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1 Abstract

Heart failure is a leading cause of death and forms a growing health concern. The development of novel drugs is
however hampered by the absence of adequate screening methods and disease models. Cardiomyocytes derived
from patients could assist in the development of a patient specific drug screen method to test the efficacy and
safety of putative drugs. Simultaneously, deep learning has been applied to a variety of biomedical datasets,
achieving state-of-the-art performance. Previous methods for the classification of cardiomyocytes as healthy
or diseased only focused on machine learning methods. We present the first deep learning approach to perform
this classification task together with a novel artificial intelligence interpretability method called Contraction
Analysis Local Interpretable model-agnostic explanations (CA-LIME), able to explain the predictions made
by the classifier. The proposed classifier is shown to outperform previously developed methods to classify
cardiomyocytes, obtaining 97.5% accuracy. Our results indicate this classifier could aid in the development of
a high throughput drug screening system for cardiac drug development. The explanations made by CA-LIME
are in correspondence with previous observations of drugs with known effects, verifying the effectiveness of
our approach. Together with CA-LIME, the processing pipeline could lead to the discovery of new differences
between the motion of healthy and aberrant beating cardiomyocytes.
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2 Introduction

2.1 Heart failure

Heart failure (HF) describes the clinical conditions which impair the heart from ejecting enough blood to fulfill
the metabolic demands [1, 2, 3]. Underlying causes include damage to the heart muscle by hypertension (high
blood pressure), genetic mutations and myocardial infarction (heart attack) [1]. With an estimated 64 million
people diagnosed in 2017, HF represents a growing health concern [4, 5]. The chronic disease is increasing
among young adults (≤ 50) [6] and results in increased mortality rates [7]. With HF as a leading cause
of death, novel medication must be developed [8, 9]. Development of cardiac drugs has however made slow
progress, for the amount of approved drugs declined over the last decade [10]. The decline is largely attributed
to lack of efficacy or cardiac toxicity observed during late stages of drug development [10]. Improved models
for cardiac disease can aid the efficacy and toxicity screening in early stages of drug development. Induced
pluripotent stem cells derived cardiomyocytes (hiPSC-CMs) provide a promising patient-specific method to
model cardiac diseases [11, 12]. Grown in a monolayer, the hiPSC-CMs display an organized periodic motion
of contraction and relaxation. Analysis of this motion enables the screening of novel drugs during early stages
of development in a patient-specific cardiac model [11, 13]. Here, we propose a novel approach to analyze
the motion of beating cardiomyocytes using artificial neural networks and modern deep learning methods.

2.2 Deep learning

Artificial neural network, their structure and how they process data, are based on ideas, structure and
functioning of the actual neural connections in the brain [14]. During training (also called ”learning”), all
connections in the network are tuned to optimize the performance for a specific task. Among these tasks are:
segmentation, classification, denoising, data compression and object detection. Deep learning is an approach
to artificial intelligence (AI) in which many layers of artificial neurons are used to construct the network.
The method shows state-of-the-art performance in many fields, such as computer vision and medical image
processing [15]. The use of many layers enables the extraction of useful features from the data to be learned
during training [14]. Supervised deep learning is a sub-domain in which data and the known classification is
available during training [14]. Following the training procedure, the algorithm can be used to make inferences
about unseen data.

Developed deep learning algorithms are often treated as ”black box” models [16, 17]. The extracted
features and their relative importance are unknown, and ignored as merely the obtained accuracy metrics
are considered [17]. Interpretability methods for AI provide explanations about the predictions made by
deep learning algorithms, explaining why that specific prediction was made [18, 19]. Explanations can be in
visual or textual form, and serve three goals [17, 20]. Firstly, explanations provide trust for the model by
providing insight into the extracted features, which is important when using deep learning models in real
world applications [20, 17]. Secondly, points of improvement for the algorithm can be determined. Finally,
explanations could provide novel scientific insights by looking at the extracted features and their importance
for the made prediction [20, 16, 21]. Multiple interpretability methods have recently been developed, such as
SHapley Additive exPlanations (SHAP) [20] and Local Interpretable Model-agnostic Explanations (LIME)
[17] which provide general strategies to explain deep learning models for any field of application.

Despite the advances of deep learning, it has not yet been applied to aid a high throughput drug screening
system for HF. A single machine learning based method which utilizes the motion of beating cardiomyocytes
was previously developed, but remains limited to the features extracted in the pre-processing steps [11].
Furthermore, the use of AI interpretability methods could result in novel insight for HF, but has, to the best
of our knowledge, not yet been investigated.

2.3 Deep learning based contraction analysis

This study describes a novel method based on deep learning to classify healthy and diseased beating cardiomy-
ocytes, based on the observed motion. The developed method is trained to distinguish healthy and aberrant
behavior of beating hiPSC-CMs imaged using phase contract microscopy time series. Image registration is
used to extract the motion at each spatial location. Therefore, the proposed deep learning method can use
the available spatial and temporal information and learns to extract useful features. With this automated
method, we aim to contribute to the development of a high throughput drug screen system able to detect
efficacy and cardiac toxicity.

To gain insight into HF, we developed a novel AI interpretability technique, called Contraction Analy-
sis LIME (CA-LIME). CA-LIME is specifically designed to explain the predictions of contraction analysis
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data. Unlike other interpretability techniques, it takes into account the periodic nature of the contraction
profiles. Using CA-LIME, the importance of manually extracted features in the input images is determined,
providing explanations which are easy to interpret. We propose that CA-LIME, together with existing AI in-
terpretability techniques, can be used to unravel the difference between healthy and aberrant cardiomyocytes
and explain the cardiac toxicity of therapeutic agents.
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3 Theory

3.1 Induced pluripotent stem cell derived cardiomyocytes

Cardiomyocytes are the muscle cells of the heart, responsible for the orchestrated beating motion that pumps
blood through the body. Cultured cardiomyocytes display a cyclic motion consisting of contraction followed
by relaxation [22]. Heart diseases can be studied from abnormalities in the observed motion of beating
cardiomyocytes [23]. Obtaining cardiomyocytes from the heart of patients is however not practical, due to
the highly invasive nature of the procedure. Furthermore, the resulting cardiomyocytes are difficult to culture
and the obtained count of cells is often low, obstructing the use of cardiomyocytes in high throughput drug
screening [24]. Novel stem cell technology, however, enables the derivation of cardiomyocytes from patients
without harvesting from the heart [25, 26]. Fibroblasts taken from patients can be reprogrammed into human
induced pluripotent stem cells. These stem cells can subsequently be differentiated into cardiomyocytes-like
cells while retaining the genotype of the cell doner [25, 26]. This enables high throughput drug screening by
using patient specific cardiomyocytes.

3.2 Neural networks

Deep learning algorithms use artificial neural networks to perform complex tasks in a seemingly intelligent
way [14]. Similar to brain architectures, the algorithms consist of multiple artificial neurons connected
to each other [27]. Artificial neural networks represent the state-of-the-art processing method for many
tasks such as object detection, natural language processing, data compression or image classification [28].
Image classification is the task of assigning a label or target class to an image, examples include skin lesion
classification or detecting pneumonia from chest X-rays [29, 30]. Mathematically each neuron in a fully
connected layer of the network produces its output according to the following rule:

f(x) = Φ(xTw + b) (1)

here f is the output vector, x represents the input vector which is multiplied by the weights matrix w, after
which a bias b is added. These weights and biases are determined during training, and represent the learnable
parameters. The transpose operation indicated with T , matches the dimension between the weights matrix
and input vector for matrix multiplication to occur. To enable the neuron to be non-linear, the non-linearity
Φ is added. The non-linearity can be ReLU, sigmoid, or any other non-linear function [31, 14]. Artificial
neural networks contain many neurons connected in successive layers, where the output of the previous neuron
is passed as input to the next neuron. A network of multiple layers, a multi-layer perceptron (MLP), can
now be formed (see Figure 1). Mathematically, a network of three layers can be described as:

y = f3(f2(f1(x))) = F (x) (2)

where y is the output of the network resulting from the input x and fi indicates layer i of the network.
The general approximation theorem now states that given a sufficiently large network, any function can
be approximated [32, 33, 34]. Which function is approximated depends on the weights and biases, w and
b respectively of equation 1. Given the artificial neural network F in equation 2, the training procedure
optimizes the weights and biases such that input x is mapped to the desired output. During training, input
samples x together with the known outputs ŷ (ground truth) are provided. Based on a loss function, the
performance of the network is determined during training. Using gradient descent, the learnable parameters
are updated to optimize this loss function [35, 36, 14]. Cross entropy loss is an often used loss function
defined as [37, 38, 14]:

CEloss = −
C∑

c=1

ŷc log(yc) (3)

In which ŷc and yc are respectively the ground truth and output of the network for class c, the total number
of classes is indicated with C. The loss function assures all learnable parameters are updated such that the
difference between the network output y and the ground truth ŷ is minimized.

3.2.1 Convolutional neural networks

Convolutional neural networks (CNNs) are similar to neural networks, but the used mathematical operation
is a convolution [39, 40, 14, 14]. Convolutions use a small kernel that slides across the input image, and
takes the weighted average of the values in the kernel and the intensity in the image at each location [41].
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Figure 1: Example neural network consisting of three layers. Acting on the input layer x, the mathematical
operation of equation 1 is indicated for the first layer f1. The output y follows the relation as in equation 2.

Figure 2: Example CNN showing a deep architecture able to learn the feature extraction. The max pooling
operations in red reduce the size of the images after the convolutional layers. Obtained from Ferguson et al.
[48].

