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Abstract
For real-time programs reproducing a bug by rerun-
ning the system is likely to fail, making fault local-
ization a time-consuming process. Omniscient de-
bugging is a technique that stores each run in such a
way that it supports going backwards in time. How-
ever, the overhead of existing omniscient debug-
ging implementations for languages like Java is so
large that it cannot be effectively used in practice.
In this paper, we show that for agent-oriented pro-
gramming practical omniscient debugging is possi-
ble. We design a tracing mechanism for efficiently
storing and exploring agent program runs. We are
the first to demonstrate that this mechanism does
not affect program runs by empirically establish-
ing that the same tests succeed or fail. Usability is
supported by a trace visualization method aimed at
more effectively locating faults in agent programs.

1 Introduction
For traditional (cyclic) debugging to work, the program under
investigation has to be deterministic. Otherwise, reproducing
a bug by rerunning the program is likely to fail as it will not
hit the same bug again or even hit different bugs [Engblom,
2012]. Real-time programs like multi-agent systems are typi-
cally not deterministic. Running the same agent system again
more often than not results in a different program run or trace,
which complicates the iterative process of debugging. Koe-
man et al. [2016a] also showed that the most frequently oc-
curring type of failure in agent programs (a failure to select
the right action) is caused by faults that occurred in a past
state far from the point of detection. In other words, the root
cause of a failure in an agent program is more often than not
both far removed in time and in code (location).

Omniscient debugging is an approach to tackle these is-
sues. Also known as reverse or back-in-time debugging, om-
nisicient debugging is a technique that originates in the con-
text of object-oriented programming (OOP), allowing a pro-
grammer to explore arbitrary moments in a program’s run by
recording the execution. Such a ‘time travelling debugger’ is
regarded as one of the most powerful debugging tools [Zeller,
2009; Bracha, 2012].

However, omniscient debugging is still not widely adopted.
An important reason for this is that existing (OOP) implemen-
tations have a significant performance impact, with slowdown
factors ranging from 2 to 300 times. Moreover, most existing
solutions are heavy on memory or disk space requirements,
requiring tens of gigabytes for a single trace.

The fact that the agent-oriented programming (AOP)
paradigm is based on a higher level of abstraction compared
to most other programming languages provides an opportu-
nity to apply omniscient debugging techniques with a signif-
icantly lower overhead. The premise here is that tracing for
AOP can be based on capturing only high-level decision mak-
ing events instead of the lower-level computational events of
OOP. Tracing techniques for AOP would thus need tracing
of significantly fewer events while still being able to recon-
struct all program states, making omniscient debugging for
AOP more feasible in practice than for e.g. OOP.

The main contribution of this paper is the design of a trac-
ing mechanism for cognitive agent programs that: (i) has a
small impact on runtime performance; we show that our tech-
nique only has a 10% overhead instead of the much larger
factors known from the literature (see Table 1); (ii) has virtu-
ally no impact on program behaviour; we empirically estab-
lish that the same tests succeed and fail with or without our
tracing mechanism; (iii) can be effectively used for debug-
ging, we propose a visualization technique tailored to cogni-
tive agents and illustrate its application for fault localization.
The key question we thus address is whether it is feasible and
practical to apply omniscient debugging techniques to AOP
without affecting testability.

The remainder of this paper is organized as follows. Af-
ter discussing related work in Section 2, we propose a tracing
mechanism in Section 3. In Section 4, we empirically estab-
lish that our approach does not affect the detection of failures.
Section 5 introduces a trace visualization technique to support
effective fault localization. The paper concludes with direc-
tions for future work in Section 6.

2 Related Work
Omniscient debugging is based on the idea that a developer
explores a run that failed by reversing back into its execu-
tion to locate the corresponding fault, rather than trying to
reproduce an observed failure in a separate (re)run as tra-
ditional (cyclic) debugging requires [Engblom, 2012]. This
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Work Method Storage req. Slowdown Storag loc.
Lewis and Ducasse [2003] Java bytecode instr. 100 MB/s 7-300x in-memory1

Hofer et al. [2006] Smalltalk bytecode instr. 1-100 MB/s 6-248x in-memory
Pothier et al. [2007] Java bytecode instr. 15 MB/s 10-115x files
Lienhard et al. [2008] VM modification 300 MB/s 2-7x in-memory
Ko and Myers [2010] Java bytecode instr. 1-10 MB/s 2-15x files
This paper Recording events 0.1 MB/s 1.1x files

Table 1: A comparison of omniscient debugger implementations. Reported numbers have been rounded.

is especially useful for programs that have non-deterministic
aspects (e.g., randomness) and/or rely on external resources
(e.g., agent environments), as such programs generally do not
behave exactly the same way on each run.

