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Low Leakage and High Forward Current Density
Quasi-Vertical GaN Schottky Barrier Diode

With Post-Mesa Nitridation
Xuanwu Kang , Yue Sun , Graduate Student Member, IEEE, Yingkui Zheng, Ke Wei, Hao Wu ,

Yuanyuan Zhao, Xinyu Liu, and Guoqi Zhang , Fellow, IEEE

Abstract— In this brief, a high-performance quasi-vertical
GaN Schottky barrier diode (SBD) on sapphire substrate
with post-mesa nitridation process is reported, featuring a
low damaged sidewall with extremely low leakage current.
The fabricated SBD with a drift layer of 1 μm has achieved
a very high ON/OFF current ratio (ION/IOFF) of 1012 with a low
leakage current of ∼10−9 A/cm2@-10 V, high forward current
density of 5.2 kA/cm2 at 3 V in dc, a low differential specific
ON-resistance (RON,sp) of 0.3 m�·cm2, and ideality factor
of 1.04. In addition, a transmission-line-pulse (TLP) I–V test
was carried out and 53 kA/cm2 at 30 V in pulsed measure-
ment was obtained without device failure, exhibiting a great
potential for high power applications.

Index Terms— GaN, high forward current density,
leakage, mesa, quasi, Schottky barrier diode (SBD),
transmission-line-pulse (TLP), vertical.

I. INTRODUCTION

GaN-BASED vertical power devices have tremen-
dous potential for high-power switching applications,

because of their superior device characteristics, e.g., high
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Fig. 1. (a) Schematic of the quasi-vertical GaN-on-sapphire SBD.
(b) STEM cross section image of the diode with mesa structure with
6 µm spacing between the edge of anode and cathode.

voltage blocking and high frequency switching capabil-
ity [1], [2]. High-performance fully vertical GaN-on-GaN p-n
diodes [3]–[6] and Schottky barrier diodes (SBDs) [7]–[11]
have been demonstrated for high breakdown and good thermal
properties. However, as the high-quality GaN substrates are
expensive and only available in small size, quasi-vertical GaN
diodes on low-cost foreign substrates (e.g., silicon or sapphire)
have attracted more attentions recently [12], [13]. Although
high-performance GaN SBDs on foreign substrates have been
demonstrated, some critical issues still limit the development
of GaN quasi-vertical SBDs. One of them is the large reverse
leakage current [14], which can cause OFF-state power loss
and reliability problems [15]. Some literatures suggest that it
is possible to inhibit the leakage currents by junction termi-
nation techniques [7], [16], [17], reducing dislocation density
of GaN epitaxial layer [18]–[20], passivating the etch mesa
sidewall [21], reducing the doping concentration of GaN drift
layer [22], [23], and decreasing the interface defect density at
the Schottky contact interface [24].

In this brief, a quasi-vertical GaN SBD on sapphire substrate
was fabricated with low damaged sidewall by post-mesa
nitridation process, exhibiting a state-of-the-art low leakage
current of 10−9 A/cm2 at −10 V, ideality factor of 1.04 and
a very high forward current density of 5.2 kA/cm2 at 3 V in
dc and 53 kA/cm2 at 30 V in transmission-line-pulse (TLP)
pulsed tester.

II. DEVICE STRUCTURE AND FABRICATION

Device schematic of the quasi-vertical GaN SBD is shown
in Fig. 1(a). The epitaxial wafer was grown on a 2-in sapphire
(0001) substrate by metalorganic chemical vapor deposition
(MOCVD), consisting of 2-μm buffer layer, 3 μm n+-GaN
conducting layer (ND: 5 × 1018 cm−3), and 1 μm n−-GaN
drift layer (ND: 1 × 1016 cm−3). Fig. 1(b) shows the STEM
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Fig. 2. Process flow diagram of the quasi-vertical GaN SBD with
post-mesa nitridation.

Fig. 3. Electrical characteristics of the GaN SBD with post-mesa
nitridation and reference with a diameter of 100 µm. Forward J–V
characteristics (a) in semi log-scale and RON,sp, and (b) in linear-scale
and ideality factor.

cross section image of fabricated SBD. A total dislocation
density of the GaN epi-wafer on sapphire was 4 × 108 cm−2,
which is calculated with the full-width at half-maximum of
the plane rocking curve orientations.

