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Abstract-The present paper critically investigates 
the use of edge elements for computing electromag- 
netic fields. The application of edge elements in meth- 
ods based on the use of vector potentials as well as in 
methods that compute electric and/or magnetic fields 
directly will be covered. In particular the popular 
idea that  edge elements eliminate spurious solutions 
will be refuted. This erroneous idea is replaced by the 
insight that spurious solutions can be eliminated only 
by a proper finite-element formulation. A reference 
is made to  alternative approaches, one of them intro- 
ducing a new type of element, the so-called general- 
ized Cartesian element, that combines the advantages 
of the classical Cartesian (nodal) elements with the 
ability of edge elements to allow the representation of 
discontinuities. 
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I. INTRODUCTION 

Over the past decade edge elements have earned an ex- 
plosive growth in attention in the electromagnetic finite- 
element community and this rapid development still seems 
to  be continuing unhampered. Although functions of the 
edge type were first used by McMahon [I], who referred 
to  them as pyramid vector fields, they gained their first 
popularity only after the fundamental theoretical paper 
by Nkdklec [a] and the application of these elements, first 
by Bossavit and Veritk 131 and subsequently by so many 
others that we have to  refrain from an attempt at refer- 
encing them. 

The main reasons for the success of edge elements seem 
to  be the following: 

1. Edge elements can be used for representing fields with 
continuous tangential components while leaving the 
normal component free to  jump. (In the present pa- 
per we use exactly these properties of edge elements 
as their definition.) Because of these properties edge 
elements can, contrary to  the standard nodal ele- 
ments, be used for representing electric and magnetic 
fields in media with discontinuous medium proper- 
ties. 
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2. Edge elements can be, and usually are, designed such 
that they are free of divergence. Among other rea- 
sons, this freedom of divergence has motivated the 
hope, and even conviction [4]-[11], of many that so- 
lutions of field problems obtained by using edge el- 
ements will be free of divergence and, consequently, 
free of the spurious solutions that haunt many finite- 
element codes for electromagnetic field computations. 
This hope is best illustrated by quoting NQdklec [a] 
who concluded his famous first paper on mixed finite 
elements with the statement: “The main advantage 
of these finite elements is the possibility of approx- 
imating Maxwell’s equations while exactly verifying 
one of the physical law[s].” 

Nkdklec’s paper was followed by many other papers 
proposing ever new types of edge elements, that some- 
times were given new names such as, for instance, tan- 
gential vector elements. We mention only the new types 
that are relevant in the context of the present paper. 

In 1985 Mur and de Hoop [12] introduced the so-called 
consistently linear edge elements. Contrary to  the mixed 
edge elements mentioned above they provide a linear ap- 
proximation of each component of the field in each Carte- 
sian direction. Consistently linear edge elements, or more 
generally edge elements that are consistent of any poly- 
nomial order, are not free of divergence. In [13] Nkdklec 
presented a very learned and general discussion on edge 
elements of this type. 

In the present paper the validity of the various claims 
that are made regarding edge elements is analysed. A few 
additional properties of edge elements are also discussed. 

11. EDGE ELEMENTS DO ALLOW SPURIOUS SOLUTIONS 

A very simple and explicit example demonstrating that 
edge e lements  do allow spurious solutions in driven prob- 
lems waij given by Mur [14] and it ia a trivial exercise 
for the reader to  construct a similar example for eigen- 
value problems. Since the example seems to  have escaped 
the attention of most colleagues it is repeated here in a 
slightly modified and simplified version. 

In the example we assume a computational domain D 
with outer boundary 873 in which we have an electromag- 
netic field { E ( T ,  t ) ,  H ( r ,  t ) }  that varies in time. For the 
three-dimensional domain 73, with a two-dimensional il- 
lustration as in Fig. l, we choose the cube 0 5 x 5 l, 
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0 5 y 5 1, -0.5 5 z 5 0.5. The lossy medium in this cube 
is assumed to be homogeneous with permittivity E = F ~ E O ,  

permeability p = prp0 and conductivity o, where E~ 2 1, 
pr 2 1 and o > 0. We assume the outer boundary d D  to  
be divided into two parts (that may themselves be subdi- 
vided into a number of subdomains) viz. ~ V E  and ~ D H ,  
where d7? =  DE U ~ D H  and ~ V E  n ~ D H  = 0.   DE con- 
sists of those parts of d D  that are located on either of the 
planes z = -0.5 and z = 0.5, while ~ D H  is defined as the 
remaining part of dV,  i.e. ~ D H  = d D  \ ~ V E .  

