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Multiscale analysis of mixed-mode fracture and effective
traction-separation relations for composite materials

Sergio Turteltauba,∗, Niels van Hoorna, Wim Westbroeka, Christian Hirschb

aDelft University of Technology, Faculty of Aerospace Engineering, Kluyverweg 1, 2629 HS Delft, The Netherlands
bTechnische Universität Dresden, Faculty of Mechanical Science and Engineering, 01062 Dresden, Germany

Abstract

A multiscale framework for the analysis of fracture is developed in order to determine the
effective (homogenized) strength and fracture energy of a composite material based on the con-
stituent’s material properties and microstructural arrangement. The method is able to deal with
general (mixed-mode) applied strains without a priori knowledge of the orientation of the cracks.
Cracks occurring in a microscopic volume element are modeled as sharp interfaces governed by
microscale traction-separation relations, including interfaces between material phases to account
for possible microscale debonding. Periodic boundary conditions are used in the microscopic vol-
ume element, including periodicity that allows cracks to transverse the boundaries of the volume
element at arbitrary orientations. A kinematical analysisis presented for the proper interpretation
of a periodic microscopic crack as an equivalent macroscopic periodic crack in a single effective
orientation. It is shown that the equivalent crack is unaffected by the presence of parallel peri-
odic replicas, hence providing the required information ofa single localized macroscopic crack.
A strain decomposition in the microscopic volume element isused to separate the contributions
from the crack and the surrounding bulk material. Similarly, the (global) Hill-Mandel condition
for the volume element is separated into a bulk-averaged condition and a crack-averaged condi-
tion. Further, it is shown that, though the global Hill-Mandel condition can be satisfied a priori
using periodic boundary conditions, the crack-based condition can be used to actually determine
the effective traction of an equivalent macroscopic crack.

Keywords:
multiscale fracture, cohesive elements, representative volume element, Hill-Mandel relation

1. Introduction

Prediction of the onset and evolution of failure in composite materials such as fiber-reinforced
composites is an essential factor in the design and development of load-bearing components used
in lightweight structures. While significant progress has been achieved in this area since the trans-
portation industry embraced the use of composites, there isa need to further refine the predictabil-
ity and robustness of models used to analyze failure. Current safety factors used in design of
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structures made of composite materials significantly limittheir efficiency due to large uncertain-
ties. Multiscale methods offer the possibility of incorporating detailed information of a composite,
which should lead to an improvement in accuracy of failure models. Equally important is the need
to develop models that predict the evolution of failure in composites, which is relevant in order to
determine the residual structural strength after (partial) failure or to design a structure against a
catastrophic event (e.g., impact).

In recent years, the use of cohesive laws, in conjunction with either cohesive elements or
with the extended finite element method (XFEM) has gained popularity as a tool to simulate the
onset and propagation of cracks in composite materials. Nevertheless, establishing reliable co-
hesive laws for composite materials remains challenging, particularly regarding the incorporation
of lower length scale information at a higher length scale. The determination of a macroscopic
cohesive relation, which accounts for microscale featuresand fracture mechanisms, relies on a ho-
mogenization approach that translates the detailed behavior in a microstructural volume element
into an effective (macroscale) response. For multiscale formulations involving fracture, the clas-
sical notion of a representative volume element (RVE) that is based on a continuous displacement
requires a modification (see, e.g., Gitman et al. (2007)). Analternative averaging formulation
based on a damaged zone within the volume element was proposed by Nguyen et al. (2010) where
it was concluded that with a proper identification an RVE can be established.

Multiscale formulations have been applied to the so-calledadhesive cracks, in which it is a
priori known in what region and, more importantly, in what orientation a macroscopic crack is
expected to nucleate and grow (Verhoosel et al., 2010; Matous et al., 2008; Kulkarni et al., 2010).
Micromechanical formulations have been used to study failure in polymer composites using pe-
riodic boundary conditions in Melro et al. (2013) where the influence of the distinct material and
interface properties were analyzed. Similarly, the influence of defects on the strength and fracture
energy of a fiber-reinforced unidirectional composite under extension was analyzed in Alfaro et al.
(2010a) where it was observed that imperfections may increase the effective crack length compared
to the crack length in a sample without imperfections, thus actually increasing the macroscopic
fracture energy. In-plane periodic conditions where used to analyze the response of one ply in
Arteiro et al. (2014), with elastic adjacent plies preventing out-of-plane crack propagation beyond
the ply analyzed (i.e., a so-called “wall effect” as described in Gitman et al. (2007)). Their simu-
lations provide insight on the interplay between ply geometry and properties, constraining effects
of adjacent plies and the resulting crack patterns.

One issue that has been identified as a potential problem is related to the strong (i.e., point-
wise) periodic boundary conditions and its effect on the results. To overcome the limitation of
having to prescribe a priori the orientation of a crack (i.e., analysis limited to adhesive cracks)
and simultaneously to address some doubts that have been raised about the suitability of strong
periodic boundary conditions to analyze fracture, a multiscale transition scheme was proposed
in which the representative volume element is, upon the onset of cracking (localization of dam-
age), replaced by a microstructural volume element (MVE) (Coenen et al., 2012a,b; Bosco et al.,
2015). Through a continuous adaptation of the loading at themicroscale level, using the so-called
percolation-path-aligned boundary conditions, the MVE provides a macroscopic response aligned
with the average orientation of the crack as it develops throughout the loading process. Their
scheme was implemented in a so-called FE2 framework, where numerical simulations are simul-
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taneously conducted at the micro and macroscales. Also addressing the issue of strong periodic
boundary conditions, an alternative approach pertaining to weakly periodic boundary conditions
has been recently developed (Svenning et al., 2016a,b). These conditions lead to a mixed traction-
displacement formulation as unknowns in the boundary.

The FE2 approach requires continuous bi-directional exchange of information between the
macroscale and the microscale domains throughout a simulation Mosby and Matous (2016). In a
displacement-driven multiscale formulation, a macroscale strain increment is given as input to an
RVE (in undamaged zones) or to an MVE (in damaged areas) and the corresponding microscale
boundary value problem is solved, which explicitly accounts for microstructural phenomena. Sub-
sequently, the averaged microscale response is provided asinput to the macroscale boundary value
problem, typically in the form of an average (macroscopic) stress increment, a tangent (value of
derivative of stress with respect to a strain measure) and possibly some variables that are treated
as internal parameters at the macroscale. In this approach,the constitutive information at the
macroscale is not specified in closed-form (or with a system of equations) but rather in implicit
form through the (incremental) solution of microscale boundary value problems, one for each
macroscale integration point in a finite element formulation.

An alternative approach, which is attractive from the pointof view of computational efficiency,
is to propose a macroscopic model in closed-form and use MVEsto essentially calibrate the con-
stitutive information a priori (i.e., the parameters in themacroscopic model are chosen to approxi-
mate the explicit MVE results). The clear advantage is that it is possible to carry out a single-scale
computation while retaining relevant information about the microscale phenomena. One limitation
of this approach is that the macroscopic model may not be ableto reproduce all possible responses
from the MVE calculation, particularly for complex loadinghistories. Nonetheless, accurate re-
sults may be expected for simpler loading cases (e.g., locally proportional loading), which can still
reproduce a relatively complex macroscopic loading case.

Within the context of computational efficiency, the present work addresses two issues in a hi-
erarchical multiscale framework for fracture: (i) the suitability of strong periodic boundary condi-
tions under relatively general loading conditions and (ii)a methodology to establish a macroscopic
cohesive law that implicitly incorporates microscopic information. For the first issue, an analy-
sis is carried out to introduce the notion of an “equivalent crack domain”, where it is shown that
the response after localization due to fracture under strong periodic boundary conditions can be
described by a single equivalent crack and is independent ofparallel crack replicas. The method
relies on a description of fracture at the microscale level based on crack surfaces (as opposed
to distributed damage theories that simulate cracking in a region). In practice this simplifies the
numerical implementation since only one type of fracture model is required. Furthermore, the
crack surface approach can still be used in conjunction witha distributed model for, e.g., plastic-
ity. Through representative simulations it is verified thatthe periodic boundary conditions provide
sufficient freedom to allow cracks to nucleate in arbitrary orientations. Hence, one criticism of
periodic boundary conditions is addressed and the theoretical framework provides a simple and
computationally-efficient method to impose boundary conditions for fracture problems. For the
second issue mentioned above, the present work indicates the steps required to derive a macro-
scopic cohesive relation that, through interpolation of data generated parametrically from repre-
sentative loading cases, can be used for a wider range of loading conditions (i.e., arbitrary mixed-
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Figure 1: Microstructural volume element representing a cross-section perpendicular to the fiber direction of an
unidirectional fiber-reinforced composite.

mode loading conditions). An analysis of the Hill-Mandel conditions in the context of periodic
boundary conditions is carried out. The expressions of the effective quantities that describe a
macrocrack are derived from this analysis, which can be usedin the description of the kinematic
and kinetic aspects of a macroscopic cohesive relation for acomposite material.

The paper is organized as follows: In Sec. 2 the microscale problem with periodic boundary
conditions is formulated. The scale transition relations are discussed in Sec.3. Quantities associ-
ated with an equivalent macroscopic crack are defined in Sec.4. This section includes an interpre-
tation of the Hill-Mandel conditions for an equivalent crack and the general form of a macroscopic
traction-separation (cohesive) relation for a composite material. An analysis to (numerically) ver-
ify the scale transition requirements in terms of a crack-based Hill-Mandel condition is presented
in Sec. 5. The existence of a representative volume element for fracture is studied in Sec. 6 for
various loading cases. Based on the representative elements, macroscopic fracture data is summa-
rized in Sec. 7 to illustrate the general procedure to createa material database from simulations.
Concluding remarks are given in Sec.8.