Fundamentally, it is impossible to reverse the execution of
a program because for many operations there is no way to
take the state after the operation and infer the state before the
operation [Engblom, 2012]. Omniscient debugging facilitates
‘going back in time’ by recording an entire run of a program
in a log, also called a trace of the run. Such a trace should
allow any state of a program’s execution to be correctly re-
constructed. An intermediate form between cyclic and omni-
scient debugging is record-replay debugging, in which only
the aspects of a run that cannot be reconstructed (i.e., by re-
running) are recorded. With this method, going back to a
previous point in the execution requires restarting the run,
and then feeding the recorded aspects back in at exactly the
right times. Record-replay debugging is easier to implement,
but also more time-consuming for developers, as a complete
restart and re-run is needed to go back only one state in an
execution. Moreover, it is not always possible to record all
required (non-deterministic) aspects of a program, especially
when a program relies on external resources such as exter-
nal environments. Finally, we note that tracing a program for
debugging purposes is different from manual instrumentation
like in Lam and Barber [2005] or collecting (performance)
measurements like in Helsinger et al. [2003].

Although omniscient debugging has been a research topic
since the 1970s, one of the first influential attempts to apply
this debugging technique to a modern programming language
(Java) was performed by Lewis and Ducasse [2003]. In this
paper, a proof-of-concept omniscient debugger is presented
with the intention of demonstrating an upper bound for the
costs of collection and display. Every change to every acces-
sible object or local variable is recorded in memory separately
for each thread by adding instrumentation code before every
assignment and around every method call. The author claims
that this proof of concept is effective for many kinds of bugs.
A similar effort for Smalltalk was performed by Hofer et al.
[2006], which also provides support for searching traces by
queries (boolean expressions) specified in the language itself.

The work of Pothier et al. [2007] builds upon the work
of Lewis, focusing on efficiency and usability. Events that
are generated by (Java) bytecode instrumentation are stored
in an on-disk database rather than in the program’s memory
space. Although this increases the capture cost, this provides
better scalability as usually more disk space than memory is
available, and reduces interference with the program memory
itself. Moreover, this allows for post-mortem debugging by

using previously recorded files. According to the authors, the
benefits of omniscient debugging in quickly pinpointing hard-
to-find bugs far outweigh any performance impact. The work
of Lienhard et al. [2008] aims to further address performance
issues by tracing at the virtual machine level.

A related tool created by Ko and Myers [2010] is WHY-
LINE, which allows developers to pose “why did” or “why
didn’t” questions about the output of Java programs. A trace
is generated in memory through bytecode instrumentation,
containing everything necessary for reproducing a specific
execution. From this trace, a set of questions and according
answers is generated. The authors note that their approach is
not suited for executions that span more than a few minutes
or executions that process or produce substantial amounts of
data. However, their results do show that the approach en-
ables developers to debug failures substantially faster.

Key aspects of the omniscient debuggers discussed in this
section are compared with our mechanism in Table 1. We
note that it is not possible to precisely compare the storage re-
quirements (per second) and slowdown factors, as each work
uses different programs (with varying amounts of activity in
a run) in their evaluations, but the reported numbers do give
a general indication of the various performance impacts.

A review of current state-of-the-art agent programming
platforms shows that only three support something similar
to a tracing mechanism2. 2APL [Dastani, 2008] provides
an event-based mechanism that captures so-called reasoning
steps in-memory. Jason [Bordini et al., 2007] provides a simi-
lar mechanism, but, as far as we can tell, only captures (snap-
shots of) the full state of an agent after each of its decision
cycles. AFAPL [Collier, 2007] also captures the full state of
an agent after each decision cycle. It is not clear if these trac-
ing mechanisms provide sufficient support for implementing
an omniscient debugging technique. 2APL and Jason’s mech-
anisms do not scale well as they show fast growing memory
usage, and, as a consequence, will quickly cause a signifi-
cant impact on an agent’s execution. The mechanism store
the snapshots in files, but it is unclear what the associated
performance impact is. From the three platforms discussed
only AFAPL supports searching in a trace for the occurrence
of specific beliefs, but none of the platforms support more ad-
vanced navigation, querying or filtering of a trace. None of
these platforms is able to relate agent states that are stored
to the agent program’s source code, which is another feature
that a developer needs for effectively locating faults.

