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Abstract

Background Histopathological growth patterns (HGP) are a biomarker for predicting survival and
systemic treatment effectiveness in colorectal liver metastasis (CRLM). Currently, HGP assessment in
CRLM requires the resection specimen. Predicting the HGP from preoperative medical imaging could
allow more personalised care and better outcomes.

Methods. 252 patients underwent CRLM resection between 2004 and 2018 without receiving any
systemic treatment. Patients were characterised as having either pure desmoplastic growth (dHGP)
or any other type of growth pattern combination (non-dHGP) (21% dHGP; 79% non-dHGP). These
categories were chosen because pure desmoplastic growth is predictive of better overall survival. regions
of interest were automatically extracted using a UNet based segmentation model. These ROIs were passed
to a radiomics model and a deep learning model to classify between dHGP /non-dHGP and predict the
fraction of dHGP.

Results. The best-performing classification method was the radiomic approach achieving an AUC of
0.67 (95% CI: 0.58-0.78), whereas the best-performance deep learning model achieved an average AUC
value of 0.59 (95% CI: 0.53-0.65). Additionally, regression predicting the fraction of dHGP failed, with

the predicted values showing no significant correlation with the actual value.
Conclusions. Radiomics can be used to assess HGP, however further improvements in predictive
performance are needed before these methods can be applied.

1 Introduction

Worldwide, colorectal cancer is responsible for 10%
of all new cancer cases and 9.4% of cancer-related
deaths [1]. 30% of these patients develop colorectal
liver metastasis (CRLM) [2]. Patients diagnosed with
CRLM have poor outcomes, less than half survive
past 5 years after the diagnosis [3].

In the pursuit of improved treatment for these pa-
tients, the need has arisen for biomarkers that help
personalise care by predicting systemic therapy re-
sponse and survival. Omne such biomarker is the
histopathological growth pattern (HGP). The HGP
characterises the interface between the healthy liver
and the cancerous tissue of the CRLM. [4, 5]. The two
most common HGP types are desmoplastic (dHGP)
and replacement growth (rHGP), in addition to the
less common pushing HGP. These HGP types can oc-
cur together in a single CRLM.

It has previously been found that patients with
dHGP have better survival compared to those with
replacement growth [6]. Furthermore, the HGP type
has been associated with the effectiveness of systemic
treatments [7, 8]. In the past, guidelines suggested
a cut-off of 50% of a single HGP type to determine
the dominant pattern [9]. However, more recent in-
vestigations, show that distinguishing between dHGP
and all replacement and mixed cases (together called
non-dHGP) is more relevant for predicting survival
[3].

Currently, it is not possible to assess the HGP
before the CRLM has been surgically resected. Con-
sidering the predictive power of HGPs in determining
both survival and the effectiveness of systemic treat-
ments, having this information early on in the treat-
ment process would be a valuable tool [10, 11].

One potential approach to pre-operatively assess
the HGP type is through medical imaging. However,

it is currently challenging for radiologists to visually
distinguish the growth patterns of HGPs from a mag-
netic resonance imaging (MRI) or computed tomog-
raphy (CT) scan [10]. In order to address such issues
and to go beyond visual inspection the field of ra-
diomics has emerged. Radiomics involves the extrac-
tion and analysis of a large number of quantitative
features from medical images, aiming to find patterns
between imaging characteristics and clinical variables.

Promising results have been achieved by apply-
ing radiomics for the prediction of HGP type [12-18].
However, most of the existing studies do not address
the prediction of the most relevant cut-off for dis-
tinguishing between dHGP and non-dHGP. The aim
of this work is to address this limitation by predict-
ing the newest dHGP /non-dHGP cut-off and directly
predicting the fraction of dHGP, thereby avoiding the
use of a specific cut-off value. To this end, this work
explores two methods, a deep learning based method
and a feature-based radiomics approach. To train and
test these models a dataset of CT scans along with
corresponding postoperative histological assessments
was retrospectively collected. The dataset consists of
scans from 252 patients.

2 Background

2.1 Histopathological Growth Pat-

terns

The HGP characterise the interface of the CRLM and
the healthy liver tissue. The two most common HGP
types observed are desmoplastic ({HGP) and replace-
ment growth (tHGP), in addition to the less common
pushing HGP (pHGP). In the case of desmoplastic
growth, the CRLM and liver are separated by a rim
of desmoplastic tissue which can be seen as a sort of
scar tissue (see Figure 1a). In contrast to replacement



growth, this reaction is not observed, here the cancer-
ous cells infiltrate the healthy tissue, where they are
in direct contact (see Figure 1c). The exact mecha-
nism by which either dHGP, rHGP or pHGP arise is
still unknown [19].

Importantly, the different HGP can co-exist in a
single CRLM. One region of the interface can exhibit
dHGP and another rHGP, this occurs in around 60%
of cases in our dataset [6]. This mixing behaviour
makes the assessment of HGP substantially different
from distinguishing tumour subtypes.

The interest in HGP stems from its association
with prognosis and systemic treatment effectiveness.
Generally, dHGP has been connected to better out-
comes as compared to rHGP. More specifically The
stratification of patients based on HGP has evolved
over recent years. Initially, patients were divided
into dHGP and rHGP categories based on the pre-
dominant growth pattern. However, this may not be
the most informative approach. Specifically, a study
by Galjart et al. (2019) revealed that patients ex-
clusively exhibiting desmoplastic HGP (dHGP) have
better overall survival (OS) compared to those with
replacement growth HGP or a mixture of HGPs (non-
dHGP) [3]. Furthermore, patients with small frac-
tions of non-dHGP growth were shown to have poor
survival.