2. Microscale formulation

In a hierarchical multiscale formulation, a material pointin a macroscopic domain represents
the collective (or effective) behavior of a microstructural volume element. For simplicity, attention
is limited here to a two-dimensional volume element that represents a cross-section of a compos-
ite as illustrated in Fig. 1 (for example, a cross-section perpendicular to the fiber direction of
an unidirectional fiber-reinforced composite). Extensions to the three-dimensional case are also
indicated whenever appropriate. The approach adopted is asfollows: a nominal (macroscopic) de-
formation is applied to a volume element containing microscale information. Lower length scale
information is given through phase-specific cohesive relations (e.g., separate cohesive relations for
fibers, matrix and also for fiber-matrix interfaces in a fiber-reinforced composite). Subsequently,
the fracture process inside the volume element is modeled until the specimen fails (i,e., it can no
longer transmit a load). The microscale information is thenpost-processed to extract an effective
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macroscopic traction-separation relation applicable forthe given nominal deformation. The “cal-
ibrated” traction-separation relation can be subsequently used to model a fracture process at the
macroscopic scale without the need to explicitly model the microscale phenomena. The method is
intended for a sufficiently thick specimen in the cross-sectional plane although it can be adapted to
account for so-called “wall-effects”. This extension, however, is beyond the scope of the present
work.

The procedure to calibrate a macroscopic traction-separation relation requires solving a series
of boundary value problem on microstructural volume elements. In order to relate the microscale
information to the macroscale behavior, a scale transitionrelation is required. The guiding princi-
ple is that the total energy dissipated due to the microscalefracture process should coincide with
the macroscopic dissipation of an equivalent traction-separation relation, in line with the Hill-
Mandel condition (Verhoosel et al., 2010; Hill, 1972, 1985). In a multiscale formulation where
the displacement field remains continuous , the macroscopicstress and strain tensors are viewed
as (weighted) averages of their microscopic counterparts,with an average performed in a repre-
sentative volume element (RVE). If fracture occurs, however, the volume average cannot be used
in its traditional form due to the displacement discontinuity associated to cracks. Instead, one has
to consider a version of the divergence theorem that includes jumps along surfaces of discontinuity
within the volume element (see, e.g., (Unger, 2013)).

In the present work, strong periodic boundary conditions are applied to a microstructural vol-
ume element in all space directions. There have been issues raised in the literature about the
suitability of pointwise periodic boundary conditions in the context of fracture, hence a discus-
sion on the Hill-Mandel requirement for the micro- to macro-scale transition in the context of
periodicity as well as the geometrical interpretation of periodic cracks is pertinent.

As shown in Fig.1, denote asΩ the microstructural volume element,∂Ω as the external bound-
ary of the microstructural volume element andΓ as the line (in two-dimensions) or surface (in
three-dimensions) where a crack appears in the microstructural volume element. For simplicity, in
the two-dimensional case, the domain is taken as al1 × l2 rectangular domain with corner nodes
denoted asx(i), i = 1, 2, 3, 4, and the boundary∂Ω is divided into four sides denoted as∂Ωi,
i = 1, 2, 3, 4 as shown in Fig.2. The outward unit vector to∂Ω is denoted asn in general, while the
specific outward unit vector to a side∂Ωi is denoted asni, with i = 1, 2, 3, 4. The normal vector to
the crack surfaceΓ is denoted asm, with the convention thatm = m− is the vector pointing towards
theΓ+ side whilem+ = −m− is the vector pointing towards theΓ− side (see inset in Fig.2). The
choice of the+ and - sides forΓ is in principle arbitrary (similar to a sign convention) butit needs
to be consistently interpreted, particularly when computing integrals along the crack surface. For
convenience, a global Cartesian basise1, e2 is chosen such thate1 = n1 ande2 = n2. The crack
Γ may represent a collection of disconnected crack segments,with possible bifurcations. Due to
periodicity, some seemingly disconnected segments represent in fact a continuous crack (i.e., the
crack leaves and re-enters periodically the volume elementat periodically-connected points on
∂Ω). A discussion on the geometrical interpretation of periodic cracks is given in Appendix A.

The crack surfaceΓ is in general not known a priori but, rather, it is obtained asthe outcome
of a simulation. Unless otherwise indicated,Γ refers to the cracked state of afully-failed volume
element, although some isolated and partially-failed segments ofΓ may still be able to transmit
loads at the end of the simulation. Central to the present formulation is that cracks are allowed
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Figure 2: Nomenclature used in the two-dimensional rectangular volume element and decomposition of the micro-
scopic domainΩ into subdomains with boundaries (dashed lines) that contain the external boundary∂Ω, the crack
surfaceΓ and possibly uncracked parts of the material where the displacement is continuous. Line integrals in the
subdomains are by convention performed in an anti-clockwise fashion.

to cross the external boundaries at arbitrary locations, albeit periodically. To this end, periodic
boundary conditions are applied separately to both sides ofpoints where a crack may cross the
external boundary of the domain.

The microscale boundary-value problem for a quasi-static process with a crackΓ and with
periodic boundary conditions is, in the absence of body forces, as follows:































































divσ(x, t) = 0 x in Ω \ Γ
t+(x+, t) = −t−(x−, t) x onΓ

u(x + l1e1, t) − u(x, t) = l1ǭ(t)e1 t(x + l1e1, t) = −t(x, t) x on∂Ω3 \ Γ
u(x + l2e2, t) − u(x, t) = l2ǭ(t)e2 t(x + l2e2, t) = −t(x, t) x on∂Ω4 \ Γ
u±(x± + l1e1, t) − u±(x±, t) = l1ǭ(t)e1 t±(x± + l1e1, t) = −t±(x±, t) x on∂Ω3 ∩ Γ
u±(x± + l2e2, t) − u±(x±, t) = l2ǭ(t)e2 t±(x± + l2e2, t) = −t±(x±, t) x on∂Ω4 ∩ Γ

(1)

whereσ is the stress tensor, div is the divergence operator,t is the traction vector acting on the
corresponding surface (Γ or ∂Ω), u is the displacement vector and ¯ǫ = ǭ(t) corresponds to a
prescribed macroscopic strain tensor applied on the volumeelement that drives the deformation
process at different timest. The setΩ \ Γ refers to points in the bulk, uncracked material while
∂Ω ∩ Γ refers to the points where the crack crosses the external boundary of the domain. The
superscripts+ and - refer to values on opposites sides of the surfaceΓ. The tractionst± for points
on the intersection betweenΓ and∂Ω are computed with respect to the correspondingoutward
normal vector of∂Ω. It is noted that the points where a crack crosses the boundary domain
are not known a priori but, rather, they are identified as theyappear during the loading. For
implementation purposes in a displacement-driven numerical solution, the displacement of the
corner nodes in the rectangular domain can be specified asu(x(i), t) = ǭ(t)x(i), with i = 1, 2, 3, 4,
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while the displacements of all the other boundary points aresubjected to the periodicity conditions.
In view of this, care must be exercised interpreting the results since the domainΩ may contain
multipleparallel cracks and/or (finite) crack branches and/or isolated crack segments. A procedure
to extract the information for a periodic crack is developedin the sequel.

At regular pointsx that are not on the crack surface, the displacement and strain fields are
related as

ǫ =
1
2

(

∇u + ∇uT
)

x ∈ Ω \ Γ , (2)

where the superscript T refers to the transpose. For a composite made out of linearly elastic and
brittle solid phases, the constitutive relation at regularpoints is given byσ = Cǫ x in Ω \ Γ
whereC = C(x) represents the stiffness tensor at pointx (e.g., either matrix or fiber). The present
formulation is not restricted to brittle elastic materialsbut for simplicity this constitutive model
will be used in the simulations. At points on the crack surfaceΓ, the constitutive response is taken
as

t = fcoh ([[u]] , κ,m) x in Γ

where fcoh represents a microscale cohesive relation (traction-separation relation) that describes
the microscale fracture at a pointx. Distinct microscale cohesive relations are used to characterize
the fracture process inside the domainΩ (either matrix, fiber or matrix-fiber interface). In general,
the cohesive relation depends on the local crack opening [[u]] and possibly on internal variablesκ
and the orientation of the crack (for anisotropic cohesive relations), as given by the crack normal
m. The crack opening is given by

[[u]] = u+ − u− x onΓ (3)

with the superscripts+ and - referring to the displacements on opposites sides ofΓ. Observe that
the periodic boundary conditions at points where the crack intersects the external boundary do
not specify a crack opening as they relate displacements on essentially the same side of the crack
surface. Indeed, subtracting the boundary conditions provides the following relation:

[[u(x, t)]] = [[u(x + l1e1, t)]] x on∂Ω3 ∩ Γ
[[u(x, t)]] = [[u(x + l2e2, t)]] x on∂Ω4 ∩ Γ

(4)

hence the boundary conditions only indicate that the jump indisplacements repeats itself period-
ically but otherwise do not specify the actual value of the jump. In the present formulation, the
intention is to use classical cohesive elements at the microscale for which a separate nucleation
criterion is not specified separately since it is implicitlygiven in the cohesive relation and depends
only on the stress vector acting on the plane of the cohesive element. However, it is noted that
an implementation based on XFEM would require a separate nucleation criterion that predicts the
orientation of the microcrack typically based on the stressand/or the strain tensor.

3. Scale transition relations

3.1. Preliminaries
The Hill-Mandel condition, also known as the macrohomogeneity condition, refers to a scale

transition requirement aimed at consistently preserving mechanical quantities appearing in the bal-
ance principles and constitutive relations at distinct scales. As indicated in [Hill, 1972], a natural
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definition of a macrostressσM and a macrostrainǫM is based on volume averages of their mi-
croscale counterparts, i.e., averages ofσ andǫ. If the scale transition is based on an (unweighted)
volume average, it was observed that, in general, the product of averages is different than the av-
erage of products, hence one has to guarantee consistency a priori. In particular, the Hill-Mandel
condition most commonly used refers to the stress power at a macroscopic point, where it is re-
quired thatσM · ǫ̇M = 〈σ · ǫ̇〉Ω, where ˙ǫM is the time rate of change of the macrostrain, ˙ǫ is the time
rate of change of the microstrain and the notation〈·〉Ω := (1/|Ω|)

∫

Ω
(·)dv refers to an average over

an area per unit depth (for plane problems) or a volume (in three dimensions). The Hill-Mandel
condition for the stress power needs to be extended in the present context to account for the rate
of work associated to fracture.

