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Recent experiments have shown surprisingly large thermal time constants in suspended graphene ranging from
10 to 100 ns in drums with a diameter ranging from 2 to 7 μm. The large time constants and their scaling with
diameter points toward a thermal resistance at the edge of the drum. However, an explanation of the microscopic
origin of this resistance is lacking. Here, we show how phonon scattering at a kink in the graphene, e.g., formed
by sidewall adhesion at the edge of the suspended membrane, can cause a large thermal time constant. This kink
strongly limits the fraction of flexural phonons that cross the suspended graphene edge, which causes a thermal
resistance at its boundary. Our model predicts thermal time constants that are of the same order of magnitude
as experimental data and shows a similar dependence on the circumference. Furthermore, the model predicts
the relative in-plane and out-of-plane phonon contributions to graphene’s thermal expansion force, in agreement
with experiments. We thus show an unconventional thermal boundary resistance which occurs solely due to
strong deformations within a two-dimensional material.

DOI: 10.1103/PhysRevB.101.115411

I. INTRODUCTION

The transport of phonons and heat in two-dimensional
(2D) materials like graphene [1] is essentially different from
that in three-dimensional (3D) materials, due to their large
anisotropy between the in-plane and out-of-plane stiffness.
This leads to extraordinary thermal properties that have at-
tracted much interest [2–14]. Recently, we demonstrated a
thermomechanical method [15] to characterize the thermal
time constant τ of suspended graphene membranes. We found
that the values of τ are considerably larger than expected.
Moreover, τ was found to scale with the diameter of the
suspended drums, which could be explained by a model in
which the transient heat transport is limited by a thermal
boundary resistance. Several studies have shown that such
a thermal resistance can emerge within the graphene due to
grain boundaries [16,17], carbon isotope doping [18], encas-
ing with boron nitride [19], a step in the substrate [20], or
a change in the number of graphene layers [21]. However,
none of these microscopic models predict the emergence of
a sufficiently large thermal boundary resistance to account for
the large thermal time constants observed in Ref. [15].

Here, we theoretically analyze phonon transport in sus-
pended graphene membranes and compare this to experimen-
tal works [15,22] on devices as depicted in Fig. 1, to explain
the large values of the thermal time constants. A laser heats
up the center of the membrane, and the resulting heat is
transported by lattice vibrations (phonons) to the substrate.
It is often observed that suspended 2D materials show a kink
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at their edge due to sidewall adhesion [23–25], which is the
case we will examine in this work. For phonons to leave
the suspended membrane, they have to be transmitted across
the kink between the suspended and supported graphene. We
show that this transmission is very small for flexural phonons,
which is related to their low propagation speed compared to
the in-plane phonons. Consequently, a thermal resistance can
arise in 2D materials from a kink within the material itself.
The model predicts thermal time constants τZA in line with
the experimental values found in Ref. [15].

The remainder of this article is structured as follows: Sec. II
constructs the mechanical model to calculate the transmission
and reflection coefficients of a phonon incident on a kink. In
Sec. III, we use the mechanical modal as a boundary condition
to construct a two-temperature model from which the thermal
time constants and their relation to the thermal expansion
forces can be calculated. In Sec. IV, we discuss how the
model could be improved and make suggestions for future
experiments. Finally, the conclusions are presented in Sec. V.

II. MECHANICAL MODEL FOR A KINK

To examine the effect of kinks in graphene on phonon
transport, we develop a mechanical model that evaluates the
phonon scattering at a kink with an angle β and gives the
phonon transmission and reflection probabilities. Figure 2
shows that after an acoustic phonon reaches the kink, it
will be converted in a combination of reflected and trans-
mitted longitudinal (LA), transverse (TA), and flexural (ZA)
acoustic phonons. We find the transmission and reflection
coefficients for each incident phonon mode by solving six
coupled equations: three from the continuity of displacement
and three from the continuity of stress. The derivation follows
the method by Kolsky [26] closely, with additions to include
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FIG. 1. Model system under consideration in this work. A
graphene drum is suspended over a cavity and adheres to the
sidewall, introducing a kink at the edge of suspended graphene.
The suspended graphene is heated by a laser and heat flow in the
suspended graphene is studied.

the effects of the flexural phonons. To simplify the analysis,
the second kink between the supported and sidewall-adhered
graphene is not taken into account and all of the supported
graphene and the substrate is assumed to be an ideal heat
sink. In order to only observe the geometry-induced effects
of the kink, we set the elasticity parameters and tension equal
in both domains, resulting in equal propagation velocities for
each phonon mode on the suspended and supported graphene.