Not only is the OS correlated to the HGP of
CRLM but, the HGPs are also predictive for the ef-
fectiveness of systemic treatments like chemotherapy
and anti-angiogenic therapy [7, 20]. For instance,
non-desmoplastic patients have improved OS when
treated with neoadjuvant chemotherapy while this
is not the case for desmoplastic patients [8]. Next
to chemotherapy, bevacizumab is another treatment
used in the management of CRLM, often given in
conjunction with chemotherapy. Bevacizumab is an
anti-angiogenic agent, which means it is a drug that
inhibits the formation of new blood vessels. Beva-
cizumab has been found to induce response more fre-
quently in patients with dHGP compared to those
with tHGP [20]. This difference in response is at-
tributed to rHGP using vessel co-option instead of
sprouting angiogenesis, which confers resistance to
the anti-angiogenic agent since it does not rely on
the growth of new vessels to proliferate.

Considering the predictive value of HGP on OS
and systemic treatment effectiveness, it is clear that
the assessment of the HGPs could be a valuable tool
for treating CRLM. However, the current method for
evaluating HGP requires pathology slices of the re-
section specimens to be analysed using a light mi-
croscope. Thus, limiting HGP assessment until after
resection CRLM.

It would be advantageous if the HGP type could
be determined earlier in the disease treatment. One

way a tumour can be examined in vivo is by taking a
biopsy. However, in the case of CRLM, tumour het-
erogeneity and the potential risk of complications for
the patient, make obtaining a biopsy of the metasta-
sis, not a viable option for the assessment of the HGP
type [10]. This raises the need for other ways of HGP
assessment. Medical imaging would be a favourable
option as it is non-invasive and is already part of clini-
cal care. Therefore, the need for computational meth-
ods that can do so is clear [10, 11].

2.2 Histopathological Growth Pat-
terns on Medical Imaging

Imaging of CRLM is done using either contrast-
enhanced CT or MRI. Due to the unique dual vascular
supply of the liver, there are distinct contrast phases
depending on the timing of the scan with respect to
the injection time of the contrast agent. First the ar-
terial phase (AP) then the portal venous phase (PVP)
and lastly the delayed phase (DP) or the washout
phase. The ns are most commonly used for the imag-
ing of metastases like CRLM [21].

In order to assess the HGP research has been con-
ducted to find markers that are unique to one of the
HGP on medical imaging. Until now, no conclusive
marker has been found to differentiate dHGP from
rHGP. However, two markers have shown some asso-
ciation with HGP type [10]. These are, whether or not
the CRLM has a clearly defined border and if there
is rim enhancement present on contrasted enhanced
scans. Here the lack of a clearly defined border is
indicative of replacement growth, which is explained
by the infiltration of the CRLM into the surrounding
tissue. Secondly, rim enhancement is associated the
desmoplastic growth this is explained by the inflam-
matory microenvironment causing vasodilation in the
surrounding liver tissue [10].

However, conflicting reports exist regarding these
findings. Rim enhancement on both AP and PVP
has been associated with dHGP in some studies
[16, 17, 22]. On the other hand, Han et al. [14] found
that this relationship is not significant, while Li et al.
[15] reported the opposite relationship.

With respect to a clearly defined border being pre-
dictive of growth patterns similar ambiguity exists.
Correlations have been reported [23]. However, other
works that have investigated this report only weak
correlations between growth patterns and HGP [15—
17].

Taken together, the predictive value of these imag-
ing markers for differentiating HGP types remains un-
clear. One possible reason for this uncertainty is the
subjective nature of assessing rim enhancement and
border sharpness, which may not be consistent be-
tween studies. Moreover, the varying cut-offs used in



Figure 1: Colorectal liver metastases on H&E stained histology slides and PVP CT scan. Figure 1 a-c show
desmoplastic growth pattern, while Figure 1 c-e show replacement growth pattern. The intensity range of
the CT scans has been clipped to between 30-150 HU. to improve the visibility of the CRLM.

different studies to categorise dHGP and rHGP fur-
ther obfuscate the results.

2.3 Radiomics for Histopathological
Growth Patterns

As discussed in the previous section it is not possi-
ble to distinguish HGP types from medical imaging
by eye. Therefore, computational methods have been
developed [12-17]. These methods can be grouped
under radiomics. This is a method where a wide range
of computational imaging features are extracted from
a region of interest (ROI) in the scan. These are then
used to train a classifier to predict a clinical variable
such as the HGP type.

These methods consistently report excellent pre-
dictive performance of their models across diverse
populations worldwide. However, it is important to
note that this line of research is relatively new, with
all work being published within the last four years.
As such, there is still room for further development
in methodologies and evaluations. Some of the major
points that still could be improved are; More clini-
cally relevant predictions, more rigorous validation of
model performance, and more reproducible methods.

Regarding clinical relevancy, the grouping of HGP
types is an important issue to consider Since most
studies pose HGP prediction as a binary classifica-
tion problem this necessitates the selection of a cut-
off point. However, the placement of this cut-off
point significantly impacts patient group outcomes.
The consensus on the most predictive cut-off has
evolved over time. Recent evidence highlights the
importance of distinguishing between dHGP and non-
dHGP [3]. This new finding limits the usefulness of
earlier work which predicts the predominant growth
pattern [13, 14, 16]. The latest research on HGP
prediction has adopted this new cut-off [17]. Future
work should adopt this new dHGP /non-dHGP cutoff
or predict the fraction dHGP/rHGP directly.