The microscale information in a volume elementΩ can be used to extract the macroscale be-
havior in the neighborhood of a point nominally located at a macroscopic crack. The volume
element contains information pertaining to both the macroscopic cohesive traction-separation re-
lation as well as a contribution from the surrounding bulk material. In order to extract the effective
traction-separation relation, it is necessary to separatethe response of the actual crack from the
response of the surrounding bulk material. This is achievedby decomposing the kinematic and
kinetic contributions associated to the bulk (i.e.,Ω \ Γ) and the crack (i.e.,Γ) as indicated below.

3.2. Average bulk and fracture strains

Divide the domainΩ into complementary subdomains whose boundaries containΓ and∂Ω, as
shown schematically with dashed lines in Fig.2. Inside these subdomains the displacement field
is differentiable, hence the strain field is well-defined. Applyingthe divergence theorem in each
subdomain and in view of (2), it follows that the volume average of the microscale strain tensorǫ
is

〈ǫ〉Ω :=
1
|Ω|

∫

Ω

ǫdv =
1
|Ω|

∫

Ω

[∇u]symdv =
1
|Ω|

∫

∂Ω

[u ⊗ n]symds− 1
|Ω|

∫

Γ

[[[ u]] ⊗ m]symds (5)

where⊗ is the tensor product, [A]sym := 1
2

(

A + AT
)

refers to the symmetric part of a tensorA, [[u]]
is the crack opening as defined in (3),n represents the outward normal unit vector to∂Ω andm the
normal unit vector pointing towards the+ side ofΓ (i.e., m = m− = −m+, as indicated in Fig.2).
Line integrals in the subdomains are by convention performed in an anti-clockwise fashion, hence
the+ side needs to be interpreted according to the (local) parametrization of (segments) ofΓ.

In the sequel, the periodic boundary conditions are used to identify a relation between different
strain measures. The outward normal vectors on the sides∂Ω3 and∂Ω4 are, respectively, equal to
the negative outward normal vectors on the sides∂Ω1 and∂Ω2 (see Fig.2). Consequently, in view
of (1), suppressing the time variable for simplicity, observing thatn = n3 = −e1 for pointsx on
∂Ω3 and using the fact that|Ω| = l1l2, it follows that

1
|Ω|

∫

∂Ω3

[u(x) ⊗ n]symds=
1
|Ω|

∫

∂Ω3

[(u(x + l1e1) − l1ǭe1) ⊗ n3]symds

= − 1
|Ω|

∫

∂Ω3

[u(x + l1e1) ⊗ e1]symds+ [ ǭe1 ⊗ e1]sym . (6)
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For pointsx on ∂Ω3, the position vectorx + l1e1 indicates a point on the opposite side, i.e.,∂Ω1

(see Fig.2). Further, the outward normal unit vectorn for points on∂Ω1 is n = e1 . Consequently,
the first integral on the right hand side of (6) can be alternatively expressed as an integral over
∂Ω1, i.e.,

− 1
|Ω|

∫

∂Ω3

[u(x + l1e1) ⊗ e1]symds= − 1
|Ω|

∫

∂Ω1

[u(x) ⊗ n]symds

where x and n in the integral on the right hand side refer to, respectively, points on∂Ω1 and
the corresponding outward normal vector. Using the previous relation in (6) and suppressing the
arguments gives

1
|Ω|

∫

∂Ω1

[u ⊗ n]symds+
1
|Ω|

∫

∂Ω3

[u ⊗ n]symds= [ǭe1 ⊗ e1]sym . (7)

Using the same procedure in thee2 direction, it follows that

1
|Ω|

∫

∂Ω2

[u ⊗ n]symds+
1
|Ω|

∫

∂Ω4

[u ⊗ n]symds= [ǭe2 ⊗ e2]sym ,

which, in combination with (7), yields

1
|Ω|

∫

∂Ω

[u ⊗ n]symds= [ǭe1 ⊗ e1]sym+ [ǭe2 ⊗ e2]sym = ǭ (8)

where the last identity follows from the (two-dimensional)identity tensorI = e1⊗ e1+ e2⊗ e2 and
the symmetry of ¯ǫ. A similar formula can be established for the three-dimensional case.

Using (8) in (5) provides a relation between the applied strain ǭ, the average strain〈ǫ〉Ω in the
bulk material and the average of the normal vector and the crack opening, namely

ǭ = 〈ǫ〉Ω + ǫ f , (9)

where

ǫ
f :=

1
|Ω|

∫

Γ

[[[ u]] ⊗ m]symds . (10)

Observe that, in contrast to the continuous case without cracks where ¯ǫ and〈ǫ〉Ω coincide, these
two quantities are different in the presence of a crack. In the context of a multiscale analysis, it is
useful to interpret the result shown above as a kinematic decomposition of the “total” strain ¯ǫ into a
“bulk” strain 〈ǫ〉Ω (strain in the uncracked material) plus an equivalent “fracture strain”ǫ f, which is
defined in (10). As shown in the sequel, the strains ¯ǫ, ǫ f and〈ǫ〉Ω will also represent, respectively,
the applied strain, the fracture strain and the strain in thesurrounding uncracked material of a
periodic crack. However, depending on the method used to impose the applied strain, care needs
to be exercised to properly interpret this quantity in orderto prevent an artificial analysis with
multiple parallel crack analysis as indicated in Appendix A.
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3.3. Volume-averaged stress

Regarding the volume-averaged stress, making sequential use of the identity div(σ ⊗ x) =
divσ ⊗ x + σ, the equation of equilibrium, the divergence theorem, and the continuity of the
traction acting onΓ, it follows that

〈σ〉Ω :=
1
|Ω|

∫

Ω

σdv =
1
|Ω|

∫

∂Ω

t ⊗ xds , (11)

wheret = σn is the traction vector on the boundary∂Ω.
The expression (11) can be further specialized for anti-periodic traction boundary condition as

〈σ〉Ω =
2
∑

i=1

t̄ i ⊗ ei , t̄ i :=
1
|∂Ωi |

∫

∂Ωi

tds (12)

where t̄ i , i = 1, 2 are the surface-averaged tractions on sides∂Ωi with |∂Ω1| = l2 and |∂Ω2| = l1.
An equivalent formula applies for the three-dimensional case.

3.4. Rate of work relation and Hill-Mandel condition for volume element

The specific rate of external workPext done on the boundary of the volume element and the
specific stress powerPb in the bulk material, both measured per unit area and per unitdepth (in
two dimensions) or per unit volume (in three dimensions) aredefined, respectively, as

Pext :=
1
|Ω|

∫

∂Ω

t · u̇ds , and Pb :=
1
|Ω|

∫

Ω

σ · ǫ̇dv .

The next step in the foregoing analysis is to relate these quantities to the rate of work of frac-
ture (rate of work done by the traction on the crack surfaceΓ). To this end, consider again the
subdomains indicated in Fig.2. Recalling the identity

div
(

σ
Tu̇
)

= divσ · u̇ + σ · ∇u̇ ,

which is applicable for pointsx ∈ Ω \ Γ and further making use of the equilibrium equation (1),
the strain-displacement relation (2) with∇u̇ = (d/dt)∇u and the symmetry ofσ, it follows that the
stress power can be expressed as

Pb =
1
|Ω|

∫

Ω

div
(

σ
Tu̇
)

dv =
1
|Ω|

∫

∂Ω

t · u̇ds− 1
|Ω|

∫

Γ

t · [[ u̇]]ds ,

where the last expression is obtained from the divergence theorem and Cauchy’s theorem (i.e.,
t = σn on ∂Ω and t = σm on Γ). In the relation above, the traction onΓ refers to the traction
acting on theΓ− side, i.e.,t = t− = σ−m with σ− referring to the stress tensor on theΓ− side.

Combining the expressions for the external rate of work doneon the volume element and the
stress power it follows that

Pext = Pb + Pf , (13)
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where

Pf :=
1
|Ω|

∫

Γ

t · [[ u̇]]ds (14)

which indicates that the specific external power done on the volume element is equal to the specific
stress power (on the bulk, uncracked material) plus the rateof work of fracture, which is defined in
(14). Observe that, in accordance with the notational convention indicated above,Γ corresponds
to the crack at a fully-failed state and hence it is not interpreted as a function of time. During
the overall cracking process, at a given timet, some segments inΓ may be fully-separated, some
may be partially cracked and others may be still uncracked. Prior to cracking, uncracked segments
do not contribute to the integral in (14) since the displacement is continuous in an undamaged
segment.

In accordance with a classical multiscale approach, the macroscopic bulk stress and bulk strain
are taken as the volume average of their microscopic counterparts. In view of the kinematical
decomposition (9) and in line with the approach indicated above for the effective bulk stress and
strain, the effective equivalent strain associated with a macroscopic cohesive surface is identified
asǫ f as defined in (10).

The version of Hill-Mandel’s requirement for the whole volume element (i.e., bulk and cracked
parts), can be expressed in terms of surface data, i.e.,

〈σ〉Ω · ˙̄ǫ = Pext =
1
|Ω|

∫

∂Ω

t · u̇ds . (15)

For periodic boundary conditions, using an approach similar as the one used in the previous sub-
sections, it can be shown that the specific external power done on the volume element is such
that

1
|Ω|

∫

∂Ω

t · u̇ds= t̄1 · ˙̄ǫe1 + t̄2 · ˙̄ǫe2 = 〈σ〉Ω · ˙̄ǫ ,

where the surface-averaged tractionst̄1 and t̄2 and the last relation follows from (12). The pre-
vious analysis confirms that periodic boundary conditions are sufficient to satisfy the “global”
Hill-Mandel condition (i.e., bulk and crack combined). However, for the purpose of the present
analysis, a more relevant statement is a separate scale transition relation for the crack. This analy-
sis is presented in Sec.4.1. To this end, some details on the notion of a periodic crack are provided
in Appendix A.