FIG. 2. Phonon scattering on a kink with angle β in graphene.
A phonon with amplitude u0 j is incident on the kink with an angle
θ0 j , and the sharp kink in the graphene has an angle β. The incident
phonon can scatter into six possibilities, either transmission at LA,
TA, or ZA phonon or reflection as a LA, TA, or ZA phonon.

A. Snell’s law

The model calculates the transmission coefficients wi j→qr ,
which represent the fraction of phonons in mode j on do-
main i that reach the kink and end up into phonon mode
r on domain q. Here, we use j, r = l, t, z for LA, TA and
ZA phonon, respectively, and i, q = 1, 2 for suspended and
supported graphene, respectively. Also, the subscript i = 0
is used to indicate an incident phonon from domain 1. We
consider the reflection and transmission of an incident phonon
with amplitude �u0 j and with an incident angle θ0 j (Fig. 2) that
is incident on an interface where the graphene has a kink with
angle β. If the phonon propagation speed ci j is known, we can
find the angles of reflection and refraction with respect to the
normal using Snell’s law:

sin θi j = ci j

c0 j
sin θ0 j . (1)

With the angles of refraction known, only the amplitudes �ui j

of the reflected and refracted waves are unknown. To find
these, we construct six coupled equations in the following
subsections.

B. Continuity of deflection

The mechanical motion �qi j around the static position of the
membranes is described by a wave with amplitude �ui j :

�qi j (x, y, t ) = �ui j cos(ωt + kxx + kyy), (2)

where kx is the component of the wave vector �k in the x
direction of the local axis and ky in the y direction. Positive di-
rections of the displacements and wave vectors are defined as
drawn in Fig. 2. The displacements in domain 2 are projected
onto the coordinate system of domain 1, which gives three
expressions for the continuity of displacement at the kink:

∑
j

�q1 j =
∑

j

�q2 j, (3)

By substituting Eq. (2) in Eq. (3) and setting the origin x =
y = z = t = 0 to the location and time where the phonon hits
the kink, one obtains expressions that only depend on the
amplitudes �ui j and the angles θi j and β. The full expressions
are presented in the Supplemental Material [27].

C. Continuity of stress

The continuity of stress implies that the total tension is
equal on both sides of the kink. Figure 3 shows the relevant
tension components, where ni j,yy and ni j,zz are the tension
components in the ŷ, ẑ directions, respectively, and ni j,xy is
the shear stress component. Note that ni j,xx does not play a
role in the transmission of elastic waves because of rotational
symmetry along the x̂ direction. Furthermore, the components
ni j,xz = ni j,yz = 0 due to the two-dimensional nature of the
material. Each remaining tension component of the tension
tensor n is then split into a static part n and a dynamic
part δn [for example, ni j,yy(t ) = ni,yy + δni j,yy(t ); the static
component cannot be attributed to a specific phonon mode
and therefore the subscript j is omitted]. To formulate the
continuity of stress equations, we only take the dynamic stress
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FIG. 3. Cross section of the membrane showing the stresses at
the kink. (a) The three stress components at the interface between
both domains, which are added together in the axes of domain 1
to obtain the continuity of stress equations. (b) The out-of-plane
displacement of the membrane �qiz results in a out-of-plane projection
of the in-plane stress and shear components.

components into account, since the equilibrium is already
satisfied for the static part of the stress.

The dynamic stress components δni j,yy and δni j,xy are
related to the deflection-induced dilatation and shear of the
lattice by the relations [26]:

δni j,yy = (λ + 2μ)
d �qi j

dy
ŷ + λ

d �qi j

dx
x̂, (4)

δni j,xy = μ
d �qi j

dy
x̂ + μ

d �qi j

dx
ŷ, (5)

where λ and μ are the Lame parameters; note that these
components are expressed in the local axes of each domain.
The dynamic component δniz,zz is a result of the flexural
phonons, whose out-of-plane motion allows the static in-plane
stress components ni,yy and ni,xy to be rotated into the ẑ
direction of the local axes, as shown in Fig. 3(b). The out-
of-plane deflections �qiz are assumed to be small enough to
not introduce significant dynamic tension modulations due to
elastic deformation compared to the static pretension. This
gives for the tension modulation component δniz,zz in the local
axis of each domain:

δniz,zz = ni,yy
d �qiz

dy
ŷ + ni,xy

d �qiz

dx
x̂. (6)

By substituting Eq. (2) into Eqs. (4)–(6), the stress compo-
nents shown in Fig. 3 can be calculated and projected onto
each of the axes of domain 1:∑

αζ

∑
j

δni j,αζ ŝγ =
∑
αζ

∑
j

δni j,αζ ŝγ , (7)

where αζ ∈ {xy, yy, zz, x′y′, y′y′, z′z′}, γ ∈ {x, y, z} and ŝγ is
a unit vector pointing in one of the directions of domain 1.
This results in three expressions that only depend on �ui j , θi j ,
β and the pretension components n̄, which are shown in the
Supplemental Material [27].

