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Abstract

Radiotelephony (RT) remains the primary medium for
pilot-controller communication, yet extracting struc-
tured information from spoken exchanges is challeng-
ing. Deep learning approaches often depend on large
annotated datasets, limiting use in data-scarce environ-
ments. This study evaluates open-source large language
models (LLMs) for Structured Information Extraction
(SIE) from ATC communications, with applications in
assisting or automating pseudo-pilot tasks. We evaluate
Llama 3.3 (70B) with baseline prompting and Gemma-3
(4B) with baseline and fine-tuned variants on 500 ut-
terances from NLR’s ATM simulator. Performance is
assessed on human transcripts and ASR outputs from
Whisper models, with varying prompt contexts. Cross-
sector generalization is tested across two ATC sectors.
Using manual scoring, Llama 3.3 achieves micro-F1
0.95 on human transcripts and 0.86 on fine-tuned Whis-
per outputs. While Gemma-3 performed weaker in its
baseline form, fine-tuning on a small sample led to no-
table improvements. Results demonstrate the potential
of LLMs for ATC applications without the need for large
annotated datasets.

1 Introduction

The exchange of operational information between pilots
and controllers is primarily conducted through voice-
only radiotelephony (RT) communications. Automat-
ing structured information extraction from these ex-
changes supports applications such as performance as-
sessment, safety monitoring, scenario analysis, and sim-
ulator training. In simulator environments, automatic
parsing of Air Traffic Controller (ATCO) commands as-
sists pseudo-pilots and potentially automates a subset
of their tasks, which is particularly valuable given the
typically high workload and need for specialized ex-
pertise [5]. Recent advances in large language models

(LLMs) have opened new opportunities for such sys-
tems, as these models have been shown to generalize
effectively from very limited data [1], [22]. Applying
and evaluating these capabilities to the ATC domain re-
quires a clearly defined target task, which in this work is
referred to as Structured Information Extraction (SIE).

SIE entails extracting structured entities from ATC
instructions according to an ontology adapted from
SESAR PJ16-04 [9]. For each ATCO utterance, the
parsed information includes the callsign, and for each
instruction: category, command, value, unit, qualifier,
and condition. Unlike traditional Natural Language Pro-
cessing (NLP) tasks such as Named Entity Recognition
(NER) and Slot Filling (SF), SIE must handle complete
Air Traffic Control (ATC) commands and capture re-
lationships between entities, including situations where
multiple instructions appear in a single utterance.

Previous studies have researched using BERT-family
encoders for NER and SF tasks in the ATC domain
[13], [26]. BERT, or Bidirectional Encoder Repre-
sentations from Transformers, is a transformer encoder
pre-trained with masked language modeling and, in its
original form, next-sentence prediction [4], [22]. It
is typically fine-tuned on labeled data for downstream
tasks. BERT-based approaches therefore have required
domain-specific labeled datasets, a challenge in ATC
where annotated open data is scarce [24], [26]. More-
over, previous studies have evaluated instruction pars-
ing modules in isolation rather than in an end-to-end
pipeline with Automatic Speech Recognition (ASR),
even though this is how an SIE module would be de-
ployed in practice for most of its applications. A high-
level overview of the combined ASR and SIE pipeline
is shown in Figure 1.

The aim of this study is to evaluate the ability of open-
source LLMs to extract structured ATC commands from
both human transcripts and ASR outputs, incorporat-
ing varying levels of contextual information. We ex-
amine: (i) few-shot prompting of LLMs on human



transcripts to accelerate labeling and estimate an up-
per bound on clean-text performance, and (ii) few-shot
prompting of LLMs on ASR outputs to assess realistic
end-to-end performance. Most experiments use a large
model (Llama-3.3! [7]), and we further compare with a
smaller architecture (Gemma-32 [20]), evaluated both in
its baseline form and after fine-tuning on approximately
350 labeled samples. The effect of including different
levels of contextual information in prompts is also ex-
amined.

The ASR component uses both a baseline and a fine-
tuned Whisper model [6], [17]. Experimental data are
drawn from NARSIM, NLR’s real-time ATM simula-
tor’. Performance is measured using F1 scores, and sec-
tor generalizability is assessed by evaluating results on
two different sectors separately. Finally, a qualitative
analysis of the LLM outputs is performed.
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waypoints....

Figure 1: Simple overview of ASR and context-enhanced Structured
Information Extraction from Air Traffic Controller utterances

2 Related Work

In the ATC domain, previous NLP studies have primar-
ily focused on NER, i.e., detecting and classifying key
elements such as callsigns, commands, and numerical
values in transcripts. NER differs from structured infor-
mation extraction (SIE), which aims to combine these
entities into complete, structured commands, but it still
provides valuable in-domain benchmarks for this work.
BERT for NER was trained on the ATCO2 dataset,
and most recent work has relied on deep learning ap-
proaches. Using four hours of labeled data with 5-fold
cross-validation [26] resulted in mean F1 scores of 0.97,
0.82, and 0.87 for callsign, command, and value, re-
spectively. An open-source BERT NER trained on the
1-hour open subset of ATCO2 reported an F1 of 0.66*,
illustrating BERT’s sensitivity to training sample size.
Furthermore, another study training a BERT model
for the NER task, using the same ontology as in this pa-
per [9], showed that input data variability can affect F1.
This study found that excluding utterances containing

'https://huggingface.co/meta-llama/Llama-3.3-70B-Instruct
“https://huggingface.co/google/gemma-3-4b-it
3https://www.nlr.org/newsroom/facility/narsim/
*https://huggingface.co/Jzuluaga/bert-base-ner-atc-en-atco2- 1h

two or fewer entities from the training set, while reduc-
ing the training set size, improved performance, raising
overall F1 from 0.80 using 2000 samples to 0.84 using
1400 samples [14].

Other recent relevant studies include a model using
RoBERTa-Attention-BiLSTM-CRF as a more complex
architecture, achieving an F1 of 0.88 on 9,200 manu-
ally labeled ATC transcriptions in Mandarin [2]. An-
other study focused on limited training data [12] pro-
posed SLKIR, which extended a Transformer-XL back-
bone by inserting category “prompt’” tokens (e.g., “Call-
sign”) to guide a prompt classification head. The model
was trained on 1,200 utterances from the commercial
flight dataset and achieved an F1 of 0.85 on a commer-
cial dataset and 0.79 on simulator training data, with
each test set containing 200 utterances.

Moreover, a very recent study investigated a shal-
low Artificial Neural Network (ANN) with two hid-
den layers of 10 and 8 neurons using ReL.U activation
and dropout, followed by a softmax layer over eight
intent classes to categorize instructions. This classi-
fier was trained on a large, manually labeled corpus of
ATC instruction transcripts, each annotated with one of
eight intent categories (e.g., Radar Contact, Climb, De-
scend). They reported an F1 score of 0.98 for predict-
ing the instruction category on ASR outputs, after post-
processing and normalization. The ASR module used
here was trained on a large dataset (including a private
transcribed dataset of 32 hr) and had a Word Error Rate
(WER) of 13.6% on the ATCOsim dataset [18].

Similar work outside the ATC domain has demon-
strated that fine-tuning on relatively small samples
(400-650 per dataset) and applying LLMs for SIE from
scientific texts can be effective [3]. Another study in-
troducing GPT-NER found that GPT-3 achieved per-
formance comparable to BERT-based models on NER
tasks. The paper also concluded GPT-NER to be ad-
vantageous in low-resource and few-shot settings, out-
performing supervised baselines when labeled data was
scarce [23].

As for the ASR module, end-to-end models have
shown improved performance over previously used hy-
brid approaches in the ATC domain [25]. The open-
source OpenAl Whisper model [17], a multi-layer trans-
former trained via large-scale weak supervision on a
large corpus of diverse data, has also been tested on the
ATC domain and fine-tuned. The fine-tuned Whisper
model was found to achieve a lower WER than a previ-
ously tested Wav2Vec-fine-tuned model [6], [25].

Most prior work on ATC command extraction has
focused on the NER task using BERT-family models,
which achieved F1 scores ranging from 0.66 to 0.88
depending on the dataset and training conditions. The



ATCO2 benchmark remains among the strongest re-
sults, with F1 scores of 0.97 for callsigns, 0.82 for
commands, and 0.87 for values, while other studies re-
ported overall F1 scores in the 0.84—0.88 range. How-
ever, these approaches were found to be sensitive to
the quantity and quality of labeled data and therefore
rely on large, high-quality annotated corpora. In con-
trast, relatively little research has addressed end-to-end
pipelines or scenarios with very limited data. To address
this gap, our work evaluates open-source large language
models for structured extraction from both human and
ASR transcripts, using Whisper as the ASR component
given its strong performance in the ATC domain and its
availability as an open-source system.

3 Dataset

The dataset used in this research is collected from NAR-
SIM during airspace restructuring® experiments. These
simulations involve operational participants, including
LVNL (Luchtverkeersleiding Nederland), the Dutch air
navigation service provider, and MUAC (Maastricht
Upper Area Control Centre), which manages upper
airspace over parts of northwest Europe. The dataset in-
cludes recordings of controller—pilot exchanges on sep-
arate radio frequencies, as well as scenario metadata
such as flight entry times, flight routes, radio frequency
assignments, and airline designators.

Specifically, two frequencies are used in this study:
one from LVNL’s area control center and another from
MUAUC, responsible for the Delta sector. Table 1 sum-
marizes the dataset used for evaluation (in the case of
few-shot prompting) or for training and testing (in the
case of fine-tuning Gemma-3). The audio segments
from MUAC-Delta and LVNL-ACCI1 are transcribed in
approximately equal proportions. A separate dataset,
LVNL-deyv, is used exclusively for prompt engineering
and is described in Table 2.

Table 1: Overview of the main NARSIM dataset number of instruc-
tions and the total duration of the transcribed audio segments per
frequency

Dataset Sector Instructions Duration

MUAC Delta (Upper 251 16 min
Area Control)

LVNL ACCI1 (Area 263 15 min

Control)

Shttps://www.eurocontrol.int/press-release/optimising-airspace-
above-netherlands-and-north-west-germany

Table 2: LVNL-dev set used for prompt design and validation, sam-
pled separately from the main LVNL dataset with no shared audio
segments between the two.

Dataset Sector Instructions Duration
LVNL- ACCI (area 93 6 min
dev control)

3.1 Transcription and Annotation

Audio segmentation is performed based on audio en-
ergy thresholds to isolate individual utterances. ATCO
commands are transcribed by first running a Whisper
model on the segments and then manually correcting
them using Prodigy®. The audio recordings also include
occasional communication between ATCOs (usually in
Dutch), but these are not included in the dataset for this
study. The utterances used contain exclusively English
speech (with occasional Dutch phrases such as goede
dag) and relevant simulator communications.

3.2 Context Data

Next to the recorded audio from NARSIM, complemen-
tary context data from the experiments is also used for
this study. In particular, this includes the callsigns of
all flights, along with their associated flight plans, con-
sisting of scheduled entry times and route waypoints.
The context data used in this study corresponds to sce-
nario information that is typically available prior to the
start of ATM simulations. No real-time or in-simulation
incorporation of context data is performed. For some
aircraft, the available route data is incomplete, meaning
that certain utterances lack corresponding waypoint in-
formation. To address this, synthetic augmentation is
applied to five utterances from the combined LVNL and
MUAC datasets by inserting the missing waypoint into
the list of possible waypoints at a random position.

4 Experimental Setup

All experiments are conducted on data obtained from
NARSIM. The Structured Information Extraction (SIE)
module is evaluated on both human and ASR transcrip-
tions. A small development subset (LVNL-dev) is used
solely to refine prompts, and performance on the LVNL-
ACC1 and MUAC-Delta sets is not used for prompt it-
eration.

®https://prodi.gy/



4.1 ASR Module

We evaluate two ASR systems: the baseline Whisper
large-v3 ’ and a fine-tuned Whisper large-v2 model
[6]. Performance of both these models is shown in Ta-
ble 3. The word error rates (WER) shown in this table
are calculated after normalization, including case fold-
ing, number normalization, and mapping NATO pho-
netic alphabet tokens to letters [6]. In some outputs of
the fine-tuned model, a spurious fixed string occasion-
ally appears at the start, which is easily removed in post-
processing.

It is worth noting that, although the fine-tuned model
is not trained on NARSIM data, its training set includes
operational data from LVNL, which may explain its
stronger performance on data from the simulated LVNL
sector compared to the MUAC sector.

Table 3: Word error rate of each Whisper model on the LVNL-ACC1
and MUAC-Delta NARSIM sets.