4. Equivalent macroscopic crack

4.1. Equivalent macroscopic crack length

The microscopic crackΓ (or, the equivalent crack surfaceΓs see Appendix A), can be repre-
sented at the macroscopic level by an equivalent macroscopic straight (differential) crack segment
denoted asΓf and characterized geometrically by its orientation given by a unit normal vector
mf and a nominal length

∣

∣

∣Γf
∣

∣

∣ (per unit depth for plane problems) or a nominal area (for three-
dimensional problems), as illustrated in Fig.3. The path ofa crack at the microscale is typically
affected by the microstructure of the composite material both in terms of geometrical features (e.g.,
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distribution of fibers, fiber diameters, volume fractions) as well as the fracture properties of the
constituents, interfaces and the presence of flaws (Ponnusami et al., 2015). The microscale vol-
ume element should reproduce these features to assure convergence in a multiscale sense. More
generally, geometrical features at each length scale are resolved with a characteristic accuracy,
i.e., what appears as a complex crack pattern at the lower length scale within a volume element
is typically resolved “locally” as a straight crack (differential) segment at the larger scale. The
orientation of a nominally straight macroscopic crack segment is given by a unit normal vectormf

that can be defined based on the fully-failed state as

mf := 〈m〉Γ , (16)

where the notation〈·〉Γ := (1/|Γ|)
∫

Γ
(·)ds, representing crack-averaged quantities, is introduced for

convenience. This average contains contributions from allcrack segments ofΓ, including bifurca-
tions and disconnected parts. In principle the vectormf could evolve during the loading process
but, to simplify the procedure, it is assumed to be independent of time and obtained through
post-processing of the fully-failed state. Care must be taken to compute separate contributions
independently of the choice of the positive and negative sides of segments inΓ (Westbroek, 2017).

On the other hand, a straight macroscopic crack segment of nominal length
∣

∣

∣Γf
∣

∣

∣ should rep-
resent the accumulated effect of microcracks. As opposed to quantities defined per unitvolume,
a definition of the equivalent (or effective) unit macroscopic crack length per unit depth (or per
unit area in a fully three-dimensional framework) and its relation with the microscale crack length
(or area) is relevant since the macroscopic work of fractureper unit macroscopic length (or area)
should coincide with the overall work of fracture in a microscopic volume element.

Several options are available for the purpose of identifying
∣

∣

∣Γf
∣

∣

∣, which should relate the mi-
croscale crack length|Γ| to a macroscopic differential element. One option is to determine the
shifting mapping given in (A.1), construct the equivalent crack domainΩs and project it onto a
line perpendicular to a given nominal crack normal vectormf to compute a characteristic length
∣

∣

∣Γf
∣

∣

∣ (see illustration in Fig.3). A second option, which is adopted here for simplicity since it avoids
determining the shifting mapping, is to propose a nominal length (or area in three dimensions)
computed as follows: Let

∣

∣

∣Γf
min

∣

∣

∣ := min















l1
∣

∣

∣n2 · mf
∣

∣

∣

,
l2

∣

∣

∣n1 · mf
∣

∣

∣















∣

∣

∣Γf
max

∣

∣

∣ := max















l1
∣

∣

∣n2 · mf
∣

∣

∣

,
l2

∣

∣

∣n1 · mf
∣

∣

∣















r :=

∣

∣

∣Γf
max

∣

∣

∣

∣

∣

∣Γf
min

∣

∣

∣

, (17)

and define the macroscopic crack length as

∣

∣

∣Γf
∣

∣

∣ :=



















∣

∣

∣Γf
min

∣

∣

∣ if r ≥ rmax ,

∣

∣

∣Γf
max

∣

∣

∣ if r < rmax .

(18)

In the definition given above, the length of the equivalent crack Γf is estimated based on the
orientation of the macroscopic crack (given bymf), the approximate number of crossings through
the volume elementΩ (given by r) and the dimensionsl1 and l2 of Ω (as indicated in Fig. 2).
Due to periodicity, ifmf is neither vertical nor horizontal, an equivalent crack canbe nominally
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t 

fds

[[u]] f

Microscale descrip�on of cracks Equivalent macroscale crack

t ds
m

[[u]] Γ

Γ 

f

Figure 3: Illustration of the Hill-Mandel requirement for an equivalent macrocrackΓf: the average of the rate of
work done by the local traction on the local crack opening rate has to match the rate of work done by the equivalent
traction on the equivalent crack opening rate. Observe thatthe equivalent macroscopic traction acts on a macroscopic
differential ds̄ representing length per unit depth (for plane problems) or area (for three-dimensional problems).

interpreted as a collection of inclined straight segments of length
∣

∣

∣Γf
min

∣

∣

∣ (top/bottom or left/right)
in Ω plus a partial segment from a horizontal to a vertical side (albeit at a different angle than the
other inclined segments, but with approximately the same length). In that case, the total length is
expressed asr

∣

∣

∣Γf
min

∣

∣

∣ =
∣

∣

∣Γf
max

∣

∣

∣. A horizontal (or near-horizontal) crack withmf ≈ n2 corresponds
to an infinite (or very large) number of crossings for whichr is greater than the cut-off valuermax

and therefore has a nominal lengthl1. Similarly, a vertical (or near-vertical) crackmf ≈ n1 has a
nominal lengthl2.

4.2. Crack-based Hill-Mandel condition

In Sec.3.4 it was indicated that in order to study the macroscale behavior of a crack, a version
of the Hill-Mandel condition is required for the crack itself (as opposed to the volume element
surrounding the crack). To this end, it is observed that, from (13), (15) and (9), the specific
external power done on the volume element can alternativelybe written as

〈σ〉Ω · ˙̄ǫ = 〈σ〉Ω · 〈ǫ̇〉Ω + 〈σ〉Ω · ǫ̇ f =
1
|Ω|

∫

Ω

σ · ǫ̇dv+
1
|Ω|

∫

Γ

t · [[ u̇]]ds .

Consequently, the Hill-Mandel condition for the crack is taken as

〈σ〉Ω · ǫ̇ f = Pf =
1
|Ω|

∫

Γ

t · [[ u̇]]ds , (19)

which, if satisfied, would immediately imply from the “global” Hill-Mandel condition that the
Hill-Mandel condition for the bulk, uncracked material (i.e.,〈σ〉Ω · 〈ǫ̇〉Ω = Pb) is also satisfied. In
view of (10), relation (19) can be further expressed as

1
|Γ|

∫

Γ

〈σ〉Ω · [[[ u̇]] ⊗ m]symds=
1
|Γ|

∫

Γ

σ · [[[ u̇]] ⊗ m]symds , (20)
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where it is noted that for convenience, but without loss of generality, both sides of (19) have been
multiplied by a constant term|Ω|/|Γ|. This scaling is useful since it eliminates the length-to-volume
ratio that otherwise may obscure the existence of a representative volume element when comparing
volume elements of different sizes.

From (20) the macrohomogeneity condition for the crack can be expressed as
〈

(〈σ〉Ω m− t) · ˙[[u]]
〉

Γ
= 0 . (21)

Relation (21) indicates that the volume-averaged stress〈σ〉Ω, acting on the local crack normal
m and working on the crack opening rate [[ ˙u]], has to represent on average the working of the
local crack surface tractiont = σm on the crack opening rate. In contrast with the global Hill-
Mandel conditions, the crack-based Hill-Mandel conditioncannot be satisfied a priori through
the boundary conditions. Instead, the approach adopted here is to (approximately) enforce the
macro-homogeneity conditiona posteriori in terms of the effective fields. Up to this point the
macroscopic fields associated with the fracture process have not been defined, except for the frac-
ture strain given in (10), the crack orientation given in (16) and the nominal crack length given in
(18). An effective macroscopic crack opening rate, denoted as [[ ˙u]] f , can be defined as

[[ u̇]] f :=
|Γ|
∣

∣

∣Γf
∣

∣

∣

〈[[ u̇]]〉Γ . (22)

The effective crack opening rate [[ ˙u]] f can be computed incrementally and in general varies through-
out the loading process even if the externally applied rate˙̄ǫ is constant.

In terms of kinetics, denote bytf an as yet to be defined effective macroscopic traction acting
on the macrocrack surface. Using effective quantities, the Hill-Mandel condition (20) (or (21)) for
the crack can be divided into two separate requirements, which are assumed to be approximately
satisfied, namely

∣

∣

∣Γf
∣

∣

∣ tf · ˙[[u]]
f ≈ |Γ|

〈

t · ˙[[u]]
〉

Γ
and

∣

∣

∣Γf
∣

∣

∣ tf · ˙[[u]]
f ≈ |Γ|

〈

〈σ〉Ω m · ˙[[u]]
〉

Γ
.

(23)

The first expression in (23) refers to a scale transition based purely on quantities on the crack
surface while the second condition consistently couples this quantity with relevant information
associated to the surrounding volume element through the volume-averaged stress tensor〈σ〉Ω. In
general, these two requirements may not be satisfied simultaneously as the crack-averaged trac-
tion may differ from the volume-averaged stress acting on the local cracknormal, although these
two quantities would coincide through a limit process if thecomputational domainΩ becomes
essentially the crack surfaceΓ itself.