D. Integrated transmission coefficients

The six equations we derived [Eqs. (3) and (7)] can
be solved simultaneously for each incident mode, by

setting |u0 j | = 1 (see the Supplemental Material for more
details [27]). From the amplitudes of the transmitted and
reflected waves, one can calculate the energy flux of each
wave leaving the kink [Bi j = ρω2ci j |ui j |2Re(cos θi j ), where
ρ is the density of graphene and ω is the phonon frequency]
and from that define the transmission coefficient as [28]

w0 j→qr (θ0 j ) = Bqr

B0 j
= cqr |uqr |2Re(cos θqr )

c0 j |u0 j |2 cos θ0 j
, (8)

where the incoming wave amplitude |u0 j | = 1. Note that the
density ρ drops out of the equation because it is equal on
both domains. In the model, w0 j→qr (θ0 j ) is integrated over
all incoming angles θ0 j to obtain the total transmission or re-
flection coefficient of each scattering process w̄0 j→qr . w̄0 j→qr

can then be used to calculate the total heat flux crossing the
boundary. However, we first study the angular-dependence of
w0 j→qr below.

E. Transmission probabilities as function
of incident angle for β = 90◦

Figure 4 shows the angle-dependent transmission coef-
ficients w0 j→qr (θ0) of all the three phonon modes on a
graphene membrane with a pretension of n1,xx = n1,yy =
n2,xx = n2,yy = 0.03 N/m (based on estimates from Ref. [15]),
n1,xy = n2,xy = 0 N/m, and β = 90◦. The Lame parameters
λ = 15.55 J/m2 and μ = 103.89 J/m2 are taken from the
literature [29].

The transmission of incident LA phonons is mostly af-
fected with respect to β = 0◦ at small incident angles. This
is because when θ0 j = 0◦, �u0l ‖ �u2z, as shown in the inset
of Fig. 4(a). The continuity of deflection then enforces that
LA phonons can only transmit into ZA phonons, which
are significantly mismatched in propagation speed ci j [cil =√

(λi + 2μi )/ρhg = 17.0 km/s, cit = √
μ/ρhg = 11.6 km/s,

and ciz = √
n/ρhg = 0.2 km/s, where hg = 0.335 nm is

the thickness of graphene]. Using acoustic impedance mis-
match theory [30], we obtain a transmission coefficient of
4c2zc1l/(c2z + c1l )2 = 0.046, matching the value obtained by
the model for θ0 = 0◦. At larger incident angles, efficient
transmission into LA and TA phonons becomes possible,
raising the total transmission coefficient.

As shown in Fig. 4(b), incident TA phonons can fully trans-
mit at small incident angles. This can also be understood from
the continuity of displacement: Since the amplitudes �u0t ‖ �u2t

[see inset in Fig. 4(b)], incident TA phonons with θ0 = 0 can
only transmit as TA phonons, meaning that there is no change
in propagation speed and acoustic impedance. At an incident
angle θ0 = 43◦, a sharp feature is observed. This corresponds
to the critical angle θ∗ = arcsin cit/cil , where from Eq. (1)
the angle of refraction into LA phonons would exceed 90◦,
meaning that TA phonons can no longer be transmitted or
reflected into LA phonons.

The incoming ZA phonons in Fig. 4(c) (note the hori-
zontal axis scale) show a remarkably low transmission, due
to the large propagation speed differences between in-plane
and out-of-plane phonons. At very small incident angles, at
an incoming angle θ0z = 0◦: �u0z ‖ �u2l . Since the change in
acoustic impedance is the same as in the case for an incoming
LA phonon at θ0l = 0◦, the transmission probability (0.046)
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(deg)

FIG. 4. Transmission and reflection probabilities wi j→qr (θ0) as function of incident angle θ0 for (a) LA, (b) TA, and (c) ZA phonons.
The insets show a sketch of the incident and transmitted phonons when θ0 = 0◦, and the additional inset in panel (c) shows the total internal
reflection of the ZA phonons. Note the different x axis in the case of Fig. (c), enlarging the low-angle behavior.

is equal. The low speed of the flexural phonons compared
to the in-plane phonons results in small critical angles, the
largest being θ∗ = arcsin ciz/cit = 0.99◦. Above this angle,
the flexural phonons can no longer reflect or transmit as LA or
TA phonons, and ZA phonons are generally not transmitted.
Because of this, the integrated transmission coefficient of ZA
phonons is three orders of magnitude smaller than those of
the in-plane phonons. A striking phenomenon is the transmis-
sion peak near θ0 = 1.1◦, which emerges due to a resonant
excitation of waves residing at the kink. This effect resembles
the formation of Rayleigh waves on the surface of the solid
material interfacing with a liquid [28]. Furthermore, similar
interface waves have been observed between two graphene
domains in semimolecular dynamics simulations [31].