I -0.5 0 0.5 z 

Fig. 1. Cube subdivided in bricks that in turn may be subdivided 
in tetrahedra or prisms, side view 

We now assume that the tangential components of the 
electric field strength E ( r ,  t )  are known functions of space 
and time on W E ,  and that the tangential components of 
the magnetic field strength H ( T , ~ )  are known functions 
of space and time on ~ D H .  In addition, we assume that 
the source distributions and the initial conditions E ( r ,  to) 
and H ( r ,  t o )  are known functions of both the space (and 
the time) coordinates in 2). With these data we have 
defined an electromagnetic field problem with a unique 
solution [15]. For generating a finite-element solution to  
this problem, the domain of computation is discretized by 
using a uniform mesh consisting of identical bricks of side 
length 0.25m (see Fig. 1) each of which may be subdivided 
into smaller domains (prisms or tetrahedra) depending on 
the type of edge element used. 

As regards the problem to be solved we assume that a t  
the time t = tend > to, the exact solution for the electric 
field strength equals 

E(T , t )  = Eoi,. (1) 

Since this solution is a constant function of the spatial 

variables, it can be represented exactly using edge ele- 
ments of any kind or any degree, and there is of course no 
doubt that many methods using edge expansions will find 
this solution with the highest possible degree of accuracy. 
The point we want to stress here is that when a correct 
solution is found its correctness can only be attributable 
to the finite-element formulation used and not to the use 
of edge elements. This claim is most easily confirmed by 
verifying that the ”solution” 

= Eoi,, for - 0.50 < z < -0.25, 
E ( r , t )  = Oi,, for - 0.25 < z < 0.25, (2) 

= Eoi,, for 0.25 < z < 0.50, 

for t = tend, is wrong or ”spurious”. However, since the 
errors in the above wrong solution consist of jumps in its 
normal component across the inter-element boundaries a t  
the planes IzI = 0.25 it is an admissible solution when 
judging this from the properties of the edge elements. At 
the inter-element planes the normal component of the ex- 
act solution is continuous. Only a correct formulation of 
the problem could have prevented the unwanted discon- 
tinuity in the normal components from entering into the 
” solution” . 

Finally note the following: 

1. The fact that the example uses a nroblem the solution 

2. 

of which is a simple, uniform field is immaterial. The 
example was chosen for the sake of utmost clarity 
and simplicity. It is a trivial matter to  construct 
other examples instead of the one given in (1) and 
(2). Accurate, non-spurious, solutions can only be 
guaranteed by making the continuity of the normal 
component of the flux between edge elements a part 
of the formulation of the finite-element method or, 
more generally, by choosing a correct formulation of 
the problem to be solved [16], [17]. 

The example is such that the properties edge ele- 
ments have by definition are used for constructing 
the demonstration of their failure in preventing the 
occurence of spurious solutions. The conclusion that 
edge elements do not eliminate spurious solutions ap- 
plies in general to all edge elements as defined above 
since we have not referred to dimensionality, type, 
(mixed) order or shape of edge element in the exam- 
ple. The strength of edge elements turns out to be 
thew verg weakness 

In summary: An example was presented demonstrating 
the fact that the appearance of spurious solutions of finite- 
element problems in electromagnetics cannot be ruled out 
by using edge elements. 

111. MORE COMPLAINTS ABOUT EDGE ELEMENTS 

Without making an aktempt to be exhaustive we now 
catalogue a number of additional disadvantages and prob- 
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lems one may encounter when using edge elements: Similar results can be obtained when using (general- 

1. 

2. 

3. 

4. 

5. 

6. 

Edge elements are known to  be less efficient, both as 
regards storage requirements and computation time, 
than the classical Cartesian (nodal) elements because 
of requiring much more unknowns for obtaining the 
same accuracy [14], [17]. Contrary to  what is claimed 
by some authors, this disadvantage is not offset by 
the sparser matrices edge elements generate. 

The condition of the representation of a field using 
vectorial finite elements depends, among other as- 
pects, on the bases of the reference frames used in 
those elements. In edge elements those bases are not 
always easy to distinguish but they are often related 
to  the vectorial orientations of the faces meeting at 
the vertices of the element. These faces usually are 
not mutually perpendicular which will degrade the 
condition of the representation of the expanded vec- 
tor field [14], especially in configurations containing 
elements that are elongated. 

Most types of edge element have a zero divergence. 
Because of this they can be applied only to solving 
problems the solution of which is a priori known to 
be free of divergence. 

Under specific circumstances, the description of 
which is beyond the scope of the present paper, the 
use of edge elements may result in linearly dependent 
algebraic equations, i.e. in singular stiffness matrices 
ClSI. 