1There is a cut-off after 10.000 events on 32-bit systems.
2No work has been published on the 2APL and Jason mecha-

nisms; conclusions were drawn from own observations.
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3 Agent Trace Design
A tracing mechanism for cognitive agent programs should fa-
cilitate reverting an agent to any previous state by recording
its execution. However, there are many ways to record a pro-
gram’s execution. Different solutions provide support for dif-
ferent techniques, ranging from record-replay debugging to
support for full inspection which requires storing a full trace,
i.e., all events, states, and actions performed in the run. Such
a full trace that captures each individual state completely in
practice is not feasible, as it takes 5-20x more time to execute
an agent system and requires more than 50-200x the storage
space needed for other mechanisms (see row Full in Table 2).

In this section, we take an incremental approach to the de-
sign of a tracing mechanism. We begin with an initial mech-
anism that stores a trace that captures as little information as
possible but still provides sufficient information for record-
replay. In this first step, a minimal trace is constructed based
on events that, however, limits the options for a developer
to (rapidly) locate points of interest in a trace and establish
meaningful relations between these points. Step two extends
the trace with information about state changes that allows ef-
ficient reconstruction of a previous state. In the third step, we
add source code information associated with points in a trace
to enable a debugger to more effectively explore the trace. At
each step, we try to minimize the additional time and space
resources needed and evaluate the impact of the tracing mech-
anism on the agent system’s (runtime) performance. All eval-
uations were performed on a Linux server with a quad-core
Intel i7 processor and 6GB of RAM. Finally, we discuss how
to store traces for later use. In Section 4, we show that the be-
haviour of different sets of agents in different environments
is not significantly affected.

3.1 Tracing Events (Record-Replay)
In order to facilitate record-replay debugging, we need to de-
termine which aspects must be stored in order to reconstruct
any previous state of an agent program’s execution by re-
playing. Assuming for the moment that agents themselves
are deterministic (we will relax this assumption later), events
such as percepts from an environment or messages from other
agents would be the only items that need to be recorded in the
trace. This is true because re-running an agent program does
not guarantee the same events to be produced, as the envi-
ronment is external and asynchronous and because multiple
agents generally run concurrently in separate threads without
a strict scheduling mechanism. By re-running the agent pro-
gram with an initially empty set of events and by feeding the
right events to the agent program at the right time to ‘imitate’
the environment and/or other agents, the run can be recon-
structed from this event trace and the agent can be replayed.

An event trace can be implemented by storing a snapshot
of all events that happened after each change. However, two
optimizations can be applied to agent systems. First, events
typically need to be stored only once per agent cycle. Second,
only changes in consecutive snapshots need to be stored. It is
more efficient to only store events that have been added and
deleted compared to the last snapshot as the rate of environ-
ment change typically is slow compared to the execution time
of a single agent cycle and on consecutive cycles e.g. only a

few changes to percepts are received. Storing the changes
to events (e.g., with a listener pattern) thus only requires a
simple comparison check with previous snapshots, and the
required storage is linear in terms of this.

As a method to determine the performance impact of the
tracing mechanism, we compare the average amount of cy-
cles that agents performed in one minute. We used a ran-
domly selected program from a pool of GOAL [Hindriks,
2009] multi-agent systems with four (different) agents that
control bots in the highly dynamic UT3 environment [Hin-
driks et al., 2011]. The system first was ran ten times without
any tracing enabled, and then ten times with the record-replay
mechanism. Although runs are different due to the dynamics
of the environment, the run settings (e.g., the map, the num-
ber of computer opponents, etc.) were identical in each case.
We note that if a GOAL agent receives the same events as
in a previous cycle and performs no new action in the envi-
ronment, it (but not the environment entity) ‘sleeps’ until a
new event occurs; we therefore actually report the number of
‘effective cycles’ an agent performed in one minute.

The results of these runs are summarized in the rows la-
belled None and Events in Table 2; columns match with each
of the four agents with an additional column for totals. The
results indicate that there is no significant difference in cy-
cle numbers when the event tracing mechanism is enabled
or not. Less than 2MB of storage space is needed per agent
per minute, with about 100 events generated on average per
second.We also established that space requirements grow lin-
early over time, i.e., no more than 20MB is required when
agents are executed for ten minutes.