III. TWO-TEMPERATURE MODEL

The goal of this section is to demonstrate that the presented
model is in line with the large values of thermal time constants
found in Ref. [15] and the observation of the opposing thermal
expansion forces in Ref. [22]. We analyze the situation where
an (optothermal) heat flux is incident at the center of a circular
drum. In the case of local thermal equilibrium (where all
the acoustic phonon modes have the same temperature), the
boundary scattering effect presented above cannot account for
the experimental observations, due to the high transmission
coefficients of the in-plane phonons (see the Supplemental
Material [27]). Therefore, we construct a two-temperature
model to describe heat transport through suspended graphene,
where the in-plane LA and TA phonons are assumed to
be at a different temperature than the out-of-plane flexural
ZA phonons. It is assumed that the heat generates only
in-plane acoustic phonons due to selective electron-phonon
coupling [32,33], which propagate outward from the center.
Conversion between in-plane and out-of-plane phonon modes
on the suspended part of the drum is neglected due to their
weak mutual interactions [34]. At the edge of the drum, the

phonons are transmitted and reflected by the kink in graphene.
Because of this reflection, a conversion between different
phonon modes can occur that can be analyzed by the theory
from the previous section.

Thus, we can determine the time-dependent internal en-
ergies of different phonon modes on the suspended part of
the graphene drum. Transmitted phonons are lost, but ZA
phonons can be reflected multiple times at the edge of the
graphene, which leads to a significantly larger value of τZA, as
found in experiments. Because of the different transmission
coefficients for ZA and in-plane phonons, large differences in
the phonon densities, and related phonon bath temperatures
of the different phonon modes, can occur. As a result of this,
local thermal equilibrium is violated, similar to recent predic-
tions of Vallabhaneni et al. [33]. To model this, we construct
a similar two-temperature model where scattering between
in-plane and out-of-plane phonon modes is neglected. Instead
of this, the phonon conversions at the kink are taken into
account.

To simplify the problem we note that, according to Fig. 4,
the in-plane phonons have a high probability of crossing the
kink at the edge of the suspended graphene and therefore
experience a low thermal resistance. The flexural ZA phonons,
on the other hand, are confined to the drum due to total
internal reflection and therefore experience a large thermal
resistance, making them responsible for the long thermal time
constants τZA observed in experiments. To predict the long
thermal time constant τZA, this means that analysis can be
simplified by initially focusing on the flexural phonons alone
and explain the value of the thermal time constants observed
in Ref. [15] (Subsec. III A). After this, the model will be
expanded to also include the flow of heat attributed to the
in-plane acoustic phonons, to explain the opposing thermal
expansion forces in Ref. [22] (Subsecs. III B–III E). The final
subsection, Subsec. III F, estimates the value of the thermal
time constant of the in-plane acoustic phonons, to verify that
it is much shorter than that of the flexural acoustic phonons.
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A. Time constant for flexural phonons

In this section, we study a simplified model that predicts
the time constant τZA, that is compared to experimental val-
ues [15,22] of the time constant. This comparison allows us
to estimate the average pretension n̄ in the membrane, which
will be used in the following subsection. Assuming the envi-
ronmental temperature is higher than the Debye temperature
for ZA phonons, expressions for the heat capacity CZA and
thermal resistance RZA for a circular membrane were derived
in Ref. [15]:

RZA = 1

GB,zhg2πa
= Auc

2πakB
∑

r w̄1z→2rcZA
, (9)

CZA = cp,zρhgπa2 = kBπa2

Auc
, (10)

where GB,z is the thermal boundary conductance of the ZA
phonons, hg is the thickness of graphene, a is the drum radius,
kB is the Boltzmann constant, cZA is the propagation speed of
ZA phonons, and Auc is the unit cell area of graphene. For a
circular membrane, the flexural phonon time constant τZA =
RZACZA is described by the equation

τZA = a

2
∑

r w̄1z→2rcZA
, (11)

Figure 5 shows the transmission coefficient and time con-
stant τZA as a function of kink angle β and for different values
of the average pretension n̄. Since the phonon velocities on the
supported and suspended graphene are equal by assumption,
the transmission coefficient of the ZA phonons is equal to 1
when the kink angle is 0 or 180 deg. The transmission coeffi-
cient already changes dramatically for small kink angles. The
transmission coefficient is minimal for a kink of 90 deg.