One notable concern is the issue of reproducibility
in the existing literature. Many studies lack the pub-
lication of their code or data, which is considered the
gold standard for ensuring transparency and repro-
ducibility. Furthermore, the methods employed are
often described only superficially, limiting the ability
of others to replicate and validate the findings.

Another aspect that contributes to the challenge
of reproducibility is the process of deriving regions of
interest (ROIs). Manual annotation, which is com-



monly used for this purpose, can introduce inconsis-
tencies due to inter-observer variability [12]. To ad-
dress this issue, automatic segmentation techniques
have been proposed as a preferable alternative. Au-
tomating the segmentation of CRLM would not only
improve reproducibility but also facilitate the even-
tual clinical implementation, as manual segmentation
of CRLM is not feasible in routine clinical practice.

By addressing these concerns, such as provid-
ing code and data, offering detailed descriptions of
methods, and exploring automated segmentation ap-
proaches, the field can enhance reproducibility and
promote more reliable and clinically applicable assess-
ments of HGP in CRLM.

3 Methods

3.1 Dataset

This study was conducted in accordance with the
Dutch Code of Conduct for Medical Research of
2004 and received approval from the local institu-
tional review board, "Medische Ethische Toetsings
Commissie” (METC) under the reference MEC-2023-
0016. As the study used retrospectively collected and
anonymized data, informed consent was waived.

The study enrolled patients who underwent sur-
gical treatment for CRLM at Erasmus MC. Subse-
quently, the resected CRLM specimens were evalu-
ated for HGP following the most recent guidelines [9].
The assessment of HGPs was conducted for patients
treated between 1999-2018. Only chemotherapy-
naive patients were included in the study because
chemotherapy can influence the HGPs [24]. Further-
more, subjects needed to have a preoperative PVP
CT scan available. Pre-contrast and arterial phase
CT scans were excluded due to limited availability in
a minority of patients (161 had an AP scan available
and only 115 had a non-contrast scan).

Table 1: The median value together with the in-
terquartile range of patient and imaging character-
istics of the 252 individuals included in the study.
Statistical analysis was performed using a Mann-
Whitney U test for continuous variables and a chi-
square test for categorical variables to calculate the
corresponding p-values.

Patients ‘ dHGP non-dHGP p-value
Total 52 (21%) 200 (79%)
Age 67 [56-71] 67 [61-73)] 0.46
Sex 0.68
Male 19 59
Female 33 141
Imaging
Slice thickness (mm) | 3 [2.0-5.0] 4 [2.0-5.0] 0.30
Pixel spacing (mm) 0.75[0.70-0.78]  0.73 [0.68-0.78]  0.27
Tube current (mA) 240 [157-340]  269[150-361] 0.42
Peak voltage (kV) | 120 [120-120] 120 [120-120]  0.07

The selection of scans based on contrast phases in-
volved categorising them into arterial, portal venous,
or non-contrast/delayed phases. Initially, this cate-
gorisation was performed based on the series descrip-
tion, where scans were automatically classified into
the appropriate categories if the description contained
relevant terms indicating the phase. In cases where no
series description was available, I manually classified
them based on visual inspection, with guidance from
an abdominal radiologist. Patients were excluded ei-
ther due to poor scan quality, characterised by cor-
rupted files or extremely low spatial resolution, such
that I was not able to determine the contrast phase.
Additionally, patients were excluded if the segmenta-
tion model failed to segment any lesion. An overview
of the patient selection process is shown in Figure 2.



Patients with HGP assessed
in database,

N=932

Chemo naive,
N =532

No relevant scan retrieved
from EHR,
N =190

CT-scan available,
N =341

No PVP scan, N = 60
Poor quality, N = 17
Failed segmentation, N = 12

PVP phase available,
N =252

Figure 2: Patient Selection Process for HGP Assess-
ment. The figure depicts the patient selection pro-
cess. Poor quality includes scans that had either a
corrupted file or a very poor spatial resolution, failed
segmentations are scans in which no lesion was seg-
mented. EHR: electronic health record, PVP: portal
venous contrast phase

The resulting patient population has a similar
HGP distribution as earlier work has found on a sim-
ilar cohort from the Erasmus MC has reported, as
shown in Figure 3 [3]. Other patients and scan char-
acteristics are shown in Table 1.

HGP mixture per patient (n=252)

100
m dHGP (48%)
BN pHGP (3%)

B rHGP (48%)
80

60

HGP mixture (%)

20

0 50 100 150 200 250
Patients

Figure 3: Distribution of histopathological growth
patterns, ranked based on percentage dHGP.

3.2 Segmentation

In this study, the regions of interest to be segmented
were the liver as a whole and the CRLM. This was
done with a pre-trained nnU-Net model that showed

the best performance on the liver tumour segmenta-
tion (LiTS) challenge [25, 26]. This dataset comprises
a wide range of liver tumours, including primary tu-
mours like hepatocellular carcinoma and cholangio-
carcinoma, as well as secondary liver tumours orig-
inating from colorectal, breast, and lung cancers.
Furthermore, the dataset exhibited heterogeneity in
terms of imaging protocols, including variations in
contrast enhancement time, scanner models, and set-
tings.

