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Towards understanding the impact of the evanescent elastodynamic mode coupling in Marchenko
equation based de-multiple methods
Marcin Dukalski⇤ and Christian Reinicke, Aramco Delft Global Research Center; Kees Wapenaar, Delft University of
Technology

SUMMARY

Marchenko equation-based methods promise data-driven, true-
amplitude internal multiple elimination. The method is exact
in 1-D acoustic media, however it needs to be expanded to
account for the presence of 2- and 3-D elastodynamic wave-
field phenomena, such as compressional (P) to shear (S) mode
conversions, total reflections or evanescent waves. Mastering
high waveform-fidelity methods such as this, could further ad-
vance amplitude vs offset analysis and lead to improved reser-
voir characterization. This method-expansion may comprise
of re-evaluating the underlying assumptions and/or appending
the scheme with additional constraints (e.g. minimum phase).
To do that, one may need to better understand the construc-
tion of the Marchenko equation solutions, the so-called fo-
cusing functions, in a mathematically simple and numerically
stable fashion. The latter could be a challenge at large an-
gles of incidence where the elastodynamic effects and evanes-
cent waves start playing a dominant role. We demonstrate that
the elastodynamic focusing functions are the bridge between
the Marchenko equation theory and the transfer matrix for-
malism. Using the latter, we show how we can try to gain
further insights into how time-reversal (correlations) behaves
when either of the elastic modes becomes evanescent. We also
show how this construction allows us to shed light on into
the mathematical properties of elastodynamic inverse trans-
missions, which takes us a step closer towards understanding
the elastodynamic minimum phase reconstruction.

INTRODUCTION

Advances in seismic data processing provide greater certainty
about the subsurface, and at the same time continue blurring
the lines between time processing, imaging and reservoir char-
acterization. This blurring is particularly true for the inverse
scattering methodologies such as those based on the Marchenko
equation. This suite of methods (Wapenaar et al., 2021a) amounts
to mapping the reflection response due to the entire medium,
to an inverse transmission response due to just a part of it, a
so-called focusing function. Subsequently, the latter or the de-
reverberation operators (forward-propagated focusing functions)
can be used to suppress multiples in a variety of ways (e.g.
Dukalski and de Vos, 2022), without damaging primaries by
e.g. adaptive subtraction. One could hope that this process,
in particular attenuating the short-period multiples (Dukalski
et al., 2019; Elison et al., 2020; Peng et al., 2021), could sig-
nificantly contribute to improvements in the amplitude-versus-
offset (AVO) analysis and in seismic inversion. This in turn
could lead to an improved reservoir characterization for re-
source exploration or CO2 sequestration. In order to accom-
plish that however, one would need a robust elastodynamic
Marchenko equation method (da Costa Filho et al., 2014; Wape-

naar, 2014; Reinicke et al., 2020).

The Marchenko equation consists of three main ingredients:
(1) a temporal mute, (2) an initial condition as well as (3)
a time-reversal. These three try converting a single scatter-
ing relation featuring four wavefields, into a consistent and
determined set of equations. In the 1-D acoustic case, with
well separated reflectors, assumptions behind the conversion
are met relatively easily. However, in elastic media they are
not. For instance, implementing (1) can become difficult due
to non-trivial, angle of incidence dependent, temporal over-
laps between the focusing and the Green’s functions (Reinicke
et al., 2020). One of these overlaps defines the initial condi-
tion (2) and can be circumvented by exploiting the minimum-
phase property of the de-reverberation operator. Despite recent
advances on exploiting the minimum-phase property beyond
single-mode wavefields (Elison et al., 2020; Peng et al., 2021),
further research is needed to handle elastodynamic wavefields
(Dukalski, 2020; Reinicke, 2020). At large incidence angles,
in high velocity layers, one can observe increased P- and S-
wave coupling as well as totally reflected and evanescent waves.
Such waves are not universally time-reversed (ingredient 3) by
complex conjugating the signal in the frequency domain. At
large angles of incidence, the scheme is also prone to gen-
erating linear artefacts in time offset domain. This might be
related to how the method handles evanescent waves, however
whether or not these are handled correctly remains a debat-
able point in the literature between Diekmann and Vasconce-
los (2021), and Kiraz et al. (2021), Wapenaar et al. (2021b)
and Dukalski et al. (2022). In media without strongly dipping
reflectors, this problem was addressed by reducing the max-
imum angle of incidence, e.g. via a wavenumber-frequency
filter both in the acoustic (Elison et al., 2020; Reinicke and
Dukalski, 2020) and the elastic media Reinicke et al. (2021),
however that might impact one’s ability to perform AVO anal-
ysis.