An important usability metric is how long it takes to recon-
struct a program state. In a record-replay mode, it is clear that
stepping from the final to the initial state takes no (significant)
time at all, as this simply means restarting the agent. Moving
forward in time to a next state is also fast as the agent does
not need to be restarted. However, going just a single step
backwards in time, i.e., to a previous state compared to the
current state, an agent will need to be re-started and almost
re-run completely to reconstruct that state.

To obtain an indication of our usability metric, we first es-
tablished that re-playing our example agent programs to ob-
tain the final state starting from the initial state using the event
trace takes about 2.5 seconds. Given this measurement, nav-
igating to an arbitrary state in a run in order to inspect that
state will take about 1.25 second on average. Users, more-
over, will want to evaluate queries to identify states they need
to inspect, and in our test cases this will take more than 2.5
seconds as a query will need to be evaluated on each state that
is reconstructed as well. For an agent that has run for just one
minute (even though in a highly dynamic environment), this
means a waiting time of more than 4% relative to execution
time, which in practice is quite high.

3.2 Tracing State Changes
We have assumed that the execution of agent programs is de-
terministic, but this assumption does not hold for multi-agent
systems as, e.g., the scheduling of execution steps of agent
programs is non-deterministic. Moreover, a single agent can
contain non-deterministic choice points like selecting a ran-
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Tracing Cycles 1 Cycles 2 Cycles 3 Cycles 4 Total C. Space 1 Space 2 Space 3 Space 4 Total S.
None 496 558 1453 749 3256
Events 506 548 1432 780 3266 2MB 2MB 2MB 2MB 8MB

+2% -2% -1% +4% +0%
Changes 480 517 1281 696 2974 4MB 4MB 4MB 4MB 16MB

-5% -6% -11% -11% -9% +100% +100% +100% +100% +100%
Changes 469 501 1293 674 2937 5MB 5MB 6MB 5MB 21MB
+ sources -2% -3% +1% -3% -1% +25% +25% +50% +25% +31%
Full 77 78 83 79 316 394MB 385MB 391MB 390MB 1560MB

-84% -84% -94% -88% -89% +7780% +7600% +6417% +7700% +7329%

Table 2: An evaluation of different tracing methods by comparing the average amount of cycles over ten 1-minute runs of a system with 4
agents operating in the UT3 environment and the corresponding average amount of storage space that is required. The percentages that are
given for a method are relative to the method directly above in the table.

dom element from a list or evaluating rules in a random or-
der that will cause a different trace to be generated even with
identical input. It is generally not possible to account for all
such points, especially if they are at the knowledge represen-
tation level (and thus not explicitly represented in the agent
programming language). The substantial waiting times are
thus not the only reason why a record-replay approach for
agent systems will not be useful in practice for agent systems.

In order to reduce the amount of time a navigation step in
the trace takes on average and to facilitate non-deterministic
agents, we need to make sure that an agent’s state can be re-
constructed without requiring re-execution. As storing each
state in full is infeasible (see Table 2), we propose a mech-
anism that in addition to the changes to events also records
all changes to an agent’s cognitive state. The idea is that by
recording all event and state changes, a navigation step can be
performed by reconstructing a state by applying all changes
between the current state and that target state.

The changes that need to be recorded differ per program-
ming language. For the GOAL language, each change to an
agent’s beliefs or goals needs to be stored (besides the event
changes related to percept and messages). For other agent
programming languages that include notions like plans for
example, a new intention that is scheduled or a change that
pushes a new plan on an intention also needs to be recorded.

Note that it is not sufficient to store the actions performed
by an agent program. For example, the actions of inserting a
belief that the agent already has or dropping a goal the agent
does not have, do not change the agent’s cognitive state. In
order to be able to navigate back in time, we need to know
how we can ‘roll back’ each action to reconstruct a previous
state. For each action performed by an agent that can change
the agent’s state, therefore, the real change brought about by
that action given the agent’s current state needs to be com-
puted and stored in the trace. In other words, while executing
an agent program, the mechanism needs to store aggregations
of items that have been added to and/or removed from a state.