One approach to satisfy the requirements indicated in (23) is to definethe effective traction
t f directly from the crack-based Hill-Mandel condition, which automatically guarantees that the
macrohomogenity condition is satisfied. An alternative approach, as adopted in the present work,
is to propose an expression for the effective traction that contains one (or more) model parameters
used to enforce the scale transition conditions. The requirements indicated in (23) motivate the
following definition for the effective traction on the equivalent macroscopic crack:

tf := αtf
Γ + (1− α)tf

Ω , (24)
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whereα is a weighting factor and

tf
Γ := 〈t〉Γ tf

Ω := 〈σ〉Ω mf . (25)

The weighting factorα is introduced as a model parameter to enforce scale transition condi-
tions, as explained in the sequel, with the caseα = 1 corresponding to an effective traction based
only on a crack-averaged tractiontf

Γ
and the caseα = 0 representing an effective traction based

only on a tractiontf
Ω
, which is a volume-averaged stress tensor acting on the nominal unit normal

vector.
From a different perspective, the proposed form for the effective traction given in (24) implies

that at a larger length scale, the effective cohesive relation may be coupled to elastic and/or inelastic
phenomena occurring in the vicinity of the crack and may not be fully uncoupled (e.g., plastic de-
formations in the material surrounding the crack are accounted for in the cohesive relation through
the stress averaged in the vicinity of a crack).

In order to monitor during a simulation the enforcement of the crack-based Hill-Mandel con-
dition and in view of (23) and (22), it is convenient to define two residuals as follows:

RΓ :=
∣

∣

∣

∣

∣

∣

∣Γf
∣

∣

∣ tf · ˙[[u]]
f − |Γ|

〈

t · ˙[[u]]
〉

Γ

∣

∣

∣

∣

and RΩ :=
∣

∣

∣

∣

∣

∣

∣Γf
∣

∣

∣ tf · ˙[[u]]
f − |Γ|

〈

〈σ〉Ω m · ˙[[u]]
〉

Γ

∣

∣

∣

∣

. (26)

The residualsRΓ andRΩ, which generally depend on time, can be used to monitor the deviation
between the computed rate of work on the crack itself and the homogenized rate of work both in
terms of local homogeneity on the crack surface (throughRΓ) as well as in terms of consistent
coupling with the surrounding bulk material (throughRΩ). Ideally bothRΓ and RΩ should be
sufficiently small for a converged solution.

The definition of the macroscopic quantities adopted here isseen as a computationally con-
venient one, but other options may also be possible. However, the relevant issues are that (i) the
balance of energy needs to be preserved quantitatively across scales and (ii) the macroscopic quan-
tities should conform to a continuum formulation that does not (explicitly) take the microstructure
into account.

4.3. Macrocrack nucleation criterion and effective traction-separation relation for a composite

An effective constitutive model that can be used at the macroscopic scale to describe the on-
set and evolution of a macrocrack consists of an initiation (nucleation) criterion and a traction-
separation relation. This type of model is intended for numerical simulations of fracture using, for
example, the XFEM framework. In this context, the initiation criterion requires a critical value
of a stress and/or strain-based measure to detect the onset of failure together with an orientation
of the crack. After identification of the orientation of the macrocrack, the crack propagation can
be determined based on a (rate-independent) effective traction-separation can be obtained for an
equivalent crack in the general form

tf = f f
coh

(

[[u]] f , κf ,mf
)

(27)

where the vector-valued functionf f
coh represents the (macroscale) cohesive relation that describes

the net effect of fracture in the neighborhood of a macroscopic point. The traction-separation
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relation can be obtained as a function of the macroscopic crack opening through time-integration of
the macroscopic crack opening rate. In addition, a (possibly anisotropic) mixed-mode behavior can
be indicated as a function of the effective crack normalmf (generally with respect to configuration-
dependent axes that describe the anisotropy). For the present purposes, a (transversely) isotropic
configuration is assumed, hence only an explicit dependenceon the crack normal is indicated.
Effective loading and unloading conditions can be captured with a set of internal variablesκf .
In general one may choose a convenient phenomenological traction-separation relation based on
considerations of efficiency and accuracy, i.e., a simple relation, preferably one that is readily
available in existing implementations, which can nevertheless accurately condense the results of
the multiscale simulations. Moreover, the effective (macroscopic) traction-separation relation may
be, in general, different than the relations used at the microscopic level (e.g., fracture mechanisms
and material symmetries are expected to be different at distinct length scales).

In a classical formulation of a traction-separation relation, the orientation of the crack is as-
sumed to be known a-priori (e.g., a “weak” interface betweentwo materials), and the initiation
criterion is taken care of by the value of the fracture strength. However, in the general case, the
crack orientation is not known a-priori hence the traction-separation relation needs to be com-
plemented with an effective nucleation criterion that predicts the orientationof the crack surface
based on the applied strain and/or the corresponding applied stress prior to fracture. Thisrelation,
which forms part of the constitutive model, can be formally written as

mf = mcoh(〈σ〉Ω , ǭ) (28)

wheremcoh is a function that depends on the state of stress prior to cracking as measured by the
volume-averaged stress tensor〈σ〉Ω and/or the applied strain ¯ǫ. In this formulation the nucleation
criterion is partly given by the fracture strength in (27) and partly given by a relation of the type
shown in (28) (see, e.g., (Hille et al., 2009)).

The proposed methodology is to calibrate an effective traction-separation relation by conduct-
ing a parametric study with representative macroscopic loading conditions, typically under propor-
tional loading that represents a given mixed-mode ratio. Inthis fashion, the so-called FE2 approach
is replaced by a set of pre-determined effective responses. The effective traction-separation rela-
tion can be used in a macroscale simulation if the macroscopic loading matches the calibrated
mixed-mode loading state. Proportional unloading and re-loading can be accounted for by effec-
tive history variables of the model. For non-proportional loading conditions, this approach may not
provide the proper path-dependent response, but in many cases of practical interest it can provide
a reasonable approximation as long as the deviation from proportional loading remains small. The
next section deal with the numerical implementation and illustration of the general methodology.

4.4. Numerical implementation

The method chosen to numerically solve the microscale problem (1) is to embed cohesive ele-
ments along the edges ofall bulk elements used to discretize the composite material that occupies
the regionΩ. An alternative approach is to use the extended finite element method, however the
cohesive element route provides a simple and robust method in order to impose the periodicity
conditions at crossing points. Furthermore, an embedded cohesive element approach typically can
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account for crack bifurcations in a relatively straightforward fashion, whereas this is somewhat
more difficult using (current) versions of the XFEM framework. The microscale problem was
solved numerically with the finite element package Abaqus using an implicit scheme. For sim-
plicity, mode-independent, bilinear traction-separation relations are used to describe the fracture
process in the cohesive elements at the microscale. The termbilinear in this context refers to a
linear “elastic” loading part followed by a linear softening regime.

Material periodicity is assumed at the microstructural level in the computational domainΩ,
although the secondary phase (i.e., fibers) is randomly distributed. An unstructured mesh with
triangular elements is used.

In a typical simulation, the elastic properties of the phases are given as well as the fracture
properties of the phases and the interface between them. In the case of a cross-section perpendic-
ular to the fiber direction in an unidirectional fiber-reinforced composite, the fiber volume fraction
and the fiber diameter is given and a random distribution of fibers is assumed. Details of represen-
tative simulations for the microscale problem (1) are givenin subsequent sections. An important
step once a problem has been solved for a given strain (up to complete failure), is to extract the
average response of the volume element (post-processing).

For post-processing purposes, it is assumed that a typical microscopic volume element is sub-
jected to a proportional loading of the type ¯ǫ(t) = c(t)ǫ0 from t = 0 to a final timet = tF, at
which point the volume element is considered to have failed (i.e., the effective traction is zero).
The scalar-valued functionc(t) scales the (constant) strain tensorǫ0 and may be taken as a linear
function for a nominally constant strain rate, i.e.,c(t) = t/tF.

After the geometrical characteristics of the macroscopic crack have been established, the time
history of the crack nucleation and growth can be postprocessed fromt = 0 to t = tF to determine
the effective traction-separation relation.

A mesh refinement analysis indicates that the effective fracture response converges (details can
be found in Westbroek (2017)). The generation of effective traction-separation relations can be
carried out for a large number of combinations of model and geometrical parameters. The result
of this process is a material database that can be used to create a correlation between material
properties, configurations and load cases. This may be achieved through a systematic algorithm
but lies outside of the scope of the present work. An application of this procedure for fiber-
reinforced composites can be found in (van Hoorn, 2016), albeit using a different post-processing
procedure. In the present work, a selected number of examples are shown in the subsequent
sections to illustrate the process of generating the data.

5. Verification of scale transition relations.

The first step to verify the computational framework is to study whether the scale transition
approach yields the anticipated results in terms of the crack-averaged Hill-Mandel condition. It
is noted that this section pertains to scale transition relations, while the issue of establishing a
representativevolume element is dealt with in the Sec.6.

5.1. Simulation setup and material parameters
The scale transition relation is analyzed in this section using a typical microscopic volume

element consisting of a 75µm×75µm cross-section perpendicular to the fiber direction. The fibers
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Table 1: Mechanical properties of the reference material.
Phase Parameter Symbol Value Units

Matrix Young’s modulus E(m) 3.5 GPa

Poisson’s ratio ν(m) 0.35 [-]

Fracture strength σ
(m)
c 50 MPa

Fracture energy G(m)
c 0.05 N/mm (= kJ/m2)

Fiber Young’s modulus E( f ) 19 (transverse) GPa

Poisson’s ratio ν( f ) 0.23 [-]

Fracture strength σ
( f )
c 100 MPa

Fracture energy G( f )
c 0.1 N/mm (= kJ/m2)

Fiber-matrix interface Fracture strength σ
(i)
c 25 MPa

Fracture energy G(i)
c 0.025 N/mm (= kJ/m2)

have a diameter of 10µm and the volume element has a fiber volume fraction close to 50%. The
volume element is subjected to a laterally-constrained uniaxial extension with periodic boundary
conditions. The applied strain is proportional toǫ0 = ǫ0e1⊗ e1 and is henceforth referred to as load
case 1.