The kernel is often chosen to be 3 by 3 or 5 by 5 pixels for image classification tasks. The resulting output
after the convolution is a new image, in which patterns in spatially neighboring regions can be detected. The
learnable parameters in CNNs are the numbers (weights) inside the kernel. The training procedure changes
the weights and bias of the kernel such that the correct features are extracted from the images to perform the
specified task. Because CNNs use convolutions, the number of learnable parameters is reduced compaired
to fully connected layers. This enables the design of CNNs with many layers, which is required to achieve
state-of-the-art performance in deep learning [42].

Convolutions can consist of multiple output channels, to extract multiple features from the same input
image. To do so, multiple kernels are used, each performing a convolution operation and calculating separate
output images as result. Similar to the neural networks described above, the output of one layer is used as
input in the subsequent layer in the CNN (see Figure 2). Before passing the output on to the next layer,
the size of the image is reduced by average or max pooling operations [43, 44, 14]. The subsequent layer
of the CNN can now extract features at smaller resolution scales, which facilitates the detection of features
larger than the kernel size, by increasing the receptive field [43, 14]. CNNs have been the state-of-the-art
method for image processing over the recent years [45]. Convolutions however, depend on local context as
the operations acts in a small neighborhood of the size of the kernel. As a result, long range relationsships
are difficult to model [46, 47]. Contractions far apart in time, or distant parts in images are therefore difficult
for CNNs to base a decision on. This issue was recently solved using transformer architecture for images [47].
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Figure 3: Self-attention mechanism used to construct a transformer block. (a) the self attention mechanism
acting on an image divided in 4 patches. The schematic shows the steps to construct the output of the first
patch. The mechanism is repeated to construct the output of the other patches. (b) The transformer block
consisting of normalization layers, self-attention and a MLP layer.

3.2.2 Transformer architectures

Similar like CNNs, transformer architectures are artificial neural networks. In order to deal with global
relations, transformers were introduced [49]. Transformer architectures rely on self-attention mechanisms
[49]. Attention mechanisms were first introduced in sequence models, which deal with sequential input
data, like words in a sentence [49, 50]. Self-attention determines how important each word in a sentence
is, based on all other words that occur in the sentence. It was shown that self-attention mechanisms alone,
are sufficient to reach state-of-the-art performance on tasks like language translations or text classification
[49]. Following this work, transformer architectures deploying self-attention were used for image classification
tasks as well, outperforming commonly used CNNs [47]. These transformers for image-related tasks are called
vision transformers (ViT). To treat an image as sequence, the input image is divided in patches (see Figure
3a). The different patches are now similar to words in a sentence, all distinct parts which together form a
whole. Because self-attention mechanisms are based on vectors as input, each patch is flattened to a vector.
Consider an image I divided into P patches. In self-attention, each patch Ip is used to calculate a ”key”,
”query”, and ”value” by taking the input patch Ip and apply linear transformations:

query = Q = WqIp, key = K = WkIp, value = V = WvIp,

in which Wq, Wk, Wv, are the learnable parameters. Using the key and query, the attention scores ω can be
calculated:

ωpj = softmax(QT
p Kj),

The softmax operation serves as normalization, to bound the attention score between 0 and 1 [51]. Finally,
the output patch Sp is calculated as:

Sp =

P∑
j=1

ωpjVj
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Figure 4: Result of Grad-CAM on an example image containing a cat and dog. The original image is indicated
on the left. The middle pannel shows the heatmap for the class cat, the right pannel for the class dog. Red
colors correspond to higher scores for the class of interest. Adapted from Selvaraju et al. [19].

Self-attention is a sequence-to-sequence operation, meaning that P input patches result in P output patches.
The attention mechanism can be divided into multiple heads, allowing a specific patch to have multiple
relations with the other patches. A transformer block is constructed of a normalization layer, followed by
self-attention with another normalization layer, and finally a MLP (see Figure 3b). Transformer architectures
usually contain multiple layers of transformer blocks to form a deep architecture. Unlike CNNs which rely on
local dependencies in the image, transformers are able to capture global context by relating each patch to all
other patches [47]. Because of their state-of-the-art performance, transformer architectures are increasingly
used for medical image processing [52, 53].

3.2.3 Interpretability

Neural networks are used for an increasing number of tasks [52]. Given a network (i.e. equation 2), one is
often interested in the output y, but not how the function F (the network) generates this output [16, 17].
Such usage treats the network as a black box. Interpretability is the task of providing an explanation
how the network made a specific decision in terms understandable for humans [54]. Local explanations
concern individual instances (explain the prediction for a specific sample from the dataset), whereas global
explanations cover the network as a whole (explain prediction for the entire dataset) [17]. Many methods
for interpretability tasks have been developed, an excellent review of available methods can be found in the
work of Linardatos and colleagues [55]. The following methods will be considered here: Gradient-weighted
Class Activation Mapping (Grad-CAM) [19], LIME [17] and SHAP [20].

In the present study, Grad-CAM and SHAP will be used to generate explanation and change the input
to improve the performance of our classifier. LIME is at the basis of SHAP and provides fundamental
understanding of how the explanations are generated. We propose an adapted version of LIME, called CA-
LIME, which is specifically adapted to explain the contractility profiles of beating cardiomyocytes. The
provided background information about LIME helps to understand CA-LIME and the motivation behind the
alterations made.

Grad-CAM
Grad-CAM is a local interpretability method that produces visual explanations for individual input samples.
Explanations for any CNN architecture can be obtained without the need for retraining or adaptation of
the architecture [19]. The method depends on the gradients of the neural network, which during training
are used to update the weights. Using a class of choice, the gradients with respect to the last convolutional
layer in the network are visualized. The gradients are visualized as a heatmap, indicating which regions in
the image contribute to the output of that class that is explained. Because of pooling operations, the final
convolutional layer is usually much smaller than the original input image. To correct for this, the obtained
heatmap is upsampled using interpolation, after which it can be depicted as overlay on top of the image that
is explained (see Figure 4). As explanations for each output class can be obtained, the contribution of each
part of the image for all possible classes can be determined.

LIME
Unlike Grad-CAM, which requires convolutional layers to be present for the generation of explanations, LIME
is able to explain any black box model B without changing the model [17]. LIME is a local interpretability

Page 8



Figure 5: LIME and SHAP interpretability. (a) Defining 5 superpixels on the image instance x. The feature
vector z′ determines which superpixels are present in the image, resulting in the perturbed sample z. A simple
model (in green) is trained to reproduce the output of the black box model B. The parameters ϕi of the simple
model now indicate feature importance. (b) Perturbation (triangles) of the image instance x are created. The
weight of each perturbed sample is determined by the proximity to x, indicated by marker size here. The
dashed line indicates the learned explanation, which is a local explanation and not a global. (c) SHAP values
together explain the difference between the mean of the dataset E(X) and the explained instance x.

method, as individual input instances are explained. To generate an explanation, LIME takes an input
sample x and generates local perturbations of this sample. In the context of images, these perturbations are
generated by dividing the images in multiple regions, called superpixels, and switching these on or off. Which
superpixels are turned on or off, is kept track of by a binary feature vector z′, in which 1 indicates on, and
0 indicates off (see Figure 5a). A superpixel is switched off by setting the pixel values to a set value, like
zero. The perturbed image z with switched off superpixels, is similar to the unperturbed image x, but not
the same. Feeding perturbed samples through the black box model, will therefore result in a different output
B(z).

The general idea behind LIME is to create a dataset Z consisting of perturbed samples, to which a simple
model G can be fitted which is more interpretable. This simple model can for example be a decision tree,
or a linear regression model. When fitting a linear regression model, a weighted fit can be made, taking
into account the similarity between x and z for each perturbed sample (see Figure 5b). Similarity can be
measured using a distance metric, like the cosine distance or the amount of perturbed superpixels, resulting
in the weight πx(z). The weighted fit puts more emphasis on samples closer to x. Following this procedure,
an explanation ξ can be obtained by training a simple surrogate model:

ξ(x) = arg min
G

L(B,G, πx) + Ω(G) (4)

in which Ω represents the complexity of the simple model (the amount of learnable parameters or amount
of superpixels). To generate explanations, the function L is minimized, while keeping the complexity low to
maintain the interpretability of the simple model. While training a linear regression model, L is defined as
weighted square loss:

L =
∑

z,z′ϵZ

πx(z)(B(z) −G(z′))2 (5)

such that the simple model G with the binary feature vector z′ as input, is trained to produce the same
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output as the black box model B for the perturbed image z. LIME considers the simple model to be a linear
model of the binary feature vector:

G(z′) = ϕ0 +

M∑
i=1

ϕiz
′
i (6)

where M is the number of features and ϕ represents the learnable parameters of the explainable model. The
simple model attributes a score ϕi to each superpixel, indicating the importance of that superpixel. Similarly
as Grad-CAM, individual output classes can be explained for multiclass classification problems.

SHAP
Inspired by game-theory, SHAP has a larger mathematical foundation compared to previous methods [20].
The values predicted by SHAP represent shapley values [56], and they indicate the importance of each feature
that is explained. For shapely values, the parameter ϕ0 in equation 6 is set to the expectation of the model.
As a result, the values ϕi represent the contribution of each feature in explaining the difference between the
mean and the prediction of the black box on sample x, such that

∑M
i=1 ϕi = B(x)−E(X) (Figure 5c). Here,

E(X) represents the expectation value on the entire dataset X. The predicted values by SHAP satisfy the
following properties:

1. Local accuracy, stating that the explanation model G should match the original black box model B for
the simplified input z′ = 1 (all superpixels turned on).

2. Missingness, which requires that a feature not present in the original input x, have no impact on the
output.

3. Consistency, which states that a change in the model that makes a specific feature more important,
cannot result in a decrease of the predicted shapley value for that feature.