Dataset Whisper Baseline Whisper
(large-v3) Fine-tuned
(large-v2)
LVNL 40.7% 12.2%
MUAC 28.3% 17.2%
Total 34.8% 14.6%

4.2 Structured Information Format and On-
tology

The SIE module first identifies the commands in tran-
scribed ATCO utterances, then determines their cat-
egory and extracts command entities in a structured
JSON format. An example of a SIE input-output pair is
shown in Figure 2. The utterance in this example con-
tains two instructions: a climb command and a head-
ing command. The SIE returns the command category
along with all instruction entities for each command. In
this case, neither command includes a qualifier or con-
dition, so the module returns null for these fields.
Command category, or Instruction category, can be
regarded as a multi-class prediction task with labels ver-
tical command, horizontal command, speed command,
changing frequency command, or other, which is a sub-
set of the categories mentioned in SESAR PJ16-04 [9].
An overview of the frequency at which each of these
categories appears in the LVNL and MUAC datasets is
shown in Figure 3. Overall, vertical commands (altitude
changes, vertical speeds) make up 48.7% of all com-
mands, followed by horizontal commands making up
another 22.6% (direction commands, heading changes),

https://huggingface.co/openai/whisper-large-v3

Structured Information

callsign: RYRGJF

command category : vertical command
command : Climb

- value:240

unit : FL

qualifier : null

condition - null

ar

callsign - RYRGJF

command categery - horizontal command
command : Heading

- value: 260

unit - degrees

qualifier : null

condition - null

- JSON

Figure 2: Example of structured information extraction (SIE) from
a human-annotated ATC transcript.

frequency change commands 12.8%, and speed changes
being the least frequently occurring category with only
4.5% of total commands. There is also a difference
in distribution between the LVNL and MUAC datasets,
with the LVNL dataset having more vertical and speed
commands and MUAC having more frequency and hor-
izontal commands. These differences likely reflect the
operational roles of the respective sectors, with lower
airspace having more climb and descent phases or com-
mands, while upper airspace control emphasizes cruise-
level coordination.

Distribution of Command Categories by Dataset
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Figure 3: Instruction frequencies per sector by category.

Instruction entities follow the same ontology [9]:
each instruction is parsed to command (type), value,
unit, qualifier, and condition. Examples of these fields
appear in Figure 4.

Callsigns are always extracted in their ICAO format
[15] for standardization. For example, “KL.M1999”
may be spoken as “KLLM one niner niner niner” or
“KLM one triple niner,” yet both map to the same ICAO
string.



Instruction
Command Value Unit
e.g. "climb”, e.g. altitudes, eqg "FL"
"increase speeds, "knofs",
speed” . waypaoints. .. "Ftfmin"..

Figure 4: ATC instruction entities, based on ontology from SESAR
PJ16-04 [9].

Not all instructions contain all entities. The preva-
lence of each field in the combined LVNL and MUAC
datasets is shown in Figure 5. Callsigns and commands
appear in every instruction, but not all of them include
a value or unit, an example of such an instruction is
“KLLM123, continue climb.” Furthermore, only a small
fraction of commands include a qualifier or a condition.

Presence of Entities in Extracted Instructions

callsign

command
value
unit
qualifier

condition 1 17

0 20 40 60 80 100
Fraction of instructions (%)

Figure 5: Occurrence frequency for each entity in the combined
LVNL and MUAC dataset.

4.3 Prompt Design and Variants

LLM performance on information extraction is sensitive
to how the prompt is formulated. Clear task description,
consistent output formatting, and structured examples
improve accuracy and reproducibility of the outputs [1].
Prompt development is guided by small-scale trials on
LVNL-dev, which is excluded from final evaluation. All
prompts share the same template:

* Brief description of the entities

* Desired JSON output specification

* Optional context information

» Five examples (retrieved exclusively from the
LVNL-dev dataset)

We construct three prompt variants, differing in con-
text information provided. They are summarized in Ta-
ble 4. Each family is applied to both human and ASR
transcriptions. ASR prompts include a brief note on po-
tential transcription errors and use noisy examples re-
flecting typical artifacts, but are otherwise the same as
the prompts used for human transcripts.

4.4 Inference and Hardware Specifications

We use 2xNVIDIA A100 and V100 GPUs. A100 GPUs
are used to run the Llama 3.3 70B model, while V100s
are used for Whisper inference and for running/fine-
tuning Gemma-3. Unless stated otherwise, the decoding
temperature for LLM inference is set to 0.0, in order to
improve reproducibility and reduce the randomness of
the outputs.

4.5 LLM Fine-tuning

Fine-tuning is applied to the smaller Gemma-3 (4B)
model to test whether limited domain-specific data
can boost performance, as its lightweight architecture
makes it feasible to fine-tune within hardware con-
straints compared to the larger Llama 3.3. Gemma-
3 (4B, instruction-tuned) is further fine-tuned using
Unsloth® on input-output pairs constructed with the
Callsigns-Only (CS) prompt without embedded exam-
ples. Five-fold cross-validation is performed on the
combined LVNL-ACCI1 and MUAC-Delta datasets with
a split of 70/10/20 for training/validation/testing, re-
spectively. For each fold, the model is trained for one
epoch. Parameter-efficient fine-tuning (PEFT) via Low-
Rank Adaptation (LoRA) is applied [8], [10]. A fixed
random seed is selected to ensure reproducibility.

4.6 Evaluation Metrics

Manually annotated labels (JSON-formatted, with enti-
ties and categories) are used as reference for evaluating
the performance of the SIE module. Since utterances
may contain multiple commands, a greedy one-to-one
matching algorithm is used to align human annotated
and LLM predicted commands. For each human anno-
tated command, all unmatched predictions are scored
based on the number of identical fields after normaliza-
tion (command category, command, value, unit, quali-
fier, condition, and callsign). Normalization consists of
lowercasing and collapsing extra whitespace to ensure
consistent string comparison. The prediction with the
highest score is selected as the match, with each predic-
tion used at most once.

For each matched command pair, entity fields are
compared individually. A True Positive (TP) is counted
when the manual annotation and the prediction contain
the same value. A False Negative (FN) occurs when the
human annotation specifies a value but the prediction
either omits it or gives a different value. Conversely,
a False Positive (FP) occurs when the prediction pro-
vides a value that is absent from the human annotation

8https://docs.unsloth.ai/



Table 4: Prompt variants and included context. All prompts also include five examples and JSON output format requirements.

Prompt family Context included

No Context (NC) Airline designators only, no nearby callsigns or any sector-
specific information.

Callsigns Only (CS) Nearby callsigns written in ICAO format (2-hour scenario win-

dow) and relevant airline designators only.

Additional Context (CX)

Two-stage prompting: extract callsign and command category,

then add targeted context based on category (route waypoints
for horizontal, sector frequencies for frequency change, plausi-
ble speed ranges for speed, sector altitude ranges for vertical).

or differs from it. Thus, FN reflects missing informa-
tion relative to the human annotation, whereas FP re-
flects additional or incorrect information introduced by
the prediction.

Unmatched human annotated commands contribute
to FN counts for each present entity field, while un-
matched predictions contribute to FP counts for each
present entity field.

F1 and Micro-F1 Computation

We evaluate the command category assignment perfor-
mance using the F1 score, defined as the harmonic mean
of precision and recall:

o 2 - Precision - Recall

)

Precision + Recall

where Precision = 771 and Recall = 770

The entity extraction task covers six structured en-
tity fields:
qualifier, and condition. Micro-F1 is chosen
as the primary metric because it reflects overall extrac-
tion accuracy by weighting each prediction equally, re-
gardless of the entity type. This is particularly impor-
tant in our setting, where the dataset is imbalanced (e.g.,
callsigns are much more frequent than conditions), and
we aim to measure the model’s aggregate performance
across all entities. Micro-F1 is calculated by aggregat-
ing true positives (TP), false positives (FP), and false
negatives (FN) across all six fields and all utterances
within an evaluation split, as shown in Equation 2.

callsign, command, value, unit,

. 2. TPtotal
Micro-F1 = )
2. TPtotal +F Ptotal + F'N; total

Finally, entity frequency in this study is defined as
the number of times a specific entity appears in human
annotations (TP + FN).

5 Results

First, we evaluate the performance of SIE using the
Llama model on different prompts and transcripts. Fig-
ure 6 summarizes micro-F1 scores across the three dif-
ferent prompt strategies and across human and Whis-
per transcripts. Performance increases consistently
with both higher-quality transcripts and richer prompts.
Moving from No Context (NC) to Callsigns Only (CS)
yields gains of approximately 0.05-0.07 F1 across all
transcript types, with the largest improvement observed
for baseline Whisper transcriptions. Adding Additional
Context (CX) provides a further but smaller improve-
ment of 0-0.02, with the effect diminishing as transcrip-
tion quality increases. When using human transcripts,
the model reaches a ceiling of 0.91 micro-F1 under both
CS (0.912) and CX (0.914) prompts.

Entity F1 by Prompt x Transcript

1.0

—-04

=02

—0.0

Figure 6: Micro-F1 by prompt family and transcript source. Each
cell reports the micro-averaged F1 score for one prompt (rows) and
transcription condition (columns).

Transcript quality seems to be more impactful than
context-enhanced prompting: fine-tuned Whisper-v2



significantly outperforms Whisper-v3 by around 0.09—
0.11 by micro-F1 scoring, with gold transcripts mak-
ing an additional difference of 0.10-0.13. The impact
of transcript quality on the SIE output can also be vi-
sualized in Figure 7, where the three data points cor-
responding to the three different transcripts indicate a
strong correlation between the transcript WER and the
SIE Micro-F1. This relation seems to be somewhat
stronger when going from golden transcripts to fine-
tuned Whisper outputs than going from fine-tuned to
baseline Whisper. Furthermore, CS and CX prompts
show a somewhat less steep decline in quality between
human transcripts and baseline Whisper models, which
can be explained by the fact that these prompts enhance
the recognition of certain callsigns, waypoints, and val-
ues even when they are not transcribed fully correctly.

Micro-F1 (Entities) vs WER

Prompt

0.2 ® No Context (NC)

® Callsigns Only (CS)

®  Additional Context (CX)

Micro-F1
o
[=2]

o
=~

0.0

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
WER (Total)

Figure 7: Effect of ASR WER on SIE micro-F1 per prompt fam-
ily. The three data points correspond to gold transcriptions (WER
assumed to be 0%), fine-tuned Whisper model (WER = 14.6%), and
baseline Whisper model (WER = 34.8%)

We also evaluate the performance of the Llama 3.3
model per entity to understand how these micro-F1
scores are constructed. Table 5 shows the performance
on human transcripts using the CS prompt. In general,
the LLM output contains more false positives than false
negatives, explained by the fact that the LLM overpre-
dicts the number of commands present in the transcrip-
tions. Performance is generally higher for frequent enti-
ties, such as unit (F1 = 0.96), callsign (F1 = 0.94), value
(F1=0.94), and command category (F1 = 0.88). In con-
trast, rare entities perform worse: qualifier (F1 = 0.69)
and especially condition (F1 = 0.38), where both false
positives and false negatives outnumber true positives.
This is explained by the fact that conditions tend to be
more complex and longer than other entities, and they
may have multiple ways of wording, making them less
likely to be an exact string match with the human anno-
tation. For qualifiers, false positives strongly dominate
false negatives, even more so than for other entities, in-
dicating that the LLM tends to overpredict what counts
as a qualifier.

Table 5: Entity-level F1 scores for the Llama model using the CS
prompt and human transcripts. Micro-F1 = 0.912

Entity TP FP FN Frequency F1
callsign 489 40 25 514 0.94
command 460 72 54 514 0.88
value 426 27 24 450 0.94
unit 313 19 8 321 0.96
qualifier 37 25 8 45  0.69
condition 6 9 11 17 0.38

Sector Differences

Furthermore, sector generalizability of the Llama-based
SIE is evaluated by calculating evaluation metrics on the
LVNL and MUAC datasets separately, with the results
displayed in Figure 8. It seems that although prompts
are tailored according to the LVNL-dev dataset, only a
difference of 0.03-0.04 in F1 score is observed on hu-
man transcription and baseline Whisper-large-v3 model
performances across sectors. There is a larger discrep-
ancy in the fine-tuned Whisper output performance, but
this can also partially be attributed to the difference in
WER between the sectors as shown in Table 3. The sec-
tor difference in the fine-tuned Whisper performance is
also evident from the fact that callsign recognition is
better for the MUAC-Delta sector than for LVNL-ACC1
in human transcriptions, but the opposite is true for the
fine-tuned Whisper SIE, where there are likely more
transcription errors in callsigns (see Tables 6 and 7).

Sector comparison: Entity Micro-F1 across ASR inputs

1.0 Sector
0.93
089 084 LVNL-ACC1
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Ground truth Whisper large-v3 Whisper large-v2 (ft)

Figure 8: Entity micro-F1 scores per sector. CS prompt used.

Table 6: Entity-level micro-F1 scores by sector for the CS prompt
and human transcripts.