It is also not sufficient to ‘instrument’ program code to
record state changes. Although most state changes corre-
spond to an action that is performed as part of an agent pro-
gram, they do not always originate directly from program
code. For example, accomplishing a goal results in removing
that goal automatically from an agent’s goal base in GOAL.
This means that the tracing mechanism has to be integrated

into the virtual machine or interpreter of an agent platform.
As before, we analysed the performance of the state change

tracing mechanism discussed in this section. The main re-
sults are summarized in the row labelled Changes in Table
2. Compared to event traces, we now see that on average the
number of cycles has decreased by almost 10 percent. Even
though this is still much better than the overhead introduced
for traditional languages (see Table 1), further evaluation is
required, and in Section 4 we will determine whether agent
behaviour has been changed to a point where it affects de-
bugging or not. The space requirements have doubled, but on
average still less than 4MB per agent per minute is required.
The gain we achieve by increasing space usage is that our
metric of navigation speed has been much improved: fully re-
versing an agent’s state (either from first to last state but now
also the other way around) takes only 0.5 seconds on average,
less than 1% of the original execution time, and a substantial
speedup compared to record-replay. As the time needed to
evaluate queries remains the same, the speed-up factor for
search queries on a trace will be lower, but only slightly so,
as the time needed for evaluating a query on a state compared
to reconstructing a state is almost negligible.

3.3 Tracing Source Code Locations
The state change tracing mechanism supports efficient recon-
struction of a program’s run. It also facilitates debugging by
enabling fast querying of traces to identify unexpected state
changes. But it does not yet support fault localization, as it is
hard to relate such state changes to program code; the infor-
mation about the state change itself does not specify where
in the agent program it was brought about. For effective fault
location, ideally, a tracing mechanism is fully integrated into
the existing development facilities of an agent programming
platform such as, for example, single-step execution debug-
ging and automated testing. The integration with automated
testing in general is relatively straightforward as our tracing
mechanism makes a program run available for exploration
immediately when a test failure is detected. Test conditions
(that fail), moreover, also provide useful clues for executing
search queries or applying filters on a trace.

The integration of our tracing mechanism with a source-
level debugger, however, is more complicated. Ideally, a de-
veloper is able to follow the same stepping flow s/he can cre-
ate with a source-level debugger but now also in the reverse
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direction using the recorded trace. But even if we are given
a ‘current’ source code location and are able to revert to a
previous state (given a trace), it is not clear how to ‘reverse
step’ through the source code because there are many paths
through a program that can result in the same state. It is not
clear whether it is possible to reconstruct a single path from
local state change information only, and even less clear how
to do that efficiently. Instead, we therefore propose to support
‘reverse stepping’ by adding source code location markers,
i.e., the traversed execution events/breakpoints to an agent’s
trace. This means storing a trace that not only records events
and state changes, but also the full path of source code loca-
tions that is traversed while executing an agent program. In
order to save space, each code location in an agent program is
encoded as an integer number and this number instead of the
file-based code references are stored together with an inverse
mapping to retrieve the locations from these numbers.

To evaluate the impact of also storing code locations, we
used the source-level debugging framework proposed in Koe-
man et al. [2016b] to implement such a tracing mechanism
and recorded all possible breakpoints, i.e. code locations
that are traversed when ‘single-stepping’ an agent in forward
mode. The main results are summarized in the row labelled
Changes + sources in Table 2. They show that recording
source code locations does not have a big impact on the av-
erage number of cycles. The additional space needed to store
traces was about 25%. It is worth noting though that space
needed still only grows linearly over time, e.g., after ten min-
utes, our traces grew to roughly 50MB per agent (<0.1 MB/s).

3.4 Trace Storage
In order to minimize the impact of the tracing mechanism, the
information that needs to be stored can be written to an (in-
memory) queue. Due to the possible size of this queue and
the memory requirements of agents themselves, this queue
will need to be flushed to some more permanent storage in a
thread(pool) that is separated from the agent runtime, prefer-
ably with a lower priority. One of the most efficient ways
to do this is by using memory-mapped files [Roselli et al.,
2000], as they facilitate the best I/O performance for large
files by mapping between a file and memory space, enabling
an application to modify the file by reading and writing di-
rectly to the memory. Using files also facilitates debugging
a trace at a later point in time (i.e., loaded from the file) and
interaction with tools external to the agent runtime itself.