The nn-UNet model was able to achieve a dice
similarity coefficient (DSC) of 0.74 for tumour seg-
mentation and 0.90 for the liver in the LiTS challenge
dataset [26]. Since the authors did not report segmen-
tation performance per lesion type and per contrast
phase, it is unclear whether the nn-UNet model per-
forms well on a dataset consisting solely of CRLMs
imaged during the portal venous phase.

3.3 Radiomics

For all radiomics experiments, the open-source pack-
age WORC (Workflow for Optimal Radiomics Clas-
sification) was used [27]. WORC automatically opti-
mises the construction of radiomics workflows based
on conventional machine learning. The input to
WORC are the CT scans together with the binary seg-
mentation mask of the presumed CRLM. From this
segmentation, 564 features are calculated, describing
shape, intensity and texture. These features are then
used in the data mining component. The data mining
component consists of feature processing steps involv-
ing imputation scaling and selection. Additionally,
the workflow may incorporate dimensionality reduc-
tion and resampling. Finally, machine learning algo-
rithms are used to find relationships between image
features and clinical variables.

WORC aims to find a radiomics workflow con-
sisting of a selection of the components described
above. This is done using a random search of fea-
ture processing methods, models and their associated
hyperparameters. 1000 radiomics workflows are con-
structed each with varying models and hyperparame-
ters. From these, a subset of the 100 best-performing
models is selected based on the F1 score on a vali-
dation set. These are then combined in an ensemble
model by averaging their prediction.

WORC was also used for predicting the fraction
dHGP using regression. The operations remain the
same as for classification only class-based feature and
sample preprocessing methods are omitted. In the re-
gression workflow, classification models are replaced
by regression models and the selection of the optimal
workflows is based on the coefficient of determination
(R?).



3.4 Deep learning

For all deep learning experiments, a 3D ResNet-
10 model was used, as implemented in the MONAI
framework (see Figure 4) [28, 29]. This relatively shal-
low implementation of a ResNet was chosen to reduce
the model’s degrees of freedom and therefore mitigate
the risk of overfitting, on the relatively small training
set. Additionally, ResNet-10 has shown promising re-
sults in studies on liver tumours [30, 31].

For the deep learning experiments, the scans were
resampled using b-spline interpolation to match the
median value in the axial plane. Additionally, the
spacing between slices was adjusted to 1 mm to pre-
serve the high slice resolution found in some of the
scans. As a result, the final spacing of the resampled
scans was set to 0.74 x 0.74 x 1.0 mm.

The scans were cropped, and a rectangular bound-
ing box was applied around the liver segmentation.
This step served two purposes. Firstly, to reduce
memory requirements. Secondly, to exclude uninfor-
mative areas of the scans. Additionally, an alternative
approach was explored, in which a bounding box was
placed around the largest CRLM itself. Both bound-
ing boxes were resized to the median shape resulting
in a liver bounding box of size 250 x 275 x 40 voxels
and 30 x 35 x 25 voxels respectively.

Input
(250, 275, 40)

|

TX7xT7 conv.
(64, 250, 275, 40)
ReLU Jx3x3 conv
Batch Norm. BatchNorm 3D
| ReLU
ResNet Block 1 3x3x3 conv
esive ock BatchNorm 3D
(64, 250, 275, 40) |
! U
ResNet Block 2 \
(]28 63, 69, ](]) MaxPool
l ReL.U

ResNet Block 3
(256, 32, 35, 5)

l

ResNet Block 4

(512, 16, 18, 3)
AdaptiveAvgPool
(512, 1, 1, 1)
Fully Connected
(1)
Figure 4: Schematic representation of ResNet-10

model, featuring 4 subsequent ResNet blocks of which
one is shown. This is the model configuration for
in input image of shape: (250,275,40). Every block
represents an operation. The output dimensions are
shown in brackets, which indicate the number of con-
volutional filters along with the width, height, and
depth of the image for each layer. The model consists
of 3D convolutional layers (n x n x n conv), recti-
fied linear unit (ReLU) activation functions, Batch
normalisation (BatchNorm 3D), an adaptive average
pooling layer (AdaptiveAvgPool) and a fully con-
nected layer.

The model starts with one convolutional layer fol-
lowed by 4 ResNet blocks each of which consists of two
convolutional layers and a residual connection that
adds the input to the block to the output. With ev-
ery ResNet block the model doubles the number of
convolutional filters and uses max-pooling to reduce
the spatial dimensions by half. After the last ResNet
block the number of features is reduced to 512 by an
adaptive average pooling layer. These features are
then passed through a fully connected layer and a
sigmoid which reduces the output to a single value.

with this prediction, the loss is calculated. For
classification, the binary cross entropy loss was used
and for the regression experiments, the mean squared



error loss was used. Lastly, all models were trained
for 200 epochs, with a learning rate of 0.001 for the
ADAM optimiser.

3.5 Experimental set-up

3.5.1 Segmentation

To evaluate the nn-UNet model performance on seg-
mentation of CRLMs imaged on PVP CT scans a test
was performed on scans from the WORC database
[32]. This set comprises 77 PVP CT scans of CRLM
together with a manual segmentation of the CRLM
made by three different observers. Using the pre-
trained nn-UNet the CRLM were segmented. To as-
sess the segmentation performance of the model, the
DSC was calculated between the automatic and man-
ual segmentation. This analysis was limited by the
fact that not all lesions were manually segmented
(lesions that were not surgically resected were ex-
cluded). Therefore, the DSC was only calculated for
lesions which had some overlap with manual segmen-
tation. So the resulting DSC is an upper bound on
the model’s performance.

