(=pc)
182 B=(sqrt(1−sinphi.^2))*(2.*pc.*sqrt(1−pc.^2)); %Use sin instead of angle to limit

domain
183 Right=A+B;
184 Left = (2*Delta2+Delta1)./sigma;
185
186 for k = 1:x %pc
187 for m = 1:y %sigma
188 for n=1:z %sinphi
189 condition= Right(n,k) − Left(m); %Condition on phi1, see set of eq. points

7
190 if abs(condition)<10^−2
191 a12=(Delta1−Delta2+sigma(m)*sinphi(n))/(2*sigma(m)*pc(k)*sqrt(1−pc(k)^2));
192 if a12>0 && a12<=1 && sinphi2(m,k)==10 %smallest solution
193 sinphi2(m,k)=sinphi(n);
194 end
195 end
196 end
197 end
198 end
199
200 % Properties of the point
201 phi1=acos(2.*pc.^2−1);
202 phi2=asin(sinphi2);
203 phi12=phi1+phi2;
204
205 a12=(Delta1−Delta2+sigma.*sin(phi2))./(2*sigma*(pc.*sqrt(1−pc.^2)));
206 a23=1;
207 a13=1;
208
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209 % Stability
210
211 % Construct logical array where sigma>sigma*a12
212 la12=sigma>sigma.*a12;
213
214 % Construct logical matrix where sigma < Critical Coupling strengths
215 CritSigMax1=sigma.*sin(phi2)./((2.*pc.*sqrt(1−pc.^2)).*ones(y,x));
216 CritSigMax2=sigma.*sin(phi12)./((2.*pc.*sqrt(1−pc.^2)).*ones(y,x));
217 CritSig=min(CritSigMax1,CritSigMax2);
218 lsigma=sigma<CritSig;
219
220 % Construct logical matrix where lambda < 0
221 a=(sigma*cos(phi1)).*a12./(3−1); %Matrix multiplications such that matrix has dimension

y−by−x and element m,n has sigma(m)*cos(k)*a12(m,k)
222 b=(sigma.*cos(phi2))./(3−1);
223 c=2.*(sigma.*cos(phi12))./(3−1);
224 lambda=sqrt(a.^2−2*a.*b−2*a.*c+b.^2−2*b.*c+c.^2)−a−b−c;
225 llambda=lambda<0;
226
227 % Bifurcation matrix (stable region)
228 hm9=la12.*lsigma.*llambda;
229 % Characteristics
230 S9=hm9.*(a12+a23+a13)./(3−1); %Total Strength
231 Bif9=hm9.*1.5;
232 phi19=hm9.*phi1; %value of phi1
233 R9=(1/3)*abs(exp(0)+exp(1i.*phi1)+exp(1i.*phi12)).*hm9; %The phase difference is given.

Choose theta1=0, then theta2=phi1 and theta3=phi12
234 %% Characteristics of all points
235 % Bifurcation diagram
236 Bif=Bif4+Bif5+Bif6+Bif8+Bif9; %Bifurcation diagram (different colors)
237
238 % Total strength
239 S=S4+S5+S6+S8+S9; %Total Strength of stable points
240 LS= S==0;
241 LS=LS.*lpc.*1.5; %Region F2 has maximum strength
242 S=S+LS; %S for all (sigma,pc)
243
244 % Phi1
245 Phi1=phi14+phi15+phi16+phi18+phi19; %value of phi in stable region
246
247 Lphi1= Phi1==0; %Construct oscillating phase

difference in region F2
248 lsigma=sigma<MinDelta;
249 Lphi1=Lphi1.*lpc.*lsigma.*2.*pi.*sin(sigma.*300.*pi);
250
251 Lphi2= Phi1==0;
252 lpc2=pc<1/sqrt(2); %Define phi1 = pi/3 (random) in

region F1
253 Lphi2= Lphi2.*lpc2;
254
255 Phi1=Phi1+Lphi1+Lphi2; %Phi for all (sigma,pc)
256
257 % Global Synchronization
258 RF1=(1/3)*abs(exp(0)+exp(1i.*Lphi1)+exp(1i.*2.*Lphi1)).*lpc.*lsigma.*Lphi1; %R in

unstable region F1
259 RF2=(1/3)*abs(exp(0)+exp(1i*2/3*pi)+exp(1i*4/3*pi)).*lpc2; %R in
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unstable region F2
260 R=R4+R5+R6+R8+R9+RF1+RF2; %R for all (sigma,pc)

A.1.4. Chemical oscillators
The code below is used to generate the data required for the figures in Chapter 6.

1 %% Distribution of the frequencies
2 mu=0.4526; % Mean of distribution (frequencies)
3 StanDev=6.54*10^−3; % Standard Deviation of distribution
4 omega=normrnd(mu,StanDev,[64 , 1])*2*pi; % Omega=2*pi*f
5
6 %% Construct I(t) for 64 oscillators
7 t=3:0.005:160;
8 phasedif=(0:63)';
9 I_average=0.165;

10 A=1/12.5;
11 I=I_average+A*sin(omega.*t+phasedif*3);
12
13 %% Data phase portrait
14 j=50; % Timestamp snapshot (arbitrary)
15 s=I(:,j)−I_average; % Signal s(t)
16 psi=hilbert(s); % Complex time function
17
18 %% Order parameter
19 s=I−0.165; %note: x2=t
20 sbar=imag(hilbert(s));
21 r=zeros(1,length(t));
22 for k=1:length(t)
23 r(1,k)=abs(sum(s(:,k)+sbar(:,k)))/sum(sqrt(s(:,k).^2+sbar(:,k).^2));
24 end
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