The fabrication flow of the quasi-vertical GaN SBD is
shown in Fig. 2. First, the steep mesa was formed by using an
SiO2 mask and a combination of inductively coupled plasma
(ICP) dry etch with Cl2/BCl3 gas mixture. Next, N2 plasma
treatment was performed on the mesa for 4 min at a pressure
of 0.5 Pa and an N2 flow rate of 80 sccm to reduce the
plasma etch damage. Then, the cathode metal Ti/Al/Ni/Au was
deposited on the n+-GaN layer, and annealed at 600 ◦C for
2 min to form an ohmic contact. Finally, circular Schottky
metal was formed with Ni/Au on n−-GaN layer (drift layer)
with various diameters of 100, 140, 200, and 250 μm.

The reference sample was processed without nitridation on
the mesa. It is reported that not well-treated mesa sidewall
can be one of the reasons to cause the high reverse leakage
[25]–[27] and lead to potential reliability problems [15].

III. RESULTS AND DISCUSSION

Fig. 3(a) and (b) shows the forward J–V characteristics in
semi-log and linear scale of quasi-vertical SBD with post-
mesa nitridation and the reference, both with anode diameter
of 100 μm. In Fig. 3(a), the quasi-vertical GaN SBD with
post-mesa nitridation has shown three orders of magnitude
lower leakage current than the reference and a very high
ON/OFF current ratio (ION/IOFF) of 1012. In Fig. 3(b), the SBD
with post-mesa nitridation has reached a high forward current
density of 5.2 kA/cm2 at 3 V (normalized to the anode

Fig. 4. (a) Reverse breakdown characteristics of GaN SBD with a
diameter of 100 µm. (b) Leakage current density of SBD with and without
post-mesa nitridation for different anode diameters D (D = 100, 140, 200,
and 250 µm), as a function of 1/D at a reverse bias of 20, 40, and 60 V.

Fig. 5. Temperature dependent of (a) forward and (b) reverse J–V
characteristics in semilog scale at temperatures ranging from 25 ◦C
to 150 ◦C. The inset of (a) is temperature-dependent of forward J–V
characteristics in a linear scale. Eav is the average electric field in the
drift layer, which can be calculated with Eav = (Vbi–Vr)/Wd. Wd is the
drift layer thickness. Vbi is the built-in voltage of GaN SBDs (∼0.7 V).

Fig. 6. Pulsed forward J–V characteristics with nitridation and w/o
nitridation, under a pulsewidth of 100 ns and rise/fall time of 5 ns by
a TLP tester (anode diameter is 200 µm).

area), almost by 25% higher than the reference sample. Mean-
while, it has obtained a low differential specific ON-resistance
(RON,sp) of 0.3 m�·cm2, nearly unity ideality factor (η)
of 1.04, low turn-on voltage (VON) of 0.7 V (extracted at
1 A/cm2), showing much better forward characteristics, com-
pared to the reference. The improved forward characteristics
might be attributed to the post-mesa nitridation process, lead-
ing to the reduction of additional current choke in the access
region outside of mesa [16].

Fig. 4(a) shows the breakdown voltage (BV) characteristics
of the GaN SBD with post-mesa nitridation and reference
at room temperature. The hard-BV of SBD with post-mesa
nitridation and reference are 145 and 70 V, respectively.
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Fig. 7. Schematic of the atomic arrangement of GaN surface after mesa etch and N2 plasma treatment.

The leakage current density of optimized SBD is
∼10−9 A/cm2@10 V and 10−5 A/cm2@50 V, which is
three orders of magnitude lower than that of the reference,
as well. Leakage current along the sidewall is one of the main
leakage path for quasi-vertical GaN SBD, as ICP dry etch
might create surface damage (e.g., N vacancies) [28], [29].
Therefore, post-mesa nitridation technique has been developed
to remove the sidewall damage and then reduce the leakage.
In addition, the slight overlap between the anode and
nitridation region helps increase the Schottky barrier height
around the anode periphery [30], thus reduces the leakage
current. Moreover, the leakage current density, shown in
Fig. 4(b), is nearly independent of the anode diameters at
different reverse bias for the optimized SBD, verifying that
the leakage current along sidewall is not the dominant leakage
current path [16].