Radiomics

Two radiomics classification experiments were con-
ducted: one including the largest segmented lesion
and another involving all lesions consisting of more
than 100 voxels. The selection of the largest le-
sion aimed to explore whether the growth patterns
are best visible on the larger CRLMs and that auto-
matic segmentations for larger lesions are more accu-
rate. The experiment including all segmented lesions
sought to enhance model performance by increasing
the number of training samples. The lower voxel limit
of 100 was established to exclude the smallest lesions
which may be ill-defined on a CT scan, and run a
larger risk of being incorrectly segmented [26].

The experiments with the largest lesion included
252 segmented lesions (the same as the number of pa-
tients) while experiments including multiple lesions
included 564 segmented lesions.

For the radiomics regression experiments, settings
were informed by the earlier classification results.
Therefore, only one experiment was performed using
only the largest segmented lesion as this performed
best. Al predictions of dHGP fraction outside of the
range of [0,1] were clipped to either 0 or 1.

Deep learning

Using deep learning both classification and regression
experiments were performed. For classification, two
types of experiments were performed one where either
a bounding box around the liver was passed as input
to the model or where a bounding box around the

largest tumour segmentation was used. The bound-
ing box around the liver was used to omit uninforma-
tive regions. Additionally, to further guide the model
to the most salient region a bounding box was placed
around the largest tumour.

To improve the model’s performance experiments
were performed with different settings. A list of these
experimental settings is shown in Table 2.

Table 2: Experiment type and abbreviation'.

Abbreviation ‘ Experiment type

DA Data augmentation

LDA Light data augmentation

oS Oversampling of minority class

SM Segmentation mask in the second channel
LB Bounding box around the liver

TB Bounding box around the tumor

TFor data augmenmation setting see Table 5.

Data augmentation was used to mitigate overfit-
ting by artificially increasing the number of train-
ing samples. Here data augmentation (DA) refers
to randomly applying a transformation to the train-
ing data. These transformations include zooming,
rotation, flipping, adding Gaussian noise and elastic
transformation. The light data augmentation (LDA)
omitted the Gaussian noise and elastic transforma-
tion, as Gaussian noise may obscure the detail in the
image that is aimed to be captured, and elastic trans-
formations may excessively distort the image.

In the case of the liver bounding box, to guide the
model to the region of interest (the CRLM) the seg-
mentation mask of the liver and tumour was passed
in a second channel. Lastly, to address the class im-
balance (dHGP /non-dHGP = 20/80) the dHGP class
was over-sampled during training (OS) such that the
model is trained on a 50/50 class distribution.

A total of seven classification experiments were
conducted. The first experiment (exp.l: LB) used
the liver bounding box as input without any of the
experimental settings. All the remaining experiments
incorporated minority class oversampling (exp.2: LB
+ OS8). For the liver bounding box, two data augmen-
tation approaches were tested (exp.3: LB 4+ OS +
DA and exp.4: LB + OS + LDA). Additionally, one
experiment was performed where the segmentation
mask was passed in the second channel (exp.5: LB +
OS + DA + SM). Lastly, there were two variations
of experiments conducted using the tumour bounding
box as input: one with light data augmentation and
one without (exp.6: TB + OS + DA and exp.7: LB
+ OS + LDA).



3.6 Statistics

Both the deep learning and the radiomics model
performance were analysed through cross-validation.
However, their specific setups differed. For the ra-
diomics experiments a 100 times random split cross-
validation was used. The deep learning experiments
used 5-fold stratified cross-validation.

The decision to use 5-fold cross-validation in the
deep learning experiments was driven by the longer
training time required for deep learning models com-
pared to radiomics models. The reason for stratified
cross-validation in the case of deep learning was the
low number of folds in combination with a relatively
small dataset which results in the risk of larger vari-
ation in the distribution of class labels between the
folds.

To assess the performance of all classification ex-
periments, the following metrics were used: accuracy,
area under the receiver operating characteristic curve
(AUC), and Fl-score. A threshold of 0.5 was used
for both the Fl-score and accuracy calculations. For
regression experiments, the evaluation metrics con-
sisted of mean squared error (MSE), coefficient of de-
termination (R?), and Pearson correlation coefficient.

To calculate these metrics the average was taken
from the performance on the test set for every cross-
validation. For radiomics experiments, 95% confi-
dence intervals were calculated using the corrected re-
sampled t-test, considering that the individual cross-
validation results are not independent [33]. For the
deep learning experiments, 95% confidence intervals
were computed by taking a range of times 1.96 the
standard deviation around the average of the 5 cross-
validation results.

4 Results

4.1 Segmentation

The performance of the nn-UNet segmentation model
was evaluated by computing the DSC for each seg-
mented lesion that had some overlap with the corre-
sponding manual segmentation. This approach was
adopted due to the unavailability of manual segmen-
tations for every lesion. This way the model achieved
a DSC of 0.73 £ 0.17, similar to the interobserver
agreement of 0.69 between the human observers.

The manual annotators segmented 89 tumours
(1.2 on average) while the nn-UNet model segmented
229 (3.1 on average). On the dataset introduced in
this study, the number of CRLMs per patient found
by radiologists was 1.9 on average. This includes both
CRLMs that were later on resected and ones that were
not. So, the nn-UNet model segmented more lesions
than the radiologist finds on average.