We compare the model to the experimental values of τ/a
found in related works [15,22]. In Fig. 5(b), the gray area
indicates the highest and lowest observed value of τ/a and
the dashed line indicates the mean value τ/a = 0.029 s/m.
Assuming sidewall adhesion with a kink angle of 90 deg, we
estimate the phonon speed to be 1.0 km/s on average, corre-
sponding to a tension of ≈0.8 N/m. This value is reasonable
compared to pretension values obtained in literature [35], and
we will use this value in the following subsections.

B. Model for opposing thermal expansion forces

In this subsection, we calculate the ratio between the
opposing thermal expansion forces in the steady-state regime,
which are found in experiments in Ref. [22]. As explained
above and in the Supplemental Material [27], we expect
the in-plane and flexural acoustic phonons to be at different
temperatures and therefore require a two-temperature model
to describe heat transport in the suspended graphene. To do
this, we assume that the LA and TA phonons are always
in local thermal equilibrium with each other. This is sup-
ported by the results of Vallabhaneni et al. [33], who also
analyzed suspended graphene heated by a laser, and found
the LA and TA phonons to be at the same temperature. The
internal energies are related to the modal temperatures by the

(deg)

FIG. 5. (a) Fraction of transmitted flexural phonons
∑

r w̄1z→2r

for different values of the pretension as a function of kink angle
β. (b) Time constant attributed to the flexural acoustic phonons
τZA divided by drum radius a as a function of kink angle β. The
pretension is varied to show the effect of phonon propagation speed
on the time constant. The gray area indicates the experimental range
from Ref. [22] and the dashed line shows the experimental mean.

expression [15]

Ui j = ζ (3)k3
BT 3

LA+TA

πc2
i j h̄

2hg
for j = t, l,

Ui j = kBTZA

hgAuc
for j = z, (12)

where h̄ is the reduced Planck constant and ζ (3) ≈ 1.21
Apéry’s constant. Using Eq. (12), the internal energy of the
LA phonons U1l is related to the internal energy of the TA
phonons U1t by

U1t = c2
1l

c2
1t

U1l . (13)

Because of the selective electron-phonon coupling, the LA
and TA phonon modes are also the only modes that will
receive the heat flux from the laser [32,33]. For the ZA phonon
bath, we assume that the heat transport is limited by the
boundary resistance induced by the kink, as this was also used
to calculate τZA in Subsec. III A above.

Using the assumptions above, we use the heat equation
in cylindrical coordinates [4,9] to find the change in internal
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energy of the in-plane phonons 
U1l :

κLA+TA

ρcp,LA+TA

1

r

d

dr

(
r

d
U1l

dr

)
+ Q′′′ = 0, (14)

where κLA+TA is the thermal conductivity of the in-plane
phonon bath, cp,LA+TA is the specific heat of the in-plane
phonon bath, and Q′′′ is the volumetric heat flux of the laser.
This is described by the Gaussian spatial dependence:

Q′′′ = Q0 exp

(−r2

r2
0

)
, (15)

where r0 is the radius of the laser spot, estimated to be r0 =
285 nm. Using this spatial dependence, the general solution to
Eq. (14) is

ULA(r) = A1 + A2ln(r) + A3Ei

(−r2

r2
0

)
, (16)

where A1, A2, and A3 are constants to be determined and
Ei is the exponential integral function. A1, A2, and A3 are
found by enforcing a continuous solution when r → 0 and
applying an energy balance at the boundary of the drum. 
U1z

is modeled by assuming that the thermal resistance at the edge
of the drum is limiting the heat transport; therefore, 
U1z is
uniform over the suspended drum. Since 
U1z appears in the
boundary conditions, solving Eq. (16) results in solutions for

U1l (r) and 
U1z which are presented in the Supplemental
Material [27].