Bilinear, mode-independent traction-separation relations, as described in Sec.4.4, are used for
the matrix and the fibers as well as the interfaces between them. The material properties used in the
simulations are given in Table 1, namely the elastic properties (Young’s modulusE and Poisson’s
ratio ν), the equivalent fracture strengthσc and the equivalent fracture energyGc. The elastic
properties correspond to a representative fiber/epoxy combination, namely IM7 fibers and 5230-1
epoxy, with the relevant elastic stiffness of the fibers being the transverse modulus (note that this
value is typically significantly lower than the stiffness in the fiber direction). Fracture properties
were not readily available for these specific materials but representative values for fiber/matrix
composites were taken from (Alfaro et al., 2010b). The fracture properties for the interface (sizing)
are chosen to represent a relatively weak interface. The value of the fracture strength of the fibers
loaded in the transverse direction is difficult to obtain, but, as shown below, no fiber cracking was
observed in the simulations in accordance with experimental results for laterally loaded, single-ply
unidirectional composites (Hobbiebrunken et al., 2006).

The cohesive stiffness chosen for all cohesive relations isK = 108 N/mm3. For some simula-
tions, a viscous regularization (as implemented in Abaqus)was used to achieve a convergent result
(in terms of equilibrium in a quasi-static loading) with a viscous parameter of 10−4MPa· s−1.

5.2. Verification of crack-based Hill-Mandel condition

The fully-failed state of the microscopic volume element under laterally-constrained axial ex-
tension (load case 1) is shown in Fig.4, where a mostly vertical periodic crack appears. Due to the
relatively weak interface between the fibers and the matrix (see Table 1), it can be observed that
the crack preferentially propagates along the fiber-matrixinterfaces, bridging through the matrix
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Figure 4: Fully-failed volume element under periodic boundary conditions representing a laterally-constrained exten-
sion.

between adjacent interfaces. This crack pattern is typically observed in laterally-loaded unidirec-
tional composites (Hobbiebrunken et al., 2006).

The time-history of various power measures are shown in Fig.5 as functions of a time-like
process parameter (normalized by the final time of the simulation, tF). The solid lines in the figure
represent averages of products (either traction times crack opening rates or stress times strain
rates), averaged either in the bulk, crack or external boundary and expressed per unit volume (in
this case per unit area and per unit depth for plane strain simulations). The dashed lines represent
products of effective or averaged quantities as indicated in the legend (i.e., either effective or
averaged tractions times effective crack opening rates or averaged stress times averaged strain
rates). The figure also includes a so-called cohesive “bulk”power, denoted asP∗ in the figure,
associated to cohesive elements that do not contribute to the crack but nevertheless experience a
non-zero opening. This term does not appear in the theory developed in Sec. 3 and Sec. 4 since
it is a characteristic of the numerical method used and not ofthe continuum theory. As may be
observed in the figure, a portion of the elastic strain energyis stored due to an “elastic” opening
of the cohesive elements. The stored (elastic) energy in these cohesive elements is not dissipated
and, in the context of balance of power, it may be combined with the strain energy measured in the
bulk elements. It is noted that these cohesive elements affect the elastic response, hence the MVE
response should not directly be used to predict the elastic properties of the composite. However,
their effect on the fracture properties is negligible.

As may be inferred from Fig. 5, the externally-applied poweron the microscopic volume el-
ement is initially stored as elastic strain energy in the bulk and in the “elastic” response of the
cohesive elements. As the applied deformation increases, microcracks initiate at various locations
in the MVE, propagate and coalesce, forming a periodic (macroscopic) crack. The load-bearing
capacity of the MVE decreases as the externally-applied displacement increases until it can no
longer transmit forces and it is fully-failed. As shown in Fig.5, the “global” Hill-Mandel condi-
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Figure 5: Crack and volume-averaged measures of the appliedpower Pext, the power in the bulkPb and various
measures of the power in the crackPf as a function of a time-like process parameter for a 75µm× 75µm microscopic
volume element under laterally-constrained axial extension (load case 1). The solid lines are averages of products and
the dashed lines are products of averages and/or effective quantities.

tion given in (15) is satisfied, to within numerical accuracy, since periodic boundary conditions
have been enforced. More relevant for the present discussion is the crack-based Hill-Mandel con-
dition that requires special attention. As shown in the figure, using the crack-averaged traction
tf
Γ

and the volume-averaged tractiontf
Ω

from (25) together with the effective crack opening rate
[[ u̇]] f and the nominal (macroscopic) crack length

∣

∣

∣Γf
∣

∣

∣ from (17)-(18) (see Sec.4.4) provide, respec-

tively, upper and lower approximations to the actual energydissipation rate|Γ|
〈

t · ˙[[u]]
〉

Γ
due to the

cracking process. With the choice of the valueα = 0.4 in this example, the effective traction on the
equivalent macroscopic cracktf as given in (24) and acting on the equivalent macroscopic crack
provides an improved matching for the crack-based Hill-Mandel condition (see Fig.5). In terms
of a traction-separation relation, Fig. 6 shows the effective response of the microscopic volume
element based on three values of the parameterα, namelyα = 0, 0.4, 1. The results are reported
in terms of the normal components of the traction and the crack opening displacement, which are
computed as

tf
n := tf · mf [[u]] f

n := [[u]] f · mf .

The tangential component was found to be negligible for thisloading case. The optimal value
of the weighting factor in this example,α = 0.4, was found based on a direct parametric search
(best approximation). In principle the procedure to find theoptimal value can be carried out
automatically, but a direct approach was deemed sufficient for the present purposes.

Further testing for other loading cases and MVEs, not shown here for reasons of conciseness,
indicates that the optimal values ofα can vary between 0 and 1 depending on the size of the MVE
and its loading. In some cases, distinct optimal values are required for distinct realizations of
nominally the same microstructure under the same loading. It is relevant to indicate that, based on
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Figure 6: Effective normal traction component as a function of the effective normal crack opening displacement for
three values of the weighting parameterα, with α = 0.4 being the optimal value in terms of satisfying the Hill-Mandel
condition. The curves correspond to a 75µm × 75µm microscopic volume element under laterally-constrainedaxial
extension.

numerical experimentation, values close to 0 often providea reasonable match, which suggests that
the volume-averaged tractiontf

Ω
may be used as a first option to approximate the effective traction

tf in the absence of a detailed analysis as the one presented here. However, optimal values ofα
close to 1 were not uncommon, which justifies in general a thorough post-processing protocol to
verify a posteriori the multiscale approach and establish the proper values for the effective traction.

6. Representative volume elements for various loading cases

6.1. Procedure to establish an RVE

Once it has been verified that the crack-based Hill-Mandel condition can be approximately
satisfied with the choice of a weighting factorα, the next step is to verify the existence of a
representative volume element (RVE) for fracture in the sense of a (converged) effective traction-
separation relation. To this end, a sequence ofL × L microscopic volume elements (MVE) of
increasing size are used, namelyL = 12.5 (unit cell), 37.5, 50, 62.5, 75µm as shown in Fig.7. Each
MVE represents a cross-section perpendicular to the fiber direction of an uni-directional fiber-
reinforced composite with randomly-distributed fibers. The so-called unit cell volume element,
consisting of a single fiber centered in the computational domain, is a special case since, due to
periodicity, it corresponds to a non-random, orthotropic arrangement whereas the other MVEs are
meant to represent a transversely isotropic material. All MVEs have nominally the same average
composition, which in this case is measured by a fiber volume fraction of 50%. Due to the discrete
nature of the volume elements, the actual volume fractions deviate from the nominal value (see
Table 2).
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(a) 37.5 × 37.5 µm2 (b) 50 × 50 µm2 (c) 62.5 × 62.5 µm2 (d) 75 × 75 µm2

Figure 7: Microscopic volume elements tested in the convergence study to establish a representative volume element,
together with a so-called unit cell, not shown here, consisting of a single fiber centered in a 12.5µm×12.5µm domain.

Table 2: Geometrical characteristics of microscopic volume elements (MVEs). The fiber diameter is 10µm.
MVE size [µm2] Number of fibers Actual fiber volume fraction [%]

12.5× 12.5 (unit cell) 1 50.3

37.5× 37.5 8 44.7

50× 50 15 47.1

62.5× 62.5 24 48.3

75× 75 35 48.9

The basic load cases used to test the procedure are given in Table 3. The cases consist of
a nominally mode I deformation (load case 1: laterally-constrained axial extension), a nominally
mode II deformation (load case 2: equal biaxial extension-contraction corresponding to pure shear)
and a mixed-mode deformation (load case 3: mixed extension-simple shear). The displacement
gradient of each deformation is indicated in Table 3. For load cases 1 and 2 the displacement
gradient is symmetric hence it coincides with the applied strain tensor. For load case 3 the dis-
placement gradient is not symmetric hence the deformation includes a rigid body rotation that
can be approximated for infinitesimally small deformationsusing the skew-symmetric part of the
displacement gradient. Simulations for a similar loading condition, namely mixed extension-pure
shear without rigid body rotation, provided similar results as load case 3.

For each load case, a convergence analysis regarding the size of the representative volume
element was carried out with the volume elements indicated above in Table 2. For each size
(except for the unit cell), five realizations with randomly-distributed fibers were generated and the

Table 3: Basic load cases defined in terms of the applied strain (see also Fig.2 for nomenclature)
Load case Description Applied displacement gradient∇u

1 Laterally-constrained axial extension ǫ0e1 ⊗ e1

2 Pure shear (equal biaxial extension-contraction) γ0(e1 ⊗ e1 − e2 ⊗ e2)

3 Mixed extension-simple shear ǫ0e1 ⊗ e1 + γ0e1 ⊗ e2
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Figure 8: (a) Effective normal traction component as a function of the effective normal crack opening displacement
and (b) crack phase partition between matrix and interface for various microscopic volume elements tested under
load case 1 (laterally-constrained axial extension). The effective tangential traction component (not shown here) was
negligible. No fiber cracking was observed in these simulations.

(discrete) standard deviations and mean values of the responses were computed. In addition, it was
verified that for each simulation the appropriate mesh density was used by performing individual
mesh convergence analyses (not reported here for conciseness). Mesh convergence was achieved
with characteristic element lengths ranging from 0.25µm to 2µm for increasing volume element
sizes. In the following sections, the (numerical) existence of a representative volume element is
shown for the three loading cases considered.