Entity LVNL-ACC1 MUAC-Delta
callsign 0.93 0.97
command 0.89 0.81
condition 0.67 0.00
qualifier 0.95 0.64
unit 0.97 0.94
value 0.94 0.93




Table 7: Entity-level micro-F1 scores by sector for the CS prompt
and the fine-tuned Whisper transcripts.

Entity LVNL-ACC1 MUAC-Delta
callsign 0.76 0.71
command 0.86 0.76
condition 0.42 0.00
qualifier 0.83 0.53
unit 0.95 0.92
value 0.82 0.66

Latency Evaluation

To evaluate the computational cost of the different
prompting strategies, we measured inference latency us-
ing Llama 3.3 on two A100 GPUs. Table 8 reports the
average prompt length (in tokens) and average inference
time for the three schemes: no context (NC), callsigns
only (CS), and additional context (CX).

The results show that NC yields the shortest prompts
(828 tokens on average) and therefore the fastest infer-
ence time (2.6 s). In contrast, the CS scheme signifi-
cantly increases prompt length (1956 tokens) and cor-
respondingly latency (3.3 s). The CX scheme, which
uses a two-step process, results in a combined length of
1560 tokens in the first step and 882 tokens in the sec-
ond, with a total inference time of 3.8 s.

Overall, the differences of approximately 1-1.2 s
between the simplest (NC) and most complex (CX)
schemes are not prohibitive, but they highlight the
trade-off between accuracy and latency when designing
prompt structures for real-time ATC applications.

Table 8: Average input length (tokens) and total inference time
for different prompt schemes using Llama 3.3 on two A100 GPUs.
Tested schemes are No Context (NC), Callsigns Only (CS), and Ad-
ditional Context (CX).

Prompt Avg. Length (tokens) Avg. Time (s)
NC 828 2.6
CS 1956 33
CX 1560 (step 1), 882 (step 2) 3.8

Gemma-3 (4B) Baseline Performance

To evaluate the effect of LLM model size and family, the
Gemma-3 4B model is evaluated with the CS prompt on
both human transcriptions and Whisper-large-v3 tran-
scriptions. Gemma is a smaller model and, while it is
newer than Llama 3.3, the expectation is that due to the
difference in the number of parameters it still performs
WOrse.

Both entity micro-F1 and category extraction F1
scores are shown and compared with Llama 3.3 in Table

9. It is evident that the Gemma model performs signif-
icantly worse than the Llama model on both category
and entity extraction. Gemma-3 4B reaches an entity
micro-F1 score of 0.70 under the CS prompt.

Table 9: Gemma vs Llama on CS prompt for two transcript sources.

Transcript Metric Gemma-3  Llama 3.3
4B (base- 70B
line)
. Entity F1 0.70 0.91
Human Transcript Category 0.80 0.98
F1
. Entity F1 ~ 0.58 0.70
Whisper large-v3 i coory  0.65 0.88
Fl1

Gemma-3 (4B) fine-tuned Performance

While the performance of the baseline Gemma-3 model
is lower than that of Llama 3.3, it has the advantage of
being a lighter and faster model. This applies both to in-
ference and fine-tuning. The effects of fine-tuning and
testing this 4B model on the combined LVNL/MUAC
dataset are shown in Table 10. It is evident that fine-
tuning improves the entity extraction performance sig-
nificantly, with the entity micro-F1 increasing after fine-
tuning on fewer than 400 samples from 0.70 (baseline)
to 0.81 (fine-tuned). On the other hand, the command
classification does not perform significantly better. This
suggests a steeper learning curve for the Gemma model
to understand the task and what each extracted field en-
tails, rather than understanding the broader context of
the utterances.

Table 10: Performance of different LLMs on human transcripts, us-
ing the Callsigns Only prompt.

Model Entity F1 = Category F1
LLaMA 3.3 0.91 0.98
Gemma-3 (baseline) 0.70 0.80
Gemma-3 (fine-tuned) 0.81 0.84

6 Qualitative Error Analysis

While F1 scores provide a good overview of the SIE
module’s overall performance, it’s also important to
qualitatively examine the LLM outputs to understand
the nature of the errors being made, not just their fre-
quency. This is particularly relevant when considering
real-world deployment, such as using the model to assist
or automate tasks for a pseudo-pilot.



6.1 Beyond Exact String Matching

It is important to note that exact string matching tends to
underestimate performance, as many predicted outputs
are semantically equivalent to the human labels despite
lexical differences (e.g., "Climb” vs. ”Climb to”, 128.4
vs. 128.400, "maintain speed” vs. "keep speed”, ”Am-
sterdam sector 27 vs. "Amsterdam sector two”, "call”
vs. “contact”).

Moreover, the boundaries between certain entities are
not always clearly defined, even for human annotators.
For example, an instruction like “expedite your climb”
could be interpreted as a single command (expedite
climb) or as a command with an associated value
(expedite, climb). Such ambiguity is particularly
common in the qualifier and condition fields,
which partly explains why these fields consistently have
the lowest accuracy and recall across experiments.

To better reflect semantic understanding, a subset of
experiment outputs was manually re-scored with se-
mantic matching in mind. In this evaluation, semanti-
cally equivalent entities and commands were counted as
correct, resulting in higher micro-F1 scores. For CX on
human transcriptions, the micro-F1 increased from 0.91
to 0.95 (see Table 11). For fine-tuned Whisper + CX,
it increased from 0.81 to 0.86. As expected, per-entity
scores, particularly for fields with more ambiguous def-
initions such or complex structure such as qualifier
and condition, were also notably higher than in the
exact matching evaluation (see Table 5).

Table 11: Field-level scores with manual semantic matching (CX on
human transcripts).

Field Precision Recall Fl

command category 0.99 0.99 099
command 0.96 096 0.96
value 0.98 096 097
unit 0.98 0.98 098
qualifier 0.72 0.89  0.80
condition 0.67 0.59 0.62
callsign 0.96 0.96 0.96

6.2 Representative Error Types

Even after adjusting for semantically correct outputs
that were penalized by exact string matching, errors re-
main in the SIE outputs, even for gold transcriptions.
After a manual inspection, certain types of recurring er-
rors and trends emerge which are described below.

A. Logical/format errors (numbers and corrections).
The model occasionally misinterprets verbal numerals

or fails to apply correction phrases as intended. These
errors typically affect callsign and value extraction and
are traceable to specific patterns in the input. Table 12
shows examples where the predicted callsign was incor-
rect despite the correct callsign being evident from the
transcript, and the predicted one not appearing in the list
of nearby callsigns. A mitigation strategy here would be
to add an extra check ensuring the retrieved callsign is
in the list of nearby callsigns.

Table 12: Logical handling of numerals and corrections.

Utterance Human Label  Prediction

KLM one triple nine CS=KLM1999 CS =KLM139

climb FL two one

Zero
KLM eight eight, CS CS =KLM838
correction KILM =KLM1188

one one eight eight,

descend FL seven

Zero

B. Hallucinations. Occasionally, the model generates
values that are not supported by the input text, even
when it seems to parse the rest of the instruction per-
fectly correctly. An example of this type of error is
given in Table 13. This instruction is parsed completely
correctly, except for the value (frequency). Although
this was the only such hallucination to be observed in
the CX prompt/human transcript outputs, this type of
errors particularly problematic because they lack any
apparent grounding in the input. These errors cannot
be explained by transcription noise or misinterpretation,
and therefore represent true model hallucinations.

Large language models are known to exhibit this be-
havior [11], [16]. While difficult to eliminate, some mit-
igation strategies include applying post-processing steps
to LLM outputs: (i) checking if the output was men-
tioned in the utterance as well, (ii) lexicon/range valida-
tion for frequencies, headings, and flight levels, and (iii)
a brief self-verification step that prompts the model to
check and revise its own answer, which can reduce the
rate of hallucinations significantly [21].

Table 13: Example of a hallucinated value.

Utterance Human label Prediction
Ryanair six juliett fox Val =123.705  Val = 123.770
call Amsterdam one two (altered)

three seven zero five




C. Waypoints Or other Unfamiliar Words It was
a curious observation that the waypoint OMELO was
parsed incorrectly on all three occasions it appeared
in the dataset, across all prompt families and ASR in-
puts. In the full-context prompt, it was rendered as
OMELLO or OMELo, while in callsign-only prompts it
appeared as OMEL or OMELON. This behavior is likely
due to out-of-vocabulary (OOV) effects [19]: OMELO
is a domain-specific term that likely does not appear
in Llama’s training data and is tokenized into rare or
unfamiliar subword units, resulting in unstable out-
put. These errors can be mitigated by applying a post-
processing step that checks against a known list of valid
waypoints.

D. Entity ambiguity. As mentioned earlier, the LLM
struggled with some instructions that have a more am-
biguous mapping to structured entities. A common ex-
ample involves climb or descent instructions that also
specify a vertical speed. These were sometimes parsed
as two separate commands, and other times as a single
Climb/Descend command with the vertical speed in-
cluded as a condition. For instance, the instruction
“Sunexpress seven tango tango, descend flight level two
six zero, two thousand feet per minute or greater” could
be parsed either as:

(i) two commands: a Descend command with value
FL260, and a separate Vertical Speed com-
mand with value 2000 fpm or greater,or

(i1) a single Descend command with value F1.260
and the vertical speed expressed as a condition.

Such inconsistencies are not critical and can likely be
mitigated by incorporating clearer descriptions or repre-
sentative examples into the prompt.

6.3 ASR Error Propagation

Finally, SIE output errors that can be traced back to ASR
mistakes are considered. Table 14 presents examples
of SIE errors that arise directly from transcription mis-
takes. Waypoints, in particular, tend to cause issues:
they are often misrecognized by the ASR system, likely
due to their rarity and absence from general training
data. Even when the list of waypoints is provided as
context in the prompt, the SIE module often fails to re-
cover them correctly. In some cases, these errors also
affect the extraction of other entities within the same ut-
terance if they are transcribed incorrectly.
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7 Study Limitations

This study has several limitations that may affect the
generalizability of its findings. First, the dataset used
was relatively small: around 500 annotated samples,
which limits the statistical robustness of both the fine-
tuning and evaluation. All annotations were created
manually by the author. While every effort was made
to ensure accuracy, this introduces potential for human
error and subjective interpretation. Additionally, the
dataset was limited to area control scenarios from the
NARSIM simulation environment. As a result, findings
may not generalize to other simulation setups or to dif-
ferent air traffic management (ATM) domains such as
tower control.

Model training and evaluation were also constrained
by hardware. Larger models such as Llama 3.3 could
not be fine-tuned with the available hardware for this
study. Furthermore, no extensive hyperparameter tuning
was performed for Gemma-3.

Moreover, while prompting was used to improve the
performance of the LLM-based SIE module, the ASR
module (Whisper) was used without prompting or con-
ditioning. This may have negatively impacted transcrip-
tion quality and contributed to downstream errors. The
study also only evaluated open-source LLMs due to
confidentiality and accessibility constraints. As a result,
stronger proprietary models, potentially better suited to
the task, were not considered.

Finally, the prompts provided to the SIE module only
included static context information, such as a broad list
of nearby callsigns known in advance. In real-time
ATC systems, where simulator metadata is available dy-
namically, more precise prompts could be constructed
(e.g., with a much smaller list of plausible callsigns
or routes), potentially improving both extraction pre-
cision and reducing the computational cost associated
with large prompt lengths.

8 Conclusions

This thesis set out to evaluate the feasibility of us-
ing open-source large language models (LLMs) for
structured information extraction (SIE) from air traffic
control (ATC) communications, considering both gold-
standard transcripts and automatic speech recognition
(ASR) outputs. The findings show that accurate struc-
tured parsing is achievable with few-shot prompting,
and that such systems can be built without reliance on
large annotated datasets.

A central conclusion is that transcription quality
appears to be the most influential factor for down-



Table 14: Representative ASR to SIE error propagation examples. Fine-tuned Whisper and CX prompt used

Reference utterance

ASR output

Downstream extraction error

“eight one november hello climb
flight level ah two five zero”

"KLM three three yankee hello

climb to flight level two five zero”

“one zero hotel good day continue
on the arrival landing runway one
eight center”

”.resume own navigation direct
RAVLO”

”...direct to BUREK”

“eight two november hello climb
flight level ah two five zero”

"KLM three three yank hello
cleared to fly at flight level two five
zero”

“one zero hotel good day equal to
you ahm only ryanair four landing
runway will be one eight center”

”..resume own navigation to the
right hello”

”...direct to BUREQ”

CS = EWGS82N instead
KLMSIN (not in nearby list)

of

Command = Cleared to instead of
Climb to

Command = Landing runway, Call-
sign = RYR

Qualifier = to the right, waypoint
missed

Value = BUREQ instead of BU-

REK

stream SIE. Improvements in ASR word error rate tend
to translate into better extraction accuracy, highlight-
ing the value of continued development of domain-
adapted ASR. Prompting with targeted context, espe-
cially nearby callsigns, generally yields improvements
and can be regarded as a practical default. Additional
context provides only modest benefit, except in noisier
transcripts. Model size plays a secondary role: while
Llama 3.3 achieves the strongest performance, compact
models such as Gemma-3 can reach comparable accu-
racy when fine-tuned on a few hundred domain-specific
examples, offering a potentially more resource-efficient
alternative.