SHAP provides a unified approach based on six other methods, among which is LIME, that predicts values
for feature importance with the above properties. LIME on the contrary, only satisfies the property of
missingness [20, 57]. Under the correct choice of the parameters in equation 4, the values predicted by LIME,
however, approximate shapley values and satisfy the above properties. This method is called Kernel SHAP
and it connects LIME to shapley values under the following parameters of equation 4:

Ω(G) = 0, πx(z′) =
M − 1

(Mchoose|z′|)|z′|(M − |z′|)
in which M is the number of features in the feature vector and |z′| is the number of non-zero elements in z′.
The function L should be chosen as in equation 5. The sample weighting function πx now puts large weights
on samples close to the original input x, as well as on samples in which almost all features are perturbed.
Intuition for this choice is to isolate a feature by perturbing all other features, this will provide a lot of
information only about the feature that was not perturbed. In order to predict shapley values using Kernel
SHAP, the feature vector z′ must be a binary vector.

Grad-CAM and SHAP will be used to generate explanations for a deep learning classifier trained to
classify the cardiomyocytes as healthy or aberrant. Using these explanations, the input data can be altered to
achieve improved classification results. Finally, we propose CA-LIME, a novel interpretability method based
on LIME, which is specifically designed to generate explanations for cardiomyocyte contractility profiles.
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4 Methods

4.1 Data acquisition

Movies of healthy and aberrant hiPSC-CMs were used for this study (see Figure 6a). A total of 33 healthy, and
33 aberrant movies were available. The aberrant cardiomyocyte phenotype was generated by adding chemical
agents to healthy cardiomyocytes (see Figure 6b). Isoproterenol or endothelin-1 was used for this purpose.
Moreover, a cell line from a Hypertrophic cardiomyopathy patient with a p.Trp792ValfsX41 mutation in the
MYBPC3 gene was used as aberrant phenotype. The healthy phenotype contains cardiomyocytes grown
on regular MR44 media, and on MR056 media without glucose. Phase contrast timeseries imaging was
performed by a commercial facility: Ibidi (Munich, Germany), partners on the HeartCHIP project using
their incubation system. All cardiomyocytes are grown in monolayers on a polydimethylsiloxane substrate
with a known stiffness of 15 kPa, produced by Ibidi. Imaging was performed at 24 frames per second using a
Ti-Eclipse microscope equipped with an ORCA Flash 4.0 LT camera (0.33 µm/pixel). Movies ranged from
1200x1200 to 2048x2048 pixels in the spatial dimension and 240 to 600 frames along the temporal dimension.
A full description of treatment and cell culture conditions can be found in the work of Snelders and colleagues
[58].

Figure 6: Imaging and description of the dataset. (a) Movie that results after imaging, three different
frames are shown as example. (b) Different conditions used during imaging. Both healthy and aberrant
cardiomyocytes are imaged. The aberrant cardiomyocytes can be subdivided into drug induced (Endothelin-1
and Isoproterenol) or genetically induced aberrant phenotypes. The numbers indicate the amount of movies
included in the dataset.

4.2 Decision tree classifier

To the best of our knowledge, only a single paper proposing machine learning methods to classify the motion
of beating cardiomyocytes as healthy or diseased is currently published. Teles et al. test multiple machine
learning methods for the classification based on 8 calculated parameters, among which the maximum dis-
placement, beating frequency and duration of the contraction [11]. A random forest of decision trees obtained
the best performance, with an accuracy of 92% and F1-score of 91%. Based on their result, and an optical
flow based analysis previously developed in the group [58], we investigated the performance of a random forest
consisting of 1-30 decision trees, with increments of 1. The previously developed optical flow based analysis
yields 19 extracted parameters represented as tabular data, where each entry has a well defined meaning (see
Figure 7a). The analysis is able to determine absolute pressure values (in pascal) because the stiffness of the
substrate underneath the cardiomyocytes is known. Data are z-score standardized such that each parameter
has zero mean and unit variance before the decision tree, similar to Teles et al. [11] (see Figure 7b). A
fourfold cross validation is used to determine the performance over the entire dataset. Importance of each
feature is determined using the normalized Gini importance [59], indicating how much the Gini impurity
index decreased by including the feature in the random forest.

4.3 Data preprocessing

Next to classical machine learning methods like decision trees, deep learning methods for the classification
task are explored in this study. For this purpose, the motion of the beating cardiomyocytes is extracted
from the movies with the use of image registration. Image registration finds the transformation that puts
two different frames in the same coordinate system. As such, the movement between different frames can be
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Figure 7: Optical flow method and decision tree classification. (a) Input movies on a substrate of known
stiffness are acquired. Using optical flow, the motion of the pixels over time is estimated. The results are
used to perform the pressure analysis, in which 19 different features are calculated that describe the motion of
the cardiomyocytes. The values indicated in the vector represent typical values for that feature. Adapted from
Snelders et al. [58]. (b) Decision tree classifier where each level of the tree takes one feature and splits the
data depending on the value of the features. Subsequently the data is split again based on a different feature.
Which features are used and the depth of the tree is optimized during training.

Figure 8: Movement extraction using image registration. Image registration is used on the input movies to
register the first frame to all consecutive frames. Using the obtained deformation field, the movement of every
fifteenth pixel is determined. When the x and y-coordinates of a pixel are displayed, a track with a periodic
shape arises as shown by the zoom in (the right panel).

determined (see Figure 8). Registration was performed using Elastix [60], implemented for the CellsOnCHIP
ImageJ plugin by Ihor Smal. The mutual information cost function is optimized with gradient-descent, to
maximize the correspondence in the joint image histogram of different frames in the movie. The first frame
is registered to all subsequent frames, to extract the movement for all time steps. After registration, the
obtained deformation field is applied to every fifteenth pixel of the first frame along both spatial dimensions.
As a result, the movement of these sampled pixels is extracted over time, and describes a track (see Figure
8).

Using image registration, the x and y-coordinates of the sampled pixels are determined for each time
step. The x and y-coordinates are used to calculate four measures which describe the motion, these are: the
distance from the median position, distance from the previous frame, angle relative to the median position
and the angle relative to the previous position (see Figure 9). Supplementary Figure S1 indicates how the
angle from previous is defined. These metrics are calculated for each time step, and used to construct movies
in which the metrics are represented as the intensity in different channels, these movies are referred to as
feature movies. These feature movies with calculated features are used for classification with a CNN. The
CNN can now deploy both the spatial and temporal dimension of the data. To unify the spatial dimension
of the resulting data, all feature movies are rescaled to 80x80 pixels using nearest neighbor interpolation,
before further processing. The value of 80 pixels arises after subsampling the movie with the smallest spatial
dimension of 1200 pixels with a factor of 15. Following registration, each movie is split in equal parts of 120
frames each, to have input movies of equal size and to generate more training data. The angle features are
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Figure 9: Calculation of four different features that describe the motion of beating cardiomyocytes in the
feature movies. The intensity in the resulting feature movies represent the calculated feature. The features
are calculated for all time steps, the top panel indicates three different frames, taken at t=1.6, t=3.1 and
t=4.6 seconds. The colorbar on the right applies to all the frames. The bottom panel indicates the intensity
profile for each feature plotted along the dashed line in blue.

Figure 10: Experiments to determine the contribution of the spatial dimension, indicated using the interframe
displacement as channel. (a) Original 3D input containing two spatial and one temporal dimension. (b) The
result after permuting the spatial location. The time dimension is unaltered, but tracks are relocated to a
random location in the image. (c) Plot of the track located at the dotted blue line in (a), (b) and (d). The
temporal dimension is the same, but the track is found at a different location. (d) Result after vectorizing the
spatial dimension, the resulting 2D image here contains 350 tracks (TN = 350).

normalized between zero and one, the distant from median is normalized using a value of 15, the interframe
displacement with a value of 4.2. These values are heuristically determined based all on the values that occur
in the dataset. This was done to prevent normalization using an outlier in the datasets.

4.3.1 Importance of spatial dimension

The input data with calculated features contains both spatial and temporal information. To investigate the
contribution of the spatial dimension, two experiments were performed. The first used the 3D input volumes
with calculated features (see Figure 9 and 10a) but permutes the spatial locations of the pixels. As such, each
track contains the same information along the temporal dimension, but is relocated to a random location in
the feature movie (see Figure 10b,c). During training, the spatial location of the tracks is changed as data
augmentation, as such the spatial location is different each time a feature movie is presented to the network.
The second experiment takes the 3D features movies and vectorizes the spatial dimension to generate a
2D image. Each row contains a track from a different spatial location, the columns indicate the temporal
dimension (see Figure 10d). The resulting image can be constructed using all the tracks in the 80x80 image,
or only a selection of the tracks. In selecting which tracks to use, the tracks are sorted based on the maximum
interframe displacement value. The TN tracks with the largest interframe displacement are used to construct
the 2D image. The effect of omitting tracks is explored by varying the value of TN , values of 6000, 3000, 1500,
750 and 350 are used during this study. The order of the rows is randomly permuted as data augmentation.
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Figure 11: Star-polygon representation of the data. (a) top left panel indicates the shape described by the x and
y coordinates of the track. Using the star-polygon representation with different numbers of radial directions,
the shape of the track can be described. The same shape is indicated for 60 directions (top middle panel), 15
directions (top right panel) and four directions (bottom left panel). For concave shapes, star polygon models
fail to describe the shape accurately, as depicted in the bottom middle panel. Furthermore, the track can be
rotated such that the largest distance from center to boundary is along the −π direction (bottom right panel).
As this direction is different for each track, the orientation of the sample under the microscope is lost. (b)
the resulting output image containing channels for the different radial directions. The intensity now indicates
the distance from the center to the boundary of the track for each radial direction.