4.2 Classification

4.2.1 Radiomics Classification

Two radiomics classification experiments were con-
ducted (see Table 3). The experiment using only
the largest segmented lesion demonstrated the high-
est performance on all metrics (AUC = 0.67 (95% CI
0.58-0.76)), also compared to the deep learning meth-
ods (see Figure 5). The model using multiple lesions
per patient showed worse performance (AUC = 0.53
(95% CT 0.44-0.61)).

4.2.2 Deep Learning Classification

Although the confidence intervals of the deep-learning
experiments all overlap, some trends can still be ob-
served (see Table 3). Specifically, the inclusion of
oversampling of the minority class (OS) resulted in
improved performance, as did the use of data augmen-
tation techniques, going from an AUC of 0.54 (95%
CI 0.44-0.63) to 0.58 (95% CI 0.39-0.77). Notably,
light data augmentation outperformed the stronger
variant, which included additional techniques such
as elastic deformation and the addition of Gaussian
noise. This improved the AUC from 0.52 (95% CI
0.40-0.64) to 0.59 (95% CI 0.53-0.65). Furthermore,
using the bounding box around the tumour (TB) as
input performed worse than the around the liver, not
scoring higher than an AUC of 0.54 (95% CI0.48-
0.60). For all of the experiments, the model exhibited
overfitting (see Figure 7 in appendix B.2).

4.3 Regression

The results of both the radiomics and deep learning
regression models predicting the fraction of dHGP
are shown in Figure 6 and Table 4. Figure 6 shows
the predicted dHGP fractions plotted against actual
value Table 4. Both methods are not able to pre-
dict the fraction dHGP, deep learning method and
the radiomics method achieve R? of -0.03 (95%CI -
0.32,0.26) and -0.54 (95%CI -0.76,-0.32) respectively.
From Figure 6 it can be seen that the radiomics model
has only learned to predict around the average value
of dHGP in the dataset (48%). The deep learning
model, on the other hand, predicts uniformly dis-
tributed random values between 1 and 0. Both mod-
els are thus unable to predict dHGP, this is also re-
flected in the metrics (see Table 4). Again the perfor-
mance of the deep learning model has been impacted
by overfitting in the training set (see Figure 8 in ap-
pendix B.2).
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Figure 5: Receiver operating characteristic (ROC) curves for radiomics and deep learning classification of
dHGP and non-dHGP. The Radiomics model was trained and tested on the largest segmented lesion. The
deep learning model was trained using cropped scans around the liver (LB), minority class over sampling OS
and light data augmentation (LDA). Error bars for the radiomics ROC-curve correspond to 96% CI and for

deep learning to 68% CI.

5 Discussion

This work aimed to develop a fully automatic ra-
diomics and deep learning method to predict the
HGP based on CT scans from clinical care. The
prediction was done in two ways, one using binary
classification between dHGP and non-dHGP and re-
gression to predict the fraction of dHGP directly.
The best-performing classification method was the ra-
diomics approach achieving an AUC of 0.67 (95% CI
0.58- 0.76), whereas the best-performing deep learn-
ing model achieved an AUC of 0.59 (95% CT 0.3-0.65).
Neither the radiomics method nor the deep learning
method were able to predict the fraction of dHGP di-
rectly, showing no correlation between the predicted
and the true dHGP fraction.

The assessment of HGP type is a challenging task,
this is demonstrated by the fact that this is not done
by radiologists in either clinical practice or in a re-
search setting, despite clinical relevance [10, 11, 19].
With respect to distinguishing the most clinically rel-
evant groups of dHGP/non-dHGP, a specific chal-
lenge arises. Only a small fraction of rHGP can
change the classification from dHGP to non-dHGP.
These small fractions may be hard to detect on med-
ical imaging, such cases are thus prone to be mis-
classified. As a result, models predicting HGPs will
be limited by accurately identifying these small frac-
tions.

Considering these factors, the classification per-
formance remains unsatisfactory. The classification
radiomics method, WORC, has been extensively val-
idated in various clinical applications [27]. This in-
dicates that the features used may not capture the

differences between HGPs. Therefore, it is worth ex-
ploring more tailored features designed to distinguish
HGP types. One such feature may be one aiming
to capture rim enhancement which has shown an as-
sociation with dHGP (see subsection 2.2). To avoid
the need for manual feature engineering, a deep learn-
ing approach was used to learn these tailored features
directly from the scans. However, the model overfit-
ted on the training data. Further regularisation and
shrinking model complexity could mitigate this. How-
ever, it is not clear that this will resolve this issue.

While earlier studies have shown promising results
predicting the HGP type using radiomics [12-16], the
differences are too large to compare the previous stud-
ies to ours. These differences include the use of MRI
instead of CT scans and the use of the predominant
cut-off to distinguish between dHGP and rHGP in-
stead of classifying based on dHGP /non-dHGP. This
precludes a direct comparison.