Plots of solutions of field problems obtained by using 
edge elements often seem to be rather “rough”. This 
is a natural consequence of the absence of an explicit 
normal continuity condition across the inter-element 
interfaces. 

The use of edge elements seems to  be incompatible 
with the least-squares minimization of the error in 
the modeling of the field. 

I v .  EDGE ELEMENTS AND RE-ENTRANT CORNERS 

Edge elements are often mentioned as a method to elim- 
inate the large errors that are made when using Cartesian 
elements near re-entrant corners in, for instance, a per- 
fectly electrically conducting outer boundary. Obviously 
edge elements, which are polynomials, cannot be expected 
to  accurately model the singular behaviour of the field 
near a re-entrant corner. The reason that  the error ob- 
served when using edge elements near a re-entrant corner 
seems to be small lies in the fact that  edge elements al- 
low the normal component of the field across interfaces to  
be discontinuous and, consequently, the direction of the 
field near the corner is allowed to change abruptly as re- 
quired. Nevertheless the local error near the re-entrant 
corner remains unbounded. 

ized) Cartesian elements provided the nodes at-the corner 
are treated as multiple nodes. In this way we again allow 
the direction of the field to change abruptly across inter- 
faces but we still have the same unbounded errors near 
the corner due to the fact that Cartesian elements also 
are polynomials. As compared with the use of edge ele- 
ments the advantage of the latter approach could be that 
Cartesian bases are used which, in turn, yields a better 
condition of the representation of the field as mentioned 
above and simper logic. 

It will be clear that accurate solutions near re-entrant 
corners can be obtained only by using expansion func- 
tions having the proper degree of singularity and it seems 
only natural to  develop (generalized) Cartesian expansion 
functions, to be intruduced below, for that purpose. 

v .  EDGE ELEMENTS AND POTENTIALS 

Edge and Cartesian elements are frequently used in fi- 
nite element methods for solving (e1ectro)magnetic field 
problems using vector potentials [19]. Our comments re- 
garding the properties of edge elements can be applied 
directly to their use in vector potential methods. Vector 
potential methods are known to have the disadvantage 
that for computing electric and/or magnetic fields from 
them they require numerical differentiations with the ac- 
companying loss of (one order of) accuracy and the con- 
sequent large loss of efficiency. The use of edge elements 
that are free of divergence causes a loss of efficiency in the 
representation of the unknown being represented. When 
using the latter elements in a vector potential method, 
however, they do not cause a further degradation of the 
efficiency of the method, i.e. assuming it is used for com- 
puting electric and/or magnetic field strengths. 

VI. DO WE HAVE ALTERNATIVES? 

The shopping list of problems encountered when using 
edge elements cries out for an alternative. Fortunately a 
number of methods is available that are expected to  re- 
lieve us of (the disadvantages of) edge elements and the 
frequent confusion caused by them. We mention the fol- 
lowing: 

1. The first alternative, and in the opinion of this au- 
thor the most promising one because of its efficiency, 
is provided by a new class of vectorial finite elements, 
the generalized Cartesian elements. These elements 
can accurately model fields that are discontinuous 
across interfaces as well as fields in homogeneous sub- 
domains and will be presented at COMPUMAG97 
[20]. Generalized Cartesian elements are also de- 
scribed in [21] and [22]. 

2. A second class of alternatives may be provided by so- 
called “dual” or “complementary” formulations. In 
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3. 

this type of formulations, two “complementary” vec- 
torial field quantities are chosen that together allow a 
consistent representation of electromagnetic field in- 
side the domain of computation. Dual approaches 
assume a subset of the Maxwell’s equations to  be 
exactly satisfied] i.e. the local curl equations as in 
[23], [24] or the domain-integrated curl a n d  divergence 
equations as in [25 ] ,  while imposing the remaining 
field equations in a weak form. Although requiring a 
larger number of degrees of freedom, dual approaches 
have the advantage of satisfactorily modeling both the 
field equations a n d  the relevant compatibility rela- 
tions. 

Finally one has the possibility of retaining edge ele- 
ments (for which there does not seem to  be much rea- 
son left) and eliminating the possibility of obtaining 
spurious modes and spurious solutions by choosing 
a formulation that includes both the field equations 
and all relevant compatibility relations [16], [17]. 

VII. CONCLUSIONS 

A critical discussion of the properties of edge elements 
was presented. The claim that edge elements eliminate 
spurious solutions was refuted and a series of additional 
disadvantages of edge elements were discussed. For coping 
with the resulting difficulty in formulating reliable and ef- 
ficient finite-element methods for electromagnetics a num- 
ber of alternatives for (the naive use of) edge elements 
were indicated. 
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