4.3.2 Star-polygon and levelset transformation

Because of the cyclic nature of the contraction-relaxation cycle, the x and y-coordinates of each track describe
a closed shape. We propose two data transformations to investigate the importance of the temporal dimension
of the data, by classifying the shape of the track alone, without any temporal information. The first method is
a star-polygon model, the second deploys a distance map to describe the shape, similar to levelset descriptions
of shapes.

Star-polygon

Star-convex polygons were originally proposed to segment cell nuclei from 2D fluorescence microscopy
images [61]. Starting from a center point inside the object, a star-convex polygon describes the distance
to the boundary along K radial directions [61, 62]. As such, convex shapes like cells, or cell nuclei can be
accurately segmented [61]. Although not all our tracks describe a convex shape, we deploy star-polygons to
describe the shape of each track as a vector of length K (see Figure 11a). This vector contains the distance
from the center of each track, to a point on the boundary of the track along a specified direction. To that
end, the center is determined by introducing a Fibonacci lattice on top of the track. The x and y-coordinates
of the lattice are defined as:

(xf
i , y

f
i ) = (

i

Ψ
mod 1,

i

N
) for 0 ≤ i < N

where N is the number of points in the lattice, mod is the modulo operator and Ψ is the golden ratio:

Ψ = 1+
√
5

2 . This study uses a lattice of N = 50 points. For every point in the lattice as putative center, the
x and y-coordinates of the track are transformed to polar coordinates to get the polar angle

θi = tan−1
( y − yfi

x− xf
i

)
Here x and y indicate coordinates of the track and xf

i and yfi indicate the coordinates of point i of the
Fibonacci lattice. The center point that maximizes the standard deviation of the polar angle θ is picked
as center of the track. Intuition behind this choice is that a good center point will have the x and y-
coordinates of the track in all possible directions. The distance towards the boundary is determined using
linear interpolation by transforming the x and y-coordinates to polar space using the determined center point.
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Figure 12: Transformation of a track to a distance map. The left panel indicates two different tracks. Each
track is represented as a signed distance map, in which negative distances indicate that the point is inside the
track. The distance map is compressed and decompressed, the decompressed image is indicated on the right.
The compressed representation now represents the shape of the track similar like the cutting plane defines a
shape in levelsets.

The final vector containing the distance to the track in all radial directions is normalized between [0,1], the
shape of the track is therefore mapped to fall inside a circle with radius 1. As a result of this normalization,
only the shape, and not the amplitude of the motion is captured. Final output is a 2D image with K channels,
where the pixel value represents the distances to the track along radial direction k (see Figure 11b). These
images are classified as healthy or aberrant with the use of a CNN. To investigate the effect of the parameter
K, experiments with the following number of radial directions are performed: 4, 8, 15, 30, 60. Using the
representation with 60 radial directions, additional experiments are performed in which each track is rotated
such that the −π direction contains the maximum distance to the boundary (see Figure 11b). As a result,
the orientation of each track is different, and the orientation of the sample under the microscope is masked.

Levelset
Star-polygons are not appropriate to describe non-convex shapes. Therefore, a second method, that is based
on levelsets, is introduced to describe the shape of the tracks. For this purpose, a square grid of 64x64 pixels
is placed on top of each track. The pixel values represent the distances from that pixel to the closest point
on the track, called a distance map. Using linear interpolation, the number of points of the track is increased
from 120 to 400, to make the distance map more accurate. Finally, using a flooding-algorithm starting from
the top left pixel of the grid, pixels inside the track get a negative sign and pixels outside the track get a
positive sign, creating a signed distance map for each track (see Figure 12). The distance map is computed to
a distance of +4 outside the track, and -2 inside the track. Larger or smaller values are clipped to these limits.
This allows for normalization of the maps in the range [-1,1], while values of 0 remain 0 after normalization.

The height where the signed distance map equals zero, describes the shape of the track. Similar to levelsets,
we seek to find a function LS which is able to describe all possible shapes in the data. Depending on the
height at which you asses LS you get a different shape. To find the function LS , we deploy a autoencoder
neural network. Autoencoders, often used for data compression, take an image as input and try to reconstruct
that same input after a bottleneck [63]. The bottleneck reduces the amount of parameters, allowing for the
images to be compressed (see Figure 12). Similarly, we propose a convolutional autoencoder, which takes
the 64x64 pixels signed distances map as input, and compresses them to 20 parameters. The network now
represents the function LS , the 20 parameters define the height at which to cut the function LS to describe
the shape of a specific track.

The autoencoder is trained on a random sample of 142 000 tracks taken from the entire dataset. After
compressing the signed distance maps, each movie can be represented as a 2D image of 80x80 pixels (see
Figure 13), consisting of 20 channels which are classified with a CNN. Each channel contains one of the
parameters that define the cutting plane of LS . Unlike the star-polygon model, where each shape is mapped
to a radius of 1, the size of each shape persists here, because distance maps are used that carry information
about the size and therefore the amplitude of motion of each track.
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Figure 13: Resulting output after representing each track in the image as a vector of 20 numbers. The different
channels together describe the shape of the track. The compression is done by training an autoencoder.

Figure 14: Extracting the motion of beating cardiomyocytes without image registration by averaging the pixel
intensity over time in small local neigborhoods. (a) A square grid is placed on top of the input images. The
intensity in each grid is averaged over time. (b) After averaging, the change in intensity in one of the grid
cells is plotted over time. (c) The final output of averaging the pixel intensity. Each row contains the average
intensity for a different grid cell. The resulting output image is classified with a CNN.

4.4 Local averaging

Image registration is a time consuming step in the processing pipeline. Therefore, a processing pipeline
without image registration was developed. For this purpose, raw movies from the microscope without any
preprocessing steps are used. Using a square grid, the average pixel intensity inside each square is determined
for each time step (see Figure 14a). The motion of the beating cardiomyocytes causes pixels to enter or leave
a grid cell. Because of this, the dynamics of the motion can be captured by taking the absolute value of
the interframe change in the average intensity in each square of the grid (see Figure 14b). The averaging
operation is implemented in the CellsOnCHIP ImageJ plugin by Ihor Smal. Final output format is an image
in which each row contains the absolute change in the average intensity of a single grid cell for all time points
along the columns (see Figure 14c). As before, movies are split in multiple parts, each of 120 frames length
to generate more training for the CNN. Before classification each image is normalized to be in the interval
[0, 1]. The effect of the grid size is determined by running the experiment for a grid size of 20x20, 40x40,
60x60 and 80x80 pixels.

4.5 Network architectures

Throughout this study, four different network architectures are used to perform the classification task. More-
over, an additional autoencoder architecture is used to encode the levelset images. Group normalization is
used to facilitate training on small batch sizes [64]. For consistent comparison between the different archi-
tectures, all networks are implemented in Pytorch and trained with a batch size of 5 on a single NVIDIA
Quadro T1000 GPU with 4 GB of memory. All architectures used to perform the classification were trained
for 70 epochs using a cross entropy loss function (equation 3). The Adam algorithm with an initial learning
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Figure 15: 3D-CCNET architecture, using 3D convolutions. The different channels are indicated using the
different cubes. Convolution followed by group normalization and ReLU activation is used. To reduce the size
of the output, max pooling with a 2x2x2 kernel size is used. Following a global max pooling layer, two linear
layers are used to predict each input video as healthy or aberrant. The size of each block is indicated in the
figure, the number before @ indicates the number of channels. Conv stands for convolution, GN for group
normalization and FC for a fully connected layer.

rate of 0.001 was used as optimizer [65]. Results are generated on the entire dataset using a fourfold cross
validation. As we split each feature movie in equal parts of 120 frames to generate more training data, the
cross validation puts all the parts originating from the same movie into the same fold. As such when the first
120 frames of a sample are in the training set, the subsequent 120 frames can not be in the test set of the
cross validation.

4.5.1 3D-CCNET

To classify feature movies, the 3D cardiomyocyte classifier network (3D-CCNET) uses convolutions along the
temporal and two spatial dimensions. The architecture is depicted in Figure 15. The feature movies have
four channels, containing the calculated features from Figure 9. The kernel size for the 3D convolution is
3x3x3, max pooling is performed with a 2x2x2 kernel. Group normalization where each group contains four
channels is used. Final output is a score for both classes (healthy and aberrant), the largest value determines
the final prediction. Data augmentation consists of rotation, vertical flipping and horizontal flipping along
the spatial dimensions.

4.5.2 2D-CCNET

To explore the effect of removing the spatial dimension, a 2D convolution cardiomyocyte network (2D-
CCNET) is used (see Figure 16). The input now contains a different track in each row, the columns represent
the time dimension, only the interframe displacement is used as input channel. Convolution with a 5x5 kernel
is used, max pooling is performed with a 4x2 kernel. The groups used for group normalization contain four
channels. As data augmentation the order of the rows was randomly permuted.
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Figure 16: 2D-CCNET architecture used to classify the motion of beating cardiomyocytes as healthy or aber-
rant. The size of each image is indicated in the figure when an input image containing 350 tracks is used, the
number before @ indicates the number of channels. Conv stands for convolution, GN for group normalization
and FC for a fully connected layer.

4.5.3 Star-polygon network

To study the contribution of the temporal dimension, a network is used which performs 2D convolution
along both spatial dimensions with a 3x3 kernel (see Figure 17). The channels represent the k different
radial directions in the star-polygon representation. Max pooling is performed with a 2x2 kernel. Note the
similarity to the 2D-CCNET architecture, besides an additional convolutional layer which was added for
increased performance. Data augmentation consists of rotation, vertical and horizontal flipping of the input
images.