Bringing this technology another step closer to field data appli-
cations requires understanding the impact of these challenges.
Here we show, how the elastodynamic extension of the work
by Dukalski et al. (2022), could be used (a) to better under-
stand the evanescent P- and S-waves and (b) to help explore the
elastodynamic minimum-phase property. We hope that these
insights would lead to similar impact as the work of Elison
et al. (2021) had on the 2-D Augmented Marchenko presented
by Peng et al. (2021).

THEORY

This section has four parts: (1) the one-way wave equation, (2)
the scattering and transfer matrices and the focusing functions,
(3) the so-called path reversal and its relation to time-reversals,
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and (4) the focusing functions modeling and their properties.

Elastodynamic one-way wave-equation
We consider lossless elastic horizontally-layered media where
horizontal ray-parameters p=(p2

x + p2
y)

1/2 are decoupled. Here,
the subscripts are associated with the spatial coordinates x =
(x,y,z). According to the unified representation notation from
Wapenaar et al. (2016), the (first order) wave equation can be
written in a simple form

∂zq�A q = d (1)

in the space-frequency domain (x�w). The quantities q and
d, contain the two-way wavefield and source components, re-
spectively. Choosing the z-axis as the preferential direction,
we define the composition operator L , which relates two-way
fields (q and d) to their up (-) and down (+) -going compo-
nents, e.g.

q = L p = L

✓
p+

p�

◆
, and A = L H L

�1 . (2)

The operator H is a 2⇥2 block matrix associated with the up
and down-going fields which are the eigenbasis of the operator
A . Each block is composed of 2⇥ 2 matrices where the two
columns (rows) represent P- and S-wave sources (receivers).
Since these operators depend on the local medium parameters,
they are defined for each layer, indicated by the subscript j
(H j and L j). The operator

W j = exp
⇥
iH j

�
z j � z j�1

�⇤
,

= exp
⇥
i diag

⇥
hj,�hj

⇤�
z j � z j�1

�⇤
,

⌘ diag
⇥
wj,wj

�1⇤ ,
(3)

extrapolates the up- and downgoing wavefield components through
the jth layer. Here h j = diag

⇥
kz,P, j,kz,S, j

⇤
is a 2⇥ 2 diagonal

matrix with the vertical wavenumbers for the P/S wave poten-

tials kz,P/S, j = w
⇣

c�2
P/S, j � p2

⌘1/2
, which depend on the P/S

wave propagation velocity in the jth layer cP/S, j. Defining 4⇥4
matrices

Q1 = e13 + e31 � e24 � e42 ,
Q2 = e11 + e33 � e24 � e42 ,
Q3 = e11 + e33 � e22 � e44 ,

(4)

where emn is 1 in mth row and nth column, we have

W
⇤
j = Q1, jW jQ1, j , for Im(kz,P/S, j) = 0 ,

W
⇤
j = Q2, jW jQ2, j , for Im(kz,S, j) = 0 = Re(kz,P, j),

W
⇤
j = Q3, jW jQ3, j , for Re(kz,P/S, j) = 0 .

The case where Re(kz,S, j) = 0 = Im(kz,P, j), i.e. travelling P-
wave and an evanescent S-wave, is of little interest since cS, j <
cP, j. The matrices Qn, j are also labeled per layer j. Whether or
not W

�1
j =W

⇤
j and what that means for the scattering transfer

matrix elements will be the focus of the following sections.

Scattering/transfer matrices and focusing functions
The scattering and transfer (Born and Wolf, 1965) matrices (S
and T ) relate the one-way fields in the top

�
p±

1
�

and bottom�
p±

N
�

layers according to
✓

p+
N

p�
1

◆
=

✓
T# R\

R[ T"

◆✓
p+

1
p�

N

◆
⌘ S
✓

p+
1

p�
N

◆
, (5)

and
✓

p+
N

p�
N

◆
=

✓
A B
C D

◆✓
p+

1
p�

1

◆
⌘ T

✓
p+

1
p�

1

◆
. (6)

In equation 5 we have labeled the reflection and transmission
responses due to sources above (below) the medium with R[ (R\)
and T# �T"� respectively. To study the form of operators A to
D (see equation 6), we exploit the continuity condition of the
two-way fields L j+1p j+1 = L jp j and use the extrapolation
operator W j to propagate the fields between the interfaces of
the layers. This allows us to write the transfer matrix and its
inverse as