The force that actuates the out-of-plane motion of the
membrane is proportional to the strain in the membrane [36].
To find the ratio between the thermal expansion forces, one
can therefore convert the internal energies to the mechanical
strain contribution from each phonon mode 
ε j using the
expression [37]


ε j = − 1

4K
γ jUj, (17)

where K = 158 GPa the bulk modulus. The ratio be-
tween the thermal expansion forces CLA+TA/CZA = (
εLA +

εTA)/
εZA becomes

CLA+TA

CZA
=

γLA
Ū1l + γTA
c2

1l

c2
1t

Ū1l

γZA
U1z
, (18)

where Ū1l is the average internal energy of the LA phonons
over the surface of the drum. This ratio of the forces deter-
mines the mechanical out-of-plane response of the membrane,
and should therefore match the force ratio observed in exper-
iments [22].

Evaluation of the model requires several parameters from
theory. First, the in-plane thermal conductivity kLA+TA is
required, whose value can show considerable spread in lit-
erature [8,34,38]. Second is the mode Grüneisen parameter
γZA, which is difficult to calculate at low phonon frequen-
cies [39–41]. Here, we use literature values of the mode
Grüneisen parameters: γLA = 1.06, γTA = 0.40, and γZA =
−4.17 from Mann et al. [41]. Finally, the angular distribution
of θ0 j at which phonons are incident at the boundary is of
influence. For now, we assume a uniform angular distribution,
but its influence will be investigated further below.

FIG. 6. (a) Change in internal energy and (b) modal temperature
as a function of radial coordinate r with in-plane thermal conductiv-
ity κLA+TA = 2000 W/m K [42], laser spot size r0 = 285 nm, drum
radius a = 2.5 μm and total absorbed laser power Qlaser = 1 μW.

C. Modal temperatures

First, we study the internal energy and modal temperature
in the membrane as a function of position. As a starting
point, we take the in-plane thermal conductivity of graphite as
κLA+TA, which is taken to be 2000 W/m K [42]. The internal
energy as a function of position r is shown in Fig. 6(a).
These values are converted to temperature in Fig. 6(b) by
using Eq. (12). The ZA phonons show a large temperature
jump due to their large thermal boundary resistance. Since
the rate of ZA phonon generation from the in-plane phonon
bath is much higher than that of ZA phonons leaving the
membrane, this phonon bath reaches relatively high internal
energies, even though this bath only receives a small fraction
of the total heat flux supplied to the system due to selective
electron-phonon coupling. Converting the average internal
energies to the force ratio [Eq. (18)], we find for this spe-
cific drum diameter of 5 μm and κLA+TA = 2000 W/m K
that −CLA+TA/CZA = 0.098. Compared to experiments, the
median value of −CLA+TA/CZA = 0.2 for a 5-μm diameter
drum, the model thus predicts values of the force ratio in the
right order of magnitude.

If the ratio −CLA+TA/CZA is calculated as a function of
diameter, however, the model predicts an increasing trend,
while the experiments show a decreasing trend (Fig. 7). Likely
this is due to the assumption that κLA+TA is constant as a

FIG. 7. −CLA+TA/CZA as a function of drum diameter calculated
from Eq. (18) compared to experimental mean values from Ref. [22].
A constant value of κLA+TA = 2000 W/m K and r0 = 285 nm is
assumed.
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FIG. 8. Dependence of −CLA+TA/CZA on the thermal conductiv-
ity of the in-plane phonons plotted for different drum diameters,
using the model in Sec. III B. The circles represent the experimen-
tal mean from Ref. [22]. The inset shows the extracted in-plane
thermal conductivity as a function of drum diameter based on the
experimental mean of −CLA+TA/CZA, with a power law (κLA+TA =
c0 + c1(2a)p) fit to the data.

function of diameter, while literature suggests that the
effective thermal conductivity κLA+TA is length depen-
dent [8,34,38]. This is because the mean free path of the
in-plane phonons is not small enough compared to the drum
size and, as a consequence, the phonon transport is still partly
ballistic [43,44]. This causes boundary effects to have an
important affect on the in-plane thermal conductivity κLA+TA.
In Subsec. III D, we will investigate whether a diameter-
dependent κLA+TA can account for the experimental results.

Another consequence of the (partly) ballistic nature of
the phonon transport is that the angular distribution of the
phonons incident on the boundary is no longer uniform.
Keeping in mind that phonons are primarily generated in the
center of the drum and initially propagate radially outward,
small drums have more phonons with normal incidence on
the boundary. On the other hand, large drums have a more
uniform distribution, as more scattering events are expected to
occur between the center and the edge of the drum. As shown
in Fig. 4, the transmission of phonons is strongly dependent on
their incident angle, and this could account for the anomalous
diameter dependence of −CLA+TA/CZA observed in the exper-
iments. Therefore, the influence of the angular distribution of
incident phonons is investigated in Subsec. III E.