Figure 17: Network architecture that performs the classification after the star-polygon or levelset transfor-
mation. A 2x2 kernel is used during max pooling, a 3x3 kernel is used for the convolutions. The size of the
images is indicated in the figure, the number before the @ indicates the number of channels. Conv stands for
convolution and FC for a fully connected layer.

4.5.4 Levelset transform networks

The contribution of the temporal dimension is also studied using a levelset transformation. The levelsets are
compressed using an autoencoder network depicted in Figure 18. During training, the signed distance maps
are horizontally and vertically flipped. Training is performed with a batch size of 512, the mean squared
error between the input and decompressed output is used as loss function. Convolution with a kernel size of
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3x3 and a stride of 2 is used to compress the images. To decompress the images, transposed convolutions
(up-convolutions) with a 2x2 kernel and a stride of two are used. The compressed state of the autoencoder
facilitates the construction of a 80x80 image with 20 channels, without a temporal dimension (see Figure 13).
Subsequently, classification into healthy or aberrant is performed using the architecture in Figure 17, with
k=20 channels. Data augmentation consists of rotation, vertical and horizontal flipping of the input images.

Figure 18: Autoencoder architectures used to compress the signed distance maps. The distance maps are
compressed to a vector of 20 numbers, which represent the cutting plane of the levelset function LS which
is modeled by the network. Conv stands for convolution, performed using a 3x3 kernel with a stride of 2.
Up-conv stands for up-convolutions performed with a 2x2 kernel and a stride of 2. FC stands for a fully
connected layer, and BN for batch normalization. A hyperbolic tangent activation function is used in the
final layer to enable the output to be between -1 and 1.

4.5.5 CaTNET

Convolutions depend on local context and are not able to relate each specific track from an image to all other
tracks. To alleviate this issue, we propose a cardiomyocyte transformer network (CaTNET), based on ViT
architectures. Input images in which the spatial dimension is vectorized with 750 tracks are used to perform
the classification. Only the interframe displacement was used as input channel. The image is divided into
patches of 50x3 pixels (see Figure 19). The patches are flattened and projected using a linear layer, followed
by two consecutive single headed transformer blocks (see Figure 3). Linear projection and cutting the image
in patches is implemented as a convolution with a kernel size of 50x3. Finally, a max pooling layer along
the time dimension and a fully connected layer is used to construct the final output of the architecture. The
rows of the input image are randomly permuted as data augmentation.

Figure 19: CaTNET architecture to classify images containing different tracks along the rows, and the time
dimension along the columns. The image is divided into patches of 50x3 pixels. Before the single headed
transformer blocks, a linear projection is performed on each patch. The final output is constructed using a
max pooling operation followed by a fully connected layer (FC).
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4.6 Grad-CAM and SHAP

Explanations using Grad-CAM and SHAP are constructed for the 3D data containing two spatial and one
temporal dimension (see Figure 9). Both methods are used to explain the 3D-CCNET classifier. Grad-CAM
is implemented as described by the original authors [19]. To extract the gradients in Pytorch, gradient hooks
are used. The obtained heatmaps are up sampled with the use of linear interpolation. The mean L2 and L1

distance between the obtained heatmap and the four different input channels is calculated to determine the
importance of the different channels Ci. The mean L2 and L1 distance are defined as:

L2 =
1

N

∑
x,y,tϵNX,Y,T

(H[x, y, t] − Ci[x, y, t])
2, L1 =

1

N

∑
x,y,tϵNX,Y,T

|H[x, y, t] − Ci[x, y, t]|

here, H indicates the heatmap generated by Grad-CAM, N is the total number of pixels, x and y indicate
the spatial dimension and t the temporal dimension. As SHAP contains a Pytorch implemented, it is directly
installed from the github of the authors [20]. As the preliminary Pytorch implementation of SHAP does not
support group normalization, a 3D-CCNET architecture with batch instead of group normalization is used.
The background model of SHAP is constructed with 6 images due to memory constraints. The 3D-CCNET
trained on all available data is used to generate explanations, as such the explanations hold for the entire
dataset.

4.7 CA-LIME

To obtain a more thorough understanding between the motion of healthy and aberrant beating cardiomy-
ocytes, we propose CA-LIME, an interpretability method which does not depend on the use of superpixels.
After image registration, a large set of similar motion patterns from different spatial locations is obtained and
each track contains multiple contractions because of the periodic nature of the motion. Similar information is
presented in subsequent beats, or tracks from different spatial locations. As a result, superpixels fail to mask
features successfully (see Figure 20a). Even more, a superpixel based approach indicates the importance of
different parts of the contraction, but not how they differ between healthy and diseased cardiomyocytes.
As a solution, CA-LIME does not depend on superpixels, but uses the interframe displacement to automati-
cally detect the contractions and relaxation peaks (see Figure 20b). Using handcrafted features, perturbations
to the detected regions can be defined, which are applied to each track and period of the instance x that is
explained (see Figure 21). Currently, six handcrafted features MH are implemented that can be perturbed:
contraction and relaxation peak height, upwards contraction and relaxation time and finally downwards
contraction and relaxation time.
A continuous feature vector z′ determines which features will be perturbed and the size of the perturbation,
resulting in the perturbed image z (see Figure 21). Positive values in z′ indicate an increase of peak height
or time interval, whereas negative numbers indicate a decrease of the feature. A value of zero corresponds to
an unperturbed feature. How much the peak height or time interval is changed, is indicated by the number
in the feature vector, 0.3 indicates a 30% increase. Peak heights are varied between -30 and +30%, time
intervals between -70 and +70%. Similar as in LIME [17], an explainable linear regression model G is trained
in correspondence with equation 4 and 5 with πx defined as:

πx = 1 − 1

MH

MH∑
j=1

|z′j |

The following linear model with parameters ϕ is used as the surrogate model:

G(z′) = B(x) +

MH∑
i=1

ϕiz
′
i (7)

which is similar to equation 6, but the choice of ϕ0 = B(x) ensures the local accuracy property from SHAP
values, albeit only for sample x and not for all samples in the dataset, as this would require getting the
expectation value of the black box model. Moreover, as a result of this choice, a positive value of ϕi after
fitting, corresponds to a feature i of which an increase in its attribute (positive value of z′i) increases confidence
for the class that is explained. A negative value of ϕi corresponds to a feature i of which the attribute should
be decreased (negative value of z′i) to increase confidence in the class that is explained. Equation 7 is
implemented by subtracting B(x) from all the predictions, before fitting with zero offset (ϕ0 = 0). To fit the
surrogate model, 1000 perturbed samples are generated. The method is used to generate explanations for
the 2D-CCNET trained on images that contain 750 tracks.
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Figure 20: Superpixels for periodic data and the detection of contraction and relaxation peaks. (a) Input
image containing different tracks along the rows, pixel values indicate the interframe displacement. In yellow
different superpixels are defined, the grey superpixel is turned off. Defining superpixels on top of the image is
ineffective as similar contraction profiles can be found in other rows or the subsequent beat in the same row.
(b) Result of averaging all the rows from (a). The contraction and relaxation peak are indicated for one of
the beats.

Figure 21: Generation of explanations using CA-LIME. Unperturbed sample x is indicated on the left. The
continuous feature vector z′ determines if a feature is increased (positive numbers) or decreased (negative
numbers). The feature vector is used to generate the perturbed sample z. The panel on top indicates the
example track along the dashed line before and after the perturbation. Both x and z are passed through the
black box model, the resulting output for the class of interest Cnis used to train a linear regression model,
indicating the importance for each feature.
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Figure 22: Accuracy and F1 score of the random forest classifier for different number of trees. The vertical
axis indicates the obtained score in %. The best performance is obtained using nine decision trees, resulting
in 85% accuracy and an F1 score of 87%.

5 Results

Classification of the motion of beating hiPSC-CMs as healthy or aberrant is assessed using multiple exper-
iments. The first method utilizes an optical flow analysis yielding 19 parameters about the pressure and
temporal dimension of the motion. The second method uses image registration adopting both spatial and
temporal information. Subsequently, a deep learning algorithm is trained to classify the motion based on the
spatial and temporal information.

5.1 Decision tree classifier

First, we asses an optical flow based analysis resulting in 19 parameters that describe the motion (see Figure
7). A random forest of decision trees, ranging from 1 to 30 trees is used to perform the classification. The
best performance was obtained using nine decision trees, resulting in 85% accuracy and a F1 score of 87%
(see Figure 22). Increasing the number of trees beyond 19 resulted in a decrease of the accuracy and F1
score.

To test the importance of each of the 19 parameters, the Gini importance metric is used. The five most
important features and their normalized Gini importance are shown in Table 1. The most important features
relate to the contraction and relaxation time and the beating frequency of the cardiomyocytes. The summed
importance of the five most important features equals 0.50, indicating that these five features alone are
responsible for half of the reduction of the Gini impurity loss during training of the random forest.

Feature Normalized Gini importance

Contraction time [s] 0.112

Relaxation time [s] 0.105

Beats per minute 0.100

Max pressure ratio 0.097

Time between contraction and relaxation [s] 0.086

Table 1: Top 5 most important features determined by the random forest classifier. The values indicate the
normalized Gini importance. The five shown features together have a summed Gini importance of 0.50.

5.2 Deep learning approach

Besides the machine learning approach using decision trees, a deep learning approach is investigated which
utilizes both the spatial and temporal dimension available in the data. For this purpose, image registration
is used to extract the motion of the beating cardiomyocytes. The registration data is used to calculate the
distance and angle from the median x and y-coordinate, and the distance and angle from the previous frame
(see Figure 9). The classification is done using the 3D-CCNET (see Figure 15). Using a fourfold cross
validation, an accuracy of 78% and F1 score of 80 % is obtained.
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Figure 23: Heatmaps generated by Grad-CAM depicted as overlay for the different input channels (along the
columns) for a healthy sample. The rows indicate the results for different time points in the feature movie. At
each time point a single heatmap is generated for all input channels. Red regions indicate more importance,
blue regions indicate less importance.