Taken together, these results provide evidence that an
end-to-end speech-to-instruction pipeline can reach op-
erationally meaningful performance. At the same time,
qualitative analysis highlights recurring error types,
over-prediction, difficulties with rare entities, and oc-
casional hallucinations, that would need to be mitigated
through verification steps before deployment. The dis-
cussion has shown that such measures, combined with
latency-aware design and targeted prompting, could
make LLM-based SIE suitable not only for research and
training environments but also for integration into real-
time pseudo-pilot systems.

The contributions of this work are threefold. First,
it establishes a benchmark for open-source LLM-based
SIE on both clean and noisy transcripts in ATC. Second,
it demonstrates the effectiveness of lightweight prompt-
ing and fine-tuning strategies, pointing to clear trade-
offs between accuracy, latency, and computational cost.
Third, it identifies concrete directions for improving re-
liability, such as verification layers, dynamic context,
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and tighter coupling with ASR. Together, these find-
ings position LLMs as a flexible and scalable foundation
for structured ATC command extraction, with applica-
tions ranging from automated training support to future
safety-monitoring tools.

9 Discussion and Future Work

While this study focused primarily on the structured
extraction (SIE) performance of LLMs, practical de-
ployment, particularly in real-time systems, requires
consideration of computational cost and inference la-
tency. Llama 3.3 (70B), used in this work for few-
shot prompting, is a large and resource-intensive model.
Few-shot prompting also necessitates longer inputs, fur-
ther increasing inference time. In real-time applica-
tions such as an automated pseudo-pilot, where outputs
must be generated promptly, these delays become sig-
nificant. This is especially true when the SIE module
is paired with an ASR system, as latency compounds
across the pipeline. Although tools like Whisper-Live’
or Whisper—Turbo10 offer faster ASR, this often comes
at the cost of higher word error rates.

On the output side, modern text-to-speech (TTS)
tools are already fast enough and are unlikely to con-
tribute further to latency bottlenecks. Our latency eval-
uation confirmed that more complex prompt schemes
introduce additional delay, which, when compounded
with ASR latency, could limit real-time applicability.
In practice, prompts could be shortened by using tar-
geted context, such as shorter callsign lists. Fine-tuning

*https://pypi.org/project/whisper-live/0.0.4/
https://huggingface.co/openai/whisper-large-v3-turbo



a smaller LLM or using more advanced hardware can
further help to reduce latency.

Furthermore, practical deployment would likely also
have stringent requirements on accuracy. To mit-
igate hallucinations or spurious outputs from the
LLM, several lightweight verification strategies can be
added. These include self-verification through a second
prompting step, verifying that extracted values actually
occur in the utterance, or ensuring consistency with ex-
ternal knowledge such as a list of nearby callsigns, valid
waypoints, or typical ranges for speeds and altitudes.
Such checks can reduce the risk of false positives, often
more harmful than null predictions in a safety-critical
setting, though they may increase inference time. Fur-
thermore, prompting the model to abstain (i.e., return a
null output) when uncertain is a viable approach to im-
prove reliability and reduce false positives, especially
when the model is used in conjunction with imperfect
ASR transcriptions.

Beyond structured extraction, large language mod-
els offer potential for broader use in pseudo-pilot sys-
tems. Their ability to maintain long context and flexi-
bly handle diverse input makes them suitable for con-
versational or interactive behavior. While uncommon,
controller-pilot interactions occasionally include clarifi-
cation requests or negotiation of infeasible instructions,
cases where traditional rule-based systems or fall short.
LLMs could enable more dynamic and context-aware
interaction in these scenarios.

In settings where real-time inference is not essential,
LLMs can also be used to automatically generate la-
beled data for downstream tasks. For instance, they
could be leveraged to create large-scale labelled training
datasets for smaller, faster models, such as BERT-based
classifiers or fine-tuned LLM variants. These models
could then be used in real-time settings with signifi-
cantly lower latency.

Finally, improvements in context use can enhance
both performance and efficiency. In this study, con-
text was static, based on pre-defined lists like nearby
callsigns. However, real-time access to simulator meta-
data could enable dynamically targeted prompts, with
shorter, more relevant lists. For example, narrowing the
set of expected callsigns to those active in the sector
could help the model make better predictions and re-
duce prompt size.

Future work should also explore combining LLM-
based SIE with prompted ASR models. Since errors
in callsign and waypoint transcription were found to be
a major source of downstream mistakes, improving the
ASR output itself, especially for domain-specific termi-
nology, could yield substantial gains for the entire sys-
tem.
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Supplementary Figures

This appendix presents supplementary figures that complement the Results section. All scoring follows
the exact-match evaluation procedure described in Section 4 of the paper. No additional methods or
datasets are introduced beyond those outlined in the main text.
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Figure A.1: Category extraction by prompt family and transcript source. Each cell reports the instruction
category score for one prompt (rows) and transcription condition (columns), darker shades indicate
better performance.
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Figure A.2: Effect of ASR WER on instruction category F1 per prompt.

15



16

Instruction Category F1 scores by Prompt x ASR
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Figure A.3: F1 scores per instruction category by prompt schemes and trancsripts.
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Category confusion on Whisper transcripts
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Figure A.5: Category classification errors per category, with CS prompt scheme on the baseline
Whisper large-3 transcripts.

Category confusion on human transcripts
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Figure A.6: Category classification errors per category, with CS prompt scheme on the human
transcripts.
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Table A.1: 5-fold cross-validation scores for fine-tuned Gemma-3 (4B), with the indices indicating
separate runs. Entity Micro-F1 scores are given.

Entity Extraction F1  Command classification F1

0 0.843 0.836
1 0.782 0.829
2 0.781 0.826
3 0.822 0.867
4 0.799 0.827

mean 0.805 0.837




Finetuning Parameters

Unsloth framework is used for memory-efficient finetuning of Gemma 3.

model = FastModel.get_peft_model(
model,
finetune_vision_layers = False,
finetune_language_layers True,
finetune_attention_modules = True,
finetune_mlp_modules True,

r = 8,

lora_alpha = 8,
lora_dropout =
bias = "none",
random_state

0.00,

3407,

from trl import SFTTrainer, SFTConfig
trainer = SFTTrainer (

model = model,

tokenizer = tokenizer,

train_dataset = df,

eval_dataset = df_val,

args = SFTConfig(
dataset_text_field = "text",
per_device_train_batch_size =
gradient_accumulation_steps
warmup_steps = 5,
num_train_epochs =1,
learning_rate = 2e-4,
logging_steps = 1,
optim = "adamw_8bit",
weight_decay = 0.01,
1r_scheduler_type = "linear",
seed = 3407,
eval_strategy = "steps",
eval_steps = 1,
report_to = "none",

no
IS

"https://unsloth.ai/blog/gemma3
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Prompts

Few-shot prompt used for ground truth transcriptions, aiding with a list of nearby

callsigns
One example is removed from the prompts due to data confidentiality

You are an ATC transcript parser.

Extract essential information from each instruction. For every instruction in the transcript,
return a list of structured JSON objects with the following fields:

- "callsign": [in ICAO format, has to be matching one of the nearby callsigns provided]

- "command_category": [one of: "vertical command", "horizontal command", "speed command", "
changing frequency", "other"]

- "command": [e.g., "Climb", "Descend", "Maintain", "Turn", "Contact", "Direct to", "Speed", etc
.1

- "value": [e.g., "350", "180", "WOODY", "101225", or null]

- "unit": [e.g., "FL", "knots", "degrees", "MHz", or null]

- "qualifier": [e.g., "left", "or above", or null]

- "condition": [e.g., "when reaching FL200", "if able", or null]

Strict output rules:

- Output must be **valid JSON onlyx*x*.

- Wrap output in a **JSON array**, even for a single instruction.

- Do **not** include Markdown formatting, comments, or explanations.

- Do **not** return line-separated outputs, just a single well-formed JSON array.

### Examples

#### Input:

Transcript: corendon eight lima echo good day climb flight level two five zero

Operator names: CAI: CORENDON, DAL: DELTA, KLM: KLM, RYR: RYANAIR, SAS: SCANDINAVIAN, TRA:
TRANSAVIA

Callsigns nearby: CAI66JF, CAISLE, DAL161, KLM1755, KLM7910, RYR8JF, SAS1555, TRAG5L

json(s):
[
{

"callsign": "CAISLE",
"command_category": "vertical command",
"command": "Climb",
"value": "250",
"unit": "FL",
"qualifier": null,
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"condition": null

#### Input:

Transcript: Ryanair six juliett fox climb level two five zero correction two four zero and fly
heading two six zero

Operator names: CAI: CORENDON, CND: DUTCH CORENDON, DAL: DELTA, KLM: KLM, RYR: RYANAIR, SAS:
SCANDINAVIAN, TRA: TRANSAVIA, WZZ: WIZZAIR

Callsigns nearby: CAI1129, CND6514, DAL161, KLM1755, KLM7910, RYR6JF, RYR8JE, SAS1555, TRA1223,

WZZ7943
json(s):
[
{
"callsign": "RYR6JF",
"command_category": "vertical command",
"command": "Climb",
"value": "240",
"unit": "FL",
"qualifier": null,
"condition": null
1,
{
"callsign": "RYR6JF",
"command_category": "horizontal command",
"command": "Heading",
"value": "260",
"unit": "degrees",
"qualifier": null,
"condition": null
X
]
#### Input:

Transcript: KLM four one hotel speed two fifty or less

Operator names: CAI: CORENDON, DAL: DELTA, EJU: ALPINE, KLM: KLM, RYR: RYANAIR, SAS: SCANDINAVIAN
, TRA: TRANSAVIA

Callsigns nearby: CAI66JF, CAISLE, DAL161, KLM10H, KLM136E, KLM1755, KLM41H, KLM63J, KLM7910,
RYR8JF, SAS1555, TRABS5L

json(s):
[
{

"callsign": "KLM41H",
"command_category": "speed command",
"command": "Speed",
"value": "250",
"unit": "knots",
"qualifier": "or less",

"condition": null

#### Input:
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Transcript: two zero delta hello continue on the arrival runway is three six right
Operator names: CAI: CORENDON, CND: DUTCH CORENDON, DAL: DELTA, KLM: KLM, RYR: RYANAIR
Callsigns nearby: CAI1129, CAI66JF, CND6514, DAL161, KLM20D, KLM33Y, KLM7910, RYR8JF

json(s):
[
{
"callsign": "KLM20D",
"command_category": "other",
"command": "Continue on arrival",
"value": "Runway 36R",

"unit": null,
"qualifier": null,
"condition": null

Now extract and return the instructions in strict JSON format from the following input:

% \end{verbatim}

Few-shot prompt used for ASR transcriptions, no additional context information

needed
One example is removed from the prompts due to data confidentiality

You are an ATC transcript parser.

Extract essential information from each instruction. For every instruction in the transcript,
return:

- "callsign": [in ICAO format]

- "command_category": [one of: "vertical command", "horizontal command", "speed command", "
changing frequency", "other"]

- "command": [e.g., "Climb", "Descend", "Maintain", "Turn", "Contact", "Direct to", "Speed", etc
.1

- "value": [e.g., "350", "180", "WOODY", "101225", or null]

- "unit": [e.g., "FL", "knots", "degrees", "MHz", or null]

- "qualifier": [e.g., "left", "or above", or null]

- "condition": [e.g., "when reaching FL200", "if able", or null]

Keep in mind that the transcript may have some automatic speech recognition errors in them.

Strict output rules:

- Output must be **valid JSON onlyx**.

- Wrap output in a **JSON array**, even for a single instruction.

- Do **not** include Markdown formatting, comments, or explanations.

- Do **not** return line-separated outputs, just a single well-formed JSON array.

### Examples

#### Input:
Transcript: Corinne eight lima echo good day climb flight level two five zero

json(s):

[
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{
"callsign": "CAISLE",
"command_category": "vertical command",
"command": "Climb",
"value": "250",
"unit": "FL",
"qualifier": null,
"condition": null
¥
]
#### Input:

Transcript: rhein air six juliett fox climb level two five zero correction two four zero and fly
heading two six zerra

json(s):
[
{

"callsign": "RYR6JF",
"command_category": "vertical command",
"command": "Climb",
"value": "240",
"unit": "FL",

"qualifier": null,
"condition": null

1,
{
"callsign": "RYR6JF",
"command_category": "horizontal command",
"command": "Heading",
"value": "260",
"unit": "degrees",

"qualifier": null,
"condition": null

#### Input:
Transcript: KELOM for one hotel speed two five or less

json(s):
[
{
"callsign": "KLM41H",
"command_category": "speed command",
"command": "Speed",
"value": "250",
"unit": "knots",
"qualifier": "or less",
"condition": null
}
]
#### Input:

Transcript: KLM eight one papa fly heading zero five five
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json(s):
L
{

"callsign": "KLM81P",
"command_category": "horizontal command",
"command": "Heading",
"value": "055",
"unit": "degrees",

"qualifier": null,
"condition": null

Now extract and return the instructions in strict JSON

format from the following input:




Transcript Correction

Prior to SIE, research was conducted on improving ASR transcripts using LLMs. Three models were
evaluated: GPT-40, Llama-3.3, and Gemma-2, with the results shown in Figure D.1. ASR performance
was assessed using Word Error Rate (WER) on a subset of the ATCO2 test dataset [1].