6.2. RVE for load case 1: laterally-constrained axial extension

A typical volume element loaded under laterally-constrained axial tension (load case 1) is
shown in Fig.4. After postprocessing, the orientation of the equivalent macroscopic crack normal
mf is found to be close to the vectore1 (see Fig.2 for nomenclature). The effective normal traction
tf
n as a function of the effective normal crack opening displacement [[u]] f

n is shown in Fig.8a for the
distinct MVEs. The effective tractions were determined using the optimal value ofthe weighting
parameterα for each simulation as described in Sec. 5. The shaded area represents the standard
deviation of five realizations (for clarity shown only for the MVE corresponding toL = 75µm).
The crack length partition|Γphase|/|Γ| between matrix cracking and fiber-matrix interface separation
is shown in Fig.8b.

As can be observed in Fig. 8a, the effective traction-separation relation for loading case 1
converges relatively fast as a function of MVE size to withinan acceptable tolerance. Even the
unit cell simulation, which does not represent a transversely isotropic material, already provides
reasonable results in terms of the fracture energy althoughit overestimates the fracture strength by
about 15%. Using a distinct measure of convergence, namely the crack length partition as shown
in Fig. 8b, the unit cell predicts that about 60% of the crack runs through fiber-matrix interfaces
while 40% runs through the matrix. For the larger MVEs analyzed, the average prediction (based
on five realizations per MVE size) is about 70% fiber-matrix interface cracking and about 30%
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Figure 9: Example of a fully-failed MVE under load case 2 (equal biaxial extension-contraction, corresponding to
pure shear)

matrix cracking. From the information shown in Fig.8 it can be concluded that a reasonable RVE
size for load case 1 isL = 50µm.

6.3. RVE for load case 2: pure shear (equal biaxial extension-contraction)

At a fully-failed state, a typical volume element loaded under pure shear is shown in Fig. 9
(applied as equal biaxial extension-contraction, see loading case 2 in Table 3). For about half of
the samples, the orientation of the equivalent macroscopiccrack normalmf is found to be close
to the vector (1/

√
2)(e1 + e2) while for the other half of the samples the orientation was found

to be close to (1/
√

2)(−e1 + e2), as in the example shown in Fig. 9. The crack pattern in this
case differs from that of load case 1 in the sense that the normal opening is small compared to
the tangential opening. The effective tangential tractiontf

s as a function of the effective tangential
crack opening displacement [[u]] f

s is shown in Fig.10a for the distinct MVEs. As before, the shaded
area represents the standard deviation of five realizations, which, for clarity, is shown only for the
MVE corresponding toL = 75µm. The effective normal traction component in this loading case
was negligible in comparison to the tangential one. The crack length partition|Γphase|/|Γ| between
matrix cracking and fiber-matrix interface separation is shown in Fig.10b.

From Fig.10a, it can be observed that the unit cell underestimates the effective fracture strength
and fracture energy. Larger MVEs are required to capture sufficient details and interactions in the
cracking process to obtain a converged response. In this case, a reasonable convergence is reached
with the largest MVE analyzed, namelyL = 75µm. It is interesting to observe that, in terms of
the crack partition, all MVEs predict approximately the same values, namely about 50% fiber-
matrix interface cracking and 50% matrix cracking. Hence, in contrast to load case 1, the measure
of convergence for load case 2 based on morphology (crack partition) is less stringent than the
measure of convergence based on effective traction-separation response. Based on the data shown
in Fig.10 it can be concluded that a reasonable RVE size for load case 2 isL = 75µm.
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Figure 10: (a) Effective tangential traction component as a function of the effective tangential crack opening dis-
placement and (b) crack phase partition between matrix and interface for various microscopic volume elements tested
under load case 2 (equal biaxial extension-contraction, corresponding to pure shear). The effective normal traction
component (not shown here) was negligible. No fiber crackingwas observed in these simulations.

6.4. RVE for Mixed extension-simple shear

For the mixed mode case (load case 3, composed of extension and simple shear withǫ0 = γ0 =

γ), a typical crack pattern in the volume element is shown in Fig. 11. The main periodic crack
is somewhat similar to that of load case 1 except that a branch(crack bifurcation) appears at an
inclined angle with respect to the main crack, see Fig. 11). Nevertheless, the contribution of the
branch is relatively small and the orientation of the equivalent macroscopic crack normalmf is
found to be close to the vectore1.

Although cases 1 and 3 have a similar crack morphology, the tangential component of the
equivalent traction in case 3 is not negligible as shown in Fig.12 which includes the normal and
tangential components of the effective traction as a function of the corresponding normal and
tangential components of the effective crack opening for various MVEs (see Fig.12a and Fig.12b,
respectively). The norm of the effective traction as a function of the norm of the crack opening
displacement is given in Fig.12c and the crack length partition |Γphase|/|Γ| between matrix cracking
and interface separation is shown in Fig.12d.

In this mixed mode loading case, convergence towards an RVE is slower than in the previous
loading cases. Although the normal component of the traction shows a reasonable convergence,
particularly at the early stages of degradation, the tangential component tends to fluctuate more
significantly, only showing a partial convergence. Both components have a relatively wide stan-
dard deviation region, particularly at the later stages of degradation for the normal component
(see shaded area in figure). In terms of the combined responsecurve shown in Fig. 12, conver-
gence is only visible until an effective crack opening of about 1µm, while the last stage shows a
greater level of uncertainty. On the other hand, as can be seen based in Fig.12d, the crack partition
predicted by all MVEs is somewhat similar, corresponding toabout 70% fiber-matrix interface
cracking and 30% matrix cracking. Based on the data shown in Fig.12 it can be concluded that for
load case 3, the largest MVE withL = 75µm provides a reasonable approximation to an RVE but
using a relatively large tolerance.
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Figure 12: (a) Effective normal traction component as a function of the effective normal crack opening displacement,
(b) Effective tangential traction component as a function of the effective tangential crack opening displacement, (c)
equivalent traction as a function of the equivalent crack opening displacement and (d) crack phase partition between
matrix and interface for various microscopic volume elements tested under load case 3 (mixed extension-simple shear).
No fiber cracking was observed in these simulations.
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Table 4: Applied strain and corresponding orientation of macroscopic crack (crack normal) and mode mixity at failure
based on simulations. Vector components are referred to theglobal basis as indicated in Fig. 2 andǫ0 = γ0 = γ in
Table 3

Load case Description Principal strains Principal strain Crack normal(s) mode mixity

directions at failure

(angles w.r.te1) (angles w.r.te1) (in rad)

1 Axial extension γ; 0 0◦; 90◦ 0◦ 0.01

2 Pure shear ±γ 0◦; 90◦ ±45◦ 1.44

3 Mixed loading (1±
√

2)γ/2 22.5◦; 112.5◦ 0◦ 0.69

7. Effective nucleation criterion and traction-separation relation

The methodology developed in the present work may be appliedsystematically in order to
generate microscale-based information to propose and/or calibrate an effective (macroscale) nu-
cleation criterion and an effective traction separation relation that capture, on average, the micro-
scopic behavior as described in Sec.4.3. For the type of MVEsanalyzed in the present work, the
macroscopic scale refers to a ply in a laminate where the interactions between fiber, matrix and
interfaces have been homogenized into a single model. In particular, an effective nucleation crite-
rion may be proposed and calibrated for each loading case in order to predict the orientation of a
macroscopic crack (see (28)) and the corresponding traction-separation relation may be obtained
from postprocessing. Subsequently, the calibrated responses for the loading cases may be com-
bined into a single model. The calibration step is outside ofthe scope of the present work, but it
is worth summarizing the results of the three load cases fromSec.6. To this end, the mode-mixity
parameterβ is defined as follows:

β := arctan
[[u]] f

s

[[u]] f
n

where the subscripts n and s refer to the normal and tangential components of the effective crack
opening. Typically, the mode mixity varies throughout the simulation. To simplify the calibration
process, it is convenient to define a nominal mode mixity parameterβF, which may be also termed
the mode mixity at final failure, as

βF := arctan
[[u]] f

s,F

[[u]] f
n,F

where the additional subscriptF indicates the state at final failure, i.e., the vector [[u]] f
F represents

the effective crack opening at timet = tF. The results of the three loading cases analyzed are
reported in Table 4, which indicates the principal strains and principal directions of the applied
strain (eigenvectors associated to the applied strain under proportional loading), the macroscopic
crack normal vectormf and the mode mixity at failure as obtained from the post-processing of the
simulation data. As may be observed from the table, the first loading case is close to a nominal
mode I loading (βF ≈ 0) while the second loading case is close to a nominal mode II loading
(βF ≈ π/2). Observe that in terms of the orientation of the crack normal mf, case 1 follows a
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Figure 13: (a) Effective equivalent fracture strength and (b) Effective equivalent fracture energy as a function of a
mode-mixity parameter.

classical maximum principal strain failure criterion, case 2 follows a maximum shear strain failure
criterion and the mixed mode case 3 contains ingredients of both cases. In terms of an effective
traction-separation relation, the effective equivalent fracture strengthσf

c and the effective equiva-
lent fracture energyGf

c are given, respectively, in Fig.13a and Fig.13b as a function of the mode
mixity at failure. The lines connecting the three load casesare only provided for visual reference
and should not be directly used for interpolation, which requires a more extensive analysis with
sufficient loading cases. Nevertheless, it may be observed that the predicted fracture strength is
approximately constant for all three loading cases. The fracture energy for mode II and the mixed
mode case are similar and about 17% higher than the fracture energy for mode I, albeit with a
relatively large uncertainty for the mixed mode.

In principle one may use a simple bilinear traction-separation relation at the macroscopic level
for which the above-mentioned values are sufficient in terms of calibration, in conjunction with
a curve fitting using the parameterβF as a variable. If it is required to carry over more details
from the microscale to the effective traction-separation relation at the macroscale, other relations
such as trilinear or exponential functions may be used as well with the corresponding curve fitting
procedure.