Figure 24: Heatmaps generated by Grad-CAM depicted as overlay for the different input channels (along
the columns) for an aberrant sample. The rows indicate the results for different time points in the feature
movie. At each time point a single heatmap is generated for all input channels. Red regions indicate more
importance, blue regions indicate less importance.

The channels that represent angles are normalized between zero and one. As a result, -180 degrees
corresponds to zero and +180 degrees to 1 in the feature movies. These angles are close together but the
intensity values are far apart. To solve this issue, angles were represented using the x and y-coordinates on
the unit circle corresponding to the angle. Each angle was now represented as two seperate channels. Using
a fourfold cross validation, an accuracy and F1 score of 77% was obtained. Based on this result, the mapping
of angles to the x and y-coordinates on the unit circle is not used in further experiments.

5.2.1 Grad-CAM generated explanations

To explain the classification made by the 3D-CCNET and possibly improve the performance, Grad-CAM [19]
is used to generate a heatmap depicting which regions of the feature movies are important for the classification
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mean L2 distance mean L1 distance

Input feature healthy aberrant healthy aberrant

Distance from median 0.048 ± 0.03 0.062 ± 0.03 0.145 ± 0.06 0.183 ± 0.05

Interframe displacement 0.042 ± 0.02 0.063 ± 0.02 0.132 ± 0.04 0.178 ± 0.04

Angle from median 0.225 ± 0.02 0.246 ± 0.03 0.392 ± 0.03 0.408 ± 0.03

Angle from previous 0.227 ± 0.03 0.202 ± 0.03 0.379 ± 0.02 0.394 ± 0.02

Table 2: Similarity between the heatmap and the different input channels. Results indicate the average value
of the entire dataset. Values in bold indicate the lowest value along the columns. Standard deviations are
indicated behind the ±. The results indicate the interframe displacement and the heatmaps are most similar
to each other.

task. The results of Grad-CAM for an input image containing the motion of healthy cardiomyocytes is
depicted in Figure 23. Here, the gradient with respect to the class healthy is taken. Red regions correspond
to more important regions, blue indicates the least important parts. Similarly, the results for an aberrant
sample is shown in Figure 24, where the gradient with respect to the aberrant class is taken.

The resulting heatmaps for both samples seem to indicate spatial regions where the displacement from
previous is large. As such, these spatial regions contribute most to the classification. To quantify this
observation, the mean L1and L2 distance between the heatmaps and each input channel is calculated and
averaged over the entire dataset (see Table 2). The L1 distance of the heatmap is smallest with respect to the
interframe displacement for both the healthy and aberrant samples. The L2 distance of the heatmap with
respect to the interframe displacement is the smallest for the healthy samples. For the aberrant samples, the
distance from median has the smallest L2 distance to the heatmap, with a difference of 0.001 compared to
the interframe displacement.

5.2.2 Explanations by SHAP

Similar like Grad-CAM, we use SHAP [20] to generate explanations for the pretrained 3D-CCNET. The
maximum absolute SHAP value for each frame is used to indicate the importance. Unlike Grad-CAM,
SHAP returns separate importance scores for each of the input channels. Explanations for a healthy sample
(Figure 25) and an aberrant sample (Figure 26) are generated. The highest SHAP sample is obtained for
the interframe displacement channel for both samples. The SHAP values increase during contractions of
the cardiomyocytes, but the maximum absolute SHAP values vary strongly between the different successive
contractions. To quantify the importance of the different input channels, explanations for 30 input samples
are generated using SHAP. Out of the 30 samples, in 26 the interframe displacement contained the highest
SHAP value (see Table 3).

Feature Occurence of highest SHAP value

Displacement from median 3

Interframe displacement 26

Angle from median 0

Angle from median 1

Table 3: Number of occurences of the highest SHAP for the different calculated features, determined for 30
different samples picked from the dataset at random. The values in the second column indicate the number
of samples in which the maximum absolute SHAP value was obtained for the four different input channels.
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Figure 25: SHAP values for a healthy input sample when the class healthy is explained. The top panel depicts
the interframe displacement, to indicate which frames contain movement of the cardiomyocytes. The bottom
panel indicates the maximum absolute SHAP value for each frame in the feature movies. Higher values
indicate larger importance.

Figure 26: SHAP values for a aberrant input sample when the class aberrant is explained. The top panel
depicts the interframe displacement, to indicate which frames contain movement of the cardiomyocytes. The
bottom panel indicates the maximum absolute SHAP value for each frame in the feature movies. Higher values
indicate larger importance.

5.3 Spatial dimension

Grad-CAM indicates that specific spatial regions contribute to the classification task in different amounts.
To assess the importance of the spatial dimension for the classification task, two experiments are performed
in which the classification is performed without the spatial dimension. Based on previous results, only the
interframe displacement and angle from previous is used. The angle from previous is chosen because this
metric still contains information about the shape of each track and does not depend on a fixed coordinate,
like the median position. The first experiment determines the effect of permuting the spatial dimension (see
Figure 27a). Before permuting the spatial dimension, an accuracy of 88.1% and F1 score of 88.4% is obtained.
Performing the classification task after shuffling the spatial dimension results in an accuracy of 89.5% and
F1 score of 90.0%. Shuffling the spatial dimension as form of data augmentation results in an accuracy and
F1 score of 95%.

The second experiment vectorizes the spatial dimension, after which each row in the resulting input image
contains a track from a different spatial location (see Figure 27b). The classification is performed using the
2D-CCNET network. During training, the order of the rows is randomly permuted. The number of rows
in the image is varied between 6000 and 350 by selecting the tracks that contain the largest interframe
displacement. Using 6000 tracks, an accuracy and F1-score of 96% is obtained (see Figure 27c). Reducing
the number of tracks results in a decreased performance, but each experiment resulted in an accuracy and
F1 score above 92%. The 2D-CCNET architecture uses a 5x5 kernel to perform the convolution. As the
data represents track from different spatial locations along the different rows, we assessed the effect of using
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Figure 27: Experiments to test importance of the spatial dimension. Results are indicated using the accuracy
and F1 score (a) Randomly permuting the spatial location of the data. The top panel indicates the performance
in case the spatial information is present, the locations are randomly shuffled, or the shuffling is added as
data augmentation. The bottom panel indicates examples before and after permuting the spatial location. (b)
Resulting image after vectorizing the spatial dimension in the data and using the 350 tracks that contain
the largest interframe displacement. (c) Performance when the spatial dimension is vectorized for different
number of tracks along the horizontal axis. An accuracy and F1 score above 92% were obtained independent
from the number of tracks.

a 1x5 kernel. The convolution is now performed over a single track. The resulting accuracay and F1 score
are depicted in supplementary Figure S2a, b. Due to the inferior performance, a 5x5 kernel is used in further
experiments.

5.4 Temporal dimension

Grad-CAM and SHAP indicate that frames during the contraction and relaxation are more important for the
classification compared to frames with less displacement. To investigate the effect of omitting the temporal
dimension, we propose two transformations that describe the shape of each track without any temporal
component. The shape of each track is described as convex star-polygon (see Figure 11) or as a levelset using
a signed distance map (see Figure 13).

5.4.1 Star-polygon representation

Using the network architecture depicted in Figure 17, the data containing the star-polygon representation is
classified. Experiments for a different number of radial directions are performed (see Figure 28a). The best
F1 score of 68.7% was obtained using 30 radial directions. Using eight radial the best accuracy of 67.6% was
obtained. Despite that four radial directions do not describe the shape of the track accurately, an accuracy
of 63.3% is obtained. To investigate this effect further, the distribution of the distance from the center to the
boundary of the track for the entire dataset is depicted in Figure 28b. Along all radial direction, the distance
is smaller for tracks belonging to healthy cardiomyocytes.

As the star-polygon model is normalized such that each track falls within a circle with radius 1, the
observed distribution could indicate that healthy tracks are more elliptical compared to aberrant tracks.
Tracks which are almost circular contain large radial distances to the boundary along all radial directions,
whereas elliptical tracks contain large distances along two directions, and small distances along two directions
orthogonal to it. To test this hypothesis, the major and minor axis of each track are determined (see
Figure 29a). Using this, the distribution of the ratio minor/major axis is calculated for each track in the
dataset (see Figure 29b) and no difference is observed. Indicating that healthy tracks are not more elliptical.
Alternatively, the distribution of the star polygon model with four directions (Figure 28) could be explained
by the orientation of the samples under the microscope, as the radial directions are in specified directions
and therefore contain information about the global orientation of each track. To investigate this effect, a
network is trained in which each track is rotated such that the longest distance from center to the boundary
of the tracks is aligned with the −π direction. After training with 60 radial directions, an accuracy of 56.3%
and F1 score of 45.1% is observed.
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Figure 28: Classification of the shape of each track using the star-polygon description. (a) Top panel indicates
the accuracy and F1 score for different number of radial directions. The bottom panel indicates examples when
4, 30 or 60 radial directions are used respectively. Independent on the number of radial directions, accuracy
and F1 scores below 70% are obtained. (b) Distribution of the distance from the center to the boundary of the
track in case 4 radial directions are used. Healthy track have a higher occurrence of short distances, whereas
aberrant tracks have a higher occurrence of longer distances.

Figure 29: The ratio between the major and minor axis of each track. (a) Example of a track in which the
major axis is indicated in green and the minor axis is indicated in pink. The minor axis is formed by the
two radial directions with a difference of π radians that together form the smallest distance from center to
boundary. (b) Distribution of the ratio between the minor and major axis calculated over all tracks.