- Corrected WER Across Prompts

Prompt
P B /ero-shot
60 ’ mmm  Zero-shot detailed
= Few-shot
-——— o,
50 Baseline (32.1%)
40.8%
= 40
Ea 33.4%
5 31.3% 30.5%
=30
20
10
0

GPT-40 LLaMa 3.3 Gemma 2

Figure D.1: Word Error Rate improvement on the ATCO2 test set (146 utterances)

To fine-tune the model, we applied a LoRA (Low-Rank Adaptation) approach on the ATCO2 training
set, which contains approximately 550 transcribed air traffic control utterances. Training was limited to
a single epoch and carried out on free T4 GPUs available through Kaggle, ensuring a cost-effective and
accessible setup.

The fine-tuning procedure followed an instruction-tuning strategy in a zero-shot setting. Each training
instance consisted of an instruction prompt, the corresponding Whisper-generated transcription, and the
target output. Fine-tuning was performed with Hugging Face’s Supervised Fine-Tuning (SFT) Trainer,
which provided an efficient pipeline for adapting the baseline model. The baseline performance was
31.0%, and this setup established the foundation for measuring improvements achieved through fine-
tuning.

Dataset Baseline Gemma-2-9B | Finetuned Gemma-2-9B
ATC-Test Set 40.8% 38.2%

Table D.1: Performance on the ATC-TestSet before and after fine-tuning.
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Introduction

The application of automatic speech recognition (ASR) and natural language processing (NLP) in air traffic
control (ATC) has significant potential to enhance safety and efficiency in the field. One key area is safety
monitoring and incident detection, where ASR is employed to identify communication errors, such as
readback mistakes, and detect anomalies in ATC-pilot exchanges. Projects such as the HAAWAII initiative
have demonstrated the feasibility of both rule-based and machine learning approaches for identifying
miscommunications [2]. Similarly, research is being conducted to explore methods for detecting abnormal,
safety-critical situations within ATC transcripts [3].

Beyond safety applications, ASR also plays a crucial role in speech-to-text logging and incident in-
vestigation, enabling automated transcription of ATC communications to support post-incident analysis
and risk assessment. Additionally, ASR contributes to ATC training through its potential to be integrated
into simulation environments, facilitating automated pseudo-pilot interactions and improving post-training
performance evaluations. Studies have shown that ASR-based training tools can reduce the costs asso-
ciated with human pseudo-pilots by either assisting them with easily accessible information or potentially
replacing them altogether [4, 5, 6, 7, 8]. These use cases underscore the importance of developing high-
accuracy ASR models tailored to ATC communications, both for enhancing safety and lowering operational
costs.

Despite recent breakthroughs in ASR technologies, speech-to-text transcription within ATC remains
prone to errors and often requires manual verification to ensure sufficient accuracy. OpenAl's Whis-
per model has shown promising results in speech-to-text transcription for ATC, particularly when fine-
tuned with domain-specific data [9]. However, due to the limited availability of large-scale annotated ATC
datasets, accuracy remains a challenge, and human oversight is still necessary for many critical applica-
tions.

Recent breakthroughs in large language models (LLMs), driven by the rise of transformer architectures,
increased data availability, and advancements in computational power, have opened new possibilities for
improving ASR post-processing [10, 11]. LLMs are highly versatile and capable of processing contextual
data while adhering to ICAO-standard phraseology and ATC communication protocols. This thesis aims
to evaluate the use of LLMs in refining ASR-generated transcripts, with the goal of improving transcription
accuracy and usability in operational ATC settings. It will do so by leveraging existing transcribed data,
standard phraseology rules, and other contextual data such as radar information.

This report presents the research proposal for the study. Chapter Appendix E provides a review of
relevant literature, including background on ASR, LLMs, ATC communications, and their use cases. The
research objective and key research questions are then outlined in Appendix E, followed by a discussion
of the project scope and timeline in Chapter 4.
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Literature Review

This chapter aims to provide background information on the topics of the thesis. The literature study
is divided in three main parts: applications and use cases of speech-to-text in ATC are discussed in
Appendix E, backgroud in ASR is given in Appendix E, large language models (LLMs) in Equation E, and
finally, a background in air traffic control is given in Equation E.

E.1. Use Cases of Speech Recognition and Understanding in ATC
First, an overview is provided of some of the use cases which make it useful to have a model or a pipeline
to understand and process speech in ATC. It is important to be aware of different use cases, both to
evaluate the utility in developing such models, but also to have an idea of different accuracy thresholds
that are needed for the models to be useful. Some potential use cases are explored below, as well as
background information on whether or not these have already been implemented.

Safety Monitoring & Incident Detection

ASR systems can be used to enhance safety in ATC. One approach to this is to compare the ATC instruc-
tions or what the pilot says, to actual real-time actions of the pilot to make sure they align. In most cases
this would require multi-modal data (e.g. radar data) to compare with the communications, certain safety
hazards can be flagged purely based on the communication as well.

One such example is checking in real time whether there are any incorrect readbacks. This can be
done by comparing the statements from the the air traffic controller (ATCo) with the statements repeated
from the pilot [12], [2].

The HAAWAII project aimed to improve ATC safety by developing a Readback Error Detection As-
sistant (REDA) using Automatic Speech Recognition and Understanding (ASRU) [2]. Readback errors,
where pilots misrepeat ATC instructions, occur in 1-2% of transmissions, with 80

The project explored rule-based and machine-learning approaches. Rule-based methods extract key
details using predefined rules, offering high accuracy when ASR quality is good but requiring manual
updates. ML-based models, like ROBERTa, generalize better but demand large annotated datasets and
are harder to interpret. A hybrid system combining both achieved the best results, detecting 81

However, ASR accuracy remained a challenge, with up to 10% WER for pilots. affecting REDA's overall
performance. The study underscores REDA’s potential to enhance ATC safety but calls for improvements
in false alarm reduction, real-time processing, and ASRU integration into ATC workflows [2].

Another study by Fox et al. [3] looks into leveraging LLMs to detect anomalies (such as e.g. a pilot
noticing something on fire or a sudden engine failure) in ATC communications. The study combined
publicly available transcript datasets with synthetic LLM-generated data to train a Variational Auto-Encoder
(VAE) to be able to recognize abnormal, safety-critical situations from communications. The study found
promising results, achieving Area Under Receiver Operatic Characteristic curve (AUC-ROC) of 88.4%
when processing entirety of conversational exchanges.

These studies provide good examples of transcriptions of ATC for safety analysis that only require
transcripts as input, making a highly accurate ASR being a prerequisite for their utility. Other use cases in
safety also include displaying transcriptions to pilots or ATCos to reduce chances of misscommunications
to begin with.

Logging and Incident Investigation

ASR can play a crucial role in speech-to-text logging and incident investigation by transcribing and storing
all ATC communications in real-time. This can ensure that every interaction between air traffic controllers
and pilots is accurately documented, creating a searchable and time-stamped archive. In the event of
an incident, safety investigators can quickly access past conversations, pinpoint specific exchanges, and

32



Nomenclature 33

analyze communication patterns to understand what went wrong. By eliminating the reliance on manual
audio reviews, ASR significantly speeds up investigations, allowing for a more efficient and data-driven
approach to incident analysis.

Beyond immediate investigations, long-term transcription archives enable pattern analysis and sys-
temic risk detection. Aviation authorities can examine historical records to identify trends in operational
issues, such as repeated misunderstandings of clearance instructions, common phraseology inconsis-
tencies, or frequent communication breakdowns in certain airspace regions. This data-driven approach
helps refine ATC procedures, enhance training programs, and improve standard phraseology adherence,
ultimately contributing to a more robust and error-resistant aviation communication framework. By main-
taining comprehensive logs, the aviation industry ensures that lessons from past incidents are thoroughly
analyzed and applied, reinforcing safety across the entire air traffic system.

Air Traffic Controller Training

ASR can have multiple other applications in controller training as well, and can be of use both in post-
operation and real-time applications. For post-operation, ASR can be utilized for event recognition and
logging, enabling a detailed assessment of controllers’ performance after training sessions. By transcrib-
ing ATC communications, ASR facilitates the identification of areas for improvement, contributing to en-
hanced training outcomes. Studies have explored automatic transcription of ATC communications as a
means to improve system safety and operational efficiency [4].

In real-time training scenarios, ASR supports the role of a pseudo-pilot: individuals who simulate pilot
communications during controller training exercises. Integrating ASR into simulators allows for the au-
tomation of pseudo-pilot functions, leading to more efficient and realistic training environments. Research
has demonstrated the development of virtual simulation-pilot agents capable of processing spoken com-
munications from trainee controllers, generating appropriate pilot responses, and thereby reducing the
need for human pseudo-pilots who tend to be quite expensive [5].

A study by Prasad et al. presents a potential pipeline for such an agent acting as a pseudo-pilot. The
proposed pipeline consists of four modules: (i) an ASR module, (ii) a named entity recognition (NER)
module to categorize ATC speech, (iii) a repetition generator to produce the pilot’s response, and (iv) a
text-to-speech module for verbalizing the response [6].

Their proof-of-concept study highlights that a well-performing ASR system is crucial for the model’s
effectiveness. They found that the NER module achieved promising results, with F1-scores above 0.80 on
the ATCOZ2 dataset. For generating the pseudo-pilot’s speech, they used a rule-based dialogue system
to convert text into appropriate pilot responses, combined with an out-of-the-box text-to-speech model
FastSpeech?2 [7]. The model’s output remained relatively simple, demonstrating proof-of-concept func-
tionality.

Moreover, ASR technology has been applied to support simulation pilots during Human-in-the-Loop
experiments by recognizing verbal clearances from air traffic controllers and forwarding the information to
visual interfaces, enhancing the realism and effectiveness of ATC training simulations [8].
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E.2. Automatic Speech Recognition

After considering the various applications of automatic speech recognition and processing, it is important
to research the state-of-the-art technologies behind them. This section aims to provide an overview of the
various technical elements of ASR, as well as how to evaluate them Appendix E.

Automatic Speech Recognition Models

ASR models are technologies that converts spoken language into text without the need of a human in
the loop. They are widely used in applications such as voice assistants and transcription services. This
section aims to give a background on the theory behind ASRs, as well as the most state-of-the-art ASR
models.

Traditional ASR and Probability Theory
The fundamental goal of an ASR model can be written as follows [13]:

W = argmaxP(W|O) forW €L (E.1)

Where W is a given word sequence and O is an accoustic input sequence and L is a set of possible word
sequences. Using Bayes’ theorem, this can be rewritten as:

. POW)P(W)
W = argmaxw

= argmaxP(O|W)P(W) forW €L (E.2)
Since P(O) remains constant across all candidate sequences, it does not affect the optimization process
and can be ignored [13].

Traditional ASR Architecture

A typical speech recognition system consists of several key components, including the acoustic front-
end, acoustic model, lexicon, language model, and decoder, as illustrated in Figure E.1. The acoustic
front-end is responsible for processing the speech signal and extracting meaningful features that aid in
recognition. During this feature extraction process, the raw audio waveform captured by a microphone
is transformed into a sequence of fixed-size acoustic feature vectors. These vectors are then used to
estimate the parameters of word or phoneme models based on the training data.

The decoder plays a crucial role in ASR by searching through all possible word sequences to determine
the most probable sequence corresponding to the input speech. This probability is calculated using an
acoustic model, which represents the likelihood of observing a given sequence of sounds for a particular
word (P(O]W)), and a language model, which defines the probability of different word sequences (P(W))
[13].

Speech Utterance

-MM Acoustic Model

l Feature v
. t . Hypothesized
Acoustic vector Search Algorithm [ W());‘I:l /Phoneme
Front-end > (Decoder)
A A
Language Lexicon
Model

Figure E.1: Main components of a typical speech recognition architecture [13]
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Modern Approaches in ASR

Recent advances in ASR have seen the emergence of end-to-end models like Whisper and Wav2Vec,
which represent a shift from traditional ASR systems. These models streamline the speech recognition
process by integrating the key components, such as the acoustic and language models, into a single
neural network framework. Whisper, developed by OpenAl [14], processes raw audio input and generates
text output without the need for separate feature extraction or explicit language modeling. By learning
both acoustic and language representations jointly, Whisper eliminates the need for complex pipelines,
significantly simplifying the ASR process while achieving impressive accuracy across various languages
and acoustic conditions.