Only the work by Sun et al. [17] is similar enough
to compare. In their work, the authors also use
PVP CT scans to predict the HGP based on the
dHGP /non-dHGP cut-off. Their radiomics model
demonstrated strong performance achieving an AUC
of 0.88. While their approach shares similarities with
our work, there are some differences. The main differ-
ence is in the imaging data used. Sun et al. [17] used
a more consistent and higher-quality dataset than our
study. They used scans collected over 4 years on two
types of scanners in a single institution using a consis-
tent protocol with a 2 mm slice thickness. In compar-
ison, our work involved scans collected over 14 years
from different hospitals and with a large variety of
acquisition settings and vendors. One notable dif-



Table 3: Performance of radiomics and deep learning classification experiments. For deep learning, the mean
and 95% confidence intervals for each metric are calculated over 5 x stratified cross-validation (see Table 2
for experiment abbreviations). For the radiomics method, the averages and 95% confidence intervals for each
metric are calculated over 100 x random-split cross-validation. The ”Largest Tumour” experiment used only
the largest segmented lesion for training and testing, while the ” Tumour > 100 Voxels” experiment included
all segmented lesions consisting of more than 100 voxels.

Radiomics
Experiment ‘ Accuracy AUC F1l-score
Largest Tumour 0.78 [0.76, 0.81]  0.67 [0.58, 0.76]  0.71 [0.68, 0.75]
Tumour > 100 Voxels 0.82 [0.77, 0.86] 0.53 [0.44, 0.61] 0.74 [0.68, 0.79]
Deep learning
Experiment | Accuracy AUC Fl-score
1: LB 0.72 [0.67, 0.77]  0.54 [0.44, 0.63]  0.10 [-0.02, 0.22]
2: LB + OS 0.73 [0.68, 0.78]  0.58 [0.39, 0.77]  0.15 [-0.01, 0.31]
3: LB + OS + DA + SM | 0.70 [0.64, 0.76] 0.52 [0.46, 0.58] 0.11 [-0.01, 0.23]
4: LB + OS + DA 0.70 [0.63, 0.77]  0.52 [0.40, 0.64] 0.23 [0.07, 0.39]
5: LB + OS + LDA 0.73 [0.68, 0.78]  0.59 [0.53, 0.65]  0.20 [0.06, 0.34]
6: TB + OS 0.75 [0.70, 0.80]  0.52 [0.43, 0.61] 0.03 [-0.06, 0.12]
7: TB + OS + LDA 0.68 [0.64, 0.72]  0.54 [0.48, 0.60]  0.24 [0.19, 0.29]

Table 4: Performance of radiomics and deep learning regression experiments.

The mean value of cross-

validation together with a 95% confidence interval are reported. For radiomics, the mean and 95% confidence
intervals for each metric are calculated over 100 x random-split cross-validation. For deep learning,the mean
and 95% confidence intervals for each metric are calculated over 5 x stratified cross-validation

Experiment ‘ MSE R?

Pearson Correlation

Radiomics
Deep learning

0.16 [0.12, 0.21]
0.25 [0.21, 0.29]

-0.03 [-0.32, 0.26]
-0.54 [-0.76, -0.32]

0.27 (0.16, 0.39)
-0.1 [-0.20, -0.00]

ference is that Sun et al. [17] incorporated manual
segmentations of the CRLM as a whole, in addition
to segmenting the rim. By considering both the en-
tire CRLM and the segmented rim, they were able
to calculate additional features to serve as the basis
for their prediction. As Sun et al. [17] have not yet
externally validated their results, it is hard to assess
if their model will generalise. Additionally, The lack
of publicly available data and code precludes direct
comparison methodologies.

Our work proposed a fully automatic segmenta-
tion method that eliminates the need for manual seg-
mentation, resulting in an observer-independent and
time-saving approach. Unfortunately, we were not
able to rigorously validate the segmentation perfor-
mance of the nn-UNet model. This was because there
were only manual segmentations available for some of
the lesions per patient (lesions that were not surgi-
cally resected were excluded). For the automatic seg-
mentations that had some overlap with the manual
segmentation, the model scored a DSC of 0.74. How-
ever, the model segmented more components than the
manual observers, this was expected as some CRLMs
were excluded from the manual segmentations on pur-
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pose. Moreover, on the dataset introduced in this
study, the number of CRLMs per patient found by
radiologists was 1.9 on average whereas the model
segmented 3.1 on average. This points to the possi-
bility that a large number of the segmented lesion are
not CRLMs.

These incorrect segmentations could explain why
basing the radiomics classification on multiple lesions
performed worse instead of using only the largest seg-
mented component. Smaller components are more
likely to be incorrectly segmented [26]. An additional
explanation could be that the HGP maybe not be
as well defined on CT scans for smaller CRLM. The
limited evaluation of the segmentation is one of the
limitations of this study. To better assess segmen-
tation performance automatic segmentation can be
compared to expert manual segmentation by calcu-
lating the DSC of all lesions.

The second limitation is with respect to the con-
trast phases used. Multiple studies have shown that
incorporating not only the PVP scans but also the
pre-contrast and arterial phase scans can increase per-
formance (increasing the AUC on the order of 10%)
[14, 16]. Due to the limited availability of these scans
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Figure 6: Predicted vs actual plot showing the relationship between the true fractions of dHGP and the
corresponding predicted fractions for both radiomics (a) and deep learning (b). Every point represents the
average prediction for that sample over every cross-validation experiment. The dashed diagonal line repre-
sents the perfect alignment between predicted and true values in the plot.

in our dataset, we chose to omit them to avoid ex-
cluding a significant number of patients.