5.4.2 Levelset representation

The star-polygon representation facilitates the description of convex shapes. As the tracks in our data also
contain non convex shapes, a levelset like description of the shapes is used. The shape of each track is
described as a signed distance map. The complex function LS , able to describe all possible shapes, is given
by an autoencoder (see Figure 18). The 20 parameters in the bottleneck layer represent the cutting plane of
LS to describe each specific shape. The resulting compressed signed distance maps are used to classify the
data as healthy or aberrant using a convolutional architecture (see Figure 17), resulting in an accuracy of
73.3% and F1 score of 74.1%.

5.5 Motion extraction using intensity averaging

Image registration is a time consuming step in the processing pipeline. We investigated the extraction of the
motion of beating cardiomyocyte by calculating the change in the average pixel intensity of the raw microscopy
data inside square grid cells (see Figure 14). The resulting traces of the change in average intensity over time
are used to construct 2D images, used for training and testing the 2D-CCNET (Figure 16). Experiments are
performed for different dimensions of the grid, ranging from 20x20 to 80x80 pixels. The best accuracy and
F1 score were obtained using a 20x20 pixel grid, resulting in 86.8% and 87.0% respectively (see Figure 30).
Using a 60x60 pixel grid resulted in the lowest accuracy of 84.9% and an F1 score of 85.8%.
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Figure 30: Accuracy and F1 score using an averaging method with a square grid to extract the motion of
the beating cardiomyocytes from the raw microscopy data. The vertical axis indicates the obtained score, the
horizontal axis gives the size of the square grid cell used in the intensity averaging. The best score is obtained
using 20x20 pixel grid cells, resulting in an accuracy of 86.8% and F1 score of 87.0%.

5.6 Transformer architecture

Unlike transformer layers, convolutions depend on global context to classify between healthy or aberrant
beating cardiomyocytes [47]. The performance of our transformer architecture CaTNET (Figure 19) is
therefore compared to the 2D-CCNET (Figure 16) which utilizes convolutional layers. The CaTNET is
similar to ViT architectures [47]. Tenfold cross validation is used to quantify the performance on data in
which the spatial dimension is vectorized. On all metrics, the 2D-CCNET outperformed the CaTNET,
reaching an accuracy of 97.5% compared to 88.2% for the transformer architecture. A similar difference
in performance is observed for the precision, recall and F1 score (see Table 4). Training the 2D-CCNET
took on average 180.2 ± 0.9 seconds compared to 148.9 ± 1.5 seconds for the CaTNET. Predicting a single
sample during testing time required on average over the tenfold cross validation 12.3 milliseconds using the
2D-CCNET architecture compared to 10.7 milliseconds for CaTNET.

Network accuracy precision recall F1

2D-CCNET 97.5 98.2 97.1 97.4

CaTNET 88.2 84.5 95.4 89.0

Table 4: Result of the 2D-CCNET and CaTNET determined using a tenfold cross validation. The 2D-CCNET
outperformed the transformer architecture on all metrics. Numbers in bold indicate the best score along the
columns.

5.7 CA-LIME interpretability

A superpixel based approach to generate explanations, like LIME [17] or SHAP [20] is not effective for masking
out features in case many periodic beats and similar contraction-relaxation profiles are presented in the image.
We therefore propose CA-LIME, which perturbs all tracks and all subsequent contraction-relaxation cycles
in the input samples. To show the effectiveness of our approach, CA-LIME is used to generate explanations
for four different input samples, one sample from each aberrant condition (Figure 31a,b,c) and one healthy
sample (Figure 31d).

Treatment with Endothelin-1 is known to cause a hypertrophic-like state and is associated with decreased
contraction pressures and increased beating frequencies [66, 58] (see Figure 32a). Following Endothelin-1
treatment, the importance for each feature is determined using CA-LIME (see Table 5). The most important
feature is the relaxation peak height, with an importance of -5.81, indicating that decreasing the relaxation
peaks results in more confidence for predicting the sample as aberrant. The second most important feature
is the downward relaxation time, with an importance of 5.01. An increase of the duration of the downward
relaxation time is therefore associated with more confidence in predicting the sample as aberrant. An example
of the three most important features and how they should be perturbed to make the sample more aberrant
is indicated in Figure 31a.
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Figure 31: Samples for which explanations are generated using CA-LIME together with example perturbations
shown on a single track from the image. (a) left panel depicts a sample treated with Endothelin-1, the track
along the dashed line is indicated in the right panel before and after applying the perturbations. (b) left panel
depicts a sample treated with Isoproterenol, the track along the dashed line is indicated in the right panel
before and after applying the perturbations. (c) Sample belonging to the patient mutation together with the
track along the dashed line before and after applying the perturbation. (d) left panel depicts a healthy sample,
the track along the dashed line is indicated in the right panel before and after applying the perturbations. All
the plots show the three perturbations with the highest importance score as determined by CA-LIME. The
perturbations are such that the confidence for the ground truth class of each sample is increased.

Importance ϕi

CA-LIME feature Endothelin-1 Isoproterenol patient mutation healthy

Contraction peak height 1.33 0.25 3.80 -0.12

Relaxation peak height -5.81 4.11 11.40 3.25

Upward contraction time -0.96 1.00 0.59 3.29

Downward contraction time -2.72 1.55 -1.57 6.24

Upward relaxation time 0.64 0.90 3.57 0.44

Downward relaxation time 5.01 -1.78 -0.2 -1.20

Table 5: Feature importance determined by CA-LIME for the different aberrant conditions and a healthy
sample. Positive importance values indicate that the feature should be increased to elevate the prediction for
the ground truth class of the sample. Similarly, negative features should be decreased to elevate the confidence
of the network. The three most important features for each condition are highlighted in blue if they have a
negative importance value and in yellow for positive importance values.

Treatment with Isoproterenol causes increased beating frequencies and relaxation pressures to be observed
[58] (see Figure 32b). According to CA-LIME, the most important feature in the sample treated with
Isoproterenol, is the height of the relaxation peak with a value of 4.11 (Figure 31b). An increase of the
relaxation peak causes more confidence for predicting the sample as aberrant. The second most important
feature is again the duration of the downward relaxation, which should now be shortened in order to increase
the confidence for predicting the sample as aberrant. Figure 31b shows one of the tracks and how it should
be perturbed, in order to more confidently predict it as aberrant.

Like Endothelin-1, the patient mutation is associated with hypertrophy. CA-LIME predicts the most
important feature to be the relaxation peak height with a value of 11.40, followed by the contraction peak
height with a value of 3.80. Both peak heights should be increased in order to increase confidence for the
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Figure 32: Results after treating beating cardiomyocytes with Endothelin-1 and Isoproterenol from Snelders
and colleagues [58]. The vertical axis indicates the beats per minute (bpm) or the pressure. Results are
determined using an optical flow based analysis. (a) Treatment with Endothelin-1 resulting in increased beating
frequencies (left panel). Both the contraction and relaxation pressure are shown to decrease when treated with
Endothelin-1 (right panel). (b) Treatment with Isoproterenol resulting in increased beating frequencies (left
panel). Furthermore, the relaxation pressure was shown to decrease when treated with Isoproterenol (right
panel).

class aberrant. The sample and how the top 3 features should be perturbed is given in Figure 31c.
Finally, CA-LIME is used to explain one of the healthy samples (see Figure 31d). The most important

feature is the duration of the downward contraction, with a weight of 6.24, followed by the upward contraction
time with 3.29. The duration of both time periods should be increased for an elevated confidence in the class
healthy. The three most important perturbations are indicated in Figure 31d.

Page 30



6 Discussion

Previously published methods use calcium signaling and machine learning methods to classify cardiomyocytes
as healthy or diseased [67, 68, 69]. The fluorescent dyes used for this imaging procedure can however,
result in low temporal resolution and interfere with the motion of the beating cardiomyocytes because of
their toxicity [13, 11, 70]. Therefore, a label-free method which enables long term studies is preferred, like
presented in the work of Teles and colleagues [11]. None of these works however discuss the importance
of the spatial and temporal dimension or deploy current state-of-the-art deep learning methods to perform
the classification. Our present study shows the use of Elastix as label-free method to extract the motion of
beating cardiomyocytes and a deep learning based classifier. With 97.5% accuracy, we outperform all the
previously mentioned machine learning methods [67, 68, 69, 11]. Moreover, unlike these methods, we generate
explanations that indicate the difference between healthy and diseased tracks to provide novel insights into the
used disease models. For this purpose, CA-LIME was developed, which adapts a superpixel based approach
to generate explanations for periodic data. The generated explanations are easy to interpret and resemble
the explanations of tabular data, in which a short list of understandable features, their importance and how
they should be perturbed are indicated.

According to CA-LIME, the relaxation peak height belongs to the top 3 most important features for all
the explained samples (Table 5). Even more, it was the most important feature for all the samples belonging
to the class aberrant. The observations for the Endothelin-1 and Isoproterenol treated sample are consistent
with previous results established by the group [58]. This increases confidence in the predictions of our 2D-
CCNET and provides evidence for the effectiveness of CA-LIME. To the best of our knowledge, the duration
of the upward and downward relaxation times as a result of treatment has not been reported previously.