Similarly, Wav2Vec [15], particularly in its latest iteration, Wav2Vec 2.0, leverages a self-supervised
learning approach to pretrain on raw audio data. Unlike traditional ASR systems, Wav2Vec also does
not require handcrafted feature extraction and can directly learn powerful representations from the wave-
form itself. These modern approaches have revolutionized ASR by reducing reliance on domain-specific
feature engineering and enabling more robust, scalable solutions for real-world applications.

Previous studies have looked into finetuning the Whisper and Wav2Vec models for the specific ap-
plication of ASR in ATC, and demonstrated reaching WERs 19.8 % and 13.46% on the ATCO2 test set,
respectively [9, 16]. With OpenAl’'s Whisper demonstrating one of the best performances with finetun-
ing, it can be considered a state-of-the-art ASR method the ATC application. OpenAl has released a
few versions of Whisper, including large-v2, on which the 13.46% WER was obtained [9], large-v3 and
large-v3-turbo. Comparison between the models can be seen in Table E.1.

frequency bins

Feature Whisper Large-v2 Whisper Large-v3 Whisper Large-v3-
Turbo
Release Date December 2022 November 2023 October 2024
Architecture Transformer ~ (Encoder- | Transformer  (Encoder- | Optimized  Transformer
Decoder) Decoder) with 128 Mel | with reduced decoder

layers (4 instead of 32)

Training Data

680,000 hours of multilin-
gual audio

1 million hours of weakly
labeled audio; 4 million
hours of pseudo-labeled
audio

Based on Whisper Large-
v3, optimized for speed
and efficiency

Performance

Baseline for comparison

10-20% error reduction
over Large-v2

Preliminary reports
suggest significantly
improved speed over

Large-v3, while maintain-
ing comparable accuracy.

Language Sup-
port

Multilingual

Multilingual with improved
language identification

Multilingual

Use Case Suit-
ability

General-purpose ASR

Enhanced accuracy, es-
pecially in noisy environ-
ments

Applications requiring
rapid transcription with
minimal resource usage

Source

OpenAl Whisper Large-v2

Hugging Face: Whisper
Large-v3

OpenAl Whisper Large-
v3-Turbo

Table E.1: Comparison of Whisper Model Variants

Challenges in modern ASR in Air Traffic Communications

Previous research on ASR for analyzing air traffic communication has typically focused on specific con-
texts, such as a particular airport or en-route/approach scenarios. Fine-tuning machine learning models
across different airports or control zones often requires new, domain-specific data, which can be difficult
to collect and annotate. For example, ATC audio data from one airport (e.g., airport X) may not generalize
well to another airport (e.g., airport Y) [17].

The collection and transcription of ATC data are both costly and time-consuming. The collection phase
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involves capturing and preprocessing data, a task that can be automated. However, the transcription
phase, which requires creating word-for-word transcripts of ATC speech, is typically done manually. This
process can be expensive, as transcribing even one hour of ATC audio without silence requires significant
human labor. For solutions targeting smaller airports, these costs can be prohibitive, raising the question
of how to efficiently collect and process large amounts of ATC audio data [17].

Additionally, ATC audio data is often noisier compared to standard ASR corpora when captured through
very-high-frequency (VHF) receivers. The signal-to-noise ratio (SNR) can range from 5 to 20 dB, which
presents challenges in developing effective ASR systems and using their outputs for downstream tasks.
While higher SNR data, sourced from operation rooms with close-mic recordings and reduced noise, are
available from air navigation service providers (ANSPs), they are often limited to private use [17].

Measures of Performance

The performance of speech recognition systems is usually assessed in terms of accuracy and speed.
Accuracy is often quantified using the Word Error Rate (WER), while speed can be measured by units
such as the real-time factor (RTF), which compares the audio processing time to the length of the audio
itself. A lower RTF (closer to 1.0 or below) indicates that the ASR system can transcribe speech at or
faster than real-time, making it suitable for live ATC applications, whereas a higher RTF (>1.0) suggests
that processing takes longer than the audio length.

Word errors are classified into three categories: insertions, substitutions, and deletions. The compu-
tation for WER is given by (E.3) [13]:

Insertions () + Substitutions (S) + Deletions (D)

0, —
Word Error Rate (%) = Number of Reference Words (N)

x 100 (E.3)

Where N is the total number of words, C' is the number of correctly transcribed words, S denotes the
number of substitutions, 7 number of insertions and D the number of deletions.

While WER is a generally useful tool for evaluating ASR performance, specifically in ATC, other metrics
can convey important information as well. Such a metric is Callsign Recognition Rate (CRR), which
measures the amount of correctly transcribed callsigns as a percentage of the total (ground truth) callsigns
[18], or Callsign Error Rate (CSER) which is simply 1 — CRR. Another relevant metric can be the Keyword
Error Rate (KER), which is calculated similarly to WER and CSER but focuses exclusively on critical ATC-
specific keywords. These include terms essential for command comprehension, such as “right”, “left”,
“heading”, “descend”, and “climb”. Since misrecognition of these words can lead to safety risks, KER
provides a more targeted evaluation of ASR reliability in command recognition.

Finally, the Command Error Rate (CER) can also be used in ATC, assessing the accuracy of full com-
mand recognition rather than individual words. Unlike KER, which evaluates isolated keywords, CER
evaluates whether an entire ATC instruction has been transcribed correctly. This metric is particularly im-
portant for determining the operational reliability of ASR systems in real-world ATC environments, where
even a small misinterpretation can lead to critical misunderstandings. By incorporating units such as
CSER, KER, and CER, ASR performance can be more effectively assessed in the context of ATC com-
munications, ensuring both safety and operational efficiency.
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E.3. Large Language Models

LLMs can have multiple roles in the development of a post-processing pipeline in ATC transcripts. Due to
their versatility, they can be applied for things such as synthetic data creation, NER, and direct correction
of transcripts themselves. The field of LLMs has seen massive growth in recent years, making it even
more important to have an overview of what different types of model there are and what they can be used
for.

General Background on LLMs

Large language models are neural networks trained on massive text corpora to understand and generate
human-like language. In recent years, transformers, in combination with the increase in computational
resources and datasets, have revolutionized the realm of natural language processing [10], [11]. Trans-
formers utilize attention mechanisms, which allow the training of transformers to be parallelized. Using
the transformer architecture, researchers and engineers have been able to train large language models
with up to hundreds of billions of parameters. These models process text by breaking it into smaller
units (tokens), using attention mechanisms to understand relationships between words, and (in case of
encoder-decoder or decoder LLMs) generating contextually relevant responses.

Training of large language models typically consists of two parts: pre-training and fine-tuning. Pre-
training is the foundational phase in developing LLMs, where models learn from vast amounts of text
data to acquire linguistic patterns, factual knowledge, and contextual understanding. This phase involves
training on diverse corpora using self-supervised learning, allowing the model to predict missing words or
generate coherent text. LLMs are designed using different architectures, ranging from encoder-decoder
to decoder-only models, each incorporating distinct building blocks and loss functions [19]. Pretraining
enables LLMs to develop a strong general-purpose foundation, which can then be adapted for specific
tasks through fine-tuning methods.

Fine-tuning involves adapting pretrained models to specific tasks through various approaches: Trans-
fer learning fine-tunes a general-purpose LLM using task-specific data, enhancing its performance for a
particular application [20], [21]. Instruction-tuning improves the model’s ability to follow user prompts by
training it on structured instruction-response data, enabling better generalization across multiple tasks [22].
Often, during fine-tuning developers also makes use of reinforcement learning or reinforcement learning
with human feedback (RLHF) to iteratively improve model behavior [23].

In recent years, many different large language models have emerged with their unique strengths and
limitations. What sets them apart from each other are among others: architecture, the data they are
trained on, the number of parameters, pre-training and finetuning methods. An overview of LLM agents
deployed up until April fo 2024 can be seen on Figure E.2
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Figure E.2: Timeline of large language models. Blue represents pre-trained models and orange
represents instruction-tuned models. Upper half corresponds to open-source models, whereas the
bottom are closed-source [19].
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Classification of LLMs

The selection of Large Language Models (LLMs) for post-processing ASR transcripts in ATC depends on
their underlying architecture, openness, customization potential, computational efficiency, and multimodal
capabilities.

Open-Source vs. Closed-Source
LLMs can be broadly classified based on their accessibility and customization potential:

* Open-Source Models (e.g., LLaMA, Mistral, Gemma): These models allow fine-tuning and local de-
ployment, making them preferable for domain-specific applications where adaptation to ATC-specific
terminology is required [24, 25, 26].

* Closed-Source Models (e.g., GPT-4, Claude, Gemini): These proprietary models offer high perfor-
mance out-of-the-box with minimal setup. However, their restricted customization and reliance on
API access can limit their applicability in specialized ATC workflows [27].

Model Size and Computational Cost
The size of an LLM directly impacts its performance, inference speed, and deployment feasibility:

+ Small Models (e.g., Mistral 7B, Llama3.2 1B & 3B): These models are efficient in terms of speed
and resource consumption, making them suitable for real-time applications. However, their reduced
capacity may limit their ability to generate highly accurate or context-aware corrections [25].

» Large Models (e.g., GPT-4, LLaMA 65B): Larger models achieve higher accuracy and contextual
understanding but come with higher computational and cost constraints [27, 24].

In theory some LLMs could also take in the raw audio next to the transcripts to improve transcription.
Considering a separate ASR module is used to perform the speech-to-text transcription, only speech
processing and generation is relevant for the thesis. Therefore, whether an LLM can process multimodal
data or not is not considered.

Overview of Some State-of-the-Art LLMs

A high-level overview of some of the most state-of-the-art large language models are given below. While
extensive, this is not an exhaustive list. Comparing LLMs is not straightforward as many of them have
different strengths and use cases. Many have tried to summarize key differences between these models
to generate better overview in amidst constant developments and growing number of models [28]. An
example of such classification is displayed on Table E.2[29].

GPT (Generative Pre-trained Transformer) is a series of large language models (LLMs) developed
by OpenAl, starting with GPT-1 in 2018. GPT-1 introduced the decoder-only transformer architecture,
leveraging self-attention and pre-training on unlabeled text, followed by fine-tuning for downstream NLP
tasks. GPT-2 (2019) significantly expanded the model size and training data, achieving state-of-the-art
results in language modeling but requiring fine-tuning for specific tasks. GPT-3 (2020) further scaled up to
175 billion parameters, trained on a vast, high-quality dataset, and demonstrated impressive zero-shot and
few-shot learning capabilities, making it widely adopted for applications like chatbots, content generation,
and software development. This progression of GPT models paved the way for LLMs to become general-
purpose Al tools, powering a range of real-world applications and influencing subsequent advancements
in Al [30]. GPT-3.5, an intermediate model between GPT-3 and GPT-4, improved efficiency and response
quality, addressing limitations like coherence and instruction-following. GPT-4 (2023) further enhanced
reasoning, contextual understanding, and multimodal capabilities, while the latest models, including GPT-
4-turbo, optimize efficiency, cost, and real-time interaction [31].

A downside to GPT models is that they can not be run locally and can only be accessed via cloud-
based APlIs or through the web interface [32]. This reliance on cloud-based access introduces potential
drawbacks, such as privacy concerns, latency issues, and ongoing usage costs. Additionally, users have
limited control over data processing and model customization, making local deployment alternatives, like
open-source LLMs, an appealing option for those prioritizing data security and offline access [33]. In the
context of the thesis, open models like GPT mcan only be used when working with open-sourced data.

The LLaMA series of models, published by Meta Al, has gained significant attention for its open-source
nature and strong performance. With continuous updates from LLaMA [34] to LLaMA 3 [35], the models



Nomenclature 39

have improved in scale and capability. It integrates advanced security and safety tools while achieving
competitive performance against leading closed-source LLMs like GPT-40 and Claude 3.5 Sonnet on
benchmarks such as MMLU [36], GSM8k [37], and HumanEval [38]. Llama is accessible and straightfor-
ward to run locally through Ollama [39] if local hardware allows it.

DeepSeek R1, released in January 2025 [40] is an advanced Al model designed for math and coding,
demonstrating strong reasoning capabilities. With 671 billion total parameters, it achieves state-of-the-
art performance on benchmarks like MATH-500 and AIME 2024, surpassing or matching OpenAl’s o1
model. Notably, DeepSeek R1 was developed with an emphasis on cost-effective training, making it
significantly more efficient compared to other leading LLMs. Upon its release, it quickly gained attention,
driving a surge in website traffic [41]. As an open-source model, it is also freely accessible through an
API, DeepSeek website, or to run locally through Ollama [39]. DeepSeek-R1 also integrates Chain-of-
Thought (CoT) reasoning to enhance its problem-solving capabilities. By explicitly outlining its step-by-
step thought process within <think> tags before delivering the final answer in <answer> tags, DeepSeek-
R1 provides transparency in its reasoning. This structured approach allows users to follow the model’s
logical progression, which can sometimes lead to more accurate and interpretable responses.