Fig. 5(a) shows the temperature-dependent forward J–V
characteristic in log-scale of GaN SBD with post-mesa nitrida-
tion, which is dominated by thermionic emission (TE) model,
with a Schottky barrier height (�b) of 0.87 eV extracted
based on the Richardson plot [31]. The forward current density
decreases and differential RON,sp increases with the increased
chuck temperature when forward voltage is beyond 1 V, mainly
attributed to a decrease of electron mobility in the drift region.
The decrease of the turn-on voltage with the increase of
temperature is due to the increase of TE current at low bias
(<1 V), where the effect of series resistance is small and can
be neglected.

The temperature dependence of reverse characteristics is
assessed as well. As shown in Fig. 5(b), a temperature increas-
ing from 25 ◦C to 150 ◦C results in an increase of leakage
current density by about two orders of magnitude. According
to the leakage mechanism reported [27], [32], [33], in the
low reverse bias range (Eav < 0.4 MV/cm), the leakage
process might be dominated by the TE mechanism. The
device leakage current is beyond the limit of measurement
instrument (∼10−14 A) (Agilent B1500A) at low temperature,
thus deviating from the TE model. For the moderate reverse
bias range (0.4 MV/cm < Eav < 0.8 MV/cm), the leakage
behavior shows a variable range hopping (VRH) process,
which might be attributed to the threading dislocation. In the

Fig. 8. (a) Benchmark of VON versus leakage current density for vertical
GaN SBDs with foreign substrates and silicon SBD for the BV between
120 and 250 V. VON is the voltage extracted at 1 A/cm2. The leakage
current density is at 80% of the BV, which is defined as the correspondent
voltage when leakage reaches 1 A/cm2. (b) Differential RON,sp versus BV
for vertical GaN SBDs with foreign substrates and silicon SBD. ET: edge
termination. The differential RON,sp is dominated by the resistance of drift
region, which is defined as the resistance for unit cross-sectional area [1].

high reverse bias region (Eav > 0.8 MV/cm), the domi-
nant leakage mechanism is Fowler–Nordheim (FN) tunneling
as a result of peak electric field crowding near the anode
edge.

For the first time, TLP I–V test was carried out to assess
GaN SBD characteristics under high forward bias. The SBD
was measured with a pulsewidth of 100 ns and rising/falling
time of 5 ns, followed by a reverse leakage measurement
immediately after each pulse to assess whether the device
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failed. As shown in Fig. 6, the SBD with post-nitridation
achieves a higher current density of 53 kA/cm2 at 30 V than
reference (37 kA/cm2 at 30 V), while the reverse leakage
current density was kept at 10−9 A/cm2 at bias of −1 V in the
followed reverse leakage monitoring, implying that the device
is still without failure. The SBD with post-nitridation has a
higher total power dissipation of 240 W than the reference
sample.

As shown in Fig. 7, the native oxide was removed by dry
etch while the nitrogen vacancy (VN) was formed near the
etched surface. A large amount of VN was introduced as
donor-like traps, resulting in the band bending and the increase
of surface state density of the etched GaN [34]. The traps will
create a primary path for leakage current along the etched
mesa sidewall. During the N2 plasma treatment on the GaN
surface, nitrogen radicals were reacted with Ga atoms and then
formed a new Ga–N bond, leading to a reduction of surface
defect density and a significant reduction of leakage current.

The benchmark of VON versus leakage current density and
differential RON,sp versus BV are shown in Fig. 8(a) and (b),
respectively. Our SBD with post-mesa nitridation shows a
lowest leakage current density at 80% of the BV among the
reported vertical GaN SBDs on foreign substrate for the BV
between 120 and 250 V [18], [25], [35]–[37]. The performance
of our SBD without edge termination is beyond the theoretical
limit line of silicon, achieving a BV of 145 V, and a small
differential RON,sp of 0.3 m�·cm2.

IV. CONCLUSION

In conclusion, a quasi-vertical GaN SBD on sapphire
substrate with post-mesa nitridation, which can improve the
performance of quasi-vertical SBD significantly, was proposed
in this brief. The BV can be increased from 70 to 145 V, and
leakage current density can be reduced from 10−7 A/cm2 to
10−9 A/cm2 at −10 V. The results suggest great potential of
vertical GaN devices on sapphire for high power and low-cost
applications.
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