T = KN�1KN�2 · · ·K2K1 , (7)

and

T
�1 = K

�1
1 K

�1
2 · · ·K �1

N�2K
�1

N�1 , (8)

where K j =L
�1
j+1L jW j ⌘M jW j. The operators T as well as

T
�1 exist provided that the eigenvector matrices Lk are non-

singular, which holds except for horizontally-travelling waves.
We can also write

T
�1 =

✓
X�1 �Y

�D�1CX�1 D�1 +D�1CY

◆
, (9)

where X = A�BD�1C and Y = X�1BD�1. Since T
�1 ex-

ists, then it will take the above form given D�1 exists, in which
case X�1 exist. The alternative formula for the inverse of a
block matrix, asserts the existence of A�1.

We can now make the connection between the scattering ma-
trix, the (inverse of the) transfer matrix, and the focusing func-
tions. Rearranging equations 5 and 6 we obtain

✓
T# R\

R[ T"

◆
=

✓
X BD�1

�D�1C D�1

◆
, (10)

which means that the inverses of the transmissions T# and T"

exist (waves travelling horizontally anywhere in the medium
were excluded in the derivation). Moreover, we can identify
that

D = T"�1 ⌘ f�2 and B = R\T"�1 ⌘ f+2 , (11)

are the up- and down- going components of the Marchenko
focusing function f2, i.e., the focusing function that focuses at
z = 0.

Using the form of B and D for a single reflector, and the form
L j from Wapenaar and Berkhout (1989) to identify operators
A and C, one can show that

K j =

 
szt"�1

j szwj r\j t"�1
j wj

szr\j t"�1
j szwj t"�1

j wj

!
, (12)

where t"j and r\j are the matrices of transmission and reflection
coefficients in the PS space and where sz = diag [1,�1]. This
form remains unchanged whether the fields are pressure or flux
normalized. We can define now the path reversal P as

P
⇥
wj
⇤
= wj

�1 , and P [m] = szmsz , (13)
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with m = t"j , or r\j , or their products and inverses (if such
exist). The path reversal is equivalent to the sign-reversal of
the ray-parameter p and inverting the extrapolation operator
wj. Naturally P[P[X ]] = X holds. Path reversal introduced
in equation 13 is a generalization of time reversal. The path
reversal, is a context-dependent operation which reverses the
phase shift for the traveling waves and exponential decay for
the evanescent ones. In comparison, the time reversal, only
reverses the phase shift, which is typically implemented using
complex conjugation in the frequency domain or when com-
bining fields, a convolution is replaced with a correlation. This
is why (without undertaking additional steps – e.g. Wapenaar,
2020) as shown by Dukalski et al. (2022), when dealing with
evanescent waves, correlations no longer appear to be the cor-
rect approach. The latter as well as the companion paper by
Wapenaar et al. (2022), seems to be however concerned mainly
with whether or not the waves are travelling or evanescent in
the top and bottom layers. We will address that in the next
section. Before that, we notice that using the form of K j in
equations 7, and 12, we can show that,

T =

✓
P
⇥
f�2
⇤

f+2
P
⇥
f+2
⇤

f�2

◆
, and T

�1 =

✓
f+1 P

⇥
f�1
⇤

f�1 P
⇥
f+1
⇤
◆
, (14)

with

f�1 = R[T#�1 , and f+1 = T#�1 , (15)

(the focusing function that focuses in the Nth layer), such that
P[T ] = Q1T Q1. This result is consistent with the result of
Wapenaar et al. (2022), who choose to describe the path rever-
sal as a combination of complex conjugation and a wavefield
modeling with H

⇤.

Path reversal vs time reversal – in bulk and at the bound-
aries
In the following derivation, we show that the apparent need
for path reversal in bulk (e.g. with tunneling through a high
velocity layer as an evanescent wave) is compensated by scat-
tering coefficients, such that only the type of wave in the top
or bottom layer is of importance. We observe that elements
of the simplest, single-reflector transfer matrix T = K j from
equations 7 and 12, observe

M j = Q1, jM jQ1, j , (16)

and

P[W j] = W
�1
j = Q1, jW jQ1, j . (17)

The equivalence between path and time reversal will be estab-
lished if we can show that for a large product of links K j, i.e.
for the full transfer matrix we have

T
⇤ = Q1, j=N�1T Q1, j=1 = P[T ] . (18)

Each link K j, when complex conjugated will be compensated
by its own set of operators Qn, j with n= 1,2,3 and j = 1, ,N�
1, which will be reabsorbed either by cancelation with its neigh-
bors in the product, or using the properties above. It is easy to
check that pressure normalized M j obeys