Mistral 7B is a relatively compact large language model (LLM) developed by the Mistral Al team, fea-
turing 7.3 billion parameters [42]. Despite its smaller size, it outperforms larger models such as LLaMA 2
(13B) and LLaMA 1 (34B) on multiple benchmarks, particularly in reasoning and coding tasks. Mistral 7B
is fully open-source, allowing for unrestricted modification and commercialization.

However, its reduced size also presents limitations, particularly when compared to larger models like
GPT-4. One major drawback is its smaller context window, which restricts the amount of text it can process
at once. Additionally, it is generally less accurate and more prone to hallucinations than state-of-the-art,
larger LLMs. As a result, Mistral 7B is best suited for applications where efficiency is prioritized over
absolute accuracy. It is, however, an attractive choice if having low computational cost is of importance.

Performance Met- Model Architec-

perplexity

bots, code generation

range of internet sources

model

Model rics Primary Applications Parameter Size Training Sources ture Distinct Features
. . . . Transformer-based | Excels at generating fluent text,
OpenAl GPT-4 High accuracy, Low | Content creation, ~chat- Over 175 billion Trained on a diverse autoregressive Adaptable for human-like inter-

action, Strong API support

Google Gemini

Strong logical rea-
soning

Tasks involving both text
and images

Varies by version
(up to 1 trillion)

Multimodal datasets in-

cluding textual and visual
information

Transformer-based
with multimodal
functionality

Merges textual and visual input,
Designed for advanced problem-
solving

Open-source for customization,
Benefits from community contri-
butions

Research and academic
studies

Competitive bench-
mark results

Primarily trained on pub-

. N Transformer-based
licly accessible data

Meta Al LLaMA Up to 65 billion

Prioritizes ethical Al interactions,
Implemented safeguards to limit
harmful outputs

Advanced attention mecha-
nisms (GQA), Improved function
execution capabilities

Specifically curated to
minimize  biases and
harmful outputs

High  responsive-
ness to user intent

Applications emphasizing Transformer-based
safety and ethics

Anthropic Claude Varies by version

Transformer-based
with GQA and SWA

Real-time use cases, soft-
ware development

Trained on multilingual

Mistral datasets

Strong efficiency Up to 123 billion

Table E.2: Comparison of Al Language Models, retrieved from [29]

Google’'s Gemini models are developed by Google DeepMind [43], designed to enhance performance
across a range of applications. When compared to OpenAl’'s GPT models, Gemini, with Google Search
integration, excels in factual accuracy and source citation, making it more reliable for up-to-date and pre-
cise information. In contrast, ChatGPT prioritizes conversational fluency and creativity, generating more
engaging, nuanced, and diverse responses, including storytelling, coding, and poetry. While Gemini fa-
vors conciseness and precision, ChatGPT enhances user interaction with personality and expressiveness.
Some say that the choice betweem the two models depends on whether the user values accuracy and
transparency (Gemini) or creativity and natural dialogue (ChatGPT) [44]. Like GPT, Gemini is closed-
source. Google DeepMind has not released the model’s weights or full architecture details to the public.
While Gemini is accessible via Google’s APl and cloud-based services, it cannot be run locally or modified
like open-source models such as LLaMA 3.3 or Mistral 7B.

On the other hand, Google has also released a series of open-source LLMs called Gemma. Gemma
is developed to provide lightweight yet high-performing Al solutions. Initially released in February 2024,
Gemma offers models with 2 billion and 7 billion parameters, optimized for efficient deployment on
consumer-grade hardware [45]. Despite their compact size, Gemma models achieve notable benchmark
results, often outperforming larger open models. However, their reduced size may limit performance
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on tasks requiring deep contextual understanding or complex reasoning. In December of 2024, Google
released Gemma 2, performing up to 10% better on certain benchmarks, compared to the earlier released
Gemma models of comparable size [46]. Furthermore, when compared to Mistral 7B model and Llama
8B models, Gemma 2 2B and 9B models performed somewhat worse and somewhat better, respectively,
on many benchmarks conventionally used for LLM evaluation. Gemma 27B performed better than both
Mistral 7B and Llama 8B models, which is to be expected due to being a significantly large model [46].

Groq’s Al hardware offers several advantages and trade-offs when considering it for real-world appli-
cations. A key strength is ultra-fast inference speed, making it highly effective for latency-sensitive tasks
such as real-time Al interactions and high-frequency financial analysis [47]. However, a notable drawback
is that Groq’s hardware is optimized for inference rather than training, making it less suitable for applica-
tions where finetuning is needed [48]. These factors make Groq suitable for deployment in applications
prioritizing speed and efficiency but less suited for flexible, research-intensive Al development.

Prompting

Prompt engineering is the process of crafting structured inputs to optimize the output of LLMs. In the con-
text of ATC communications, this can include designing prompts that help Al models refine ASR transcripts
as well as correcting errors while maintaining standard phraseology and accuracy. Since LLMs process
text as tokens which represent words, subwords, or characters, the structure and clarity of prompts can
sometimes directly influence the model’s ability to generate accurate corrections. A well-designed prompt
provides explicit instructions and, when necessary, contextual data to guide the model in reconstructing
ATC communications with minimal distortion.

With the growth of LLMs, a lot of studies have been done on prompt engineering and classification
of prompts [49], [50], [51], [52]. A prompt can be broken down to components, which are described in
Table E.3. Not all components are always nescessary to include in the prompt (e.g. context), but they all
have the potential to aid to guiding the LLM to desired output.

Component Description

Instruction Giving the LLM a task to guide its behavior, e.g.: "Give me the
corrected transcript"

Context External information to give the LLM context, e.g.: "These

transcripts are from an air traffic control centre in
the Netherlands"

Input data The data that the LLM needs to process, e.g.: "Ryan heir five
five zero six"

Output indicator | To indicate what format the output needs to be, e.g.: "Return
only the corrected transcription, with numbers written
numerically instead of words"

Table E.3: Components for LLM prompt

Fine-tuning LLMs

Fine-tuning a large language model (LLM) is highly effective for adapting general-purpose models to
specialized tasks, improving both accuracy and efficiency. Pretrained LLMs possess extensive linguistic
knowledge, but their performance in domain-specific applications, such as ATC transcription correction
or other aviation-related tasks,is often limited due to a lack of exposure to specialized terminology and
structured communication patterns [53]. Fine-tuning allows these models to learn domain-specific nu-
ances, correct systematic errors, and enhance contextual understanding, leading to more reliable outputs
in specialized fields [54].

Furthermore, fine-tuning enables LLMs to leverage task-specific objectives, such as error correction,
summarization, or information extraction, refining their ability to process domain-specific data with greater
precision [55]. This is particularly valuable in high-stakes environments like air traffic control (ATC), where
ASR-generated transcriptions must be both accurate and compliant with standard phraseology.
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Multiple approaches can be adopted when fine-tuning LLMs: self-supervised learning (where simply
additional database, e.g. specifically from the ATC domain is fed to the LLM for training), supervised
learning (where prompt-output pairs are fed for training) and reinforcement learning (using reward/penalty
functions). Reinforcement learning can be done both by assigning rewards based on comparing to ground
truth (when available), or by having a human who manually marks responses good or bad. This latter is
also called Reinforcement Learning from Human Feedback (RLHF)[23]. Self-supervised, supervised and
reinforcement learning methods are often used in combination when training LLMs. Further information
on these three methods is given in Table E.4.

Table E.4: Fine-Tuning Approaches for LLMs Used in Correcting ATC Transcripts

Fine-Tuning Ap-

proach Description Input Data and Examples
The LLM s trained on Ia_rge Feeding raw ATC conversations (e.g., pilot-
amounts of raw ATC transcripts .
. . s : controller exchanges) into the LLM to help
Self-Supervised without explicit corrections. It it recoanize and reconstruct phraseology like
Learning (SSL) learns patterns, phraseology, 9 P 9y

“Cleared for takeoff” or “Turn left heading

and common structures in ATC 270"

communication.

The LLM is fine-tuned with la-
beled (input-output) data, learn- | Mis-Transcribed: "Turn left at honey heading
ing to correct specific transcrip- | two seven zero.”; Corrected: "Turn left at one-

Supervised Learn-

ing (SL) tion errors by comparing mis- | eighty, heading 270.”

transcribed and corrected text.

The LLM is optimized using re-

wards for correct corrections and | If the LLM suggests "Descend to flight level
Reinforcement penalties for maintaining tran-| 200” instead of the incorrect "Decent to fly
Learning (RL) scription errors, refining its ability | level 200,” it receives a reward. If it fails to

to correct ATC transcripts over | correct errors, it is penalized.

time.

When finetuning LLMs, it is not just the input data that must be considereed, but also the parameters
that are being adjusted. Retraining an entire LLM (all its layers) requires a huge amount of computational
power. Another, more computationally light finetuning strategy is feature extraction, which freezes trans-
former Layers, and only affects output layers. The idea is that this strategy keps the pretrained model’s
general language understanding while fine-tuning only specific layers.

Another strategy is Low-Rank Adaptation (LoRA). LoRA is a parameter-efficient fine-tuning (PEFT)
method that inserts small trainable low-rank matrices into the transformer layers of an LLM instead of
modifying all parameters. This approach significantly reduces computational costs and memory usage
while allowing the model to adapt to new tasks effectively [56].

LoRA modifies the weight updates in a transformer’s attention layers by introducing low-rank matri-
ces. Given an original weight matrix 1, € R%**, LoRA approximates the update AW using two smaller
matrices A € R¥" and B € R"™**, where r < min(d, k). Instead of directly training AW, the update is
expressed as:

AW = BA (E.4)

The adapted weight matrix during fine-tuning is then:

W =W, + AW = W, + BA (E.5)

where W, remains frozen, and only A and B are trainable, significantly reducing the number of pa-
rameters. During inference or training, for an input feature X € R**", the transformation is computed

as:
Y=WX = (Wo + BA)X =WoX + BAX (E.6)
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Since AX first projects the input into a lower-dimensional space r, and B maps it back to the original
space, the number of trainable parameters is reduced from d x k to r(d + k). This makes LoRA an
efficient alternative to full fine-tuning, minimizing memory and computational overhead while preserving
model performance [56].
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E.4. Air Traffic Control

This section presents an overview of air traffic management (ATM) and air traffic control (ATC) to give
general background and help place context for communications between air traffic controllers (ATCos)
and pilots. It begins with a description of ATM, followed by a discussion on airspace classification, and
concludes with an examination of ATC phraseology.

Air Traffic Management

ATM is responsible for the overall coordination of air traffic, and is further divided into Air Traffic Services
(ATS) for safe and orderly movement of aircraft, Airspace Management (ASM) for efficient airspace allo-
cation, and Air Traffic Flow & Capacity Management (ATFCM) for balancing traffic demand with capacity
constraints. An overview of the structure of ATM is given in Figure E.3.

Air Traffic Services (ATS) ensure the safe and efficient movement of aircraft within controlled airspace
by managing incoming, outgoing, and en-route traffic. ATS is provided within designated Flight Informa-
tion Regions (FIRs), with control handed over at FIR boundaries. Upper airspace is typically divided into
sectors, facilitating organized traffic flow between major international hubs. Surveillance is maintained
through radar networks, allowing for radar-based separation of aircraft. ATS routes, often described as
"highways in the sky,” connect navigational beacons (e.g., VOR/DME), with traffic separated into des-
ignated lanes or altitudes. Altitude-based separation follows the semi-circular rule, assigning odd flight
levels to eastbound flights and even levels to westbound flights to maintain safe vertical separation. ATS
encompasses Air Traffic Control (ATC), Advisory Service, Flight Information Service (FIS), and Alerting

Service.
Air traffic management (ATM)
Air traffic services Air traffic flow Airspace
(ATS) management (ATFM) ll management (ASM)
i . Flight information . "

Area control service

Air traffic control
(ATC) service

Approach control service

Aerodrome control service

Figure E.3: Air Traffic Management Breakdown [57]

Flight Information Service (FIS) is responsible for collecting, managing, and distributing flight-related
information to assist pilots in conducting their flights safely and efficiently. An example of FIS is ATIS (Au-
tomatic Terminal Information Service), which provides continuous VHF radio broadcasts to assist pilots
operating within the Terminal Control Area (TMA) or Control Zone (CTR). It includes details on the runway
in use, transition level (QNE to QNH), weather conditions (wind, visibility, precipitation, clouds, tempera-
ture), QNH, and operational updates. At Amsterdam Schiphol Airport (EHAM), ATIS is divided into Arrival
Information (Al) and Departure Information (DI) to ensure pilots receive phase-specific updates for safe
and efficient flight operations.