The major limitation that is probably holding
back performance is the heterogeneity and low image
quality of the CT scans. Data heterogeneity arose
from the fact that we included scans from a 14-year
time span (2004 - 2018) from multiple centres without
any acquisition protocol restrictions. Not only were
scans collected over a long time span, but scans were
also old, with a median age of 12 years. Thus scans
are not up to modern standards as demonstrated by
the large median slice thickness of 4mm (see Table 1).
Higher quality scans can improve the classification of
HGP types by capturing subtle differences, as there
are no clear imaging markers to distinguish them.
There is an ongoing effort made within the Erasmus
MC to score the HGP of CRLMs resected after 2018.
This means that in the future these scores can also be
matched to clinical CT scans, and thus more modern
scans could be included.

Other than improving the CT scan it would also
be of interest to explore other image modalities like
MRI. The present work did not explore this due to
the limited availability of MRI scans in our cohort.
However, MRI maybe better suited to the detection
and characterisation of CRLM as it provides superior
soft tissue contrast over CT [34].

6 Conclusion

This study presented a radiomics and deep learning
approach to predict the HGP of CRLM based on CT
scans from clinical care. This was done by using bi-
nary classification between dHGP and non-dHGP and
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regression to predict the fraction of dHGP directly.
For classification, both approaches showed limited
performance with the radiomics approach achieving
an AUC of 0.67 (95% CI 0.58- 0.76), whereas the best-
performing deep learning model achieved an AUC of
0.59 (95% CI 0.53-0.65). Additionally, regression pre-
dicting the fraction of dHGP failed, with the pre-
dicted values showing no correlation with the actual
value. The deep learning method and the radiomics
method achieve R? of 0.15 and -0.54 respectively.

A challenge for this task was the heterogeneity
and low quality of the imaging data, which may have
limited the ability to capture the subtle differences
between the HGP types. Future work should focus
on collecting more consistent and high quality imag-
ing data, also including MRI. This could potentially
improve the performance and reliability of the predic-
tive models, thereby enabling more personalised care
for patients suffering from CRLM.
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Table 5: Data augmentation techniques as part of the MONAI frame work and their corresponding settings
used in the experiment [29]. Each transformation is listed along with its specific settings.

Transformation

‘ Settings

Zoom (RandZoom)

Rotation (RandRotate)

Flip (RandFlip)

Gaussian noise (RandGaussianNoise)
Elastic deformation (Rand3DElastic)

prob = 0.5

prob = 0.5, std = 0.05
o—range=(5.0, 7.0),magnitude_range=(50, 150),prob=0.5,spatial size=in_shape

prob = 0.5, min_zoom=1.0, max_zoom=1.2

range_z = 0.35, prob = 0.8

B

Supplementary Results

B.1 Multi-Observer Segmentation Evaluation

Table 6: Segmentation agreement measured by Dice Similarity Coefficient (DSC) between human observers
(STUD (1st and 2nd time), PhD, RAD,) and two automatic methods (H-DenseUNet, nn-UNet). The table
presents the mean and standard deviation of the DSC scores for the inter-observer agreement. The DSC
scores quantify the level of agreement in segmentation. The bottom row displays the average values of the
mean and standard deviation of the DSC scores for each observer.

B.2

Observer ‘ STUDI1 STUD2 PhD RAD H-DenseUNet nn-UNet
STUD1 - 0.80 (0.15) 0.73 (0.14) 0.60 (0.18) 0.65 (0.26) 0.78 (0.16)
STUD2 0.80 (0.15) - 0.77 (0.13)  0.63 (0.18) 0.66 (0.27) 0.79 (0.15)
PhD 0.73 (0.14) 0.77 (0.13) - 0.69 (0.16) 0.63 (0.25) 0.74 (0.16)
RAD 0.60 (0.18) 0.63 (0.18) 0.69 (0.16) - 0.58 (0.27) 0.61 (0.18)
CNN 0.65 (0.26) 0.66 (0.27) 0.63 (0.25) 0.58 (0.27) - 0.75 (0.20)
nnUNet 0.78 (0.16) 0.79 (0.15) 0.74 (0.16) 0.61 (0.18) 0.75 (0.20) -

Average ‘ 0.71 (0.18) 0.73 (0.18) 0.71 (0.17) 0.62 (0.19) 0.65 (0.25) 0.73 (0.17)

Deep Learning Loss Curves

The model which achieved the highest AUC: 0.59 (95% CT 0.53, 0.65) used oversampling, light data augmen-
tation and used a bounding box around the liver as input (LB + OS + LDA). The loss curve and AUC metric
over the training epochs are shown in Figure 7. From this figure, it is clear to see that the model overfits
the training set. The train and test loss diverge around epoch 60. Around this time the test and train AUC


https://www.medrxiv.org/content/early/2021/08/25/2021.08.19.21262238
https://www.medrxiv.org/content/early/2021/08/25/2021.08.19.21262238

also split. The AUC ends up being better than guessing but lacks behind the performance achieved with the
WORC model.

It can be observed that after the test and test and train loss diverge the test loss increases while at the
same time, the AUC stays quite flat.
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Figure 7: Binary cross entropy loss curve and AUC metric over the training epochs. The model achieving
the highest AUC of 0.59, 95% CI (0.53-0.65) used oversampling, light data augmentation, and a bounding
box around the liver as input (LB + OS 4+ LDA). In the AUC curve, the red dashed line represents the
performance achieved by random guessing, while the green dashed line corresponds to the best AUC achieved
by the radiomics model.
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Figure 8: Mean squared error loss curve and R? metric over the training epochs of the deep learning regression
model.
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