M
⇤
j = Qb, jM jQa, j , (19)

Figure 1: Results of modeling f+1 using the Kennett &
Kerry method (top) and the transfer matrix (bottom), in a
four layer medium with cP = [1.9,2.5,1.9,2.1]km/s, cS =
[0.9,1.2,1.0,1.2]km/s, densities r = [2.1,3.2,2.2,2.5]Mg/m3

and layer depts z = [100,40,420,720]m. SS component is
shown, with expected 43�1 = 16 events, with the figure show-
ing 8 double events, as the 2nd layer (40m) makes for unre-
solvable pairs of events using a 30Hz Ricker wavelet. For
p > 1/1900 s/m (evanescent in the top layer), amplitudes grow
exponentially large while favouring high frequencies.

where we have a separate label a(b) to denote the layer above
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(below), with action from right (left) such that

a = 1 Im(kz,S, j) = 0 = Im(kz,P, j) ,
a = 2 Im(kz,S, j) = 0 = Re(kz,P, j) ,
a = 3 Re(kz,S, j) = 0 = Re(kz,P, j) ,

(20)

and the same holds for b if we replace j with j+1. This means
that K

⇤
j = Qb, jK jQa, j, under the same conditions. Further-

more, the b type in Qb, j, must coincide with the a type in
Qa, j+1 on K

⇤
j+1, because they are both dependent on whether

kz,P, j+1 or kz,S, j+1, are real or imaginary. This means that the
Qb,m and Qa,m+1 at any location in the chain of products of
matrices will have to cancel out (their product is an identity),
leaving

T
⇤ = Qb,N�1T Qa,1 . (21)

This is equivalent to the path reversal if both a = b = 1, i.e. if
the waves in the top and bottom layer are propagating. This
means that it does not matter if either of the waves is evanes-
cent anywhere inside the medium, but if they are at the bound-
aries, then that suggest that time reversal has to be replaced
with path-reversal in the scattering relations and hence inside
the Marchenko equation (Dukalski et al., 2022). This suggests
that a direct evanescent modes measurement cannot be recov-
ered with the convolve-correlate type Marchenko method.

Focusing functions modeling and their properties
Transfer matrix formalism can be used to gain further insight
into the mathematical properties of solutions to the Marchenko
equation – an underconstrained inverse problem we wish to
solve, before we use its solutions to suppress internal multi-
ples. A common modeling strategy inverts the Kennett and
Kerry (1979) relations to find

f+1 = T#�1
j = T#�1

j�1

⇣
1�R\�1

j�1 wjr[j wj
⌘

wj
�1t#�1

j , (22)

which, on addition of a reflector requires updating

R\
j = r\j + t#j wj

⇣
1�R\

j�1wjr[j wj
⌘�1

R\
j�1wjt

"
j . (23)

This requires computing the term
⇣

1�R\
j�1wjr[j wj

⌘�1
, which

amounts to inverting a potentially close-to-singular operator,
especially in acoustic media when at large p we deal with total
reflections and evanescent wave tunneling through thin beds.
Calculating (the inverse of) the transfer matrix is not only more
convenient, but also faster and more stable (no such inverses
need to be calculated). In Figure 1 we show a numerical ex-
periment for elastic media, where the problem is less severe at
large p and both the transfer matrix and Kennett methods give
close-to-identical results. The transfer matrix method, how-
ever, gives an easy access to some properties of the focusing
functions, e.g. equations 7, 12 and 14 show that the number of
events in each component of the focusing function is given by
the dimension of K j to the power of the number of reflectors
minus one.

The transfer matrix construction could allow extending the anal-
ysis presented by Sherwood and Trorey (1965) to elastody-
namic waves, however the elastodynamic minimum-phase prop-
erty is actually observed by the de-reverberation operator v+ =

T#�1T#�1
dir , (Dukalski, 2020; Reinicke, 2020). This requires

calculating the early part of the transmission T#�1
dir , which can

be found by setting off-diagonal blocks (or even all off-diagonal
elements) of M j to zero and then analytically inverting the re-
sult.

CONCLUSIONS

We have shown the relationship between the scattering and
transfer matrices as well as focusing functions in the context of
elastodynamic and evanescent waves. We expect that this work
will enable studying the elastodynamic minimum-phase prop-
erty to advance the Marchenko equation de-multiple methods,
and understand the performance of the latter in elastic media
including the evanescent mode spectrum, and pave the way to-
wards improved AVO and reservoir characterization.
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