A random forest classifier used to classify motion as healthy or diseased reported by Teles and colleagues [11]
achieved an accuracy of 92% and F1 score of 91%. Eventhough we utilize a similar processing pipeline and
extract more features including pressure characteristics about the motion, the performance is not matched
in our work (Figure 22). Our random forest classifier achieved 85% accuracy and 87% F1 score, using nine
decision trees. The difference in performance could be explained by the size of the training set, consisting of
322 healthy videos and 148 videos of a patient mutation compared to 33 healthy and aberrant videos in our
work. The reduced training size could result in overfitting and decreased performance figures. The reduced
accuracy and F1 score with a random forest over 19 trees or more observed in Figure 22 indicates that these
random forests consisting of many trees start to overfit. Alternatively, the difference could also be explained
by the different conditions of the diseased group. Our work contained an aberrant condition in which multiple
different disease models, drug induced or patient mutations, are included. The work of Teles and colleagues
[11] acquired 148 diseased samples from the same patient suffering from Timothy Syndrome, which might
result in a more distinct difference between the healthy and aberrant (diseased) population.

The determined feature importance in Table 1 only indicates the importance over the entire dataset.
Smaller populations within the data, like those treated with Isoproterenol could therefore have different
features with the highest importance score, like the relaxation pressure for example. Using all the available
data, these features might not be included in the top 5 most important features, as the samples treated with
Isoproterenol make up less than 15% of the entire dataset. The most important features relate to the time
component, which could be expected as the temporal component relates to the force and acceleration of the
beating cardiomyocytes and is known to be different for healthy and aberrant cardiomyocytes [58, 71, 72].

A deep learning approach able to use both spatial and temporal information resulted in accuracy of 78% using
the 3D-CCNET, a 7% decrease compared to the decision tree classifier. The reason for this can be attributed
to overfitting on the spatial information. The architecture was difficult to optimize and often resulted in a large
performance gap between the training and test set. Removing two input channels, using only the interframe
displacement and angle from previous reduced this issue, boosting the accuracy to 88%, slightly outperforming
our random forest classifier. Having less input channels available reduced overfitting and therefore resulted
in better performance of the test set. Removing the spatial dimension entirely by permuting the spatial
information as data augmentation reduced overfitting further resulting in a 95% accuracy outperforming the
random forest of Teles and colleagues [11] using much less training data. A similar observation was made
when the spatial information was removed by vectorizing the spatial dimension and using our 2D-CCNET.
From these observations, we conclude that the spatial information does not provide additional information to
differentiate healthy from aberrant tracks. The addition of disease models in which cell signaling for example
is effected, could result in altered spatial information and should be further investigated.

As discussed above, the spatial information does not contribute to the classification task. Despite this,
Grad-CAM [19] indicates specific spatial regions that contribute most to the decision, mainly in the interframe
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displacement channel. Based on experiments with images in which the spatial dimension is vectorized, we
conclude that Grad-CAM does not point to spatial information here, but to the most informative tracks.
Since Grad-CAM shows that tracks with large interframe displacements carry the most importance, selecting
only these tracks should be sufficient for an accurate classification. This is also observed in the experiments
with images in which the spatial dimension is vectorized and only 750 tracks are used, while still reaching
92% accuracy (Figure 27b).
The high accuracy of the 2D-CCNET suggests there is a clear difference between the healthy and aberrant
population. Therefore, efforts were made to explore an unsupervised classification method that clusters the
350 tracks with the highest interframe displacement from each sample (TN = 350). Using t-SNE [73] or
UMap [74] did not yield seperated clusters between the healthy or aberrant population. Future work with
more advanced or partially supervised clustering methods should be investigated to explore new differences or
sub-populations within the dataset [75]. Methods like convolutional embedding networks [76] or ClusterNET
[77] are good candidates and should be further investigated.

Both the explanations by Grad-CAM and SHAP [20] indicate that the interframe displacement is the most
important feature for the classification task. This observation is further confirmed by the experiment in which
the 2D-CCNET is compared to the CaTNET. During training, solely the interframe displacement is used,
still resulting in 88.2% accuracy for the CaTNEt and 97.5% for the 2D-CCNET. Furthermore, the interframe
displacement also depicts clearly separable contractions and relaxation peaks, which aid in the connection to
literature and for generating a comprehensible explanation for different parts of contraction-relaxation cycle
using CA-LIME. The low mean L2 and mean L1 distance values between the heatmaps and the distance from
median (Table 2), can be explained by the similarity between the interframe displacement and distance from
median channel. Both channels depict a similar intensity pattern for most samples, as the median position
is often located near the resting position of the cycle.

Explanations generated by SHAP indicate a large increase in the maximum absolute SHAP value for
specific regions during a single contraction-relaxation cycle, but in subsequent beats, this rise is not observed
(Figure 25, 26). This observation could indicate overfitting, in which only very specific parts of the input data
are used which are not necessarily different between the two classes. This could also be the effect of using
a superpixel based approach, in which specific parts of each cycle are masked ineffectively, still displaying
similar information despite masking out the superpixel.

The levelset representation is more suited for describing the shapes of the tracks as it enables the description
of non-convex shapes. The star polygon representation, however, allows all amplitudes to be normalized
to study the effect of shape alone. Having shape and the global orientation of each sample available, 68%
accuracy is obtained (Figure 28a). Removing the global orientation by rotating each shape, did not alter
the description of the shape but did reduce the accuracy to 56%. We conclude from this that the global
orientation of the samples caused a bias, which allowed a relatively high classification accuracy of 68% to be
reached. This effect is, however, not attributed due to a difference in the shape of the track between healthy
or aberrant cardiomyocytes. The observation that there is no difference in the distribution of the ratio
minor/major axis confirms this. As the levelset representation has both the global orientation and amplitude
of motion available, the performance increase of 5% relative to the star polygon model could be attributed
to the beating amplitude. Alternatively, this could also be caused by including an accurate description
of non-convex shapes using the levelset representation. Both the star polygon and levelset representation
however confirm that without the temporal dimension, the accuracy and F1 score decrease more than 20%.
Indicating the importance of the temporal dimension. This conclusion is further confirmed by the top 5 most
important features determined by the random forest classifier and the feature importance scores determined
by CA-LIME.

Using the average intensity to extract the motion of beating cardiomyocytes, instead of image registration,
results in a 10% decrease of performance (Figure 30, 27b). Unlike registration methods like Elastix [60]
that determine the deformation field, the amplitude of the contraction is not accurately determined using
the change in average intensity. This lack of the amplitude component could explain the difference in the
observed performance compared to the pipeline which included image registration.

6.1 Conclusion

In summary, we present a novel deep learning approach that could contribute to a fast drug screening system
for heart failure. The deep learning algorithm classifies the motion of beating cardiomyocytes as healthy or
aberrant. The aberrant phenotype is modelled using a patient mutation or by the treatment with Endothelin-
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1 or Isoproterenol. The motion is extracted using image registration, extracting both spatial and temporal
information of the contraction-relaxation cycle. The registration data is used to calculate four different
features which are used as input channels for the deep learning classifier.

Experiments representing the shape of the tracks as star-polygon or levelset, showed the temporal infor-
mation is most important for the classification task. The final model, utilizing only the temporal information,
achieved 97.5% accuracy, outperforming previously published machine learning algorithms. Using Grad-CAM
and SHAP to generate explanations for the deep learning classifier, the interframe displacement was shown
to be the most important channel. Besides the classifier, we introduced CA-LIME, a novel AI interpretability
method specifically tailored to explain the predictions of cardiomyocytes contractility profiles. The expla-
nations by CA-LIME are in correspondence with previous observations of the effects of Endothelin-1 and
Isoproterenol. The explanations by CA-LIME represent those of tabular data and are easy to interpret.
CA-LIME could contribute to the detection of novel differences between the motion of healthy and aberrant
beating cardiomyocytes.

6.2 Future prospects

CA-LIME, similar like LIME [17], is sensitive to picking favorable samples in which the generated explanations
show the desired result. Moreover, the weighting function used to determine the weights of the samples can
influence the explanation. To alleviate this issue, CA-LIME should be extended to predicted shapley values,
similar like SHAP [20]. SHAP however, utilizes a superpixel based approach not effective for masking features
in our input data. Moreover, SHAP uses a binary feature vector, meaning explanations only indicate the
effect of masking parts of the track. On the contrary, CA-LIME indicates if peaks heights or durations
should be decreased or increased to put more confidence in the decision. Using a binary feature vector is not
possible in that case. Since currently only six features are implemented, without too much computational
load, shapley regression values [78], or shapley sampling values [79] might be calculated by computing the
effect of all possible combinations of the perturbations. As a result, the importance values will fulfill the
properties of shapley values. Additional recordings of the disease conditions would enable the aberrant class
to be separated into different treatment conditions, allowing the detection of different compounds or disease
models like in the work of Lee and colleagues [80]. This could also enable CA-LIME to make more accurate
explanations as the aberrant condition is currently a mixture of different effects. Additional data could also
contain calcium signaling, which could be added as input channel besides the interframe displacement.
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8 Clarification between degrees

This report is for my graduation of the master Nanobiology and the master Biomedical Engineering (track
Medical Physics). The project represents my graduation work for both masters. Although the subject covers
aspects of both studies, the developed interpretability methods were developed for Nanobiology, as they
provide more insight into the disease models. The proposed classifier and experiments for the spatial and
temporal dimension are included for Medical Physics. For in this master program, image processing for
clinically relevant applications is considered and developed.
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9 Supplementary figures

Figure S1: Angle from previous indicated for a small example track. the arrows indicate the track, the green
and blue line indicate how the angle from previous is defined.

Figure S2: Accuracy and F1 score for different kernel sizes. Input images in which the spatial dimension is
vectorized are used, classification is performed using the 2D-CCNET. Experiments are performed for different
number of tracks. (a) Accuracy using a 5x5 and a 1x5 kernel. The 1x5 kernel might be more suited for the
input data, as the different rows in the input image represent spatially unrelated tracks. The 5x5 kernel is
however observed to achieve better accuracy scores. (b) F1 score using a 5x5 and 1x5 kernel. The 5x5 kernel
results in superior F1 scores independent of the number of tracks used.
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