4 Evaluation
The main purpose of a tracing mechanism is to support de-
bugging. It therefore is important to establish that the tracing
mechanism does not significantly change the behaviour of an
agent program. For debugging purposes, it is most impor-
tant that the failures that occur in the agent system executed
without tracing also occur when runs are being traced. It is
also important to establish that the reproduction of a failure
while tracing a program will not take many more runs and
thus more time. In this section, we empirically investigate
and compare the performance and reproduction of a failure
in an agent (system) with and without our ‘state change and

source location’ tracing mechanism enabled. Whilst in the
previous section we used Unreal Tournament (with 4 agents)
for evaluation, in this section we will use the Blocks-World-
for-Teams (BW4T; Johnson et al. [2009]) environment with
varying numbers of agents. Of all EIS-compatible environ-
ments [Behrens et al., 2011] available to us ready for testing,
UT3 and BW4T are the most dynamic.

4.1 Method
The method we used is to first run a given test set many times
in order to identify all failures in an agent system (c.f. Koe-
man et al. [2016a]). We then ran multiple sessions in which
those same tests were repeated in order to determine how
many repetitions are needed (on average per session) to re-
produce all the failures that were initially found. We used a
time-out parameter as agent systems that produce many fail-
ures may run indefinitely without making any progress (i.e.,
producing no new results). Failures that are due to a time-out
are ignored because these cannot be consistently reproduced.
Our method, illustrated in Fig. 1, uses these parameters:

• B: number of initial test runs for each agent system.
• T : number of seconds after which a test is aborted.
• N : number of ‘sessions’ for each agent system.
• M : maximum number of test runs in a single session.

The aim is to empirically determine the reproduction factor
R: the number of times a run needs to be repeated to detect
all failures in an agent system. We use R to evaluate our trac-
ing mechanism, but our experiments also contribute useful
insights into the testability of agent systems.

We used two sets of agent systems programmed in GOAL
that control robots in the BW4T environment. They were
created by pairs of first-year Computer Science bachelor stu-
dents and handed-in with accompanying tests. The first set
consists of 84 single-agent systems, and the second set of 42
multi-agent systems (3 agents).

4.2 Results
We applied our method to both sets of agents, with parameter
B set to 100, T to 60 seconds, N to 10, and M to 1000.
These parameters were chosen after an iterative process of
running experiments to minimize the runtime whilst making
sure that unreproducible nor new failures would be found in
the repetition part of our method (see also the step to increase
parameter B in Fig. 1). We first ran agents with tracing turned
off and then ran the same agents again with tracing turned
on but skipped the first step (see Fig. 1) as the goal is to
establish whether failures are reproduced also when tracing
is turned on. In total, for our final experiment, almost 23,000
runs were performed with a total runtime of about 330 hours.

We found a significantly lower number of failures for the
single-agent systems (on average 0.3 failures, with a maxi-
mum of 8 failures) than for the multi-agent systems (on aver-
age 4.3 failures, with a maximum of 21 failures). In a rather
static environment like BW4T with a low number of failures,
we found that a single agent’s failure set can be reproduced on
every single run both with and without tracing enabled, i.e.,
R = 1. This is very different for multi-agent systems where
on average R = 11 runs were needed to reproduce all fail-
ures that were initially found. Most importantly, this estab-
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Figure 1: A flowchart of our evaluation method.

Figure 2: Distribution of R with and without tracing.

lishes that all failures could be reproduced (and no new fail-
ures were introduced) when the tracing mechanism is used.
The distribution of R for both with and without tracing en-
abled is shown in Fig. 2. Even though on average only 11
runs were needed, in a few cases up to even 300 repetitions
were needed to reproduce all failures. The high number of
runs required in these cases provides a strong indication that
omniscient debugging is a technique that is needed in prac-
tice to be able to debug multi-agent systems. When compar-
ing the distributions for R using a Wilcoxon signed-rank test,
no statistically significant difference is found (Z = −0.79,
p = 0.43). This provides additional support for the claim that
the tracing mechanism does not impact the agent system’s
execution. Finally, we note that a few extreme outliers where
>500 runs were required were excluded from these results.

5 Visualizing Traces
For efficient fault localization, it needs to be easy for a de-
veloper to identify states in a program’s execution that are
related to the failure under investigation. Moreover, a devel-
oper should not get lost in navigating between these states,
but always have a sense what point in the execution s/he is
evaluating and how the current state affected the execution.