8. Concluding remarks

The present work summarizes a multiscale procedure to derive an effective nucleation criterion
and an effective traction-separation relation at the macroscale based on microscale simulations of
representative volume elements. It is shown that the simulations can be performed using periodic
boundary conditions that allow cracks to propagate across the volume boundaries in arbitrary
directions. A relevant finding in the analysis of the scale transition requirements is that, in addition
to the classical “global” Hill-Mandel condition that applies to the whole computational domain, a
separate crack-based Hill-Mandel condition needs to be satisfied. The methodology proposed here
is to satisfy a priori the global condition using periodic boundary conditions while the crack-based
condition is satisfied a posteriori using a weighting parameter to identify the effective traction
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acting on the macroscopic crack. In this fashion, parametric simulations with distinct loading
cases may be used to generate sufficient data to calibrate an effective (macroscale) constitutive
model for fracture. In turn, the effective model may be used in a classical (single-scale) simulation
while implicitly incorporating the microscale behavior ofa composite material.

Examples shown in the present work pertain to microscale (sub-ply) simulations of an unidi-
rectional reinforced composite. For simplicity the simulations are limited to cross-sections perpen-
dicular to the fiber direction. Simulations with cross-sections along the fiber directions, not shown
here, indicate that the theory developed in the present workneeds to be extended to account for
anisotropic effects. Moreover, simulations of purely-compressive load cases require an extension
of the cohesive zone method to account for contact in crushing zones, which is however outside of
the present scope. Finally, it is worth pointing out that themethod pertains to a hierarchical mul-
tiscale analysis in all space directions; in situations where the RVE exceeds the thickness of a ply,
a straightforward modification can be applied to modify the crack propagation behavior at the ply
interface while retaining the rest of the implementation. Despite the aforementioned limitations
and challenges, the current framework is a step in the direction of a multiscale analysis of fracture
that accounts for dissipation in a consistent way through the crack-based Hill-Mandel condition.

Appendix A. Periodic Crack

The domainΩ can be deformed until complete failure (i.e., zero load) based on the imposed
strain history ¯ǫ = ǭ(t). At complete failure there may be several crack segments that represent
periodic cracks, crack branches, or isolated segments. A proper interpretation of the microscale
crack (i.e.,Γ) in terms of these segments is important. This appendix contains a procedure to
identify a periodic crack and a region that completely surrounds it based solely on information
from the original domainΩ.

A’

Branch BB’: no periodic crack formed: par!ally-failed volume element

A

B
B

A’A

B’

(a) Path from A to end points B (b) Path from A’ to end point B’

Figure A.14: Identification of periodic cracks, crack branches, or isolated segments: (a) Inward path fromA to end
pointsB, (b) Inward path fromA′ to end pointsB′. The crack in the domain corresponds to an isolated crackBB′,
hence there is no periodic crack formed yet in which case the volume element has not fully-failed and may still carry
loads.

A crack segment may leave and re-enter the domain multiple times (see Fig. A.14). These
crossings of the external boundary always occur in periodically-equivalent entry/exit points (e.g.,
pointsA andA′) due to the Periodic Boundary Conditions (PBCs). At each of these points it is
possible to follow the crack path in two directions (i.e., paths AB andA′B′). While doing this

29



three crack types can be identified, which is illustrated by apartially-failed domain (Fig. A.14)
and a domain containing a periodic crack (Fig.A.15). Aperiodic macrocrackis formed if the end
point of a path coincides with the periodically-equivalentinitial point, see pathAA′ in Fig.A.15a.
A crack branchis defined as a separate path from a bifurcation point. Anisolated crackis not
connected to either the periodic crack or crack branches, see Fig.A.15b.

A’A

(a) Periodic crack in original domain 

Direct path from A to A’

Periodic crackPeriodic crack AA’ formed

Isolated crack

Periodic 

crack branch

(b) Equivalent crack domain

x
y = x + c

a

y = y(x) 

Ω
a

Ω
a

s

1
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Figure A.15: Identification of the periodic cracks, branches, or isolated segments: (a) Formation of a periodic crack
AA′, (b) Visualization of periodic crack and surrounding material, termed the equivalent crack domainΩs, which can
be reconstructed from the original domain with the shiftingmappingy = y(x).

For visualization purposes it is useful to construct a new domain that fully encompasses these
three crack types. The original domainΩ can be divided into subdomains (Ωa, with a = 1, . . . ,N),
as shown in Fig. A.15. A newequivalent crack domainΩs is constructed by ”shifting” the sub-
domains such that their boundaries∂Ωs do not contain finite segments ofΓ. The main objective
is to assure that the macrocrack is fully-contained inside this new domain. Fig.A.15b illustrates
the result of this operation. The corresponding translation of the original crack surfaceΓ is termed
theequivalent crack surfaceΓs. A generic pointy in Ωs

a is obtained through adding a translation
vectorca to the original pointx in Ωa,

y = y(x) = x + ca ca := Na
1 l1n1 + Na

2 l2n2 x ∈ Ωa a = 1, . . . ,N (A.1)

whereNa
1 andNa

b are integer numbers associated to the number of unit translations required to map
the original subdomainΩa intoΩs

a in either the±n1 and/or ±n2 directions.
The next step is to establish a relation between integrals inΩs, ∂Ωs, andΓs in terms of integrals

inΩ, ∂Ω andΓ. All Jacobians in the integrals are equal to 1 since a rigid body translation does not
affect lengths or orientations. As a result, integrals in the equivalent crack domain, of quantities
that are insensitive to piecewise constant rigid body translations, are essentially the same as in the
original domain. Since the strain and stress tensors are insensitive to rigid body translations, it
follows that

〈σ〉Ωs = 〈σ〉Ω , 〈ǫ〉Ωs = 〈ǫ〉Ω ,
Further, the displacement jump and the crack normal vector are unaffected by a rigid body trans-
lation, since the subdomains fully contain individual crack segments. Consequently,

ǫ
f
Ωs = ǫ

f
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with ǫ f being the fracture strain computed inΩ.
The previous relations can simply be established by inspection. However, this may not be

obvious for the surface integral of the field [u ⊗ n]sym on ∂Ω, which may be different than the
surface integral of the equivalent field on∂Ωs since the displacement field is sensitive to piecewise
constant translations. Below it is shown that these two quantities are equal. To prove this, consider
the previously-derived expression for the applied macroscopic strain inΩ, which can be written as

ǭ =
1
|Ω|

∫

∂Ω

[u(x) ⊗ n(x)]symds=
1
|Ω|

N
∑

a=1

∫

∂Ωa

[u(x) ⊗ n(x)]symds ,

where the vector fieldn has been extended to include the normal vectors of the internal boundaries
of the subdomainsΩa. The net contributions of the integrals along the boundaries of subdomains
Ωa is zero due to the continuity of the displacement across those boundaries. The actual macro-
scopic strain ¯ǫs applied inΩs after shifting is

ǭ
s :=

1
|Ωs|

N
∑

a=1

∫

∂Ωs
a

[

u(y) ⊗ n(y)
]

symds (A.2)

whereu(y) refers to the actual displacement at pointy, which is continuous across the boundaries
∂Ωs

a that lie in the interior ofΩs
a. Since the normal vectorn is insensitive to the shifting operation it

can be concluded thatn(y) = n(x). The relation between the displacements aty andx is expressed
in terms of the applied macroscopic strain and the corresponding translation vector given in Eq.
A.1,

u(y) = u(x) + ǭca y ∈ Ωs
a x ∈ Ωa a = 1, . . . ,N .

Substituting this relation in Eq. A.2 and changing variables of integration (i.e.,|Ωs| = |Ω|) gives

ǭ
s =

1
|Ωs|

N
∑

a=1

∫

∂Ωs
a

[

u(y) ⊗ n(y)
]

symds=
1
|Ω|

N
∑

a=1

∫

∂Ωa

[(u(x) + ǭca) ⊗ n(x)]symds ,

which, from the properties of the symmetric tensor ¯ǫ, can be further expressed as

ǭ
s = ǭ +















1
|Ω|

N
∑

a=1

∫

∂Ωa

[ca ⊗ n]symds















ǭ = ǭ +















1
|Ω|

N
∑

a=1

[

ca ⊗
∫

∂Ωa

nds

]

sym















ǭ .

The term in parentheses is zero since every integral is zero on the (closed) boundary of each
subdomainΩa. Hence, the externally applied macrostrain ¯ǫ onΩ, coincides with the macrostrain
ǭ

s applied inΩs,
ǭ

s = ǭ . (A.3)

The above shows that the PBCs apply to the same periodic crack(with possibly several branches
and/or isolated segments) and that the response is unaffected by adjacent (parallel) periodic cracks.
Hence, a multiscale analysis for fracture may be carried outwith PBCs. The PBCs and the orien-
tation (or shape) of the computational domain do not constrain the nucleation and orientations of
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cracks, which are allowed to appear at arbitrary locations and in arbitrary directions. The advan-
tage of PBCs is that they are relatively simple to implement numerically.

However, care must be exercised interpreting the results inΩ. A commonly-used method to
impose the macroscopic strain is to specify the displacement of master nodes (i.e., corner nodes
x(i) or fictitious nodes). The corner nodes may be separated by more than one parallel macrocrack,
in which case the strain ¯ǫ acts onmultiple (but otherwiseidentical) parallel cracks. In addition,
a situation can arise where two (or more) distinct periodic cracks coalesce in the domain in the
case the applied strain can still be (partially) carried outafter the formation of one periodic crack.
An equivalent crack domain in this case, which would includeone crossing point between two
periodic cracks, is still applicable since the shifting mapping given in Eq. A.1 does not distinguish
between one or multiple periodic cracks. However, the methodology developed in the Sec. 4 is
intended for a single equivalent macrocrack. It can be extended to treat the case of bifurcations
but that analysis is beyond the scope of the present work.
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