D. Influence of the in-plane thermal conductivity

To explain the diameter dependence of the ratio
−CLA+TA/CZA in Ref. [22], we first study the effect of the
thermal conductivity of the in-plane phonons κLA+TA. Fig-
ure 8 shows the calculated ratio −CLA+TA/CZA as a func-
tion of κLA+TA for different drum diameters. As the ther-
mal conductivity of the in-plane phonons increases, the ra-
tio −CLA+TA/CZA decreases. This is because the in-plane
phonons reach a lower temperature, which reduces the ampli-
tude CLA+TA. Using the experimental mean of −CLA+TA/CZA,
the in-plane thermal conductivity needed to match theory and
experiment can be extracted as shown in the inset in Fig. 8.
A strong increase in thermal conductivity is observed as the

drum diameter increases. An increase of in-plane thermal
conductivity with increasing diameter has been reported in
various works [8,34,38,45,46]. However, if we fit a power
law to κLA+TA = c0 + c1(2a)p (see inset of Fig. 8), we find an
exponent p = 2. In the literature, a much weaker logarithmic
divergence of κLA+TA with length is reported [34,38,45,46].
Furthermore, a divergence that is stronger than κLA+TA ∝ a
would exceed that of a ballistic 1D harmonic lattice without
phonon scattering [47]. Therefore, the obtained exponent p =
2 is unlikely to be real, which suggests that other effects
should be taken into consideration to explain the diameter
dependence of −CLA+TA/CZA.

E. Influence of angular phonon distribution

So far, we have assumed the incoming angular distribution
of the phonons to be uniform. However, since the mean free
path of the phonons is not necessarily much shorter than the
size of the suspended membrane [32,43,44], a nonuniform
angular distribution is expected. Therefore, in this section,
we alter the incoming phonon distribution with a distribution
function f (θ0), to analyze the influence of a nonuniform
angular distribution on the ratio −CLA+TA/CZA, using the
model in Sec. III B. We adapt the integration of the transmis-
sion probabilities to include f (θ0), which is the normalized
incident phonon distribution:

w̄i j→qr = 2

π

∫ π/2

0
f (θ0)wi j→qr (θ0)dθ0. (19)

We simplify the analysis by only taking into account vari-
ations in f (θ0) for the LA and TA phonons, since this is
the bath where phonons are primarily generated. The heat
flows consecutively into the ZA phonons and this phonon bath
experiences many collisions at the boundary; therefore, this
angular distribution is assumed to be uniform. The incoming
phonon distribution of the LA and TA phonons is altered by
the following step function:

f (θ0) =
{
π/2θc if θ0 � θc

0 if θ0 > θc
, (20)

where θc is a cutoff angle above which there are no incident
phonons on the boundary. For simplicity, it is assumed that θc

is equal for the in-plane and out-of-plane phonons.
Figure 9(a) shows the integrated transmission probabilities

for the incoming LA phonons w̄1l→qr as a function of the
cutoff angle and Fig. 9(b) shows w̄1t→qr . The resulting value
of −CLA+TA/CZA as a function of θc is shown in Fig. 9(c),
for different drum diameters. To construct this figure, a value
of κLA+TA = 2000 W/m K is assumed for all the drum
diameters. The most important process that alters the value
of −CLA+TA/CZA is the reflection of TA phonons into ZA
phonons, as this governs the temperature of the ZA phonon
bath, and this can only occur at incident angles θ0 �= 0.
Therefore, at low incident angles in Fig. 9, −CLA+TA/CZA

becomes very large because the ZA phonons receive no heat
directly from the laser, and therefore reach a low temper-
ature compared to the in-plane phonons. At angles above
θc ≈ 45 deg, the reflection of TA phonons into ZA phonons
becomes significant [Fig. 9(b)], resulting in a sharp decrease
of −CLA+TA/CZA [Fig. 9(c)].
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(deg)

FIG. 9. Dependence on the angular distribution of the incoming
phonons, assuming κLA+TA = 2000 W/m K, using the model in
Sec. III B with transmission coefficients adapted to the nonuniform
angular phonon distribution. (a) Transmission and reflection prob-
abilities for incoming longitudinal acoustic phonons as a function
of cutoff angle θc for a pretension of 0.8 N/m. (b) Transmission
and reflection probabilities for incoming transverse acoustic phonons
as a function of cutoff angle θc for a pretension of 0.8 N/m.
(c) Ratio −CLA+TA/CZA as a function of cutoff angle θc for different
drum diameters. The circles represent the experimental mean from
Ref. [22]. The inset shows the extracted cutoff angle θc based on the
experimental mean values.