We adapt the concept of a space-time view first developed

in Azadmanesh and Hauswirth [2015] in the context of Java
programming to cognitive agent programming. A space-time
view is a table that is structured along space and time dimen-
sions, where the rows in the table correspond to the space
dimension, which is composed of the different elements in a
state that are traced. Each cell indicates whether an element
was modified by executing an operation or only accessed for
inspection at a specific time (the columns in the table).

For cognitive agents, the elements in a space-time view that
are traced are the agent’s events, beliefs, goals, actions, plans,
and/or modules (i.e., sets of decision or plan rules). Assuming
a basic representation of a name with associated parameters
is used to represent these elements, we use the corresponding
signatures as the rows in the space dimension. For example,
the signature print/1 in Fig. 3 represents a print action
with one parameter. Each point (event, state change, source
code location) in a trace represents a step (column) in the time
dimension. Multiple space elements (signatures) can be used
in a single step, e.g., evaluating a query may require access-
ing several beliefs and goals. The cells in our space-time view
contain information about how an element was used at a par-
ticular step, which differs per type of element (e.g., a belief
can be modified or inspected, an action or plan can be called
and performed, a module can be entered or exited). Empty
cells indicate the element was not used. An example of a
space-time view for a simple agent is shown in Fig. 3.

A developer can use and manipulate a space-time view in
several ways. The signatures listed in the space time view can
be ordered based on type (beliefs next to beliefs) or alpha-
betically (using the signature names). A user can also apply
queries or filters to a trace both textually as well as through
selecting cells of interest or rather cells that should be hid-
den in the table; see, for example, the bottom table where
only the first row is selected by a user in Fig. 3. A user can
click on any cell in the table in order to step the agent to the
state matching that cell’s column (either forwards or back-
wards through its execution), allowing a developer to use all
debugging tools (e.g., inspecting or modifying an agent’s be-
liefs and goals) in that specific historic state.

We illustrate the use of such a space-time view
for analysing a failure of the following example test
condition associated with a BW4T agent program:
goal(holding(B)), bel(atBlock(B))
leadsto done(pickUp(B))
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Figure 3: Space-time view (top) and filtered version (bottom)

This condition expresses that if the agent has the goal to hold
block B, and believes it is at the block, that it should (eventu-
ally) pick up B. A failure to do so will lead to failure of the
test condition (i.e., when the agent is terminated). Without
an omniscient debugger, a developer would need to restart
the agent, navigate to a point where the goal-believe query
holds (assuming it will at some point in the restarted run),
and continue by manually stepping to try to understand why
the action is not performed. With an omniscient debugger,
we do not need to restart the agent, and can use the clues
provided by the test condition itself to navigate to the last
time that holding/1 and atBlock/1 were modified in
the space-time view. We can do so either by double-clicking
the corresponding cell, or, even faster, by using the query
goal(holding(B)), bel(atBlock(B)) to filter
the trace. Note that such a point must exist in the run as the
test condition failed on the exact same run that was traced.
Because our tracing mechanism also traces source code
locations and is integrated with a source-level debugger, a
developer can now step from that point through the source
code as if it is executed for the first time (and go backwards
whenever needed). In our example, it quickly became clear
to the developer that some decision rules were incorrectly
ordered, which prevented the pickUp action from being
executed.

6 Conclusion
We design a tracing mechanism that supports omniscient de-
bugging for cognitive agents, a technique that facilitates de-
bugging by moving backwards in time through a program’s
execution. We evaluate and demonstrate empirically that the
mechanism is efficient and does not substantially affect the
runs of program in the sense that the same failures can be
reproduced when the mechanism is turned on and off. This
essentially shows that our mechanism is fast enough and can
be used in practice for debugging failures without a need to
rerun a program.

We also introduce a trace visualization method tailored to
cognitives agents based on a space-time view of the execu-
tion history. A developer can navigate this view, evaluate
queries on a trace, and apply filters to it to obtain views of
only the relevant parts of a trace. Our approach is integrated
with a source-level debugger and traces source code loca-
tions, which enables a developer to single-step through a pro-
gram’s execution history and facilitates fault localization.

Future work will include a user study to evaluate the usabil-
ity of our omniscient debugging approach for programmers.

This paper’s findings that it can be hard to reproduce a failure
at least sometimes also prompt the need for further investiga-
tion into how failure reproduction for multi-agent systems can
be improved. Finally, we believe that our tracing mechanism
can provide a starting point for a history-based explanation
mechanism that can automatically answer questions such as
‘why did this action (not) happen?’ [Hindriks, 2012].
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