As part of Air Traffic Services (ATS), the Alerting Service (AL) works alongside the Flight Information
Service (FIS) to ensure flight safety by notifying and coordinating with search and rescue (SAR) organi-
zations in case of a potential emergency. While FIS provides pilots with essential information to enhance
situational awareness, AL intervenes when communication is lost or distress signals arise.

Air Traffic Control (ATC) is a ground-based service in which air traffic controllers manage aircraft move-
ments both on the ground and within designated controlled airspace, while also offering advisory services
to aircraft operating in uncontrolled airspace. ATC is provided by air traffic controllers (ATCos) who issue
clearances, instructions, and advisories to pilots to prevent collisions and manage air traffic flow.
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Controlled Airspace Organization

Controlled airspace is geographically divided into different controlled zones, each managed by a specific
ATC unit responsible for ensuring safe and efficient aircraft movement. In Table E.5 is an overview of UTA,
CTA, TMA, and CTR, along with the ATC facilities that control them.

Airspace Area Managed By Example (Netherlands)
UTA (Upper Control | Upper airspace (ap-| Area Control Center | Maastricht Upper Area
Area) prox. FL 195 and | (ACC) Control (MUAC)

higher)
CTA (Control Area) Lower airspace (ap-| ACC Amsterdam CTA

prox FL 195 or lower

TMA (Terminal Con-| Incoming/outgoing Approach Control (APP) | Schiphol TMA (EHAM)

trol Area) flights between CTR
and CTA

CTR (Control Zone) | Circular area around | Tower Control (TWR) Amsterdam Schiphol CTR
airport (EHAM)

Table E.5: Summary of Controlled Airspace Divisions and Their Management

Aircraft transitions between these airspace zones follow Standard Instrument Procedures, ensuring
structured and efficient traffic flow.

Standard Terminal Arrival Routes (STARs) guide aircraft from en-route airspace into the Terminal Ma-
neuvering Area (TMA) and finally to the Control Zone (CTR). Managed by Area Control Centers (ACC),
STARs streamline arrivals by reducing pilot-controller communication, ensuring terrain clearance, and min-
imizing noise impact. Holding Areas (Stacks) are designated zones where aircraft may be instructed to
hold in a circular or racetrack pattern before receiving clearance for approach. These are used near busy
airports to sequence arrivals efficiently. Aircraft descend in a controlled manner, following altitude-based
separation before being handed over to Approach Control.

Standard Instrument Departures (SIDs) transition aircraft from the Control Zone (CTR) through the
Terminal Maneuvering Area (TMA) into en-route airspace. Managed by Approach Control (APP), SIDs
organize departures to maintain separation from arriving traffic, reduce communication load, and ensure
obstacle clearance. The Aerodrome Control Tower (TWR) oversees operations within the Control Zone
(CTR), managing VFR traffic, taxiing, takeoffs, and final approach. In low visibility, Airport Surface Detec-
tion Equipment (ASDE) provides ground surveillance, supplementing visual observations.

ATC ensures safe separation using lateral (1—6 NM), longitudinal (2—12 NM), and vertical (1,000 feet)
criteria. Above FL290, standard vertical separation increases to 2,000 feet, except in Reduced Verti-
cal Separation Minimums (RVSM) airspace, where it remains 1,000 feet (FL290-FL410) in designated
regions like Europe, the North Atlantic, and the Middle East.

As a last-resort safety system, the Airborne Collision Avoidance System (ACAS) autonomously detects
midair conflict risks. Many aircraft are also equipped with the Traffic Alert and Collision Avoidance System
(TCAS), which actively interrogates nearby transponders to issue collision advisories. Aircraft separation
minimums also depend on wake turbulence categories, with larger separation required behind heavier
aircraft.

E.4. Air Traffic Control Communications

ATC communication involves the exchange of critical information between air traffic controllers and pilots to
ensure the safe and efficient movement of aircraft. The content of these communications typically includes
instructions, clearances, weather reports, updates on flight paths, altitude assignments, and responses to
queries. Controllers provide pilots with specific information on headings, altitude changes, and directions
to avoid air traffic congestion or navigate airspace. Pilots, in turn, report their position, altitude, and
intentions, as well as any anomalies, such as equipment malfunctions or unexpected weather conditions.
These communications ensure that aircraft follow safe and precise routes, avoiding conflicts and enabling
smooth coordination between various air traffic sectors. In Table E.6 some examples of ICAO standard
phraseology can be found.
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To minimize the risk of miscommunication and ensure clarity in a high-pressure environment, ATC uses
a standardized set of phrases and terminology, known as ATC phraseology. This standardized language
ensures that instructions are short, unambiguous, and universally understood by controllers and pilots
worldwide, regardless of their native language. For example, the use of phonetic alphabets (e.g., “Alpha”
for "A” and “Bravo” for "B”) eliminates confusion when communicating letters over radio. Numbers are
read out in specific ways (e.g., "one five” for 15 and "two five zero” for 250) to prevent misinterpretation.
Moreover, certain phrases like "roger” (meaning “received and understood”) and "wilco” (short for "will
comply”) are used to streamline communication and avoid unnecessary repetition.

The structure and content of ATC phraseology are dictated by international standards set by the In-
ternational Civil Aviation Organization (ICAO) [58], which ensures consistency in communication across
different regions and languages. ICAQ’s guidelines, as laid out in documents like Annex 10, define the
rules for how messages should be conveyed, the sequence of exchanges, and the expected responses.
These guidelines also ensure that communication is efficient, particularly in emergencies, where clear
and concise instructions are crucial for safety. In addition to basic phraseology, ICAO has developed
specialized terminology for specific situations, such as distress calls, weather updates, and equipment
malfunctions, all designed to facilitate quick and accurate decision-making in dynamic, high-stress envi-
ronments.

Table E.6: Standard ICAO ATC Phraseology Examples

Category Description and Example Phraseology

Callsigns Aircraft are identified by:
- Airline + flight number: e.g., "KLM123, climb FL350.”

- Aircraft registration: e.g., "November 123 Alpha Bravo, taxi to hold-
ing point Runway 18 via Alpha.”

Runway Designation Named based on magnetic heading (e.g., Runway 09L = 090° Left).
Example: "Line up and wait Runway 09R.”

Taxi Instructions ATC guides aircraft on the ground using taxiways and holding points.
Example: "Taxi to holding point Runway 27L via taxiways Alpha and
Bravo.”

Takeoff Clearance ATC provides takeoff authorization based on traffic and weather.

Example: “Lufthansa 789, wind 280 degrees, 5 knots, Runway 27R,
cleared for takeoff.”

En-Route Navigation ATC provides altitude, heading, and speed instructions.
Example: "KLM123, climb FL350.”
"Turn left heading 270, descend 5000 feet, QNH 1013.”

Approach Clearance ATC directs aircraft toward the airport via STAR procedures.
Example: "Lufthansa 456, descend FLO70, expect ILS approach Run-
way 25R.”

Landing Clearance ATC issues final clearance for landing.

Example: “Lufthansa 456, wind 240 degrees, 8 knots, Runway 25R,
cleared to land.”

Go-Around Instruction If the runway is not clear, ATC instructs a missed approach.
Example: "Lufthansa 456, go around, climb 3000 feet, turn right heading
360.”

Emergency Phraseology Standard ICAO emergency calls:

- Mayday (Distress, e.g., engine failure, fire)
- Pan-pan (Urgency, e.g., medical emergency)

quest immediate return to Frankfurt.”

Example: "Mayday, Mayday, Mayday, Lufthansa 789, engine failure, re-
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Available Datasets

Finally, this section outlines freely available datasets for transcribed speech. These datasets are valuable
as they provide ground truth transcriptions along with corresponding audio files, which can be processed
using various ASR models to generate realistic erroneous transcriptions for analysis.

ATCOsim

The ATCOsim Air Traffic Control Simulation Speech corpus is a collection of air traffic control (ATC) opera-
tor speech, developed by Graz University of Technology (TUG) and the Eurocontrol Experimental Centre
(EEC) [59]. It contains ten hours of recorded speech data captured during real-time ATC simulations, with
the recordings made using a close-talk headset microphone. The speech is in English and is spoken by
ten non-native speakers. The corpus includes orthographic transcriptions as well as additional metadata
about the speakers and the recording sessions [59].

ATCO2

The ATCO?2 test dataset, developed by the Idiap Research Institute [60], contains audio recordings along
with transcriptions and various metadata. ATCO2-Test subset inclydes includes four hours of audio-
transcription pairs, with 1.1 hours publicly available for free. These also come with metadata as well as
lists closeby callsighs and waypoints. The dataset was collected from LKTB, LKPR, LZIB, LSGS, LSZH,
LSZB, and YSSY airports, and the transcriptions were created by a combination of volunteers and paid
annotators [1], [61].

LINDAT/CLARIAH-CZ

LINDAT/CLARIAH-CZ is a Czech center that provides certified data storage and natural language process-
ing services. Their Air Traffic Control Communication corpus consists of recorded exchanges between
air traffic controllers and pilots. The speech has been manually transcribed and annotated with speaker
roles (pilot or controller, without revealing personal identities). With 20 hours of data, this corpus serves
as a valuable resource for studying accented speech, as it originates from a non-English native country
[62].

ANSP Dataset (LVNL)

Audio files have been provided to NLR from LVNL [63]. A subset of which was transcribed manually by a
previous student at TU Delft, Jan van Doorn [9]. The data and transcriptions are not available publicly, but
can be accessed by NLR employees. This dataset is quite useful for training models which are meant to
be deployed by LVNL or, more generally, in the context of Dutch airspace. The length of the transcribed
audio is 3 hours.



Research Definition

This section outlines the main research objective and corresponding research questions of the thesis.

Research Objective |

The objective of this research is to develop and evaluate post-processing techniques using
large language models (LLMs) to enhance the accuracy of automatic speech recognition (ASR)
transcriptions in air traffic control (ATC) communications.

E.5. Primary Research Question
The main research question guiding this study, derived straight from the research objective, is:

Of which the primary research question can be formulated as follows:

Research Question |

How can large language models improve the accuracy of ASR transcriptions in ATC communi-
cations?

The expectation is that LLMs will be able to enhance ASR transcriptions in ATC communications by
leveraging contextual awareness, enforcing standardized phraseology, and correcting common ASR er-
rors. By incorporating historical exchanges, radar data, and domain-specific patterns, LLMs can refine
transcriptions, reducing ambiguities and improving accuracy in ATC transcriptions. They also have poten-
tial to infer missing words, and enforce ICAO-standard structures. However, integrating LLMs introduces
challenges, such as the risk of hallucinations, where the model generates plausible but incorrect outputs,
as well as potential overcorrection of ASR transcriptions, which may alter actual transmissions (although
this should not be a big concern for most use cases, as long as the message is conveyed correctly).
Additionally, latency concerns in real-time ATC operations and dependency on high-quality training data
pose limitations. Finally, prompting and normalization on ASR models technically also target a lot of these
strategies. Due to these factors, it is difficult to say at this point what the improvement rate will be of the
post-processing step.

E.6. Secondary Research Questions
Furthermore, the thesis will aim to answer the following secondary research questions
+ SRQ1.1: What types of common ASR errors can LLM-based post-processing techniques effectively
correct and what types of errors are they less effective for?

+ SRQ1.2: What is the impact of LLM size and complexity on ASR transcription accuracy in ATC
environments?

+ SRQ1.3: How does fine-tuning LLMs on ATC-specific data impact post-processing performance?

+ SRQ1.4: Can LLM-generated synthetic data enhance the performance of fine-tuned LLMs on tran-
scription correction tasks?

+ SRQ1.5: (Optional) Can post-processing framework be adapted for real-time ASR transcription in
ATC environments?

The expectation is that fine-tuning will enhance the performance of LLMs in post-processing and, at the
very least, require less (elaborate) prompts to get desired outcomes. It is highly plausible that finetuning
will decline the performance of the model on other, more general tasks. However, this is an acceptable
trade-off, as the LLM is specialized for improving ATC transcriptions.

47
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One of the main limitations of this research is hardware constraints. The available Tesla V100 GPU
can only support training smaller LLMs (e.g., 3B or 7B parameters at most), restricting the exploration of
larger-scale fine-tuning. Additionally, publicly available transcribed ATC data is scarce, necessitating the
generation of synthetic training data. While artificial error injection in ATC transcripts seems straightfor-
ward, it may fail to accurately replicate real ASR errors. Using actual ASR transcriptions as a reference
when prompting LLMs to synthesize training data could help mitigate this issue, but there is no guarantee
that synthetic data will be fully representative of real-world ASR errors.

This research will explore these challenges and trade-offs to assess the viability of LLM-based post-
processing for ASR in ATC communications.
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