Using the experimental values of −CLA+TA/CZA from
Ref. [22], a diameter-dependent θc can be extracted as shown
in the inset of Fig. 9(c). Values of θc close to 90 deg suggest
the angular distribution is close to uniform, and the LA and
TA phonons are closer to the fully diffusive regime rather than
the fully ballistic regime. A monotonically increasing θc is
obtained with increasing drum size, as expected due to the
increased amount of collisions experienced by the phonons as
the distance between the laser spot and the boundary becomes
larger, increasing the uniformity of the incoming angular
phonon distribution. This scenario is therefore a reasonable

explanation to the experimentally observed diameter depen-
dence of −CLA+TA/CZA.

F. Time constant of the in-plane phonons

In Ref. [22], it is argued that the thermal time constant of
the in-plane phonons must be much smaller than that of the
flexural phonons. Since it is complicated to solve the time
dependence of the heat flow in the entire system, we estimate
τLA+TA using a simple model [15,48,49] based on the solution
of the heat equation and by assuming the interfacial thermal
resistance of the in-plane phonons to be small:

τLA+TA ≈ a2ρcp,LA+TA

2κLA+TA
. (21)

Using the values of κLA+TA from Fig. 8, we find τLA+TA ≈
2 ns. This is indeed much smaller than the observation limit in
Ref. [22]. The model presented in this work thus supports the
notion in Ref. [22] that τLA+TA � τZA, because typically τZA

is found in a range between 25 and 250 ns.

IV. DISCUSSION

In future work, our model could be improved by taking
into account the finite radius of the kink due to the bend-
ing rigidity of 2D materials [31,50], which will provide a
more accurate picture for the reflection and transmission of
phonons with short wavelengths. Furthermore, coupling to
the substrate could be included as an additional pathway
to transmit phonons to the heat sink. Moreover, solutions
of the full Boltzmann-Peierls equation for phonon transport
in graphene [51–53] can be useful to take into account the
nonuniform angular distribution in a more accurate man-
ner. Finally, the model could be improved by including the
anharmonic conversion processes between in-plane acous-
tic phonons and flexural acoustic phonon on the suspended
drum [33,34]. This provides a coupling between the phonon
baths that allows heat to flow from the in-plane to out-of-
plane phonon bath, while at the same time lowering κLA+TA

due to the additional scattering processes, thereby improv-
ing the accuracy of the model for predicting the values of
−CLA+TA/CZA.

Future experiments to test our model in more detail could
focus on the dependence of τZA and −CLA+TA/CZA on the
tension and the kink angle β. For example, MEMS devices
could be used to strain a suspended sheet of graphene [54],
which should induce significant changes in τZA. Also inflated
graphene blisters, such as studied by Bunch and Dunn [25],
provide a way to introduce large changes in the kink angle
β. These studies of β and strain could also shed more light
on the large device-to-device variations observed in the ex-
perimental value of τZA [15,22]. Although on larger length
scales experimental techniques are available [55] to study the
angular dependence of phonon transmission as in Fig. 4, these
need to be scaled down further in order to be applicable for
2D materials. If this can be overcome, it would be particularly
interesting to verify the transmission peak for ZA phonons
that is observed near 1.1◦ in Fig. 4. Since Raman spectroscopy
techniques to measure heat transport are mostly sensitive to
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the temperature of the in-plane phonon bath, they can also be
useful to refine the modeling of the in-plane phonons.

V. CONCLUSION

We analyze the situation where an (optothermal) heat
flux is incident at the center of a circular graphene drum.
It is assumed that the heat generates only in-plane acoustic
phonons, due to selective electron-phonon scattering, that
propagate outward. Because of the weak interactions between
in-plane and flexural phonons, only at the edge of the drum
conversion between the phonon modes can occur. Here, the
phonons are transmitted and reflected by a kink in graphene
that is formed by sidewall adhesion. As a result of the large
difference between the transmission coefficients for ZA and
in-plane phonons, large differences in the acoustic phonon
bath temperatures can occur. This creates a situation where
the local thermal equilibrium assumption is not valid anymore
on the drum. In particular, flexural phonons show a low
transmission probability because their propagation speed is

much lower than the in-plane phonons, which leads to a large
thermal boundary resistance at the edge of the drum. This
resistance results in large values of the thermal time constant
τZA, which is in line with experimental observations. Further-
more, the different phonon temperatures lead to two distinct
thermal expansion forces in suspended graphene that oppose
each other. The model predicts the ratio of the amplitudes of
these forces in the correct order of magnitude observed in
experiments and shows that size dependence of this ratio can
emerge due to ballistic effects in the phonon transport.
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